
Can Large Language Models Reason about Program Invariants?

Kexin Pei 1 2 David Bieber 2 Kensen Shi 2 Charles Sutton 2 Pengcheng Yin 2

Abstract
Identifying invariants is an important program
analysis task with applications towards program
understanding, bug finding, vulnerability analy-
sis, and formal verification. Existing tools for
identifying program invariants rely on dynamic
analysis, requiring traces collected from multiple
executions in order to produce reliable invariants.
We study the application of large language models
to invariant prediction, finding that models trained
on source code and fine-tuned for invariant gen-
eration can perform invariant prediction as static
rather than dynamic analysis. Using a scratch-
pad approach where invariants are predicted se-
quentially through a program gives the best per-
formance, finding invariants statically of quality
comparable to those obtained by a dynamic anal-
ysis tool with access to five program traces.

1. Introduction
Large language models (LLMs) have demonstrated tremen-
dous promise and impressive capability in generating pro-
gram source code (Chen et al., 2021; Austin et al., 2021; Li
et al., 2022). As these techniques become more widespread,
it is increasingly important to analyze and explain whether
generated code meets its requirements. This requires mak-
ing statements about program semantics, which often in-
volve checking whether boolean predicates, called proper-
ties (in the sense used by Claessen & Hughes, 2000; Odena
& Sutton, 2020, among many others), hold for all possible
executions of the program, e.g., “for all inputs such that
obj != nil, does the program execute without raising an
exception?” (cf. Bieber et al., 2022). To this end, a line of
work has explored whether neural networks can predict the
results of program execution (Zaremba & Sutskever, 2014;
Nye et al., 2021a; Bieber et al., 2020). So far, this problem

1Columbia University 2Google Research, Brain Team. Cor-
respondence to: Kexin Pei <kpei@cs.columbia.edu>, David
Bieber <dbieber@google.com>, Charles Sutton <charlessut-
ton@google.com>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

has proved challenging even for simple programs.

In the programming languages literature, one of the most
important insights is to reason at the level of abstractions of
program states, e.g., the property “is n >= 1 when line 12 ex-
ecutes?”, rather than concrete states, such as “n = 17 at line
12”. This has been a fundamental insight from some of the
earliest proposals to formalize program semantics (Hoare,
1969; Dijkstra, 1975). This move has computational ad-
vantages, because abstracting away details can simplify the
analysis, but it is also representational, because the analysis
task is often to check over all plausible inputs rather than
specific concrete inputs.

If a program property is always true at a given program point,
it is an invariant, which abstracts multiple program states by
finding a common pattern that is easier to reason about. Iden-
tifying invariants is undecidable, so previous work has con-
sidered predicting them using machine learning (ML), such
as predicting heap invariants (Brockschmidt et al., 2015;
2017), reranking invariants produced by dynamic analysis
(Hellendoorn et al., 2019), combining learning and static
analysis (Ryan et al., 2019; Si et al., 2018; 2020), and pre-
dicting specific types of invariants using classification and
regression-based approaches (Sharma et al., 2012; 2013a;
Garg et al., 2014; 2016; Liu et al., 2012; Sagdeo et al., 2011).
Generally speaking, these approaches rely on using task-
specific architectures and training sets, and often focus on
specific types of invariants. However, given the success
of pre-trained LLMs for program synthesis, it is natural to
consider that these methods could be effective for predicting
invariants as well. Thus, this paper considers the following
concrete question: Can we train large language models to
predict program invariants?

To tackle this problem, we create a dataset of Java pro-
grams with corresponding invariants generated from the
well-known Daikon dynamic analyzer (Ernst et al., 2007).
Daikon can generate a wide range of invariants based on
its predefined templates, and we consider a subset of them
that are particularly useful for downstream tasks like bug
detection and test generation, such as arithmetic relation-
ships, nullity, and value-set invariants (see Table 2). We
fine-tune an LLM, pre-trained on source code, to take as
input the source code of a program, and a target program
point, and to output a list of invariants for the program state

1

Can Large Language Models Reason about Program Invariants

1 import java.util .*;
2 public class test {
3 public static void main(String [] args)
4 {
5 Scanner in = new Scanner(System.in);
6 int t = in.nextInt ();
7 while (t-- > 0) {
8 long n = in.nextLong ();
9 long m = in.nextLong ();

10 long p = m - (m % 4) + 1;
11 while (p <= m) {
12 if (n % 2 == 0) {
13 n -= p;
14 } else {
15 n += p;
16 }
17 p++;
18 }
19 System.out.println(n);
20 }
21 }
22 }

Listing 1: A source code file from our dataset (Solution
s288 to problem 1607B). This program simulates a walk of
a particle on the integer line.

at that point. Then, for new programs, the model can predict
invariants from the source code, without needing to perform
traditional static or dynamic analysis, both of which can be
expensive.

In our experiments, we find that LLMs are effective at pre-
dicting invariants, achieving 86% precision and 86% recall.
Remarkably, this is better than the existing dynamic analysis
technique Daikon, if the budget allows a small number of
test cases to be executed. We also consider a “scratchpad”
style of approach (Nye et al., 2021a), in which we ask the
model to generate properties for a list of program points
all at once, rather than a single program point; this method
can be viewed as a kind of abstract interpretation (Cousot &
Cousot, 1977; Nye et al., 2021b). Even though this provides
no additional information to the model at training or test
time, intuitively, it encourages the model to reason through
the program execution “step-by-step”, and we find that this
also improves performance. In the future, we hope that this
work will prove useful for a variety of tasks in program
analysis and synthesis, such as execution-based program
synthesis (Zohar & Wolf, 2018; Ellis et al., 2019; Shi et al.,
2022), program verification (Si et al., 2018; 2020) and test
generation (Pacheco & Ernst, 2005; Anand et al., 2013).

2. Problem Statement
Given a source file S and a line of code ` in S, the task is to
predict a list of invariants P`1 . . . P`N , which are Boolean
predicates of the program state that are always true when-

Table 1: Target invariants for the source code in Listing 1.

Line Type Target Invariants

5 function entry args[] == []

args has only one value

8 loop body in has only one value

t >= 0

12 loop body m >= 1

p <= m

p >= 1

n >= 1

ever line ` is executed, for any input. We do not assume
that S is a standalone file that can be executed on its own
(although that will be the case in our experiments). Our
focus will be on invariants that are associated with function
entry, function exit, and the top of loop bodies (Section 2.1),
because these types of invariants are particularly useful for
downstream analysis tasks. We refer to those lines of code
as program points, and we assume that ` is a line of code
that corresponds to a program point.

Listing 1 shows an example of a Java source file from the
dataset that we use in our experiments. Table 1 shows a cor-
responding set of target invariants for this program. These
invariants mean that every time Listing 1 is executed on a
valid input, when executions reach the line in the leftmost
column, all of the expressions on the rightmost column eval-
uate to true on the current program state. For example, in
Listing 1, p >= 1 is an invariant of the program (assuming
that m must be positive for the input to be valid) at ` = 12.

Difference with Code Completion In this paper, our ap-
proach to program invariant prediction goes beyond the
scope of a traditional code completion task. The invariants
we focus on do not merely involve completing existing state-
ments in the program, or predicting assertion statements that
might be written in the source code. Instead, we consider
them as a distinct collection of logical predicates that con-
sistently evaluate to true across all possible execution traces
at specific program points.

Static or Dynamic Analysis While we aim to predict the
predicates associated with program execution, our approach,
during inference, is a type of static analysis that does not
rely on any dynamic information. However, it diverges from
traditional static analysis techniques in that it avoids the
complex and often computationally expensive mechanisms
that are typically employed in both research and production
environments. These include control-flow and data-flow
analyses, sophisticated algorithms that repeatedly iterate

2

Can Large Language Models Reason about Program Invariants

over the code until they reach a fixed point (Flanagan &
Leino, 2001), and formal verification tools like satisfiability
modulo theories (SMT) solvers.

2.1. Invariant Types

The invariants that we predict can be divided into five high-
level categories, based on which types of program points
they apply to. These are: (1) object invariants, (2) class
invariants, (3) function-entry invariants (also known as func-
tion preconditions), (4) function-exit invariants (also known
as postconditions), and (5) loop invariants. Object invariants
are those that are true of all class instances, from the per-
spective of a class user. That is, they are true at the entry and
exit of all public methods to the object. Class invariants are
similar but focus on the static fields of the class. Function-
entry invariants capture the predicates and relationships of
the function arguments and class fields when it is called.
Function-exit invariants are properties of inputs and local
variables that hold when the function finishes execution,
including properties indicating whether the variables are
changed by the function execution. Finally, loop invariants
specify predicates on variables accessible at the beginning
of each loop iteration, and are particularly important for
program verification.

Additionally, we categorize invariants by the type of their
Boolean expression; this is orthogonal to the classification
based on program points. Under this classification, our work
considers eighteen kinds of program invariants (Table 2),
including invariants that check purity (orig) and nullity
(null), value-set invariants (val_set) and arithmetic invari-
ants (comp and arith). We choose these because they are
natively supported by the dynamic analyzer we used to gen-
erate the dataset (see Section 3). Table 2 orders the invariant
types based on a heuristic measure of complexity, which is
based on the average length of the invariants and the number
of variables involved in an invariant, based on our dataset.

Our method treats these different categories in the same way
(Section 3); the only difference is in which program point
is specified in the prompt. This, our method can be easily
applied to invariants at other categories of program points
or by other types of expressions. The categorizations are
still useful because these different types of invariants will
be useful for defining prompts (Section 3).

2.2. Training Data

Finally, as part of the problem, we assume that we have
access to a training dataset of programs S. Each program
S ∈ S has a set of program points L, and a set of tar-
get invariants P` = P`1 . . . P`N for each program point
` ∈ 1 . . . |L|, which are deemed to be accurate. These target
invariants can be generated using any existing static or dy-
namic analyses. Since this step is performed offline, more

computational resources can be allocated for generating the
target invariants compared to what would be feasible during
test time deployment. The advantage of static analysis is
that it is possible to generate invariants that are provably
correct, although potentially with lower recall and higher
computational cost. Dynamic analysis is conceptually sim-
pler, because it simply executes the program, but has the
challenges that many executions may be necessary to obtain
accurate invariants. In this paper, we elect to use dynamic
analysis based on Daikon (Ernst et al., 2007) (Section 3).

3. Method
We aim to train a language model to reason abstractly about
program executions. Observing that program properties
are themselves programs, our overall approach begins with
a large language model pre-trained on source code, and
fine-tunes it for invariant prediction. Motivated by abstract
interpretation, we introduce as our main method a scratch-
pad approach to predicting invariants, first incrementally
predicting invariants at intermediate program points before
finally predicting invariants at the target program point. We
also present a direct prediction approach where the model
predicts the invariants at the target program point without
first making predictions for intermediate program points.

3.1. Pre-trained Language Models of Code

We consider Transformer language models pre-trained on
permissively licensed code obtained from public GitHub
repositories. Our Transformer architecture follows Chowdh-
ery et al. (2022), except that we do not use parallel decoding
layers. We consider model scales of 430 million, 1 billion,
and 5 billion parameters. The models are trained on 10.5,
21.0, and 96.5 billion tokens of source code, respectively.

3.2. Computing the Target Invariants

To build the samples for training and evaluation, we follow
four main steps to preprocess the input programs and gener-
ate target invariants. Instrumentation (Step 1) ensures the
program points of interest (Section 2.1) are annotated in the
submission. By default, Daikon instruments function entry
and exit only, so we add dummy function calls at the top of
every loop body, which allows Daikon to generate invariants
at these program points, e.g., check_cf1_main_6 in List-
ing 2. Execution (Step 2) produces traces by running each
program on hundreds of distinct program inputs. Daikon
performs invariant generation (Step 3) on these traces to pro-
duce the target invariants for each program at every program
point. Intuitively, Daikon can be understood as searching
through a large set of expressions that represent invariants
and removing ones that are contradicted by the execution
traces, are redundant with other invariants, or that whose
frequency is not different enough from chance. Finally, we

3

Can Large Language Models Reason about Program Invariants

Table 2: 18 invariant types we considered in this paper.

Name Description Example

Check whether variable is modified (postcondition)
orig Variable modified after function exits list[] != orig(list[])

Check on (derived) variables+ in primitive types
null Whether variable is null/zero/empty n != null

one_val Whether variable always has only one value a has one value

comp Compare variables with (in)equalities i < 10

val_set Variable has value-set i one of {0,1,2}

Checks involving math operations
arith comp involving arithmetic operators i + j == 10

pow Variable is the power of another res is a power of 2

div Variable divides another people % i == 0

sqr Variable is the square of another max(b[]) == sum(b[])**2

Check array element-wise
elt_comp comp on each element l[] elements < 7

elt_val_set val_set for each element visit[] elements one of {0,1}

pairwise comp neighboring elements pair arr[] sorted by ≤

Check on sequence/array-level property
member Variable is a member of array p in people[j..i-1]

sub One variable/array is subset of another a[] is a subset of b[j..]

seqseq comp each element between arrays s[i..] ≥ t[0..count-1]

reverse Array is the reverse of another a[] is the reverse of c[i..]

agg_check Comparison on the aggregated values∗ sum(l[]) < 10

Conditional checks
cond Properties that rely on other properties (r == false) ==> (B.x ≥ 0)

+ Derived variables include variable that does not exlicitly appear in the program, e.g., array element.
∗ Aggregation operation includes size(), min(), max(), len()

apply a template-based transformation (Step 4) to produce
the input and target strings for each submission for use in
fine-tuning. Section 3.3 describes the transformation step for
the direct prediction and scratchpad prediction approaches.
Additional details about each step are given in Appendix B.

Although the target invariants are based on hundreds of
executions, they are still imperfect (Hellendoorn et al., 2019;
Petersen; Polikarpova et al., 2009). Dynamic analysis can
fail to identify invariants when it deems there to be sufficient
probability that the invariant would not hold on additional
executions. It is also limited to producing invariants in
particular classes, and some valid invariants fall outside
of these classes. In the other direction, dynamic analysis
can produce false positive invariants when the executions
available do not cover the full range of possible executions.

3.3. Input and Target Strings for Fine-tuning

Once the invariants are obtained for the training set pro-
grams, we form the input and target strings for fine-tuning.

Direct Prediction Under the direct prediction approach,
the input string is a concatenation of source code S and
target program point `. The target string is a serialization
of the target invariants ordered by invariant type as in Ta-
ble 2. The target invariants themselves are produced as in
Section 3.2. We describe the textual representation of a
program point in Appendix B. This baseline represents the
standard way to fine-tune a transformer language model for
the task, yielding a model of P(P` | S, `).

Scratchpad Prediction Under the scratchpad approach,
the input string is a concatenation of the source code and a
directive specifying the full sequence of program points to

4

Can Large Language Models Reason about Program Invariants

predict invariants for. The target string lists each program
point in the sequence followed by its target invariants, cul-
minating in the target program point followed by the target
program point’s target invariants. For each program point,
the target invariants are ordered by invariant type again us-
ing the order given in Table 2. As an implementation detail,
we include the first program point as the final line of the
input string, rather than as the first line of the target string.
Appendix E shows examples of both the direct and scratch-
pad input string and target string formats. This approach
models P(P1, . . . , P` | S, 1, . . . , `).

Nye et al. (2021a) introduce a scratchpad-based approach for
encouraging Transformers to perform more complex opera-
tions, by training the model to produce intermediate tokens
that are not counted as part of the final answer. Whereas the
previous scratchpad work presented examples of training a
model to step through concrete executions, in this work we
extend the scratchpad approach to work at the abstract level
of sequences of invariants.

This approach is also motivated by abstract interpreta-
tion (Cousot & Cousot, 1977). Abstract interpretation is
a family of program analysis methods which reason at the
level of abstract domains, which are sets of program states
such as “all positive integers”, rather than concrete states.
Intuitively, the analysis steps through the program, updating
the location of each variable in the abstract domain, rather
than its concrete value. In our scratchpad prediction ap-
proach, we can interpret a list of invariants as a point in an
abstract domain. When the LM predicts the invariants P`

given those at P`−1, this can be interpreted as learning to
execute the program in an abstract program invariant space.

4. Experiments
To evaluate our proposed invariant generation methods, we
perform a series of experiments on programs obtained from
competitive programming contests (Section 4.1). Our pri-
mary baseline is Daikon, which generates the ground-truth
for training and evaluation by executing the programs on
hundreds of possible inputs. However, it is worth noting
that real-world programs typically lack such an extensive
test suite. Therefore, a crucial aspect of our investigation
is to determine whether our learning-based approach can
produce higher-quality invariants, especially when Daikon
is limited to a small number of program executions.

First, we compare different variants of our language model-
ing approach for predicting invariants (Section 4.3). Among
these, the best approach we find is the scratchpad method
predicting invariants for one program point at a time, se-
quentially. Then, we present the main comparison, of the
best LM approach to Daikon invariants (Section 4.4), find-
ing that our language models produce invariants statically

of quality comparable to those obtained by Daikon with a
budget of up to five program executions.

4.1. Dataset

We evaluate our models on the Java submissions in the Code
Contests dataset (Li et al., 2022), which consists of millions
of submissions to about four thousand distinct programming
challenges; the dataset provides upwards of 200 inputs for
each problem. Following the procedure in Section 3.2 we
instrument each submission. This allows us to use Daikon
to execute each of the submissions, collecting traces to use
for invariant generation. Using the available inputs, we
obtain 200 traces for each program. Each program may
contribute multiple examples to the dataset, at most one per
program point. We split the examples by problem, such
that no problem contributes examples to more than one
dataset split, in order to prevent highly similar submissions
from appearing both during training and evaluation. In
total, the resulting Code Contests Java Invariants dataset
includes 1,600,158 training, 86,346 validation, and 24,509
test examples.

4.2. Setup and Metrics

We fine-tune LMs using an initial learning rate of 0.001, and
a cosine learning rate decay schedule for 20,000 steps on
64 TPU v4 cores. The batch size is 128. Unless otherwise
specified, by default we fine-tune the model on a combined
mixture of training examples in different prompt types: di-
rect, scratchpad (Section 3.3), and oracle predictions (de-
scribed below in Section 4.3). We use greedy decoding
during inference. Therefore, there is no sampling strategy
employed in the prediction.

We treat as ground truth the invariants with Daikon, ob-
tained using two hundred inputs per program, reflecting the
assumption that false positives are less likely with a larger
number of inputs. To measure the similarity between the set
of model-predicted invariants the ground truth, we report
Jaccard similarity, precision, recall, and F1 score at level
of invariants. The evaluation sets for the different prompt
types are created using the same set of underlying programs
and target invariants.

4.3. Comparison of LM approaches

In our first set of experiments, we evaluate our proposed
approaches (Section 3) to invariant generation. Besides
the direct generation and step-by-step scratchpad genera-
tion (Section 3.3), we report results on an oracle approach
that assumes access to the target invariants at the pro-
gram points that precede the target program point `, i.e.,
{1, P1, · · · , `− 1, P`−1}. Therefore, its prediction task is
P (P` | S, 1, P1, · · · , `− 1, P`−1, `). Compared to the di-

5

Can Large Language Models Reason about Program Invariants

rect and scratchpad method that predict invariants using only
the static information of source code and program points,
this oracle approach leverages additional information of pro-
gram behavior before ` via dynamic analysis using Daikon.

Comparing Prompting Strategies Figure 1 summarizes
the results obtained using different strategies of generat-
ing input strings for prompting (Section 3.3). We find that
scratchpad prediction outperforms direct prediction. As dis-
cussed in Section 3.3, the scratchpad approach allows the
model to reason about program behavior in a step-by-step
fashion by predicting invariants for intermediate program
points over the course of execution. Such contextual infor-
mation is crucial for predicting invariants at target program
points. This is inline with existing findings on program
induction (Nye et al., 2021a), which show the advantage of
predicting intermediate execution results compared to direct
prediction of the final output.

Unsurprisingly, replacing model-predicted intermediate in-
variants in scratchpad with the target ones from Daikon (or-
acle prediction) further improves performance. In addition,
our results align with typical scaling behavior of LLMs,
with increased performance as the model scales (Kaplan
et al., 2020).

Impact of Invariant Order As described in Section 3.2,
we impose a canonical order on the set of invariants that
correspond to a program point, with the intuition to place
simpler invariants before more complex ones. Figure 2a
compares predicting invariants following this order with
the ablation that generates invariants using three randomly
shuffled orders of invariant types. Interestingly, we do not
find the choice of canonical ordering to be significant.

Mixing Prompting Strategies So far we have considered
fine-tuning models using the combined training samples
from three different prompt types, i.e., direct, scratchpad
and oracle. Figure 2b shows how models trained with this
combined training set compare to those with separated train-
ing sets on individual prompt types. Combined training ap-
pears helpful for the scratchpad approach, while separated
training yields better results for direct and oracle prediction.

Recall that for combined training, we evaluate the same
model on the same set of problems with different prompt
types (Section 4.2). Intuitively, in the combined training set-
ting, while the model has seen the same number of training
instances from each prompt type, the target strings in the
scratchpad examples (P1, · · · , P`) are longer than those in
the other two prompt types (P`, Section 3.3). Therefore the
model is optimized on more target tokens from the scratch-
pad prompt strategy, which likely explains worse results
on the other prompt types compared to separate training.
The scratchpad approach likely also benefits from knowl-

edge transfer when training together with the other prompt
variants, since it shares similar input strings with direct pre-
diction, while encapsulating the oracle prediction objective
P (P`|P1, · · · , P`−1,)̇ as a factor in its own objective.

4.4. Quality of Predicted Invariants

As our main measurement of the quality of the predicted
invariants, we compare the invariants from the LM with
those generated by Daikon when fewer inputs are available.
This is a realistic comparison, as typically only a small
number of inputs or test cases are available for a typical
program during inference.

Figure 3 shows invariant generation performance of our lan-
guage model and of Daikon as a function of the number of
inputs (traces) available to the method; for our models, the
number of traces is always zero. The performance of Daikon
monotonically increases with the number of available traces,
reaching its maximum performance (and precisely produc-
ing the target invariants) when the maximum number of
traces are provided. Remarkably, when only a small number
of traces are available (5 or fewer), our approach outper-
forms Daikon. Since dynamic analysis is always expensive,
as it requires instrumenting the code and running it with
tests, it is common that only zero or a small number of traces
are practical to collect. This makes our approach, which is
completely static during inference, appealing.

4.5. Prompting LLMs without Adaptation

In an early pilot study, we experimented with large language
models (LLMs) that had not been specifically adapted for
the task of invariant prediction. We observed that the perfor-
mance of the LLM was subpar, which led us to decide on
proceeding with further fine-tuning to enhance the model’s
capabilities.

This section revisits this choice and directly prompt one of
the most recent and larger LLMs, GPT-4, to assess whether
an increase in model size could enhance the prediction of
invariants even without any adaptation. We used two differ-
ent sets of prompts: (1) all the example listings provided in
the paper, including Listings 1 through 7, which contained
several intriguing invariants, and (2) a randomly chosen set
of 10 examples from the test set.

We performed zero-shot prompting, where the program was
followed by a comment requesting the model to directly
generate the invariants (Listing 8). The results of these
prompts were far from those obtained by our much smaller
(Section 3.1) and adapted/fine-tuned LMs (Table 4). In the
case of (1), GPT-4 achieved a precision score of 0.44 and a
recall score of 0.384. However, for (2), GPT-4 was unable
to generate any of the invariants present in the ground truth.

6

Can Large Language Models Reason about Program Invariants

Direct Oracle Scratchpad

430M 1B 5B
Model Size

0.78

0.79

0.80

Ja
cc

ar
d

D
is

ta
nc

e

(a) Jaccard distances

430M 1B 5B
Model Size

0.840

0.845

0.850

0.855

0.860

Pr
ec

is
io

n
(b) Precision

430M 1B 5B
Model Size

0.840

0.845

0.850

0.855

0.860

0.865

R
ec

al
l

(c) Recall

430M 1B 5B
Model Size

0.840

0.845

0.850

0.855

0.860

F1
 S

co
re

(d) F1 scores

Figure 1: Our results on invariant prediction across different model sizes and prompting methods. Model sizes are 430M,
1B, and 5B parameters; prompting methods are direct, scratchpad, and oracle.

430M 1B 5B
Model Sizes

0.840

0.845

0.850

0.855

0.860

0.865

F1
 S

co
re

direct ordered
oracle ordered
scratchpad ordered

direct shuffled
oracle shuffled
scratchpad shuffled

(a) Ordered vs. shuffled

430M 1B 5B
Model Sizes

0.840

0.845

0.850

0.855

0.860

0.865

F1
 S

co
re

direct combined
oracle combined
scratchpad combined

direct separated
oracle separated
scratchpad separated

(b) Combined vs. separated

Figure 2: Invariant prediction performance comparing (left) target invariants ordered in the curriculum setting (Table 2) vs.
randomly shuffled type orders, and (right) training the models on combined vs. separated prompt types.

While these results are not directly comparable to those re-
ported in the paper due to the differences in the experimental
setup, they nonetheless suggest that model adaptation, such
as fine-tuning, remains a crucial component for this specific
task of invariant prediction.

5. Case Studies
We present empirical results from our model and examine
their implications for test generation.

5.1. Uncovering New Invariants

The target invariants obtained from Daikon are not always
correct or exhaustive, as discussed in Section 3. Indeed, our
models regularly produce invariants not found by Daikon
that, upon manual inspection, we deem correct. This is per-
haps surprising given that our models were trained only on
supervision obtained from Daikon. Listing 5 in Appendix D

shows an example: the invariant test >= 1 is correctly
predicted by our models but is not in the target invariants
set. Similarly, Listing 4 shows that the models omit an in-
correct target invariant return == 7 and instead predict
the correct invariant return >= 1, which is absent from
the target set. The manual inspection is based on checking
the text description of problem 1594-A (Listing 4 is one of
its solutions), specifically the requirement: "The first line
contains a single integer t (1 ≤ t ≤ 104) - the number of
test cases." Here, t is the user-provided input that will be
read by the statement int test = input.nextInt() in
Listing 4.

The language models are not limited to considering the set of
inputs used for executions. Instead, they generalize from the
examples they were trained on, which collectively contain
information about the set of reasonable inputs for a given
function. By contrast, Daikon produces false positive invari-
ants that overfit to any spurious regularities present in the

7

Can Large Language Models Reason about Program Invariants

1 2 3 4 5 6 7 8 9 10 20 50 100 150 200
Number of Traces

0.75

0.80

0.85

0.90

0.95

1.00

F1
 S

co
re

Daikon
5B Oracle
5B Direct

5B Scratchpad
1B Scratchpad
430M Scratchpad

Figure 3: Daikon vs. ours with different prompt types and
model sizes.

430M 1B 5B
Model Sizes

0.84

0.85

0.86

0.87

F1
 S

co
re

Oracle
Scratchpad
Direct

Figure 4: Invariant prediction by following program points
in a backward manner.

set of inputs present for a program; this is why the Daikon
invariants sometimes include overly constrained invariants
like return == 7 even when the invariants predicted by the
language models do not.

5.2. Invariants Uncovered by Scaling the Model

Our results in Section 4.3 show improved performance by
scaling the model. Here, we attempt to understand patterns
in the predicted invariants from models at different size.
Listings 2 and 3 in Appendix D present two examples. First,
we observe that larger models are better at inferring non-
trivial invariants derived from multiple steps of computation
(e.g., a one of {−1, 1} in Listing 2, length > nig in List-
ing 3). This is in line with the scaling behavior of language
models for other reasoning tasks such as program induction
(Nye et al., 2021a) and solving math word problems (Austin
et al., 2021). Second, larger models also tend to generalize
better and emit fewer spurious invariants that only hold for
certain I/O examples, such as the value-set invariants with
one of predicates in Listing 3.

5.3. Test Generation

Invariants at the start of a function can act as constraints
for test generation tools. Randoop is one such tool, typi-
cally using Daikon to generate invariants at the start of a
function, and using these invariants as constraints to pro-
duce plausible inputs both to identify failures in the function
and to generate regression tests (Pacheco et al., 2007). Our
approach can replace Daikon in this pipeline. With our
language model approach to invariant generation, one can
generate invariants for the start of a function conditioning on
its source code. One can also take a more directed approach;
to generate invariants at the start of a function that are likely
to lead to the execution of a particular program point `, one
could condition on invariants at each branch point on the
path toward ` that, if satisfied, would lead to its execution.

To investigate the potential of our approach for test genera-
tion, we perform a final experiment focused on generating
invariants at earlier points in a function. Specifically, we
exclude the prediction of invariants for the final program
point and introduce class invariants. This modification re-
sults in a revised dataset comprising 1,284,492 training
examples, 61,431 validation examples, and 21,576 test ex-
amples. We then introduce variants of the scratchpad and
oracle approaches by reversing the order of program points
used. These variants aim to predict invariants starting from
program points that occur later in the program, such as post-
conditions and loop invariants, before considering those that
appear earlier, such as pre-conditions.

To use backward invariant prediction for test generation,
we observe that the invariants generated at the start of the
program form a set of constraints over program inputs. Se-
lecting a concrete map from each input variable to concrete
values satisfying these constraints yields a concrete test.
Figure 4 shows the results.

6. Related Work
Traditional approaches formulate program invariant infer-
ence as a search problem, guided by heuristics (Gale-
otti et al., 2015; Sharma & Aiken, 2016). Guess-And-
Check (Sharma et al., 2013b) employs a data-driven ap-
proach to come up with invariant candidates in a form
of conjunctions of linear equalities by analyzing traces.
NumInv (Nguyen et al., 2017) extends Guess-And-Check
to produce polynomials beyond equalities such as octag-
onal inequalities, and queries the symbolic execution en-
gine (KLEE, Cadar et al., 2008) for counterexamples to
guide its search. LoopInvGen (Padhi et al., 2017) produces
arbitrary invariant candidates by composing atomic invari-
ants based on program synthesis, which are guided by coun-
terexamples produced by the solver.

8

Can Large Language Models Reason about Program Invariants

Learning program invariants has been increasingly studied.
For example, by observing the runtime behavior of the pro-
gram, Daikon (Ernst et al., 2007) learns candidate invariants
from its predefined invariant templates that the traces do not
violate. In contrast, Code2Inv (Si et al., 2020) uses rein-
forcement learning with graph neural networks to guide the
search for candidate program invariants. CLN2Inv (Ryan
et al., 2019) constructs candidate invariant templates (with
learnable parameters) based on static analysis. It then con-
structs a neural network architecture that explicitly repre-
sents the invariant templates with relaxed logic to smooth
the conjunction, disjunction, negation, etc., which enables
learning the parameters of the invariants in a differentiable
manner. Hellendoorn et al. (2019) present a deep learn-
ing approach to predict whether an invariant proposed by
Daikon is correct, which can be used as a reranking score
for invariants produced by Daikon. Generally speaking, a
limitation of these methods is that they can incur substan-
tial overhead due to dynamic tracing (Ernst et al., 2007) or
expensive search procedures (Si et al., 2020).

Several learning-based approaches have been proposed for
specific classes of invariants. One line of work uses learning
specifically of algebraic invariants (Sharma et al., 2012;
2013a;c; Garg et al., 2014; 2016), such as arith in Table 2.
Although (as can be seen from the examples) many of the
invariants produced by our models are algebraic, LLMs are
additionally able to predict much more general invariants.
Brockschmidt et al. (2015; 2017) present a neural network
approach for predicting heap invariants in separation logic,
which can be filtered using static analysis. Invariant mining
techniques have also been explored for design verification
of hardware (Liu et al., 2012; Sagdeo et al., 2011); these
approaches dynamically collect hardware states and apply
learning methods such as decision trees and linear regression
to generate specific classes of invariants.

To our knowledge, none of the previous work has considered
large pre-trained language models. Therefore, our approach
does not need dynamic analysis during inference, and can
generalize across various types of invariants. Moreover, our
model is efficient, taking only a single inference pass using
the language models without iterative search. Additionally,
our models can learn how invariants evolve across program
points, which is a staple of traditional static analyses, but
has been difficult to incorporate into learning approaches.

7. Conclusion
We have presented a method for predicting invariants of pro-
grams using large language models (LLMs). The method
fine-tunes LLMs pre-trained on code to map from a source
code file and a program point of interest to a list of predicted
invariants. We find that LLMs are effective, achieving 86%
precision and recall, with better performance than Daikon

if the set of available tests is limited. Future work includes
extending the set of invariants, and learning specific invari-
ants that are useful for particular downstream tasks such as
program synthesis, verification, and test generation.

Acknowledgements
We would like to express our sincere appreciation to Vin-
cent Hellendoorn, Henryk Michalewski, Varun Godbole,
Marc Brockschmidt, Dan Zheng, Hanjun Dai, Petros Ma-
niatis, and the members of the Learning for Code team at
Google for their invaluable feedback to this research paper.
Additionally, we extend our gratitude to the anonymous
reviewers for their thoughtful and constructive comments,
which have significantly enhanced the quality of this work.

References
Anand, S., Burke, E. K., Chen, T. Y., Clark, J., Cohen, M. B.,

Grieskamp, W., Harman, M., Harrold, M. J., McMinn, P.,
Bertolino, A., Jenny Li, J., and Zhu, H. An orchestrated
survey of methodologies for automated software test case
generation. J. Syst. Softw., 86(8):1978–2001, August
2013.

Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski,
H., Dohan, D., Jiang, E., Cai, C., Terry, M., Le, Q., and
Sutton, C. Program synthesis with large language models.
August 2021.

Bieber, D., Sutton, C., Larochelle, H., and Tarlow, D. Learn-
ing to execute programs with instruction pointer attention
graph neural networks. Advances in Neural Information
Processing Systems, 33:8626–8637, 2020.

Bieber, D., Goel, R., Zheng, D., Larochelle, H., and Tar-
low, D. Static prediction of runtime errors by learning
to execute programs with external resource descriptions.
March 2022.

Brockschmidt, M., Chen, Y., Cook, B., Kohli, P., and Tarlow,
D. Learning to decipher the heap for program verification.
In ICML Workshop on Constructive Machine Learning
(CML), 2015.

Brockschmidt, M., Chen, Y., Kohli, P., Krishna, S., and
Tarlow, D. Learning shape analysis. In Static Analysis
Symposium (SAS), 2017.

Cadar, C., Dunbar, D., Engler, D. R., et al. KLEE: unas-
sisted and automatic generation of high-coverage tests
for complex systems programs. In OSDI, volume 8, pp.
209–224, 2008.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Ponde, H., Kaplan,
J., Edwards, H., Burda, Y., Joseph, N., Brockman, G.,
Ray, A., Puri, R., Krueger, G., Petrov, M., Khlaaf, H.,

9

Can Large Language Models Reason about Program Invariants

Sastry, G., Mishkin, P., Chan, B., Gray, S., Ryder, N.,
Pavlov, M., Power, A., Kaiser, L., Bavarian, M., Win-
ter, C., Tillet, P., Such, F., Cummings, D., Plappert, M.,
Chantzis, F., Barnes, E., Herbert-Voss, A., Guss, W.,
Nichol, A., Babuschkin, I., Balaji, S., Jain, S., Carr, A.,
Leike, J., Achiam, J., Misra, V., Morikawa, E., Radford,
A., Knight, M., Brundage, M., Murati, M., Mayer, K.,
Welinder, P., McGrew, B., Amodei, D., McCandlish, S.,
Sutskever, I., and Zaremba, W. Evaluating large language
models trained on code. July 2021.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton, C.,
Gehrmann, S., et al. Palm: Scaling language modeling
with pathways. arXiv preprint arXiv:2204.02311, 2022.

Claessen, K. and Hughes, J. QuickCheck: a lightweight tool
for random testing of haskell programs. In Proceedings
of the fifth ACM SIGPLAN international conference on
Functional programming, ICFP ’00, pp. 268–279, New
York, NY, USA, September 2000. Association for Com-
puting Machinery.

Cousot, P. and Cousot, R. Abstract interpretation. In Pro-
ceedings of the 4th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages - POPL ’77,
New York, New York, USA, 1977. ACM Press.

Dijkstra, E. W. Guarded commands, nondeterminacy and
formal derivation of programs. Commun. ACM, 18(8):
453–457, 1975.

Ellis, K., Nye, M. I., Pu, Y., Sosa, F., Tenenbaum, J. B.,
and Solar-Lezama, A. Write, execute, assess: Program
synthesis with a REPL. Advances in Neural Information
Processing Systems {(NeurIPS)}, 2019.

Ernst, M. D., Perkins, J. H., Guo, P. J., McCamant, S.,
Pacheco, C., Tschantz, M. S., and Xiao, C. The daikon
system for dynamic detection of likely invariants. Science
of computer programming, 69(1-3):35–45, 2007.

Flanagan, C. and Leino, K. R. M. Houdini, an annotation
assistant for esc/java. In FME 2001: Formal Methods for
Increasing Software Productivity: International Sympo-
sium of Formal Methods Europe Berlin, Germany, March
12–16, 2001 Proceedings, pp. 500–517. Springer, 2001.

Galeotti, J. P., Furia, C. A., May, E., Fraser, G., and Zeller,
A. Inferring loop invariants by mutation, dynamic analy-
sis, and static checking. IEEE Transactions on Software
Engineering, 41(10):1019–1037, 2015.

Garg, P., Löding, C., Madhusudan, P., and Neider, D. ICE:
A robust framework for learning invariants. In Computer
Aided Verification, Lecture notes in computer science, pp.
69–87. Springer International Publishing, Cham, 2014.

Garg, P., Neider, D., Madhusudan, P., and Roth, D. Learn-
ing invariants using decision trees and implication coun-
terexamples. In Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL ’16, pp. 499–512, New York, NY,
USA, January 2016. Association for Computing Machin-
ery.

Hellendoorn, V. J., Devanbu, P. T., Polozov, O., and Marron,
M. Are my invariants valid? a learning approach. March
2019.

Hoare, C. A. R. An axiomatic basis for computer program-
ming. Commun. ACM, 12(10):576–580, October 1969.

Kaplan, J., McCandlish, S., Henighan, T. J., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling laws for neural language models.
ArXiv, abs/2001.08361, 2020.

Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser, J.,
Leblond, R., Eccles, T., Keeling, J., Gimeno, F., Dal Lago,
A., Hubert, T., Choy, P., de Masson d’Autume, C.,
Babuschkin, I., Chen, X., Huang, P.-S., Welbl, J., Gowal,
S., Cherepanov, A., Molloy, J., Mankowitz, D., Suther-
land Robson, E., Kohli, P., de Freitas, N., Kavukcuoglu,
K., and Vinyals, O. Competition-level code generation
with alphacode. arXiv preprint arXiv:2203.07814, 2022.

Liu, L., Sheridan, D., Tuohy, W., and Vasudevan, S. A tech-
nique for test coverage closure using GoldMine. IEEE
Trans. Comput. Aided Des. Integr. Circuits Syst., 31(5):
790–803, May 2012.

Nguyen, T., Antonopoulos, T., Ruef, A., and Hicks, M.
Counterexample-guided approach to finding numerical
invariants. In Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, pp. 605–615,
2017.

Nye, M., Andreassen, A. J., Gur-Ari, G., Michalewski, H.,
Austin, J., Bieber, D., Dohan, D., Lewkowycz, A., Bosma,
M., Luan, D., et al. Show your work: Scratchpads for
intermediate computation with language models. arXiv
preprint arXiv:2112.00114, 2021a.

Nye, M., Pu, Y., Bowers, M., Andreas, J., Tenenbaum, J. B.,
and Solar-Lezama, A. Representing partial programs with
blended abstract semantics. In International Conference
on Learning Representations (ICLR), 2021b.

Odena, A. and Sutton, C. Learning to represent pro-
grams with property signatures. In International Con-
ference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=rylHspEKPr.

10

https://openreview.net/forum?id=rylHspEKPr
https://openreview.net/forum?id=rylHspEKPr

Can Large Language Models Reason about Program Invariants

Pacheco, C. and Ernst, M. D. Eclat: Automatic generation
and classification of test inputs. In ECOOP 2005 - Object-
Oriented Programming, pp. 504–527. Springer Berlin
Heidelberg, 2005.

Pacheco, C., Lahiri, S. K., Ernst, M. D., and Ball, T.
Feedback-directed random test generation. In ICSE 2007,
Proceedings of the 29th International Conference on Soft-
ware Engineering, pp. 75–84, Minneapolis, MN, USA,
May 2007.

Padhi, S., Sharma, R., and Millstein, T. Loopinvgen: A
loop invariant generator based on precondition inference.
arXiv preprint arXiv:1707.02029, 2017.

Petersen, M. K. A. An evaluation of daikon: A dynamic
invariant detector.

Polikarpova, N., Ciupa, I., and Meyer, B. A comparative
study of programmer-written and automatically inferred
contracts. In Proceedings of the eighteenth international
symposium on Software testing and analysis, ISSTA ’09,
pp. 93–104, New York, NY, USA, July 2009. Association
for Computing Machinery.

Ryan, G., Wong, J., Yao, J., Gu, R., and Jana, S. Cln2inv:
learning loop invariants with continuous logic networks.
arXiv preprint arXiv:1909.11542, 2019.

Sagdeo, P., Athavale, V., Kowshik, S., and Vasudevan, S.
PRECIS: Inferring invariants using program path guided
clustering. In 2011 26th IEEE/ACM International Con-
ference on Automated Software Engineering (ASE 2011),
pp. 532–535, November 2011.

Sharma, R. and Aiken, A. From invariant checking to invari-
ant inference using randomized search. Formal Methods
in System Design, 48(3):235–256, 2016.

Sharma, R., Nori, A. V., and Aiken, A. Interpolants as
classifiers. In International Conference on Computer
Aided Verification, 2012.

Sharma, R., Gupta, S., Hariharan, B., Aiken, A., Liang, P.,
and Nori, A. V. A data driven approach for algebraic loop
invariants. In Programming Languages and Systems, pp.
574–592. Springer Berlin Heidelberg, 2013a.

Sharma, R., Gupta, S., Hariharan, B., Aiken, A., Liang, P.,
and Nori, A. V. A data driven approach for algebraic loop
invariants. In European Symposium on Programming, pp.
574–592. Springer, 2013b.

Sharma, R., Gupta, S., Hariharan, B., Aiken, A., and Nori,
A. V. Verification as learning geometric concepts. In
Static Analysis, Lecture notes in computer science, pp.
388–411. Springer Berlin Heidelberg, Berlin, Heidelberg,
2013c.

Shi, K., Dai, H., Ellis, K., and Sutton, C. CrossBeam:
Learning to search in Bottom-Up program synthesis. In
International Conference on Learning Representations
(ICLR), 2022.

Si, X., Dai, H., Raghothaman, M., Naik, M., and Song,
L. Learning loop invariants for program verification. In
Proceedings of the 32nd International Conference on
Neural Information Processing Systems, NIPS’18, pp.
7762–7773, Red Hook, NY, USA, December 2018. Cur-
ran Associates Inc.

Si, X., Naik, A., Dai, H., Naik, M., and Song, L. Code2Inv:
A deep learning framework for program verification. In
Computer Aided Verification, Lecture notes in computer
science, pp. 151–164. Springer International Publishing,
Cham, 2020.

Tabachnyk, M. and Nikolov, S. Ml-enhanced code com-
pletion improves developer productivity. 2022.
URL https://ai.googleblog.com/2022/07/
ml-enhanced-code-completion-improves.html.

Zaremba, W. and Sutskever, I. Learning to execute. 2014.

Ziegler, A., Kalliamvakou, E., Li, X. A., Rice, A., Rifkin,
D., Simister, S., Sittampalam, G., and Aftandilian, E.
Productivity assessment of neural code completion. In
Proceedings of the 6th ACM SIGPLAN International
Symposium on Machine Programming, MAPS 2022, pp.
21–29, New York, NY, USA, 2022. Association for
Computing Machinery. ISBN 9781450392730. doi:
10.1145/3520312.3534864. URL https://doi.org/10.
1145/3520312.3534864.

Zohar, A. and Wolf, L. Automatic program synthesis of long
programs with a learned garbage collector. September
2018.

A. Broader Impact
As machine learning advances, developer tools have come
to greater rely upon imperfect predictions from learned
systems. In aggregate, these advances improve developer
productivity and save time (Tabachnyk & Nikolov, 2022;
Ziegler et al., 2022). However, incorrect predictions from
machine learning developer tools can also slow developers
down, possibly leading developers to introduce bugs or oth-
erwise make mistakes during development. It is important
for tool makers to take a human-centric approach when de-
signing developer tools that rely on predictions that may be
wrong, providing adequate signals for developers to make
informed choices when using these tools. Similarly, it is in-
cumbent upon developers using these tools to think critically
about the outputs they produce, rather than trusting the tools
to behave correctly in all situations. Chen et al. (2021) and

11

https://ai.googleblog.com/2022/07/ml-enhanced-code-completion-improves.html
https://ai.googleblog.com/2022/07/ml-enhanced-code-completion-improves.html
https://doi.org/10.1145/3520312.3534864
https://doi.org/10.1145/3520312.3534864

Can Large Language Models Reason about Program Invariants

Chowdhery et al. (2022) further discuss the broader impact
of using large language models for program synthesis.

B. Dataset Processing Pipeline
We provide implementation details about each step of the
dataset processing pipeline here.

Step 1: Instrumentation. This step consists of source
code transformations to the Java submissions that are nec-
essary in order to use Daikon to identify invariants in the
programs. As demonstrated in Appendix E, this step inserts
dummy method calls in the program to support tracing the
variables of interest at certain program point. By default,
Daikon supports generating invariants for class and object
fields, and the arguments and class fields at method entry and
exit (see Section 2.1), but omits loop invariants, an important
class of invariants of the program. We address this issue by
directly instrumenting the source code. Specifically, we add
dummy function calls with empty body at the loop entry, mit-
igating this Daikon limitation. The signature of the dummy
function call conforms to the following format: public
static void check_<class name>_<method>_<loop
line number>(<accessible variables>). The <loop
line number> indicates the beginning line (zero-based)
of the loop in the source code file. The <accessible
variables> here includes all variables, e.g., class fields,
function arguments, and local variables, as long as their
definition reaches the loop entry from all control flow paths
(Section 2).

For example, in Listing 8, check_test_main_9(p, m, n);
marks a program point with loop invariants on the variables
p, m, and n, but variables in and t are not included.

In order to ensure the instrumented submission compiles, we
also add the function definition at the end of the class. We fix
the dummy function to be always a public static method
of the class without return values. Finally, we compile the
instrumented submission with Daikon so that Daikon can
trace its execution.

Step 2: Execution. Execution takes place in two phases.
We first use Daikon’s DynComp binary, which uses dynamic
analysis to obtain variable type information; this prevents
variables of different types from being compared in the as-
sertions we will generate in Step 3. We next execute each
instrumented submission to collect traces on all available
inputs using Daikon’s Chicory binary. The resulting traces
contain the values of all variables for all runs of each sub-
mission. If a submission’s execution exceeds a 60 second
timeout limit, we drop it from consideration.

Step 3: Invariant generation. Once the traces are col-
lected we use Daikon to generate invariants. We adjust the

Daikon settings such that the generated invariants are non-
trivial and diverse. The resulting invariant types are listed
in Table 2.

Step 4: Data transformation. Finally, for each variant
of our method, we convert the programs and their generated
invariants into a format suitable for model training. We
describe here the text transformations required to produce
the inputs and targets for each of our approaches.

For the direct method, the transformation to produce the in-
put is to append the comment text // predict invariants
for <program point> following the submission source
code. The target is produced by listing the invariants at that
program point, ordered according to the invariant type order
given in Table 2. We give an example in Listings 8 and 9 of
Appendix E.

In the scratchpad method, we construct the input by ap-
pending the comment text // predict invariants for
<comma-separated program point list> on one line,
followed by <first program point in list> on the
subsequent line. The target consists in alternating the list
of invariants at the named program point, followed by the
next program point in the list. This concludes with naming
the target program point, followed by the ordered list of
invariants at the target program point. We give an example
in Listings 10 and 11 of Appendix E.

Finally in the oracle approach, the inputs and targets to-
gether match those of the scratchpad approach, but addi-
tional invariant information is provided in the inputs rather
than predicted in the targets. Specifically, the inputs con-
tain alternately each program point from the program point
list and its invariants, up to and including the target pro-
gram point, but not its invariants. The target is solely the
invariants for the target program point.

C. Complete Experimental Results
Daikon’s results. Table 3 shows Daikon’s performance
when varying the number of traces. We measure Jaccard dis-
tance (dJ), precision (P), recall (R), and F1 score (F1). Not
surprisingly, Daikon’s performance increases monotonically
with the number of traces. In addition, the performance
gains obtained by increasing the number of traces diminish
when there are already enough traces. It is worth noting that
dynamic analysis (executing the program and logging the
intermediate execution states) is generally more expensive
than static analysis. In our case, Daikon requires compiling
the code first and tracing the execution twice (see Section B),
in which each procedure takes up to 60 seconds (as a time-
out) to finish. In contrast, our model takes only the static
code as input without incurring any overhead from dynamic
analysis during inference.

12

Can Large Language Models Reason about Program Invariants

Table 3: Daikon results when running on different number
of traces.

Traces dJ P R F1

1 .659 .743 .700 .721
2 .703 .794 .741 .767
3 .783 .834 .823 .828
4 .801 .849 .839 .844
5 .814 .863 .851 .857
6 .828 .873 .863 .868
7 .839 .883 .871 .877
8 .847 .889 .878 .883
9 .856 .895 .886 .890
10 .865 .904 .895 .899
20 .906 .934 .929 .931
50 .947 .962 .964 .963
100 .969 .978 .981 .979
150 .981 .986 .989 .987
200 1.00 1.00 1.00 1.00

Our results. Table 4 includes the complete results of the
models on the test set (Section 4.1). We have described the
results in Section 4 from different perspectives. Note that
in the case of direct prediction, the forward and backward
approaches are exactly the same since their predictions do
not condition on preceding or succeeding invariants. The
results differ because we omit predicting class invariants in
the training set of forward prediction. The reason is that that
we do not have any preceding invariants before predicting
the class invariants. The backward prediction, however, will
have succeeding invariants already provided or predicted
before predicting class invariants. Therefore, we consider
class invariants in the backward prediction task.

D. Selected Examples
We present model predictions alongside the target invariants
for a number of examples in the dataset in Listing 2 - 7. The
results are discussed in Section 4 and Section 5. Each ex-
ample is presented as the input string used in the scratchpad
method. Metrics are computed with respect to the target
invariants.

13

Can Large Language Models Reason about Program Invariants

Table 4: Our results categorized by the finetuning strategies, the prediction types, the order of invariants, the model sizes,
and the prediction directions.

Finetune
Strategies

Prompt
Types

Invariant
Orders

Size
Forward Analysis Backward Analysis

dJ P R F1 dJ P R F1

Separated

Direct

Ordered
430M .780 .837 .842 .839 .773 .829 .823 .826
1B .785 .842 .847 .844 .780 .834 .829 .831
5B .800 .854 .857 .855 .807 .855 .853 .854

Shuffled
430M .779 .836 .841 .838 .774 .830 .822 .826
1B .781 .838 .844 .841 .786 .839 .833 .836
5B .801 .854 .861 .857 .806 .854 .852 .853

Oracle

Ordered
430M .797 .853 .857 .855 .808 .858 .853 .855
1B .799 .856 .857 .856 .814 .862 .861 .861
5B .812 .864 .869 .866 .831 .877 .874 .875

Shuffled
430M .797 .854 .856 .855 .810 .860 .856 .858
1B .794 .853 .855 .854 .808 .858 .853 .855
5B .812 .866 .869 .867 .833 .879 .876 .877

Scratchpad

Ordered
430M .778 .839 .842 .840 .785 .839 .834 .836
1B .785 .843 .847 .845 .794 .845 .841 .843
5B .801 .857 .860 .858 .817 .865 .862 .863

Shuffled
430M .786 .843 .847 .845 .787 .839 .836 .837
1B .785 .844 .846 .845 .791 .843 .838 .840
5B .798 .854 .859 .856 .815 .863 .861 .862

Combined

Direct

Ordered
430M .778 .837 .840 .838 .788 .840 .833 .836
1B .783 .840 .843 .841 .799 .849 .843 .846
5B .795 .850 .854 .852 .811 .859 .856 .857

Shuffled
430M .778 .837 .840 .838 .786 .839 .833 .836
1B .783 .842 .842 .842 .796 .847 .839 .843
5B .801 .855 .858 .856 .808 .856 .852 .854

Oracle

Ordered
430M .792 .849 .853 .851 .810 .861 .854 .857
1B .799 .855 .858 .856 .819 .868 .862 .865
5B .807 .861 .865 .863 .832 .879 .874 .876

Shuffled
430M .794 .851 .854 .852 .808 .858 .853 .855
1B .796 .854 .854 .854 .816 .866 .860 .863
5B .812 .865 .869 .867 .830 .877 .872 .874

Scratchpad

Ordered
430M .785 .843 .847 .845 .792 .846 .838 .842
1B .792 .849 .852 .850 .801 .854 .847 .850
5B .801 .856 .861 .858 .816 .866 .861 .863

Shuffled
430M .785 .844 .847 .845 .791 .843 .838 .840
1B .790 .850 .849 .849 .802 .854 .846 .850
5B .807 .861 .865 .863 .815 .864 .860 .862

14

Can Large Language Models Reason about Program Invariants

import java.util .*;
public class cf1 {

public static void main(String [] args) {
int t;
Scanner input = new Scanner(System.in);
t = input.nextInt ();
while (t != 0) {

check_cf1_main_6(input);
int n, m, rb, cb, rd, cd;
n = input.nextInt (); // rows
m = input.nextInt (); // columns
rb = input.nextInt ();
cb = input.nextInt ();
rd = input.nextInt ();
cd = input.nextInt ();
int count = 0, a = 1, b = 1;
while (true) {

check_cf1_main_15(a, b, count);
if (rb == rd || cb == cd) {

break;
}
if (rb + a > n || rb + a < 1) {

a *= -1;
}
if (cb + b > m || cb + b < 1) {

b *= -1;
}
rb += a;
cb += b;
count ++;

}
t--;
System.out.println(count);

}
}

public static void check_cf1_main_15(int a, int b, int count){}

public static void check_cf1_main_6(Scanner input){}
}

// predict invariants for cf1.main.ENTER(String [] args),
cf1.check_cf1_main_6.ENTER(Scanner input), cf1.check_cf1_main_15.ENTER(int a, int b,
int count)

cf1.main.ENTER(String [] args)

Listing 2: Scratchpad input string for solution s310 to problem 1623A. As the model size increases, additional invariants are
uncovered. The invariants predicted by the scratchpad approach at all model sizes are shown in the table.

INVARIANTS TARGET 430M 1B 5B

count >= 0 3 3 3 3
a >= 1 7 3 7 7

a one of { -1, 1 } 3 7 3 3
a != 0 3 7 3 3

b one of { -1, 1 } 3 7 3 3
b != 0 3 7 3 3
b >= 1 7 3 7 7

JACCARD 1.00 0.14 1.00 1.00
PRECISION 1.00 0.33 1.00 1.00

RECALL 1.00 0.20 1.00 1.00
F1 SCORE 1.00 0.25 1.00 1.00

15

Can Large Language Models Reason about Program Invariants

E. Prompt Formats
Here we demonstrate an example of the full input and target
strings used by the direct and scratchpad approaches. We
use the example given in Listing 1 as a running example.
The input string and target string for the direct method are
given in Listing 8 and Listing 9 respectively. The input
string and target string for the scratchpad method are given
in Listing 10 and Listing 11.

16

Can Large Language Models Reason about Program Invariants

import java.io.*;
import java.util .*;

public class absentremainder {
public static void main(String [] args) throws Exception {

BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
StringBuilder b = new StringBuilder ();
int numCases = Integer.parseInt(in.readLine ());
for (int i = 0; i < numCases; i++) {

check_absentremainder_main_9(i, numCases , in, b);
ArrayList <Integer > list = new ArrayList <>();
int length = Integer.parseInt(in.readLine ());
StringTokenizer tokenizer = new StringTokenizer(in.readLine ());
for (int j = 0; j < length; j++) {

list.add(Integer.parseInt(tokenizer.nextToken ()));
}
int nig = 0;
for (int j = 0; j < length; j++) {

check_absentremainder_main_18(j, length , list , nig);
if (list.get(j) < list.get(nig)) {

nig = j;
}

}
int counter = 0;
for (int j = 0; j < length; j++) {

check_absentremainder_main_24(j, length , nig , counter , b, list);
if (j != nig && counter < length / 2) {

b.append(list.get(j) + " " + list.get(nig) + "\n");
counter ++;

} else if (counter >= length / 2) {
break;

}
}

}
System.out.print(b);
in.close();

}
public static void check_absentremainder_main_24(int j, int length , int nig , int

counter , StringBuilder b, ArrayList <Integer > list){}
public static void check_absentremainder_main_18(int j, int length , ArrayList <Integer >

list , int nig){}
public static void check_absentremainder_main_9(int i, int numCases , BufferedReader in,

StringBuilder b){}
}
// predict invariants for absentremainder.main.ENTER(String [] args),

absentremainder.check_absentremainder_main_9.ENTER(int i, int numCases ,
BufferedReader in, StringBuilder b),
absentremainder.check_absentremainder_main_18.ENTER(int j, int length ,
ArrayList <Integer > list , int nig)

absentremainder.main.ENTER(String [] args)

Listing 3: Scratchpad input string for solution s300 to problem 1613B. As the model size increases, additional invariants are
uncovered. The invariants predicted by the scratchpad approach at all model sizes are shown in the table.

INVARIANTS TARGET 430M 1B 5B

j >= 0 3 3 3 3
length > nig 3 7 7 3
j < length 3 3 3 3

nig one of { 0, 1, 2 } 7 3 7 7
j >= nig 3 7 3 3

length one of { 2, 6 } 7 7 3 7
nig >= 0 3 7 3 3

JACCARD 1.00 0.33 0.67 1.00
PRECISION 1.00 0.67 0.80 1.00

RECALL 1.00 0.40 0.80 1.00
F1 SCORE 1.00 0.50 0.80 1.00

17

Can Large Language Models Reason about Program Invariants

import java.io.*;
import java.util.StringTokenizer;

public class Main {
public static class FastInput {

private BufferedReader br;
private StringTokenizer st;
public FastInput () {

br = new BufferedReader(new InputStreamReader(System.in));
}
public String next() {

while (st == null || !st.hasMoreTokens ()) {
try {

st = new StringTokenizer(br.readLine ());
} catch (IOException obj) {

System.out.println(obj);
}

}
return st.nextToken ();

}
public int nextInt (){

return Integer.parseInt(next());
}
...

}
// public static final int MOD = 1000000007;
public static void main(String [] args) throws IOException {

FastInput input = new FastInput ();
FastOutput out = new FastOutput ();
int test = input.nextInt ();
while (test -- > 0) {

check_Main_main_78(test , input , out);
long n = input.nextLong ();
if ((n & 1) == 0) {

long last = n;
long fast = (n - 1) * (-1);
out.println(fast + " " + last);

} else {
long fast = n / 2;
long last = (n / 2) + 1;
out.println(fast + " " + last);

}
out.flush();

}
out.close();

}
public static void check_Main_main_78(int test , FastInput input , FastOutput out){}

}
// predict invariants for Main$FastInput.Object (), Main$FastInput.nextInt.EXIT()
Main$FastInput.Object ()

Listing 4: Source code for solution s290 to problem 1594A

INVARIANTS TARGET DIRECT SCRATCHPAD ORACLE

return == 7 3 7 7 7
this.st has only one value 3 3 3 3
this.br == orig(this.br) 3 3 3 3

return >= 1 7 3 3 3

JACCARD 1.00 0.50 0.50 0.50
PRECISION 1.00 0.67 0.67 0.67

RECALL 1.00 0.67 0.67 0.67
F1 SCORE 1.00 0.67 0.67 0.67

18

Can Large Language Models Reason about Program Invariants

import java.io.*;
import java.util .*;

public class C {
public static void main(String [] args) {

Scanner sc = new Scanner(System.in);
int t = sc.nextInt ();
while (t-- > 0) {

check_C_main_7(t, sc);
int n = sc.nextInt ();
int k = sc.nextInt ();
if (k == 1) {

System.out.println(n - 1);
} else {

int test = n;
int mul = 1;
test -= 2;
int chk = 0;
while (test > 0) {

check_C_main_17(test , mul , k, chk);
mul *= 2;
if (mul <= k) {

test -= mul;
} else {

test -= k;
}
chk++;

}
System.out.println(chk + 1);

}
}

}

public static void check_C_main_17(int test , int mul , int k, int chk){}

public static void check_C_main_7(int t, Scanner sc){}
}

// predict invariants for C.main.ENTER(String [] args), C.check_C_main_7.ENTER(int t,
Scanner sc), C.check_C_main_17.ENTER(int test , int mul , int k, int chk)

C.main.ENTER(String [] args)

Listing 5: Source code for solution s186 to problem 1606B

INVARIANTS TARGET DIRECT SCRATCHPAD ORACLE

mul >= 1 3 3 3 3
test >= 1 7 3 3 3

mul is a power of 2 3 3 3 3
chk >= 0 3 3 3 3
k >= 2 3 3 3 3

JACCARD 1.00 0.80 0.80 0.80
PRECISION 1.00 0.80 0.80 0.80

RECALL 1.00 1.00 1.00 1.00
F1 SCORE 1.00 0.89 0.89 0.89

19

Can Large Language Models Reason about Program Invariants

import java.util .*;
public class Grass {

public static long helper(long x0, long n) {
if (Math.abs(x0) % 2 != 0) {

if (n % 2 == 0) {
if (n % 4 == 0) {

return x0;
} else {

return x0 - 1;
}

} else {
if ((n - 1) % 4 == 0) {

return x0 + n;
} else

return x0 - n - 1;
}

} else {
if (n % 2 == 0) {

if (n % 4 == 0) {
return x0;

} else
return x0 + 1;

} else {
if ((n - 1) % 4 == 0) {

return x0 - n;
} else

return x0 + n + 1;
}

}
}
public static void main(String [] args) {

Scanner sr = new Scanner(System.in);
long tc = sr.nextLong ();
while (tc-- > 0) {

check_Grass_main_33(tc, sr);
long x0 = sr.nextLong (), n = sr.nextLong ();
long val = helper(x0, n);
System.out.println(val);

}
}
public static void check_Grass_main_33(long tc, Scanner sr){}

}
// predict invariants for Grass.helper.ENTER(long x0, long n), Grass.helper.EXIT7(long

x0, long n)
Grass.helper.ENTER(long x0, long n)

Listing 6: Source code for solution s98 to problem 1607B

INVARIANTS TARGET DIRECT SCRATCHPAD ORACLE

return != orig(x0) 7 3 7 7
return one of { -1, 1, 3 } 3 7 7 7

return % orig(n) == 0 7 3 7 7
return == orig(x0) 3 7 3 3
return >= orig(x0) 7 3 7 7

return != 0 3 7 7 7
orig(x0) != orig(n) 7 3 3 3
return != orig(n) 3 7 7 7
return > orig(n) 7 3 7 7

orig(n) % return == 0 3 7 7 7
orig(n) one of { 0, 4 } 3 7 7 7

JACCARD 1.00 0.00 0.14 0.14
PRECISION 1.00 0.00 0.50 0.50

RECALL 1.00 0.00 0.17 0.17
F1 SCORE 1.00 0.00 0.25 0.25

20

Can Large Language Models Reason about Program Invariants

import java.util .*;

public class cf762 {
public static void main(String [] args) {

Scanner sc = new Scanner(System.in);
cf762 ob = new cf762();
int n = sc.nextInt ();
for (int i = 0; i < n; i++) {

System.out.println(square(sc.next()));
}

}

static String rev(String s) {
String reverse = "";
for (int i = s.length () - 1; i >= 0; i--) {

reverse += s.charAt(i);
}
return (reverse);

}

static String square(String s) {
if (s.length () % 2 != 0) {

return ("NO");
} else {

int spl = s.length () / 2;
int z = 0, x = s.length () - 1;
String str1 = "", str2 = "";
while (z <= spl && x >= spl) {

check_cf762_square_27(z, spl , x, str1 , str2);
str1 += s.charAt(z);
str2 += s.charAt(x);
z++;
x--;

}
System.out.println("Str1 = " + str1);
System.out.println("Str2 = " + rev(str2));
str2 = rev(str2);
if (str1.equals(str2)) {

return ("YES");
} else

return ("NO");
}

}
static void check_cf762_square_27(int z, int spl , int x, String str1 , String str2){}

}
// predict invariants for cf762.Object (), cf762.square.EXIT23(String s),

cf762.check_cf762_square_27.ENTER(int z, int spl , int x, String str1 , String str2)
cf762.Object ()

Listing 7: Source code for solution s234 to problem 1619A

INVARIANTS TARGET DIRECT SCRATCHPAD ORACLE

spl <= x 3 3 3 3
z one of { 0, 1 } 7 3 7 3

z <= x 7 3 3 3
z < spl 3 7 7 7

z <= spl 7 3 3 3
z one of { 0, 1, 2 } 7 7 3 7

z < x 3 7 7 7
z - 2 * spl + x + 1 == 0 3 7 7 7

z >= 0 3 7 7 7
spl >= 1 3 7 7 7

spl one of { 1, 2, 3 } 7 3 3 3
x >= 1 3 7 7 7

JACCARD 1.00 0.09 0.09 0.09
PRECISION 1.00 0.20 0.20 0.20

RECALL 1.00 0.14 0.14 0.14
F1 SCORE 1.00 0.17 0.17 0.17

21

Can Large Language Models Reason about Program Invariants

import java.util .*;
public class test {

public static void main(String [] args) {
Scanner in = new Scanner(System.in);
int t = in.nextInt ();
while (t-- > 0) {

check_test_main_5(t, in);
long n = in.nextLong ();
long m = in.nextLong ();
long p = m - (m % 4) + 1;
while (p <= m) {

check_test_main_9(p, m, n);
if (n % 2 == 0) {

n -= p;
} else {

n += p;
}
p++;

}
System.out.println(n);

}
}

public static void check_test_main_9(long p, long m, long n){}

public static void check_test_main_5(int t, Scanner in){}
}
// predict invariants for test.check_test_main_9.ENTER(long p, long m, long n)

Listing 8: Input string for the direct approach for solution s288 to problem 1607B. In the direct approach, the model predicts
invariants only for the target program point, not any of the other program points. The other program points are still annotated
in the source, as shown.

22

Can Large Language Models Reason about Program Invariants

test.check_test_main_9.ENTER(long p, long m, long n)
+++++
orig
=====
null
=====
one_val
=====
comp
m >= 1
p <= m
p >= 1
=====
val_set
=====
arithmetic
=====
power
=====
divides
=====
square
=====
elt
=====
elt_oneof
=====
eltwise
=====
member
=====
sub
=====
seqseq
=====
reverse
=====
agg
=====
conditional

Listing 9: Target string for the direct approach for solution s288 to problem 1607B. All invariant types are listed in the order
given in Table 2, even those invariant types which have no invariants at the named program point.

23

Can Large Language Models Reason about Program Invariants

import java.util .*;
public class test {

public static void main(String [] args) {
Scanner in = new Scanner(System.in);
int t = in.nextInt ();
while (t-- > 0) {

check_test_main_5(t, in);
long n = in.nextLong ();
long m = in.nextLong ();
long p = m - (m % 4) + 1;
while (p <= m) {

check_test_main_9(p, m, n);
if (n % 2 == 0) {

n -= p;
} else {

n += p;
}
p++;

}
System.out.println(n);

}
}

public static void check_test_main_9(long p, long m, long n){}

public static void check_test_main_5(int t, Scanner in){}
}
// predict invariants for test.main.ENTER(String [] args),

test.check_test_main_5.ENTER(int t, Scanner in), test.check_test_main_9.ENTER(long p,
long m, long n)

test.main.ENTER(String [] args)

Listing 10: Input string for the scratchpad approach for solution s288 to problem 1607B. After the annotated source code,
the directive shows the order of program points to predict invariants for, ending with the target program point. The input
string concludes with the first program point to generate invariants for.

24

Can Large Language Models Reason about Program Invariants

+++++
orig
=====
null
args[] == []
=====
one_val
args has only one value
=====
comp
=====
val_set
=====
arithmetic
=====
power
=====
divides
=====
square
=====
elt
=====
elt_oneof
=====
eltwise
=====
member
=====
sub
=====
seqseq
=====
reverse
=====
agg
=====
conditional

test.check_test_main_5.ENTER(int t,

Scanner in)
+++++
orig
=====
null
=====
one_val
in has only one value
=====
comp
t >= 0
=====
val_set
=====
arithmetic
=====
power
=====

Listing 11: Target string for the scratchpad approach for
solution s288 to problem 1607B. All invariant types are
listed, even those without invariants. Invariants are given
for program points in the order given in the input string.

divides
=====
square
=====
elt
=====
elt_oneof
=====
eltwise
=====
member
=====
sub
=====
seqseq
=====
reverse
=====
agg
=====
conditional

test.check_test_main_9.ENTER(long p, long

m, long n)
+++++
orig
=====
null
=====
one_val
=====
comp
m >= 1
p <= m
p >= 1
=====
val_set
=====
arithmetic
=====
power
=====
divides
=====
square
=====
elt
=====
elt_oneof
=====
eltwise
=====
member
=====
sub
=====
seqseq
=====
reverse
=====
agg
=====
conditional

25

