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Abstract
Modeling spatiotemporal dynamics with neural
differential equations has become a major line of
research that opens new ways to handle various
real-world scenarios (e.g., missing observations,
irregular times, etc.). Despite such progress, most
existing methods still face challenges in providing
a general framework for analyzing time series. To
tackle this, we adopt stochastic differential games
to suggest a new philosophy of utilizing interact-
ing collective intelligence in time series analysis.
For the implementation, we develop the novel gra-
dient descent-based algorithm called deep neural
fictitious play to approximate the Nash equilib-
rium. We theoretically analyze the convergence
result of the proposed algorithm and discuss the
advantage of cooperative games in handling non-
informative observation. Throughout the exper-
iments on various datasets, we demonstrate the
superiority of our framework over all the tested
benchmarks in modeling time-series prediction by
capitalizing on the advantages of applying cooper-
ative games. An ablation study shows that neural
agents of the proposed framework learn intrinsic
temporal relevance to make accurate time-series
predictions.

1. Introduction
The key challenge of time-series prediction is understanding
how past observations contribute to the future and building
a probabilistic model that intrinsically captures the temporal
correlation. A model is required to differentiate the relative
importance of past observations on the future time-series
such that the redundant information is well-suppressed dur-
ing inference. To address this challenge, a series of pre-
vious works followed the philosophy of defining informa-
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tion redundancy by adopting a concept known as temporal
decay (Che et al., 2018; Mei & Eisner, 2017). Such an
inductive bias relies on the belief that the influence of past
observations exponentially decreases over time. However,
due to this strong assumption, any method built upon the
fixed inductive bias may fail to capture different temporal
dynamics in various real-world scenarios properly.

A promising direction to tackle this challenge is to learn
the temporal correlation structure from data. One candi-
date for learning the implicit relation is recurrent neural
networks (RNNs) which subsequently encode past observa-
tions into a latent space with a gating mechanism. Due to
the implicitness of latent encoding, the model provides am-
biguous explanations of how observations are related to the
prediction. Furthermore, conventional RNNs are incapable
of capturing the irregularly sampled time-series, which is
problematic for many real-world applications.

Recently, remarkable advances have been made to model
underlying continuous temporal dynamics utilizing neural
differential equations (Chen et al., 2018; Li et al., 2020;
Kidger et al., 2020) (NDEs). For instance, a stream of
research (Rubanova et al., 2019; Deng et al., 2021; Schirmer
et al., 2022) has focused on overcoming the initial condition
problem of conventional differential equation models by
encoding temporal dynamics into the latent space. A set of
past observations are incorporated into latent representations
and fully utilized for time-series prediction. However, owing
to the inexplicable relation between temporal states in the
latent representations, these methods are still incapable of
showing the explicit rationale that can reveal the impact of
past observations on the future.

In this paper, we present a novel framework built upon
game theory to model temporal dynamics of time-series
data. More specifically, we extend the conventional dif-
ferential equation (DE) to the multi-agent counterpart for
decomposing the observational time-series. Each agent in-
dividually encodes the impact of a partial observation into
an underlying stochastic trajectory and interacts with each
other to extract meaningful information to predict the future.
We formulate the collaboration among agents utilizing co-
operative differential games (Leitmann, 1974; Staatz, 1983;
Sexton, 1986) to integrate the individual information and
adaptively balance the importance of each agent. As a result
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(a) Multi-agent Neural SDEs (b) Temporal Aggregation (c) Differential games
Figure 1: Conceptual illustration of the proposed framework: (a) The proposed MaSDEs encode separate initial conditions and
propagate individual decisions over the interval t ∈ [si, T ]. The bold black line indicates the time-series on prediction interval T, and the
dashed green lines are the decisions of neural agents. (b) The temporal aggregation integrates separate decisions. The red crosses show
the predictor Λα

t representing the cooperative prediction. (c) The optimal action profiles α∗ are obtained in the Nash equilibrium.

of the differential game, cooperative agents achieve the Nash
equilibrium and agree to suppress non-informative observa-
tions to highlight the contribution of important observations
for accurate prediction.

Main Contribution. To the best of our knowledge, this
work is the first attempt to adopt a philosophy of game the-
ory in dealing with multivariate time-series. For tractability
of applying differential games, we propose a novel gradi-
ent descent-based algorithm called deep neural fictitious
play, which operates in a tractable and parallel way to ob-
tain the Nash equilibrium. Theoretical results based on the
Feynman-Kac formalism guarantee the convergence of the
proposed algorithm and unveil the underlying rationale for
the temporal relevance of past and future. To demonstrate
superiority, we validate our method on various types of mul-
tivariate synthetic and real-world datasets. Experimental
results show that our method outperforms state-of-the-art
DE-based methods and verify the implication of theoreti-
cal findings about the advantages of applying cooperative
games.

2. Methods
Problem Setup. Consider a general time-series forecast-
ing set-up where each instance of a time-series is defined
on the entire time interval [0, T ] comprising of observ-
able past (i.e., O) and target future intervals (i.e., T). We
assume that the irregularly sampled observations are col-
lected at time stamps O = {s1, . . . , sI} where si ∈ O for
i ∈ N := {1, . . . , I}. Then, we focus on building a prob-
abilistic model that can predict future values at any time
t ∈ T based on the set of past observations in O. We define
I-simplex as ∆I := {a ∈ [0, 1]I |1⊤a = 1}.

Multi-agent Neural SDEs. Suppose we have a set of I
number of past observations for a given time-series, i.e.,
{ysi}si∈O. The primary object of our interest is the set of
stochastic processes Xα

t = [X1,α
t , . . . , XI,α

t ] parameter-
ized by multiple control agents α = [α1, . . . , αI ], which is

defined as a collection of solutions to the following multi-
agent stochastic differential equations (MaSDEs)1:
Definition 2.1. (Multi-agent Neural SDEs). Let us define
Rd-valued stochastic processes Xα

t controlled by Marko-
vian control agents α:

(Xα
t , {ysi}si∈O)︸ ︷︷ ︸

past observations

:


dXi,α

t = bαi
t dt+ σtdW

i
t ,

bαi
t := b(t,Xi,α

t , αi),

σt := σ(t,Xi,α
t ), ∀i ∈ N,

(1)

where {W i
t }i∈N are independent d-dimensional Wiener pro-

cesses, and bαi
t := b : [0, T ] × Rd × A → Rd and σt :=

σ : [0, T ] × Rd → Rd×d are drift and diffusion functions,
respectively. The control agent αi : [0, T ]×Rd ×Θ→ Rd,
which we refer to as a neural agent, is modeled as a neural
network αi := αi(t,X

i,α
t ; θi) parameterized by θi.

Each neural agent takes spatio-temporal variables (t,Xi,α
t )

and produces infinitesimally successive outputs (t +
dt,Xi,α

t+dt). We define a neural agent’s decision as a con-
tinuous stochastic trajectory over the future interval T, i.e.,
{Xi,α

t }t∈T. By setting the past observation ysi as the initial
condition, the decision of a neural agent can be considered
as an information propagator that can explicitly represent
the impact of the corresponding past observation via the
conditional expression p(Xt∈T|ys∈O); see Figure 1-(a) for
a pictorial illustration.

Multi-conditioned Score-based Predictor. Since each neu-
ral agent αi can only represent the individual impact of par-
tial information ysi , we aggregate the individual decisions
made by each neural agent to capitalize on the temporal
dynamics available from the entire set of past observations.
Inspired by recent work (Song et al., 2021), we introduce
the multi-conditioned predictor Λα

t that produces the col-
laborative prediction between neural agents.

1From this point forward, we use boldface letters to denote
a collection of objects obtained from multi-agents, e.g., Xα

t =

[X1,α
t , . . . , XI,α

t ], and we omit the dependence on temporal state
when clear in the context.
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Definition 2.2. (Multi-conditioned Predictor)2 Let us de-
fine a simplex-valued function Aα

t : T × Rd × Θ → ∆I .
Then, the prediction made by proposed MaSDEs is defined
as follows:

dΛα
t :=

∑
i∈N

Aαi
t

[
bαi
t −

1

2

(
∇ · Σt +Σt∇ log pit(·|ysi)

)
dt

]
,

(2)

where we denote σtσ
T
t := Σt, ∇ log pit(·|ysi) is the score

function of the agent i conditioned by past observation ysi .

In the definition, we suggest temporal aggregation Aα
t =

[Aα1
t , . . . , AαI

t ] that provides the attention map (i.e.,
weighted sum) to each decision regarding the relative impor-
tance, i.e., Aα

t : T × Rd × Θ → ∆I . Given the temporal
aggregation, the predictor Λα

t produces an aggregated de-
cision from the decisions made by the individual agents.
Since the goal of this work is to capture the future states
given past observable events accurately, we hope to find
the best combination of neural agents α to minimize the
discrepancy at every time T:

yt
[α1,...,αI ]⇐⇒ Λα

t |{ysi
}si∈O , (3)

where yt is a target to predict, Λα
t is a prediction made by

MaSDEs conditioned on past observations {ysi}si∈O.

Stochastic Optimal Control. To systemically search the
optimal neural agent, we adopt the stochastic optimal con-
trol (Yeung & Petrosjan, 2006; Carmona & Delarue, 2018)
as our central methodology to formally define an objective
functional J i. Specifically, each neural agent is given a
behavioral rule to follow:

Definition 2.3. (Objective Functional). Let us consider
generic objective functionals J i of neural agents:

J i(t, x, [αi,α(−i)]) (4)

= E
[∫

T
hi
(
s,Xα

s , [αi,α(−i)]
)
ds+Ψi(Xi,α

T )
∣∣∣Xt = x

]
,

where we denote Xα
t = [Xi,α

t ,X
(−i),α
t ] and other agent’s

decisions as X(−i),α
s ∈ Rd(I−1).

Among the various designs for functions hi and Ψi, we
especially consider the following setting:

(h,Ψ) :

{
hi
(
t,Xα

t , [αi,α(−i)]
)
= ∥yt − Λα

t ∥
2
,

Ψi(Xi,α
T ) = 1

2 ||X
i,α
T ||2.

(5)

The cost hi is designed to encourage each neural agent to
make contributions in the temporal aggregation under the
goal of accurate prediction. The terminal cost Ψi regularizes

2Refer to Appendix A.2 for detailed formulation.

decisions at the terminal state and plays a central role in the
Feynman-Kac formulas to solve the cooperative game.

Given the environment (i.e., the entire interacting objects),
each neural agent changes its action to find a value function
Vi that defines the optimal state of actions:

{Vi = min
αi∈Ai

J i(t, ·, [αi,α(−i)]), i ∈ N, }

⊇ {min
θi∈Θ

J i(t, x, [αi(·, ·; θi),α(−i)(·, ·;θ(−i))])},
(6)

As an equivalent form, the value function in (6) can be
obtained by solving the PDE called Hamiltonian-Jacobi-
Bellman equation (HJBE) of individual neural agent:

Vi
t +Hi(t, ·, F i

t , [αi,α(−i)]) +
1

2
Tr(Σ∇2Vi

t) = 0, (7)

where Vi
t := ∂tVi, Hi is the stochastic Hamiltonian system

and F i
t is an adjoint variable related to σt and bt in MaSDEs.

In the following section, we will further elaborate to tackle
solving HJBE under cooperative game scenarios.

2.1. Stochastic Differential Games

If the past observation ys is highly associated with the fu-
ture event yt (i.e., p(yt∈T|ys∈O) ↑), it is reasonable to pay
high attention (i.e.,Aα(t, ·) ↑) to capitalize on the observa-
tion ys. Unfortunately, determining the optimal attention is
a daunting task as the temporal correlation is intrinsically
data-dependent and not given a priori in general. Hence,
the method requires a unified structure that (i) can systemi-
cally extract information from data to adjust the temporal
aggregation Aα based on the relative importance of past ob-
servations and (ii) can provide a framework on the coalition
of the interacting agents for the proper coordination.

To address the above requirements, we propose a novel
framework to formalize the time-series prediction problem
as a cooperative differential games between multiple agents.
Cooperative differential games have been extensively stud-
ied in many disciplines (Perelman et al., 2011; Jørgensen
et al., 2010; Yeung & Petrosyan, 2012) to investigate the
group rationality of agents sharing the same goal. Inspired
by these works, we design a cooperative differential game
that provides cooperative prediction by achieving optimally
balanced past information. The critical point is that the
neural agent supporting a non-informative observation vol-
untarily sacrifices its own cost (i.e.,Vi ↑) by decreasing
the influence on temporal aggregation so that the impact of
other informative observations (i.e.,Vi ̸=j ↓) can be further
emphasized. Such cooperative behavior is mutually advan-
tageous to the interacting agents as it ultimately achieves
performance improvement. Figure 1-(c) shows the concep-
tual illustration of the proposed cooperative game where
enthusiastic agents gradually balance the homogeneous tem-
poral aggregation to follow the group rationality.
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Nash Equilibrium. For a mathematical derivation of the
optimal decision states, we introduce an important type of
equilibrium state called Nash Equilibrium as follows:

Definition 2.4. (Markovian ϵ-Nash Equilibrium) Let us
consider a set of closed-feedback type Markovian controller
parameterized by neural networks α∗ := {α∗

i }i∈N that
induce value functions. For the arbitrary actions β taken
in action set A, we say that neural agents are in the ϵ-Nash
Equilibrium if the following inequality is satisfied:

J i(t, x, [α∗
i ,α

∗
(−i)]) ≤ J

i(t, x, [βi,α
∗
(−i)]) + ϵi, (8)

The inequality in (8) describes an optimal state of inter-
acting agents having no incentive to change their actions
since any non-optimal action β produces worse cost (with a
margin ϵ := {ϵi}i∈N > 0) than taking the optimal actions
α∗. Here, the marginal constant ϵ represents a degree of
efficiency using neural agents to achieve the perfect equi-
librium. While each neural agent mutually finds the best
response, the entire cost is comprehensively minimized, and
a more accurate prediction can be obtained. Further, the fol-
lowing relation implies that the equilibrium state achieved
in (8) is indeed a result of cooperation:

Jco(t, x,α∗) =

I∑
i

J i(t, x, [α∗
i ,α

∗
(−i)])

≤
I∑
i

J i(t, x, [α∗
i ,β(−i)]) + I sup

i
ϵi,

(9)

where Jco is the objective functional that describes the coali-
tion cost (Yeung & Petrosjan, 2006) of the cooperative neu-
ral agents. The inequality in (9) can be easily shown by the
algebraic property of cost functions as the following:

E
[
hi
(
t,Xi,α

t ,X
(−i),α
t , [α∗

i ,α
∗
(−i)]

)]
= E

[
hj
(
t,Xj,α

t ,X
(−j),α
t , [α∗

j ,α
∗
(−j)]

)]
, i ̸= j.

(10)

In order to achieve the Nash equilibrium for multi-agents,
the previous interest in considering separate and individual
objectives in (6) needs to be shifted to a new type of sce-
nario where interactions are key factors to decide optimality.
From this new perspective, we transform the original value
function that only considers insensitive feedback into a new
one that can consider optimal colleagues’ feedback driven
by their contribution to the prediction:{
Vi
t = minα∗

i ∈Ai J i(t, ·, [α∗
i ,α

∗
(−i)]), i ∈ N,

Vi
t +Hi(t, ·, F i

t , [α
∗
i ,α

∗
(−i)]) +

1
2Tr(Σ∇

2Vi
t) = 0,

(11)
Since finding an analytic solution to the Nash equilibrium
is PPAD hard (Daskalakis et al., 2009; Goldberg, 2011), it
is intractable to directly compute the equilibrium owing to a

large number of agents considered in time-series prediction
problems of our experiments (i.e., I ≈ 50). Thus, for a
tractable computation, we instead rely on an alternative
dynamical formulation called fictitious play (Cardaliaguet
& Hadikhanloo, 2017) in the following section.

3. Deep Neural Fictitious Play
The fictitious play is an iterative procedure that decouples
interacting agents and separately searches value functions.
The central idea is first to share public information about
the entire system and then to decouple value functions by
solving individual Hamiltonian-Jacobi-Bellman equations
(HJBEs) in (7). To this goal, we start by introducing the set
of adjoint equations called the forward-backward stochas-
tic differential equations (FBSDEs) (Carmona, 2016) as a
probabilistic framework to tackle optimal control problems
of obtaining value functions.

Theorem 3.1. (Non-linear Feynman Kac theorem (Pham,
2015)). Let us consider closed-loop feedback type Marko-
vian controls αt. We define the triplet (Xα

t ,Y
α
t ,Z

α
t ) that

constitutes the system of SDEs:Xα
t

Yα
t

Zα
t

 :


dXi,α

t = σ(t,Xi,α
t )dBi

t,

dY i,α
t = −Hi

tdt+ Zi,α
t · dBi

t,

Y i,α
T = Ψi(Xi,α

T ), i ∈ N,
(12)

where Hi
t is the stochastic Hamiltonian system. Then, auxil-

iary adjoint variables Y i,α
t and Zi,α

t can be reformulated
as follows:
Y i,α
t = J i(t,Xα

t ,α), Zi,α
t = ∇xJ i(t,Xα

t ,α),

Hi
t = Hi(t,Xα

t , F
i,α
t , [αi,α(−i)])

=
[
σ(t,Xi,α

t )−TZi,α
t

]
· b(t,Xi,α

t , αi) + hi(t,Xα
t ,α),

(13)
where we denote F i,α

t := σ(t,Xi,α
t )−T b(t,Xi,α

t , αi) for
simplicity.

To solve the optimal control problem, the existing
method (Han & Hu, 2020) considers quadratic linear forms
in the forward dynamics and its corresponding global convex
Hamiltonian system (i.e.,∇αiHi = 0). Despite the numer-
ical advantage in obtaining an optimal control, the restricted
form of linear SDEs limits the usage of their method on
high-level applications such as time-series prediction. This
shortcoming motivates us to utilize neural networks when
modeling control agents for enough expressivity. A critical
issue, here, is to approximate the solution to non-convex
type HJBEs that support the neural networks structure. To
tackle this issue, we reformulate the equivalent adjoint prob-
lem to find value functions:

θ∗i = argmin
θi

∫
T
dY i,α

t ([θi,θ(−i)])dt. (14)
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Algorithm 1 Deep Neural Fictitious Play

Require: Time-series data y = ({ysi}si∈O, {yt}t∈T), Neural
network Parameters θm=0 = [θ01, . . . , θ

0
I ], γm := γ = 10−3.

for m = 1 to M do
Simulate MaSDEs with action profiles αm−1 obtained from
the previous stage m− 1.
for all i ∈ N in parallel do

Fix the environment of the previous stage for the agent i.
θm−1 = [θm−1

i , θ̄
m−1
(i−1)], αm−1 = [αm−1

i , ᾱm−1
(i−1)].

Solve the decoupled HJBEs in equation (16) for agent i.

Vi,m
t + inf

αi

Hi([αi, ᾱ
m−1
(i−1)]) +

1

2
Tr(Σ∇2Vi,m)=0,

θmi = E
[
θm−1
i − γ

∫
T∇θidY

i,α
t ([θm−1

i , θ̄
m−1
(−i) ])dt

]
.

Collect the updated neural parameters θm = [θm1 , . . . , θmI ]
end for
Update entire action profiles αm ← αm−1(·, ·,θm).

end for
Return Optimal action profiles α∗ = [α∗

1, . . . , α
∗
I ].

Instead of searching the analytic solution to HJBEs
(i.e.,Ai ≈ ker∇αiHi), the newly suggested adjoint equa-
tion in (14) enables us to apply the gradient descent scheme
to find optimal actions. In this case, our method searches
the parameter space to obtain the optimal admissible ac-
tion (i.e.,Ai ≈ αi(·, ·;ker∇θH

i[αi(θi)])) meaning that
we focus on the local Nash equilibrium.

Let us define an entire set of action profiles as αm at stage
m ∈ {1, . . . ,M}. Then, our method iteratively conducts
the following two-step optimization:

1) Information Distribution. At the beginning of the m-
th stage, each neural agent publicly shares the information
about the entire system (αm−1,Xα,m−1

t ) from the (m−1)-
th stage. In this case, we can define the decoupled value
function for individual neural agents as follows:

Vi,m(t, x)

= inf
αi∈Ai

E
[
J i,m(t,Xαm−1

t , [αm−1
i , ᾱm−1

(−i) ])
∣∣Xᾱm−1

t

]
,

(15)

where Xᾱm−1

t indicates the set of decisions driven by action
profiles ᾱm−1 of the (m − 1)-th stage. In this step, each
neural agent recognizes the response of colleagues towards
the environment and makes its relative decision. Note that
each agent solves a minimization problem according to the
fixed environment of the previous stage.

2) Decoupled Gradient Descent. After defining the decou-
pled problems in (15), each neural agent solves its individual
adjoint problem in (14) and updates its parameters as

θm+1
i = E

[
θmi − γm

∫
T
∇θidY

i,α
t ([θmi , θ̄

m
(−i)])dt

]
,

(16)

where γm is the learning rate of the optimizer at the m-th
stage. In (16), gradient descent is applied to minimize the
separate cost J i,m while fixing the parameters of colleagues
θ̄
m
(−i). After solving (16) for I neural agents in a parallel

way, we collect action profiles and update the public infor-
mation for the next stage, i.e., αm+1

i ← αm
i (·, ·, θ + dθ).

3.1. Theoretical Analysis

Convergence of the Fictitious Play. In the previous con-
tents, we suggest an alternative way to approximate the
Nash equilibrium via the gradient descent scheme. In what
follows, we show the existence of an action set A related to
the marginal constant ϵ := {ϵi}i∈N in the inequality of (8).

Proposition 3.2. (informal) The proposed algorithm 1 as-
sures an existence of action set α(ϵ) ∈ A where neural
agents in the set archive the Markovian ϵ-Nash equilibrium.
Moreover, there exists a constant m∗ such that the obtained
optimal actions αm∗ ∈ α(ϵ) preserve the stochastic opti-
mality by solving HJBEs in (7).

The main finding of Proposition 3.2 is that, under the
proposed training scheme of deep neural fictitious play,
proposed MaSDEs with a large capacity assures small
marginal values ϵ of Nash equilibrium. In other words,
the proposed gradient descent-based algorithm in Alg 1 is a
well-defined approximation for solving cooperative differ-
ential games. Next, we conduct the convergence analysis
of multi-conditioned score-based predictors trained by the
proposed algorithm.

Corollary 3.3. (Convergence of Predictor) There exist a
constant C that is proportional to I , T and Lipschitz con-
stants Lb, Lα for {bi, αi}i∈{1,...,I} such that the following
relation holds:

E
[ ∫

T

∥∥∥Λαm

s −Λαm∗

s

∥∥∥2 ds]
∝ O(||θm − θm∗

||3C [I,T, Lb, Lα] Σ),

(17)

where Σ := supt∈T E [∥Σ(t, ·)∥F ] is the maximal bound
with respect to quadratic variations of neural agents.

Corollary 3.3 shows that the convergence of the temporal
aggregation is highly dependent on the dynamics of the
gradient descent (i.e., dθm) during the fictitious play. If one
reformulates the proposed cooperative game into a zero-sum
type scenario, the opposed direction of gradients induced by
conflict agents can cause divergent learning dynamics and
unpleasant results. In other words, the proposed gradient
descent-based fictitious play fits the cooperative scenario
where neural agents pursue a shared goal. Appendix A.5
provides the numerical analysis of the behavior of neural
agents under the cooperation/competition to elucidate how
the proposed fictitious play operates in different scenarios.
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BAQD Speech Commands Physionet
Methods MSE ↓ / NLL ↑ MSE ↓ / NLL ↑ MSE ↓ / NLL ↑

RNN-VAE 0.4493 / −1.878 0.5205 / −2.234 0.6494 / −2.878
GRU-D 0.4299 / −1.781 0.4721 / −1.992 0.4403 / −1.832

Latent ODE (RNN-Enc) 0.4058 / −1.660 0.5098 / −2.180 0.5313 / −2.288
Latent ODE (ODE-Enc) 0.3839 / −1.551 0.4950 / −2.106 0.5046 / −2.154
Latent SDE (RNN-Enc) 0.4049 / −1.655 0.5003 / −2.132 0.5301 / −2.282
Latent SDE (ODE-Enc) 0.3806 / −1.534 0.4980 / −2.121 0.4966 / −2.114

NJ-ODE 0.4803 / −2.033 0.5314 / −2.288 0.5167 / −2.214
Res-Flow 0.4379 / −1.821 0.4883/− 2.073 0.4785 / −2.025

GRU-Flow 0.4853 / −2.054 0.4979 / −2.120 0.4417 / −1.840
Neural Laplace 0.3633 / −1.447 0.4547 / −1.918 0.5550 / −2.392

CRU 0.3613 / −1.438 0.4464 / −1.863 0.5081 / −2.172
CSDE-TP 0.3481 / −1.371 0.4460 / −1.861 0.3958 / −1.610

Ours 0.2892 / −1.077 0.4087 / −1.674 0.3829 / −1.545

Table 1: Evaluation of time-series prediction on the Air Quality/Speech Commands/Physionet datasets. The best results are
highlighted in bold. The second best results are colored blue. Evaluations metrics are scaled by 10−2 and 10−3, respectively.

Robustness to Non-informative Signals. Finally, we give
an in-depth theoretical analysis of how the uncertainty made
by non-informative past observations can be dealt with by
our method. To model the uninformativeness, we consider a
scenario when white noises, i.e., i.i.d d-dimensional Gaus-
sian vectors {Zk

si}k∈{1,··· ,N} ∼ N (0, ς), are observed dur-
ing the inference. In this scenario, the temporal aggregation
of perturbed signals Λ̃α

t can be rewritten as the following:

Λ̃α
t := Λα

t |{ys1
,··· ,ysi

+Zk
si

,··· ,ysI
}. (18)

The following result identifies how the rationale of MaSDEs
effectively controls the uncertainty:
Proposition 3.4. Let λd be a spectrum of noise co-
variance ς . Then, there exist numerical constants
υ, c, C,M2, D3, L̃, γ > 0 such that the following inequality
holds with probability at least 1− φ:

W2
2 (Λ̃

α
t , yt)︸ ︷︷ ︸

Uncertainty

≤ Ai
t︸︷︷︸

Aggregation

D3

4|T|
1Tλd︸ ︷︷ ︸

Variance Effect

+
1

2L̃2γ

√
υ

M2(1 + |T|)︸ ︷︷ ︸
Training Errors

+

(
log(2C/φ)

cN

)−d/2

︸ ︷︷ ︸
Particle Approximation

. (19)

whereW2 is 2-Wasserstein distance, D3 = supt∈T ΣtΣ
−1
0

is a maximal variation of the model volatility.

The uncertainty induced by perturbed signals on the left-
hand side can be bounded by each term, where the first two
terms give the following important implications:

• Canceling Variance Effect. In the first term, the variance
effect (i.e.,1Tλd) is canceled out by learned temporal
aggregation Ai

t. As is clear from the inequality, one can
presume that MaSDEs robustly capture future dynamics
regardless of noisy past events. We will empirically vali-
date this property in Section 5.2.

• Optimal Error Bound. Proposition 3.2 and the Nash
equilibrium (8) guarantee that the second term is the best
trial of cooperative agents to minimize the training error.
Since an arbitrary set of actions that fails to satisfy Nash
equilibrium induces a larger upper bound of this term,
we argue that the proposed training methodology with
cooperative games plays a key role in minimizing the
uncertainty due to non-informative signals.

4. Related Work
Neural DEs for Time-series Analysis. In the pioneering
works (Dupont et al., 2019; Rubanova et al., 2019), the gen-
eral framework of encoding the complex time-series into
the latent space was first introduced to improve the represen-
tational power of conventional Neural ODE. Further, latent
SDEs (Li et al., 2020) was proposed to enrich conventional
deterministic models by considering a stochastic component
(e.g., Wiener process). Neural RDE (Morrill et al., 2021)
exploited the representation of log-signatures of successive
time-series. CLPF (Deng et al., 2021) combined two dis-
tinctive ideas, continuous SDE and normalizing flow, to
model continuous latent flows. CRU (Schirmer et al., 2022)
extended Kalman filters to model-based continuous-discrete
filters and showed the relation to neural SDEs. Neural
Laplace (Holt et al., 2022) showed a novel interpretation of
time-series modeling by introducing the Laplace represen-
tation that generalizes conventional DEs in the frequency
domain. CSDE-TP (Park et al., 2022) suggested a different
perspective by adopting a control-theoretic interpretation
of time-series prediction tasks to obtain the optimal paths
driven by neural agents.

Modeling Temporal Dynamics. In probabilistic model-
ing for time-series analysis, existing methods assumed a
strong inductive bias on temporal states. The conditional
future state p(T|O) given past observations {ysi}si∈O is
related to the temporal difference between T and O. For
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Figure 2: Qualitative result on Mackey-Glass DDE. The highlighted region in the plane depicts the level of temporal aggregation
for each decision Xi,α

t . The vertical histogram in the past interval O represents the averaged temporal aggregation on the entire future
interval T (i.e., Et∼T[A

αi
t ]) estimated by agent i.

example, GRU-D (Che et al., 2018) suggested a temporal
decay module in the recurrent model that can exponentially
decrease the influence of past observations. Another strand
of works (Mei & Eisner, 2017; Zuo et al., 2020; Chen et al.,
2020) directly parameterized temporal point processes (e.g.,
Hawkes process) that intrinsically assume the temporal de-
cay with exponential intensity kernels. More recently, Neu-
ral CDE (Kidger et al., 2020) applied the cubic spline that
combines information of temporally adjacent observations
to enhance the representational power of the law data. To
the best of our knowledge, we propose the first DE-based
framework that fully utilizes the temporal correlation with-
out making any inductive bias on the temporal states.

5. Experiments
Benchmarks. We compared our proposed method against
a broad range of DE-based continuous dynamical mod-
els. The dynamic models include GRU-D (Che et al.,
2018), Latent ODE (Rubanova et al., 2019), Latent
SDE (Li et al., 2020), NJ-ODE (Herrera et al., 2021), Res-
Flow (Biloš et al., 2021), GRU-Flow (Biloš et al., 2021),
CRU (Schirmer et al., 2022), Neural Laplace (Holt et al.,
2022), and CSDE-TP (Park et al., 2022). For the mul-
tivariate Transformer-based methods, we compare with
vanilla Transformer (Vaswani et al., 2017), Reformer (Ki-
taev et al., 2020), Informer (Zhou et al., 2021) and Auto-
former (Wu et al., 2021) in Section A.10. We implemented
the benchmarks using open-source codes published by au-
thors except for Latent SDE whose decoder architecture
was replaced from Neural ODE to SDE (Li et al., 2020).
Further details on hyper-parameters and implementation
can be found in Appendix A.7. Our code is available at
https://github.com/LGAI-AML/MaSDEs.

5.1. Synthetic Dataset

In the first experiment, we consider synthetic dynamics
based on Mackey–Glass DDE (Mackey & Glass, 1977) by
simulating deterministic trajectories of delayed differential

Method RMSE ↓ MSE ↓ NLL ↑
CSDE-TP 0.759 0.576 −2.513

Latent ODE† 0.385 0.181 −0.537
Latent SDE 0.366 0.134 −0.301

Coupling-Flow† 0.539 0.531 −2.283
Res-Flow† 0.350 0.174 −0.505

Neural Laplace† 0.282 0.128 −0.275
CRU 0.272 0.074 −0.251
Ours 0.235 0.055 0.091

Table 2: Mackey-Glass DDE. † results from (Holt et al., 2022).

equations (DDEs) defined as follows:

Mackey-Glass DDE:
dyt
dt

=
βy(t−τ)

1 + yn(t−τ)

− γyt, (20)

where we set model design factors as τ = 10, n = 10, β =
0.25, γ = 0.1. As one might notice in the qualitative result
in Figure 2, the simulated trajectory is highly sensitive to
the initial condition as it influences the future values in a
time-delayed manner. To make an accurate prediction, the
prediction models need to capture the long-term dependency
of temporal states given past observations.

Result. Table 2 shows comparison results of our method to
the benchmarks using the same experimental setting in (Holt
et al., 2022). The result shows that our method outperforms
all the benchmarks and effectively captures the delayed ef-
fect. It is worth highlighting that CSDE-TP failed to capture
the temporal relevance and showed the worst performance
since it is incapable of information balancing.

5.2. Real-world Dataset

Experimental Settings. We evaluated the time-series
prediction performance of ours and the benchmarks on
multiple real-world datasets: BAQD (Zhang et al., 2017),
Speech (Warden, 2018), and Physionet (Silva et al., 2012).
More detailed descriptions of these datasets are provided in
Appendix A.7.2. We split each time-series in the interval
[0, T ] into two sub-intervals: the first 80% as the observa-
tion interval, i.e., O = [0, 0.8T ], and the remaining 20%
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as the prediction interval, i.e., T = [0.8T, T ]. We split
time-series samples into two halves as training/evaluation
sets in Physionet. For BAQD and Speech datasets, we di-
vided time-series samples into 80/20 training/testing splits
for training and evaluation, respectively. For fair compar-
isons, we normalized data features by utilizing a min-max
normalization to ensure all data features lie within a unit
cube [0, 1]d. We used averaged mean square errors (MSEs)
and negative log-likelihoods (NLLs) as the performance
metrics. To evaluate the performance of the benchmarks,
we followed an identical protocol suggested by (Rubanova
et al., 2019).

Result. Table 1 shows the performance comparison of our
method and the benchmarks. As can be seen in the table,
our model significantly outperforms all the benchmarks for
the evaluated datasets by a large margin. Notably, most
of the existing methods based on latent encoding fail to
make accurate predictions. In prior works, the past ob-
servations are indiscriminately encoded in the latent space
without awareness of the temporal uncertainty of irregular
time-series. Therefore, the model is vulnerable to the tem-
porally noisy environment during testing, which may cause
a large generalization gap. In contrast, neural agents in our
method actively make cooperative decisions to calibrate the
vicious effect of unseen data. If the agent detects harmful
signals, they voluntarily restrain the decision to follow the
group rationality (i.e., accurate prediction). Eventually, the
cooperative group robustly suppresses the non-informative
temporal dynamics during inference.

Figure 3: Qualitative result on BAQD. Sampled trajectories
excluding agents α1 (blue) and α35 (magenta), respectively. The
prediction trajectory with full information is highlighted as (red).

Qualitative Analysis. Figure 3 shows that neural agents un-
der the equilibrium can capture temporal decay to optimally
extract underlying latent information from the dataset. We
can observe this phenomenon at the prediction times proxi-
mate to the beginning of the prediction interval where the
rational group assigns high energies, whereas this becomes
less distinguishable when predicting the distant future. This
is remarkable since the cooperative agents learn the temporal
decay (i.e., p(yt∈T|ys∈O) ∝ e−|t−s|) a posteriori without
any prior knowledge. Furthermore, the performance is dras-
tically worsened after excluding the agent α∗

35 (magenta) in
the decision-making whereas no meaningful performance

Method ς = 0.1 ς = 0.4 ς = 0.7 ς = 1.0

Latent ODE 0.395 0.536 0.969 2.065

Neural Laplace 0.369 0.407 0.458 0.549

CRU 0.370 0.411 0.430 0.448

CSDE-TP 0.359 0.467 0.627 0.849

Ours 0.314 0.330 0.336 0.340

Table 3: Robustness to Out-of-distribution signals on BAQD.
We evaluate the performance by using MSE (×10−2).

drop can be observed after excluding agent α∗
1 (blue), clearly

showing that the decision X1,α∗

t is less informative than
others.

Robustness to Non-informative Signals. To show the
robustness of our method to the non-informative signals, we
conduct an out-of-distribution (OOD) experiment on BAQD,
which is suggested in (Deng et al., 2021). During the test
time, we generate a set of random times from a Poisson
process {τ} ∼ Pois(λ) ∈ O, and inject white noises at
these sampled times with intensity level λ. Table 3 high-
lights that the existing methods lose the expressivity due to
increased noise levels while our method maintains superior
performance even under high noise levels ς . The reason for
the performance gap can be explicated by the theoretical re-
sult in Proposition 3.4, as such the proposed MaSDEs under
Nash equilibrium capitalize on the variance-canceling prop-
erty. When OOD signals are detected by neural agents, the
learned temporal aggregation filters out the variance effect
in a way that the inequality (19) holds. None of the existing
methods are capable of handling non-informative signals
since there is no sophisticated mechanism to calibrate the
impact of those non-informative observations.

6. Conclusion and Future Work
In this paper, we proposed a novel framework for time-
series prediction as an application of cooperative differential
games. The new formulation is built upon the multi-agent
dynamics called MaSDEs where each individual agent en-
codes the partial information from past observations. Un-
der the shared goal, neural agents collaborate to achieve
the Nash equilibrium and make accurate future predictions.
Theoretical analysis shows the convergence of the proposed
novel fictitious play highlighting the effectiveness of the
proposed differential game.

Future Work. Beyond the basic form of objective func-
tional, the behavioral rule for neural agents can be delicately
redesigned for a specified goal of interest. For example,
one may extend the proposed framework to the coopera-
tive mean-field game (Carmona & Delarue, 2018) where
infinitely many agents are considered. In this direction, the
system can provide mathematical formalism to understand
the individual influences of infinitely many observations.

8
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We hope our work broadens our understanding of the long-
term dependency problem for modern recurrent networks
via the existing mean-field analysis of neural networks (Per-
rin et al., 2020; Guo et al., 2019; Min & Hu, 2021).
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A. Appendix
A.1. Details on Forward-backward Stochastic Differential Equations

In this section, we briefly recall some basic elements of stochastic optimal controls needed in the paper. We start by
introducing the backward stochastic differential equation used in Section 3. In particular, the adjoint variables (Y i,α

t , Zi,α
t )

are derived from the classical theory of non-linear Feynman-Kac formula (Carmona & Delarue, 2018):

dY i,α
t = −Hi(t,Xα

t , F
i,α
t , [αi,α(−i)])dt+ Zi,α

t · dBi
t, (A.21)

where the stochastic Hamiltonian system with uncontrolled volatility for i-th agent is defined as follows:

Hi(t,Xα
t , F

i,α
t , [αi,α(−i)]) =

[
σ(t,Xi,α

t )−TZi,α
t

]
· b(t,Xi,α

t , αi) + hi(t,Xα
t ,α). (A.22)

For simplicity, we define the auxiliary function F having following form:

F i,α(t,Xi,α
t , αi) := σ(t,Xi,α

t )−T b(t,Xi,α
t , αi). (A.23)

Next, we introduce the diriftless stochastic differential equation:

dXi,α
t = σ(t,Xi,α

t )dBi
t. (A.24)

Then, the Girsanov’s theorem gives the following Radon-Nikodym derivative:

dP
dQ

= ε

(∫
σ(t,Xi,α

t )−1b(t,Xi,α
t , αi) · dBi

t

)
T

, (A.25)

where we denote M−T := [M−1]T for any inevitable matrix M . Note that the regularity conditions (H1) are essential to
ensure the existence of the Doléans-Dade exponential ε which defines the stochastic exponential for the (local) martingale
dM i

t = F i,α(t,Xi,α
t , αi) · dBi

t:

ε(M i)T := eM
i
t−Mi

0− 1
2 [M

i,Mi]t = e
∫ t
0
F i,α(u,Xi,α

u ,αi)·dBi
u− 1

2

∫ t
0
|F i,α|2(u,Xi,α

u ,αi)du. (A.26)

The second equality holds since M i
0 = 0 and the quadratic variation is calculated as [M i,M i]t =

∫ t

0
|F i,α|2ds < ∞.

Then, by definition, the transformed representation W i
t in following equation is also a Wiener process with respect to the

probability measure P.

W i
t = Bi

t −
∫ t

0

σ(s,Xi,α
s )−T b(s,Xi,α

s , αi)ds = Bi
t −

∫ t

0

F i,α(t,Xi,α
t , αi)ds. (A.27)

Identically, the above relation can be rewritten as following differential form:

dW i
t = −

[
F i,α(t,Xi,α

t , αi)dt− dBi
t

]
. (A.28)

Notably, we can restore the proposed controlled neural SDE from driftless SDE in (A.24) by the relation between W i
t and

Bi
t shown in (A.28).

dXi,α
t = b(t,Xi,α

t , αi)dt+ σ(t,Xi,α
t )dW i

t . (A.29)

This relation gives the explicit form of adjoint dynamics as follows: Y i,α
t :

Y i,α
t = Ψi(Xi,α

T ) +

∫ T

t

Hi(t,Xα
t , F

i,α
t , [αi,α(−i)])ds−

∫ T

t

Zi,α
s · dBi

s

= Ψi(Xi,α
T ) +

∫ T

t

hi(t,Xα
t ,α) +

(
σ(s,Xi,α

s )−TZi,α
s ) · b(s,Xi,α

s , αi)
)
ds−

∫ T

t

Zi,α
s · dBi

s

= Ψi(Xi,α
T ) +

∫ T

t

hi(t,Xα
t ,α)ds+

∫ T

t

Zi,α
s ·

[
F i,α(s,Xi,α

s , αi)ds− dBi
s

]
= Ψi(Xi,α

T ) +

∫ T

t

hi(t,Xα
t ,α)ds−

∫ T

t

Zi,α
s · dW i

s .

(A.30)
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In the last equality, the Brownian motion is changed from Bi
s to W i

s , and the generic form of BSDE for tuple (P,W i
t ) is

presented. Since the third term in last line
∫
Zi,α
s · dW i

s is a martingale with respect to the measure P, we can identify the
conditional expectation with original objective functional J i in (4) as follows:

J i = E[Y i,α
t |F̃t] = EP

[
Ψi(Xi,α

T ) +

∫ T

t

hi(t,Xα
t ,α)ds|Ft

]
, (A.31)

where F̃t is the augmented filtration according to the Brownian motion Bi
t .

A.2. Multi-conditioned Score-based Predictor

The aim of this section is to provide detailed information of the proposed Multi-conditioned Score-based Predictor. We start
by introducing a well-known transformation of a generic SDE called Liouville equation (Gardiner, 2009):

dXi,α,k
t = b(t,Xi,α,k

t , αi)dt+ σ(t,Xi,α,k
t )dW i

t

=

[
b(t,Xi,α,k

t , αi)−
1

2
∇ · Σ(t,Xi,α,k

t )− 1

2
Σ(t,Xi,α,k

t )∇x log p
i
t(X

i,α,k
t |yksi)

]
dt

(A.32)

In the second line, one needs to evaluate the score function ∇ log pit, which involves the transformation of the proposed
MaSDEs for the deterministic representation. Since the proposed framework applies the time discretization (i.e., tm+1 =
tm + δt) for simulating MaSDEs, the score function started from i.i.d initial state yksi ∼ psi can be approximated as

∇ log pt(X
i,α,k
t |yksi) =

M∑
m=2

∇ log pit(X
i,α,k
tm |Xi,α,k

tm−1
) +∇ log pit(X

i,α,k
t1 |yksi)

=

M∑
m=2

−(δt)−1Σ−1(tm−1, X
i,α,k
tm−1

)
[
Xi,α,k

tm −Xα,k
tm−1

− (δt)b(tm−1, X
i,α,k
tm−1

, αi)
]

− (δt)−1Σ−1(si, y
k
si)
[
Xi,α,k

t1 − yksi − (δt)b(si, y
k
si , αi)

]
.

(A.33)

From the evaluation in (A.33) and the ODE representation in (A.32), we have

dXi,α,k
t =

[
b(t,Xi,α,k

t , αi)−
1

2
∇ · Σ(t,Xi,α,k

t )

+
1

2
Σ(t,Xi,α,k

t )

M∑
m=2

(δt)−1Σ−1(tm−1, X
i,α,k
tm−1

)
[
Xi,α,k

tm −Xi,α,k
tm−1

− (δt)b(tm−1, X
i,α,k
tm−1

, αi)
]

+
1

2
Σ(t,Xi,α,k

t )(δt)−1Σ−1(si, y
k
si)
[
Xi,α,k

t1 − yksi − (δt)b(si, y
k
si , αi)

] ]
dt.

(A.34)

For convenience, we additionally define the ratio between diffusion covariance at time tm and t as follows:

Σ̂m = Σ(t,Xi,α
t )Σ−1(tm, Xi,α

tm ) (A.35)

Finally, the proposed predictor Λα
t is given as

dΛα,k
t =

∑
i∈N

Aαi
i (t,Xi,α,k

t )

[
b(t,Xi,α,k

t , αi)−
1

2
∇ · Σ(t,Xi,α,k

t )

+
1

2
(δt)−1

{
M∑

m=2

Σ̂m−1

[
Xi,α,k

tm −Xi,α,k
tm−1

− (δt)b(tm−1, X
i,α,k
tm−1

, αi)
]

+ Σ̂0

[
Xi,α,k

t1 − yksi − (δt)b(si, y
k
si , αi)

]}
dt

] (A.36)
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A.3. Proofs

Assumptions. Throughout the appendix, we make the following assumptions for the proof.

(H1) σ−T (t, x, α(·, ·; θ))b(t, x, α(·, ·; θ)) is uniformly bounded, twice differentiable, Lipschitz continuous.

(H2) The k-th derivatives of neural agents with respect to both spatial and temporal variables are Lipschitz continuous to the
parameter space,

||∇(k)αi(·, x; θ)−∇(k)αi(·, x; θ̃)||+ ||∂(k)
t αi(t, ·; θ)− ∂

(k)
t αi(t, ·; θ̃)|| ≤ Li||θ − θ̃||. (A.37)

for all i ∈ {1, . . . , I}, 0 ≤ k ≤ 2, ∀θ, θ̃ ∈ Θ.

(H3) The expectation of Frobenius norm foe every adjoint variables Zt∈ SymI
+

3 is bounded, E ∥Zt∥F <D2.

(H4) Let {λε
i (t)}ε∈{1,··· ,d} be the real-valued positive spectrum of diffusion function Σt := σσT ∈ SymI

+. Then, we
assume that there exists a constant D3 such that the following inequality holds(

λε
i (t)

λε
j(t)
∨ λε

i (t)

λε
i (s)

)
≤ D3, a.s., P, ∀s < t, ε ̸= ε′, i ̸= j (A.38)

(H5) An empirical measure of perturbed representation Λ̂t has a finite second moment, and every instance of the dataset
lying in the compact subset of Rd. Finally, we assume that the dimensionality of the dataset satisfies i.e., d/2≫ 2.

Lemma A.1. (Grönwall’s Inequality (Jacod & Shiryaev, 2013)) The left inequality induces the inequality in right-hand
side:

B(t) ≤ A+

∫
T
B(s)C(s)ds −→ B(t) ≤ Ae

∫
T C(s)ds. (A.39)

A.3.1. PROOF OF PROPOSITION 3.1

The first step to showing the convergence of neural agents towards Nash equilibrium is to obtain the deviation of the adjoint
variable Yt during the fictitious play. For this, we first introduce the HJBE of decoupled SDE system. In particular, the
proposed system trains neural agents to solve the individual decoupled HJBE at each stage m:

Vi,m+1
t + inf

αm
i ∈A

Hi(t, x, F i,αm

t , [αm
i ,αm

(−i)]) +
1

2
Tr(Σ∇2Vi,m+1) = 0, (A.40)

where the cost functional at the next stage (i.e.,m+ 1) is related to the optimal actions in the previous stage that minimizes
the decoupled Hamiltonian in (A.40). Then, one of our interests is to investigate the deviation of the Hamiltonian system:

δHi,m
t = Hi(t,Xαm

t , F i,αm

t , [αm+1
i ,αm

(−i))]︸ ︷︷ ︸
Fictitious Play

−Hi(t,Xα∗

t , F i,α∗

t ,α∗)︸ ︷︷ ︸
Optimal Hamiltonian

, (A.41)

where the deviation shows the difference between Hamiltonian systems that are derived by neural agents lying in optimal
and sub-optimal regions, respectively. Similarly, we define the deviations for both adjoint variables:

δY i,m
t = Y i,m

t − Y i,∗
t , δZi,m

t = Zi,m
t − Zi,∗

t , (A.42)

Following by the notations in (A.42) and the equality (A.30), the deviation for the adjoint variable (i.e., δY i,m
t ) at stage m

can be represented as the following Itô’s differential:

dδY i,m+1
t = −δHi,mdt+ δZi,m+1

t · dBi
t. (A.43)

3The matrix manifolds SymI
+ is the space of semi-positive definite matrices. In this paper, we regard the Euclidean flat norm

(i.e., ∥·∥F ) is inherited to this space.
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Next, we evaluate the squared norm of δY(·)
t to investigate the convergence of objective functional

d
∥∥δYm+1

t

∥∥2 = −2δYm+1
t · δHm

t dt+
∥∥δZm+1

t

∥∥2
F
dt+ 2(δZm+1

t δYm+1
t ) · dBt. (A.44)

Note that the equality in (A.44) follows by Itô’s lemma for squared norm of multi-dimensional representation At:

d ∥At∥2 = 2At · µAt
dt+ ∥σAt

∥2F dt+ 2AtσAt
· dBt, (A.45)

where µAt
and σAt

are the terms corresponding to bounded variations and local martingales of the process At, respectively.
By taking the expectation on both sides of (A.44), we obtain the following result:

E
[∥∥δYm+1

t

∥∥2] = E
[∥∥δYm+1

T

∥∥2]+ E
[∫

T
2δYm+1

t · δHm
t −

∥∥δZm+1
t

∥∥2
F
dt

]
≤ 4E

[∥∥δXm+1
T

∥∥2]+ 2E
[∫

T

∥∥δYm+1
t

∥∥2 ∥δHm
t ∥

2
dt

]
− E

[∫
T

∥∥δZm+1
t

∥∥2
F
dt

]
.

(A.46)

Owing to the characteristic of backward SDE (i.e.,Ym
t ), the integral sign is reversed in the second term in (A.46). The

expectation with respect to the local martingale term vanishes as set of Wiener processes Bt are related to Q. Since BSDE
imposes the terminal constraint Ym

T = Ψm, Y∗
T = Ψ∗, the following result is given by Lipschitzness of Ψ as:

E
[∥∥δYm+1

T

∥∥2] = E
[∥∥Ψm+1 −Ψ∗∥∥2] ≤ 4E

[∥∥δXm+1
T

∥∥2] . (A.47)

This shows the inequality in (A.46). By rearranging the relation and applying Hölder’s inequality we have

EQ

[∥∥δYm+1
t

∥∥2 + ∥∥δZm+1
t

∥∥2
F

]
≤ 4EQ

[∥∥δXm+1
T

∥∥2]+ 2EQ

[∫
T

∥∥δYm+1
t

∥∥2 dt]EQ

[∫
T
∥δHm

t ∥
2
dt

]
. (A.48)

Finally, we apply Grönwall’s inequality in Lemma A.1 to above inequality, we obtain

EQ

[∥∥δYm+1
t

∥∥2] ≤ EQ

[∥∥δXm+1
T

∥∥2] e|T| ln 16E[
∫
T∥δH

m
t ∥2dt]. (A.49)

Now, our next step is to bound the right-hand side of (A.49). We start by estimating an upper bound of the following time
averaged mean-squared Hamiltonian (A.21):

E
[∫

T
∥δHm

t ∥
2
dt

]
≤ EP

[∫
T

∥∥δFm
t · δZm+1

t + δhm
t

∥∥2 dt] . (A.50)

For this, we rearrange the Hamiltonian deviation δHm
t by inserting two terms δFm

t · δZm
t and δhm

t . In this case, the
Hamiltonian deviation is rewritten as

δHi,m
t = F (t,Xα

t , [α
m+1
i ,αm

(−i)]) · (Z
i,m+1
t − Zi,∗

t )

+ (F (t,Xα
t , [α

m+1
i ,αm

(−i)])− F (t,Xα
t ,α

m)) · Zi,∗
t

+ (F (t,Xα
t ,α

m)− F (t,Xα
t ,α

∗)) · Zi,∗
t

+ hi(t,Xα
t , [α

m+1
i ,αm

(−i)])− hi(t,Xt,α
m) + hi(t,Xα

t ,α
m)− hi(t,Xα

t ,α
∗).

(A.51)

Here, we define the Lipschitz constants of three different objects as follows:

Lip[· · · ] = Cn, {· · · } ∈ {F i,m, σi, hi}, n = 1, 2, 3. (A.52)

By the Lipschitz continuity defined above (A.52), one can obtain the squared norm of the Hamiltonian deviation:

∥δHm
t ∥

2 ≤ C1 ∥F∥2
∥∥Zm+1

t − Z∗
t

∥∥2
F

+ C1

∥∥αm+1
i − αm

i

∥∥2 · ∥Z∗
t ∥F + C1

I∑
i

∥αm −α∗∥2 ·
∥∥∥Zi,∗

t

∥∥∥
F

+ C3

∥∥αm+1
i − αm

i

∥∥2 + C3 ∥αm −α∗∥2 .

(A.53)
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Consider we have a proper M = C1D1D2 ∨ 2(C1D2 ∨ C3) ∨ 2I(C1D2 ∨ C3) from the definitions of pre-determined
constants C1, C2, C3, D1 and D2. Then, the above inequality can be rewritten in a compact form:

E
[
∥δHm

t ∥
2
]
≤M

[
E
∥∥αm+1 −αm

∥∥2 + E ∥αm −α∗∥2
]
. (A.54)

Note that the equality
∥∥∥[βi,α

m
(−i)]−αm,∗

∥∥∥ =
∥∥βi − αm,∗

i

∥∥ holds for an arbitrary action β ∈ A. Finally, we conclude the
result (A.54) by showing following inequalities:

E
[∑I

i ∥δZ∗
t ∥

2
F

]
≤ I supi E

[∥∥∥δZi,∗
t

∥∥∥2
F

]
≤ 2ID2,

supt,(α∈A) E
[
∥F (t, x,α)∥2

]
≤ C1E

[∥∥F (0, 0,0)2
∥∥] ≤ D1.

(A.55)

In previous contents, the detailed convergent states of adjoint variable Y ∗
t are not specified. To continue our discussion

from (A.54), we develop a gradient descent-based update rule for training neural agents. For any neural parameters θ ∈ Θ,
we assume that the i-th agent’s action θi → αi(·, ·; θi) ≜ αi(θi) lies in the compact subset A ∈ A(ϵ) ∈ L2([0, T ] × Rd)
(i.e.,

∫
||αi(t, x; θi)||2dtdpt(x)dx <∞) for some ϵ > 0. Then, we introduce the following notations:

αm,k
i := αm

i (t, x; θmi (k)), αm,k := {αm,k
i }1≤i≤d, (A.56)

where the auxiliary notation u ∈ R+ is an indicator for gradient descent steps. Similarly, we define the notations
(Y i,m,k,Ym,k) and (Hi,m,k,Hm,k). Let us define the operator B : N+ → L2(T × Rd) as B[θmi (k)] := αm,k+1

i , and if
k > K, then we denote αm+1

i := αm+1,k=0
i . By Lipschitz continuity of neural agents, we have

∥B[θmi (k)]− αm
i ∥

2
L2 = E

[
∥αm

i (t, x; θmi (k + 1))− αm
i (t, x; θmi (k))∥2

]
≤ L2(i)E

[
∥θmi (k)− θmi (k + 1)∥2

]
≤ L̃2E

[∥∥∥γ∇θiEQ[Y
i,m,k
t |F̃t]

∥∥∥2]
≤ L̃2γ2EẼQ

[∥∥∥∇θiY
i,m,k
t

∥∥∥2 |F̃t

]
≤ L̃2γ2EẼ

[∥∥∇θih
i,m,k

∥∥2 |Ft

]
= L̃2γ2E

[∥∥∇θih
i,m,k

∥∥2] ,

(A.57)

where L̃ = maxi Li. In the fourth inequality, the probability measure for the integration is switched from Q to P with
the Radon-Nikodym dP/dQ. Since the cost function is uniformly bounded with the vanishing derivative of terminal cost
(i.e., ∂θig

i(XT ) = 0), the expectation is well-defined. It is worth noting that the filtration Ft contains the information of
past observations {ysi} as we impose constraints to satisfy Xi,α

si = ysi almost surely for neural agents.

As a next step, we evaluate the upper bound of mean-squared evaluation as follows:

E
[ ∥∥∇θih

i,m,k
∥∥2 ]

≤ 4E
[∥∥∥⟨Aαm

(t),Xαm

t ⟩ − yt

∥∥∥2 ∥∥∥∇θiA
αm

i (·,·;θm
i )

i (t)X
i,αm

i
t +A

αm
i

i (t)∇θiX
i,αm

i (·,·;θi)
t

∥∥∥2]
≤ 4E

[∥∥hi,m,k
∥∥2 ∥∥∥∇θiA

αm
i (·,·;θm

i )
i (t)X

i,αm
i

t +A
αm

i
i (t)∇θiX

i,αm
i (·,·;θm

i )
t

∥∥∥2] .
(A.58)

Let us assume that there exist representations b̂, α̂ such that b(t,Xt, αi) = b̂(t,Xt)αi(t,Xt; θi) and Ai(t,Xt; θi) =
Â(t)αi(t,Xt; θi). This brings the evaluations of the following two norm bounds:∥∥∥E [∇θiX

i,αm
i

t

]∥∥∥2 ≤ E
[∥∥∥∇θiX

i,αm
i

t

∥∥∥2] ≤ ∫ t

si

E
[∥∥∥b̂(u,Xu)∇θiα

m
i (u,Xu; θ

m
i )
∥∥∥2] du

≤ |T|L̃2E||b̂||2.
(A.59)
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Similarly, we have the gradient norm bound of individual temporal aggregation

E
[∥∥∥∇θiA

αm
i

i

∥∥∥2] = E
[∥∥∥Â∇θiα

m
i (t,Xt; θ

m
i )
∥∥∥2] ≤ E

∥∥∥Â2
∥∥∥ L̃2. (A.60)

For simplicity, suppose that there exists a constant M2 such that each function b̂, Â, ∂tÂ has expectation norm bound:

E
[
||b̂||2 + ||Â||2 +

∥∥∥∂tÂ∥∥∥2] < M2. (A.61)

The inequality in (A.58) together with evaluations in (A.59), (A.60) yields:

E
[∥∥∇θih

i,m,k
∥∥] ≤ E

[∥∥hi,m,k
∥∥2] 4L̃2M2(1 + |T|). (A.62)

This directly gives the L2-bound of the operator B during the fictitious play over stages according to the cost function shown
in the right-hand side:

∥B[θmi (k)]− αm
i ∥

2
L2 ≤ E

[∥∥hi,m,k
∥∥2] 4L̃4γ2M2(1 + |T|). (A.63)

Let us say that the gradient descent optimizes the neural parameters to achieve small enough values for the cost function for
k ≥ K.

K = min
k∈N+

{
k;E(yt,Λt)∼(νN

t ,µN
t )

[∥∥hi,m,k
∥∥2] ≤ υi,m

4L̃4γ2M2(1 + |T|)

}
. (A.64)

Following by the definition of constant K, the L2 deviation of neural agent can be bounded as follows:

E
[∥∥αm+1

i − αm
i

∥∥2] := ∥B[θmi (K)]− αm
i ∥

2
L2 ≤ υi,m. (A.65)

If we denote α∗
i = α

m∗
i

i , m∗
i ∈ N+, the following relation holds by triangle inequalities:

EP

[
∥α∗

i − αm
i ∥

2
]
≤ (m∗

i −m) sup
m

υi,m. (A.66)

As υi,m ∨ supm υi,m = supm υi,m for all m ≤ m∗, the expectation of Hamiltonian deviation can be bounded as a
summation of two terms in (A.54):

E
[
∥δHm

t ∥
2
]
≤M(m∗ −m+ 1)υm, (A.67)

where υm = {υi,m+1} and m∗ = {m∗
i }. By inserting above inequality into (A.49) and replacing m+ 1→ m, we obtain

E
[
∥δYm

t ∥
2
]
≤ E

[
∥δXm

T ∥
2
]
e|T|

2 ln 16M(m∗−m+2)υm . (A.68)

Next, we evaluate the upper-bound of mean-squared decision deviations in (A.68):

EQ

[
∥δXm

T ∥
2
]
≤ L̃2|T| ∥θm − θ∗∥2 . (A.69)

By denoting the deviation of parameters as κm = ∥δθm∥2, we select small enough values υi,m that is related to the marginal
constants ϵi,m:

υm :=
ln ϵm − ln(κm+1L̃

2|T|)
|T|2 ln 16M(m∗ −m+ 2)

, ϵ := sup
{m≤m∗,i∈{1,··· ,I}}

ϵi,m. (A.70)

If the neural agent has a large enough capacity to minimize the via gradient descent, these values assure minimal upper
bound of the inequality (A.49). Finally, the non-linear Feynman-Kac theorem, which is related to the equation (A.30),
directly gives the : ∥∥∥J i([α∗

i ,α
∗
(−i)])− J

i,m→m∗
([αm

i ,αm
(−i)])

∥∥∥2 ≤ E
[∥∥∥δYm→m∗

t

∥∥∥2] ≤ ϵ, (A.71)
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Since J i(α∗) < J i(αm), our next step is to show the inequality between cost functionals given the action αm
i obtained

from the fictitious play and the other arbitrary action βi ̸= αm
i :

J i,m→m∗
([αm

i ,αm
(−i)]) ≤ J

i,m→m∗
([βi, α

m
i ]), βi ∈ Ai. (A.72)

Then, by triangle inequality, we obtain inequality that shows the ϵ-Nash equilibrium:

J i([α∗
i ,α

∗
(−i)]) ≤ J

i([βi,α
∗
(−i)]) + ϵi, ∀1 ≤ i ≤ I. (A.73)

The final step of the proof is to show the stochastic optimality according to the defined marginal constants ϵ. Let
θmi (k) : N+ → Θ be the trajectory of the neural parameters of the i-th neural agents at learning iteration k. Recall the fact
that αm

i = αm−1,K
i := B[θmi (K − 1)]. Let us denote that Ym

t |θ is the adjoint variable given neural parameters θ. We define
the closed metric balls {Bk

δmi
}k∈N+ centered at θmi (k) with the radius 0 < δmi such that

Bk
δmi

:= {ϑ ∈ Θ; ∥ϑ− θmi (k)∥ ≤ δkr , θ
m
i (k) is a local minimum of EYm

t |θ}. (A.74)

Next, we consider the sub-sequence {θmi (k̄)}k̄∈N̄ ⊆ {θmi (k)}k∈N , which defines the strictly-decreasing sequence
{EYm

t |θm(k)}k̄∈N̄ an ordered index set N̄ . Then, the admissible set Ai is defined as follows:

Ai :=


(K̄,m∗)⋃
(k̄,1)

αm
i (·, ·, Bk̄

δmi
); K̄ := max{N̄}

 ⊂ L2(T × Rd), 1 ≤ m ≤ m∗, (A.75)

where K̄ is a maximal element in N̄ . Intuitively saying, the admissible set Ai is a collection of local metric balls centered at
neural parameters of i-th agent updated by gradient descent.

To define the optimal actions of neural agents, let us consider an arbitrary local convex set β ∈ C ⊂ A where A is the
admissible action set for multi-agents defined as follows:

A :=

I⊗
i=1

Ai ⊂ [L2(T × Rd)]⊗I . (A.76)

By the convexity, there exist I pairs {(ωi, βi)}i∈{1,...,I} such that the following equality holds:

(B ◦ · · · ◦ B[θm(k = 0)])︸ ︷︷ ︸
K times

= αm+1
i + ωiβi (A.77)

and βi(·) ̸= 0. Then, the Gâteaux derivative (Carmona, 2016, Theorem 4.12) of adjoint variable Ym
t is derived as follows:

0 ≤ d

dω
dY i,α

t (αm+1
i + ωiβi) = E

[∫
T
∇αi

Hi(t,Xα
t , F

i,α
t , [αm+1

i ,αm
(−i)]) · βidt

]
≤ E

[∫
T

∥∥∥∇αiH
i(t,Xα

t , F
i,α
t , [αi,α

m
(−i)])|α=αm+1

i +ωiβi

∥∥∥2 · ∥βi∥2 dt
]
.

(A.78)

The first inequality is trivial due to the definition of admissible set Ai. Since ∥β∥2 is nonzero, one can deduce that
∇αH|αm+ωβ ≥ 0. In other words, the action profiles αm are optimal actions and any arbitrary actions βi ∈ Ci are
eventually non-optimal. Hence, we can conclude from the above result that the inequality in (A.72) holds in the admissible
action set. Finally, we conclude this proof by showing the stochastic optimality is preserved during the fictitious play by the
definition of A that induces the following relation:

Vt +H(t, ·, Ft, (α
m+1,αm

(·))) +
1

2
Tr(Σ∇2Vt) = 0, (A.79)

where Σ = σTσ. The stochastic optimality is obtained by the Hamiltonian equation (A.79) for every stage.
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A.3.2. PROOF OF COROLLARY 3.1

In the proof of Proposition 3.1, we have shown the existence of the local action set that assures the convergence of the
fictitious play. In this proof, we show the convergence of predictor Λα

t according to the action set assuring the local Nash
equilibrium. We start by calculating the norm deviation for the Itô’s differential of the predictor (i.e., δΛα

t ).

E
[
d ∥δΛα

t ∥
2
]
= E

[
2δΛα

t · d [δΛ
α
t ] + [dδΛα

t ]
T
dδΛα

t

]
≤
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j

2E
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δAjX

j
t

)
·
(
δAjbj + δXj

t∂tAj + δXj
t [∇Aj ]

Tbj

+
1

2
Xj

tTr[δΣj∇2Aj ]
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+ δ(∇Aj)

TΣjdt

]
=
∑
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2E
[
δ(A2
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T
j X

j
t )︸ ︷︷ ︸

(a)

+||δXj
t ||2
(
δ(Aj∂tAj)︸ ︷︷ ︸

(b)

+ δ(Aj∇Ajb
T
j )︸ ︷︷ ︸

(c)

+
1

2
Tr[Σj∇2δAj ]︸ ︷︷ ︸

(d)

)
+ (∇δAj)

TΣj︸ ︷︷ ︸
(e)

dt

]
.
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Note that we follow the rules for notating the object deviation in the previous proof. The first inequality From the last
equality of (A.80), we estimate the upper bounds of each term.

(a) : E
[∣∣∣δA2

jb
T
j X

j
t

∣∣∣ dt] ≤ E
[
||Â||2||b̂||2

∥∥δαm
j

∥∥2 ∥∥∥δXj
t

∥∥∥2] ≤ TL̃2M3
2κ

2
m. (A.81)

The result directly follows from By the assumption in (A.61), the following evaluation is trivial:

E
[∥∥∥δXj

t

∥∥∥2] = E

[∥∥∥∥∫
T
δbjsds

∥∥∥∥2
]
≤ E

[∫
T

∥∥δbjs∥∥2 ds] ≤ TM2L̃κm. (A.82)

Now, we estimate the two terms (b), (c) that contain spatial and temporal derivatives of aggregation function in the following
bracket: 

(b) : E [|δAj∂tAj | dt] ≤ E
[∣∣∣Âj · ∂tÂjδαj

∣∣∣+ ∣∣∣Âj · δ∂tαj

∣∣∣ dt] ≤ 2L̃κmM2dt,

(c) : E
[∣∣δAj∇Ajb

T
j

∣∣ dt] = E
[∥∥∥Â∥∥∥2 ∣∣αm

j · ∇αm
j

∣∣ dt] ≤M2E
[∥∥αm

j

∥∥2 ∥∥∇αm
j

∥∥2
F
dt
]

≤M2L̃
2κ2

mdt,

(A.83)

where the basic property of vector gradient ∇(v · u) = (∇v) · u+ v · (∇u) for all v, u ∈ Rd,∇v,∇u ∈ Rd×d is used in
the estimation of (c). For the last two terms, i.e., (d), (e), we used the fact that the deviation of the matrix Σ is not defined
because our MaSDEs assume uncontrollable volatility.



(d) :
1

2
E
[
|Tr[Σj∇2δAj ]|dt

]
=

1

2
E
[∣∣∣Tr[ΣjÂj(∇2αm

j −∇2αm∗
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(A.84)
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Note that the first line in (A.84) can be obtained by the trace inequality (i.e.,Tr[AB] ≤ ∥A∥F ∥B∥F ). By collecting the
evaluated terms above, we conclude the proof by showing the following relation:

E
[∫

T
∥δΛα

s ∥
2
ds

]
∝ O

(∥∥∥θm − θm∗
∥∥∥3 IT2L̃3M3

2 sup
t∈T

E [∥Σ∥F ]
)
. (A.85)

A.4. Proof of Proposition 3.4

Consider a triplet of empirical measures (µN
t , µ̂N

t , νNt ) with N -particles as followings:

νNt =
1

N

N∑
k

δyk
t
, µN

t =
1

N

N∑
k

δΛα,k
t

, µ̃N
t =

1

N

N∑
k

δΛ̃α,k
t

, (A.86)

where we define the perturbation functional Z : P2 → P2 that injects random observations Z that were unseen during the
training. Notice that the

µ̃N
t = Z#µ

N
t , Λ̃α

t |ys1 ,··· ,ysi
+Z,··· ,ysI

= Λα
t |ys1 ,··· ,ysi

,··· ,ysI
, Z ∼ q, (A.87)

Recall that the original temporal aggregator Λα
t is conditioned by I past observations (ys1 , · · · , ysi , · · · , ysI ). Following

by the definition of the noisy observation, the perturbed prediction is conditioned by (ys1 , · · · , ysi + Z, · · · , ysI ) where
{Zk}k∈{1,··· ,N} ∼ q for generic Gaussian distributions.
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In the equation (A.88), we define a ratio of covariance as Σ̂0 := Σ̂0(t, x) = QDiag[λ(t)/λ(0)]QT .
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(A.89)

The second inequality is a direct consequence of combining (A.88) and (A.64). Following by the assumption (H4), and the
fact that 1 ≥ Ai

t ≥ (Ai
t)

2, ||Σ̂0||2F ≤
∑

i∈N λi(t)/λi(0) ≤ D3 almost surely, the last equality holds. Consider the following
triangle inequality

W2
2 (νt, µ̂t) ≤ W2

2 (νt, ν
N
t ) +W2

2 (ν
N
t , µ̂N

t ) +W2
2 (µ̂t, µ̂

N
t ) (A.90)

Then, under the assumption (H5) with the result of Theorem 2 from (Fournier & Guillin, 2015), we have

(Empirical Measure Concentration) :

P
[
W2

2 (Υ,ΥN ) ≥ φ
]
≤ Ce−cNxd

W2(Υ,ΥN ) ≤
(

log(C/φ)
cN

)−d/4

, with probability at least 1− φ
(A.91)

for two empirical measures Υ ∈ {µ̂t, νt}. The proof is complete by setting δt = 1/|T| and the fact E
∥∥Zk

si

∥∥2 = Tr[Σ :=
QλQT = QQTλ] = 1Tλd in the last term of inequality (A.89).
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A.5. Non-cooperative Scenarios

Empirical Study for the Non-cooperation. This section is devoted to answering the following important question: Why do
we consider a cooperative scenario rather than a non-cooperative one? This question is crucial as the shared goal could
have been achieved in a highly competitive and non-cooperative environment (Ye et al., 2018). For an intuitive explanation,
we introduce a specific scenario where the neural agent becomes adversarial and determines that interfering with other
agent’s objectives is the best possible strategy to achieve its own goal. Followed by the definition, the behavioral rules for
the adversarial agent can be summarized by the following equations:

(Adversarial Agent)

{
Vj(t, x) = J j(t, x, [α∗

j ,α(−j)]),

J i(t, x, [α∗
i ,α(−i)]) ≤ J i(t, x, [α∗

i , α
∗
j ,α(−i,−j)]).

(A.92)

The second inequality shows that the adversarial agent (here, the j-th agent) can easily ruin other agent’s goal although the
victim (here, the i-th agent) produces its best response α∗

i to the adversarial environment. Eventually, one can expect that the
competitive group will fail to accomplish the original goal (i.e., the accurate prediction). To formalize the aforementioned
scenario by estimating the total amount of inefficiency derived from the non-cooperation, we formulate the non-cooperative
game (e.g., min-max) by converting the cooperative behavior into an adversarial one:

ĥj = hj +
∥∥Aαj

j − 1
∥∥2 , min

αj

∥∥Aαj

j − 1
∥∥2 = max

αj

A
αj

j , j ̸= i ∈ {1, . . . , I}. (A.93)

With the adversarial cost ĥj , selfish agents maximize the influence on temporal aggregation by interfering with opponents.
As the symmetric relation in (10) fails to be satisfied, the proposed framework with cost function in (A.93) is regarded as a
non-cooperative game.

Figure A.4: Coalition cost for two scenarios.

To elucidate the importance of cooperation in our framework
of time-series prediction, we conduct an experiment on the
Mackey-Glass dataset by setting a single adversarial agent α1.
The red and blue learning curves in Figure A.4 illustrate the
coalition costs during the fictitious play over 20 stages pro-
duced by competitive and cooperative groups, respectively. As
one might expect, the cooperative group shows stable learning
dynamics until it converges to an agreement on the accurate
prediction. This shows that the proposed fictitious play devel-
oped in Section 3 enjoys the desirable characteristic for accurate time-series prediction. Contrarily, the non-cooperative
group under the competition fails to achieve a shared goal and shows that the adversarial behavior is fatal to the proposed
framework regardless of the number of adversaries. In the optimization perspective, the primal reason for the failure is the
instability induced by the naive approach for the gradient-descent based min-max type optimization. As a remedy, one may
restrict the admissible action sets by considering an additional constraint on neural agents such as PL condition (Nouiehed
et al., 2019) to develop a sophisticated algorithm for a convergent result. Yet, it is an open question whether this theoretical
perspective can lead to accurate time-series prediction.

A.6. Summary of Relevant Concepts

The most relevant strand of research about the multi-agent system in the machine learning community is multi-agent
reinforcement learning (MARL) (Foerster et al., 2016). However, MARL and the proposed method differ in that MARL
usually assumes model-free in discrete time, while we assume model-based in continuous time. The relevant concepts
between MARL and ours are summarized in Table A.4.

A.7. Implementation Details

Evaluation. In all experiments with real-world datasets, we train each model for 500 epochs using the Adam optimizer with
a learning rate of 10−3 and batch size of 128. We reported the MSE and (Gaussian) NLL as suggested in (Rubanova et al.,
2019). The performance is evaluated on the predicted parts of the test dataset. For the evaluation of our method, we evaluate
MSEs between the predictor Λα∗

t and a test data ŷt ∼ ν̂t as follows:

(MSEs) : Es∼O,t∼T,Λα∗
t ∼Q

[∥∥∥ŷt − Λα∗

t |ŷs1 ,...,ŷsi
,...,ŷsI

∥∥∥2] , (A.94)
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Observations {ysi}si∈O
Targets {yt}t∈T

Agents Agents α = [α1, . . . , αI ], αi := αi(·, ·; θi)
Actions Actions αi(t,X

i,α
t ; θi)

States Decisions Xα
t = [X1,α

t , . . . , XI,α
t ] := MaSDEs({ysi}si∈O,α)

Rewards Errors Et∼T
[
∥yt − Λα

t ∥2
]

Objective functional J i(t,Xα
t ,α)

Value function Vi(t, x) = minα∗
i ∈Ai J i(t, x, [α∗

i ,α
∗
(−i)])

Nash equilibrium J i(t, x, [α∗
i ,α

∗
(−i)]) ≤ J i(t, x, [βi,α

∗
(−i)]) + ϵi

Continuous Bellman HJBEs Vt +H(t, ·, Ft, (α
m+1,αm

(·))) +
1
2
Tr(Σ∇2Vt) = 0

Table A.4: Comparison of relevant concepts. The first column stands for RL terminology; the second column stands for our terminology.
In our works, agents and actions are neural networks and infinitesimal outputs given spatio-temporal variables (t,Xi,α

t ). Decisions are
continuous stochastic trajectories, and errors are L2 loss between targets and aggregated decisions.

where the predictor is conditioned by the past observations {ŷsi}si∈O of the testing time-series. As neural agents collaborate
to minimize the temporally averaged utilities (i.e.,J i ≈

∫
T E||ys −Λα

s ||2ds) via the cooperative differential game, the goal
of the proposed cooperative game becomes identical to forecast the time-series ŷt∈T given observations.

A.7.1. NETWORK ARCHITECTURE

Figure A.5: The architecture of MaSDEs.

In this section, we briefly introduce the network architecture of
multi-agent neural SDEs as shown in Figure A.5. Given the initial
condition {y(·)}si∈O, each neural agent takes the spatio-temporal
variable (t,Xi,α

t ) and produces infinitesimally transformed out-
puts to propagate its own stochastic trajectory. First, the temporal
variable t is embedded into inhomogeneous and non-linear rep-
resentation as t′ = (t, sin(t), cos(t)). Note that we adopt the
temporal privacy function suggested in (Park et al., 2022) for fur-
ther temporal encoding. After the non-linear time embedding,
the intermediate representations (t′, Xi,α

t ) are fed into the novel
module referred to as agent identification layer (AIL), which is
defined as follows:

AIL(Xi,α
t , i) := ζi

(
Xi,α

t − E(Xi,α
t )

Std(Xi,α
t )

)
+ ζi, ζi = (i+1)/I.

(A.95)
The AIL is motivated by the adaptive instance normaliza-
tion (Huang & Belongie, 2017) that adaptively transforms the
statistics of intermediate feature representations according to user-
guided information (i.e., index for neural agent). This encourages
each neural agent to propagate the individual stochastic trajectory
and ensures the separated representations. The outputs from AIL
are fed into two subsequent linear layers with LipSwish (Chen
et al., 2019) and produce values for drift bi and temporal aggrega-
tion functions Aαi

i . In the experiments with real-world datasets,
we identically set the dimension of hidden layers of each neural
agent and the drift network as 128 following the baseline model (Park et al., 2022). We set the number of hidden layers as 2
for neural agents and 1 for the drift network. For the aggregation network, we used a relatively small dimension (i.e., 36)
with 2 hidden layers across all the experiments. For the simulation of the stochastic trajectory given the architecture, we
discretize sampled times by applying the Euler-Maruyama scheme.
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A.7.2. DATASET

PhysioNet Challenge 2012, (Silva et al., 2012), contains 8000 multivariate clinical time-series obtained from the intensive
care unit (ICU). Each time-series has various clinical features of the patient’s first 48 hours after admission to the ICU. We
processed the dataset to hourly time-series and eliminated static features so that each time-series has a length of 48 with
35 time-varying features (e.g., Albumin, Heart-rate, etc.,). We used half of the time-series as the training dataset and the
remaining parts as the test dataset.

Speech Commands, (Warden, 2018), consists of one-second audio records of various spoken words such as “Yes”, “No”,
“Up”, and “Down”. Since there are more than 100,000 record samples, we sub-sampled the dataset on two conflicting
classes (i.e., “Right” and “Left”). As a result, 6950 time-series records were selected. We pre-processed these time-series by
computing Mel-frequency cepstrum coefficients so that each time-series has a length of 54 with 65 channels. We used 80%
of selected data as the training dataset and the remaining parts as the test dataset.

Beijing Air-Quality, (Zhang et al., 2017; Dua & Graff, 2017), consists of multi-year air quality recordings across different
locations in Beijing. Each sample contains 6-dimensional time-series features of PM2.5, PM10, SO2, NO2, CO, and O3,
which are recorded per hour. We segmented data per two days so that each sample has a length of 48. We combine recordings
of 12 different locations into a single dataset and randomly split 80% of data into the training dataset and 20% of data into
the test dataset.

A.8. Ablation Study: Impulse Signals
Modeling physical phenomenon with point processes (e.g., Hawkes process) is common in many domains including finance
for a high-frequency market (Bacry et al., 2015) and geology for earthquake (Ogata, 1998). In this experiment, we utilized
Gaussian-impulse noises to mimic such discrete noisy events occurring at random times. To generate the Gaussian-impulse
noise, we first sample the random time-stamp {t1, t2, · · · } from a homogeneous Poisson process with an intensity level of
λ = 8.0. With this sampled time-stamps, we generate the data Yt over the time interval [0, 48] as follows:

Yt =

{
0.6 + Ut, if {t} ∼ Pois(λ),

Zt, otherwise.
(A.96)

where Ut ∼ Unif[0, 1], Zt ∼ N (0, σ2) and the standard deviation of Gaussian noise is set to 0.1. Similar to other datasets,
we set the observable and the prediction intervals to contain the first 80% and the last 20% of total points, respectively.

Figure A.6: Gaussian-Impulse Noises.

Figure A.6 illustrates the results of the proposed temporal aggregation of neural
agents. Given impulse signals in the observation interval O, neural agents accurately
restore random peaks. Interestingly, neural agents {α5, α17, α25} that encode
the past impulse signals focus on the times at which impulse noise occurs. In
other words, neural agents emulate stochastic peaks by learning intrinsic temporal
correlations (i.e., p(yt∈T|ys∈O), t, s ∼ Pois) between the random occurrence
times of the past and the future impulse signals.

Based on the additional investigation, we conclude that the proposed neural agents
learn various types of temporal dynamics from the data by cooperatively pursuing
the group goal. The rational group filters out the influence of observations that are
redundant for predicting future states. This encourages neural agents to focus more

on the informative signals for accurate predictions by capitalizing on the data statistics.

A.9. Additional Qualitative Results

In this subsection, we provide additional qualitative results on BAQD across overall features of different instances to show
the effectiveness of the proposed method on time-series prediction. Figure A.7 shows prediction results for all features
and learned aggregations on the BAQD. We can observe that our method exhibits similar (but not strictly restricted) to the
temporal decay assumption. As can be seen in Figure A.7, the learned temporal aggregation varies depending on the given
observation. We claim that neural agents have a variety of cooperation patterns to generate an accurate prediction. That is,
our method flexibly extracts complex and heterogeneous temporal correlations beyond simple temporal decay assumed by
conventional methods.
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Figure A.7: Additional qualitative results on BAQD dataset.

A.10. Comparisons with Transformer-based Models.

The most significant advantage of using DE-based methods is the capability of handling irregularly sampled or partially
observed time-series, which is common in real-world domains such as medicine or finance. Any non-DE-based methods
are incapable of dealing with such unstandardized data without careful pre-processing steps (e.g., discretization and
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interpolation) to handle irregularity.

Method Test MSE ↓ (×10−2)

Transformer (Vaswani et al., 2017) 0.4476± 0.018
Reformer (Kitaev et al., 2020) 0.4378± 0.004
Informer (Zhou et al., 2021) 0.4253± 0.002
Autoformer (Wu et al., 2021) 0.4904± 0.039

Ours 0.4087± 0.013

Table A.5: Test MSE (mean ± std) on Speech dataset.

Thus, to compare with the state-of-the-art Transformer-based
time-series prediction methods, we chose the Speech dataset
since it comprises complete time-series observations with reg-
ular time intervals. Thus, potential bias from pre-processing
steps can be avoided. As can be seen in Table A.5, our method
outperforms its non-DE-based counterparts implying that our
proposed method can be a promising tool for general time-series
modeling under both regular and irregular settings.
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