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Abstract
The Hidden Markov Model (HMM) is one of the
most widely used statistical models for sequential
data analysis. One of the key reasons for this ver-
satility is the ability of HMM to deal with missing
data. However, standard HMM learning algo-
rithms rely crucially on the assumption that the
positions of the missing observations within the
observation sequence are known. In the natural
sciences, where this assumption is often violated,
special variants of HMM, commonly known as
Silent-state HMMs (SHMMs), are used. Despite
their widespread use, these algorithms strongly
rely on specific structural assumptions of the un-
derlying chain, such as acyclicity, thus limiting
the applicability of these methods. Moreover,
even in the acyclic case, it has been shown that
these methods can lead to poor reconstruction. In
this paper we consider the general problem of
learning an HMM from data with unknown miss-
ing observation locations. We provide reconstruc-
tion algorithms that do not require any assump-
tions about the structure of the underlying chain,
and can also be used with limited prior knowledge,
unlike SHMM. We evaluate and compare the algo-
rithms in a variety of scenarios, measuring their
reconstruction precision, and robustness under
model miss-specification. Notably, we show that
under proper specifications one can reconstruct
the process dynamics as well as if the missing
observations positions were known.

1. Introduction
Hidden Markov Models (HMMs),(Murphy, 2012), are a
well established and widely used method for modeling se-
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quential data, with applications in a variety of fields, such as
speech recognition (Yu & Deng, 2016) and economical time
series (Hamilton, 2020; Kaufmann, 2019), to name a few.
In all of the above applications, it is common to have miss-
ing observations. That is, we assume that a certain system,
after N time steps, produces a full sequence of observations
Ui = (u1, . . . , uN ), but there is a known subset of times,
1 ≤ t1, . . . , tm ≤ N , m ≤ N , such that the observation
values at these times,

{
utj

}m
j=1

, are not known to us. This
situation is illustrated in the first and second lines of Figure
1a. We refer to this type of missing values as missing val-
ues with known locations (or known gaps, Interchangeably),
since we know which of the values are missing.

(a) Omission Process Illustration

(b) Ignoring the Gaps

Figure 1. (a) The gaps location may alter the sequence consider-
ably. (b) The Naive approach may perform poorly, highlighting
the need for a more careful treatment of gaps. (s.d < .062)

1.1. Motivation and Previous Works

It is commonly assumed that observations are provided with
time stamps, and that a single time unit corresponds to a
step of the underlying chain. Such assumptions naturally
imply that when there are missing values their location
is known, however, this assumption do not hold for many
applications. For example consider the case of irregular time
series (Ramati.M, 2010), also known as unevenly spaced
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time series, where the system is observed at varying time
intervals that do not correspond to the steps of the underlying
chain. For example, in the context of cyber-attack detection,
it is often assumed that the attacker sequence of actions
can be modeled as a Markov process (Chadza et al., 2020).
However, in practice, the observations of these malicious
activities are irregular and incomplete. Another scenario is
when the sampling clock is different from the underlying
process clock. An example of this is the monitoring of sepsis
patients, as the disease can progress in an unpredictable
manner, resulting in inconsistent and possibly incomplete
measurements of vital signs (Moor et al., 2019).

One domain where missing observations in unknown loca-
tions is frequently encountered is computational biology,
where data is often only ordered and lacks time stamps(Chen
et al., 2018; Liu et al., 2017b; Orr et al., 2018). For that
reason, Silent-state HMM were developed. In SHMM, some
states are not associated with any observation, and the model
can transition between these states without emitting any ob-
servation. These states are referred to as ”silent” states.
Notice that silent states are incorporated explicitly into the
assumed chain structure. For example, consider the wide use
of Profile hidden Markov models (Eddy, 1998) for DNA se-
quence searching, where the goal is to find optimal matches
between a model input and a database of sequences (Finn
et al., 2011; Wheeler & Eddy, 2013). In this context, PH-
MMs are used to match the input model with sequences in
the database that are assumed to come from the same model.
However, it is also assumed that some states (nucleotides)
may have been ”deleted” through the course of evolution
and are therefore not observable, or ”silent”.

Despite their potential usefulness and popularity, the uses
of PHMMs and SHMMs are limited to a small set of prob-
lems. Currently, the focus of PHMM use is on inference,
where it is assumed that the transition matrix and omitting
probabilities are known (known as the profile HMM with
known profiles). However, there is a significant need for
many applications of SHMM to be able to directly learn the
model parameters from data(Wheeler & Eddy, 2013; Setty
et al., 2019; Ye et al., 2019; Orr et al., 2018; Pattabiraman
& Warnow, 2021). There are currently several limitations
that have hindered this goal. First, while the use of Expec-
tation Maximization algorithms for learning the parameters
of SHMM has been proposed, it has not yet been thoroughly
studied and has not been shown to be effective in practice.
In addition, it has been suggested in recent years that PH-
MMs are not identifiable (Pattabiraman & Warnow, 2021).
In this paper, we address this limitation and examine the
reasons for the failure of these algorithms, providing a new
perspective on the identifiability issue. Second, while par-
tial knowledge that is crucial for learning is often available,
current frameworks are not flexible enough to incorporate
this information. Most importantly, SHMMs assume that

the underlying chain is acyclic (i.e the underline chain forms
a DAG), which is frequently violated in the field of com-
putational biology (Ye et al., 2019; Deconinck et al., 2021;
Lummertz da Rocha et al., 2018). This assumption can
be particularly problematic in areas such as pseudo-time
analysis (Ye et al., 2019) in a variety of biological systems,
(Campbell & Yau, 2018), with particularly extensive appli-
cations in single-cell trajectory analysis which is crucial
in understanding the dynamics of a cell (see for instance
(Chen et al., 2018; Van den Berge et al., 2020) and a sur-
vey (Deconinck et al., 2021)). In this type of applications,
one is given a set of observations, usually corresponding to
information about the state of a cell. However, due to the
nature of the data collection process, it is often impossible
to obtain timestamps for each individual observation.

In the interest of providing a comprehensive overview, we
would like to highlight the following previous works related
to this topic: In (Ramati.M, 2010), the authors formally
described the concept of irregular time series in HMMs, but
did not propose an algorithm for reconstruction. (Morimura
et al., 2013) dealt with the sub-problem of flow network anal-
ysis where the positions of a few observed nodes are fixed
and known in advance. The effort closest to our own, as far
as we are aware, is the work of (Orr et al., 2018), in which
the authors developed an Expectation Maximization-based
algorithm for reconstructing HMMs from data with similar
properties, but under the restriction of acyclic chains and a
strict assumption about the underlying Markov process.

1.2. Missing Observations In Unknown Locations and
The Need For Special Methods

Let O = (o1, . . . , ok) be an order set of observations, that
is, we assume that a system passed through some sequence
of states S = (s1, . . . , sN ), some of which have generated
the observations O. This situation is illustrated in the third
line of Figure 1a, where different subsequences correspond
to different possible values of O. Note in particular that the
same O can result from different deletions of the full obser-
vation sequence. In this situation, we do not apriori know
the positioning of the observations O (and, equivalently, of
the observations missing from O) with respect to the state
sequence S, and therefore we refer to such observations as
observations with unknown gaps. The goal of the recon-
struction (or learning) algorithm is to recover the underlying
dynamics of the state sequence S from the observations O.

It is natural to ask whether one indeed needs to treat the
unknown gaps situation specially. For example, a possible
approach to reconstruction, termed “Naive” in this paper, is
to simply ignore the missing observations and to reconstruct
from sequences O as if these were the full observation se-
quences U . See for instance (Liu et al., 2017b; Setty et al.,
2019). We now show that the Naive method can indeed
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introduce extremely large errors into estimation. First, we
denote Ψ(s) to be the probability of observation emitting
from state s to be omitted (see Section 2). For a fixed bench-
mark HMM and a fixed Ψ(s) = 1 − pc : ∀s, we generate
synthetic observation trajectories with gaps based on pc,
and compare three reconstruction methods: (a) The Naive
approach, where we ignore the missing observations, (b)
The Random approach, where we use the standard recon-
struction algorithm with known gaps, but the gap locations
given to the algorithm are chosen at random, and (c) The
“Known” reconstruction, where the gap locations provided
to the algorithm are the true gap locations. This algorithm
is used as an ideal benchmark, as its performance is the
best one can hope for, for any unknown gaps algorithm. The
experiment is repeated for different benchmark HMM (see
Section 4 for full details), and for a range of values of pc.
For each run, we measure the quality of the reconstruction
by the L1 distance between the reconstructed and the ground
truth transition matrices.

As shown in Figure 1b, for intermediate values such as
pc = 0.5 the performance of the Naive and random ap-
proaches are poor, and for some (MultiPartite HMM) this is
especially pronounced, with error of 1.6 even at pc = 0.8
(the maximal error of L1 is 2). This experiment emphasizes
the need for reconstruction algorithms that model the un-
known gap locations much more carefully than the Naive
and “random” methods. Appendix A contains additional
benchmark HMMs.

1.3. Paper Summary and Contributions

This paper aims to propose a comprehensive solution for
learning HMMs in scenarios where observations are miss-
ing in unknown locations. Those solutions do not impose
restrictive assumptions on the underlying chain, with the
exception of the ”Naive” method, which is shown to be in-
effective. We demonstrate the effectiveness of our approach
through various methods, which correspond to varying lev-
els of prior knowledge about the process. These methods
enable reconstruction in cases where prior knowledge is par-
tially known, which is not possible with previous methods.
The rest of the paper is organized as follows:

Model definition. Section 2 defines the HMMOP (HMM
with Omission Process) model. In this model, a set U of full
sequences of observations Ui = (ui1, . . . , uiN ) is generated
by a standard HMM. Then, the sequence Oi is formed by
deleting (equivalently, omitting) entries uij ∈ Ui at random
with a probability Ψ which depends on the state, indepen-
dently of the other ui′j′ . This type of state dependent omit-
ting process in known as Non- Ignorable Omitting Process.
Section 2.1 examines the non-ignorable setup for missing
observations, while Section 4.2 emphasizes the significance
of taking Ψ(·) into account for accurate reconstruction.

Analytical Analysis. Section 2.2 presents an analytical
analysis for the case when the probability of missing obser-
vations is constant across all states, Ψ(s) = 1− pc∀s. This
analysis highlights the limitations of previous attempts to
reconstruct HMMs with missing values using PHMMs.
Reconstruction methods. Section 3 introduces two ap-
proaches to reconstructing HMMOPs. One approach as-
sumes that for the ignorable setup, only the observed trajec-
tories O = {Oi} and the length of the original sequence are
known. The second approach assumes that only the omit-
ting probabilities (Ψ) are known. Additionally, we present a
method for imputing Ψ when only partial knowledge of it is
available.
Experiments and evaluations. Section 4 evaluates the
unknown gaps reconstruction algorithms on a number of
synthetic and semi-synthetic benchmarks, where it is possi-
ble to compare the reconstructed transition matrices to the
ground truth matrices that generated the data. The experi-
ments are performed for a range of Ψ, allowing us to study
the effect of different percentages of missing observations
on the performance. It is worth noting that given Ψ is known,
our reconstruction method (term “Gaps sampler”) match
the performance of an ideal benchmark for which the
locations are known. This result is particularly remarkable,
as it demonstrates that our method is able to achieve the
best possible performance. Indeed, observe that the recon-
struction algorithm only takes Ψ (or a single number pc for
the ignorable case), as information about missing samples.
Given an observation sequence Oi, there is an exponential
number of possible placings of gaps within that sequence,
and we know from the experiment described in Figure 1b
that a random placement of gaps yield poor results. Yet,
the algorithms manage either to get close to, or match the
performance of the sampler that knows the locations of the
missing values. To the best of our knowledge, this is the
first time such results have been achieved.
Experiments and evaluations under miss-specifications.
In Section 4.2, we evaluate the robustness of the algorithms
with respect to various model miss-specifications. First we
study the effect of providing a perturbed Ψ to the algo-
rithm. Second, we study the ability to reconstruct when
Ψ is unknown for some states. Third, we evaluate other
miss-specifications w.r.t the omitting process: We tested
the performance for a non-constant Ψ (that is, changing per
sentence) and a scenario where the omitting process is a
Markov process. For all of the above miss-specifications we
show that the results are quite stable.
Code. To the best of our knowledge, our implementation
is the first publicly available Gibbs sampling-based HMM
learning implementation for Python, and the first to handle
non-ignorable missing observations in general. The code is
provided in the supplementary material and will be made
publicly available with the final version of the paper.
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2. Background and Model Definition
A Hidden Markov Model (X, T,Θ) is defined by a finite
state space X and a transition probability matrix T ∈
R|X|×|X| which defines a Markov chain on X. The obser-
vations of the model take values in a set E , and for every
state X ∈ X, ΘX is a distribution on E corresponding to
X . Let Xi = [Xi0, . . . , XiN ] be a sequence of states, and
let Ui = [ui0, . . . , uiK ] be a sequence of observations (also
referred to as sentence), uij ∈ E , K ≤ N .
The sequence Wi encodes the locations of the non-missing
observations. Define Wi = [w0, . . . , wK ] as a sequence of
indexes wk ∈ {0, .., N},wk < wk+1, such that wk ∈ Wi if
observation uik was generated at time wk. We denote by
UWi
i = [uiw0

, . . . , uiwK
] the restriction of Ui to Wi.

HMMOP - Unknown Gaps Model Definition.
Let M ′ = (X, T,Θ) be an HMM. Define a random map-
ping ΦΨ(·) of a full observation sequence Ui to a partial
observation sequence Oi as follows: Given a full sequence
of states, Xi, corresponding to an observation sequence,
Ui, an indicator vector, Ci = [ci0, . . . , ciN ] is sampled
where cij are independent Bernoulli variables with suc-
cess probability Ψ(Xij). The set Wi = {j|cij = 1} is
defined, and the partial observation sequence, Oi, is set as
Oi = ΦΨ(Ui) := UWi

i . Then HMMOP is defined to be the
generative model where a state sequence Xi and a full ob-
servation sequences Ui are generated by an HMM, and the
corresponding observation sequences Oi are then produced
as Oi = ΦΨ(Ui). The joint distribution of the HMMOP is :

P (Oi,Wi, Xi|Θ) = P (X0|Θ)P (O0|X0) ·
N∏
t=1

TXt,Xt−1
·

{
(1−Ψ(Xt)) · P (Ot|Xt,Θ), if t ∈ Wi

Ψ(Xt), otherwise

2.1. Non Ignorable Omitting Process

Non Ignorable omitting process in HMMs, also known as
State-Dependent Missingness (SDM), was first introduced
by (Yeh et al., 2012) and later developed by (Speekenbrink
& Visser, 2021). Reconstruction with non-ignorable missing
observations refers to the problem of reconstructing HMMs
when the probability of an observation to be missing de-
pends on the state of the system, in contrast to the ignorable
case where Ψ(s) is constant and simply translate to the per-
centage of missing observations in the data. Reconstruction
of dynamical process with SDM (not necessarily HMMs)
is considered a challenging problem and it is an active area
of research. In this paper we generally consider the non-
ignorable case and we carefully examine the impact of the
SDM assumption on our reconstruction results. Notably,
we show that we can still achieve ideal results for known
omitting probabilities (Ψ) even in the SDM case. Section 4
presents comprehensive evaluation of the ignorable case.

2.2. Analytical Analysis

For analytical analysis we consider the case of ignorable
missing observations, that is, Ψ(s) = 1− pc∀s. More, let
us first discuss the non-hidden case. That is, we assume for
the moment that the observation given a state X ∈ X is the
state X itself. Note that the unknown gaps reconstruction is
interesting even in this simpler case.

Proposition 2.1. Let M ′ = (X, T,Θ) be an non-hidden
Markov model. I the identity matrix. Then the sequence
of observations Oi = ΦΨ=pc

(Ui) is a Markov chain with
transition matrix :

Tr = pc · T · [I− (1− pc) · T ]−1. (1)

Proof. By definition, in the non-hidden case the sequence
Ui coincides with the state sequence Xi, and Oi is a sub-
sequence of Ui. Note that the waiting time d between two
occurrences of 1 in Ci is geometrically distributed with
mean pc, which implies that

Tr =

∞∑
d=1

pc(1− pc)
d−1T d. (2)

For every stochastic matrix T we have ∥T∥ ≤ 1, (Goldberg,
1966), where ∥ · ∥ is the operator norm, ∥(1− pc) · T∥ < 1,
and thus the series in (2) are summable, with sum given by
(1).

Now, note that given the partial observations Oi, we can
directly learn the transition matrix Tr for Oi by counting the
co-occurrences of the states in Oi. This is the instantiation
of the Naive approach. Next, observe that if pc is known,
using (1) we can invert the omission process to obtain T :

T = [I · pc + (1− pc) · Tr]
−1 · Tr. (3)

We refer to this as the backward transformation.

As we can see, T is a transition matrix of a Markov model
for any pc ∈ (0, 1]. Therefore, given a set of missing ob-
servations O, it is not possible to infer any ”original” T,
but rather only a backward version of T that is conditioned
on a specific value of pc. As Supplementary material F
shows, the difference between reconstructed T for different
pc might be significant.
The current approach to reconstructing Profile-HMMs in-
volves guessing a random pc, then using an Expectation-
Maximization (EM) procedure to learn T given the guessed
pc, and vice-versa. However, as we demonstrated, guessing
the pc is equivalent to randomly selecting a backward trans-
formation of T , which has no practical meaning. This we
believe explain the lack of successful PHMMs reconstruc-
tion studies, despite its importance. Detailed evaluations of
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(a) Illustration of W Sampling given Ψ = pc.

(b) Illustration of HMMOP given Ψ = pc.

Figure 2. Reconstruction methods.

(1),(3), together with additional results and characteristics
of the backward transformation, are given in Supplementary
Material Section F

Note that the “backward transformation” can be seen as
a reconstruction method for the case of ignorable missing
observations. For the proper hidden case, we can apply
any standard HMM learning algorithm to learn Tr using
the Naive approach from O. Then, we can use (3) in the
same way as in the non-hidden case to obtain T . Since this
approach requires some HMM learning, which is typically
non-analytic, we refer to this approach as semi-analytic. We
evaluate the results of this method in compare to the other
methods in Evaluation Section 4.

3. Reconstruction Methods
In this section, we present the reconstruction methods. As
discussed in Sections 1.3 and 2.2, these methods rely on
different levels of knowledge about the underlying latent
dynamic process or the omitting process. The first method,
named the ”Matching Sampler,” requires knowledge of the
full unknown sequence length (N) as input. For the case
of ignorable missing observations, this method does not
require any additional information. However, in the case
of non-ignorable missing observations, knowledge of the
omitting probabilities (Ψ) is required. We show that even if
this information is only partially known, it can be inferred
as part of the algorithm and the method is highly robust to
misspecifications regarding Ψ. The second method, named
the ”Gaps Sampler,” only requires knowledge of Ψ as input.
Although it does not have access to information about N, the
”Gaps Sampler” is also somewhat robust to misspecifications
regarding Ψ. Often, knowledge about N can be derived

from prior knowledge on the underlying process M ′, for
instance, when there are distinctive ”start” and ”end” states
with knowledge about the latent process rate (Saelens et al.,
2019; Herring et al., 2018). On the other hand, knowledge
about Ψ exists for cases in which prior knowledge on the
sampling method (ΦΨ) exists (Lummertz da Rocha et al.,
2018). In addition, in cases where the reconstruction is a
first step for a prediction task (Nishimoto et al., 2019), Ψ
can be partially inferred as an hyper parameter using the
labeled data (Supplementary Material Section E presents a
prediction algorithm for HMMOP).

Gibbs sampling. Both of the methods relay on the Gibbs
sampler (Gelman et al., 2013; Rydén, 2008). A Gibbs sam-
pler samples the HMM parameters (i.e., T and Θ) and the
latent state sequences X conditioned on O. More specif-
ically, one interchangeably samples P (Xi|T,Θ,O), and
then samples P (Θ|Xi,O) and P (T |Xi). Here we extend
this procedure by incorporating the uncertainty of the un-
known gaps into the sampling process using an additional
set of latent helper variables. Let X = {Xi} be the set of all
latent states sequences as describe above, and let Oi ∈ O
be the observed sequences corresponding to Xi.

3.1. The Matching Sampler

The Matching Sampler builds upon W = {Wi} (see Sec-
tion 2) as an helper set of latent variables, hence the
challenge mainly lies in sampling the helper variables
P (Wi|Xi, Ni, Oi, T,Θ). To address this challenge, we first
note that the conditional distribution of Wi given Xi is inde-
pendent of T . Therefore, our problem reduces to sampling
P (Wi = [wi0, . . . , wiK ]|Θ, Xi, Oi, Ni,Ψ).
For k ≤ K, let W k denote the sequence W with wk omit-
ted. Also let I[wk−1,wk+1](w) be the indciator function. The
sampling of Wi will be done using its own Gibbs sam-
pler. That is, instead of sampling Wi, we iteratively sample
its components,wik, conditioned on the rest of the match-
ing P (wik|W k

i ,Θ, Xi, Oi,Ψ). The Markov property of the
sequence X implies that wik depends on the sequences
W k

i , Oi, Xi only through “local variables” at k, that is, it
depends on Xi,wi,k−1

up to Xi,wi,k+1
, and on the single

observation Oik :

P (wik|W k
i ,Θ, Xi, Oi,Ψ) ∝

P (Ok|Xwk
) · (1−Ψ(Xwk

)) · I[wk−1,wk+1](wk)
(4)

This situation is illustrated in Figure 2a.

One can see a similarity between Wi to the “wrapping”
vector from the known Stochastic Dynamic Time Wrapping
(DTW) (Nakagawa & Nakanishi, 1988). Notice that while
variations of SDTW can infer optimal W from P (W | . . .),
our challenge is sampling P (W | . . .). Moreover, not every
state in Xi is part of Wi as the SDTW algorithm requires.

In practice we use the Metropolis-Hasting (Metropolis et al.,
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1953) for better convergence. Full details of the derivation
of (4) and the complete algorithm, including the sampling
of T , X , and W , as well as initialization considerations, can
be found in Section C of the appendix.

3.2. The Gaps Sampler

The Gaps Sampler presents a different representation for
the missing observations locations by introducing variables
d = [d0, . . . , dK ]. Those variables represent the num-
ber of omitted observations between any two observed
observations, which we denote as gaps. Figure 2b illus-
trates the Gaps sampler for the ignorable case for which
Ψ(·) = pc. Our goal is then sample P (dk|Xk,k+1). Lets
define s = [s0, . . . , sd−1] ∈ Sd as the set of all d long states
trajectories, also, lets assume d < S for a predefined S . We
say that a sequence is fully omitted if we didn’t observed any
of the sequence states, we denote the case of a fully omitted
s as s̄. Given ΦΨ independent, P (s̄|s) =

∏d−1
i=0 Ψ(si). By

definition, P (dk|Xk,k+1) is the probability for s ∈ Sd been
fully omitted:

P (dk|Xk,k+1) =∑
s∈Sd

T[Xk,s0] · T[sd−1,Xk+1] ·Ψ(s0) ·
d−1∏
i=1

T[si−1,si] ·Ψ(si)

S∑
τ=0

∑
s′∈Sτ

P (s′|Xk,k+1) · P (s̄′|s′)

∝
∑
s∈Sd

T[Xk,s0]·T[sd−1,Xk+1]·Ψ(s0)·
d−1∏
i=1

T[si−1,si]·Ψ(si)

And given that summing over s ∈ Sd is not feasible, we
suggest the following formulation:

=
∑
x∈X

∑
j∈X

T[j,x] ·Ψ(x) · P (d− 1|Xk,k+1, sd−2 = j)

P (d− 1|(Xk,k+1)) =
∑
j∈X

P (d− 1|Xk,k+1, sd−2 = j)

This form the forward algorithm (Rabiner, 1989) with
P (d|Xk,k+1, sd−1 = j) as the forwarding elements. Notice
that P (. . . , d−1) are intermediate steps for calculating p(d),
hence the computational complexity of P (1), . . . , P (S) and
P (S) are equal. Full details of the Gaps sampler are given
in Section D of the appendix.

3.2.1. SAMPLING Ψ

Both methods include the ability to sample and impute Ψ
for cases where Ψ is partially known. Note that Ψ(s) fol-
lows a Bernoulli distribution, so the conjugate prior for
Ψ(s) for each s is the Beta distribution. Hence, the poste-
rior distribution of Ψ(s) given X and W is Ψ(s)|X,W ∼
Beta

(
µ(s ∈ XW ), µ(s ∈ X)− µ(s ∈ XW )

)
where µ(·)

is the counting measure. Section 4 extensively evaluate the
ability of our methods to impute partial Ψ.

4. Experiments
This section evaluates the performance of the following re-
construction methods: 1. The Matching sampler (Purple);
2. The Gaps sampler (Green); 3. The Naive reconstruction
as described in Section 1.2 (Orange); And, 4. The “ideal
benchmark” (Blue) where the true gaps locations are known
to the sampler as described in Section 1.1; Additionally, for
the ignorable case, we evaluate the semi analytical approach
(Brown) which is a byproduct of the analytical analyses;
The following models were used to generate the data (full
details are given in Supplementary Material Section G):
1,2. “Synthetic Degree{d}” A synthetic chain on 10 states,
where each state has d outgoing transitions, chosen at ran-
dom; 3. “Cyclic MultiPartite” Synthetic chain with 25
states. The states are divided into 5 groups ranging from 1
to 5, transitions are only possible between states of consecu-
tive groups and in a cyclic way. For example, a state from
group 4 only moves to a state in group 0, etc; 4. “Part Of
Speech” process. Transitions and emissions (part of speech
and words respectively) probabilities were extracted from
the Brown NLP corpus (Francis, 1965). The trajectories
were then sampled based on those parameters.
With the exceptions of the “Part Of Speech” chains,
state emissions are distributed with Normal distribution
N(µi, 0.1) for µi ∈ [0, nstate − 1]; Unless specified oth-
erwise, 1500 sentence(U ) of length 80(N ) were sampled.
For all figures, Y-axis is the L1 distance between the recon-
structed and the ground truth transition matrices. Supple-
mentary Material Section H presents the standard deviations
(s.d) of this section results.

Note that transitions are of paramount importance in biolog-
ical settings, as the transition matrix often model the biolog-
ical mechanism behind the process in question (Shokoohi
et al., 2019; Ye et al., 2019; Yoon, 2009). Furthermore, in
these instances, the states and the emissions probabilities
are commonly known (Setty et al., 2019; Liu et al., 2017a;
Lummertz da Rocha et al., 2018). In our experimental setup,
we adopted parameters that bear close resemblance to those
observed in biological systems. For instance, in numerous
genomics applications employing HMMs, the state count is
commonly 6 (comprising four observable and two hidden
states) or 21, as elaborated in (Yoon, 2009). Moreover, it’s
worth highlighting that the transition matrix in such cases is
often sparse. In addition, in Cell Trajectory Analyses (CTA),
the state count is usually determined by user’s discretion
but typically does not exceed 20, as validated by (Shokoohi
et al., 2019; Ye et al., 2019), where 12 states were deployed.
In (Saelens et al., 2019), one of the most exhaustive CTA
method comparisons to date, the maximum state count was
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(a) Reconstruction for ignorable setup. (b) Reconstruction for nonignorable setup. (c) The impact of Ψ imputation.

Figure 3. (a, c) Both Samplers significantly improves on the Naive method. While the ”Gaps” is better. (b) The Gap sampler converge to a
better placement, faster.

set at 20. CTAs often can be seen as a branching process
that incorporates ”local” cycles and a slower ”global” cycle,
a presumption that is integrated into our bipartite model.

4.1. Reconstruction Under Correct Specification

This section evaluates the reconstruction performance of the
methods with no miss-specification. Figure 3a presents the
reconstruction results for the ignorable case, that is, only a
single number is provided to the methods which is the true
percentage of missing observations (or the true trajectory
length N for the Matching sampler). In this experiment, we
pick varying pc’s (X-axis), i.e. Ψ = 1−pc percentage of ob-
servations are deleted. As the figure shows, the performance
of all the algorithms is significantly better than the Naive
algorithm, which for most cases, is the only applicable one
(1.1). Moreover, for the Gaps sampler, the reconstruction
performance matches that of the ideal benchmark (1.1).
As discussed in Section 1.3, this result is remarkable, due to
the exponential number of possible placements W .

To gain a better understanding of the performance distinc-
tions between the samplers, we will conduct a more in-depth
examination of them. To that end, we fix a ground-truth T ,
and learn the placement parameters W (or, equivalently, d ).
That is, T is fixed, and in a single iteration of the sampler, we
sample P (X|W,T,O) and then P (W |X,T,O). The per-
formance was measured by evaluating the average log like-
lihood of the trajectories, 1

|O|
∑O

i log (P (Oi, Xi|T,Wi))

after each iteration of the sampler. We have also varied
the number of times P (W |X,O) is sampled, that is, for a
fixed X , the matching sampler had from 30 to 300 steps to
find the “right” W , before the next X was sampled. For
the Gaps sampler, only one step of W sampling is required
by design per X sample. As shown in Figures 4, while on
the degree d = 5 the performance is comparable, on the
Cyclic MultiChain data the Gaps sampler finds more likely
trajectories dramatically faster.

Figure 3b presents the evaluation results for the non-
ignorable case. In this experiment, for each s we sample

Figure 4. Convergence of the placements parameters.

Ψ(s) ∼ Uniform[0.5− ϵ, 0.5 + ϵ] for varying ϵ (X-axis),
which control the variance of Ψ(s). After omitting observa-
tions according to Ψ(s), we provide it to the methods. As
the figure shows, the results are consistent with those of
Figure 3a even for drastic variance in Ψ(s). Previous works
has demonstrated a decrease in performance when dealing
with non-ignorable missing observations (Speekenbrink &
Visser, 2021), but our methods appear to be effective in this
case, likely due to the use of Gibbs sampling which impute
missing observations as an intermediate step.

Figure 3c evaluates the performance for when only limited
knowledge of Ψ is available. This experiment highlights a
key advantages of sampling-based methods, which can infer
missing values of Ψ. Specifically, we randomly generate
a single Ψ(s) ∼ Uniform[0.35, 0.65], and then delete a
proportion, ϵ, of entries. The partial Ψ(s) is then provided
to the methods. In the ”Sampling imputation” case (dashed
lines), the missing entries are inferred using the sampling
procedure described in Section 3.2.1, while in the ”Random
imputation” case, they are filled in with random values.
As shown in Figure 3c, the imputation step leads to a signif-
icant improvement in performance. The Matching Sampler,
which is provided with knowledge of N , demonstrates im-
proved results across all benchmarks and levels of ϵ. Addi-
tionally, the Gaps Sampler, which does not have access to
this information, also shows notable improvement for some
benchmarks. These results are noteworthy, as knowledge
of N is common in many applications of PHMMs, and ob-
taining prior knowledge about Ψ can be costly or difficult
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to infer. Furthermore, the fact that the Gaps Sampler does
not require knowledge of N , making this result even more
impressive.

4.2. Robustness Under Misspecification

From a practical point of view, it is reasonable to assume
that Ψ will be known to the reconstruction algorithms only
up to some error. Therefore in this section we evaluate the
robustness of the algorithms under different misspecifica-
tions. In view of the results of the previous section, in this
section we focus on the ”Gaps sampler”. Additionally, we
presents the results of the semi-analytical approach as a
comparison to the ignorable case.

Figure 5a presents the case of “wrong pc”. Here we address
the ignorable case where the pc estimate provided to the
algorithm differs from the ground truth value pc = 1

2 . As
the figure shows, both of the algorithms are relatively
robust with respect to wrong pc. Moreover, note that even
for sizable error in pc both algorithms are superior to the
Naive approach. In addition, the sampler based algorithm
tends to be better then the semi analytical algorithm.

Figure 5b presents the case of ”non-constant” pc, where
there is no single constant ground truth pc. Instead, for
each sentence, pc is sampled independently from a normal
distribution pc ∼ N( 12 , σ). In this case, the pc provided to
the algorithm is the average one (pc = 1

2 ). Notice that the
larger the σ, the noisier the data is, and hence the harder
the problem. Never the less, the Gaps sampler give great
results even for high values of σ, outperforming the semi-
analytic method in a more pronounced way. Given that the
case of non constant pc is the most realistic one, this result
showcases the benefit in sampling based methods.

Robustness under Observations Removal Process Mis-
specifications. Previous sections assume that the omission
process,ΦΨ (Section 2), is modeled as a series of indepen-
dent Bernoulli trials. We now consider a case where in-
stead the omission process is a Markov process with two
states: Rs = ”seen” and Rm = ”missing”, with transi-
tion probabilities given by P (Rs|Rs) = pc + ϵ (and hence
P (Rm|Rs) = pc − ϵ), and P (Rs|Rm) = (1− pc)− ϵ (and
hence P (Rm|Rm) = (1− pc) + ϵ). Thus, ϵ represents the
bias of staying at the same state, with ϵ = 0 case being
equivalent to the i.i.d Brenoulli process above. Figure 5c
compares the algorithms for different values of the bias ϵ.
As the figure shows, the sampler results are mostly better
than the ones of the Naive solution, and constantly better
then the semi-analytical ones. Nevertheless, the results of
the Naive solution improved as ϵ increases, and after some
threshold of ϵ, the Naive algorithm become somewhat bet-
ter then the sampler. As discussed in Proposition 2.1, the
Naive reconstruction can be seen as the weighted mean of
the ground-truth matrix T and wrong transition matrices T d

derived from sequences of length d of omitted observations
only. As ϵ increases, the probability of longer consecutive
sequences increases (that is, long sequences of P (Rs|Rs) or
P (Rm|Rm)). But, while longer sequences of consecutive
observed states (Rs ) are beneficial to the Naive solution,
the solution is negatively effected by the number of omitted
observations sequences, and not their length.

Robustness under Ignorability Assumption Misspecifica-
tions. Figure 6 examines the impact of considering the non-
ignorable setup on the performance of the methods. For this,
for each s we sample Ψ(s) ∼ Uniform[0.5 − ϵ, 0.5 + ϵ]
for varying levels of ϵ (X-axis), and provide the algorithms
with only the empirical pc, or N for the Matching Sam-
pler (dashed lines). We also compare the results to those
of the “ideal benchmark,” which assumes fully observed
missing locations but does not take into account the non-
ignorability assumption. As the figure shows, while the
performance is similar for low values of ϵ, it becomes more
pronounced for higher variance for both the Gaps Sampler
and the “ideal benchmark.” This demonstrates the impor-
tance of considering the non-ignorability assumption, which
is often overlooked in HMM reconstruction methods.

4.3. Computational Complexity of the Proposed
Algorithms

The computational complexity of both the Gaps sampler
and the Matching sampler depends on three factors: the
complexity of sampling a single sentence, the number of
of sentences, and the total number of iterations involved.
When analyzing the complexity for a single sentence, the
computational demands of both samplers are governed by
the backward-forward sampling algorithm used for state
sequence X sampling, and additionally, by the sampling of
either missing location (W ) or interval length assignments
(D). The backward-forward sampling algorithm has a well-
understood complexity of O(2·S2 ·N), where S symbolizes
number of states and N represents the length of the latent
process. Also, for each time point t, a sampling procedure
from a Dirichlet distribution of size S is initiated.

Regarding to the sampling of interval lengths D, a forward
algorithm is engaged (see Section 3.2), carrying a complex-
ity of O(S2 · N), complemented by a singular sampling
operation from a Dirichlet distribution of size 100, as de-
tailed in Section 3.2. The process of sampling W presents
the most computation-intensive part of this paper, utiliz-
ing an additional inner sampler. Its complexity hinges on
the product of the count of pre-determined sampling itera-
tions and N . As depicted in Figure 4, the Gaps parameters
achieve faster convergence, which consequently leads to
quicker Gibbs convergence.

As a specific example, the most computationally demanding
experiment conducted in this paper (featuring 1000 sen-
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(a) Wrong pc. (b) Non-constant pc. (c) Φpc with memory.

Figure 5. Robustness Under Misspecification.

Figure 6. Assume ignorable for non-ignorable Φ.

tences of size 100, a matching sampler with 120 iterations
for W learning, and the imputation of Ψ) would take an es-
timated 8 minutes. The majority of configurations, however,
would require significantly less time. In our observations,
this duration is considerably shorter than what the standard
EM algorithm requires in the widely used Pomegranate
package (Schreiber, 2016). The improvement in our com-
putational performance is attributable to multiple elements,
including efficient distribution sampling (especially Gaus-
sian and Dirichlet) and full parallelism.

5. Conclusion
This study addresses the challenge of reconstructing hid-
den Markov models from ordered trajectories with missing
observations at unknown locations, which is a common is-
sue in fields such as computational biology. A novel and
general approach was proposed, based on Gibbs sampler,
which overcomes many of the limitations of existing meth-
ods and opens the way for new applications. Additionally,
the approach addresses the non-ignorable missing observa-
tions setting . Moreover, the robustness of the algorithms to
different misspecifications was demonstrated. Two notable
results were presented: 1) the reconstruction performances
are comparable to the performance of algorithms that use
known missing locations, even in the non-ignorable case,
and 2) partially known omission probabilities can be in-
ferred from data. As future work, further improvement is

possible by incorporating prior knowledge of the latent pro-
cess structure into the Bayesian framework and by using
specialized omitting process tailored to specific problems.
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A. Naive Reconstruction and Sensitivity w.r.t W Placement
Figure 7 presents the performance of the Naive method for additional models.
Figure 8 demonstrate the effects of gap location under different perturbation scenarios. The first perturbation (named
“Equivalent”) assumes the new locations points to the same states in the original sentence, For example, for sentence
[A,B,B,C] the locations vector (0,1,3) and (0,2,3) are equivalent. The second permutation (named “Consecutive”) assumes
that the consecutive observations(observations without gaps between them) locations are preserved and the number of
consecutive observations is the same. For example, if the non-gaps locations are (1,2,5,7,8,10) we create (1,2,4,7,8,16).
As the experiments shows, ignoring the missing observations or randomizing them gives quite bad results, although, the
reconstruction not necessarily relays on the exact gaps as shown in the “equivalent“ case.

Figure 7. Reconstruction with the Naive model and with random allocations of missing observations locations.

Figure 8. Reconstruction under different permutations of missing observation locations. X-axis is the pc of Phipc , Y-axis is the L1
distance from the original T.

B. Handling missing observations in HMM
Missing observations are an integral part in the practical use of HMMs. This section presents a general approach of handling
missing observation in the case of known locations.

Lets define a simple discrete Markov model where O1:N = (O1, ..., ON ) denote a time series of observations, and let Θ
denote a vector of parameters. A hidden Markov model associates observations with a time series of hidden (or latent)
discrete states X1:N = (X1, ..., XN ). TXt,Xt−1

= p(Xt|Xt−1) is the transitions probabilities between states. The joint
distribution of observations and states can be stated as

P (O0:T , X0:T ,Θ) = P (X0|Θ)P (O0|X0,Θ)

T∏
t=1

TXt,Xt−1 · P (Ot|Xt,Θ) (5)
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Now let us assume some of the observations O1:T are missing. Omiss will be the set of all missing observations and Oobs

the set for all observed observations. We can redefine as follow :

P (Ot|Xt,Θ) = IOt∈OobsP (Ot|Xt,Θ) + IOt∈OmissP (Ot = ∅|Xt,Θ) (6)

In our case the process removing the observations is dependent of Θ,X or O (non-ignorable) :

= IOt∈OobsP (Ot|Xt,Θ) · (1−Ψ(Xt)) + IOt∈OmissΨ(Xt) (7)

Hence, if we define W [w1, w2, ...] as a mapping between the Ot ∈ Oobs to the corresponding time t (as in man paper), we
can write:

P (X,T,Θ|W,O,Ψ) =

P (X0|Θ)P (O0|X0,Θ)·
N∏
t=1

TXt,Xt−1
·

{
(1−Ψ(Xt)) · P (Ot|Xt,Θ), if t ∈ Wi

Ψ(Xt), otherwise

(8)

C. Matching Sampler
This section contains a fully detailed Gibbs sampler for the case of reconstructing HMMOPs with known N. The section
begin with addressing the initialization of the sampler for HMMOPs reconstruction, proceed to describe the ”known location”
Gibbs sampler while assuming W is known, and finally described the process of sampling W with more details.

Since the precise nature of emissions is not critical for the general results, from now on we will concentrate on the case of
HMM with scalar Gaussian emissions, Θxn = N(µn, σ), where µn is a learnable parameter.

We starts with presenting the parameters of our model :

• T is the matrix which holds the probabilities to move from state Xi to Xj , with a Dirichlet distribution prior.

• X is the set of all latent states sequence Xi.

• W is the set of all mapping Wi corresponding to Xi, Oi.

The external parameters of the model are :

• {Ni} the expected length of each |Ui| (or |Xi| equivalently) .

• σj the standard deviation(S.D) of the distributions of X’s emissions.

• {Oi} Our input (Missing sentences).

• Ψ are the omitting probabilities.

For simplicity, given that we sample each Wi or Xi independently, this section proceed with the notations - O =
[o0, . . . , oK ] := Oi, W = [w0, . . . , wK ] := Wi , X = [x0, . . . , xN ] := Xi. Also, we define W k as the sequence
W when the wk is omitted, and X [a,b], O[a,b] as the sub-sequence of X , O starting with index a and end with b.

C.0.1. CALCULATING INITIAL VALUES

(Rydén, 2008) offers the following steps for drawing initial conditions for µ given Normal prior and where Ôi is the
”full observed trajectory” (Ui, not exist in our case)- Each µi is given an independent Normal prior N(ξ, κ−1) with
ξ = mint(Ôi,t)+maxt(Ôi,t)

2 and κ = 1
R2 , R = maxt(Ôi,t ) −mint(Ôi,t ) . Because we cant map observations to times

without W, we cant directly draw the initial conditions as in the simple case. So, we used an unsupervised approach to asses

13
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the mapping between observations and distributions. Given the prior of Normally distributed states, our observations are
a set of samples drawn from the GMM

∑|D|
l dl, so for assigning observations to distributions we used an EM algorithm

for GMM . Then, for {Ol} all the observations assigned to distribution dl, we calculate ξl = min(Ok)+max(Ok)
2 and

κl =
1
R2 , R = max(Ok)−mint(Ok).

Initial conditions for T and W are drawn in random .

C.0.2. SAMPLING CONDITIONAL DISTRIBUTIONS FOR KNOWN W

Gibbs sampler is a common algorithm for HMM reconstruction, which allow us to draw samples from the posterior
distribution of the HMMs (or in our case 8). Here we will follow the work of (Rydén, 2008). The idea beyond Gibbs
sampling is alternating between sampling model parameters and latent data from their respective full conditional
distributions. This is because, given the latent Markov chain and the data, the parameters are conditionally independent.
And vice versa, given the parameters and the data the latent process is a non-homogeneous Markov chain and hence simple
to sample. The basic steps for sampling the posterior P (T,X,Θ,W |O, N,Ψ) for the reconstruction are 1. start with initial
values for the parameters 2.sample a latent sequence X form the posterior given the parameters 3. sample the parameters
form their conditional distribution, X and the observations.

Sampling T.
As we defined earlier, T the transitions probabilities are assumed to be drawn from an NXN Dirichlet distribution, so for
sampling T we sample the distribution :

T |X,W,µ = T |X ∼ Dir(
∑
i

ni1 + 1,
∑
i

ni2 + 1, ...,
∑
i

nid + 1) (9)

where nij is the number of transitions from state i to state j over all X .

Sampling µ.
Notice that for sampling µ, T is no longer needed. µx, the mean of the emissions distributions of state x, deepens on the
observations correspond to X, hence, depends on both X and W. From (Rydén, 2008) we know :

µ|... ∼ N(µ̂, σ̂); µ̂ = (Si + κξ)/(ni + κ); σ̂ = 1/(ni + κ) (10)

Where:

Sn =
∑
i,k

Oik · δXiWk
,dn

1

Sampling X .
Given Θ,T and Oi, X| . . . can be modeled as a (non-homogeneous) Markov chain with initial distribution:

P (X0|...) ∝ N̂(O0|X0) · P (O[2,n]|X0) . N̂(Oit|Xj) =

{
(1−Ψ(Xt)) ·N(Oit|Xj) if t ∈ Wi

Ψ(Xj) else
(11)

and transition probabilities:

P (Xk|Xk−1) ∝ TXk,Xk−1
· N̂(Ok|Xk) · P (O[k+1,N ]|Xk)

For sampling X, we use an approach similar to the ”forward backward” algorithm, called the ”backward recursion forward
sampling” algorithm (Chib, 1996). The algorithm sample X from the Markov chain similarly to how F-B algorithm sample
observations from an HMM.

Finally, Our sampling algorithm is presented in algorithm 1

1δxy is the Kronecker Delta

14
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Algorithm 1 Gibbs sampler given N

infer ξ and κ from O and calculate µ
Build random T and W
sample X|O, T,W, µ.
repeat

sample µ|X,O,W, κ, ξ, σ.
sample T |X .
sample W |X,O, µ, σ,Ψ.
sample X|T,W,O, µ,Ψ.

until convergence

C.0.3. SAMPLING W

Given the independence between the conditional distributions of each of the parameters in the Gibbs sampler, the difference
between sampling P (X , T,Θ,W|O,Ψ) instead of P (X , T,Θ|W,O,Ψ) lay in sampling P (W|T, µ,X ,O,Ψ).

As described in Section 2, W are independent. Also, given Xi, T is no longer needed for the conditional distribution of W .
So, our problem become sampling:

P (W = [w0, . . . , wK ]|Θ, X,O,Ψ) (12)

For sampling from (12) we used a Gibbs sampler once again, that is, instead of sampling W from (12), we iteratively sample
wk from :

P (wk|W k,Θ, X,O,Ψ) (13)

Given wk−1 < wk < wk+1, the probability (13) is of mapping a single observations Ok to one of X [wk−1,wk+1]. And given
the Markov property of X and that Phi(·) is a memoryless process, this mapping is independent from wk′ , Xk′ , Ok′ for
k′ ̸∈ {k − 1, k, k + 1}. So (13) become :

P
(
wk

∣∣∣Ok, X
[wk−1,wk+1],Ψ

)
· I[wk−1,wk+1](wk)

2

=
P (Ok|X [wk−1,wk+1], wk)

P (Ok|X [wk−1,wk+1])
· P (wk|X [wk−1,wk+1]) · I[wk−1,wk+1](wk)

=
P (Ok|Xwk

)

P (Ok|X [wk−1,wk+1])
·

(
(1−Ψ(Xwk

))∑[wk−1,wk+1]
j (1−Ψ(Xj))

)
· I[wk−1,wk+1](wk)

and the denominator is independent of wk :

∝ P (Ok|Xwk
) · (1−Ψ(Xwk

)) · I[wk−1,wk+1](wk) (14)

C.0.4. M-H ALGORITHM

For better convergence we used a special case of Gibbs sampling called the M-H algorithm (Hastings, 1970). M-H is a
special case of Gibbs sampling where the update from the new iteration W t+1 is conditioned with an acceptance ratio
α = P (W t+1|Xi,Oi)

P (Wt|Xi,Oi)
. Lets start with describing P (W |Oi, Xi) :

P (W |Oi, Xi) =
P (Oi|W,Xi) · P (W |Xi)

P (Oi|Xi)
(15)

For the ignorable case where Ψ is independent of X we have :

=
P (Oi|W,Xi) · p|O|

c · (1− pc)
(|X|−|O|)

P (Oi|Xi)
(16)

2I[wk−1,wk+1](wk) is the indicator function

15
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And because P (Oi|Xi) is independent of W :

∝ P (Oi|W,Xi) · p|O|
c · (1− pc)

(|X|−|O|) (17)

Given P (Oi|W,Xi) is simply the probability of observation sequence Oi on state sequence Xi with known mapping, we
can say:

α =

p
|O|
c · (1− pc)

(|X|−|O|) ·
K−1∏
k=0

P (ok|Xiwt+1
k

)

p
|O|
c · (1− pc)(|X|−|O|) ·

K−1∏
k=0

P (ok|Xiwt
k
)

=

K−1∏
k=0

P (ok|Xiwt+1
k

)

K−1∏
k=0

P (ok|Xiwt
k
)

(18)

For the non-ignorable case : Because P (Oi|Xi) is independent of W, and given P (Oi|W,Xi) is simply the probability of
observation sequence Oi on state sequence Xi with known mapping :

α =

P (W t+1|Xi) ·
K−1∏
k=0

P (ok|Xiwt+1
k

)

P (W t|Xi) ·
K−1∏
k=0

P (ok|Xiwt
k
)

(19)

While P (W t+1|Xi), P (W t+1|Xi) are hard to evaluate, the difference between them is only one mapping w. Lets assume
wj is the mapping which been updated in time t :

α =

(1−Ψ(Xwt+1
j

)) ·
K−1∏
k=0

P (ok|Xiwt+1
k

)

(1−Ψ(Xwt
j
)) ·

K−1∏
k=0

P (ok|Xiwt
k
)

(20)

The full sampling algorithm is described in Algorithm 2.

Algorithm 2 M-H sampler For W

Initial W 0 randomly
for i=0,1...,Number of iterations do

W t+1 = W t

for k = 0,1,...,K do
W t+1

k ∼ P (wk|wt+1
k−1, w

t
k+1)

end for
calculate α = P (W t+1)

P (W t)

sample u from uniform distribution over [0,1]
if u ≤ α then
W t = W t+1

else
W t+1 = W t

end if
W t = W t+1

end for

D. Gap sampler
Lets M = (X, T,Θ) be an HMMOP, and Md = (X, T d,Θ) be an HMM where T d is the d-step transition matrix of
transition matrix T . DΨ(Xi, Xi+1) is a random variable distributed according to the distances between two observable
states Xi, Xi+1. From now on, we define di = [di0, . . . , diK ] as the sequence of intervals. Note that dik is corresponding to
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wk+1 − wk in the previous notation, as the number of gaps between two observed states in the original full states sequence
Ui. D is the set of all di. As before, we omit the index i given the formulation is the same between sequences.

When conditioning over d, the posterior distribution of the HMMOP can be written as :

P (X,T,Θ|d,O,Ψ) = P (X0|Θ, d0) · P (O0|X0,Θ) ·
Ki∏
k

P (Xk+1|Xk, dk) · P (Ok+1|Xk+1,Θ) (21)

Samplind d : Our goal is to calculate :
P (dk|(Xk, Xk+1))

Lets define s = [s0, . . . , sd−1] ∈ Sd as the set of all d long states trajectories. Also lets assume d is limited to be no longer
then a predefined number S . We say that a sequence is fully omitted if we didn’t observed any state from the sequence. We
denote the case of a fully omitted s as s̄. The probability of s to be s̄ :

P (s̄|s) =
d−1∏
i=0

Ψ(si)

By definition, P (dk|(Xk, Xk+1)) is the probability for a sequence of length d (hence s ∈ Sd), been fully omitted, between
(Xk, Xk+1). ∑

s∈Sd P (s|(Xk, Xk+1)) · P (s̄|s)∑S
τ=0

∑
s′∈Sτ P (s′|(Xk, Xk+1)) · P (s̄′|s′)

=∑
s∈Sd T [Xk, s0] · T [sd−1, Xk+1] ·Ψ(s0) ·Πd−1

i=1 T [si−1, si] ·Ψ(si)∑S
τ=0

∑
s′∈Sτ P (s′|(Xk, Xk+1)) · P (s̄′|s′)

(22)

Given the limited number of d’s, we only need the probability up to proportion :

∝
∑
s∈Sd

T [Xk, s0] · T [sd−1, Xk+1] ·Ψ(s0) ·Πd−1
i=1 T [si−1, si] ·Ψ(si) (23)

Lets present the case of Ψ(·) = (1− pc) :

=
∑
s∈Sd

T [Xk, s0] · T [sd−1, Xk+1] · (1− pc) ·Πd−1
i=1 T [si−1, si] · (1− pc)

= (1− pc)
d−1 ·

∑
s∈Sd

T [Xk, s0] ·Πd−1
i=1 T [si−1, si] · T [sd−1, Xk+1]

= (1− pc)
d−1 · T d[Xk, Xk+1]

(24)

Back to the general case, we evaluate 23 using the forward algorithm. We can say that :

P (d|(Xk, Xk+1)) =
∑
x∈X

∑
j∈X

P (d− 1|(Xk, Xk+1), sd−2 = j) · T [j, x] · (1−Ψ(x))

While :
P (d− 1|(Xk, Xk+1)) =

∑
j∈X

P (d− 1|(Xk, Xk+1), sd−2 = j)

As we can see this is the form of the forward algorithm with P (d|(Xk, Xk+1), sd−1 = j) as the forwarding elements.
Notice that P (1, . . . , d− 1) are intermediate steps for calculating p(d) in the forward algorithm, hence the complexity of
calculating P (1), . . . , P (S) is equal to the complexity of calculating P (S).
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Algorithm 3 Gibbs sampler given PC

infer ξ and κ from O and calculate µ
sample T from a uniform Dirichlet prior
sample Xwalk|O, T, µ.(naive sampling given T )
sample d|T,Xwalk, pc
repeat

sample µ|Xwalk,O, κ, ξ, σ
build W,N from d
sample XT |W,N, T,O, µ,Ψ
sample T |XT

sample Xwalk|T, d,O, µ,Ψ
sample d|T,Xwalk,Ψ

until convergence

Sampling X : Given the equivalence between {d} to {w}, we sample X in the same way as with the Matching sampler.

Sampling T : A challenge in the new representation is sampling T |X, d,Ψ. Notice that even in the ignorable case, X
contains samples from T d rather than T, and because of the difficulty in finding roots for stochastic matrices (Higham & Lin,
2011) and the sparsity of most of T d, it is hard to calculate T d explicitly in order to sample T. For those reasons, we use the
fact that wk =

∑j=k
j=0 dj and N =

∑
dk and proceed as with sampling P (T |X,Θ,W,O,N).

Algorithm 3 describes the full Gibbs sampler.

E. Inference
A Common use of Hmm is sequence labeling (or inference, interchangeably). That is, given observations sequence O and
an HMM with known parameters we aim to find Xml = argmaxX P (X|W,O). This section provide a inference method
for sequence drawn from a HMMOP, so our aim is to find :

Xml = argmaxX P (X,W |O) (25)

Notice, that this case refer to a scenario where T from the fully observed HMM is known, but, the sentences have been
drawn from the corresponding HMMOP. Given HMMOP is an HMM (2.1), the best representation for the dynamics of the
labels drawn from the HMMOP is Tr. So, this case reefer to a scenario where Tr cannot be learn, for example because of
lack of training data, but the ”original” T is available.

Many algorithms exists for the case of known W. So, for solving (25) we use an iterative Expectation-maximization (E-M)
algorithm based on the sub-problem :

Wml = argmaxW P (W |X,O) (26)

As before, W = [W0, . . . ,WK ] are mappings between Ok ∈ O to Xn ∈ X . So, our goal is to find:

argmaxW

K−1∏
k=0

P (Ok|XWk
) = argmaxW

K−1∑
k=0

log(P (Ok|XWk
))

Wk−1 < Wk < Wk+1

(27)

This problem can be represented as finding longest path on a directed acyclic graph (DAG). Lets define a DAG G = (S, T )
where sa,b ∈ S, a ∈ [0,K − 1], b ∈ [0, N − 1] are the nodes with ra,b as weights and T ′ as the binary matrix representing
the edges :

ra,b =

{
log(P (Oa|Xb)) ,if b ≥ k

−∞ else
T [sai,bi , saj ,bj ] =

{
1 ,if (aj − ai) == 1 & bj > bi

−∞ else
(28)

Now lets consider the problem of finding the longest path V ′ = [s′ao,bo
, . . . , s′aK ,bk

] on G that starts in one of s0,: and ends
in one of s:,N . Given T ′, only transitions with consecutive a are possible, so, |V ′| = K. Also, V ′ is ordered for b, so V ′ is a
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Figure 9. We want to find the longest path that start in green node and end in red node. In this case. Here
[log(P (O0|X1)), log(P (O1|X2)), log(P (O2|X4)), log(P (O3|X5))] so Wml = [1, 2, 4, 5].

sequence maximizing a sum of weights (28), where a are consecutive and b are ordered. In other words, by taking b for each
s′ ∈ V ′ we get the optimal W. Figure 9 present an illustration of the process.

For better initialization, we calculated an initial Wml instead of using random allocation. Given T, P (dk = n|Xk, Xk+1) is
given by ??. Our goal is to solve :

argmaxd

K∏
k=0

P (dk|Xk, Xk+1) = argmaxd

K∑
k=0

log(P (dk|Xk, Xk+1))

dK+1 +
∑

dk < N

(29)

where dK+1 is the probability for d gaps from XK to end. This problem is known as the multi-choice knapsack problem
where one pick a single item dk from 1,...,N-K per k, that maximizes a ”benefit” (

∑
k P (dk)) with constrain over some

”cost” (
∑

dk < N ). The details of the multi-choice knapsack algorithm are in the code.

E.1. Inference results - Sequence Labeling

As presented in E, the reference algorithm receive 3 inputs - 1) a transition matrix T (derived from a fully observed HMM).
2) missing sentences 3) assumption for the percentage of missing observations, in our case the original sentence length N.
Than, the algorithm returns a sequence of states of the length of the observations sequence.

For this experiment we sampled sentences from the models in G and remove observation according to pc = .5. Than, we
predict the labels of each sentence and compare them to the known ones. The evaluation measures are the mean and variance
of the accuracy across sentences. We compare the results of five algorithms: 1) naive prediction on the full sentences (named
“Full sentence”). 2) Based on the emissions probabilities only (“Emissions only”). 3) Missing sentences when the gaps
locations are known (“Naive”). 4) missing sentences using a naive prediction. 5) missing sentences using the HMMOP
inference with known N(“HMMOP”).

Given the sensitivity of the label prediction task to the emissions probabilities, for the Gaussian models we compare the
results for different σs. As Table 1 present, the HMMOP give better results under all scenarios. Also, its interesting to see
that when ignoring the missing observations, one better relay on the emissions alone rather using the wrong dynamical data.

19



Learning Hidden Markov Models When the Locations of Missing Observations are Unknown

Table 1. Label prediction results

Synthetic Degree = 5 Synthetic Degree = 3

STD 0.5 0.75 1.0 0.5 0.75 1.0

Full sentence .87(.08) .80(.11) .64(.10) .96(.05) .98(.05) .82(5.6)
Emissions only .69(.15) .57(.15) .42(.17) .51(.15) .72(.13) .43(5.6)
Known W .79(.15) .65(.16) .58(.17) .90(.12) .89(.10) .60(5.6)
Naive .66(.15) .52(.17) .49(.18) .80(.21) .49(.18) .38(5.6)
HMMOP .73(.14) .59(.14) .50(.17) .84(.16) .73(.15) .45(5.6)

Multi-Partite POS

0.5 1.0 1.5

.91(.06) .78(.09) .69(.12) .91(.06)

.71(.15) .50(.15) .40(.16) .89(.11)

.83(.13) .64(.17) .57(.18) .90(.10)

.69(.16) .48(.18) .40(.17) .88(.11)

.72(.16) .50(.16) .40(.15) .89(.12)

F. Analytical Reconstruction - Ignorable Case
Given OP (·), the Naive algorithm reconstruct Tmissing which can be described as follow:

Tmissing(N) ∝ pc · Tab + pc ·
N∑

n=2

(1− pc)
n−1 · Tn

ab

= pc · Tab · [I+
N∑

n=2

(1− pc)
n−1 · Tn−1

ab ]

= pc · Tab · [I+
N∑

n=1

[(1− pc) · Tab]
n]

= pc · Tab ·
N∑

n=0

[(1− pc) · Tab]
n

(30)

And after normalization

Tmissing(N) = [PC ·
N∑

n=0

[(1− pc)]
n]−1 · pc · Tab ·

N∑
n=0

[(1− pc) · Tab]
n

= [PC · 1− (1− pc)
N+1

pc
]−1 · pc · Tab ·

N∑
n=0

[(1− pc) · Tab]
n

=
pc

1− (1− pc)N+1
· Tab ·

N∑
n=0

[(1− pc) · Tab]
n

(31)

Where N is the number of gaps in the sentence. The highest eigenvalue of the stochastic matrix Tab is 1, so for pc ∈
[0, 1) −→ |pc · Tab| < 1 and we can write :

Tmissing(N) =
pc

1− (1− pc)N+1
· Tab · [I− (1− pc) · Tab]

−1[I− (1− pc)
NTN ] (32)

Tmissing(N)
∞−→
N

pc · Tab · [I− (1− pc) · Tab]
−1 (33)
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As 33 shows, given any T and pc, we can infer Tmissing the transition matrix given OP (·). Notice that we define this
transformation as the ”backward transformation” earlier.
For the ”forward transformation”, which is the transformation from (Tmissing ,pc) to T :

Tab = [I · pc + (1− pc)Tmissing[I− [(1− pc) · Tab]
N ]−1]−1

· Tmissing · [I− [(1− pc) · Tab]
N ]−1

∞−→
N

[I · pc + (1− pc) · Tmissing]
−1 · Tmissing (34)

From now on we will present the backward transformation as T−pc and the forward transformation as T pc .

Lemma F.1. π the stationary distribution of Tab is equal to πm the stationary distribution of Tmissing for N −→ ∞

Proof. Given π the stationary distribution of Tab, and from (??)(K = [PC ·
∑N

n=0(1− pc)
n]−1 normalization factor) :

π · Tmissing = K · pc ·
N∑

n=0

(1− pc)
n · π · Tn+1

ab

= K · pc ·
N∑

n=0

[(1− pc)
n · π]

= π ·K · pc ·
N∑

n=0

(1− pc)
n = π

(35)

In fact we can say that given Tm a stochastic matrix build as a polynomial of stochastic matrix T, Tm =
∑

i ai · T i if π is a
stationary vector for T it is also a stationary vector for Tm.

F.0.1. MORPHISM

Lemma F.2. (T−Q0)−Q = T−Q·Q0 and (TQ0)Q = TQ·Q0

Proof.

(T−Q0)−Q = pq · T−Q0 · [I− (1− pq) · T−Q0 ]−1

= pq · PQ0
· Tab · [I− (1− PQ0

) · Tab]
−1 · [I− (1− pq) · PQ0

· Tab · [I− (1− PQ0
) · Tab]

−1]−1

= pq · PQ0
· Tab · [[I− (1− PQ0

) · Tab] · [I− (1− pq) · PQ0
· Tab · [I− (1− PQ0

) · Tab]
−1]−1

= pq · PQ0 · Tab · [[I− (1− PQ0) · Tab]− (1− pq) · PQ0 · Tab]
−1

= (pq · PQ0
) · Tab · [[I− (1− (pq · PQ0

)) · Tab]
−1 = T−Q·Q0

(36)

Following our resent prove :

T−Q·Q0 = (T−Q0)−Q

We will use the forward transformation twice on both sides:

((T−Q·Q0)Q)Q0 = (((T−Q0)−Q)Q)Q0

More, we claim that (T pc)−pc = T because the forward transformation derived directly from the backward transformation
so ((T−Q·Q0)Q)Q0 = T
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Finally:

((T−Q·Q0)Q)Q0 = T = (T−Q·Q0)Q·Q0

(TQ)Q0 = (T )Q·Q0
(37)

F.0.2. FORWARD AND BACKWARD COMPOSITION

We will start with calculating the composition of the forward to the backward transformations. This process can be described
as trying to reconstruct T from Tmissing based on the wrong assumption of ΦΨ when the real process was Φpq

(T−pq )pc = [I · pc + (1− pc) · pq · T · [I − (1− pq) · T ]−1]−1 · pq · T · [I − (1− pq) · T ]−1

((T−pq )pc)−1 = [I − (1− pq) · T ] ·
1

pq
· T−1 · [I · pc + (1− pc) · pq · T · [I − (1− pq) · T ]−1]

=
1

pq
· [T−1 − (1− pq) · I] · [I · pc + (1− pc) · pq · T · [I − (1− pq) · T ]−1]

=
1

pq
· [T−1 · pc + (1− pc) · pq · T−1 · T · [I − (1− pq) · T ]−1

− I · pc · (1− pq)− (1− pc) · (1− pq) · pq · T · [I − (1− pq) · T ]−1]

=
pc
pq

· T−1 + [(1− pc)− (1− pc) · (1− pq) · T ] · [I − (1− pq)T ]
−1 − I · (1− pq) ·

pc
pq

=
pc
pq

· T−1 + (1− pc)[I − (1− pq)T ] · [I − (1− pq)T ]
−1 − I · (1− pq) ·

pc
pq

=
pc
pq

· T−1 + I · [(1− pc)− (1− pq) ·
pc
pq

]

=
pc
pq

· T−1 + I · pq − pc
pq

(38)

(T−pq )pc = [
pc
pq

· T−1 + I · pq − pc
pq

]−1

= [
pc
pq

· T−1 + I · (1− pc
pq

)]−1
(39)

Now we will use lemma F.2 to calculate (T pc)−pq by showing the forward and backward transformations are
commutative :

(T pc)−pq = (((T−pq )pq )pc)−pq =

(((T−pq )pc)pq )−pq = (T−pq )pc =

[
pc
pq

· T−1 + I · (1− pc
pq

)]−1

(40)

We can formulate a connection between T,pq and T−pq from (40). Lets assume we observed T−pq and someone
gave us the transition matrix T, how can we infer pq ? We can always use iterative method to solve this problem , but another

option is to use the derivative of d((T−pq )pc )−1

dpc
which can be calculated regardless of the unknown pq (pc,pc + ϵ can be

chose randomly):
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d(((T−pq )pc )−1)
dpc

= 1
pq

· [T−1 − I]. And :

pq = (
d(((T−pq )pc)−1)

dpc
)−1 · [T−1 − I]

T = [pq ·
d(((T−pq )pc)−1)

dpc
+ I]−1

(41)

Figure 10 presents the sensitivity of the backward transformation to the pc used for the transformation. A Markov chain
with 10 states was generated where the transition matrix Tr was chosen at random(uniform). 1500 trajectories of length 100
were sampled proceeding by ΦΨ to build the empirical Tmissing . Then, (3) was used to reconstruct Tr.

Figure 10. Backward transformation sensitivity to pc. Each plot represents different ground truth pc.Y-axis the L1 distance between T and
Tr . X-axis the pc for the backward transformation. Blue is the transformation results Orange the “naive” solution.

F.0.3. ROBUSTNESS UNDER IID MISSPECIFICATION

Lets now describe the simplest algorithm F = Count(∗) a function that count all the transitions in O and normalize to prob-
ability, as we know this is the maximum likelihood estimator for T with a Dirichlet prior. We define TP = Count(ΦΨ(O))
and TM0 as the transition matrix of the original Markov chain
As we showed before :

TP ∝ p2c · TM0 + p2c ·
N∑

n=2

(1− pc)
n−1 · Tn

M0
(42)

And for Φ̂ :

TP̂ ∝ P (Rs) · P (Rs|Rs) · TM0
+ P (Rs) · P (Rs|Rs) · P (Rs|Rs) ·

N∑
n=2

(P (Rs|Rs)
n−2 · Tn

M0

= pc · (pc + ϵ) · TM0 + pc · (pc − ϵ) · ((1− pc)− ϵ) ·
N∑

n=2

((1− pc) + ϵ)n−2 · Tn
M0

= TM0
[pc · (pc + ϵ) · I + pc · (pc − ϵ) · 1− pc − ϵ

1− pc + ϵ
· [

N∑
n=0

(1− pc + ϵ)nTn
M0 − I]]

inf−−→
N

TM0
· pc · (pc + ϵ) · [I + (pc − ϵ)

(pc + ϵ)
· 1− pc − ϵ

1− pc + ϵ
· [[I − (1− pc + ϵ) · TM0]

−1 − I]]

(43)
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While the normalize expression is

TM0
· (pc + ϵ) · [I + (pc − ϵ)

(pc + ϵ)
· 1− pc − ϵ

1− pc + ϵ
· [[I − (1− pc + ϵ) · TM0]

−1 − I]]

TM0
· (pc + ϵ) · [I + (pc − p2c + ϵ2)− ϵ

(pc − p2c + ϵ2) + ϵ
· [[I − (1− pc + ϵ) · TM0]

−1 − I]]

(44)

As we can see the difference lay in the ratio between the n-steps matrix and the original one. For ϵ ≪ pc we get :

TM0
· (pc + ϵ) · [I + [[I − (1− pc + ϵ) · TM0]

−1 − I]]

= TM0
· (pc + ϵ) · [I − (1− pc + ϵ) · TM0]

−1
(45)

Now lets investigate the robustness of our analytic reconstruction by evaluating the expected results given the new data
distribution :

Treconstructed = [I · pc + (1− pc) · TP̂ ]
−1 · TP̂ ≡ [I · (1− pc) + pc · T−1

P̂
]−1

= [I · (1− pc) +
pc

pc + ϵ
· T−1

M0
· [I − (1− pc + ϵ)] · TM0

]]−1

= [I · (1− pc) +
pc

pc + ϵ
· [T−1

M0
− (1− pc + ϵ) · I]]−1

= [I · ϵ · (1− 2 · pc)
pc + ϵ

+
pc

pc + ϵ
· T−1

M0
]−1

(46)

We can see that for ϵ ≪ (1− pc), pc Treconstruction ≈ TM0 .

G. Evaluations Models
In experiment 5b the values of pc vary between sentences, hence, as σ increase, the Naive results present the relative effect
of ”fairly known” sentences in comparison to ”badly known” ones. As all cases show, the benefit of ”good” sentences is
bigger than the disadvantage of ”bad” ones. That is, non-constant pc is an advantage to the Naive algorithm, but not for
ours, resulting in diminishing advantage. Notice that on closer look, not all cases are affected equally, especially, in the
”Part-Of-Speech”(POS) case the difference is more noticeable. We believe that the reasons for this are: 1) relatively short
distance of the POS transition matrix from its stationary distribution. 2) similarity between each entry in the transition
matrix to the stationary distribution. That is, not only T is similar to T d d−→

∞
π the fixed stationary distribution, it converges

to π for smaller d’s. So, the effect of increasing d (i.e increasing pc) is diminishing faster. Figure 12 in the supplementary
material compares the distance from stationarity for the different cases.

Figure 11 presents heat-maps of the transitions matrices for the four models used for evaluation.

Figure 12 presents the distance to stationary distribution for each model .

H. Standard Deviation (S.D) of the Experiments Results
For each figure in the paper, all the algorithms presented in the figure are evaluated on the same exact data and for the same
random seed. The standard deviations(s.d) reported here are calculated as follow: for each figure (i.e ”Known Specifications”,
”Wrong pc”, etc.), for each data model (i.e ”Synthetic D=5”, ”Part Of Speech”, etc. ), we picked one representative algorithm
(most relevant to the figure) and parameters (most challenging), and reported the s.d between different data and seeds.

All the s.d evaluations are presented in Table 2.
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Figure 11. Heat maps of the transitions matrices of each model used in the paper.

Figure 12. Distance to stationary distribution for each model used in the paper. X-label is the the number of steps for the d-step matrix T d.
Y-axis is the L1 distance between T d and T
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Table 2. S.D for paper experiments

Model Experiment Algorithm Algorithm Input Real Parameter S.D
Syntetic D=5 Ignore Missing Observations Naive ∅ ∅ 0.0604
Syntetic D=5 Known W HMM W W 0.0048
Syntetic D=5 Known pc FOHMM pc = 0.5 pc = 0.5 0.0048
Syntetic D=5 Known N FOHMM N = 0.5 N = 80 0.0231
Syntetic D=5 Wrong pc FOHMM pc = 0.7 pc = 0.5 0.0117
Syntetic D=5 Non-constent pc FOHMM pc = 0.5 pc ∼ N(.5, .2) 0.0084
Syntetic D=5 Non-iid pc FOHMM pc = 0.5 ϵ = 0.15 0.0276
Syntetic D=3 Ignore Missing Observations Naive ∅ ∅ 0.0450
Syntetic D=3 Known W HMM W W 0.0285
Syntetic D=3 Known pc FOHMM pc = 0.5 pc = 0.5 0.0481
Syntetic D=3 Known N FOHMM N = 0.5 N = 80 0.0346
Syntetic D=3 Wrong pc FOHMM pc = 0.7 pc = 0.5 0.0599
Syntetic D=3 Non-constent pc FOHMM pc = 0.5 pc ∼ N(.5, .2) 0.0509
Syntetic D=3 Non-iid pc FOHMM pc = 0.5 ϵ = 0.15 0.1302
POS Ignore Missing Observations Naive ∅ ∅ 0.0423
POS Known W HMM W W 0.0162
POS Known pc FOHMM pc = 0.5 pc = 0.5 0.0079
POS Known N FOHMM N = 0.5 N = 80 0.0107
POS Wrong pc FOHMM pc = 0.7 pc = 0.5 0.0089
POS Non-constent pc FOHMM pc = 0.5 pc ∼ N(.5,.2) 0.0091
POS Non-iid pc FOHMM pc = 0.5 ϵ = 0.15 0.0116
Cyclic MultiPartite Chain Ignore Missing Observations Naive ∅ ∅ 0.0094
Cyclic MultiPartite Chain Known W HMM W W 0.0083
Cyclic MultiPartite Chain Known pc FOHMM pc = 0.5 pc = 0.5 0.0091
Cyclic MultiPartite Chain Known N FOHMM N = 0.5 N = 80 0.0144
Cyclic MultiPartite Chain Wrong pc FOHMM pc = 0.7 pc = 0.5 0.0067
Cyclic MultiPartite Chain Non-constent pc FOHMM pc = 0.5 pc ∼ N(.5,.2) 0.0072
Cyclic MultiPartite Chain Non-iid pc FOHMM pc = 0.5 ϵ = 0.15 0.0051
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