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Abstract
In model-based reinforcement learning (MBRL),
policy gradients can be estimated either by
derivative-free RL methods, such as likelihood ra-
tio gradients (LR), or by backpropagating through
a differentiable model via reparameterization gra-
dients (RP). Instead of using one or the other, the
Total Propagation (TP) algorithm in prior work
showed that a combination of LR and RP estima-
tors averaged using inverse variance weighting
(IVW) can achieve orders of magnitude improve-
ment over either method. However, IVW-based
composite estimators have not yet been applied
in modern RL tasks, as it is unclear if they can
be implemented scalably. We propose a scalable
method, Total Propagation X (TPX) that improves
over TP by changing the node used for IVW, and
employing coordinate wise weighting. We demon-
strate the scalability of TPX by applying it to the
state of the art visual MBRL algorithm Dreamer.
The experiments showed that Dreamer fails with
long simulation horizons, while our TPX works
reliably for only a fraction of additional compu-
tation. One key advantage of TPX is its ease of
implementation, which will enable experimenting
with IVW on many tasks beyond MBRL.

1. Introduction
Reinforcement learning (RL) deals with optimizing the be-
havioral parameters, θ, of an agent in an environment, so as
to maximize the expected rewards Ep(τ ;θ) [R(τ )] (Sutton &
Barto, 2018) of the trajectory, τ . One main approach to RL
is stochastic gradient ascent using the policy gradient (PG),
d
dθEp(τ ;θ) [R(τ )]. Computing this expectation analytically
is intractable—it can only be estimated by sampling—and,
thus, the gradient must be statistically approximated.
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This gradient estimation is often performed with the likeli-
hood ratio (LR) method that only requires the value of R to
create an unbiased estimator (Glynn, 1990; Williams, 1992;
Sutton et al., 2000).1 While LR does not require knowledge
of the system, if we do have access to such a differentiable
model, we can use the reparameterization gradient (RP)2

that uses dR
dτ to perform a more efficient estimate (Rezende

et al., 2014; Jordan & Rumelhart, 1992; Werbos, 1990).

As dR
dτ contains D bits of information (one for each dimen-

sion of τ ), while R is a single scalar, one can construct
examples where the accuracy of RP scales D times better
than LR (Rezende et al., 2014). This improved scalability
is enjoyed by several impressive RL results, such as differ-
entiable simulation (Xu et al., 2022), visual MBRL (Hafner
et al., 2023) or inventory management (Madeka et al., 2022).

Unfortunately, derivative-based methods such as RP are
not always effective. Parmas et al. (2018); Parmas (2020)
decisively showed in MBRL that RP has a major flaw in
chaotic systems causing the gradient estimation variance
to explode. This issue is related to the exploding gradient
problem (Pascanu et al., 2013), and it is common in machine
learning tasks with long chains of non-linear computations.

The LR method was robust to the problem with chaos; how-
ever, LR is in general inefficient, so there is a risk that the
solutions to many problems of interest are out of the reach
of standard algorithms. Fortunately, Parmas also proposed
an algorithm to alleviate the issue: Total Propagation (TP).

Total Propagation combines the best of RP and LR: it
achieves efficiency while being robust to chaos. The ba-
sic idea is that it performs weighted averaging of LR and
RP, with the weights estimated by inverse variance weight-
ing (IVW), without requiring additional hyperparameters.
Moreover, TP includes a step-wise algorithmic approach
that can even give 100 times improvement in gradient ac-
curacy (Parmas & Seno, 2022), particularly at the edge of
chaos. TP also influenced follow-up works that employed
IVW in varied fields such as meta-learning (Metz et al.,
2019) and differentiable simulation (Suh et al., 2022).

1LR is often also called the score function estimator.
2RP is a type of pathwise gradient similar to back propagation.

1



Model-based Reinforcement Learning with Scalable Composite Policy Gradient Estimators

While the idea in TP is promising, the original work (and
follow-up works) only applied it on low-dimensional con-
tinuous control problems. Therefore, we investigate how
to scale up the TP algorithm, so that it can be applied to
modern machine learning tasks beyond toy problems.

The main problem with TP was that it could not be imple-
mented easily due to its low compatibility with automatic
differentiation (AD) frameworks. To overcome this issue,
in our concurrent work (Parmas & Seno, 2022) we created
a new machine learning framework, Proppo that allows
automatically using TP on arbitrary computation graphs.

Using our framework, we implement a new more scalable
variant of TP that we call Total Propagation X, which has
the main differences: (1) instead of estimating the gradient
variances at the θ node, it estimates the variances at the τ
node, (2) in addition to the variance, it takes into account the
covariances of the gradient estimates, (3) instead of a scalar
mixing weight, k, it uses a tensor-valued weight, k, with
different weights for different dimensions of the gradients.

We perform experiments in two settings: we replicate the
cart-pole task in the original TP paper (PIPPS, App. B), we
combine TPX with the state of the art visual MBRL algo-
rithm Dreamer (Sec. 6) (Hafner et al., 2020), and apply it on
continuous control from pixels in the DMC environments
(Tunyasuvunakool et al., 2020). The results showed that
TPX can reliably match TP while requiring less computation
and being easier to implement. Moreover, TPX improved
the robustness to the hyperparameter choices, such as the
length of the prediction horizon, H .

Our contributions are as follows:

• We propose Total Propagation X, the first composite
gradient estimation algorithm using inverse variance
weighting that is demonstrated to be applicable at scale.

• We combine TPX with Dreamer, and show that it im-
proves robustness to the horizon hyperparameter.

• We analyze the design choices in Total Propagation,
and shed light on their effect.

• We propose methodology for comparing the quality of
gradient estimators that may be biased.

While advanced composite gradient estimators have shown
promising results, the major barrier to their adoption is how
to easily implement them at scale. The design choices in
TPX appear generally applicable, and following them is
likely to enable scaling up future composite estimators as
well, not only in MBRL but also other tasks, defined on arbi-
trary stochastic computation graphs (Schulman et al., 2015).

2. Related Work
Following the original TP, several works also used IVW to
combine gradient estimates. Metz et al. (2019) replicated
the experimental analysis of Parmas et al. (2018) in the
context of meta-learning to show that the same issues with
chaos occur, and used IVW to combine RP and LR gradi-
ents to improve the performance, similarly to TP. Geffner &
Domke (2018) used IVW to automatically combine control
variates (Greensmith et al., 2004) for variance reduction in
stochastic variational inference (adding the control variate
can be shown to be equivalent to averaging the gradient esti-
mates). In later work, Geffner & Domke (2020) proposed a
technique for incorporating the computation time for estima-
tor selection. In differentiable simulation, Suh et al. (2022)
proposed an extension to IVW to attempt dealing with the
bias in the RP estimate when there are discontinuities (Lee
et al., 2018; Parmas & Sugiyama, 2021). All of the above
works only dealt with small scale tasks or low-dimensional
models. Moreover, they did not use the step-wise gradient
combination scheme used in the full TP, as it is difficult to
implement. In our concurrent work, we showed that the
step-wise scheme can improve the performance by multiple
orders of magnitude (Parmas & Seno, 2022).

3. Background
Notation. Bold letters, x, are tensors. The notation
ÊNi [·] = 1

N

∑N
i=1(·)(i) refers to the empirical mean of

a set of N elements, where the elements are indexed by i.
The empirical variance has an analogous notations V̂Ni [·].
The similar covariance estimator ˆcovNi [·, ·] computes the
dimension-wise covariances, but not the off-diagonal terms
of the covariance matrix. The notation

∑
x means to sum

all elements of the tensor, unless the index is specified.
Some tensors x may have a batch axis, and we index the ith

member of the batch with the notation x(i). Other dimen-
sions are indexed with the x(·) notation, e.g., x(ij) denotes
the element in the ith row and jth column of the matrix x.
The notation xi does not index the tensor, but we use it
to discern different tensors that are somehow related, e.g.,
states at different time-steps in a sequence may be denoted
by xt. For two tensors x and y where, they have the same
shape except for x having an additional batch axis (or vice
versa), we define the broadcast product x � y that multi-
plies y element-wise with each member of x. The gradient
tensor dy

dx has Shape
( dy

dx

)
= [Shape(y), Shape(x)], and

the product between two gradient tensors, dz
dy

dy
dx = dz

dx , is
defined such that the chain rule holds, i.e., for fixed indexes
of z and x, all of the corresponding elements at indexes
of y are multiplied and summed. Division between two
tensors denotes an element-wise division. Note that the
notations here are for mathematical convenience, and need
not represent how the methods are implemented in code.
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Elementary gradient estimators. An unbiased gradient
estimator, ĝ, is a random variable, such that

E [ĝ] =
d
dθ

Ep(τ ;θ) [R(τ )] . (1)

The LR gradient estimator is ĝLR = d log p(τ ;θ)
dθ (R − b),

where b is a constant baseline for variance reduction. We
use the mean baseline throughout, b = ÊNi

[
R(i)

]
.

The RP gradient estimator is ĝRP = dR
dτ

dT (ε)
dθ , where Tθ is a

reparameterization transform, such that sampling ε ∼ p(ε)
and transforming τ = Tθ(ε) is equivalent to τ ∼ p(τ ;θ).
It is often useful to rewrite d

dθ (·) in the estimator by the
chain rule to an intermediate distribution parameter ζ, i.e.,

d
dθ

(·) = dζ
dθ

d
dζ

(·). (2)

For example, ζ = [µ,σ] may be the parameters of a Gaus-
sian distribution, while θ are the parameters of a neural
network that output ζ. This way, the total derivative esti-
mator can be rewritten as a sum over gradient estimations
at intermediate nodes, from which we backpropagate the
estimated gradients to θ (Parmas, 2018).

Total Propagation. The idea in TP is to construct a new
gradient estimator by the weighted average of LR and RP:

ĝTP = kĝLR + (1− k)ĝRP. (3)

An appropriate weight, k, yields a lower variance compared
to either estimator alone, by averaging the randomness. The
TP method chooses k by the well-known optimal weighting
scheme (assuming uncorrelated random variables) called

inverse variance weighting (IVW). In IWV, k is chosen
inversely proportional to the variance of the estimator, i.e.,

k ∝ 1

V [ĝLR]
and (1− k) ∝ 1

V [ĝRP]
. (4)

In practice, one computes a batch of N gradient estimator
samples for both RP and LR, and performs the weighting
using the empirical sample variance of the batch:

k̂ =

∑
V̂Ni

[
ĝ
(i)
RP

]

∑
V̂Ni

[
ĝ
(i)
LR

]
+
∑

V̂Ni
[
ĝ
(i)
RP

] . (5)

The naïve IVW method would perform the combination
based on separate estimates of RP and LR through the whole
computation graph. However, this approach is limited, as it
can reduce the variance at most by a factor 2 until the lower
bound V [ĝnaïve] ≥ 1

2 min (V [ĝLR] ,V [ĝRP]) (with equality
when the variances are equal, V [ĝLR] = V [ĝRP], App. A).
The TP method overcomes this limitation by computing LR
and RP together, and combining the estimators at a node-
wise level in the graph. This procedure enabled reducing
the variance by over 100 times in a minimalistic recurrent
neural network experiment (Parmas & Seno, 2022)!

An illustration of the TP algorithm is shown in Fig. 1. This
example is based on a multi-layer neural network (NN) in
supervised learning, with an input x, hidden variables z, an
output y, a target t, the sample-wise losses L and the neural
network weight parameters of each layer W . Moreover,
this is a stochastic NN, and the hidden variables are sam-
pled zn ∼ p(zn; ζn), where ζzn = f(zn−1,Wn) are the
distribution parameters at the node that depend on the NN
weights and the previous hidden variable. Note that sam-
pling is necessary for gradient estimation. The algorithm

z1x zn y L

Wn Wn+1 t

dL
dζzn

RP
= dL

dy
TP dy

dzn
dzn
dζzn

dL
dy

TPdL
dζzn

LR
= d log p(zn)

dζzn
(L− b)

dL
dWn

RP
= dL

dζzn

RP dζzn

dWn

dL
dWn

LR
= dL

dζzn

LR dζzn

dWn(
dL
dWn

TP
, k

)
= InverseVarianceWeighting

(
dL
dWn

RP
, dL

dWn

LR
)

. . .

dL
dζzn

TP
= k dL

dζzn

LR
+ (1− k)dL

dζzn

RP 1○

2○

3○

4○5○

Propagation node

Inverse variance weighting node

Loss node

Paths to loss node
Paths to propagation node

Figure 1: Illustration of the Total Propagation algorithm. The explanation is in Sec. 3
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works by iterating backwards through the propagation nodes
(Parmas & Seno, 2022) where RP and LR are combined via
IVW. We explain the procedure at each propagation node:

1© In the first step, we compute the RP and LR estimators
w.r.t. the distribution parameters at the propagation
node, ζzn . The RP estimator is computed by the chain
rule via the incoming gradients dL

dy
TP

, and by estimating
dzn
dζzn

via the RP trick. The LR estimator is computed
in the standard way using the the losses, L. Both RP
and LR are unbiased estimates of the total derivative
from the propagation node to the loss node.

2© Next, we separately backpropagate the RP and LR gra-
dient estimates from ζzn (the propagation node) to the
weight parameters of our model, Wn (the gradients
along the blue lines). Note that in typical AD soft-
ware, the incoming batch gradients are automatically
summed at theWn node, meaning that the sample-wise
gradients, ĝ(i) = dL(i)

dWn
, are not accessible. However,

TP requires the sample-wise gradients to be able to es-
timate the batch gradient variance, V̂Ni

[
ĝ(i)
]
, for use

in IVW (Eq. 5). Therefore, TP requires a non-trivial
implementation that estimates sample-wise gradients.

3© In the third step, we use the obtained sample-wise
gradients, dL

dWn

RP
and dL

dWn

LR
to compute the empiri-

cal variances V̂Ni
[

dL(i)

dWn

LR]
and V̂Ni

[
dL(i)

dWn

RP]
that are

used for IVW to compute the scalar weight ratio k and
the combined gradient dL

dWn

TP
. Notice that in the TP

gradient, the batch of gradients are averaged, and the
losses are collapsed to a scalar L = ÊNi

[
L(i)

]
. This

is the gradient that will be applied to the weightsWn

in the optimization algorithm.

4© Now, the scalar weight k is used to combine the
gradient estimates together at the zn node obtaining
dL
dζzn

TP
= k dL

dζzn

LR
+ (1 − k) dL

dζzn

RP
. This operation,

combines the two gradient estimators for each member
of ζzn together into a single one.

5© Finally, the combined gradient dL
dζzn

TP
is backpropa-

gated to the preceding node, where it is used for RP
gradient estimation, equivalently to dLTP

dy in step 1©.

The key step of TP is the combination of the gradients in
the state space in 4©. This step has two main advantages
over a naïve combination of LR and RP: (a) It reduces the
total amount of computation, as a single averaged gradient
is backpropagted instead of two, (b) It allows overcoming
the bound of 2× improvement over the best between RP
and LR. By improving the gradient estimation accuracy at
each backward step, the accuracy improvements compound
leading to a potentially much more accurate estimate.

4. Proposal: Variants of Total Propagation
The basic version of TP described in Sec. 3 has shown
promising results in small scale tasks, but some design ele-
ments have made it difficult to apply at scale. The main issue
is that it was difficult to implement, but we solved this in
our concurrent work by providing a software framework for
automatically using TP (Parmas & Seno, 2022). However,
there are still several points on which TP could be improved.

The issues:

(i) Total propagation requires computing the individual
gradient samples in the batch dL(i)

dθ , or at least it re-

quires modifying typical AD to obtain V̂Ni
[

dL(i)

dθ

]
(as

described in 2© in Sec. 3). Such a modification to
the code will reduce the efficiency of the computa-
tions. Moreover, if the parameter space θ is high-
dimensional, computing the individual gradients will
require a lot of memory, and may not be practical.

(ii) In step 2© in Fig. 1, the gradients for RP and LR are
propagated separately through the same paths in the
computation graph. If k were known beforehand, this
computation would be redundant as the RP and LR
gradients could be averaged before backpropagating,
i.e., step 4© could be done first to obtain dL

dζzn

TP
, which

could be used to obtain dL
dWn

TP
using the chain rule.

(iii) In step 4©, the gradients at the propagation node are
combined using a scalar k. This may be inefficient, as
the different dimensions of ζzn may require different
mixing ratios to achieve efficient estimation. Using
a tensor k instead (one k for each dimension of ζzn)
may reduce the variance, but it is non-trivial to estimate
such a tensor in the current setup, as the dimensionality
of the parameter space (θ =Wn in the example) may
have a different dimensionality compared to ζzn .

(iv) The IVW used in TP is optimal when combining statis-
tically independent random variables, but does not take
into account possible correlations in the LR and RP
estimators (App. A). The true optimal mixing weight
when combining random variables, kX + (1 − k)Y ,
takes into account the covariance σXY , and is given by

k =
σ2
Y − σXY

σ2
X + σ2

Y − 2σXY
. (6)

Proposed solutions: Our first proposal is to perform the
IVW using only a subset of the parameters, θ, of the model.
We call this Total Propagation S (TPS)—while it is algo-
rithmically the same as TP, the setup is not the same as the
vanilla version using all of the parameters. This proposal
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z1x zn y L

Wn Wn+1 t

dL
dζzn

RP
= dL

dy
TP dy

dzn
dzn
dζzn

dL
dy

TPdL
dζzn

LR
= d log p(zn)

dζzn
(L− b)

dL
dWn

TP
= dL

dζzn

TP dζzn

dWn

k = InverseVarianceWeighting
(

dL
dζzn

RP
, dL

dζzn

LR
)

. . .

dL
dζzn

TP
= k � dL

dζzn

LR
+ (1− k)� dL

dζzn

RP a○

d○

b○

c○e○

Propagation node

Inverse variance weighting node

Figure 2: Illustration of the Total Propagation X algorithm. The explanation is in Sec. 4.

will remove the large memory requirements and will at least
make it feasible to apply TP at larger scale. However, it
only addresses the first issue (and only partially) without
fixing the others. We apply TPS as a comparison in our
later Dreamer experiments (Sec. 6). However, our second
proposal is more practical and addresses all of the issues.

We propose Total Propagation X (TPX) a variant of TP that
tackles all of the issues above. The algorithm is illustrated
in Fig. 2. The main idea is to use a different node for IVW.
Specifically, we estimate k using the local gradients, dL

dζzn
,

at the propagation node (in step b©), instead of using dL
dWn

as in the standard TP (in step 3©). This way, the individ-
ual gradients w.r.t. W = θ are not necessary, mitigating
issue (i). Moreover, the weighted average of LR and RP can
be computed immediately (in step c©), and the combined
gradient can be back propagated to the parameter node (in
step d©), mitigating issue (ii). Furthermore, as dL

dζzn
has the

same shape as ζzn , we can estimate a tensor k, mitigating
issue (iii). The gradient can be combined element-wise,

dL
dζzn

TP

= k � dL
dζzn

LR

+ (1− k)� dL
dζzn

RP

, (7)

and backpropagated to both the previous propagation node,
as well as the parameter node. This order of operations
allows skipping steps 2© and 3© in Fig. 1, and saves much
of the computational cost (i.e., in step 2© we compute two
gradients, but in step d© only one gradient is necessary).
Perhaps the biggest advantage of TPX is the mitigation
of issue (i): there is no longer a need to modify the
implementation to obtain the individual gradients dL

dW , but
all gradients can use a scalar L, as is typical.

Why is this possible, and how do we estimate k? Unlike the
gradient w.r.t. the parameters W , the gradient w.r.t. inter-
mediate variables, such as zn already contains the sample-
wise gradients separated out. In particular dL(i)

dz(i)
n

= N dL
dz(i)
n

,

where L = ÊNi
[
L(i)

]
, because the samples in the batch

are independent, and z(j), where j 6= i does not affect the
computation of L(i).3 The gradient dL

dz contains one entry
for each element of z, and as z includes a batch axis, the
gradient will be represented sample-wise. We denote the
sample-wise gradients as ĝ(i) = dL

dζ(i)z

, 4 and estimate k as

k̂ =
V̂Ni

[
ĝ
(i)
RP

]
− ˆcovNi

[
ĝ
(i)
RP , ĝ

(i)
LR

]

V̂Ni
[
ĝ
(i)
LR

]
+ V̂Ni

[
ĝ
(i)
RP

]
− 2 ˆcovNi

[
ĝ
(i)
RP , ĝ

(i)
LR

] . (8)

This equation creates an estimator for the ideal weighting in
Eq. (6). In addition to including the covariance to address
issue (iv), the major difference to the previous approach
in Eq. (5) is the omission of the

∑
operator that sums the

variances across all dimensions.

One could consider variants of TP that add a summation into
Eq. (8) and use a scalar k̂ at the propagation node. Another
variant might still use a tensor k̂, but omit the covariance
terms. The ideal k should include these features; however,
there is a caveat that we cannot directly compute k but only
estimate it. The other variants may be easier to estimate,
and as a result lead to better overall performance. To clarify
to what extent these design elements affect the performance,
we evaluate them experimentally in later sections.

Summary of the advantage of TPX. The major advan-
tage of TPX compared to TP is the ease of implementation.
Specifically, while the modifications necessary to one’s code
to use TPX using Proppo are exactly the same as those for
RP or LR, TP requires additional modifications to enable
obtaining the individual gradients dL

dθ . More accurately, in
principle, we only need a means to compute the batch vari-
ance of the gradients, and in some situations there exist

3Note that the independence assumption is not true for some
operations, e.g., batch normalization (Ioffe & Szegedy, 2015).

4In practice, as we are mostly using Gaussian distributions
(ζ = [µ,σ]), we estimate k from the mean parameters, µ, and use
the same weighting for the scale, σ. However, it would be straight-
forward to estimate separate weightings for both parameters.
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also other efficient ways to do this (Dangel et al., 2020).
However, it still requires non-standard modifications. Such
requirements increase the barrier to adoption of TP. Another
clear advantage of TPX is the reduction in computation time
due to removing redundant operations. Regarding accuracy,
whether TP or TPX is better is problem dependent. As we
are ultimately interested in the gradient variance at the θ
node, TP has the advantage that it estimates the variances
at this node. However, TPX has the advantage of using a
tensor k. Therefore, the winner in terms of accuracy will de-
pend on which merit was more important for the given task.
Nevertheless, in Sec. 5 we show a conceptual advantage
of TPX when the behavior of the dynamics varies between
the dimensions. In summary, TPX has clear advantages in
terms of ease of implementation, scalability and computa-
tion speed, but whether it can match TP’s accuracy has to
be experimentally examined.

5. Minimalistic Experiment: the Advantage of
Total Propagation X

x
[1]
1x

[1]
0 x

[1]
2

. . . x
[1]
H

L

β1

x
[2]
1x

[2]
0 x

[2]
2

. . . x
[2]
H

β2

Figure 4: Parallel chaotic RNN problem setting.

In Sec. 4, we hypothesized an advantage of TPX over TP
in the multi-dimensional setting—in TP, the scalar mixing
weight, k, may lead to suboptimal gradient accuracy in some
dimensions. As TPX uses a different mixing weight for each
dimension, it may overcome such an issue. To demonstrate
this advantage of TPX over TP, we perform a minimalistic

experiment using recurrent neural networks (RNN), with a
related setup to our concurrent work (Parmas & Seno, 2022).

The setup is illustrated in Fig. 4. There are two parallel
chains of computations performed by a type of sigmoid
RNN that was proven to exhibit chaotic behavior by Wang
(1991). The variables along the ith paths are denoted with
the superscript in closed brackets, x[i]; note that this is
not the same as indexing the batch dimension. The dy-
namics of each RNN is x[i]

t+1 = Sigmoid(βiWix
[i]
t ) + ε,

where Sigmoid(y) := 1
1+exp(−y) , x[i] is 2-dimensional,

W =

[
−5 5
−25 25

]
, ε ∼ N (0, 0.0012I), and the initial

state is x[i]
0 = [0.35; 0.55] for both i ∈ {1, 2}. At the end of

the chain, we compute a loss L := 1
2 (x

[1]T
H x

[1]
H +x

[2]T
H x

[2]
H ),

and we estimate gradients of L w.r.t. β1. We compare the
gradient estimation variance of TP, TPX, LR and RP.

The inverse temperature, β, controls the dynamics of the
system. Around β = 2.5, there is a phase transition—when
β < 2.5 the system is well-behaved, and when β > 2.5, the
system is chaotic. In the well-behaved region, RP gradients
are accurate, but in the chaotic regime, the RP gradient
variance explodes. LR follows an opposite pattern: it is ro-
bust to chaos, but not as accurate as RP in the well-behaved
region. TP automatically chooses an optimal weighting of
RP and LR. At the edge of chaos, TP outperforms both LR
and RP by orders of magnitude (Parmas & Seno, 2022).

The intention of the experiment is that with two parallel
paths with different β1 and β2, the dynamics—hence, also
the optimal k—would be different for the two paths. As TP
chooses a single k to be used in both paths, we hypothesize
that it will perform suboptimally in this regime. TPX, on
the other hand, chooses a separate k for each dimension and
should be unaffected by the other path.

1.0 2.0 3.0 4.0
Inverse temperature, β1

10−8

10−5

10−2

101

G
ra

d
ie

n
t

va
ri

an
ce

β2 = 1.5

1.0 2.0 3.0 4.0
Inverse temperature, β1

10−8

10−5

10−2

101

β2 = 2.5

1.0 2.0 3.0 4.0
Inverse temperature, β1

10−8

10−5

10−2

101

β2 = 3.5

Reparameterization Likelihood ratio Total propagation Total propagation X

Figure 3: Gradient variance of the double chaotic recurrent neural network in Fig. 4.
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The results in Fig. 3 support our hypothesis. Here, we chose
a fixed β2 ∈ {1.5, 2.5, 3.5}, and varied β1 ∈ [1.0, 4.0]. We
see that when β2 = 1.5—and hence the dynamics of the par-
allel path is stable—TP and TPX give a similar performance.
However, when β2 ∈ {2.5, 3.5}, TP gives poor results when
β1 is in the stable region. When β1, is small, the RP gradi-
ents along the first path are accurate, yet TP is unable to take
advantage of these accurate gradients, because the inaccu-
rate gradients along path 2 force TP to place a large weight
on the LR gradient. As TPX computes the gradient variance
for each of the 4 dimensions separately, the gradients along
the two parallel paths do not affect the IVW calculations,
and it does not suffer from the same problem as TP.

6. Visual Model-based Reinforcement
Learning with Total Propagation

h1h0 h2 . . . hH

z0 z1 z2 zH

a0r0V0 a1r1V1 rHVH

θ

Figure 5: Illustration of imaginary trajectories in the
Dreamer algorithm.

We first replicate the MBRL algorithm PIPPS in the origi-
nal TP paper to show that our implementation is accurate
(App. B). The results showed that TP-based methods out-
perform RP and LR across all learning rates (App. B.2), and
were overall much more reliable. Moreover, TPX matched
TP, but with a faster computation time.

Next, to show that our methods can scale to modern high-
dimensional RL settings, we modify the Dreamer algorithm
(Hafner et al., 2020) to use TPS and TPX for computing the
policy gradient. Dreamer is an MBRL algorithm that can
deal with high-dimensional visual observations (64 by 64
pixel images). It has shown impressive results in continuous
control, Atari games (Hafner et al., 2021), recently also in
learning to control real robots (Wu et al., 2022), and more-
over its latest version is the first algorithm to find diamonds
without human data in the game of Minecraft (Hafner et al.,
2023). It is one of the algorithms at the forefront of RL
research, and demonstrating that TP can be scaled to run
together with Dreamer would show for the first time that
TP-like composite policy gradient estimators can be applied
to state of the art algorithms. We focus our experiments on
the original DreamerV1 implementation, and on continuous
control environments. We keep the hyperparameters and all
settings the same as in the original Dreamer, but only swap
the RP gradient estimators in the Dreamer policy gradient

estimator to use TPX to test whether our algorithm can scale,
and whether it adds any benefit. A full evaluation of how
much the performance can be improved with our method
would require also tuning the hyperparameters; however,
this is expensive, and we leave it to future work.

6.1. Technical Details of Dreamer and DreamerTPX

Architecture. The Dreamer architecture consists of three
neural networks: a critic V (x), a policy, πθ(x), and a latent
state-space model (LSSM). The LSSM is similar to a deep
Kalman filter (Krishnan et al., 2015), and further decom-
poses into an encoder, a decoder and a dynamics model.
The representation is learned by a variational autoencoder
(Kingma & Welling, 2013) that encodes the images into a
latent space using the encoder, and reconstructs the image
using the decoder. The latent space x = [h, z] decomposes
into a deterministic part, h (200 dimensional), and a stochas-
tic part, z (30 dimensional), with a Gaussian distribution
and a diagonal covariance. The dynamics model predicts
the next latent state xt+1 given the current latent state xt
and action at. The deterministic state h is predicted using a
GRU RNN (Cho et al., 2014) while the stochastic state z is
predicted from h using a neural network (see Fig. 5).

Training. Learning iterates between applying the policy
on the real environment, and optimizing the parameters of-
fline in simulations with the model. The state transitions in
the real environment are stored into a dataset. During opti-
mization, the algorithm samples, from the dataset, a batch of
50 sequences of 50 images (2500 data points in total), then
encodes the images into the latent space. The LSSM can be
directly trained by the reconstruction loss from these images.
The part relevant to our paper is the optimization of the pol-
icy. The policy is optimized by simulating trajectories in the
latent space, computing a return along the trajectory, and
maximizing the return via backpropagation (the simulation
with the learned model is differentiable). The trajectories
start from the 2500 encoded states, and they have length H.
The return is computed using λ weighting using the rewards
and values (Sutton & Barto, 2018). After one gradient step,
we sample a new batch of images from the dataset and repeat
the process for 100 iterations. Then, the policy is applied
in the real environment again to gather more data.

Combination with TP and Proppo. Our proposed mod-
ifications only affect the policy optimization part of the
Dreamer algorithm. The computation graph for gradient
estimation is illustrated in Fig. 5. The regular Dreamer esti-
mates the gradient through the sampling operation at the z
node via RP gradients. In our implementation we enable us-
ing LR, TP and TPX gradients instead of RP. To enable TP
to scale to this size of model, we compute the variance for
IVW using only the parameters at the last layer of the policy
(using all of the parameters was impractically slow). On the
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other hand, TPX did not require any special modification.

One can observe that if the propagation node is at z, the gra-
dients can slip past it through the h node, so the sampling
nodes are not blocking the paths of the gradients. This may
cause concern when the horizon H is long, as the gradients
might explode due to chaos. Moreover, the gradients slip-
ping past the propagation nodes may cause software errors.
However, we found that the dynamics of h are governed by
a GRU cell, and the gradients were well-behaved. Moreover,
we solve the second issue by using Proppo to pause the
gradients at h to wait for the gradients from the propagation
node to arrive, before they are sent backwards together.

We note that due to implementation peculiarities of Dreamer,
its gradient will necessarily be biased. We detail this point
in App. C.1 and explain how we match the other gradient
estimators to be equivalent to Dreamer.

6.2. Experimental Evaluation

We reproduced Dreamer in PyTorch using the same hyper-
parameters as in the original article.5 The performance
matched the original, and the computational speed was also
similar to the TensorFlow 2 version (our implementation
is slightly faster using 32-bit precision, but we have not
implemented mixed precision). We compared the perfor-
mance against our algorithms implemented in Proppo: RP
(expected to be the same as Dreamer), TPX, TPS and LR.

Experiments. We evaluated the algorithms on eight con-
tinuous control DeepMind Control Suite (Tunyasuvunakool
et al., 2020) environments using the MuJoCo simulator:
Cartpole Swingup, Cartpole Swingup Sparse, Cheetah Run,
Cartpole Balance, Walker Walk, Walker Run, Finger Spin
and Reacher Easy. We perform two sets of experiments:
(1) standard training evaluations as in the Dreamer article
(for 1000 episodes), (2) training with a pretrained world
model (for 400 episodes), but with a randomly initialized
policy (in App. C.3). The aim of the second set of experi-
ments is to reduce the influence of the model learning speed
on the experiments. If the model learning were the bottle-
neck in the Dreamer algorithm, then we may not see any
change from using different policy gradient estimators, as
each method may achieve the optimal policy given the cur-
rent model (in practice, we did not see a major difference
in the experimental results of the two settings). We eval-
uate each experiment with 4 random seeds. The standard
experiments were run on a mix of Nvidia RTX 2080 Ti and
V100 GPUs, while the pretrained experiments were run on a
uniform setup of V100 GPUs. We perform experiments for
simulation horizons H ∈ {15, 60}, to test the sensitivity to
this hyperparameter for the different algorithms. Finally, we

5Our implementation is a greatly modified version of https:
//github.com/yusukeurakami/dreamer-pytorch.

compare the gradient estimation accuracies of the methods,
and perform an ablation study on TPX (App. D).

Analysis methods. We evaluate the experimental data
from several angles. First, we compute learning curves, and
plot the raw data together with confidence intervals (Figs. 16,
17, 18, 19). To provide better statistical significance, we
follow the protocol of Agarwal et al. (2021) and create
performance profiles using aggregated data (Figs. 6, 15).
Moreover, we compute the gradient variances for each en-
vironment at different stages of the learning (Apps. C, D).
The variances were computed using a checkpointed model
from Dreamer, using the same model for each algorithm.
As Dreamer includes some implementation tricks that add
a bias into the gradient estimator (App. C.1), the LR gradi-
ent and RP gradient will not have the same expected value.
To deal with this issue, we propose an expected signal-to-
noise ratio metric to compare the gradient estimators (see
App. C.2 for details). Moreover, we aggregate a normalized
version of this metric together over the eight environments
to increase the statistical significance (Figs. 7, 28).

Main results and discussion. The learning curves and per-
formance profiles show that Dreamer performs poorly at the
long horizon setting (H = 60), LR performs poorly at the
short horizon setting (H = 15), while TPX performs well in
both settings. The poor performance of Dreamer at H = 60
is consistent with the results in the original Dreamer paper,
and it is caused by the instability in gradient estimation.

The aggregate normalized expected signal-to-noise ratio
of the gradient estimators supports that Total Propagation
performs well. Total propagation X had the best gradient
accuracy metric at all horizons (and it was similar to TP);
LR performed poorly at a low H , but well at a high H;
RP was the opposite and performed well at a low H , but
poorly at a high H; Dreamer followed the pattern of RP, as
expected, as it is supposed to be the same.

The ablation study of TPX showed that vectorization of k
was important for good performance, while the inclusion
of covariance terms did not have a major effect in Dreamer.
Nevertheless, as the covariance terms require negligible
additional computation, we recommend including them.

The computation times are reasonable: the time per iteration
of TPX is only 1.14 times that of Dreamer in the H = 15
setting and 1.4 times that of Dreamer in the H = 60 setting.
We see that TP and TPX perform well and provide better
robustness to the hyperparameter selection. These results
imply that TP and Proppo are scalable and can be applied to
real practical machine learning problems.
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Figure 6: Performance profiles at episode 1000 in the standard setting (a, b) and computation times (c).
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7. Conclusions & Future Work
Neither LR gradients nor RP gradients are satisfactory gra-
dient estimators on their own—LR gradients are inefficient,
while RP gradients are unreliable. To achieve reliable and ef-
ficient performance across a wide range of tasks and model
architectures, it is necessary to examine other gradient esti-
mation techniques. We studied composite policy gradient
estimators that combine RP and LR, such as TP.

The major bottleneck to the adoption of composite policy
gradient estimators was the difficulty of implementing them
scalably. Our proposal, Total Propagation X, is easier to
implement than previous methods, computes faster, and
provides reliable performance. We combined our algorithm
with Dreamer, demonstrating that it can be scaled to run at
the current frontier of RL research.

There remains future work. For example, other weight esti-
mation schemes that take into account of possible disconti-
nuities in the objective function could be used. Moreover,
the LR estimator only used a mean baseline because of
Dreamer’s implementation peculiarities, but it would be bet-
ter to use a critic baseline. These future composite policy
gradient estimators can also be scaled up by following the
recipe provided by TPX.
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A. Derivation of Inverse Variance Weighting
Inverse variance weighting (IVW) is a standard technique in statistics and we provide the derivations here for complete-
ness. Given two unbiased random variables X and Y , s.t., E [X] = E [Y ], IVW constructs a new random variable
Z = kX + (1 − k)Y , and selects k so as to minimize the variance V [Z]. Denote σ2

X is the variance, and σXY is the
covariance, then the variance of Z is given by

V [Z] = k2σ2
X + (1− k)2σ2

Y + 2k(1− k)σXY . (9)

This is a quadratic equation in k, and the minimizer is

k∗ =
σ2
Y − σXY

σ2
X + σ2

X − 2σXY
. (10)

When X and Y are statistically independent, the covariance is σXY = 0 and we retrieve the rule used in the original TP
Eq. (5). Assuming indepedent random variables (σXY = 0), and plugging k∗ into Eq. (9) gives the variance

σ2
Z =

σ2
Xσ

2
Y

σ2
X + σ2

Y

, (11)

which can also be written using the accuracies (defined as inverse of variance):

1

σ2
Z

=
1

σ2
X

+
1

σ2
Y

, (12)

i.e., the accuracies are summed. This allows deriving a simple bound

1

σ2
Z

≤ 2max

(
1

σ2
X

,
1

σ2
Y

)
, (13)

i.e., the accuracy is less than or equal to twice the higher of the two accuracies. In our previous work (Parmas & Seno, 2022),
we showed that TP is able to overcome this bound and can even give 100 times improvement in the accuracy. This was
possible thanks to taking advantage of the graph structure of the computations.

Example with a quadratic function. To give a concrete example of the effect of the covariance terms, we work through
an example with a quadratic function R(x) = x2

2 , and a Gaussian distribution x ∼ p(x;µ, σ) = 1√
2πσ

exp
(
− (x−µ)2

2σ2

)
.

This is the same example as the one in Appendix D.2. of (Rezende et al., 2014), except that we consider the covariance and
composite gradients. Moreover, we consider σ = 1 and µ = 0 for simplicity. Then, the gradient estimators for d(·)

dµ are

ĝLR =
x− µ
σ2

(
x2

2
− b
)

= x

(
x2

2
− b
)
,

ĝRP = x.

(14)

For LR, we use the mean baseline b = E
[
x2

2

]
= σ2

2 = 1
2 , and we can compute the variances and covariances:

V [ĝLR] =
1

4σ4
E
[
x6 − 2x4σ2 + x2σ4

]
=

5

2
σ2,

V [ĝRP] = E
[
x2
]
= σ2,

cov [ĝLR, ĝRP] =
1

2σ2
E
[
x4 − x2σ2

]
= σ2.

(15)

Now if we use the optimal Eq. (10) taking into account for the covariance, we obtain k∗ = 0, putting all of the weight on
the RP estimator, whereas if we use Eq. (5) ignoring the covariances, we obtain kIVW = 1

3.5 . Using k∗ gives the variance
V [ĝ] = 1, whereas plugging kIVW into Eq. (9) gives the variance V [ĝ] ≈ 1.12, which is suboptimal. We have also confirmed
these results computationally, and found that TPX finds the optimal solution, whereas IVW, ignoring the covariance terms,
is suboptimal. This was a bit of an unfortunate example, as it turns out that for a quadratic, it is optimal to ignore the LR
gradient, and use only the RP gradient. Nevertheless, it illustrates that ignoring the covariance terms will in general lead to a
suboptimal solution, although empirically we have found that the difference tends to be small.
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Figure 8: Replication of PIPPS on the cart-pole task, using the Proppo framework. The computation time in (c) was
computed per one trajectory simulation and gradient estimator computation on an NVIDIA GTX 1650 Ti GPU.

B. PIPPS: Model-based RL with Gaussian Processes on Cart-pole
B.1. Experimental Details

To demonstrate the correctness of our implementations of TP and TPX, we reproduce the experimental results of PIPPS
(Parmas et al., 2018), the first and only article to use the TP algorithm in RL until now. Moreover, we evaluate the different
design decisions in TPX, and test the robustness of our algorithms to hyperparameters.

PIPPS is a model-based RL algorithm based on Gaussian process (Rasmussen & Williams, 2006) dynamics models similar
to PILCO (Deisenroth & Rasmussen, 2011), but instead of the moment matching (MM) Gaussian approximations of the
trajectory distribution (Girard et al., 2002; Candela et al., 2003) it uses particle sampling (McHutchon, 2014), and instead
of exact differentiation of the trajectory approximation to obtain the policy gradient, it uses sampling-based stochastic
gradient estimators, such as TP, RP or LR. PILCO was one of the early successful MBRL methods that took advantage of
differentiating the learned dynamics model; however, the algorithm had limited scalability due to the high computational
cost and inflexibility of the MM approximations. PIPPS overcame these conceptual limitations, yet the original work did not
apply the TP algorithm on high-dimensional tasks. Therefore, here we first replicate the previous results on the cart-pole
task, then in Sec. 6 we apply TP and TPX to high-dimensional visual MBRL tasks, and show that these algorithms scale.

Task. The cart-pole swingup and balancing task is a common benchmark in control. The system consists of a cart with
an attached hinged pole. The cart can be moved back and forth by applying a horizontal force, and the task is to swing
up the pole and balance it. The system state, x, is four dimensional—the cart position and pole angle, and their velocities.
Moreover, there is observation noise on the state, matching the setup in the PIPPS paper with noise multiplier 1. The control
signal is a scalar, u, output by a radial basis function network, u = πθ(x), with ∼ 250 parameters.

Methods. We compare the MC gradient estimators: RP, LR, TP and TPX. We do not employ the batch importance
weighting (BIW) for LR introduced in the PIPPS paper, but instead use the standard LR method for simplicity. We also
compare with Gaussian resampling (GR) a method that fits a Gaussian distribution on the particles at each time step, and
resamples the particles from this distribution. The aim of GR was to replicate MM but with a more flexible sampling based
approach. Its use was proposed by McHutchon (2014), and it was later used in a Deep PILCO implementation (Gal et al.,
2016). Moreover, we compare with other variants of TPX: the scalar version adds a summation into the k̂ estimator, and the
IVW version omits the covariance terms in Eq. (8).

Setup. The setup mimics the original experiments in the PIPPS article, with slight changes to utilize PyTorch. In the
PIPPS algorithm, the system alternates between applying the policy π on the real system for one episode, fitting a Gaussian
process model on all of the data observed until that point, training the policy in simulations with the learned GP model, and
repeating the process by applying the trained policy on the real system again. The process starts by collecting 1 episode with
random actions, then learning to control the system for 15 episode and policy optimization iterations. Total propagation or
other MC gradient estimation techniques are used in the policy optimization phase of this process. We use Adam (Kingma
& Ba, 2014) as the optimizer, instead of the custom RMSprop-like optimizer in the original PIPPS article. We tested the
learning rates in η ∈ {0.002, 0.005, 0.01, 0.03, 0.06, 0.12}, and plot results for all methods for η = 0.01, which was the
optimal rate for RP. The optimal rates for TP were either η ∈ {0.03, 0.06}. The number of particles used for trajectory
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predictions was N = 300, and the number of simulations and policy gradient steps per episode was 250. The prediction
horizon was 30 steps. We used the Tip Cost described in the original work, and the loss to be optimized is the sum of the
cost over the trajectory. We ran 50 experiments per algorithm (in parallel on a CPU cluster), and show the mean performance
(error bar is one standard error) and the success rate (error bars are 95% confidence intervals via bootstrapping).

Results. The results in Fig. 8 follow the same pattern as in the original work (Parmas et al., 2018), but with slightly better
performance. Results for other learning rates are in App. B.2. The main results are that TP and TPX reliably outperform the
other methods at all learning rates. Moreover, TPX matches the performance of TP, but with a simpler implementation and
faster computation speed. The IVW and scalar variants of TPX also showed similar performance, but the scalar variant
had a downward trend, particularly for η = 0.12. We see that the average performance of RP is poor due to many learning
runs being unsuccessful. Parmas et al. (2018) attributed this poor performance to instabilities in gradient estimation. The
LR gradient based method is robust to this issue and has a higher success rate. The TP based methods combine the best of
RP and LR—they take advantage of the efficiency of RP while having the robustness of LR, ultimately showing a high
success rate and faster learning than LR. In Fig. 8c we additionally show the RP no detach and no Proppo variants. The no
Proppo variant is an RP implementation without relying on our custom ML framework (Parmas & Seno, 2022), while the
no detach variant merely uses our framework as an interface, while using the typical RP internal implementation. These
computation time results showed that the overhead from using our ML framework is minuscule. We note that unlike the
original implementation of TP by (Parmas et al., 2018), our implementation can use PyTorch and run on a GPU leading to
much faster computations. Training completes in minutes on a GPU. These results confirm that our implementation is a
good reproduction of the original TP.
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B.2. Full Experimental Results
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Figure 9: PIPPS cart-pole results, Learning rate: 0.002.
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Figure 10: PIPPS cart-pole results, Learning rate: 0.005.
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Figure 11: PIPPS cart-pole results, Learning rate: 0.01.
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Figure 12: PIPPS cart-pole results, Learning rate: 0.03.
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Figure 13: PIPPS cart-pole results, Learning rate: 0.06.
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Figure 14: PIPPS cart-pole results, Learning rate: 0.12.
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C. Additional Dreamer Details and Experiments
C.1. Implementation Details in Dreamer Leading to a Bias

We will explain two peculiarities in the Dreamer implementation that require more attention when discussing any potential
combination with Proppo: the λ-return value weighting, and blocked gradients at the actions (see Fig. 5).

Dreamer value weighting. Dreamer uses a λ-return both to construct the targets for its value critic, as well as to create a
loss for its policy. Given a sequence of rewards rt and values Vt, the λ-return, V λ, can be recursively defined by

V λH = VH , V λt = rt + (1− λ)γVt+1 + λγV λt+1, (16)

where γ is the discount factor. This definition is fine for the value targets; however, for the policy loss, all of the returns are
simply averaged, 1

H

∑H−1
t=0 V λt , leading to a peculiar implementation. It would be natural to backpropagate the gradient of

V λt from the state xt; however, this is not how the original Dreamer is implemented—the gradients will start backpropagating
separately from each Vt and rt, and the λ-weighting merely serves to provide a weight for each value function. It is unclear
whether this is a good design choice—there may be some justification to it based on its similarity with the Off-PAC objective
(Degris et al., 2012). Our aim is not to examine the effects of this choice, but if we want to accurately replicate Dreamer
using Proppo, we need to compute the weight assigned to Vt and rt. A simple calculation leads to

wHV =
1− (λγ)H

H(1− λγ)γ, w
t
V =

1− (λγ)t

H(1− λγ) (1− λ)γ

wtr =
1− (λγ)t+1

H(1− λγ) ,
(17)

where wHV VH +
∑H−1
t=0

(
wtrrt + wtV Vt

)
= 1

H

∑H−1
t=0 V λt . We call Rt = wHV VH +

∑H−1
h=t

(
whr rh + whV Vh

)
the Dreamer-

return, and this is the return that has to be used for LR for it to estimate the same gradient as is estimated in the standard
Dreamer implementation. However, there is yet another implementation detail in Dreamer that adds a bias, and prevents it
being possible to estimate the same gradient using LR—there is an operation to block the gradients at the input to the action.

Gradient blocking at the actions. The blocked gradient paths are highlighted in Fig. 5 by the crossed out lines leading
from the latent state x = [h, z] to the action a. It is easy to see that for an unbiased gradient estimate, the gradients should
not be blocked. For example, if γ = 1 and λ = 1, so that we are estimating an MC return using only the rewards, to
obtain the unbiased gradient, the full trajectory should be differentiated without blocking the gradients anywhere. Therefore,
blocking the gradients is not justified from the point of view of estimating unbiased gradients. However, we found that
allowing the gradients to pass through increased the gradient variance, and made the learning inefficient. Therefore, we
believe this bias was added to improve the performance. The main effect of this bias on our experiments is that it becomes
impossible to estimate LR gradients with the same expectation as the Dreamer gradient, because the LR estimator does not
use the backpropagated gradients in its estimation, and is, thus, not affected by the gradients being blocked. Nevertheless,
we evaluate LR and TP by implementing them as close as possible to an equivalent implementation of the original Dreamer.

C.2. Gradient Variance Estimation Experimental Protocol

Experimental details. To evaluate the gradient variance of the different methods, we load checkpointed models trained
by Dreamer, and evaluate the gradients many times to compute their variance.

The experiments consist of 50 iterations of 50 gradient evaluations each. In each iteration, we encode a set of image
sequences, and randomly select one of the encoded latent states as the initial state. Given a latent state, we perform 50
gradient evaluations, with all samples in each evaluation starting their trajectory from the same encoded latent state xµ
(moreover, we match this latent state for all of the algorithms that we are comparing). Each gradient evaluation uses 2500
sample trajectories of length H starting from xµ. In summary, we sample 50 different xµ states, and for each state we
obtain a set of 50 different gradient estimates ĝ giving a total of 2500 gradient estimates (where each estimate was also
performed by averaging gradients from a batch of 2500 trajectories).

The total variance can be decomposed using the law of total variance:

V [ĝ] = Vxµ [E [ĝ|xµ]] + Exµ [V [ĝ|xµ]] . (18)

The first of these terms is the variance of the expected gradient (which is irreducible independent of the gradient estimator),
and the second term is the expected gradient variance (this term can be reduced by improving the gradient estimator). The
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accuracy is defined as the inverse of the variance 1
V[·] . We evaluate our algorithms both based on the expected accuracy

as well as based on the total accuracy. We argue that the expected accuracy may be a more important metric, as the total
accuracy includes the variance of the expectation, which is irreducible.

Normalized expected signal-to-noise ratio. In our experiments, simply looking at the variance (or accuracy/inverse-
variance) of the gradient estimator is not suitable, because the Dreamer algorithm includes a bias in its gradient estimation
(see discussion of Dreamer value weighting and gradient blocking). To overcome this issue, a natural way might be to
compute the true gradient exactly, and compare the error of the estimator to the true gradient. However, this is computationally
infeasible. Moreover, it is not clear that we should be comparing the distance to the expected exact gradient as opposed to
the expected biased gradient. To tackle such concerns, we propose an expected signal-to-noise ratio metric for comparing
gradient estimators, defined as

ESNR = Exµ

[∑
E [ĝ|xµ]2∑
V [ĝ|xµ]

]
. (19)

This metric will compute the expected gradient squared for each xµ, and take its ratio to the local variance given xµ. It
is thus a signal-to-noise ratio of the gradient estimates starting from xµ. We take the expectation of this ratio across the
different xµ to compare the different algorithms.

We note that this metric also has its limitations. Consider that a gradient with an arbitrary bias can have a large ESNR
as long as its expected variance is low. Therefore, for biased gradient estimators, it is not possible to conclude that one
gradient estimator is better than the other based on this metric. Nevertheless, we believe that for similar gradient estimators,
it provides an indication of which gradient estimator is better, and can provide corroborative evidence in support of one
method performing better than the other.

Finally, as we are comparing our algorithms across 8 different MuJoCo environments, we propose to aggregate the results to
obtain an overall metric. Specifically, we normalize the ESNRs in each environment based on the maximum of the different
methods, and average the results across all environments.

C.3. Additional Experimental Results
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Figure 15: Performance profiles at episode 400 in the pre-trained setting.
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Figure 16: All experimental results in the standard setting with H = 15.
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Figure 17: All experimental results in the standard setting with H = 60.
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Figure 18: All experimental results in the pre-trained setting with H = 15.
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Figure 19: All experimental results in the pre-trained setting with H = 60.
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Figure 20: Reacher Easy, raw gradient data
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Figure 21: Walker Walk, raw gradient data
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Figure 22: Walker Run, raw gradient data
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Figure 23: Cheetah Run, raw gradient data
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Figure 24: Finger Spin, raw gradient data
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Figure 25: Cartpole Swingup, raw gradient data
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Figure 26: Cartpole Swingup Sparse, raw gradient data
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Figure 27: Cartpole Balance, raw gradient data
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D. Dreamer Total Propagation X Ablation Experiments
In this section, we include ablation experiments on the different components of TPX. We compare against TPX with a scalar
k (TPX scalar), TPX that omits the covariance terms and only includes the IVW terms (TPX IVW), and TPX with a scalar k
that omits the covariance terms (TPX IVW scalar). We perform experiments to test the gradient accuracy according to the
protocol in App. C.2. The aggregated results are in Fig. 28, and they show that in Dreamer, the covariance terms had little
effect, while using a tensor-valued k was important to improve the performance.
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Figure 28: TPX ablation. Aggregate normalized expected SNR of the gradient estimators.
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Figure 29: Reacher Easy, TPX ablation raw gradient data
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Figure 30: Walker Walk, TPX ablation raw gradient data
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Figure 31: Walker Run, TPX ablation raw gradient data
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Figure 32: Cheetah Run, TPX ablation raw gradient data
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Figure 33: Finger Spin, TPX ablation raw gradient data
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Figure 34: Cartpole Swingup, TPX ablation raw gradient data
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Figure 35: Cartpole Swingup Sparse, TPX ablation raw gradient data
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Figure 36: Cartpole Balance, TPX ablation raw gradient data
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