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Abstract
We consider fairness in dimensionality reduction
(DR). Nonlinear DR yields low dimensional rep-
resentations that let users visualize and explore
high-dimensional data. However, traditional DR
may yield biased visualizations overemphasizing
relationships of societal phenomena to sensitive
attributes or protected groups. We introduce a
framework of fair neighbor embedding, the Fair
Neighbor Retrieval Visualizer, formulating fair
nonlinear DR as an information retrieval task
with performance and fairness quantified by infor-
mation retrieval criteria. The method optimizes
low-dimensional embeddings that preserve high-
dimensional data neighborhoods without biased
association of such neighborhoods to protected
groups. In experiments the method yields fair
visualizations outperforming previous methods.

1. Introduction
Dimensionality reduction (DR) finds lower-dimensional rep-
resentations for high-dimensional data sets, which can then
be used as features for automated processing or can be ex-
plored by analysts. DR is applicable in numerous domains
including high-dimensional data of society and individuals.

We consider unsupervised DR which aims to reveal struc-
ture of data without restricting to separation of pre-existing
known classes. Many unsupervised DR methods have been
introduced, from linear projections such as Principal Com-
ponent Analysis (PCA: Pearson, 1901) to nonlinear DR
approaches such as Stochastic Neighbor Embedding (SNE:
Hinton & Roweis, 2002), t-distributed Stochastic Neigh-
bor Embedding (t-SNE; Van der Maaten & Hinton, 2008),
Neighbor Retrieval Visualizer (NeRV; Venna et al., 2010),
Large Vis (Tang et al., 2016), and Uniform Manifold Ap-
proximation and Projection (UMAP; McInnes et al., 2018).
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Some frameworks connecting such methods have been pro-
posed, for example Assel et al. (2022) showed that several
pairwise similarity DR methods can be stated in a com-
mon probabilistic model involving Markov Random Fields
Graphs coupled by a cross entropy.

DR typically cannot preserve all original similarities or
structures in high-dimensional data when the output dimen-
sionality is lower than the effective dimensionality of data,
as is usual in visualization, thus visualization methods must
choose which data aspects to preserve. Typically they aim
to preserve/reveal prominent variation or similarity structure
in data. However, when run on data of human society this
can yield visualizations that lack fairness as discussed next.

Data from societal phenomena, such as employment, educa-
tion, banking, insurance, crime, are prominent in machine
learning assisted analysis and decision making. However,
variation (groupings, trends, similarities and other struc-
tures) in such data may seem related to sensitive attributes
(protected groups) such as gender, race, age, religion and so
on, even though dependencies may arise from biases in data
collection or discrimination in the phenomena. To avoid
discrimination in decision making, ethical artificial intelli-
gence including fairness, accountability and transparency
has become central in machine learning. Many works on
fairness deal with automated decision making. We stress
that fairness should extend to DR and visualization, so hu-
man analysts are not erroneously led to unfair conclusions
while exploring data.

On societal data, traditional DR does not suffice for fairness.
Methods like t-SNE can yield biased results showing “low-
hanging fruit” of variation depending on sensitive attributes.
Revealing it can be a first step of analysis, but traditional
DR does not help explore beyond it: traditional DR does not
reveal how variation could be explained by attributes other
than sensitive ones, and may omit variation not explained
by sensitive attributes. Thus analysts should complement
traditional DR with visualizations by new, fair DR methods.
We define fair DR as methods that reveal whether variation
can be explained without dependence on sensitive attributes.
We provide a first neighbor embedding solution for fair DR.

Naive solutions like leaving out sensitive attributes from DR
input features do not suffice as fair DR: other variables may
have statistical dependencies with sensitive ones, and remov-
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ing all variables having dependency with sensitive attributes
would reduce ability to visualize structure of the original
data. New solutions are needed for low-dimensional embed-
dings that remove bias with respect to sensitive information,
while preserving other structure of high-dimensional data.

We propose a framework called Fair Neighbor Retrieval
Visualizer (Fair-NeRV), a generalization of NeRV that for-
mulates fair dimensionality reduction as an information
retrieval task. It preserves high-dimensional neighborhoods
while avoiding dependency to sensitive attributes.

Illustrative example of fair DR. Consider synthetic data
with 500 points along five dimensions, arising out of mix-
tures of Gaussians, and having a sensitive attribute with
three categories (e.g. three ethnic groups). In dimensions
1-3 feature values arise from a three-component mixture
with the component of each point determined by its sensi-
tive category; in dimensions 4-5 feature values arise from
another three-component mixture sampled independently
of the sensitive attribute. Such data has 3 × 3 = 9 high-
dimensional Gaussian clusters. Clustering along dimensions
1-3 is highly related to the sensitive attribute: showing it in
DR output would reveal sensitive attributes of data points.
In contrast, clusters along dimensions 4-5 can be preserved
in DR without revealing sensitive information. A fair visual-
ization should show only the latter clustering, not showing
any clusters/subclusters related to sensitive categories.

Figure 1 shows plots by previous methods t-SNE and ct-
SNE (Kang et al., 2021) and proposed methods Fair-NeRV
and Fair-t-NeRV (columns a, b, c, d) applied to such data
to produce two-dimensional outputs. The top row shows a
coloring of points by their sensitive category: any cluster
structure corresponding to the coloring indicates the data
arrangement has revealed sensitive information, yielding
non-fair visualization. The bottom row shows coloring of
points by the high-dimensional mixture components of orig-
inal dimensions 4-5: the better these colors are shown as
clusters, the better the structure of the high-dimensional
data is shown. A traditional t-SNE embedding (subfigures
a and a’) shows all 3× 3 clusters, showing undesired asso-
ciation of data clustering to sensitive attributes. A recent
variant ct-SNE (b and b’) still reveals sensitive categories
as color separation is visible in b. The two variants of our
method (c and c’, and d and d’) successfully avoid showing
any relationship to sensitive attributes (c and d), while fully
revealing the remaining original high-dimensional structure
(c’ and d’; clusters correspond to mixture components of di-
mensions 4-5). This example uses cluster structure for ease
of illustration, but the principle applies to any structure: fair
visualization should show the high-dimensional structure as
well as possible without showing dependencies to sensitive
attributes. Such fair DR then complements traditional DR,
to give analysts a comprehensive view of what biases exist

in data and what structure can be explained without biases.

Our contributions: 1) We propose Fair-NeRV, a new non-
linear DR method preserving neighborhoods in data while
removing dependency on sensitive information, thus pre-
serving the remaining non-sensitive neighborhood structure.
It includes fair versions of SNE and t-SNE as special cases.
It involves a new fairness cost which can also be applied
to other nonlinear DR methods. Ours is the first neighbor
embedding solution designed for fair DR. 2) We propose an
evaluation measure for fair DR performance. 3) In experi-
ments our method outperforms comparable other methods.

2. Previous Work
We focus on neighbor embedding methods for DR, that
optimize low-dimensional coordinates for data so that their
neighborhood relationships approximate high-dimensional
data neighborhoods. SNE defines conditional distributions
of neighbors of a data point and measures differences by
Kullback-Leibler divergences; t-SNE uses joint distributions
of data and neighbors and Student-t based low-dimensional
neighborhood probabilities.

The Neighbor Retrieval Visualizer (Venna et al., 2010) is a
nonlinear DR method that aims to create low-dimensional
data embeddings to preserve high-dimensional neighbor
relationships of samples. It can be seen as a generalization of
SNE/t-SNE, and relates its objective to information retrieval.
Given the input data set {xi}ni=1, xi ∈ Rm, the probability
that data point j is picked as a neighbor of point i is

pij =
exp(−||xi − xj ||2/σ2

i )∑
k ̸=i exp(−||xi − xk||2/σ2

i )
. (1)

where σ2
i controls falloff of the pij with respect to distance.

NeRV outputs an embedding of the points {yi}ni=1,
yi ∈ Rd, in a d-dimensional output space (e.g., 2D/3D
for visualization), where neighbor probabilities qi =
{qij}j=1,...,N, j ̸=i are defined based on output coordinates
yi so that the probability to pick j as a neighbor of i is

qij =
exp(−||yi − yj ||2/σ2

i )∑
k ̸=i exp(−||yi − yk||2/σ2

i )
. (2)

NeRV optimizes the low-dimensional coordinates to min-
imize the difference between the high and low dimen-
sional neighborhood distributions, as measured by Kullback-
Leibler divergences. The objective function of NeRV is:

CNeRV =
1

N

N∑
i=1

(
λDKL(pi, qi) + (1− λ)DKL(qi, pi)

)
where λ is a tradeoff parameter, and DKL is the Kullback-
Leibler divergence, DKL(pi, qi) =

∑
j ̸=i pij log

pij

qij
. Di-

vergences of neighborhoods in NeRV are evaluated in both
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Figure 1. Dimensionality reduction results for SyntheticData. (a) and (a’): t-SNE result. (b) and (b’): ct-SNE result. (c) and (c’):
Fair-NeRV result. (d) and (d’): Fair-t-NeRV result. In each column, colors in the top figure show the categorical values of the sensitive
attributes, and colors in the bottom figure show a clustering of the original high-dimensional data (here a clustering independent of the
sensitive attribute) as examples of its high-dimensional structure. A good visualization preserves the high-dimensional data structure,
showing its clusters clearly, while not revealing any clustering of the sensitive attributes.

directions, from high-dimensional to low-dimensional space
and vice versa. The objective has an interpretation as per-
formance of an information retrieval task: the divergence
DKL(pi, qi) has been shown to generalize an information re-
trieval cost of misses in retrieving original high-dimensional
neighbors from the low-dimensional space, and the diver-
gence DKL(qi, pi) is a generalization of the cost of false
neighbors in the retrieval. The weight λ is a tradeoff of the
costs of misses versus false neighbors. Thus NeRV opti-
mizes embeddings for information retrieval of neighbors,
minimizing the cost of errors. SNE/t-SNE can be seen as
special cases of NeRV which minimize misses only.

NeRV has been extended to settings having class labels.
The extension ClassNeRV (Colange et al., 2020) uses a
cost function that separates neighbor distributions to within-
class and between-class neighbors and penalizes their input-
output space probability differences separately:

CCNeRV =
∑
i

τ∈DB(p
∈
i , q

∈
i ) + (1− τ∈)DB(q

∈
i , p

∈
i )

+ τ /∈DB(p
/∈
i , q

/∈
i ) + (1− τ /∈)DB(q

/∈
i , p

/∈
i )

where DB(p
Si
i , qSi

i ) =
∑

j∈Si
pij log

pij

qij
+ qij − pij is a

Bregman divergence between subsets of probabilities pi and
qi and Si is a set of indices summed over; in a Bregman
divergence the probability subsets do not need to sum to
1. Here S∈

i is the set of within-class neighbors of i and
p∈i = {pij}j∈S∈

i
and q∈i = {qij}j∈S∈

i
are the correspond-

ing probability subsets, similarly S /∈
i are the between-class

neighbors of i and p/∈
i and q /∈

i their probability subsets, and
(τ∈, τ /∈) ∈ [0, 1] are tradeoff parameters for the two diver-
gences in each subset. If τ∈ > τ /∈, the ClassNeRV cost

function penalizes more within-class missed neighbors and
between-class false neighbors than other distortions; this
was the setting in (Colange et al., 2020).

Previous work on fair DR. There have been recent works
on fairness in DR. Fair PCA (Samadi et al., 2018) imposed
constraints on learning a subspace for two protected groups
by minimizing maximum deviation of reconstruction error
for all protected groups. Olfat and Aswani (2019) proposed
a quantitative definition of fairness for DR and developed a
convex SDP formulation for Fair PCA. Later Kamani et al.
(2022) introduced a Pareto Fair PCA and an algorithm to
learn a subspace preserving fairness while slightly compro-
mising reconstruction error. Methods such as MMD-based
fair PCA (MBF-PCA; Lee et al., 2022), Iterative Null-space
Projection (Ravfogel et al., 2020) and Relaxed Linear Ad-
versarial Concept Erasure (Ravfogel et al., 2022) have been
proposed. However, the above perform only linear DR.
Adapting linear fair DR methods to nonlinear DR is chal-
lenging. Linear methods may rely on “null spaces”, or
projections defined by orthogonality notions that can re-
move the effect of a sensitive attribute entirely; in nonlinear
mappings null-space mappings may not exist, let alone have
an easily definable mathematical form. Thus nonlinear DR
needs a new approach.

Demographic parity (Agarwal et al., 2018) and equal op-
portunity (Hardt et al., 2016) are common fairness notions
for pairs of discrete-valued variables, i.e. target classes of a
classifier and sensitive-attribute categories in a supervised
setting. Although some linear methods above have connec-
tions to these measures, in general, in our exploratory data
analysis setting output embeddings are continuous-valued
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organizations of data (multivariate coordinates) that do not
follow a simple standard distribution. Thus it is not feasible
to compute demographic parity/equal opportunity directly
for our setting and adapting such measures to the setting
is nontrivial. However, the fairness cost we will introduce
can be seen as a novel local demographic parity measure, as
detailed in Appendix M.

Conditional t-SNE. There has not been much research in
fair nonlinear DR, and in particular not in fair neighbor em-
bedding. However, we now point out that a recent algorithm
which was not introduced for the purpose of fair DR turns
out to be usable for it. Conditional t-SNE (ct-SNE; Kang
et al., 2021) is an extension of t-SNE that aims to find “com-
plementary” embeddings where already-known structure is
“factored out”. It constructs a conditional low-dimensional
neighborhood probability given class labels. The aim is to
modify low-dimensional neighbor relationships to reduce
importance of keeping same-labeled data points nearby.

We introduce a new way to use ct-SNE: if sensitive attribute
categories are given as classes, it turns out the ct-SNE ob-
jective reduces the degree to which the method aims to keep
points in the same sensitive category near each other in DR
output. Thus ct-SNE can be used as a baseline for nonlinear
fair DR. This is a novel use of ct-SNE. However, ct-SNE has
downsides: its objective is mathematically opaque due to
its modifications of low-dimensional neighbor probability,
which no longer correspond to straightforward closeness on
a display, and the ct-SNE objective has no clear information
retrieval interpretation. We use ct-SNE as a baseline in ex-
periments. Next we introduce our new nonlinear fair DR
method which directly formulates fair DR as an information
retrieval task, and outperforms ct-SNE in experiments.

3. Fair DR: Our Method
A simplistic approach to achieve fairness in DR might be
removing the sensitive attributes from the feature set before
training the DR model. However, this is insufficient, as it
can leave data variation along other features having strong
dependencies with the sensitive attributes. As an extreme
case, if some variable is an identical copy of a sensitive
attribute, leaving such variation in the data would allow
easy identification of sensitive attribute values based on
data positions in the DR output. More generally, any data
variation visible after DR having statistical dependencies
with sensitive attributes would lead to unfairness.

Data variation having dependencies with sensitive attributes
may originate from any (or all) original features and may
occur in any part of DR output. Thus, leaving out original
features that are, e.g., correlated with sensitive attributes is
not suitable: one might end up leaving out all features, or
too many, so that little information remains to be visualized.

Instead, DR should aim to create a mapping where visi-
ble variation in output is not associated with sensitive at-
tributes. The mapping would need to be learned from data
with knowledge of their sensitive attributes, so that their
dependency with DR output can be evaluated and removed.

3.1. Fair-NeRV and Fair-t-NeRV

We develop our novel method by several steps. We first
develop a novel fairness objective, and combine it with a
novel use of the ClassNeRV neighbor retrieval objective.

We create an information retrieval based fairness objective,
which can then be combined with a neighborhood preser-
vation objective. The idea is: if the visualization is fair,
the position of a data point in the visualization should not
reveal its sensitive attribute. Thus, in a fair visualization
one should not be able to predict the sensitive attribute value
of a point based on its location. Therefore, we will design a
cost function penalizing success of such prediction.

Neighbor-based prediction of sensitive attributes. For
a neighbor embedding DR method it is appropriate to
use neighbor based prediction of sensitive attributes. We
consider a leave-one-out scheme, to predict the sensitive-
attribute value of each data point i from its neighbors.

Let S be the number of sensitive attribute values. Consider a
point i as a central point, meaning a point whose neighbors
we aim to retrieve. Suppose we know the sensitive-attribute
values for neighbors j but not the central point i. Based
on neighbors of point i in the output space, the distribution
ri = {ris}s=0,...,S−1 can be estimated, where ris is the
estimated probability of sensitive-attribute value s. The
probability can be estimated as

ris =

∑
j ̸=i δ(sj , s) exp(−||yi − yj ||2/σ2

i )∑
j ̸=i exp(−||yi − yj ||2/σ2

i )
(3)

where sj denotes the sensitive-attribute value of point j, and
δ(sj , s) = 1 if sj = s and zero otherwise.

Note that a simple classification penalty approach is not
sufficient for a fairness objective: minimizing probability
risi of the correct categorical sensitive attribute value would
aim to surround each point of some sensitive category by
members of different categories, ignoring their relative pro-
portions, and disallowing any neighbors of the correct cate-
gory. Instead, we construct a fairness objective that aims to
keep the distribution ris for each point i close to a desired
distribution.

Desired sensitive attribute distribution. To have a fair
visualization, each data point i should have neighbors with
sensitive values other than its own value si. Moreover,
among the other sensitive values no data point should prefer
a particular value among its neighbors. The desired distribu-
tion then has two properties: a) to control desired fairness,
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the distribution should allow us to control the proportion of
the categorical value si; b) the distribution should otherwise
be uninformative about any other sensitive values, in other
words it should follow overall proportions of those values.

The desired distribution for data point i is the same as
the overall distribution of sensitive attribute values, ex-
cept that we de-emphasize the prevalence of the sensitive
value si of point i. We de-emphasize si since point i it-
self already brings that value into the neighborhood. Let
u = {u(s)}s=0,...,S−1 be the overall sensitive attribute dis-
tribution in the data set, computed by dividing counts of
each sensitive attribute value by the number of data. We de-
fine a desired distribution ρi = {ρis}s=0,...,S−1 of sensitive
attribute values for each data point i as

ρis =

{
1− ω if s = si

u(s) · ω/(1− u(si)) otherwise

where u(si) is the overall proportion of sensitive value si in
the data and ω ∈ [0, 1] is a weight controlling influence of
value si in the neighborhood. When ω = 1− u(si) then ρi
reduces to the overall sensitive value distribution, otherwise
the larger the ω the more the prevalence of the value si is
de-emphasized among the neighbors. For all choices of
ω relative proportions of other sensitive values follow the
overall distribution, as desired.

Information retrieval based fairness criterion. We define
a fairness criterion measuring difference of the estimated
sensitive attribute distribution around each point from their
desired distributions. We measure this as an average of
Kullback-Leibler divergences, each having an information
retrieval interpretation: we set

CFairness =
1

N

∑
i

(
γDKL(ρi, ri)+(1−γ)DKL(ri, ρi)

)
,

(4)
where for point i the divergence DKL(ρi, ri) is a cost of
missed sensitive attribute values (having smaller estimated
probability than the desired one), DKL(ri, ρi) is a cost of
false neighbor sensitive values (having larger estimated
probability than desired), and γ is a tradeoff parameter of
the costs. Eq. (4) has an information retrieval interpretation:

Theorem 3.1. The cost CFairness in (4) is an average
information retrieval cost of misses and false neighbors. In
detail, under simplifying assumptions, CFairness ≈

const.

N

∑
i

(
γ(1−recall(i))+(1−γ)(1−precision(i))

)
where recall and precision are the typical information re-
trieval measures, in the task of retrieving the desired dis-
tribution of sensitive attribute values for each point from
the low-dimensional display. Proof. See Appendix B. This
shows our fairness measure is directly task-based.

Fairness-aware neighbor retrieval criterion. It is natural
to combine the information retrieval based fairness criterion
CFairness with the information retrieval based neighbor-
hood preservation criterion of NeRV. However, they would
be partly at odds: neighbor preservation would aim to pre-
serve all neighbors of a point i, even those that would re-
veal its sensitive attribute. One should focus on preserving
those neighborhood relationships that do not conflict with
the fairness objective: we do this by modifying the Class-
NeRV objective CCNeRV . In ClassNeRV tradeoff param-
eters (τ∈, τ /∈) in CCNeRV were set as τ∈ > τ /∈ to penal-
ize within-class missed neighbors and between-class false
neighbors more than other distortions. In fair DR we want
the opposite effect: we want to penalize missed neighbors
of the same categorical sensitive value and false neighbors
of other sensitive values less than other distortions, so that a
fair DR output can arrange an equal mix of sensitive cate-
gories around each data point. Thus we can use CCNeRV

in an opposite fashion to achieve this, setting τ∈ < τ /∈.

Final objective. To obtain fair visualization, we use a
weighted combination of the ClassNeRV neighbor retrieval
cost with τ∈ < τ /∈, and the retrieval based fairness cost:

CFairNeRV = βCCNeRV + (1− β)CFairness (5)

where β is a tradeoff parameter. The cost thus has an infor-
mation retrieval interpretation as a sum of retrieval costs,
with tradeoff parameters for which errors to penalize most.

Gaussian and t-distributed version. The CFairNeRV cost
can be used with Gaussian low-dimensional distributions,
or with Student-t based distributions as in t-SNE, where in
eqs. (2) and (3) each exponent term exp(−a) is replaced
by the form 1/(1 + a2). In the t-distributed version we also
leave out divisions by σ2

i from (2) and (3) for similarity
with methods such as t-SNE. We call the Gaussian version
Fair-NeRV and the t-distributed version Fair-t-NeRV.

Special case. Setting τ∈ = τ /∈ = 1 yields a fair version of
SNE and t-SNE as a special case. (In general our method
optimizes τ∈, τ /∈.) The special case has similar performance
to the general method in our experiments (Appendix I).

We note that the fairness cost can be combined with other
dimension reduction methods such as Isomap or LLE by
adding the cost to their objectives.

3.2. Optimization

The objective (5) is non-convex w.r.t the embedding Y ; we
find gradient based optimization from random initializations
works well. Any gradient based optimizer can be used. Gra-
dients have intuitive forms as forces between pairs of data;
Gaussian version shown in Appendix A, the t-distributed
one is similar. As in other pairwise methods, computa-
tional complexity is O(n2) and can be made O(n log n)
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with Barnes-Hut approximation; see Appendix C.

4. Experiments
We perform DR on six data sets, reducing them to 2D. We
compare Fair-NeRV/Fair-t-NeRV with other methods and
show output plots. To compare performance, we introduce
a new goodness measure for fair DR. We split each data set
to a training and test data set; parameters are optimized for
training sets, performance is evaluated on test sets.

4.1. Comparison Methods

We compare our method Fair-NeRV/Fair-t-NeRV with non-
linear DR methods: t-SNE as a widespread method and
conditional t-SNE (ct-SNE) since we showed its objective
can be applied for fair DR. We give a comparison show-
ing that Fair-NeRV/Fair-t-NeRV outperforms the linear fair
DR method MBF-PCA in Appendix K, and comparisons to
two restricted variants of our method (ablation studies) in
Appendices I and J.

4.2. Data Sets

We use one synthetic data and five real data sets.

The Syn data set is an artificial set of 1000 data points with
5 dimensions. The first three dimensions have three multi-
variate Gaussian clusters, cluster membership considered
sensitive information. Dimensions 4 and 5 dimension have
an independent mixture of three multi-variate Gaussian clus-
ters, considered non-sensitive information.
The Adult data (https://tinyurl.com/rsbk8wab), also called
Census Income, is a fairness benchmark with 48842 in-
stances and 14 attributes; gender is the sensitive attribute.
Communities and Crimes (CC; https://tinyurl.com/34sttp2t)
is a socio-economic data set from 46 US states in 1990, with
1994 samples (communities) and 127 attributes (4 categori-
cal and 123 numerical). The sensitive attribute is whether a
community has over 6% African American population.
The German credit data (https://tinyurl.com/y6h95pne) has
1000 bank account holders with 13 categorical, 7 numerical
and 1 binary attributes. Age is the sensitive attribute after
binarization into {young, old} by age thresholding at 25.
The Law School (LSAC) data set stems from an admission
council survey at 163 US law schools in 1991. It contains
law school admission records of 20798 students with 12
attributes (3 categorical, 3 binary, 6 numerical); Race is
considered as the sensitive attribute. We used preprocessed
data from https://tinyurl.com/mtu84w83.
The Pima data (https://tinyurl.com/4ytz6nm8) has 8 medi-
cal predictor variables and a diabetes class variable for 768
patients. A BMI categorization is the sensitive attribute
(BMI < 25: 0; 25 ≤ BMI < 30: 1; BMI ≥ 30: 2).

For any data sets having over 1000 points we take 1000

points by stratified sampling with respect to sensitive cat-
egories. We then split each data set into 50% training and
50% test data again by stratified sampling. Sensitive at-
tributes are excluded from input features for all methods.

4.3. Goodness Measures

While fairness measures have been proposed in tasks such
as classification, suitable measures are needed for fairness
and performance in nonlinear DR. We propose a measure.

Motivation: fairness depends on inspection scale. DR out-
put can be inspected at different scales from local towards
global, showing different levels of detail; DR performance
of neighbor embedding methods is also often evaluated
at different scales. We point out that fairness in DR also
depends on the inspection scale: in e.g. k-nearest neigh-
bor (kNN) based prediction of sensitive attribute values, as
the neighborhood size k grows the distribution of sensitive
values around any point becomes close to their overall dis-
tribution, and prediction performance falls towards that of
random guessing (we discuss the measure we use in the
next paragraph). Thus any DR output looks “fair” at a large
enough scale as sensitive attributes cannot be predicted any-
more. However, in an unfair visualization, data organization
revealing sensitive attributes may be present at multiple
scales, requiring a large k to reach random guessing.

Definition: Fair inspection scales. Let Perf(k) be a per-
formance measure of a scale-dependent sensitive attribute
predictor, evaluated at scale k. We call k a fair inspection
scale if prediction performance of sensitive attributes is at
most a small fraction ϵ different from random guessing, i.e.,
|Perf(k) − Perf(∞)| ≤ ϵ where Perf(∞) is the limiting
value corresponding to random guessing. We then define
the fairness scale threshold kfair as the smallest k such that
all k′ ≥ k are fair inspection scales:

kfair = min
k

s.t. max
k′≥k

|Perf(k′)− Perf(∞)| ≤ ϵ .

Classification goodness measure. As sensitive attributes
often have minority categories, hard kNN may have noisy
behavior; instead we consider soft kNN classification, which
assigns a point i to each sensitive value category (s = j)
with a weight ϵi,j corresponding to proportion of the k
neighbors in the category. Denote the set of points having
sensitive value j by Zj . With a soft classification, preci-
sion of category j is defined as the proportion of all weight
assigned to category j arising out of true members of the cat-
egory, i.e., precision(j) = (

∑
i∈Zj

ϵi,j)/(
∑

i′ ϵi′,j). Sim-
ilarly, recall of category j is the proportion of weight at
which the true members of the category are assigned to it,
i.e., recall(j) = (

∑
i∈Zj

ϵi,j)/|Zj |. The definitions reduce
to usual precision and recall when the kNN classification
becomes non-soft. From precision and recall the f1 score is
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Table 1. Dimensionality reduction performances on test data sets by high dimensional cluster-based f1k and f1Avg scores.

Data
t-SNE ct-SNE Fair-NeRV Fair-t-NeRV

k f1k f1Avg k f1k f1Avg k f1k f1Avg k f1k f1Avg

Syn 388 0.3895 0.3650 163 0.9695 0.5542 26 0.9993 0.6804 13 1 0.6936

Adult 347 0.2290 0.1944 153 0.3804 0.2429 17 0.7826 0.3281 19 0.7276 0.3033

CC 474 0.1739 0.1693 425 0.1735 0.1692 28 0.5586 0.2912 20 0.5703 0.2798

German 361 0.2127 0.1852 210 0.2268 0.2045 28 0.6597 0.3010 25 0.5733 0.2708

LSAC 122 0.4678 0.2631 135 0.4433 0.2600 10 0.8297 0.3277 19 0.7998 0.3204

Pima 310 0.2002 0.1813 92 0.3314 0.2232 14 0.6990 0.3177 13 0.6192 0.2752

defined as usual as

f1(j) = 2
precision(j) · recall(j)

precision(j) + recall(j)

and overall f1 is then the average over sensitive categories,
f1 = 1

S

∑S−1
j=0 f1(j). In Appendix E we show that f1

tends to 1/S as the scale grows, i.e. Perf(∞) = 1/S.

For any visualization, we locate the fairness scale threshold
kfair, i.e. smallest k such that f1 of kNN sensitive attribute
prediction is near random guessing at all k′ ≥ k. We then
evaluate DR performance at fair scales: at k or all k′ ≥ k.

DR performance measure. We could evaluate DR perfor-
mance at the chosen scales by any suitable measure. The aim
is to evaluate how much high-dimensional data properties
are preserved in DR output at the fair scales. For neigh-
bor embedding methods it would be tempting to simply
evaluate neighbor retrieval performance; however, to avoid
favoring methods like NeRV designed for neighbor retrieval,
we use an indirect measure: predicting high-dimensional
clusters. We cluster the high-dimensional data excluding
the sensitive attribute (here by k-means to 6 clusters for
real data; and using the nonsensitive available clustering for
synthetic data) and evaluate kNN performance of predicting
the high-dimensional cluster of a point from its neighbors
in DR output, by the f1 measure. We report the f1 at the
fairness scale threshold k (“f1k”) and the average (“f1Avg”)
of f1 over all scales N > k′ ≥ k, where the number of
samples N yields an upper limit of kNN neighborhood size.
We use an independent run of clustering on each training
set and test set, to avoid overfitting parameters to a specific
clustering. For more detail, Appendix H shows plots of f1 of
the clusters and f1 of sensitive attribute values at all scales.

4.4. Choice of Parameters

All the methods involve neighborhood scales σi; we set them
by an effective neighborhood size as in (Venna et al., 2010),
by 20 neighbors if the minority sensitive category has over

100 points and 10 neighbors otherwise. Other hyperparam-
eters (for ct-SNE, a neighborhood perturbation parameter;
for Fair-NeRV and Fair-t-NeRV, ω and tradeoff parameters
γ, β,τ∈,τ /∈) are fitted to each training set. For all methods,
hyperparameters are chosen to maximize training-set per-
formance f1Avg chosen over 5 rounds of uniform sampling
of 3600 hyperparameter sets in the hyperparameter spaces
of each method with feasible ranges for each hyperparame-
ter (see Appendix D). Note that each method optimizes its
hyperparameters over the same number of parameter combi-
nations to keep comparison fair. The methods are then run
with the chosen hyperparameters on the held-out test data
and are evaluated by the f1k and f1Avg scores.

Our hyperparameter search takes fairness into account.
Training-set performance is evaluated by f1Avg, average
f1 of cluster retrieval over the fair scales defined by fairness
of sensitive attributes. Thus the search optimizes fairness
and retrieval performance simultaneously. Hyperparameters
yielding fairness over many scales but bad retrieval perfor-
mance over them, or hyperparameters yielding fairness only
over the few largest scales, will not be selected. Optimiz-
ing f1Avg optimizes the amount of fair scales having good
retrieval: a walkthrough of this argument is in Appendix
L. The f1Avg is based on clusters of remaining attributes;
Appendix N discusses how evaluation at fair scales avoids
dependency of the clustering with sensitive attributes.

For all data, the hyperparameter search suffices to pick the
fairness hyperparameter β and other hyperparameters. We
find optimized β values are small when sensitive attribute
values have overall even proportions as in Syn (0.04) and
CC data (0.05). For other data β is from 0.17 (Pima) to 0.46
(Adult). Impact of σ and λ is like in Venna et al. (2010).

4.5. Results

Quantitative measures. Table 1 reports f1k and f1Avg
scores of different embeddings for test data sets with best

7
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parameters obtained from training data sets. It shows how
much high dimensional structure is visible at fair scales of
inspection; the more fair an embedding is, and the more
high-dimensional data structure is shown at fair scales, the
higher the scores will be. Note that for all methods f1k will
tend to report higher values than f1Avg as the latter is an
average over multiple scales with largest scales having broad
neighborhoods. Best scores on each data set are bolded.

In Table 1, for all data sets our proposed new methods Fair-
NeRV and Fair-t-NeRV strongly outperform the comparison
methods t-SNE and ct-SNE. Fair-NeRV/Fair-t-NeRV has
smaller fairness scale threshold than tsne and ct-sne for
all datasets. On the real data sets, Fair-NeRV attains the
highest values of both f1k and f1Avg, and Fair-t-NeRV has
second highest values. On synthetic data the t-distributed
Fair-t-NeRV has best results and Fair-NeRV is second best.
Among comparison methods, ct-SNE performs reasonably
especially on synthetic data, but on real data sets the score
difference to Fair-NeRV and Fair-t-NeRV remains large;
ct-SNE outperforms basic t-SNE on four data sets but not
on the CC and LSAC data sets. Overall, Fair-NeRV and
Fair-t-NeRV consistently give the best results for fair DR.

Plots. We show test data embeddings for four data sets
Syn (Fig. 1) and Adult, CC, and German (Fig. 2); plots
for LSAC and Pima are in Appendix G. In each figure,
subplots a/a’, b/b’, c/c’, d/d’ are embeddings by t-SNE, ct-
SNE, Fair-NeRV, Fair-t-NeRV, colored by sensitive attribute
values/high-dimensional clusters. Fair-NeRV and Fair-t-
NeRV yield fair embeddings that are informative of high-
dimensional structure, outperforming t-SNE and ct-SNE.

5. Conclusions and Discussion
We introduced a fair nonlinear dimensionality reduction
(DR) method Fair-NeRV and its variant Fair-t-NeRV. They
optimize an information retrieval objective, avoiding errors
in retrieving neighbors and retrieving a desired uninfor-
mative distribution for sensitive attributes, with a tradeoff
parameter for whether neighbor preservation or fairness is
more important. They find DR outputs fair to sensitive
groups (e.g. groups by gender, age, religion, education) that
still show high-dimensional data structure well, outperform-
ing previous nonlinear and linear DR. The new methods can
be used alongside traditional DR, to explore which variation
is prominent in data and which variation can be represented
without dependence on sensitive attributes.

Our cost function terms have direct information retrieval
interpretations. For the neighbor retrieval term (NeRV cost
function) see (Venna & Kaski, 2007); for the fairness cost
the connection to information retrieval is shown in Appendix
B. This is unlike e.g. ct-SNE which is only mathemati-
cally/algorithmically motivated in terms of how fairness is

incorporated into its cost function. We also proposed mea-
sures f1k and f1Avg for fair DR quality. Our scale-based
quality criterion f1Avg gives insight into the scales at which
fairness is achieved, and allows comparison of methods.

Our method uses sensitive attributes to ensure fairness of
exploration, in this sense they act as side information rather
than supervision. (Supervised DR using sensitive attributes
as prediction targets would do the opposite: it would arrange
low-dimensional points to reveal sensitive attribute values.)

Fairness in Exploratory Data Analysis (EDA) is our primary
aim. In EDA there is no target attribute to be predicted, and
formulating the notion of fairness and optimizing it has been
a challenge, especially for nonlinear DR where e.g. concepts
of null spaces (Ravfogel et al., 2020) are not feasible. We
define an objective for fair nonlinear DR based on neighbor
retrieval, resulting in a task-based fairness measure suitable
in EDA. Fair-NeRV visualizations complement baseline
unfair visualizations in EDA, and reveal what structure of
data can be visualized without revealing sensitive attributes.
In experiments Fair-NeRV and Fair-t-NeRV consistently
showed detailed structure of data sets; the detail they show
is on an equal level as in t-SNE, thus they are usable for fair
EDA. The good results of our unsupervised quality measure
with clusters also suggest our results are good for EDA.

We introduced the first neighbor embedding solution de-
signed for fair nonlinear DR. Our main comparisons were
to nonlinear DR; our method yielded the best results for
fair nonlinear DR in experiments. Approaches have been
proposed for linear fair DR: benefit of fair nonlinear DR
vs. fair linear DR is generally the same as that of nonlinear
DR vs. linear DR; in Appendix O we discuss the benefits.
In an experiment (Appendix K) our method outperformed
a representative linear fair DR method. Thus our method
outperformed both nonlinear and linear comparable DR.

We list a few future work topics. 1) Fair-NeRV is intended
for EDA, but since it yields good results for exploring data,
its outputs might be usable as input features for downstream
classification with respect to some prediction target. 2) We
assume a categorical sensitive attribute; extension to contin-
uous attributes is future work. 3) The scale-dependent sensi-
tive attribute predictor is defined very generally but instanti-
ated as KNN. The concept of scale/smoothing/regularization
applies to other predictors too, but this deserves follow-up
studies. 4) Fair EDA case studies with domain experts.

Software. Software (Matlab & C++) and data are available
at https://github.com/wenxu-fi/Fair-NeRV.
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Figure 2. Test data embedings. Top: Adult test data. t-SNE (a) reveals sensitive information through concentrations of majority/minority
values (male, green; female, red points). ct-SNE (b) mixes gender information somewhat but not fully. Fair-NeRV (c) mixes the
gender information quite well and still shows nonsensitive clusters well (c’). Fair-t-NeRV (d) also mixes gender information and retains
non-sensitive structure (d’). Middle: CC test data. t-SNE (a) reveals sensitive information by clear red and green concentrated areas at
upper left and lower right. ct-SNE (b) fails similarly, green and red concentrated at top left and lower right. Fair-NeRV (c) succeeds in
mixing sensitive attributes and still shows high-dimensional clusters well (c’). Fair-t-NeRV (d, d’) similarly works well. Bottom: German
test data. t-SNE and ct-SNE (a, b) reveal sensitive information in clear clusters dominated by an age group (red and blue). Fair-NeRV (c)
mixes sensitive information evenly and shows high-dimensional clusters well (c’). Fair-t-NeRV (d, d’) works almost as well as Fair-NeRV
and still outperforms t-SNE and ct-SNE.
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A. Gradient of the Cost Function
In these appendices we provide further details of the gradient of the cost function (Appendix A), information retrieval
interpretation of the fairness cost (Appendix B), computational complexity (Appendix C), hyperparameter ranges (Appendix
D), definition of fair evaluation scales (Appendix E), and drawing of the plots (Appendix F). We also show plots for
data sets LSAC and Pima that were not shown in the main paper (Appendix G), plots of f1 scores over different scales
(Appendix H), two comparisons to restricted special cases of our method (Appendix I and Appendix J), a comparison to the
MBF-PCA method (Appendix K). We further provide discussions of the motivation of our hyperparameter search procedure
(Appendix L), connection of our fairness cost to demographic parity (Appendix M), avoiding unfairness in the cluster-based
performance evaluation (Appendix N), and reasons why we investigate nonlinear approaches for fair DR (Appendix O).

First, we provide the gradients for both terms of the cost function CFairNeRV as follows. The gradient of the fairness cost
term CFairness is

∂Cfairness

∂yi
=
∑
j ̸=i

γ

N
·
[
2

σ2
i

(
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ρisj
risj

)
qij +

2

σ2
j

(
1− ρjsi

rjsi

)
qji

]
· (yj − yi)

+
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Denote N∈
ij = τ∈(qij − pij) + (1 − τ∈)qij log

qij
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i
N /∈

ij . The gradient of the neighbor retrieval cost term CCNeRV is

∂CCNeRV
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B. Information Retrieval Interpretation
We show the fairness cost has an information retrieval interpretation.

Theorem 3.1. (restated from the main paper). The cost CFairness in Eq. (4) is an average information retrieval cost of
misses and false neighbors. In detail, under simplifying assumptions,

CFairness ≈
const.

N

∑
i

(
γ(1− recall(i)) + (1− γ)(1− precision(i))

)
where recall and precision are the typical information retrieval measures, in the task of retrieving the desired distribution
of sensitive attribute values for each point from the low-dimensional display. More precisely, recall is the proportion of true
positives out of all positives, and precision is the proportion of true positives out of all retrieved items, where the sets of true
positives, all positives, and retrieved items will be defined in the proof below.

Proof. The fairness cost CFairness is a weighted average of several Kullback-Leibler divergences of two kinds, DKL(ρi, ri)
and DKL(ri, ρi). We first show each such individual divergence has an information retrieval interpretation in terms of
information retrieval costs of misses and false neighbors, by a proof analogous to one used for neighbor retrieval costs in
(Venna et al., 2010). We then discuss the interpretation of the full fairness cost.

Consider the distribution of sensitive attributes around a data point i in the low-dimensional space. Suppose the desired
distribution of sensitive attributes ρi has uniform high probabilities for a subset of the sensitive attribute values (denote
the subset as Ai and the number of sensitive attribute categories in it as Li = |Ai|) and very low uniform probabilities for
all other S − Li classes, where S is the total number of possible sensitive attribute values. The probability of a sensitive
attribute category can then be written as ρi(s) = (1− κ)/Li for categories s ∈ Ai and ρi(s) = κ/(S − Li) for categories
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s /∈ Ai, where κ is a very small positive number. Similarly, suppose that the low-dimensional distribution ri has uniform
high probabilities for a subset of categories (denote the subset as Bi and the number of sensitive attribute categories in it as
Mi = |Bi|) and very low probabilities for all other S −Mi categories. The probability of a sensitive attribute category can
then be written as ri(s) = (1− κ)/Mi for categories s ∈ Bi and ri(s) = κ/(S −Mi) for categories s /∈ Bi. Note that the
sets Ai and Bi may differ from each other including their sizes, and each point i has its own sets Ai and Bi.

Then the divergence DKL(ρi, ri) becomes

DKL(ρi, ri) =
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(6)

and because the terms log[(1− κ)/κ] dominate other terms when κ is small, the above further simplifies to

DKL(ρi, ri) ≈
(
|Ai\Bi|

1− κ

Li
− |Bi\Ai|

κ

S − Li

)
log

1− κ

κ
≈ |Ai\Bi|

Li
(1 − κ) log

1− κ

κ
=

NMISS,i

Li
C (7)

where NMISS,i = |Ai\Bi| is the number of missed sensitive attribute values that had high probabilities in the desired
distribution but low probabilities in the actual low-dimensional distribution around point i, and C is a constant depending
only on κ. Further, since recall of a query is the rate of true positives NTP,i = |Ai ∩ Bi| out of all positives NPOS,i =
|Ai| = Li, we have recall(i) = NTP,i/NPOS,i = |Ai ∩Bi|/Li = (|Ai|− |Ai\Bi|)/Li = 1−NMISS,i/Li, and therefore
NMISS,i/Li = 1 − recall(i). Thus the dominating term of the divergence is directly proportional to 1 − recall(i).
Minimizing the divergence thus maximizes recall of retrieving categories of the desired sensitive attribute distribution. The
exact relationship holds under the assumptions at the start of the proof, more generally with free-form distributions ρi and ri
minimizing the divergence can be seen as maximizing a generalization of recall.

Similarly, for the divergence DKL(ri, ρi) we have
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S −Mi

)
+ (S − |Bi ∪Ai|)

κ

S −Mi
log

S − Li

S −Mi
(8)
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and because the terms log[(1− κ)/κ] again dominate this simplifies to

DKL(ri, ρi) ≈
(
|Bi\Ai|

1− κ

Mi
− |Ai\Bi|

κ

S −Mi

)
log

1− κ

κ
≈ |Bi\Ai|

Mi
(1 − κ) log

1− κ

κ
=

NFP,i

Mi
C (9)

where NFP,i = |Bi\Ai| is the number of false positives, sensitive attribute values that had low probabilities in the desired
distribution but high probabilities in the actual low-dimensional distribution around point i, and the constant C again only
depends on κ. Since precision of a query is the rate of true positives NTP,i out of all retrieved items, i.e. sensitive values
with high low-dimensional probability, denoted NRETR,i = |Bi| = Mi, we have precision(i) = NTP,i/NRETR,i =
|Ai ∩Bi|/Mi = (|Bi| − |Bi\Ai|)/Mi = 1−NFP,i/Mi, and therefore NFP,i/Mi = 1− precision(i). The dominating
term of the divergence is thus proportional to 1 − precision(i) and minimizing the divergence maximizes precision of
retrieving categories of the desired sensitive attribute distribution. Again, the exact relationship holds under the assumptions
at the start of the proof, and more generally with free-form distributions ρi and ri minimizing the divergence can be seen as
maximizing a generalization of precision.

Given the information retrieval formulation of each divergence, the total fairness cost can then be written as

CFairness =
1

N

∑
i

(
γDKL(ρi, ri) + (1− γ)DKL(ri, ρi)

)
≈ C

N

∑
i

(
γ(1− recall(i)) + (1− γ)(1− precision(i))

)
, (10)

which is (up to the constant factor C) the averaged cost of information retrieval errors (in terms of precision and recall)
when retrieving the categories of the desired sensitive category distributions for each of the N data points, and γ controls the
balance between precision and recall. This completes the proof.

C. Computational Complexity
It is easy to see that computation of the cost function and gradient of Fair-NeRV and Fair-t-NeRV has complexity O(n2)
with respect to the number of data points n, since computation can be organized to compute terms such as divergences
in a first step which are then used for final computation of the cost and gradients. Therefore the complexity of the new
methods is the same as that of other neighbor embedding methods such as t-SNE, ct-SNE, NeRV, and ClassNeRV. Also, like
several other neighbor embedding methods, our method can be optimized with a Barnes-Hut based approximation for time
complexity O(n log n). FIt-SNE style reformulation is future work. In this work we focused on the idea rather than the
efficiency.

An individual run of Fair-NeRV or Fair-t-NeRV on one of the experiment data sets is very fast, taking less than a minute.
For the experiments with hyperparameter search, for all methods we ran different hyperparameter combinations in parallel
on a computing cluster, before selecting the final hyperparameter combinations.

D. Hyperparameter Ranges
As mentioned in Section 4.4 of the main paper, hyperparameters of methods are chosen to maximize training-set performance
f1Avg chosen over 5 rounds of uniform sampling of 3600 hyperparameter sets in the hyperparameter spaces of each method
with feasible ranges. In our experiments, we set the ranges for Fair-NeRV and Fair-t-NeRV parameters to be τ∈ ∈ [0, 1],
τ /∈ ∈ (τ∈, 1], β ∈ [0, 1], γ ∈ [0, 1], and ω ∈ [0.5, 0.99]. The ct-SNE method has a hyperparamer β′ whose range is
[10−7, 1]. Out of the 5 rounds of uniform sampling of ranges for Fair-NeRV/tFair-NeRV (log-uniform sampling of the range
for the ct-SNE hyperparameter), the hyperparameter combination having the highest f1Avg is chosen and is then used for
evaluation on the test set.

E. Fair Scale Definition
As mentioned in the main paper, an evaluation scale is considered fair if the f1 score of sensitive attribute classification, here
denoted f1(Sensitive), is close to that of random guessing. We now derive the random guessing performance.
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Theorem E1. With the soft precision, recall, and f1 definitions in the main paper, performance of random guessing according
to overall category proportions equals 1/S where S is the number of sensitive categories. Moreover, f1 of soft kNN
classification of sensitive attribute values tends to f1 of such random guessing as scale grows.

Proof. It is easy to show that f1 of soft kNN classification tends to random guessing as scale grows: as the scale k in kNN
grows towards using all neighbors, neighbor proportion ϵi,j of any sensitive attribute category j around each point i tends
towards the overall proportion of the category in the data set, denoted u(j). Then it is easy to show that soft precision, soft
recall, and the corresponding f1 measure all tend to u(j). Denote the set of points having sensitive value j by Zj .

• For precision, we have precision(j) = (
∑

i∈Zj
ϵi,j)/(

∑
i′ ϵi′,j) → (

∑
i∈Zj

u(j))/(
∑

i′ u(j)) = u(j).

• For recall, we similarly have recall(j) = (
∑

i∈Zj
ϵi,j)/|Zj | → (

∑
i∈Zj

u(j))/|Zj | = u(j).

• For the f1 score we have f1(Sensitive)(j) = 2 precision(j)·recall(j)
precision(j)+recall(j) → 2 u(j)·u(j)

u(j)+u(j) = u(j).

Therefore the average value of one of these measures over all S sensitive categories simply tends to the reciprocal of the
number of sensitive categories: for the f1 score we have f1(Sensitive) = 1

S

∑S
j=1 f1

(Sensitive)(j) → 1
S

∑S
j=1 u(j) =

1
S , and

precision and recall yield the same result. This concludes the proof.

We thus call a scale k fair if the f1 at that scale, denoted f1
(Sensitive)
k , is close to random guessing so that |f1(Sensitive)

k − 1
S | ≤ ϵ,

where ϵ is a very small allowed difference. In experiments we set the allowed difference to be a small fraction, here 1%, of
the range between random guessing and perfect f1 score: ϵ = 0.01 · (1− 1

S ).

F. Plot Drawing Details
Since we deal with sensitive attributes having minority categories, in visualizations it is important not to obscure sensitive
information (and hinder visual assessment of plot quality) with overplotting issues. Therefore in experiments, for all methods
the images colored by sensitive attribute categories are drawn to best highlight the sensitive distribution as follows.

If a data set has a small sensitive category (with less than 100 points, i.e., about 20% of all points in a plot of 500 points),
we plot the categories in order of size largest first to ensure minority categories are not overplotted: this is done for the
German, LSAC and Pima data sets. Otherwise, i.e., when the sensitive categories have a fairly even overall distribution, we
use transparency-based color mixing for the sensitive category colored plots, to ensure all sensitive categories are shown
where they occur: this is done for the Syn, Adult, and CC data sets.

G. Additional Visualizations
We show visualizations of the Law School (LSAC; Figure 3) and Pima (Figure 4) data sets here, in a similar format to Figure
2 of the main paper. As discussed in the main paper, the new Fair-NeRV and Fair-t-NeRV methods clearly outperform
the comparison methods, yielding visualizations that are fair with respect to sensitive attributes but are still able to be
informative about high-dimensional data structure, as seen here from high-dimensional clusters.

H. Plots of f1 Score
Figures 5 and 6 show plots of f1 score of sensitive attribute values and f1 of high-dimensional clusters over different
neighborhood scales k (horizontal axis in the figures), for two of the data sets. In these figures, the desired result for
fair visualization is that 1) the f1 for sensitive attribute values would remain low over as many scales as possible, so
that the low-dimensional location of a point cannot be used to accurately retrieve its sensitive attribute value, and 2) the
f1 for high-dimensional clusters would remain high over as many scales as possible, especially those scales where the
sensitive-attribute f1 is low, so that the low-dimensional visualization remains informative about the high-dimensional
organization of data.

The figures show that Fair-NeRV/ Fair-t-NeRV achieves clearly smaller f1 scores for sensitive attribute values over the
neighborhood scales than other methods. Therefore, Fair-NeRV/Fair-t-NeRV also achieves a smaller fairness scale threshold
than other methods, i.e., it reaches sooner a scale after which the f1 of sensitive attribute values remains low. Also, at the
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Figure 3. Dimensionality reduction results for the LSAC data set. Embeddings by t-SNE (a, a’) and ct-SNE (b, b’) clearly reveal sensitive
information through concentrations of the minority and majority sensitive categories (applicant’s race, red dots: non-white, blue dots:
white). In contrast, the Fair-NeRV output (c, c’) has an even distribution of the sensitive attribute values throughout the embedding, while
still showing high dimensional data organization well, as seen from the coloring by high-dimensional clusters. The Fair-t-NeRV version
(d, d’) similarly works well.

t-SNE      ct-SNE       Fair-NeRV   Fair-t-NeRV

coloring by
sensitive 
attribute
categories

coloring by
high-
dimensional 
clusters

(a) (b) (c) (d)(c)

(a') (b') (c') (d')

Figure 4. Dimensionality reduction results for the Pima data set. Outputs of t-SNE (a, a’) and ct-SNE (b, b’) show clusters having
strong concentrations of particular sensitive groups (BMI categories, normal weight: red; overweight: green; obese: blue), thus the
low-dimensional organization reveals sensitive attributes. Our method Fair-NeRV (c, c’) mixes sensitive groups better than t-SNE
and ct-SNE while still showing high dimensional data organization well, as seen from the coloring by high-dimensional clusters. The
Fair-t-NeRV version (d, d’) also works well.
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Figure 5. Graph of f1 of sensitive attribute values (sensitive categories) and high-dimensional non-sensitive clusters for syn data.

Figure 6. Graph of f1 of sensitive attribute values (sensitive categories) and high dimensional clusters for adult data
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Figure 7. Dimensionality reduction results for SyntheticData. Outputs of SNE (a, a’), Fair-SNE (b, b’), t-SNE (c,c’), Fair-t-SNE (d,d’).
Fair-SNE/Fair-t-SNE mixes sensitive groups quite well and remain high dimensional clusters.

fairness scale threshold, our method will have higher f1 of high-dimensional clusters. The graphs for all other real data sets
show similar behavior as the graphs of syn and adult data shown here.

I. Special Case
In general our method optimizes its internal parameters including the tradeoff parameters τ∈, τ /∈. However, it is possible to
constrain τ∈ = τ /∈ = 1 in Fair-NerV and Fair-t-NeRV, which yields fair versions of SNE and t-SNE as special cases. We
will denote these special cases here as Fair-SNE and Fair-t-SNE. (Note that in the t-distributed version we use conditional
neighbor distributions instead of joint distributions of points and their neighbors, but the behavior will be similar to the joint
case, i.e. the t-distributed version avoids a “crowding problem” as low-dimensional t-distributed neighborhoods reach far-off
neighbors.)

As mentioned in the main paper, the special cases have similar performance as the corresponding full Fair-NeRV and
Fair-t-NeRV. As an example, in Figure 7 we show plots of SNE, Fair-SNE, t-SNE, and Fair-t-SNE embeddings for the
synthetic data.

In Figure 7 the special case results show that good results combining neighbor retrieval performance with fairness can be
achieved without detailed consideration of the ClassNeRV tradeoff parameters, instead focusing only on the balance of the
neighbor retrieval and the fairness cost. Therefore, the good performance of the Fair-SNE and Fair-t-SNE special cases
shows that the fairness cost is the essential new part of our proposed cost function CFairNeRV . This is as expected, as
the ClassNeRV tradeoff parameters were only incorporated to further help a good balance, they do not otherwise play an
essential role by themselves.

J. Comparison with ClassNeRV
In the previous appendix we examined performance of special cases that fixed ClassNeRV tradeoff parameters and thus
focused on impact of the fairness cost. To further show how the fairness cost plays the essential role, we have made a
full ablation study investigating the performance of the “unfair” case of using the ClassNeRV/t-ClassNeRV parts of the
cost function alone. That is, we now consider the special case where the fairness cost is left out by restricting β = 1 in
Fair-NeRV/Fair-t-NeRV. Note that in this special case, although the fairness cost is left out, the ClassNeRV/t-ClassNeRV
cost does make use of the sensitive attribute labels to define what are within-class and between-class errors, and the tradeoff
hyperparameters are optimized just like all hyperparameters in ClassNeRV/t-ClassNeRV. The results are in Table 2.

Comparing Table 1 and Table 2, the results of the full method Fair-NeRV/Fair-t-NeRV in Table 1 are clearly better than the
results of the ClassNeRV/t-ClassNeRV special case in Table 2. The ClassNeRV/t-ClassNeRV special case performs roughly
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Table 2. Dimensionality reduction performance on test data sets for ClassNeRV)

Data
ClassNeRV t-ClassNeRV

k f1k f1Avg k f1k f1Avg

Syn 374 0.4427 0.3822 333 0.5057 0.4063

Adult 241 0.2739 0.2109 174 0.2986 0.2157

CC 470 0.1755 0.1701 435 0.1819 0.1731

German 114 0.4148 0.2552 97 0.3495 0.2171

LSAC 139 0.4135 0.2538 55 0.5688 0.2736

Pima 189 0.2793 0.2085 160 0.3032 0.2124

similarly to t-SNE and ct-SNE, i.e., its results are unfair and it is clearly worse than Fair-NeRV/Fair-t-NeRV. Therefore,
this ablation study provided further evidence of the importance of the fairness cost function in addition to the results of the
previous appendix, showing that the ClassNeRV part is not enough for good fair performance by itself.

K. Comparison to MBF-PCA
In this appendix we provide a comparison of our method to the linear fair dimensionality reduction method MBF-PCA (Lee
et al., 2022). We first provide a detailed discussion of theoretical differences between our method and MBF-PCA. We next
provide experimental results for MBF-PCA, showing our method outperforms it.

Discussion of the MBF-PCA method. The method MBF-PCA used an MMD of dimensionality -reduced conditional
distributions of different protected categories which is stated to generalize to demographic parity, equal opportunity, and
equalized odds. The MMD definition of disrepancy, as defined in eq. (5) of the paper (Lee et al., 2022), is defined through
sums and differences of direct kernel values within one distribution (that of the Xi) and another (that of the Yj) and across
them. Those kernel values are very much reliant on the scale parameter of the kernel since the terms have no normalization.

In particular, when the scale of a RBF kernel (σ) decreases towards zero, only diagonal kernel values remain nonzero,
and MMD becomes close to

(
1
m + 1

n

)1/2
. And when the RBF kernel scale grows towards infinity, the MMD decreases

towards zero. Therefore, the MMD approach centrally depends on the kernel scale, and can easily be biased unless it is
carefully controlled. The kernel scale there is set for the needs of PCA: “For the choice of bandwidth , the median of the set
of pairwise distances of the samples after vanilla PCA is considered”. This choice is only reasonable since their method
is a linear projection; in a nonlinear method there is no reason why the PCA-based scale would be best. Moreover, their
PCA-based choice may yield a quite large (overly-smoothed) scale since the median is over all pairwise distances. As
we have mentioned, overly large scales will seem fair for any embedding, thus they alone will not be good choices for a
scale-dependent evaluation of embedding quality.

In contrast to MBF-PCA, in our approach all the kernel-based quantities (neighbor probabilities, sensitive attribute category
probabilities) are properly normalized and do not suffer from the above problem of scale. Our neighbor retrieval probabilities
and sensitive attribute category probabilities do not reduce to constants even at the smallest scales.

Experimental comparison with the MBF-PCA method. We ran MBF-PCA for all data sets that have two sensitive
attribute values: Adult, German, LSAC, and CC. This is because the implementation of MBF-PCA provided by its authors is
restricted to the binary case of two sensitive attribute values. We used the Demographic Parity version of MBF-PCA which
is applicable to this exploratory data analysis scenario (having input features and a sensitive attribute, but no target class).
We ran MBF-PCA with the authors’ recommended settings from the paper of Lee et al. (2022). However, to make sure
this did not yield a disadvantage for the method, we also performed a full hyperparameter search on the Adult data set, as
we had done for the nonlinear methods. That result is denoted as “Adult (FHS)” below. The MBF-PCA results are clearly
worse than those of Fair-NeRV and Fair-t-NeRV on all of the data sets. The full hyperparameter search on the Adult data
set improved MBF-PCA results only a little, and the advantage of Fair-NeRV and Fair-t-NeRV remains clear. Thus, the
results demonstrate that our nonlinear approach offers a strong advantage for fair dimensionality reduction in exploratory
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Table 3. Dimensionality reduction performance on test data sets for MBF-PCA)

Data
MBF-PCA

k f1k f1Avg

Adult 128 0.2935 0.2201

Adult(FHS) 133 0.3313 0.2386

CC 140 0.2433 0.2022

German 112 0.3220 0.2342

LSAC 117 0.3103 0.2215

data analysis settings.

We have also made a tentative brief comparison to the method of Ravfogel et al. (2020), where the first result indicated our
method also seemed to outperform that method. However, a more thourough comparison is left for future work.

L. Hyperparameter Search Motivation
In this appendix we provide a more detailed walkthrough of the argument in Section 4.4 of the main paper, in the paragraph
starting “Our hyperparameter search takes fairness into account”, showing that the hyperparameter selection criterion f1Avg
takes into consideration both retrieval performance and fairness.

As discussed in Section 4.3, as the inspection scale grows prediction performance of predicting sensitive attributes will fall
towards that of random guessing and visualizations will look “fair” at large enough scales. Therefore, fairness is easy to
achieve when the inspection scale grows very large. Thus, most embeddings have fair scales at very large values of kfair.
However, retrieval performance at such large overly-smoothed scales is usually quite poor, because the retrieval returns too
many points to get only the correct ones (here, points from same high-dimensional cluster as the center point).

If only the large scales are fair, their poor retrieval will dominate f1Avg: the f1Avg will be an average of several poor retrieval
performances. To get higher f1Avg, one must get better retrieval performance values included into the average. Better values
can, for real data, practically be achieved only at smaller scales (lower values of kfair). Therefore, to get higher f1Avg, one
must be able to make smaller scales fair: only at the smaller scales there is a chance to get good retrieval. (Note that retrieval
is not automatically good at all small scales: the embedding must be well arranged at those scales to yield good retrieval.)

As the number of small fair scales with good retrieval increases, the f1Avg will increase since the average is no longer
dominated by the poor retrieval at overly-large scales. Therefore, optimizing f1Avg optimizes the amount of fair scales
having good retrieval.

M. Connection to Demographic Parity
In this appendix we detail the connection of our fairness measure to demographic parity, which was mentioned in Section
3.1 of the main paper.

Our fairness cost measures whether the distribution of sensitive attributes in each low-dimensional neighborhood is close to
a desired distribution. It measures for each local neighborhood whether the opportunity to be a neighbor is equal to (or close
to it) for all sensitive values. In a situation where demographic parity is achieved, each individual candidate neighbor should
have, a priori, equal opportunity to be a neighbor regardless of its sensitive attribute value. Therefore, for each sensitive
attribute value, the total proportion of neighbors from it (total neighbor probability over the candidates) should correspond
to the overall proportion of that sensitive attribute value in the data. When our desired distributions correspond to the overall
proportions, our fairness cost measures whether the condition in the above bullet point holds. For each neighborhood the
fairness cost measures whether the neighbor proportions correspond to the overall sensitive attribute proportions. Therefore,
our fairness cost measures demographic parity. Note that if the parity (independence of the neighbor opportunity among all
sensitive attribute values) is achieved in all local neighborhoods, then this can also be seen as independence between the
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embedding coordinates of a point and the sensitive attribute value of its neighbors.

N. Cluster-based Performance Evaluation
As described in the main paper, the criterion f1Avg is computed based on a clustering of remaining attributes. In this
appendix we discuss how the cluster-based criterion aims to avoid unfairness with respect to sensitive attributes.

Removing sensitive attributes from input does not suffice to ensure fairness. Removing a sensitive attribute from the
input feature set is a useful first attempt towards fairness but it is not enough alone to make a DR method fair: remaining
attributes can have statistical dependencies with the sensitive attribute, thus DR based on the remaining attributes could
reveal information of the sensitive attributes.

Our performance measure specifically checks how much information of other attributes (other than the sensitive ones)
the visualization still reveals, in terms of cluster retrieval performance, at fair inspection scales. For this purpose, the
high-dimensional clusters we inspect must of course not be constructed using the sensitive attribute.

Cluster-based evaluation is appropriate when done at fair scales. If our cluster-based performance criterion is based
on the remaining attributes, could dependencies between those remaining attributes and the sensitive attributes still cause
bias in the cluster-based criterion? It is possible that the remaining attributes contain some dependency with the sensitive
attributes, but this is not a problem for the evaluation measure: the inspection is done at fair scales, whose fairness is directly
ensured with respect to the sensitive attributes.

In detail, if the clustering had dependencies with the sensitive attributes, this would mean retrieval of clusters based on the
neighbors of data points could partially retrieve also information of sensitive attributes. However, if that was the case at
some evaluation scale, then also the retrieval of the sensitive attributes based on the same neighbors would work better than
at random. Our evaluation is designed to choose scales at which such retrieval of sensitive attributes does not succeed.

Because the evaluation is done over fair scales, the information visible from the clustering at those scales will only reveal
remaining fair information of the data structure.

O. Reasons to Investigate Nonlinear Approaches for Fair DR
In general, the advantage of fair nonlinear DR over fair linear DR is the same as the advantage of nonlinear DR over linear
DR. Therefore in this appendix we provide a general discussion of advantages of nonlinear DR over linear DR.

High-dimensional data may occupy a complicated topological shape in the original data space, so that a linear projection is
unable to show its essential structure. Nonlinearity provides additional flexibility that allows to preserve the data structure
much better. A linear projection is of course a special case of a general nonlinear mapping: if, for some data set, a mapping
that corresponds to a linear or almost linear projection suffices, then the nonlinear optimization should find that mapping
as an optimum of its cost function. In fact, sometimes the nonlinear methods are initialized by a PCA mapping (this is a
possible initialization for all of the neighbor embedding methods compared in our paper), but the methods then continue
optimization from there, so that the end result is better than a PCA result.

The benefit of nonlinearity is most crucial when the output dimensionality is small (e.g. 2- or 3-dimensional output needed
for visualization), and the original dimensionality is large, therefore the essential structure of data must be preserved in a
much smaller dimensionality. The classical simple examples of this advantage include manifolds like S-curves and swiss
rolls, that cannot be“unfolded” by a linear projection, whereas nonlinear methods can unfold them. Venna et al. (2010)
shows another simple example: reducing points on the surface of a sphere (e.g. cities on the surface of the world) onto a
2D output. Nonlinear mappings allow, for example, to create an “orange-peel world map” which is not possible by linear
methods. The paper also shows the advantage nonlinear methods over PCA for multiple real high-dimensional data sets (see
Figs. 4-5 in that paper for quantitative studies).

More generally, the above discussed flexibility is why nonlinear methods including neighbor embedding have become
the most popular approach for data visualization in the machine learning community; in particular the t-SNE method has
become a de facto standard in countless papers. This motivates the need for nonlinear solutions in fair DR as well.
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