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Abstract
A common pipeline in learning-based control is
to iteratively estimate a model of system dynam-
ics, and apply a trajectory optimization algorithm
- e.g. iLQR - on the learned model to minimize
a target cost. This paper conducts a rigorous
analysis of a simplified variant of this strategy
for general nonlinear systems. We analyze an
algorithm which iterates between estimating lo-
cal linear models of nonlinear system dynamics
and performing iLQR-like policy updates. We
demonstrate that this algorithm attains sample
complexity polynomial in relevant problem pa-
rameters, and, by synthesizing locally stabiliz-
ing gains, overcomes exponential dependence in
problem horizon. Experimental results validate
the performance of our algorithm, and compare
to natural deep-learning baselines.

1. Introduction
Machine learning methods such as model-based reinforce-
ment learning have lead to a number of breakthroughs in
key applications across robotics and control (Kocijan et al.,
2004; Tassa et al., 2012; Nagabandi et al., 2019). A pop-
ular technique in these domains is learning-based model-
predictive control (MPC) (Morari & Lee, 1999; Williams
et al., 2017), wherein a model learned from data is used
to repeatedly solve online planning problems to control
the real system. It has long been understood that solv-
ing MPC exactly–both with perfectly accurate dynamics
and minimization to globally optimality for each plan-
ning problem–enjoys numerous beneficial control-theoretic
properties (Jadbabaie & Hauser, 2001).

Unfortunately, the above situation is not reflective of prac-
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tice. For one, most systems of practical interest are nonlin-
ear, and therefore exact global recovery of system dynam-
ics suffers from a curse of dimensionality. And second, the
nonlinear dynamics render any natural trajectory planning
problem nonconvex, making global optimality elusive. In
this work, we focus on learning-based trajectory optimiza-
tion, the “inner-loop” in MPC. We ask when can we obtain
rigorous guarantees about the solutions to nonlinear tra-
jectory optimization under unknown dynamics?

We take as our point of departure the iLQR algorithm (Li
& Todorov, 2004). Initially proposed under known dynam-
ics, iLQR solves a planning objective by solving an itera-
tive linear control problem around a first-order Taylor ex-
pansion (the Jacobian linearization) of the dynamics, and
second-order Taylor expansion of the control costs. In solv-
ing this objective, iLQR synthesizes a sequence of locally-
stabilizing feedback gains, and each iLQR-update can be
interpreted as a gradient-step through the closed-loop lin-
earized dynamics in feedback with these gains. This has the
dual benefit of proposing a locally stabilizing policy (not
just an open-loop trajectory), and of stabilizing the gradi-
ents to circumvent exponential blow-up in planning hori-
zon. iLQR, and its variants (Todorov & Li, 2005; Williams
et al., 2017), are now ubiquitous in robotics and control ap-
plications; and, when dynamics are unknown or uncertain,
one can simply substitute the exact dynamics model with
an estimate (e.g. Levine & Koltun (2013)). In this case, dy-
namics are typically estimated with neural networks. Thus,
Jacobian linearizations can be computed by automated dif-
ferentiation (AutoDiff) through the learned model.

Contributions. We propose and analyze an alternative to
the aforementioned approach of first learning a deep neu-
ral model of dynamics, and then performing AutoDiff to
conduct the iLQR update. We consider a simplified setting
with fixed initial starting condition. Our algorithm main-
tains a policy, specified by an open-loop input sequence
and a sequence of stabilizing gains, and loops two steps:
(a) it learns local linear model of the closed-loop linearized
dynamics (in feedback with these gains), which we use to
perform a gradient update; (b) it re-estimates a linear model
after the gradient step, and synthesizes a new set of set
gains from this new model. In contrast to past approaches,
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our algorithm only ever estimates linear models of system
dynamics.

For our analysis, we treat the underlying system dynam-
ics as continuous and policy as discrete; this reflects real
physical systems, is representative of discrete-time sim-
ulated environments which update on smaller timescales
than learned policies, and renders explicit the effect of dis-
cretization size on sample complexity. We consider an in-
teraction model where we query an oracle for trajectories
corrupted with measurement (but not process) noise. Our
approach enjoys the following theoretical properties. 1.
Using a number of iterations and oracle queries polynomial
in relevent problem parameters and tolerance ϵ, it computes
a policy π whose input sequence is an ϵ-first order station-
ary point for the iLQR approximation of the planning ob-
jective (i.e., the gradient through the closed-loop linearized
dynamics has norm ≤ ϵ). Importantly, learning the lin-
earized model at each iteration obviates the need for global
dynamics models, allowing for sample complexity polyno-
mial in dimension.

2. We show that contribution 1 implies convergence to
a local-optimality criterion we call an ϵ-approximate Jaco-
bian Stationary Point (ϵ-JSP); this roughly equates to the
open-loop trajectory under π having cost within ϵ-globally
optimal for the linearized dynamics about its trajectory.

JSPs are purely a property of the open-loop inputs, allow-
ing comparison of the quality of the open-loop plan with
differing gains. Moreover, the results of Westenbroek et al.
(2021) show that an approximate JSPs for certain planning
objective enjoy favorable global properties, despite (as we
show) being computable from (local) gradient-based search
(see Appendix B.2 for elaboration).

Experimental Findings. We validate our algorithms on
standard models of the quadrotor and inverted pendulum,
finding an improved performance as iteration number in-
creases, and that the synthesized gains prescribed by iLQR

yield improved performance over vanilla gradient updates.

Proof Techniques. Central to our analysis are novel per-
turbation bounds for controlled nonlinear differential equa-
tions. Prior results primarily focus on the open-loop set-
ting (Polak, 2012, Theorem 5.6.9), and implicitly hide an
exponential dependence on the time horizon for open-loop
unstable dynamics. We provide what is to the best of our
knowledge the first analysis which demonstrates that lo-
cal feedback can overcome this pathology. Specifically,
we show that if the feedback gains stabilize the Jacobian-
linearized dynamics, then (a) the Taylor-remainder of the
first-order approximation of the dynamics does not scale
exponentially on problem horizon (Proposition 4.3), and
(b) small perturbations to the nominal input sequence
preserve closed-loop stability of the linearized dynamics.

These findings are detailed in Appendix A.6, and enable us
to bootstrap the many recent advances in statistical learning
for linear systems to our nonlinear setting.

1.1. Related Work

iLQR (Li & Todorov, 2004) is a more computationally ex-
pedient variant of differential dynamic programming (DPP)
(Jacobson & Mayne, 1970); numerous variants exist, no-
tably iLQG (Todorov & Li, 2005) and iLQR (Li & Todorov,
2004), which better address problem stochasticity. iLQR is
a predominant approach for the “inner loop” trajectory op-
timization step in MPC, with applications in robotics (Tassa
et al., 2012), quadrotors (Torrente et al., 2021), and au-
tonomous racing (Kabzan et al., 2019).

A considerable literature has combined iLQR with learned
dynamics models; here, the Jacobian linearization matri-
ces are typically derived through automated differentiation
(Levine & Koltun, 2013; Levine & Abbeel, 2014; Koller
et al., 2018), though local kernel least squares regression
has also been studied (Rosolia & Borrelli, 2019; Papadim-
itriou et al., 2020). In these works, the dynamics models
are refined/re-estimated as the policy is optimized; thus,
these approaches are one instantiation of the broader itera-
tive learning control (ILC) paradigm (Arimoto et al., 1984);
other instantiations of ILC include (Kocijan et al., 2004;
Dai et al., 2021; Aswani et al., 2013; Bechtle et al., 2020).

Recent years have seen multiple rigorous guarantees for
learning system identification and control (Dean et al.,
2017; Simchowitz et al., 2018; Oymak & Ozay, 2019;
Agarwal et al., 2019; Simchowitz & Foster, 2020), though
a general theory of learning for nonlinear control remains
elusive. Recent progress includes nonlinear imitation
learning (Pfrommer et al., 2022), learning systems with
known nonlinearities in the dynamics (Sattar & Oymak,
2022; Foster et al., 2020; Mania et al., 2020) or perception
model (Mhammedi et al., 2020; Dean & Recht, 2021).

Lastly, there has been recent theoretical attention given
to the study of first-order trajectory optimization methods.
Roulet et al. (2019) perform an extension theoretical study
of the convergence properties of iLQR, iLQG, and DPP with
exact dynamics models, and corroborate their findings ex-
perimentally. Westenbroek et al. (2021) show further that
for certain classes of nonlinear systems, all ϵ-first order
stationary points of a suitable trajectory optimization ob-
jective induce trajectories which converge exponentially to
desired system equilbria. In some cases, there may be mul-
tiple spurious local minima, each of which is nevertheless
exponentially stabilizing. Examining the proof (Westen-
broek et al., 2021) shows the result holds more generally
for all ϵ-JSPs, and therefore we use their work justify the
JSP criterion proposed in this paper.
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2. Setting
We consider a continuous-time nonlinear control system
with state x(t) ∈ Rdx , input u(t) ∈ Rdu with finite horizon
T > 0, and fixed initial condition ξinit ∈ Rdx . We denote
the space of bounded input signals U := {u(·) : [0, T ] →
Rdu : supt∈[0,T ] ∥u(t)∥ <∞}. We endow U with an inner

product ⟨u(·),u′(·)⟩L2(U) :=
∫ T

0
⟨u(s),u′(s)⟩ds, where

⟨·, ·⟩ is the standard Euclidean inner product, which induces
a norm ∥u(·)∥2L2(U) := ⟨u(·),u(·)⟩L2(U). For u ∈ U , the
open-loop dynamics are governed by the ordinary differen-
tial equation (ODE)

d
dtx(t | u) = fdyn(x(t | u),u(t)), x(0 | u) = ξinit,

where fdyn : Rdx ×Rdu → Rdx a C2 map. Given a terminal
cost V (·) : Rdx → R and running Q(·, ·, ·) : Rdx × Rdu ×
[0, T ]→ R, we optimize the control objective

JT (u) := V (x(T | u)) +
∫ T

t=0
Q(x(t | u),u(t), t)dt.

We make the common assumption that the costs are
strongly C2, and that Q is strongly convex:
Assumption 2.1. For all t ∈ [0, T ], V (·) and Q(·, ·, t) are
twice-continuously differentiable (C2), and x 7→ V (x) and
(x, u) 7→ Q(x, u, t)− α

2 (∥x∥
2 + ∥u∥2) are convex.

Given a continuously differentiable function F : U → Rn

and perturbation δu ∈ U , we define its directional deriva-
tive DF(u)[δu] := limη→0 η

−1(F(u+ηδu)−F(u)). The
gradient∇F(u) ∈ U is the (almost-everywhere) unique el-
ement of U such that ∀δu ∈ U ,

∫ T

0
∇F(u)(t)δu(t)dt =

DF(u)[δu]. We denote the gradients of u 7→ x(t | u) as
∇u x(t | u), and of u 7→ JT (u) as ∇uJT (u).

Discretization and Feedback Policies. Because digi-
tal controllers cannot represent continuous open-loop in-
puts, we compute ϵ-JSPs u ∈ U which are the zero-order
holds of discrete-time control sequences. We let τ ∈ (0, T ]
be a discretization size, and set K = ⌊T/τ⌋. Going for-
ward, we denote discrete-time quantities in colored,
bold-seraf font.

For k ≥ 1, define tk = (k − 1)τ, and define the intervals
Ik = [tk, tk+1). For t ∈ [0, T ], let k(t) := sup{k : tk ≤
t}. We let U := (Rdu)K , whose elements are denoted u⃗ =
u1:K , and let ct : U → U denote the natural inclusion
ct(⃗u)(t) := uk(t).

Next, to mitigate the curse of horizon, we study policies
which (a) have discrete-time open-loop inputs and (b) have
discrete-time feedback gains to stabilize around the trajec-
tories induced by the nominal inputs. In this work, Πτ

denotes the set of all policies π = (uπ1:K , K
π
1:K) defined

by a discrete-time open-loop policy uπ1:K ∈ U, and a se-
quence of feedback gains (Kπk )k∈[K] ∈ (Rdxdu)K . A pol-
icy π induces nomimal dynamics uπ(·) = ct(uπ1:K) and

xπ(t) = x(t | uπ); we set xπk = xπ(tk). It also induces
the following dynamics by stabilizing around the policy.

Definition 2.1. Given a continuous-time input ū ∈ U ,
we define the stabilized trajectory x̃π,ct(t | ū) := x(t |
ũπ,ct), where ũπ,ct (t | ū) := ū(t) + Kπk(t)(x̃

π,ct(tk(t) |
ū))−xπk(t)). This induces a stabilized objective: J π

T (ū) :=

V (x̃π,ct(t | ū)) +
∫ T

0
Q(x̃π,ct(t | ū), ũπ,ct (t | u), t)dt.

We define the shorthand ∇JT (π) := ∇ūJ π
T (ū)

∣∣
ū=uπ

Notice that, while π is specified by discrete-time inputs,
x̃π,ct(·), ũπ,ct(·) are continuous-time inputs and trajecto-
ries stabilized by π and the gradient∇J π

T (·) is defined over
continuous-time perturbations.

Optimization Criteria. Due to nonlinear dynamics, the
objectives JT ,J π

T are nonconvex, so we can only aim for
local optimality. Approximate first-order stationary points
(FOS) are a natural candidate (Roulet et al., 2019).

Definition 2.2. We say u is an ϵ-FOS of a function F :
U → R if ∥∇uF(u)∥L2(U) ≤ ϵ. We say π is ϵ-stationary
if ∥∇JT (π)∥L2(U) := ∥∇ūJ π

T (ū)
∣∣
ū=uπ∥L2(U) ≤ ϵ.

Our primary criterion is to compute ϵ-stationary policies
π. However, this depends both on the policy inputs uπ

(and induced trajectory xπ), as well as the gains. We
therefore propose a secondary optimization criterion which
depends only on the policies inputs/trajectory. It might
be tempting to hope that uπ is an ϵ-FOS of the origi-
nal objective JT (u). However, when the Jacobian lin-
earized trajectory (Definition 2.3 below) of the dynam-
ics around (xπ,uπ) are unstable, the open-loop gradient
∥∇JT (uπ)∥L2(U) can be a factor of eT larger than the
stabilized gradient ∥∇JT (π)∥L2(U) despite the fact that,
definitionally, JT (uπ) = J π

T (uπ) (see Appendix B.1).
We therefore propose an alternative definition in terms of
Jacobian-linearized trajectory.

Definition 2.3. Given u, ū ∈ U , define the Jacobian-
linearized (JL) trajectory xjac(t | ū;u) = x(t | u) +
⟨∇u x(t | u), ū − u⟩ , and cost J jac

T (ū;u) := V (xjac(T |
ū;u)) +

∫ T

t=0
Q(xjac(t | ū;u), ū(t), t)dt.

In words, the JL trajectory is just the first-order Taylor ex-
pansion of the dynamics around an input u ∈ U , and the
cost is the cost functional applied to those JL dynamics.
We propose an optimization criterion which requires that u
is near-globally optimal for the JL dynamics around u:

Definition 2.4. We say u ∈ U is an ϵ-Jacobian Stationary
Point (JSP) if JT (u) ≤ inf ū∈U J jac

T (ū;u) + ϵ.

The consideration of JSPs has three advantages: (1) as
noted above, JSPs depend only on a trajectory and not on
feedback gains; (2) a JSP is sufficient to ensure that the
exponential-stability guarantees derived in Westenbroek
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et al. (2021) (and mentioned in the introduction above) hold
for certain systems; this provides a link between the local
optimality derived in this work and global trajectory behav-
ior (see Appendix B.2 for further discussion); (3) despite
the potentially exponential-in-horizon gap between gradi-
ents of JT and J π

T , the following result enables us to com-
pare stationary points of the two objectives in a manner that
is independent of the horizon T .

Propostion 4.1 (informal). Suppose π is ϵ-stationary, and
τ is sufficiently small. Then, uπ is an ϵ′-JSP of JT , where
ϵ′ = O

(
ϵ2/(2α(1 + maxk ∥Kπk∥2)

)
.

Oracle Model and Problem Desideratum. In light of
the above discussion, we aim to compute a approximately
stationary policy, whose open-loop is therefore an approx-
imate JSP for the original objective. To do so, we assume
access to an oracle which can perform feedback with re-
spect to gains Kπk .

Definition 2.5 (Oracle Dynamics). Given u⃗ = u1:K ∈ U,
we define the oracle dynamics xπ

orac(t | u⃗) := x(t |
ct(uπorac,1:K (⃗u))), where we define uπorac,k (⃗u) := uk +
Kπkx

π
orac(tk | u⃗), and define xπorac,k (⃗u) := xπ

orac(tk | u⃗).
Oracle 2.1. We assume access to an oracle orac with vari-
ance σ2

orac > 0, which given any π ∈ Πτ and u⃗ = u1:K ,
returns, oracπ,x(⃗u) ∼ N (xπorac,1:K+1 (⃗u), I(K+1)dx

σ2
orac)

and oracπ,u(⃗u) = uπorac,1:K (⃗u)

In words, Oracle 2.1 returns entire trajectories by applying
feedback along the gains Kπk . The addition of measurement
noise is to introduce statistical tradeoffs that prevent near-
exact zero-order differentiation; we discuss extensions to
process noise in Appendix B.4. Because of this, the ora-
cle trajectory in Definition 2.5 differs from the trajectory
dynamics in Definition 2.1 in that the feedback does not
subtract off the normal xπk ; thus, the oracle can be imple-
mented without noiseless access to the nominal trajectory.
Still, we assume that the feedback applied by the oracle is
exact. Having defined our oracle, we specify the following
problem desideratum (note below that M is scaled by 1/τ
to capture the computational burden of finer discretization).

Desideratum 1. Given ϵ, ϵ′ and unknown dynamical sys-
tem fdyn(·, ·), compute a policy π for which (a) π is ϵ-
stationary, and (b) uπ is an ϵ′-JSP of JT , using M calls
to Oracle 2.1, where M/τ is polynomial in 1/ϵ, 1/ϵ′, and
relevant problem parameters.

Notation. We let [j : k] := {j, j + 1, . . . , k}, and
[k] = [1 : k]. We use standard-bold for continuous-time
quantities (x,u), and bold-serif for discrete (e.g. uπk ). We
let uπj:k = (uj , uj+1, . . . , uk). Given vector v and matrices
X, let ∥v∥ and ∥X∥ Euclidean and operator norm, respec-
tively; for clarity, we write ∥uπj:k∥2ℓ2 =

∑k
i=j ∥uπi ∥2. As

denoted above, ⟨·, ·⟩L2(U) and ∥ · ∥L2(U) denote inner prod-

ucts and norms in L2(U). We let x ∨ y := max{x, y}, and
x ∧ y := min{x, y}.

3. Algorithm
Our iterative approach is summarized in Algorithm 1 and
takes in a time step τ > 0, horizon T , a per iteration sam-
ple size N , iteration number niter, a noise variance σw,
a gradient step size η > 0 and a controllability param-
eter k0. The algorithm produces a sequence of polices
π(n) = (u

(n)
1:K , K

(n)
1:K), where K = ⌊T/τ⌋ is the num-

ber of time steps per roll-out. Our algorithm uses the
primitive ESTMARKOV(π;N, σw) (Algorithm 2), which
makes N calls to the oracle to produce estimates x̂1:K+1

of the nominal state trajectory, and another N calls with
randomly-perturbed inputs of perturbation-variance σw to
produce estimates (Ψ̂j,k)k<j of the closed-loop Markov pa-
rameters associated to the current policy Ψπcl,j,k, defined
in Definition 4.6. We use a method-of-moments estima-
tor for simplicity. At each iteration n, Algorithm 1 calls
calls ESTMARKOV(π;N, σw) first to produce an estimate
of the gradient of the closed-loop objective with respect to
the current discrete-time nominal inputs. The gradient with
respect to the k-th input u(n)k is given by:

∇̂
(n)

k = Ψ̂
⊤
K+1,kVx(x̂K+1) +Qu(x̂k, u

π
k , tk) (3.1)

+ τ
∑K

j=k+1 Ψ̂
⊤
j,k

(
Qx(x̂j , u

π
j , tj) + (Kπj )

⊤Qu(x̂j , u
π
j , tj)

)
The form of this estimate corresponds to a natural plug-in
estimate of the gradient of the discrete-time objective de-
fined in Definition 4.4. We use this gradient in Eq. (3.1) to
update the current input; this update is rolled-out in feed-
back with the current feedback controller to produce the
nominal input u(n+1)

1:K for the next iteration (Algorithm 1,
Line 5). Finally, we call ESTGAINS (Algorithm 3), which
synthesizes gains for the new policy using a Ricatti-type re-
cursion along a second estimate of the linearized dynamics,
produced by unrolling the system with the new nominal in-
put and old gains described above. The algorithm then ter-
minates at niter iterations and chooses the policy with the
smallest estimated gradient that was observed.

4. Algorithm Analysis
For simplicity, we assume K = ⌊T/τ⌋ ∈ N is integral.
In order to state uniform regularity conditions on the dy-
namics and costs, we fix an feasible radius Rfeas > 0 and
restrict to states and inputs bounded thereby.

Definition 4.1. We say (x, u) ∈ Rdx×du are feasible if
∥x∥ ∨ ∥u∥ ≤ Rfeas. We say a policy π is feasible if
(2xπ(t), 2uπ(t)) are feasible for all t ∈ [0, T ].

We adopt the following boundedness condition.
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Algorithm 1 Trajectory Optimization
1: Initialize time step τ > 0, horizon T ≥ τ, K ←
⌊T/τ⌋, initial policy π(1), sample size N , noise vari-
ance σw, gradient step size η, controllability parameter
k0, iteration number niter.

2: for iterations n = 1, 2, . . . , niter do
3: (Ψ̂j,k)k<j , x̂1:K+1 = ESTMARKOV(π;N, σw).

4: Compute ∇̂
(n)

k in Eq. (3.1)
5: Gradient update u

(n+1)
1:K ← oracπ(n),u(ũ

(n)
1:K),

where ũ(n)k := u
(n)
k − η

τ
∇̂

(n)

k − Kπ
(n)

k x̂k.
6: Estimate K

(n+1)
1:K = ESTGAINS(π̃(n);σw, N, k0),

where π̃(n) = (u(n+1)(·), K(n)1:K)

7: Update policy π(n+1) = (u
(n+1)
1:K , K

(n+1)
1:K )

return π(nout), nout ∈ argminn∈[niter] ∥∇̂
(n)

k ∥.

Algorithm 2 ESTMARKOV(π;N, σw)

% estimate nominal trajectory
1: for samples i = 1, 2, . . . , N do
2: Collect trajectory x

(i)
1:K+1 ∼ TrajOracπ(u

π
1:K).

3: Average x̂1:K+1 = 1
N

∑N
i=1 x

(i)
1:K+1

% estimate perturbed trajectory
4: for samples i = 1, 2, . . . , N do
5: Draw w

(i)
1:K uniformly from σw · ({−1, 1}du)K .

6: Let u(i)k = uπk + w
(i)
k − Kπk x̂k, for k ∈ [K]

7: Collect trajectory y
(i)
1:K+1 ∼ oracπ,x(u

(i)
1:K).

8: Estimate transition operators Ψ̂j,k :=
1

Nσ2
w

∑N
i=1(y

(i)
j − x̂j)(w

(i)
k )⊤, k < j

9: return (Ψ̂j,k)k<j , x̂1:K+1

Condition 4.1. For all n, the policies π(n) and π̃(n) pro-
duced by Algorithm 1 are feasible.

If π and π̃(n) produce bounded inputs, and the resulting
state trajectories also remain bounded, then Condition 4.1
will hold forRfeas > 0 sufficiently large. This is a common
assumption in the control literature (see e.g. Jadbabaie &
Hauser (2001)), as physical systems, such as those with
Lagrangian dynamics, will remain bounded under bounded
inputs (see Appendix B.3 for discussion).

Assumption 4.1 (Dynamics regularity). fdyn is
C2, and for all feasible (x, u), the following hold
∥fdyn(x, u)∥ ≤ κf , ∥∂xfdyn(x, u)∥ ∨ ∥∂ufdyn(x, u)∥ ≤
Lf , ∥∇2fdyn(x, u)∥ ≤Mf .

Assumption 4.2 (Cost regularity). For all feasible (x, u),
the following hold 0 ≤ V (x) ∨ Q(x, u, t) ≤ κcost,
∥∂xV (x)∥ ∨ ∥∂xQ(x, u, t)∥ ∨ ∥∂uQ(x, u, t)∥ ≤ Lcost,
∥∇2V (x)∥ ∨ ∥∇2Q(x, u, t)∥ ≤Mcost.

To take advantage of stabilizing gains, we require two ad-

Algorithm 3 ESTGAINS(π;N, σw, k0)

1: Initialize number of samples N , noise variance σw,
(discrete) controllability window k0 ∈ N

2: Estimate Markov Parameters (Ψ̂j,k)k<j =
ESTMARKOV(π;N, σw)
% Define Ĉk|j2,j1 := [Ψ̂k+1,j2 | Ψ̂k+1,j2−1 | . . . Ψ̂k+1,j1 ]

3: for k = k0, k0 + 1, . . . ,K do
4: Define B̂k = Ψ̂k+1,k

% Define Ĉk,in := Ĉk−1|k−1,k−k0+1, Ĉk,out :=

Ĉk|k−1,k−k0+1

5: Define Âk := Ĉk,outĈ†k,in − B̂kK
π
k

6: Set P̂K+1 = Idx .
7: for k = K,K − 1, . . . , k0 do
8: K̂k := (Idu + B̂

⊤
k P̂k+1B̂k)

−1
(
B̂
⊤
k P̂k+1Âk

)
.

9: P̂k = (Âk + B̂kK̂k)
⊤P̂k+1(Âk + B̂kK̂k) + τ(Idx +

K̂
⊤
k K̂k).

10: Set K̂k = 0 for k ≤ k0.
11: Return K̂1:K .

ditional assumptions, which are defined in terms of the JL

dynamics.
Definition 4.2 (Open-Loop Linearized Dynamics). We
define the (open-loop) JL dynamic matrices about π
as Aπ

ol(t) = ∂xfdyn(x
π(t),uπ(t)) and Bπ

ol(t) =
∂ufdyn(x

π(t),uπ(t)). We define the open-loop JL transi-
tion function Φπ

ol(s, t), defined for t ≥ s as the solution
to d

dsΦ
π
ol(s, t) = Aπ

ol(s)Φ
π
ol(s, t), with initial condition

Φπ
ol(t, t) = I.

We first require that stabilizing gains can be synthesized;
this is formulated in terms of an upper bound on the cost-
to-go for the LQR control problem (Anderson & Moore
(2007, Section 2)) induced by the JL dynamics.
Assumption 4.3 (Stabilizability). Given a policy π,
and a sequence of controls ũ(·) ∈ U , let V π(t |
ũ, ξ) =

∫ T

s=t
(∥x̃(s)∥2 + ∥ũ(s)∥2)ds + ∥x̃(T )∥2, un-

der the linearized dynamics d
ds x̃(s) = Aπ

ol(s)x̃(s) +
Bπ

ol(s)ũ(s), x̃(t) = ξ. We assume that, for all feasi-
ble policies, supt∈[0,T ] V

π(t | ũ, ξ) ≤ µric∥ξ∥2. More-
over, we assume (for simplicity) that the initial policy has
(a) no gains: Kπ

(1)

k = 0 for all k ∈ [K], and (b) satisfies
V π(1)

(t | 0, ξ) ≤ µric∥ξ∥2.

The assumption on π(1) can easily be generalized to ac-
comodate initial policies with stabilizing gains. Our final
assumption is controllability (see e.g. Anderson & Moore
(2007, Appendix B)), which is necesssary for identification
of system parameters to synthesize stabilizing gains.
Assumption 4.4 (Controllability). There exists constants
tctrl, νctrl > 0 such that, for all feasible π and t ∈ [tctrl, T ],∫ t

s=t−tctrl
Φπ

ol(t, s)B
π
ol(s)B

π
ol(s)

⊤Φπ
ol(t, s)

⊤ds ⪰ νctrlIdx

5
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For simplicity, we assume kctrl := tctrl/τ is integral. Fi-
nally, to state our theorem, we adopt an asymptotic notation
which suppresses all parameters except {T, τ, α}.
Definition 4.3 (Asymptotic Notation). We let O⋆(·)·
term a term which hides polynomial dependences on
dx, du, Rfeas, κf ,Mf , Lf , κcost, Lcost,Mcost, µric, νctrl, tctrl,
and on exp(t0Lf ), where t0 = τk0 ≥ tctrl.

Notice that we suppress an exponential dependence on our
proxy t0 for the controllability horizon tctrl; this is be-
cause the system cannot be stabilized until the dynamics
can be accurately estimated, which requires waiting as long
as the controllability window (Chen & Hazan, 2021; Tsi-
amis et al., 2022). We discuss this dependence further in
Appendix B.5. Finally, we state a logarithmic term which
addresses high-probability confidence:

ι(δ) := log 24T 2niter max{dx,du}
τ2δ . (4.1)

We can now state our main theorem, which establishes that,
with high probability, for a small enough step size τ, and
large enough sample size N and iteration number niter, we
obtain an ϵ-stationary policy and ϵ′-JSP, where ϵ2, ϵ′ scale
as poly(T )(τ2 + 1

τ2
√
N
):

Theorem 1. Fix δ ∈ (0, 1), and suppose for the sake of
simplicity that τ ≤ 1 ≤ T . Then, there are constants
c1, . . . , c5 = O⋆(1) such that if we tune η = 1/c1

√
T ,

σw = (σ2
oracι(δ)/N)

1
4 and k0 ≥ kctrl + 2, then as long as

τ ≤ 1
c2
, N ≥ c3ι(δ)max

{
T 2

τ2 ,
1
τ4 , σ

2
orac

T 4

τ2 ,
σ2
orac

τ8

}
.

Then, with probability 1− δ, if Condition 4.1 and all afore-
mentioned Assumptions hold,

(a) For all n ∈ [niter], and π′ ∈ {π(n), π̃(n)}, µπ′,⋆ ≤
8µric and Lπ′ ≤ 6max{1, Lf}µric.

(b) π = π(nout) is ϵ-stationary, where ϵ2 = c4(Tτ
2 +

T
3
2

niter
) +c4(

T
7
2

τ2 ( ι(δ)
2

N + σorac

√
ι(δ)
N ) + σ2

orac
T

3
2 ι(δ)2

N ).

(c) For π = π(nout), uπ is an ϵ′-JSP, where ϵ′ = c5
ϵ2

α .

As a corollary, we achieve Desideratum 1.
Corollary 4.1. For any ϵ, ϵ′ > 0 and δ ∈ (0, 1), there ex-
ists an appropriate choices of {τ, N, η, σw} such that Al-
gorithm 1 finds, with probability ≥ 1 − δ, an ϵ-stationary
policy π with uπ being an ϵ′-JSP using at most M oracle
calls, where M/τ = O⋆(poly(T, 1/ϵ, 1/ϵ

′, log(1/δ))).

4.1. Analysis Overview

In this section, we provide a high-level sketch of the anal-
ysis. Appendix A provides the formal proof, and care-
fully outlines the organization of the subsequent appen-
dices which establish the subordinate results.

As our policies consists of zero-order hold discrete-time
inputs, our analysis is mostly performed in discrete-time.

Definition 4.4 (Stabilized trajectories, discrete-time in-
puts). Let u⃗ ∈ U, and recall the continuous-input trajecto-
ries x̃π,ct, ũπ,ct in Definition 2.1. We define x̃π(t | u⃗) :=
x̃π,ct(t | ct(⃗u)) and ũπ(t | u⃗) := ũπ,ct(t | ct(⃗u)), and
their discrete samplings x̃πk (⃗u) := x̃π(tk | u⃗) and ũπk (⃗u) :=

ũπ(tk | u⃗). We define a discretized objectiveJ π,disc
T (⃗u) :=

V (x̃πK+1 (⃗u)) + τ
∑K

k=1Q(x̃πk (⃗u), ũ
π
k (⃗u), tk), and the

shorthand J disc
T (π) = J π,disc

T (uπ1:K) and ∇J π,disc
T (π) :=

∇⃗uJ π,disc
T (⃗u)

∣∣⃗
u=uπ1:K

.

What we shall show is that our algorithm (a) finds a policy
π such that ∥∇J disc

T (π)∥ℓ2 ≤ ϵ is small, (b) by discretiza-
tion, ∥∇J π

T (uπ)∥L2(U) ≤ ϵ + O (τ) is small (i.e. π is ap-
proximately stationary), and that (c) this implies that uπ is
an approximate-JSP of JT (uπ). Part (a) requires the most
effort, part (b) is a tedious discretization, and part (c) is by
Proposition 4.1 stated below. Key in these steps are cer-
tain regularity conditions on the policy π. The first is the
magnitude of the gains:

Definition 4.5. We define an upper bound on the gains of
policy π as Lπ := max{1,maxk∈[K] ∥Kπk∥}.

This term suffices to translate stationary policies to JSPs:

Proposition 4.1. Suppose Assumptions 2.1, 4.1 and 4.2, π
is feasible, τ ≤ 1

16LπLf
. Then, if ∥∇JT (π)∥L2(U) ≤ ϵ,

uπ(t) is an ϵ′-JSP of JT for ϵ′ = 64ϵ2L2
π/α.

Proof Sketch. We construct a Jacobian linearization J π,jac
T

of J π
T by analogy to J jac, and define ϵ-JSPs of J π

T analo-
gously. We show by inverting the gains that an ϵ-JSP of J π

T

is precisely an ϵ-JSP of JT . We then establish strong con-
vexity of J π,jac

T (non-trivial due to the gains), and use the
PL inequality for strongly convex functions to conclude.
The formal proof is given in Appendix H.2.

To establish parts (a) and (b), we need to measure the
stability of the policies. To this end, we first introduce
closed-loop (discrete-time) linearizations of the dynamics,
in terms of which we define a Lyapunov stability modulus.

Definition 4.6 (Closed-Loop Linearizations). We
discretize the open-loop linearizations in Defi-
nition 4.2 defining Aπol,k = Φπ

ol(tk+1, tk) and

Bπol,k :=
∫ tk+1

s=tk
Φπ

ol(tk+1, s)B
π
ol(s)ds. We de-

fine an discrete-time closed-loop linearization
Aπcl,k := Aπol,k + Bπol,kK

π
k , and a discrete closed-loop

transition operator is defined, for 1 ≤ k1 ≤ k2 ≤ K + 1,
Φπcl,k2,k1

= Aπcl,k2−1 · Aπcl,k2−2 · · · · Aπcl,k1
, with the conven-

tion Φπcl,k1,k1
= I. For 1 ≤ k1 < k2 ≤ K+1, we define the

closed-loop Markov operator Ψπcl,k2,k1
:= Φπcl,k2,k1+1B

π
ol,k1

.
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Definition 4.7 (Lyapunov Stability Modulus). Given a pol-
icy π, define ΛπK+1 = I, and Λπk = (Aπcl,k)

⊤Λπk+1A
π
cl,k + τI.

We define µπ,⋆ := maxk∈{k0,...,K+1} ∥Λπk∥.

Notice that the stability modulus is taken after step k0,
which is where we terminate the Riccati recrusion in Al-
gorithm 3. We shall show that, with high probability, Al-
gorithm 1 synthesizes policies π which satisfy

Lπ ≤ 6max{1, Lf}µric, µπ,⋆ ≤ 8µric, (4.2)

so that Lπ, µπ,⋆ = O⋆(1). Going forward, we let Oπ(·)·
denote a term suppressing polynomials in Lπ , µπ,⋆ and
terms O⋆(1); when π satisfies Eq. (4.2), then Oπ(·) =
O⋆(·). We say x ≤ 1/Oπ(y), if x ≤ 1/y′, where
y′ = Oπ(y). In Appendix I.3, we translate discrete-time
stationary points to continuous-time ones, establishing part
(b) of the argument.

Proposition 4.2. For π feasible, ∥∇JT (π)∥L2(U) ≤
1√
τ
∥∇J disc

T (π)∥ℓ2 +Oπ(τ
√
T ).

A more precise statement and explanation of the proof are
given in Appendix A.5. The rest of the analysis boils down
to (a): finding an approximate stationary point of the time-
discretized objective.

4.2. Finding a stationary point of J π,disc
T

Taylor expansion of the dynamics. To begin, we derive
perturbation bounds for solutions to the stabilized ordinary
differential equations. Specifically, we provide bounds for
when uπ1:K is perturbed by a sufficiently small input δu1:K .
Our formal proposition, Appendix A.6 states perturbations
in both the ℓ∞ and normalized ℓ2-norms; for simplicity,
state the special case for ℓ∞-perturbation.

Proposition 4.3. Let u1:K = uπk + δu1:K , and suppose
maxk ∥δuk∥ ≤ B∞ ≤ 1/Oπ(1). Then, for all k ∈ [K+1],
∥x̃πk [u1:K ]− xπk −

∑k−1
j=1 Ψ

π
cl,k,jδuj∥ ≤ Oπ(B

2
∞).

We also show, that ifB∞ = 1/Oπ(T ), then the policy with
π′ with the same gains Kπk = Kπk as π, but the perturbed in-
puts uπ

′

k = uk at most double its Lyapunov stability mod-
ulus µπ′,⋆ ≤ 2µπ,⋆. This allows small gradient steps to
preserve stability.

Estimation of linearizations and gradients. We then ar-
gue that by making σw small, then to first order, the esti-
mation procedure in Algorithm 2 recovers the linearization
of the dynamics. The proof combines standard method-of-
moments analysis based on matrix Chernoff concentration
(Tropp, 2012) and Proposition 4.3 to argue the dynamics
can be approximated by their linearization. Specifically,
Appendix A.7 argues that, for all rounds n ∈ [niter] and
1 ≤ j < k ≤ K + 1, it holds that ∥Ψπcl,k,j − Ψ̂k,j∥ ≤

ErrΨ(δ) where ErrΨ(δ) = Oπ(
√

ι(δ)
N (1 + σorac

σw
+ σw),

which can be made to scales as N− 1
4 by tuning σw =

(σ2
oracι(δ)/N)

1
4 . From the Markov-recovery error, as well

as a simpler bound for recovering xπ1:K in Algorithm 2
(Lines 1-3), we show accurate recovery of the gradients:

maxk ∥∇̂
(n)

k − (∇J disc
T (π(n)))k∥ ≤ TOπ(ErrΨ(δ)).

The last step here is to argue that we also approximately re-
cover Aπol,k, B

π
ol,k in Algorithm 3 for synthesizing the gains:

for all k ≥ k0,

∥B̂k − Bπol,k∥ ∨ ∥Âk − Aπol,k∥ ≤ Oπ(
ErrΨ,π(δ)

τ
).

This consists of two steps: (1) using controllability to show
the matrices Ĉk,in in Algorithm 3 are well-conditioned and
(2) using closeness of the Markov operators to show that
Ĉk,in and Ĉk,out concentrate around their idealized values.
Crucially, we only estimate system matrices for k ≥ k0
to ensure Ĉk,in is well-defined, and we use window k0 ≥
kctrl + 2 to ensure Ĉk,out is sufficiently well-conditioned.

Concluding the proof. Appendices A.8 and A.9 conclude
the proof with two steps: first, we show that cost-function
decreases during the gradient step Algorithm 1 (Line 5)

at round n ∈ [niter] in proportion to −∥∇̂
(n)

k ∥2 (a con-
sequence ofthe standard smooth descent argument). Here,
we also apply the aforementioned result that small gradi-
ent steps preserve stability: µπ̃(n),⋆ ≤ 2µπ(n),⋆. Second,
we argue that the gains synthesized by Algorithm 3 en-
sure that the Lyapunov stability modulus of π(n+1) and
the magnitude of its gains stay bounded by an algorithm-
independent constant: µπ(n+1),⋆ ≤ 4µric = O⋆(1) and
Lπ(n+1) ≤ O⋆(1); we use a novel certainty-equivalence
analysis for discretized, time-varying linear systems which
may be of independent interest (Appendix F). By combin-
ing these two results, we inductively show that all policies
constructed satisfy (4.2), namely they have µπ,⋆ and Lπ at
most O⋆(1). We then combine this with the typical analy-
sis of nonconvex smooth gradient descent to argue that the
policy π(nout) has small discretized gradient, as needed.

5. Experiments
Our experiments evaluate the performance of our proposed
trajectory optimization algorithm (Algorithm 1) and com-
pare it with the well-established model-based baseline of
trajectory optimization (iLQR) on top of learned dynam-
ics (e.g. Levine & Koltun (2013)). Though our analy-
sis considers a fixed horizon, we perform experiments in
a receeding horizon control (RHC) fashion. We consider
two control tasks: (a) a pendulum swing up task, and (b) a
2D quadrotor stabilization task. We implement our exper-
iments using the jax (Bradbury et al., 2018) ecosystem.
More details regarding the environments, tasks, and exper-
imental setup details are found in Appendix J. Though our
analysis considers the noisy oracle model, all experiments
assume noiseless observations.
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Least-squares vs. Method-of-Moments. Algorithm 1 pre-
scribes the method-of-moments estimator to simplify the
analysis; in our implementation, we find that estimating the
transition operators using regularized least-squares instead
yields to more sample efficient gradient estimation. This
choice can also be analyzed with minor modifications (see
e.g. Oymak & Ozay (2019); Simchowitz et al. (2019)).

iLQR baseline. We first collect a training dataset accord-
ing to a prescribed exploration strategy, then train a neural
network dynamics model on these dynamics, and finally
optimize our policy by applying the iLQR algorithm di-
rectly on the learned model. We consider several variants
of our iLQR baseline which use different exploration strate-
gies and different supervision signals for model learning.

(1) Sampling strategies: We consider two sampling
strategies; (a) Agg alternates between collecting data, fit-
ting a dynamics model, and running iLQR to collect more
data, and (b) Rand executes rollouts with random inputs
starting from random initial conditions. The rationale is
that the Agg strategy provides better data coverage for the
desired task than Rand.

(2) Loss supervision: The standard loss supervision for
learning dynamics is to regress against the next state tran-
sition. Inspired by our analysis, we also consider an ide-
alized oracle that augments the supervision to also include
noiseless the Jacobians of the ground truth model with re-
spect to both the state and control input; we refer to this
augmentation as JacReg.

(2) Model architecture: We use a fully connected three
layer MLP network to for fitting the dynamics of the en-
vironment. Specifically, our model takes in input (xk, uk)
and predicts the state difference xk+1 − xk.

Figure 1 shows the results of Algorithm 1 compared with
several iLQR baselines on the pendulum and quadrotor
tasks, respectively. In these figures, the x-axis plots the
number of trajectories available to each algorithm, and the
y-axis plots the cost suboptimality (J alg

T − J ⋆
T )/J ⋆

T in-
curred by each algorithm; where J alg

T is algorithmic cost
and J ⋆

T is the cost obtained via iLQR with the ground truth
dynamics. The error bars in the plot are meidan, first and
third quartile intervals computed over 20 different evalua-
tion seeds.

Discussion. We observe that Algorithm 1 with feedback-
gains consistently outperforms Algorithm 1 without gains,
validating the important of locally-stabilized dynamics.
Second, we see that the performance of the iLQR base-
lines does not significantly improve as more trajectory data
is collected. We find that our learned models achieve
very low train and test error, over the sampling distribu-
tion (i.e., Agg or Rand) used for learning. For Rand,
we postulate that the distribution shift incurred by perform-
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Figure 1: Cost suboptimality (J alg
T − J ⋆

T )/J ⋆
T versus number

of trajectories available to both Algorithm 1 and iLQR baselines.
For visualization, the suboptimality is clipped to (10−6,∞).

ing RHC via trajectory optimization on the learned model
limits the closed-loop performance of our baseline. How-
ever, we note that Agg+JacReg achieves stellar perfor-
mance early on, suggesting that (a) the Agg data collection
method suffices for strong closed-loop performance (notice
that Rand+JacReg fares far worse), and (b) that a second
limiting factor is that estimating dynamics and performing
automated differentiation is less favorable than directly es-
timating Jacobians, which are the fundamental quantities
used by the iLQR algorithm. This gap between estima-
tion of dynamics and derivatives has been observed in prior
work (Pfrommer et al., 2022).
Though we find that our method outperforms deep-learning
baselines (excluding Agg+JacReg) on the simpler in-
verted pendulum environment, the learning+iLQR ap-
proaches fare better on the quadrotor in the ≤ 10000
trajectories regime. We suspect that this is attributable to
data-reuse, as Algorithm 1 estimates an entirely new model
of system dynamics at each iteration. We believe that find-
ing a way to combine the advantages of directly estimating
linearized dynamics (observed in Algorithm 1, as well as
Agg+JacReg) with the advantages of data-reuse would
yield significant sample efficiency improvements.
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Part I

Analysis
A. Formal Analysis
A.1. Organization of the Appendix

First, we begin with an outline of Appendix A:

• Appendix A.2 reviews essential notation.

• Appendix A.3 gives a restatement of our main result, Theorem 1, as Theorem 2.

The rest of Appendix A carries out the proof of Theorem 2. Speficially,

• Appendix A.4 defines numerous problem parameters on which our arguments depend.
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• Appendix A.5 proves Corollary A.1, a precise statement of Proposition 4.2 in the main text. It does so via an interme-
diate result, Proposition A.4, which bounds the L∞ difference between the continuous-time gradient, and the imagine
of the discrete-time gradient under the continuous-time inclusion map ct(·).

• Appendix A.6 states key results based on Taylor expansions of dynamics around their linearizations, and norms of
various derivative-like quantities.

• Appendix A.7 contains the main statements of the various estimation guarantees, notably, the recovery of nominal
trajectories, Markov operators, discretized gradients, and linearized transition matrices (Aπol,k, B

π
ol,k).

• Appendix A.8 leverages the previous section to demonstrate (a) a certain descent condition holds for each gradient
step and (b) that sufficiently accurate estimates of transition matrices lead to the synthesis of gains for which the
corresponding policies have bounded stability moduli.

• Finally, Appendix A.9 concludes the proof, as well as states a more granular guarantee in terms of specific problem
parameters and not general O⋆(·) notation.

The rest of Part I of the Appendix provides the proofs of constituent results. Specifically,

• Appendix B presents various discussion of main results, as well as gesturing to extensions. Specifcally, Appendix B.1
describes the exponential gap between FOSs of JT and JSPs, and Appendix B.2 explains the consequences of combin-
ing our result with (Westenbroek et al., 2021). We discuss how to implement a projection step to ensure Definition 4.7
in Appendix B.3. Finally, we discuss extensions to an oracle with process noise in Appendix B.4.

• Appendix C presents various computations of Jacobian linearizations, establishing that they do accurately capture
first-order expansions.

• Appendix D proves all the Taylor-expansion like results listed in Appendix A.6.

• Appendix E proves all the estimation-error bounds in Appendix A.7.

• Appendix F provides a general certainty-equivalence and Lyapunov stability perturbation results for time-varying,
discrete-time linear systems, in the regime that naturally arises when the state matrices are derived from discretizations
of continuous-time dynamics.

• Appendix G instantiates the bounds in Appendix F to show that the gains synthesized by Algorithm 2 do indeed lead
to policies with bounded stability modulus.

• Appendix H contains the proofs of optimization-related results: the proof of the descent lemma (Lemma A.13 (in
Appendix H.1) and the proof of the conversion between stationary points and JSPs, Proposition 4.1 (in Appendix H.2)

• Finally, Appendix I contains various time-discretization arguments, and in particular establishes the aforementiond
Proposition A.4 from Appendix A.5.

A.2. Notation Review

In this section, we review our basic notation.

Dynamics. Recall the nominal system dynamics are given by

d
dtx(t | u) = fdyn(x(t | u),u(t)), x(0 | u) = ξinit.

We recall the definition of various stabilized dynamics.

Definition 2.1. Given a continuous-time input ū ∈ U , we define the stabilized trajectory x̃π,ct(t | ū) := x(t | ũπ,ct),
where ũπ,ct (t | ū) := ū(t) + Kπk(t)(x̃

π,ct(tk(t) | ū))− xπk(t)). This induces a stabilized objective: J π
T (ū) := V (x̃π,ct(t |

ū)) +
∫ T

0
Q(x̃π,ct(t | ū), ũπ,ct (t | u), t)dt. We define the shorthand ∇JT (π) := ∇ūJ π

T (ū)
∣∣
ū=uπ
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Definition 4.4 (Stabilized trajectories, discrete-time inputs). Let u⃗ ∈ U, and recall the continuous-input trajectories
x̃π,ct, ũπ,ct in Definition 2.1. We define x̃π(t | u⃗) := x̃π,ct(t | ct(⃗u)) and ũπ(t | u⃗) := ũπ,ct(t | ct(⃗u)),
and their discrete samplings x̃πk (⃗u) := x̃π(tk | u⃗) and ũπk (⃗u) := ũπ(tk | u⃗). We define a discretized objec-
tive J π,disc

T (⃗u) := V (x̃πK+1 (⃗u)) + τ
∑K

k=1Q(x̃πk (⃗u), ũ
π
k (⃗u), tk), and the shorthand J disc

T (π) = J π,disc
T (uπ1:K) and

∇J π,disc
T (π) := ∇⃗uJ π,disc

T (⃗u)
∣∣⃗
u=uπ1:K

.

Linearizations. Next, we recall the definition of the various linearizations.
Definition 4.2 (Open-Loop Linearized Dynamics). We define the (open-loop) JL dynamic matrices about π as Aπ

ol(t) =
∂xfdyn(x

π(t),uπ(t)) and Bπ
ol(t) = ∂ufdyn(x

π(t),uπ(t)). We define the open-loop JL transition function Φπ
ol(s, t),

defined for t ≥ s as the solution to d
dsΦ

π
ol(s, t) = Aπ

ol(s)Φ
π
ol(s, t), with initial condition Φπ

ol(t, t) = I.
Definition 4.6 (Closed-Loop Linearizations). We discretize the open-loop linearizations in Definition 4.2 defining Aπol,k =

Φπ
ol(tk+1, tk) and Bπol,k :=

∫ tk+1

s=tk
Φπ

ol(tk+1, s)B
π
ol(s)ds. We define an discrete-time closed-loop linearization Aπcl,k :=

Aπol,k + Bπol,kK
π
k , and a discrete closed-loop transition operator is defined, for 1 ≤ k1 ≤ k2 ≤ K + 1, Φπcl,k2,k1

=
Aπcl,k2−1 · Aπcl,k2−2 · · · · Aπcl,k1

, with the convention Φπcl,k1,k1
= I. For 1 ≤ k1 < k2 ≤ K + 1, we define the closed-loop

Markov operator Ψπcl,k2,k1
:= Φπcl,k2,k1+1B

π
ol,k1

.

We also recall the definition of stationary policies and JSPs.
Definition 2.2. We say u is an ϵ-FOS of a function F : U → R if ∥∇uF(u)∥L2(U) ≤ ϵ. We say π is ϵ-stationary if
∥∇JT (π)∥L2(U) := ∥∇ūJ π

T (ū)
∣∣
ū=uπ∥L2(U) ≤ ϵ.

Definition 2.4. We say u ∈ U is an ϵ-Jacobian Stationary Point (JSP) if JT (u) ≤ inf ū∈U J jac
T (ū;u) + ϵ.

Problem Constants. We recall the dynamics-constants κf , Lf ,Mf defined in Assumption 4.1, κcost, Lcost,Mcost in
Assumption 4.2, the strong-convexity parameter α in Assumption 2.1, the controllability parameters tctrl, νctrl from As-
sumption 4.4, with kctrl := tctrl/τ, and the Riccati parameter µric from Assumption 4.3. Finally, we recall the feasibility
radius from Condition 4.1. We also recall
Definition 4.1. We say (x, u) ∈ Rdx×du are feasible if ∥x∥∨∥u∥ ≤ Rfeas. We say a policy π is feasible if (2xπ(t), 2uπ(t))
are feasible for all t ∈ [0, T ].

Gradient and Cost Shorthands. Notably, we bound out the following shorthand for gradients and costs:

∇JT (π) := ∇uJ π
T (u)

∣∣
u=uπ , ∇J disc

T (π) := ∇⃗uJ π,disc
T (⃗u)

∣∣⃗
u=uπ1:K

, J disc
T (π) := J π,disc

T (uπ1:K). (A.1)

A.3. Full Statement of Main Result

The following is a slightly more general statement of Theorem 1, which implies Theorem 1 for appropriate choice of
η ← 1

c1
min

{
1√
T
, 1
}

, σw ← (σ2
oracι(δ)/N)

1
4 , and with the simplifications τ ≤ 1 ≤ T .

Theorem 2. Fix δ ∈ (0, 1), define ι(δ) := log 24T 2niter max{dx,du}
τ2δ and Err0(δ) :=

√
ι(δ)/N , where N is the sample size,

and suppose we select σw = c(σ2
oracι(δ)/N)

1
4 for any c ∈ [ 1

O⋆(1)
,O⋆(1)]. Then, there exists constants c1, c2, . . . , c5 =

O⋆(1) depending on c such that the following holds. Suppose that

η ≤ 1

c1
min

{
1√
T
, 1

}
, τ ≤ 1

c2
N ≥ c3ι(δ)max

{
1,
T 2

τ2
,
1

τ4
, T, σ2

orac

T 4

τ2
,
σ2
orac

τ8

}
. (A.2)

Then, with probability 1− δ, if Condition 4.1 and all listed Assumptions hold,

(a) For all n ∈ [niter], and π′ ∈ {π(n), π̃(n)}, µπ′,⋆ ≤ 8µric and Lπ′ ≤ 6max{1, Lf}µric.

(a) For π = π(nout), π is ϵ-stationary where

ϵ2 = c4T

(
τ2 +

1

η

(
1

niter
+

(
ηT 2 +

T 2

τ2

)(
ι(δ)2

N
+ σorac

√
ι(δ)

N

)
+ σ2

orac

ι(δ)2

N

))
.

(c) For π = π(nout), uπ is an ϵ′-JSP, where ϵ′ = c5
ϵ2

α .
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A.4. Problem Parameters

In this section, we provide all definitions of various problem paramaters. The notation is extensive, but we maintain the
following conventions:

1. µ(·) refers to upper bounds on Lyapunov operators, κ(·) to upper bounds on zero-order terms (e.g. ∥fdyn(x, u)∥) or
magnitudes of transition operators, M(·) to bounds on second-order derivatives, L(·) to bounds on first-order deriva-
tives, B(·) to upper bounds on radii, τ(·) to step sizes, Err(·) to error terms.

2. q ∈ {1, 2,∞} corresponds to ℓq norms

3. Subscripts tay denote relevance to Taylor expansions of the dynamics.

4. Terms with have a subscript π hide dependence on Lπ , µπ,⋆ and κq for q ∈ {1, 2,∞}

Remark A.1 (Reminder on Asymptotic Notation). We let O⋆(x) denote a term which suppresses polynomial dependence
on all the constants in Assumptions 4.1 and 4.2, as well as µric in Assumption 4.3, and νctrl, t0 ≥ tctrl and eLf t0 ≥ eLf tctrl ,
where t0 = τk0, and νctrl, tctrl are given in Assumption 4.4. We let Oπ(x) suppress all of these constants, as well as
polynomials in Lπ and µπ,⋆.

A.4.1. STABILITY CONSTANTS

We begin by recalling the primary constants controlling the stability of a policy π.

Definition 4.7 (Lyapunov Stability Modulus). Given a policy π, define ΛπK+1 = I, and Λπk = (Aπcl,k)
⊤Λπk+1A

π
cl,k + τI. We

define µπ,⋆ := maxk∈{k0,...,K+1} ∥Λπk∥.

It is more convenient to prove bounds in terms of the following three quantity, which are defined in terms of the magnitudes
of the closed-loop transition operators.

Definition A.1 (Norms of π). We define the constants κπ,∞ := max1≤j≤k≤K+1 ∥Φπcl,k,j∥, and

κπ,1 := max
k∈[K+1]

τ

 k∑
j=1

∥Φπcl,k,j∥ ∨
K+1∑
j=k

∥Φπcl,j,k∥


κ2π,2 := max

k∈[K+1]
τ

 k∑
j=1

∥Φπcl,k,j∥2 ∨
K+1∑
j=k

∥Φπcl,j,k∥2


We also define the following upper bounds on these quantities:

κ∞(µ,L) :=
√
max{1, 6LfL}µ exp(t0Lf )

κ2(µ,L) := max{1, 6LfL}µ (t0 exp(2t0Lf ) + µ)

κ1(µ,L) :=
√
max{1, 6LfL}µ (t0 exp(t0Lf ) + 2µ)

The following lemma is proven in Appendix G.4, and shows that shows that each of the above terms is Oπ(1).

Lemma A.1. Let π be any policy. Recall t0 = τk0 Then, as long as τ ≤ 1/6LfLπ ,

µπ,q ≤ µq(µπ,⋆, Lπ) = Oπ(1).

A.4.2. DISCRETIZATION STEP MAGNITUDES

Next, we introduce various maximal discretization step sizes for which our discrete-time dynamics are sufficiently faithful
to the continuous ones. The first is a general condition for the dynamics to be “close”, the second is useful for closeness
of solutions of Ricatti equations, the third for the discrete-time dynamics to admit useful Taylor expansions, and the fourth
for discrete-time controllability. We note that the first two do not depend on π, while the second two do.
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Definition A.2 (Discretization Sizes). We define

τdyn :=
1

4Lf

τric :=
1

4µ2
ric

(
3MfκfµricLf + 13L2

f (1 + Lfµric)2
)

τtay,π := min

{
1

16LfLπ
,

1

8κf

}
≤ τdyn.

τctrl,π :=
νctrl

8L2
πK

2
πγ

3
ctr exp(2γctr)

(
κfMf + 2L2

f

) , γctr := max{1, Lf tctrl}

We note that τdyn, τric = 1/O⋆(1) and τtay,π, τctrl,π = 1/Oπ(1).

A.4.3. TAYLOR EXPANSION CONSTANTS.

We now define the relevant constants in terms of which we bound our taylor expansions.

Definition A.3 (Taylor Expansion Constants, Policy Dependent). We define Ltay,∞,π = 2Lfκπ,1, Ltay,2,π := 2Lfκπ,2,
and

Mtay,2,π := 8Mf (κπ,∞ + 10L2
πL

2
fκ

2
π,2κπ,1)

Mtay,inf,π := 8Mf (κπ,1 + 10L2
πL

2
fκ

3
π,1)

Btay,2,π = min

{
1√

40MfL2
πκπ,1Mtay,2,π

,
Lfκπ,2

2Mtay,2,π
,

Rfeas

16LπLfκπ,2

}

Btay,inf,π = min

{
1

40L2
πκπ,1Mtay,inf,π

,
Lfκπ,1

2Mtay,inf,π
,

Rfeas

16LπLfκπ,1

}

We also define

MJ ,tay,π := 2McostL
2
fκ

2
π,2(1 + 3L2

πT )Mtay,2,π + Lcost(1 + 2LπT )Mtay,2,π + 2LπLcost,

Bstab,π := (max{6, 36LfLπ}µπ,⋆ · 12TMfLπ(1 + LfKπ)B∞)
−1

L∇,π,∞ := Lcost(1 +
3Lf

2
κπ,∞ + 3Lπκπ,1)

The following is a consequence of Lemma A.1.

Lemma A.2. By Lemma A.1, Mtay,2,π,Mtay,inf,π, L∇,π,∞, Ltay,q,π = Oπ(1), Btay,2,π, Btay,inf,π = 1/Oπ(1),
MJ ,tay,π = T · Oπ(1), and Bstab,π = 1

T · Oπ(1).

The first group of four constants arises in Taylor expansions of the dynamics, the fith in a Taylor expansion of the cost
functional, and the sixth in controlling the stability of policies under changes to the input, and the last upper bounds the
norm of the gradient.

A.4.4. ESTIMATION ERROR TERMS.

Finally, we define the following error terms which arise in the errors of the extimated nominal trajectories, Markov opera-
tors, and gradients. Note that the first term has no dependence on π, while the latter two do.

Definition A.4 (Error Terms). Define ι(δ) := log 24T 2niter max{dx,du}
τ2δ = log 24K2niterd⋆

δ , where d⋆ := max{dx, du}.

17
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Further, define

Errx̂(δ) := σorac

√
2
d⋆ι(δ)

N

ErrΨ,π(δ) :=

√
ι(δ)

N

(
2σorac
σw

d
3/2
⋆ + 8Ltay,∞,πd⋆

)
+ 4σwMtay,2,πd

3/2
⋆ = Oπ(

√
ι(δ)

N
(1 +

σorac
σw

+ σw)

Err∇,π(δ) := (LcostErrΨ,π(δ) + (1 + κπ,∞)McostErrx̂(δ)) (1 + 2TLπ).

We note that, in view of Lemma A.1,

By Lemmas A.1 and A.2, we have

Lemma A.3. Define Err0(δ) =
√

ι(δ)
N . Then,

Errx̂(δ) = σorac
√

2d⋆Err0(δ) ≤ O⋆ (Err0(δ))

ErrΨ(δ) ≤ Oπ

(
Err0(δ)(1 +

σorac
σw

) + σw

)
Err∇,π(δ) ≤ Oπ

(
T

(
Err0(δ)(1 + σorac +

σorac
σw

) + σw

))
.

(A.3)

If we further tune σw = c
√
σoracErr0(δ) for any c ∈ [1/O⋆(1),O⋆(1)], then

Errx̂(δ) ≤ O⋆ (σoracErr0(δ))

ErrΨ(δ) ≤ Oπ

(
Err0(δ) +

√
σoracErr0(δ)

)
Err∇,π(δ) ≤ Oπ

(
T
(
Err0(δ) +

√
σoracErr0(δ)

))
.

(A.4)

A.5. Gradient Discretization

We begin by stating with the precise statement of Proposition 4.2, which relates norms of gradients of the discretized
objective to that of the continuous-time one. We begin with the following proposition which bounds the difference between
the continuous-time gradient, and a (normalized) embedding of the discrete-time gradient into continuous-time. We define
the constant

κ∇ :=
(
(1 + Lf )Mcost(1 + κf ) + Lcost(3κfMf + 8L2

f + Lf )
)
= O⋆(·)1 (A.5)

Proposition A.4 (Discretization of the Gradient). Let π be feasible, and let ∇̃JT (π) = 1
τ
τ(∇J disc

T (π)) is the continuous-
time inclusion of the discrete-time gradient, normalized by τ−1. Then,

sup
t∈[0,T )

∥∇JT (π)(t)− ∇̃JT (π)(t)∥ ≤ τeτLf max{κπ,∞, κπ,1, 1}Lπκ∇,

The above result is proven in Appendix I.3. By integrating, we see that ∥∇JT (π) − ∇̃JT (π)∥L2(U) ≤√
TτeτLf max{κπ,∞, κπ,1, 1}Lπκ∇, and thus the triangle inequality gives ∥∇JT (π)∥L2(U) ≤ ∥∇̃JT (π)∥L2(U) +√
TτeτLf max{κπ,∞, κπ,1, 1}Lπκ∇. We can see that for any u⃗ = u1:K ∈ U, ∥u⃗∥2ℓ2 =

∑K
k=1 ∥uk∥2 = 1

τ

∫ T

0
∥uk(t)∥2 =

1
τ
∥ct(⃗u)∥2L2(U). Hence, in particular, ∥∇JT (π)∥L2(U) ≤ 1√

τ
∥∇J disc

T (π)∥ℓ2 +
√
TτeτLf max{κπ,∞, κπ,1, 1}Lπκ∇. From

this, and from using Lemma A.1 to bound κπ,∞, κπ,1 = Oπ(1), we obtain the following corollary, which is a precise
statement of Proposition 4.2.

Corollary A.1. Suppose π is feasible. Then, recalling κ∇ from Eq. (A.5),

∥∇JT (π)∥L2(U) ≤
1√
τ
∥∇J disc

T (π)∥ℓ2 +
√
TτeτLf max{κπ,∞, κπ,1, 1}Lπκ∇.
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In particular, for τ ≤ 1/4Lf ,

∥∇JT (π)∥L2(U) ≤
1√
τ
∥∇J disc

T (π)∥ℓ2 +
√
Tτ · 2max{κπ,∞, κπ,1, 1}Lπκ∇︸ ︷︷ ︸

=Oπ(1)

.

A.6. Main Taylor Expansion Results

We now state various bounds on Taylor-expansion like terms. All the following results are proven in Appendix D. The first
is a Taylor expansion of the dynamics (proof in Appendix D.1).

Proposition A.5. Let π be feasible, τ ≤ τtay,π Fix a u1:K ∈ U, and define the perturbation δu1:K := u1:K − uπ1:K , and
define

B2 :=
√
τ∥δu1:K∥ℓ2 , B∞ := max

k
∥δuk∥.

Then, if B∞ ≤ Rfeas/8, and if for either q ∈ {2,∞}, it holds that Bq ≤ Btay,q,π , then

(a) The following bounds hold for all k ∈ [K + 1]

∥x̃πk (u1:K ])− xπk −
k−1∑
j=1

Ψπcl,k,jδuj∥ ≤Mtay,q,πB
2
q , ∥x̃πk (u1:K)− xπk∥ ≤ Ltay,q,πBq,

(b) Moreover, for all k ∈ [K + 1] and t ∈ [0, T ],

max{∥x̃πk (u1:K)∥, ∥ũπk (u1:K ])} ≤ 3Rfeas

4
, and∥x̃π(t | u1:K)∥ ≤ Rfeas.

Next, we provide a Taylor expansion of the discrete-time cost functional (proof in Appendix D.2).

Lemma A.6. Consider the setting of Proposition A.5, and suppose B∞ ≤ Rfeas/8 and B2 ≤ Btay,2,π . Then,

∥J π,disc
T (δu1:K + uπ1:K)− J π,disc

T (uπ1:K)− ⟨δuk,∇J π,disc
T (uπ1:K)⟩∥ ≤MJ ,tay,πB

2
2 .

Next, we show sufficiently small perturbations of the nomimal input preserve stability of the dynamics (proof in Ap-
pendix D.3).

Lemma A.7. Again consider the setting of Proposition A.5, and suppose B∞ ≤ min{Rfeas/8, Btay,inf,π, Bstab,π}. Then,

µπ′,⋆ ≤ (1 +B∞/Bstab,π)µπ,⋆ ≤ 2µπ,⋆, Lπ′ = Lπ.

Lastly, we bound the norm of the discretized gradient (Appendix D.4).

Lemma A.8. Let π be feasible, and let τ ≤ τdyn. Then

max
k∈[K]

∥(∇J disc
T (π))k∥ ≤ τL∇,π,∞

A.7. Estimation Errors

In this section, we bound the various estimation errors. All the proofs are given in Appendix E. We begin with a simple
condition we need for estimation of Markov parameters to go through.

Definition A.5. We say π is estimation-friendly if π is feasible, and if

σorac

√
ι(δ)

2NLπ
≤ σw ≤

Btay,inf,π

2
√
d⋆

, τ ≤ τtay,π
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Our first result is recovery of the nominal trajectory and Markov operators. Recovery of the nominal trajectory follows
from Gaussian concentration, and recovery of the Markov operator for the Matrix Hoeffding inequality (Tropp (2012,
Theorem 1.4)) combined with the Taylor expansion of the dynamics due to Proposition A.5. The following is proven in
Appendix E.1. To state the bound, we recall the estimation error terms in Definition A.4.
Proposition A.9. Fix δ ∈ (0, 1) and suppose thatN is large enough that π is estimation friendly. Then, for any estimation-
friendly ESTMARKOV(π;N, σw) (Algorithm 2) returns estimates with such that, with probability 1− δ/2niter.

max
1≤j<k≤K+1

∥∥Ψπcl,k,j − Ψ̂k,j
∥∥
op
≤ ErrΨ,π(δ) max

k∈[K+1]
∥x̂k − xπk∥ ≤ Errx̂(δ) (A.6)

Let Πalg := {π(n), π̃(n) : n ∈ [niter]} denote the set of policies constructed by the algorithm, and note that ESTMARKOV
is called once for each policy in Πalg. We define the good estimation event as

Eest(δ) :=
∞⋂

n=1

(En(δ) ∩ Ẽn(δ)), (A.7)

En(δ) := {Eq. (A.6) holds for π = π(n) if π(n) is estimation friendly} (A.8)

Ẽn(δ) := {Eq. (A.6)holds for π̃ = π(n) if π̃(n) is estimation-friendly} (A.9)

By Proposition A.9 and a union bound implies

P[Eest(δ)] ≥ 1− δ.

We now show that on the good estimation event, the error of the gradient is bounded. The proof is Appendix E.2.
Lemma A.10 (Gradient Error). On the event Eest(δ), it holds that that if π(n) is estimation-friendly, then Algo-
rithm 1(Line 4) produces

max
k
∥∇̂

(n)

k − (∇J disc
T (π(n)))k∥ ≤ Err∇,π(n)(δ).

We also bound the error in the recovery of the system paramters used for synthesizing the stabilizing gains. Recovery of
said parameters requires first establishing controllability of the discrete-time Markov operator. We prove the following in
Appendix E.3:
Proposition A.11. Define γctr := max{1, Lf tctrl}, and suppose that τ ≤ min{τctrl,π, τdyn}. Then, for k ≥ kctrl + 1, it
holds that

λmin

 k−1∑
j=k−kctrl

Ψπcl,k,j(Ψ
π
cl,k,j)

⊤

 ⪰ τ · νctrl
8L2

πγ
2
ctr exp(2γctr)

With this result, Appendix E.4 upper bounds the estimation error for the discrete-time system matrices.
Proposition A.12. Suppose Eest(δ) holds, fix n ∈ niter, and let π = π̃(n). Then, suppose that τ ≤ min{τctrl,π, τdyn},
k0 ≥ kctrl + 2, and

ErrΨ(δ) ≤ τ

√
νctrl/tctrl

2
√
2Lπγctr exp(γctr)

, (A.10)

Then, on Eest(δ), if π is estimation-friendly, the estimates from the call of ESTGAINS(π;N, σ) satisfy

∥B̂k − Bπol,k∥ ∨ ∥Âk − Aπol,k∥ ≤
ErrΨ,π(δ)

τ
· t0κπ,∞L2

π

192γ3ctr exp(2γctr)

νctrl
.

A.8. Descent and Stabilization

In this section, we leverage the estimation results in the previous section to demonstrate the two key features of the
algorithm: descent on the discrete-time objective, and stability after the synthesized gains. We begin with a standard
first-order descent lemma, whose proof is given in Appendix H.1. This lemma also ensures, by invoking Lemma A.1,
that the step size is sufficently small to control the stability of π̃(n), which uses the same gains as π(n) but has a slightly
perturbed control input.
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Lemma A.13 (Descent Lemma). Suppose π = π(n) is estimation friendly, let M ≥MJ ,tay,π , and suppose

η ≤ 1

4M
, (η(L∇,π,∞ +

1

τ
Err∇,π(n)(δ)) + Errx̂(δ)) ≤ min

{
Rfeas

8
, Bstab,π, Btay,inf,π,

Btay,2,π√
T

}
.

Then, on event Eest(δ), it holds (again setting π ← π(n) on the right-hand side)

J disc
T (π̃(n))− J disc

T (π(n)) ≤ − η

2τ
∥∇̂

(n)

1:K∥2ℓ2 + T

(
Err∇,π(δ)

2

4τ2M
+ Errx̂(δ)L∇,π,∞ +MErrx̂(δ)

2

)
.

and that

Lπ̃(n) = Lπ(n) , µπ̃(n),⋆ ≤ 2µπ(n),⋆.

The next step is to establish a stability guarantee for the certainty-equivalent gains synthesized. We begin with a generic
guarantee, whose proof is given in Appendix G.

Proposition A.14 (Certainty Equivalence Bound). Let Â
π
k and B̂

π
k be estimates of Aπol,k and Bπol,k, and let K̂k denote the cor-

responding certainty equivalence controller synthesized by Algorithm 3(Lines 7 and 10). Suppose that τ ≤ min{τric, τdyn}
and

max
k∈[k0:K]

∥Âπk − Aπol,k∥op ∨ ∥B̂
π

k − Bπol,k∥op ≤ τ(217µ4
ric max{1, L3

f})−1

Then, if π′ = (uπ1:K , K̂1:K), we have

µπ′,⋆ ≤ 4µric, Lπ′ ≤ 6max{1, Lf}µric.

As a direct corollary of the above proposition and Proposition A.12, we obtain the following:

Lemma A.15. Suppose Eest(δ) holds, fix n ∈ niter, and let π = π̃(n). Then, suppose that τ ≤ min{τctrl,π, τdyn}, π is
estimation-friendly, k0 ≥ kctrl + 2, and

ErrΨ,π(δ) ≤ τ2
(
225µ4

ric max{1, L3
f} · t0κπ,∞L2

π

γ3ctr exp(2γctr)

νctrl

)−1

(A.11)

Then,

µπ(n+1),⋆ ≤ 4µric, Lπ(n+1) ≤ 6max{1, Lf}µric.

Proof. One can check that, as µric, Lπ ≥ 1, Eq. (A.11) implies Eq. (A.10). Thus, the lemma follows directly from
Propositions A.12 and A.14, as well as noting 192 · 217 ≤ 225

A.9. Concluding the proof.

In this section, we conclude the proof. First, we define uniform upper bounds on all π-dependent parameters.

Uniform upper bounds on parameters. To begin, define

µ̄ = 8µric, L̄ = 6max{Lf , 1}µric. (A.12)

Next, for q ∈ {1, 2,∞}, define κ̄q := κq(µ̄, L̄) defined in Definition A.1. We define τ̄tay, τ̄ctrl alogously
to τtay,π, τctrl,π in Definition A.2 with κπ,∞ replaced by κ̄∞ and Lπ with L̄. For q ∈ {2,∞}, we define
M̄tay,q, M̄J ,tay, L̄tay,q, L̄∇,∞, B̄tay,q, B̄stab analogously to Mtay,q,π,MJ ,tay,π, Ltay,q,π, L∇,π,∞, Btay,q,πBstab,π in Def-
inition A.3, with all occurences of κπ,∞, κπ,1, κπ,2 replaced by κ̄∞, κ̄1, κ̄2 and all occurences of Lπ replaced by L. Finally,
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we define ErrΨ,Err∇ to be analogous to ErrΨ,π,Err∇,π but with the same above substitutions. From Lemmas A.1 and A.2,
we have

κ̄q, M̄tay,q, L̄tay,q, L̄∇,∞, B̄tay,q = O⋆(1)

τdyn, τric, τ̄tay, τ̄ctrl = 1/O⋆(1)

M̄J ,tay = T · O⋆(1).

B̄stab =
1

T
O⋆(1)

Moreover, recalling Err0(δ) :=
√
ι(δ)/N , and setting σw = c

√
Err0σorac for any c ∈ [1/O⋆(1),O⋆(1)], Lemma A.3

gives
Errx̂(δ) = O⋆(σoracErr0(δ))

ErrΨ,π(δ) = O⋆(Err0(δ) +
√
σoracErr0(δ))

Err∇,π(δ) = O⋆(T (Err0(δ) +
√
σoracErr0(δ))).

(A.13)

Statement of Main Guarantee, Explicit Constants. We begin by stating our main guarantee, first with explicit con-
stants. We then translate into a O⋆(1) notation. To begin, define the following descent error term:

Errdec(δ) := T

(
Err∇(δ)

2

4τ2M̄J ,tay
+ Errx̂(δ)L̄∇,∞ + M̄J ,tayErrx̂(δ)

2

)
(A.14)

And note that for σw = c
√
Err0σorac for c ∈ [1/O⋆(1),O⋆(1)] (using numerous simplifications, such as T/τ ≥ 1)

Errdec(δ) := O⋆(1) ·
(
T 3

τ2

(
Err0(δ)

2 + σoracErr0(δ)
)
+ Tσ2

oracErr0(δ)
2

)
.

Theorem 3. Fix δ ∈ (0, 1), and suppose that η ≤ 1
4M̄J ,tay

, k0 ≥ kctrl + 2, and suppose

σorac

√
ι(δ)

2NL̄
≤ σw ≤

B̄tay,∞

2
√
d⋆

, (A.15a)

(η(L̄∇,∞ +
1

τ
Err∇(δ)) + Errx̂(δ)) ≤ min

{
Rfeas

8
, B̄stab, B̄tay,∞,

B̄tay,2√
T

}
(A.15b)

ErrΨ(δ) ≤ τ2
(
225µ4

ric max{1, L3
f} · tctrlκπ,∞L̄2 γ

3
ctr exp(2γctr)

νctrl

)−1

=
τ2

O⋆(1)
(A.15c)

τ ≤ min{τ̄tay, τ̄ctrl, τric} =
1

O⋆(1)
(A.15d)

Then, for π = π(nout) returned by Algorithm 1 satisfies all four properties with probability 1− δ:

(a) µπ,⋆ ≤ 8µric and Lπ ≤ 6max{1, κf}µric = L̄. In fact, for all n ∈ [niter], and π′ ∈ {π(n), π̃(n)}, µπ′,⋆ ≤ µ̄ = 8µric

and Lπ′ ≤ L̄ = 6max{1, Lf}µric.

(b) The discrete-time stabilized gradient is bounded by

τ∥J disc
T (π)∥2ℓ2 ≤ 2TErr∇(δ)

2 +
2

η

(
2(1 + T )κcost

niter
+ Errdec(δ)

)
=

1

η
O⋆(1) ·

(
T

niter
+ (ηT 3 +

T 3

τ2
)
(
Err0(δ)

2 + σoracErr0(δ)
)
+ Tσ2

oracErr0(δ)
2

)
,

where the last line holds when σw = c
√
σoracErr0(δ) for some c ∈ [ 1

O⋆(1)
,O⋆(1)].
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(c) Recall κ∇ :=
(
(1 + Lf )Mcost(1 + κf ) + Lcost(3κfMf + 8L2

f + Lf )
)

= O⋆(1) from Eq. (A.5). Then π is ϵ-
stationary for

ϵ2 = 4TErr∇(δ)
2 +

4

η

(
2(1 + T )κcost

niter
+ Errdec(δ)

)
+ 4Tτ2

(
max{κ̄∞, 1̄∞, 1}L̄κ∇

)2
= O⋆(1) · T

(
τ2 +

1

η

(
1

niter
+ (ηT 2 +

T 2

τ2
)
(
Err0(δ)

2 + σoracErr0(δ)
)
+ σ2

oracErr0(δ)
2

))
.

where the last line holds when σw = c
√
σoracErr0(δ) for some c ∈ [ 1

O⋆(1)
,O⋆(1)].

(d) uπ is an ϵ′-JSP, where ϵ′ = 64ϵ2L̄2/α = O⋆(1) · ϵ
2

α .

We prove Theorem 3 from the above results in Appendix A.9.2 just below. Appendix A.9.1 below translates the above
theorem into Theorem 2 which uses O⋆(·) notation.

A.9.1. TRANSLATING THEOREM 3 INTO THEOREM 2

Proof. It suffices to translate the conditions Eqs. (A.15a) to (A.15d) into O⋆(·) notation. Again, recall Err0(δ) =√
ι(δ)/N , and take σw = c

√
Err0(δ)σorac for c ∈ [1/O⋆(1),O⋆(1)]. Then, Eq. (A.15a) holds for Err0(δ) ≤ 1/c1,

where c1 = O⋆(1). Next, to make Eq. (A.15b) hold, it suffices that

max
{
(ηL̄∇,∞,

η

τ
Err∇(δ),Errx̂(δ)

}
≤ 1

3
min

{
Rfeas

8
, B̄stab, B̄tay,∞,

B̄tay,2√
T

}
,

The term ηL̄∇,∞ is sufficiently bounded where η ≤ 1
c2

√
T

for c2 = O⋆(1). Recalling Err∇,π(δ) ≤ O⋆(T (Err0(δ) +√
σoracErr0(δ))) from Eq. (A.13), and that η ≤ 1

c2
√
T

, it is enough that (Err0(δ)+
√
σoracErr0(δ)) ≤ c2τ

c3T
for c3 = O⋆(1).

Finally Errx̂(δ) is bounded for Errx̂(δ) = Err0(δ) ≤ 1/c4
√
T , where c4 = O⋆(1). Collecting these conditions, we have

that for c1, c2, c3, c4 = O⋆(1), Eqs. (A.15a) and (A.15b) hold for

η ≤ 1

c2
√
T
, Err0(δ) +

√
σoracErr0(δ) ≤

c2τ

c3T
,

Next,as ErrΨ,π(δ) = O⋆(Err0(δ) +
√
σoracErr0(δ)) from Eq. (A.13),Eq. (A.15c) holds as long as Err0(δ) +√

σoracErr0(δ) ≤ τ2/c5 for a c5 = O⋆(1). Combining,

η ≤ 1

c2
√
T
, Err0(δ) +

√
σoracErr0(δ) ≤ min

{
c2τ

c3T
,
τ2

c5

}
Err0(δ) ≤ min

{
1

c1
,

1

c4
√
T

}
Finally, Eq. (A.15d) requirs τ ≤ 1/c6, for c6 = O⋆(1), and that η ≤ 1/c7 where c7 = 4M̄J ,tay = Oπ(1). By shrinking
constants if necessary, this can be simplified into

η ≤ min{ 1
c7
, } 1

c2
√
T
}, Err0(δ) ≤ min

{
min

{
c2τ

c3T
,
τ2

c5
,
1

c1
,

1

c4
√
T

}
,

1

σorac
min

{
c2τ

c3T
,
τ2

c5

}2
}
.

And recall Err0(δ) =
√
ι(δ)/N , this becomes

τ ≤ 1

c6
, η ≤ 1

c2
min

{
1,

1√
T

}
, N ≥ ι(δ)min

{
min

{
1

c1
,
c2τ

c3T
,
τ2

c5
,

1

c4
√
T

}
,

1

σorac
min

{
c2τ

c3T
,
τ2

c5

}2
}−2

.

By consolidating constants and relabeling c1, c2 = O⋆(1) as needed, it suffices that

η ≤ c1 min

{
1√
T
, 1

}
, τ ≤ 1

c2
, N ≥ c3ι(δ)min

{
min

{
1,

τ

T
, τ2,

1√
T

}
,

1

σorac
min

{ τ

T
, τ2
}2
}−2

= c3ι(δ)max

{
1,
T 2

τ2
,
1

τ4
, T, σ2

orac

T 4

τ2
,
σ2
orac

τ8

}
.

Having shown that the above conditions suffice to ensure Theorem 3 holds, the bound follows (again replacing Err0(δ)
with

√
ι(δ)/N ).
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A.9.2. PROOF OF THEOREM 3

We shall show the following invariant. At each step n,

µπ(n),⋆ ≤ µ̄/2, Lπ(n) ≤ L̄.. (A.16)

Lemma G.3 shows that Eq. (A.16) holds for n = 1. Next, for n ≥ 1, directly combining Lemmas A.13 and A.15 imply the
following per-round guarantee.

Lemma A.16 (Per-Round Lemma). Suppose that η ≤ 1
4M̄J ,tay

, k0 ≥ kctrl + 2, Then if π(n) satisfies Eq. (A.16) and
Eqs. (A.15a) to (A.15d). Then, on Eest(δ),

(a) maxk ∥∇̂
(n)

k − (∇J disc
T (π(n)))k∥ ≤ Err∇(δ); thus τ∥∇̂

(n)

1:K − (∇J disc
T (π(n))∥2ℓ2 ≤ TErr∇(δ)

2.

(b) The following descent guarantee holds

J disc
T (π̃(n))− J disc

T (π(n)) ≤ − η

2τ
∥∇̂

(n)

1:K∥2ℓ2 + Errdec(δ)

(c) Lπ̃(n) = Lπ(n) ≤ L̄ and µπ̃(n),⋆ ≤ 2µπ(n),⋆ ≤ µ̄.

(d) µπ(n+1),⋆ ≤ 4µric = L̄/2, Lπ(n+1) ≤ 6max{1, Lf}µric = L̄.; that is π(n+1) satisfies Eq. (D.4)

Proof. Part (a) follows from Lemma A.10, and parts (b) and (c) follow from Lemma A.13, with the necessary replacement
of π-dependent terms wither (·) terms. Part (b) allows us to make the same substiutions in Lemma A.15, which gives part
(c).

Proof of Theorem 3. Under the conditions of this lemma, Lemma A.16 holds. As Lemma G.3 shows that Eq. (A.16) holds
for n = 1, induction implies Lemma G.3 holds for all n ∈ [niter] on Eest(δ), an event which occurs with probability 1− δ.
We now prove each part of the present theorem in sequence.

Part (a). Directly from Lemma A.16(d)

Part (b). Notice that, since π̃(n) and π(n+1) differ only in their gains, J disc
T (π(n+2)) = J disc

T (π̃(n)). Therefore, summing
up the descent guarantee in Lemma A.16(b), we have

J disc
T (π(niter+1))− J disc

T (π(1)) ≤ − η

2τ

niter∑
n=1

∥∇̂
(n)

1:K∥2ℓ2 + niterErrdec(δ)

≤ − η

2τ
niter min

n∈[niter]
∥∇̂

(n)

1:K∥2ℓ2 + niterErrdec(δ)

= − η

2τ
∥∇̂

(nout)

1:K ∥2ℓ2 + niterErrdec(δ)

where we recall that our algorithm selects to output π(nout), where nout minimizes ∥∇̂
(n)

1:K∥2ℓ2 . Recall that J π,disc
T (π) =

J π,disc
T (uπ1:K) where J π,disc

T (⃗u) := V (x̃πK+1 (⃗u)) + τ
∑K

k=1Q(x̃πk (⃗u), ũ
π
k (⃗u), tk). Hence, for all feasible π, Assump-

tion 4.2 implies 0 ≤ J π,disc
T (π) ≤ κcost(1 + τK) = (1 + T )κcost. By Condition 4.1, π(n+1) and π(1) are by feasible, and

thus J disc
T (π(n+1))− J disc

T (π(1)) ≥ −(1 + T )κcost. Therefore, by rearranging the previous display,

τ∥∇̂
(nout)

1:K ∥2ℓ2 ≤
1

η

(
2(1 + T )κcost

niter
+ Errdec(δ)

)
.

By Lemma A.16(a), and AM-GM imply then

τ∥J disc
T (π(nout))∥2ℓ2 ≤ 2TErr∇(δ)

2 +
2

η

(
2(1 + T )κcost

niter
+ Errdec(δ)

)
.
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Part (c). Note that τ ≤ τ̄tay implies τ ≤ 1/4Lf . From Corollary A.1, and for κ∇ = O⋆(1) as in Eq. (A.5), the following
holds for any feasible π:

∥∇JT (π)∥2L2(U) ≤
(

1√
τ
∥∇J disc

T (π)∥ℓ2 +
√
Tτ · 2max{κπ,∞, κπ,1, 1}Lπκ∇

)2

≤ 2

τ
∥∇J disc

T (π)∥2ℓ2 + 4Tτ2 (max{κπ,∞, κπ,1, 1}Lπκ∇)
2
.

Apply the above with π = π(nout) gives part c, and upper bound κπ,∞, κπ,1, Lπ by κ̄∞, κ̄1, L̄ concludes.

Part (d). This follows directly from Proposition 4.1, noting that Lπ ≤ L̄ for π = π(nout), and that τ̄tay = 1
16L̄Lf

, so that
the step-size condition of Proposition 4.1 is met.

B. Discussion and Extensions
B.1. Separation between and Open-Loop and Closed-Loop Gradients

In this section, we provided an illustrative example as to why a approximation JSP is more natural than canonical stationary
points. Fix an ϵ ∈ (0, 1], and consider the system with dynamic map

fϵ(x, u) = 2x+ u− ϵ.

Let xϵ(t | u) denote the scalar trajectory with

d

dt
xϵ(t | u) = fϵ(xϵ(t | u),u(t)), xϵ(0 | u) = ϵ.

Then, xϵ(t | 0) = ϵ for all t. We can now consider the following planning objective

JT,ϵ(u) =
1

2

∫ T

0

(
xϵ(t | u)2 + u(t)2

)
dt. (B.1)

Since the dynamics fϵ are affine, we find that

u is an ϵ′-JSP of JT,ϵ ⇐⇒ u ≤ inf
u′
JT,ϵ(u

′) + ϵ′.

In particular, as JT,ϵ(0) =
1
2Tϵ

2, and as JT,ϵ ≥ 0,

u = 0 is an
Tϵ2

2
-JSP of JT,ϵ. (B.2)

However, we show that the magnitude of the gradient at u = 0 is much larger. We compute the following shortly below.

Lemma B.1. For T ≥ 1, we have ∥∇JT,ϵ(0)(t)∥L2(U) ≥
√
TϵeT /4

√
2.

Thus, the magnitude of the gradient (through open-loop dynamics) is exponentially larger than the suboptimality of the
cost. This suggests that gradients through open-loop dynamics are poor proxy for global optimality, motivating instead the
JSP. Moreover, one can easily compute that if π has inputs uπk = 0 and stabilizing gains Kk = −3, then for sufficiently
small step sizes, the gradients of Jπ

T (u)
∣∣
u=0

scale only as cϵ
√
T for a universal c > 0, and do not depend exponentially on

the horizon.

Proof of Lemma B.1. We have from Lemma C.5 that

∇JT,ϵ(0)(t) =

∫ T

s=t

xϵ(s | 0)︸ ︷︷ ︸
=ϵ

·Φ(s, t)B(t),
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where Φ(s, t) solves the ODE Φ(t, t) = 1 and d
dsΦ(s, t) = 2Φ(s, t). Thus, Φ(s, t) = exp(2(t− s)). Moreover, B(t) = 1.

Hence,

∇JT,ϵ(0)(t) = ϵ

∫ T

s=t

exp(2(t− s))

= ϵ
1

2
(e2(T−t))− 1)

Hence, for t ≤ T/2 and T ≥ 1,

|∇JT,ϵ(0)(t)| ≥ ϵ
1

2
(eT − 1) ≥ ϵ1

2
(eT − 1) ≥ ϵeT

4
.

Hence,

∥∇JT,ϵ(u)(t)∥2L2(U) ≥
T

2

(
ϵeT

4

)2

,

so ∥∇JT,ϵ(u)(t)∥L2(U) ≥
√
TϵeT /4

√
2.

B.2. Global Stability Guarantees of JSPs and Consequences of (Westenbroek et al., 2021)

(Westenbroek et al., 2021) demonstrate that, for a certain class of nonlinear systems whose Jacobian Linearizations satisfy
various favorable properties, an ϵ-FOS point u of the objective JT corresponds to a trajectory which converges exponen-
tially to a desired equilibirum. Examining their proof, the first step follows from Westenbroek et al. (2021, Lemma 2),
which establishes that u is an ϵ′ = ϵ2/2α-JSP, and it is this property (rather than the ϵ-FOS) that is used throughout the
rest of the proof. Hence, their result extends from FOSs to JSPs. Hence, the local optimization guarantees established in
this work imply, via Westenbroek et al. (2021, Theorem 1), exponentially stabilizing global behavior.

B.3. Projections to ensure boundedness.

Let us describe one way to ensure the feasibility condition, Definition 4.7. Suppose that fdyn has the following stability
property, which can be thought of as the state-output anologue of BIBO stability, and is common in the control literature
(Jadbabaie & Hauser, 2001). For example, we may consider the following assumption.
Assumption B.1. There exists some function ϕsys : R≥0 → R≥0 such that that, if ∥u(t)∥ ≤ R for all t ∈ [0, T ], then
∥x(t | u)∥ ≤ ϕsys(R, T ) for all t ∈ [0, T ].

Next, fix a bound Ru > 0, and set

Rfeas := 2max{Ru, ϕsys(Ru, T )}

Then, it follows that for any policy for which

uπk ≤ Ru (B.3)

for all k ∈ [K] is feasible in the sense of Definition 4.1. We therefore modify Algorithm 1,Line 5 to the projected gradient
step

u
(n+1)
1:K ← Proj(Bdu (Ru))K

[
oracπ(n),u(ũ

(n)
1:K)

]
, where again ũ

(n)
k := u

(n)
k − η

τ
∇̂

(n)

k − Kπ
(n)

k x̂k,

where we let Proj(Bdu (Ru))K denote the orthogonal-projection on the K-fold project of du-dimensional balls of Euclidean
radius Ru, Bdu(Ru). This projection is explicitly given by(

Proj(Bdu (Ru))K [u1:K)]
)
k
= uk ·min

{
1,

Ru

∥uk∥

}
,

here using the convention that when uk = 0, the above evaluates to 0. In this case, our algorithm converges (up to gradient
estimation error) to a stationary-point of the projected gradient descent algorithm (see, e.g. the note https://damek.
github.io/teaching/orie6300/lec22.pdf for details). We leave the control-theoretic interpretation of such
stationary points to future work.
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B.4. Extensions to include Process Noise

As explained in Section 2, Oracle 2.1 only adds observation noise but not process noice. Process noise somewhat compli-
cates the analysis, because then our method will only learn the Jacobians dynamics up to a noise floor determined by the
process noise. However, by generalization our Taylor expansion of the dynamics (e.g. Proposition A.5), we can show that
as the process noise magnitude decreases, we would achieve better and better accuray, recovering the noiseless case in the
limit. In addition, process noise may warrant greater algorithmic modifications: for example we may want to incorporate
higher-order Taylor expansions of the dynamics (not just the Jacobian linearization), or more sophisticated gradient updates
(i.e. iLQG ((Todorov & Li, 2005))) better tuned to handle process noise.

B.5. Discussion of the exp(Lf t0) dependence.

There are two sources of the exponential dependence on t0 = τk0 that arises in our analysis. First, we translate open-
loop controllability (Assumption 4.4) to closed-loop controllbility needed for recovery of system matrices, in an argument
based on (Chen & Hazan, 2021), and which incurs dependent on exp(Lf tctrl) ≤ exp(Lf t0). Second, we only consider a
stability modulus (Definition 4.7) for a Lyapunov equation terminating at k = k0, because we do not estimate Aπol,k, B

π
ol,k,

and therefore cannot synthesize the system gains, for k ≤ k0. This means that (see Lemma A.1) that many natural bounds
on the discretized transition operators ∥Φπcl,k,j∥ scale as poly(µπ,⋆, exp(t0Lf ), yielding exponential dependence on t0Lf .

C. Jacobian Linearizations
C.1. Preliminaries

Recall U denotes the space of continuous-time inputs u : [0, T ]→ Rdu , and U continuous-time inputs u⃗ ∈ (Rdu)K

C.1.1. EXACT TRAJECTORIES

We recall definitions of various trajectories.

Definition C.1 (Open-Loop Trajectories and Nomimal Trajectories). For a u ∈ U , we define x(t | u) as the curve given
by

d

dt
x(t | u) = fdyn(x(t | u),u(t)), x(0 | u) = ξinit.

For a policy π = (uπ1:K , K
π
1:K), we define uπ = ct(uπ1:K), xπ(t) = x(t | uπ), and xπk = xπ(tk).

Similarly, we present a summary of the definition of various stabilized trajectories, consistent with Definitions 2.1 and 4.4.

Definition C.2 (Stabilized Trajectories). For ū ∈ U and a policy π, we define continuous-time perturbations of the
dynamics with feedback

x̃π,ct(t | ū) := x(t | ũπ,ct), ũπ,ct (t | ū) := ū(t) + Kπk(t)(x̃
π,ct(tk(t) | ū))− xπk(t)),

there specialization to discrete-time inputs u⃗ ∈ U

x̃π(t | u⃗) := x̃π,ct(t | ct(ū)), ũπ(t | u⃗) := ũπ,ct(t | ct(ū)),

and their discrete samplings

x̃πk (⃗u) := x̃π(tk | u⃗), ũπk (⃗u) := ũπ(tk | u⃗)

C.1.2. TRAJECTORY LINEARIZATIONS

Definition C.3 (Open-Loop Jacobian Linearizations of Trajectories). We define the continuous-time Jacobian lineariza-
tions

xjac(t | ū) := x(t | u) + ⟨∇ux(t | u)
∣∣
u=uπ , ū− uπ⟩L2(U)

δxjac(t | u; ū) := xjac(t | u; ū)− x(t | u)
(C.1)
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Definition C.4 (Closed-Loop Jacobian Linearizations of Trajectories, Discrete-Time).

x̃π,jac(t | ū) := x̃π,ct(t | u) + ⟨∇ux̃
π,ct(t | u)

∣∣
u=uπ , ū− uπ⟩L2(U)

ũπ,jac(t | ū) := ũπ,ct(t | u) + ⟨∇uũ
π,ct(t | u)

∣∣
u=uπ , ū− uπ⟩L2(U)

(C.2)

We further define the linearized differences

δx̃π,jac(t | ū) := x̃π,jac(t | ū)− xπ(t), δũπ,jac(t | ū) := ũπ,jac(t | ū)− uπ(t) (C.3)

Definition C.5 (Jacobian Linearization, with gains, dicrete Time). Given u⃗ ∈ U, we define

x̃
π,jac
k (⃗u) := x̃πk (⃗u) + ⟨∇ux̃

π
k (t | u⃗)

∣∣⃗
u=uπ1:K

, ū− uπ1:K⟩

ũ
π,jac
k (⃗u) := ũπk (⃗u) + ⟨∇⃗uũπk (t | u)

∣∣⃗
u=uπ1:K

, u⃗− uπ1:K⟩L2(U)

(C.4)

We further define the linearized differences

δx̃π,jack (⃗u) := x̃
π,jac
k (⃗u)− xπk , δũπ,jack (⃗u) := ũ

π,jac
k (⃗u)− uπk (C.5)

C.1.3. JACOBIAN LINEARIZATED DYNAMICS

We now recall the definitions of various linearizations, consistent with Definition 4.6.

Definition C.6 (Open-Loop, On-Policy Linearized Dynamics). We define the open-loop, on-policy linearization around a
policy π via

Aπ
ol(t) = ∂xfdyn(x

π(t),uπ(t)), Bπ
ol(t) = ∂ufdyn(x

π(t),uπ(t)).

Definition C.7 (Open-Loop, On-Policy Linearized Transition, Markov Operators, and Discrete-Dynamics). We define the
linearized transition function Φπ

ol(s, t) defined for s > t as the solution to d
dsΦ

π
ol(s, t) = Aπ

ol(s)Φ
π
ol(s, t), with initial

condition Φπ
ol(t, t) = I. We discretize the open-loop transition function by define

Aπol,k = Φπ
ol(tk+1, tk), Bπol,k :=

∫ tk+1

s=tk

Φπ
ol(tk+1, s)B

π
ol(s)ds.

Definition C.8 (Closed-Loop Jacobian Linearization, Discrete-Time). We define a discrete-time closed-loop linearization

Aπcl,k := Aπol,k + Bπol,kK
π
k = Φπ

ol(tk+1, t) +

∫ tk+1

s=t

Φπ
ol(tk+1, s)B

π
ol(s)K

π
k ,

and a discrete closed-loop transition operator is defined, for 1 ≤ k1 ≤ k2 ≤ K+1, Φπcl,k2,k1
= Aπcl,k2−1 ·Aπcl,k2−2 · · ··Aπcl,k1

,
with the convention Φπcl,k1,k1

= I. Finally, we define the closed-loop markov operator via Ψπcl,k2,k1
:= Φπcl,k2,k1+1B

π
ol,k1

for
1 ≤ k1 < k2 ≤ K + 1.

Definition C.9 (Closed-Loop Jacobian Linearizations, Continuous-Time). We define

Φπ
cl(s, t) :=

{
Φπ

ol(s, t) s, t ∈ Ik
Φ̃

π

cl(s, tk2
) · Φπcl,k2,k1

·Φπ
ol(tk1+1, t) t ∈ Ik1

, s ∈ Ik2
, k2 > k1,

where above, we define

Φ̃
π

cl(s, tk) = Φπ
ol(s, tk) + (

∫ s

s′=tk

Φπ
ol(s, s

′)Bπ
ol(s

′)ds)Kk.

Lastly, we define

Ψπ
cl(s, t) = Φπ

cl(s, t)B(t).
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C.2. Characterizations of the Jacobian Linearizations

In this section we provide characterizations of the Jacobian Linearizations of the open-loop and closed-loop trajectories.

Lemma C.1 (Implicit Characterization of the linearizations in open-loop). Given u, ū ∈ U , define δū(t) = ū(t) − u(t).
Then,

d

dt
δxjac(t | ū;u) = A(t | u)δxjac(t | ū;u) +B(t | u)δū(t)

with initial condition δxjac(0 | ū) = 0, where

A(t | u) = ∂xfdyn(x, u)
∣∣
x=x(t|u),u=u(t)

and B(t | u) = ∂ufdyn(x, u)
∣∣
x=x(t|u),u=u(t)

.

Proof. The result follows directly from Lemma C.8 and the definition of δxjac(t | ū;u).

Lemma C.2 (Implicit Characterization of the linearizations in closed-loop). Given a policy π and ū ∈ U , set δūπ(t) =
uπ(t)− u(t) . Then, recalling δx̃π,jac(t | ū) = x̃π,jac(t | ū)− xπ(t),

d

dt
δx̃π,jac(t | ū) = Aπ

ol(t)δx̃
π,ct(t | ū) +Bπ

ol(t)δũ
π,jac(t)

δũπ,jac := δūπ(t) + Kπk(t)δx̃
π,jac(tk(t) | ū),

with initial condition δx̃π,jac(0 | ū) = 0.

Proof. The result follows directly from Lemma C.8 and the definitions of δx̃π,jac(t | ū) and the construction of the
perturbed input δũπ,jac.

Lemma C.3 (Explicit Characterizations of Linearizations, Continuous-Time). For a policy π, we have:

δxjac(t | uπ + δu;uπ) =

∫ t

s=0

Φπ
ol(t, s)B

π
ol(t)δu(s)ds.

δx̃π,jac(t | uπ + δu) =

∫ t

s=0

Φπ
cl(t, s)B

π
ol(s)δu(s)ds.

Proof. The first condition follows directly from the characterization of the evolution of δxjac(t | ū;u) and Lemma C.8.
For the second condition, we will directly argue that the proposed formula satisfied the differential equation in Lemma C.2.
By the Leibniz integral rule we have:

d
dt

(∫ t

s=0

Φπ
cl(t, s)B

π
ol(s)δu(s)ds

)
=

∫ t

s=0

d
dt

(
Φπ

cl(t, s)B
π
ol(s)δu(s)

)
ds+Φπ

cl(t, t)B
π
ol(t)δu(t)

=

∫ t

s=0

d
dt

(
Φπ

cl(t, s)B
π
ol(s)δu(s)

)
ds+Bπ

ol(t)δu(t).

Using the expression for Φπ
cl(t, s) in Definition C.9, we can similarly calculate:

d
dtΦ

π
cl(t, s) = Aπ

ol(t)Φ
π
cl(t, s) +Bπ

ol(t)KkΦ
π
cl(tk(t), s).

Together the precding quatinities demonstrate that:

d
dt

(∫ t

s=0

Φπ
cl(t, s)B

π
ol(s)δu(s)ds

)
= Aπ

ol(t) ·
(∫ t

s=0

Φπ
cl(t, s)B

π
ol(s)δu(s)ds

)
+Bπ

ol(t)δu(t)

+ Kπk(t) ·
(∫ tk(t)

s=0

Φπ
cl(t, s)B

π
ol(s)δu(s)ds

)
,

which demonstrates the proposed solutions satisfies the desired differential equation.
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Lemma C.4 (Explicit Characterizations of Linearizations, Discrete-Time). For a policy π, and perturbation δu1:K ∈ U,

δx̃π,jack (uπ1:K + δu1:K) =

k−1∑
j=1

Ψπcl,k,jδuj =

k−1∑
j=1

Φπcl,k,j+1B
π
ol,jδuj .

Proof. The proof follows directly from Definition C.9, Definition C.8 and Lemma C.3.

C.3. Gradient Computations

Lemma C.5 ( Computation of Continuous-Time Gradient, Open-Loop). Fix ξ = ξπ . Define Qπ
(·)(t) :=

∂(·)Q(xπ(t),uπ(t), t). Then,

∇JT (u)(t)
∣∣
u=uπ = Qπ

u(t) +

∫ T

s=t

Φπ
ol(s, t)B

π
ol(t)ds.

and

⟨∇JT (u)(t)
∣∣
u=uπ , δu⟩ =

∫ T

0

(⟨Qπ
u(t), δu(t)) + ⟨Qπ

x(t), δx
jac(t | u+ δu)⟩)dt.

Proof. For a given perturbation δu, by the chain rule we have:

DJT (u)[δu] =
∫ T

0

(⟨Qπ
u(t), δu(t)) + ⟨Qπ

x(t), δx
jac(t | u+ δu)⟩)dt+ ⟨∂xV (xπ(T )), δxjac(T | u+ δu)⟩

Because δu is arbitrary, an application of Lemma C.3 demonstrates the desired results.

Lemma C.6 (Computation of Continuous-Time Gradient, Closed-Loop). Fix ξ = ξπ . Define Qπ
(·)(t) :=

∂(·)Q(xπ(t),uπ(t), t). Then,

∇JT (π)(t) := ∇ūJ π
T (ū)

∣∣
ū=uπ (t) = Qπ

u(t) +Ψπ
cl(T, t)

⊤ (∂xV (xπ(T )))

+

∫ T

s=t

Ψπ
cl(s, t)

⊤Qπ
x(s)ds+

∫ T

s=tk(t)+1

Ψπ
cl(tk(s), t)

⊤Kk(s)⊤Qπ
u(s)ds.

Proof. The proof follows the steps of Lemma C.5, but replaces the open-loop state and input perturbations with the appro-
priate closed-loop perturbations, as defined in Lemma C.3 and calculated in Lemma C.2.

Similarly, we can compute the gradient of the discrete-time objective. Its proof is analogous to the previous two.

Lemma C.7 (Computation of Discrete-Time Gradient).

(∇J disc
T (π))k = τQu(x

π
k , u

π
k , tk) + (Ψπcl,K+1,k)

⊤Vx(x
π
K+1)

+ τ

K∑
j=k+1

(Ψπcl,j,k)
⊤(Qx(x

π
j , u

π
j , tj) + (Kπj )

⊤Qu(x
π
j , u

π
j , tj))

Moreorever, defining the shorthand δx̃jack = δx̃π,jack (uπ1:K + δu1:K),

⟨δu1:K ,∇J π,disc
T (π)⟩

= ⟨∂xV (xπK+1), δx̃
jac
k ⟩+ τ

K∑
k=1

⟨∂xQ(xπk , u
π
k , tk), δx̃

jac
k ⟩+ ⟨∂uQ(xπk , u

π
k , tk), δuk + Kkδx̃

jac
k ⟩.
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C.4. Technical Tools

The first supportive lemma is a standard result from variational calculus, and characterizes how the solution to the controlled
differential equation changes under perturbations to the input. Note that this result does not depend on how the input is
generated, namely, whether the perturbation is generated in open-loop or closed-loop. Concretely, the statement of the
following result is equivalent to Theorem 5.6.9 from (Polak, 2012).

Lemma C.8 (State Variation of Controlled CT Systems). For each nominal input u ∈ U and perturbation δu ∈ U we
have:

⟨∇ux(t | u), δu⟩ = δx(t), (C.6)

where the curve δx(·) satisfies:
d

dt
δx(t) = A(t | u)δx(t) +B(t | u)δu(t), (C.7)

where we recall that:

A(t | u) = ∂xfdyn(x, u)
∣∣
x=x(t|u),u=u(t)

and B(t | u) = ∂ufdyn(x, u)
∣∣
x=x(t|u),u=u(t)

.

Moreover, we have

δx(t) =

∫ t

s=0

Φ(t, s)B(s | u)δu(s),

where the transition operator satisfies d
dtΦ(t, s) = A(t | u)Φ and Φ(s, s) = I.

The following result is equivalent to Lemma 5.6.2 from (Polak, 2012).

Lemma C.9 (Picard Lemma). Consider two dynamical d
dty(t) = ϕ(y(t), t), i ∈ {1, 2}, and suppose that y 7→ ϕ(y, s) is

L-Lipschitz fo each s fixed. Let z(t) be any other absolutely continuous curve. Then,

∥y(t)− z(t)∥ ≤ exp(tL) ·
(
∥y(0)− z(0)∥+

∫ t

s=0

∥ d
ds
z(s)− f(z(s), s)∥

)
.

Lemma C.10 (Solution to Afine ODEs). Consider an affine ODE given by y(0) = y0, d
dty(t) = A(t)y(t)+B(t)u. Then,

y(t) = Φ(t, 0)y0 +

(∫
Φ(t, s)B(s)ds

)
u,

where Φ(t, s) solves the ODE Φ(s, s) = I and d
dtΦ(t, s) = A(t)Φ(t, s).
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D. Taylor Expansions of the Dynamics
D.1. Proof of Proposition A.5

Recall δuk = uk − uπk , and define u = ct(u1:K) and δu := ct(uπ1:K). We define shorthand for relevant continuous curves
and their discretizations:

y(t) = x̃π(t | uπ + δu) = x̃π(t | uπ)

yk = y(tk) = x̃πk (u
π
1:K + δu1:K) = x̃πk (u1:K)

yjac(t) = x̃π,jac(t | uπ + δu), y
jac
k = yjac(tk)

(D.1)

We also define their differences from the nominal as

δy(t) = y(t)− xπ(t), δyjac(t) = yjac(t)− xπ(t), δyk = yk − xπk , δy
jac
k = y

jac
k − xπk .

And the Jacobian error

ejac(t) := y(t)− yjac(t), e
jac
k := ejac(tk) = yk − y

jac
k .

The main challenge is recursively controlling ∥ejack ∥. We begin with a computation which is immediate from Definition C.1
(the first equality) and (the second equality):
Lemma D.1 (Curve Computations). For t ∈ Ik,

d

dt
y(t) = fdyn(y(t), u

π
k + δuk + Kπk (δyk))

d

dt
yjac(t) =

d

dt
xπ(t) +Aπ

ol(t)δy
jac(t) +Bπ

ol(t)
(
δuk + Kk(δy

jac
k )
)

Computing the Jacobian Linearization. The first step of the proof is a computation of the Jacobian linearization and a
bound on its magnitude.
Lemma D.2 (Computation of Jacobian Linearization).

y
jac
k =

k−1∑
j=1

Φπcl,k,j+1B
π
ol,jδuj =

k−1∑
j=1

Ψπcl,k,jδuj (D.2)

Therefore,

max
k∈[K+1]

∥yjack ∥ ≤ LolLf min{B2κπ,2, B∞κπ,1} (D.3)

Proof. Eq. (D.2) follows from Lemma C.6. Eq. (D.3) follows from Cauchy Schwartz/Holder’s inequality, and the bound
∥Bπol,j∥ ≤ τLolLf due to Lemma I.3.

Recursion on proximity to Jacobian linearization. Next, we argue that the true dynamics y(t) remain close to yjac(t).
We establish a recursion under the following invariant:

∥yjack ∥ ∨ ∥yk∥ ∨ ∥u
π
k + δuk + Kπk (δyk)∥ ∨ ∥uπk + δuk + Kπk (δy

jac
k )∥ ≤ 3

4
Rfeas

τ ≤ min

{
1

16LfLπ
,

1

8κf

} (D.4)

We prove the following recursion:
Lemma D.3 (Recursion on Error of Linearization). SupposeEq. (D.4) holds. Let Φ̃cl,π(t, tk) = Φπ

ol(t, tk) +

(
∫ t

s=tk
Φπ

ol(t, s)B
π
ol(s)ds)K

π
k . Then, the following bound holds:

sup
t∈K
∥ejac(t)− Φ̃cl,π(t, tk)e

jac
k ∥ ≤Mfτ

(
4∥δuk∥2 + 20L2

π∥e
jac
k ∥

2 + 20L2
π∥y

jac
k − yk∥2

)
.

In particular, we have

∥ejack+1 − Aπcl,ke
jac
k ∥ ≤Mfτ

(
4∥δuk∥2 + 20L2

π∥e
jac
k ∥

2 + 20L2
π∥y

jac
k − yk∥2

)
.
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To do prove Lemma D.3, we introduce another family of curves y̌jac
k (t), defined for t ≥ tk, which begin at y(tk) but

evolve according to the Jacobian linearization:

d

dt
y̌jac
k (t) =

d

dt
xπ(t) +Aπ

ol(t)δy̌
jac
k (t) +Bπ

ol(t) (δuk + Kk(δyk))

y̌jac
k (tk) = y(tk) = yk, δy

jac
k (t) = y

jac
k (t)− xπ(t).

We begin by establishing feasibility of all relevant continuous-time curves on the interval Ik.

Lemma D.4. Suppose that Eq. (D.4) holds. Then, for all t ∈ Ik,

∥y̌jac
k (t)∥ ∨ ∥y(t)∥ ∨ ∥yjac(t)∥ ≤ Rfeas.

Proof. Let us start with y(t). Define the shorthand ūk := uπk + δuk + Kπk (δyk), so that d
dty(t) = fdyn(y(t), uk). Under

Eq. (D.4), ∥ūk∥ ≤ 3
4Rfeas. At t = tk, ∥y(t)∥ ≤ 3

4Rfeas. Moreover, if at a given t, ∥y(t)∥ ≤ Rfeas, then (y(t), uk) is
feasible, so ∥ d

dty(t)∥ = ∥fdyn(y(t), ūk)∥ ≤ κf . Thus, letting t⋆ := sup{t ∈ IK : ∥y(t)∥ ≤ Rfeas}, we see that if
τ ≤ Rfeas

4κf
, t⋆ = tk+1.

The arguments for y̌jac
k (t) and yjac(t) are similar: if, say, ∥y̌jac

k (t)∥ ≤ Rfeas for a given t ∈ Ik, then by

∥ d
dt

y̌jac
k (t)∥ = ∥ d

dt
xπ(t) +Aπ

ol(t)δy̌
jac
k (t) +Bπ

ol(t)uk∥

≤ κf + Lf (∥δy̌jac
k (t)∥+ ∥uk∥)

≤ κf + 2RfeasLf .

where above we use Eq. (D.4) to bound ∥uk∥ ≤ Rfeas, feasibility of π. As ∥δy̌jac
k (t)∥ ≤ 3

4Rfeas, integrating (specifically,
again considering t⋆ := sup{t ∈ IK : ∥y̌jac

k (t)∥ ≤ Rfeas}) shows that as long as τ(κf + 2LfRfeas) ≤ Rfeas/4,
∥y̌jac

k (t)∥ ≤ Rfeas for all t ∈ Ik. For this, it suffices that τ ≤ min{ 1
16Lf

, 1/8κf}.

We continue with a crude bound on the difference δy̌
jac
k (t) = y̌

jac
k (t)− xπ(t).

Lemma D.5. Suppose Eq. (D.4) holds all t ∈ Ik

∥δy̌jac
k (t)∥ ≤ (τLolLf∥δuk∥+ Lol(1 + τLπLf )∥δyk∥)

Similarly,

∥δy(t)∥ ≤ (τLolLf∥δuk∥+ Lol(1 + τLπLf )∥δyk∥).

Proof. Then, Picard’s Lemma (Lemma C.9), feasibiliy of π and Assumption 4.1 implies that, for any t ∈ Ik

∥δy̌jac
k (t)∥ ≤ exp((t− tk)Lf )ϵ1

where

ϵ1 := ∥δyk∥+
∫ t

s=tk

∥Bπ
ol(t) (δuk + Kk(δyk)) ∥ds

≤ ∥δyk∥+
∫ tk+1

s=tk

Lf (∥δuk∥+ ∥Kπkδyk∥) (Assumption 4.1)

≤ τ(Lf∥δuk∥∥δuk∥+ LπLf∥δyk∥), (Definition 4.7)

Bounding exp((t− tk)Lf ) ≤ exp(τLf ) = Lol concludes the first part. The second part follows from a similar argument,
using Lipschitzness of fdyn in accordance with Assumption 4.1, and the feasibility of (y(t), uπk + δuk + Kπk (δy

jac
k )) for

t ∈ Ik, as ensured by Eq. (D.4) and Lemma D.4.

We are now ready to prove Lemma D.3.
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Proof of Lemma D.3. Observe that, for t ∈ Ik
d

dt
(y̌

jac
k (t)− yjac(t)) = Aπ

ol(t)(y̌
jac
k (t)− yjac(t)) +Bπ

ol(t)K
π
k (y̌

jac
k (tk)− yjac(tk))

By solving the affine ODE define y̌jac
k (t)− yjac(t) (applying Lemma C.10), and recalling all various defintions,

y̌jac
k (t)− yjac(t) = Φ̃cl,π(t, tk)(y(tk)− yjac(tk)). (D.5)

We now bound y̌jac
k (t) − y(t). By applying Picard’s Lemma (Lemma C.9) and Assumption 4.1 with Lol = exp(τLf ) to

control the Lipschitz constant contribution, and using the agreement of initial conditions y̌jac
k (tk) = y(tk),

∥y̌jac
k (t)− y(t)∥ ≤ Lol

∫ t

s=tk

∥∆(s)∥ds. (D.6)

where

∆(s) = fdyn(y̌
jac
k (s), uπk + δuk + Kπkδyk)−

d

ds
y̌jac
k (s).

By a Taylor expansion, we have

∆(s) = fdyn(x
π(s), uπk )−

d

ds
y̌
jac
k (s) + ∂xfdyn(x

π(s), uπk )δy̌
jac
k (s) + ∂ufdyn(x

π(s), uπk )(δuk + Kπkδyk)

+
1

2
remainder,

where we bound

∥remainder(s)∥ ≤ sup
α∈[0,1]

∥∇2fdyn(αx
π(s) + (1− α)yjack (s), αuπk + (1− α)(uπk + δuk + Kπkδyk))∥

·
(
∥δyjack (s)∥2 + ∥δuk + Kπkδyk∥2

)
.

From by feasibility of π, ∥uπk∥∨∥xπ(s)∥ ≤ Rfeas. Moreover, ∥uπk + δuk + Kπkδyk∥ ≤ Rfeas by Eq. (D.4) and ∥yjack (s)∥ ≤
Rfeas by Lemma D.4. Thus, for α ∈ [0, 1],

∥αxπ(s) + (1− α)yjack (s)∥ ∨ ∥αuπk + (1− α)(uπk + δuk + Kπkδyk)∥ ≤ Rfeas.

Hence, as ∥∇2fdyn(x, u)∥ ≤Mf for feasible (x, u), Assumption 4.1 implies

∥remainder(s)∥ ≤Mf

(
∥δyjac(s)∥2 + 2∥δuk∥2 + 2L2

π∥δyk∥2
)

(AM-GM and Definition 4.7)

≤Mf

(
∥(LolLfτ∥δuk∥+ Lol(1 + τLπLf )∥δyk∥)∥2 + 2∥δuk∥2 + 2L2

π∥δyk∥2
)

(ALemma D.5)

≤ 2Mf

(
(τ2L2

olL
2
f∥δuk∥2) + L2

ol(1 + τLfLπ)
2∥δyk∥2 + ∥δuk∥2 + L2

π∥δyk∥2
)

(AM-GM)

= 2Mf

(
(1 + τ2L2

olL
2
f )∥δuk∥2) + (L2

π + L2
ol(1 + τLfLπ)

2)∥δyk∥2
)
.

Finally, we conclude by noting that

fdyn(x
π(s), uπk )

+ ∂xfdyn(x
π(s), uπk )δy̌

jac
k (s) + ∂ufdyn(x

π(s), uπk )(δuk + Kπkδyk)

=
d

dt
xπ(s) +Aπ

ol(s)δy̌
jac
k (s) +Bπ

ol(s)fdyn(x
π(s), uπk )(δuk + Kπkδyk) =

d

ds
y̌jac
k (s),

so that

∥∆(s)∥ = 1

2
∥remainder(s)∥ ≤Mf

(
(1 + τ2L2

olL
2
f )∥δuk∥2) + (L2

π + L2
ol(1 + τLfLπ)

2)∥δyk∥2
)

≤Mf

(
(1 + 2τ2L2

f )∥δuk∥2) + (L2
π + 2(1 + τLfLπ)

2)∥δyk∥2
)
(τ ≤ 1/4Lf , so L2

ol ≤ 2)

≤Mf

(
2∥δuk∥2) + (L2

π + 4)∥δyk∥2
)
, (again τ ≤ 1/4Lf , and when as τ ≤ 4/LfLπ)

≤Mf

(
2∥δuk∥2) + 5L2

π∥δyk∥2
)

(Lπ ≥ 1)
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where in the last line, we use τ ≤ 1/4Lf , so L2
ol ≤ 2. Hence, from Eq. (D.6), for all t ∈ Ik,

∥y̌jac
k (t)− y(t)∥ ≤ τLolMfMf

(
2∥δuk∥2) + (L2

π + 4)∥δyk∥2
)
.

≤ 2Mfτ
(
2∥δuk∥2) + (L2

π + 4)∥δyk∥2
)

=Mfτ
(
4∥δuk∥2) + 10L2

π∥δyk∥2
)
.

where above we bound Lol ≤ 2 again. And thus, from Eq. (D.5),

∥y(t)− yjac(t)− Φ̃cl,π(t, tk)(y(tk)− yjac(tk))∥ ≤Mfτ
(
4∥δuk∥2) + 10L2

π∥δyk∥2
)
.,

≤Mfτ
(
4∥δuk∥2) + 10L2

π∥∥y
jac
k − yk∥2∥

)
≤ 2Mfτ

(
4∥δuk∥2 + 20L2

π∥δy
jac
k ∥

2 + 20L2
π∥y

jac
k − yk∥2

)
.

Substituing in e
jac
k := yk − y

jac
k concludes.

Solving the recursion. To upper bound the recursion, assume an inductive hypothesis that, for some R to be chosen

max
j≤k
∥ejack ∥ ≤ R, and ∀j ≤ k, Eq. (D.4) holds. (D.7)

Note this hypothesis is true for k = 1, where ejac1 = 0, and all terms in Eq. (D.4) coincide with (xπ1 , u
π
1 ), which is feasible.

Now assume Eq. (D.7) holds. Define

vk := e
jac
k+1 − Aπcl,ke

jac
k ,

and note that Lemma D.3, followed by our induction hypothesis, implies that for c1 = 4 and c2 = 20L2
π ,

∥vk∥ ≤ τMf

(
4∥δuk∥2 + 20L2

π∥e
jac
k ∥

2 + c2∥yjack ∥
2
)

≤ τMf

(
4∥δuk∥2 + 20L2

πR
2 + 20L2

π∥y
jac
k ∥

2
)
.

By unfolding the recursion for vk := e
jac
k+1 − Aπcl,ke

jac
k , we have

e
jac
k+1 = vk + Aπcl,ke

jac
k

= I︸︷︷︸
=Φπcl,k+1,k+1

vk + Aπcl,k︸︷︷︸
=Φπcl,k+1,k

vk−1 + Aπcl,kA
π
cl,k−1︸ ︷︷ ︸

=Φπcl,k+1,k−1

e
jac
k−1

=

k+1∑
j=1

Φπcl,k+1,jvk + Φπcl,k+1,1e
jac
1︸ ︷︷ ︸

=0

.

Thus, under our inductive hypothesis, recalling B2 := τ∥δu1:K∥2ℓ2 , and B∞ := τmaxk ∥δuk∥2,

∥ejack+1∥ ≤Mf

k+1∑
j=1

∥Φπcl,k+1,j∥τ(c1∥δuk∥2 + c2R
2 + c2∥yjack ∥

2)

≤ 4Mf min{κπ,∞B2
2 , κπ,1B

2
∞}+ 20MfL

2
πκπ,1(R

2 +max
k
∥yjack ∥

2)

≤ 4Mf min{κπ,∞B2
2 , κπ,1B

2
∞}+ 20MfL

2
πκπ,1(R

2 + L2
olL

2
f min{B2κπ,2, B∞κπ,1}2) (Lemma D.2)

≤ 4Mf min{B2
2(κπ,∞ + 5L2

πL
2
olL

2
fκ

2
π,2κπ,1), B

2
∞(κπ,1 + 5L2

πL
2
olL

2
fκ

3
π,1)}+ 20MfL

2
πκπ,1R

2.

≤ 4Mf min{B2
2(κπ,∞ + 10L2

πL
2
fκ

2
π,2κπ,1), B

2
∞(κπ,1 + 10L2

πL
2
fκ

3
π,1)}+ 20MfL

2
πκπ,1R

2,

where in the last step we use τ ≤ 1/4Lf to bound L2
ol ≤ 2. Hence, if we select

R = 8Mf min{B2
2(κπ,∞ + 10L2

πL
2
fκ

2
π,2κπ,1), B

2
∞(κπ,1 + 10L2

πL
2
fκ

3
π,1)}

:= min{B2
2Mtay,2,π, B

2
∞Mtay,inf,π},
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where we recall

Mtay,2,π := 8Mf (κπ,∞ + 10L2
πL

2
fκ

2
π,2κπ,1)

Mtay,inf,π := 8Mf (κπ,1 + 10L2
πL

2
fκ

3
π,1,

we get

∥ejack+1∥ ≤
R

2
+ 20MfL

2
πκπ,1R

2.

Thus, if R ≤ 1
40MfL2

πκπ,1
, it holds that

∥ejack+1∥ ≤ min{B2
2Mtay,2,π, B

2
∞Mtay,inf,π}.

Lastly, for the condition R ≤ 1
40MfL2

πκπ,1
to hold, it suffices

B2
2 ≤

1

40MfL2
πκπ,1Mtay,2,π

, or B2
∞ ≤

1

40L2
πκπ,1Mtay,inf,π

(D.8)

Notince that these conditions are met for B2
q ≤ B2

tay,q,π . Moreover,

∥yk+1 − xπk+1∥ ∨ ∥y
jac
k+1 − xπk+1∥ ≤ ∥yk+1 − y

jac
k+1∥+ ∥y

jac
k+1 − xπk+1

= ∥ejack+1∥+ ∥
k∑

j=1

Φπcl,k+1,j+1B
π
ol,jδuj∥

≤ min
q∈{2,∞}

Mtay,q,πB
2
q + ∥

k−1∑
j=1

Φπcl,k+1,j+1B
π
ol,jδuj∥

≤ min
q∈{2,∞}

Mtay,q,πB
2
q + LolLf min{B2κπ,2, B∞κπ,1} (Lemma D.3)

≤ min{B2(LolLfκπ,2 +Mtay,2,πB2), B∞(LolLfκπ,1 +Mtay,inf,πB∞)}
≤ min{B2(1.5Lfκπ,2 +Mtay,2,πB2), B∞(1.5Lfκπ,1 +Mtay,inf,πB∞)}

(Lol ≤ exp(1/4) ≤ 1.5)

Hence, B2 ≤ 1
2Lfκπ,2/Mtay,2,π implies ∥yk+1 − xπk+1∥ ∨ ∥y

jac
k+1 − xπk+1∥ ≤ 2Lfκπ,2B2 = Ltay,2,πB2, and B∞ ≤

1
2Lfκπ,1/Mtay,inf,π implies ∥yk+1−xπk+1∥∨∥y

jac
k+1−xπk+1∥ ≤ 2Lfκπ,1B∞ = Ltay,∞,πB2. Combinining these conditions

with Eq. (D.8) implies we require Bq ≤ Btay,q,π , where

Btay,2,π = min

{
1√

40MfL2
πκπ,1Mtay,2,π

,
Lfκπ,2

2Mtay,2,π

}

Btay,inf,π ≤ min

{
1

40L2
πκπ,1Mtay,inf,π

,
Lfκπ,1

2Mtay,inf,π

}

Lastly, we need to check that the feasibility invariant Eq. (D.4) for k = k + 1 is maintained. Under the above conditions,
it was shown that

∥δyk+1∥ ∨ ∥δyjack+1∥ = ∥yk+1 − xπk+1∥ ∨ ∥y
jac
k+1 − xπk+1∥ ≤ Ltay,q,πBq.

Hence, if Bq ≤ Rfeas

8LπLtay,q,π
≤ Rfeas

4Ltay,q,π
for either q ∈ {2,∞},

∥yjack+1∥ ∨ ∥yk+1∥ ≤ ∥xπk+1∥+ Ltay,q,πBq ≤
Rfeas

2
+ Ltay,q,πB2 ≤

3

4
Rfeas

36



Learned Locally Linear Models for Nonlinear Policy Optimization

Moreover, if Bq ≤ Rfeas

8LπLtay,q,π
for either q ∈ {2,∞}, and B∞ ≤ Rfeas

8 ,

∥uπk+1 + δuk+1 + Kπk+1(δyk+1)∥ ∨ ∥uπk+1 + δuk+1 + Kπk+1(δy
jac
k+1)∥

≤ ∥uπk+1∥+ ∥δuk+1∥∥Kπk+1∥(∥δyk+1∥ ∨ ∥δyjack+1∥)

≤ Rfeas

2
+ ∥δuk+1∥+ LπLtay,q,πB2 ≤

Rfeas

2
+B∞ + LπLtay,q,πB2 ≤

3Rfeas

4
.

This concludes the demonstration of Eq. (D.4) for k = k+1. Collecting our conditions, and recalling Ltay,2,π = 2Lfκπ,2,
and Ltay,∞,π = 2Lfκπ,1 we have show that if we take Bq ≤ Btay,q,π , where

Btay,2,π = min

{
1√

40MfL2
πκπ,1Mtay,2,π

,
Lfκπ,2

2Mtay,2,π
,

Rfeas

16LπLfκπ,2

}

Btay,inf,π = min

{
1

40L2
πκπ,1Mtay,inf,π

,
Lfκπ,1

2Mtay,inf,π
,

Rfeas

16LπLfκπ,1

}
and B∞ ≤ Rfeas

8 , then

∥yk+1 − xπk+1∥ ∨ ∥y
jac
k+1 − xπk+1∥ ≤ Ltay,q,πB2,

and

∥ejack+1∥ = ∥yk+1 − y
jac
k+1∥ ≤Mtay,q,πB

2
q .

In addition, we have show that ∥yk+1∥ ∨ ∥uπk+1 + δuk+1 + Kπk+1(δyk+1)∥ ≤ 3
4Rfeas. This concludes the induction.

Substituing in yk = x̃πk (u1:K) and using the computation of yjack+1 in Lemma D.2 concludes the proof of the pertubation
bounds. Moreover, the fact that Eq. (D.4) holds for all k, and consequently the conclusion of Lemma D.4 establishes the
norm bounds ∥x̃πk (u1:K)∥ ∨ ∥ũπk (u1:K)∥ ≤ 3Rfeas

4 , and ∥x̃π(t | u1:K)∥ ≤ Rfeas.

D.2. Taylor Expansion of the Cost (Lemma A.6)

Proof. Recall the definition

J π,disc
T (⃗u) := V (x̃πK+1 (⃗u)) + τ

K∑
k=1

Q(x̃πk (⃗u), ũ
π
k (⃗u), tk).

Define the shorthand

δx̃k := x̃πk (δu1:K + uπ1:K)− xπk

δx̃jack := x̃
π,jac
k (δu1:K + uπ1:K)

J π,disc
T (⃗u)− J π,disc

T (δu1:K + uπ1:K)

:= V (xπK+1 + δx̃K+1)− V (xπK+1) + τ

K∑
k=1

Q(xπk + δx̃k, δuk + Kπkδx̃k + uπk , tk)−Q(xπk , u
π
k , tk)

Notice that Proposition A.5 and feasibility of π implies that

∥xπk + δx̃k∥∥xπk∥ ∨ ∥δuk + Kπkek∥ ∨ ∥uπk∥ ≤ Rfeas (D.9)
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Hence a Taylor expansion and Assumption 4.2 imply

|V (xπK+1 + δx̃K+1)− V (xπK+1)− ⟨∂xV (xπK+1), δx̃
jac
k ⟩|

≤ 1

2
sup

α∈[0,1]

∥∂xxV (xπK+1 + αδx̃K+1)∥∥δx̃K+1∥2 + |⟨∂xV (xπK+1), δx̃K+1 − δx̃jacK+1⟩|

≤ Mcost

2
∥δx̃K+1∥2 + Lcost∥δx̃K+1 − δx̃jacK+1∥.

Similarly,∣∣∣Q(xπk + δx̃k, δuk + Kπkδx̃k, tk)−Q(xπk , u
π
k , tk)− ⟨∂xQ(xπk , u

π
k , tk), δx̃

jac
k ⟩ − ⟨∂uQ(xπk , u

π
k , tk), δuk + Kkδx̃

jac
k ⟩
∣∣∣

≤
∣∣∣⟨∂xQ(xπk , u

π
k , tk), δx̃

jac
k ⟩|+ |⟨∂uQ(xπk , u

π
k , tk), Kkδx̃

jac
k ⟩
∣∣∣

+
1

2
Mcost

(
∥δx̃k∥2 + ∥δuk + Kkδx̃

jac
k ∥

2
)

≤ Lcost(1 + Lπ)∥δx̃k − δx̃jack ∥+
1

2
Mcost

(
(1 + 2L2

π)∥δx̃
jac
k ∥

2 + 2∥δuk∥2
)

≤ 2LπLcost∥δx̃k − δx̃jack ∥+
1

2
Mcost

(
3L2

π∥ek∥2 + 2∥δuk∥2
)
. (Lπ ≥ 1)

Then, from Lemma C.7,

⟨δu1:K ,∇J π,disc
T (u)⟩

= ⟨∂xV (xπK+1), δx̃
jac
k ⟩+ τ

K∑
k=1

⟨∂xQ(xπk , u
π
k , tk), δx̃

jac
k ⟩+ ⟨∂uQ(xπk , u

π
k , tk), δuk + Kkδx̃

jac
k ⟩.

Therefore, we have

∥J π,disc
T (δu1:K + uπ1:K)− J π,disc

T (uπ1:K)− ⟨δu1:K ,∇J π,disc
T (π)⟩∥

≤ Mcost

2
∥δx̃K+1∥2 + Lcost∥δx̃jacK+1 − δx̃K+1∥+ τ

K∑
k=1

2LπLcost∥δx̃jack − δx̃k∥+
1

2
Mcost

(
3L2

π∥δx̃k∥2 + 2∥δuk∥2
)

≤ Mcost

2
(1 + 3L2

πT ) max
k∈[K+1]

∥δx̃k∥2 + Lcost(1 + 2LπT ) max
k∈[K+1]

∥δx̃jack − δx̃k∥+ LπLcost τ

T∑
t=1

∥δuk∥2︸ ︷︷ ︸
=B2

=
Mcost

2
(1 + 3L2

πT ) max
k∈[K+1]

∥δx̃k∥2 + Lcost(1 + 2LπT ) max
k∈[K+1]

∥δx̃k − δx̃jack ∥+ 2LπLcostB
2
2 .

From Proposition A.5,

max
k∈[K+1]

∥δx̃k − δx̃k∥ ≤Mtay,2,πB
2
2

max
k∈[K+1]

∥ek∥2 ≤ 4L2
fκ

2
π,2B

2
2 .

Thus,

∥J π,disc
T (δu1:K + uπ1:K)− J π,disc

T (uπ1:K)− ⟨δu1:K ,∇J π,disc
T (π)⟩∥

≤ (2McostL
2
fκ

2
π,2(1 + 3L2

πT )Mtay,2,π + Lcost(1 + 2LπT )Mtay,2,π + 2LπLcost)︸ ︷︷ ︸
:=MJ ,tay,π

B2
2 .
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D.3. Proof of Lemma A.7

We begin with the following lemma, which we show shortly below.

Lemma D.6. Consider the setting of Proposition A.5, with B∞ ≤ min{Btay,inf,π, Rfeas/8}. Let π′ denote the policy with
gains Kπk and inputs uπ

′

k = uk = uπk + δuk. Then,

τ

K∑
k=1

∥Aπ
′

cl,k − Aπcl,k∥ ≤ 12TMfLπ(1 + LfKπ)B∞.

With this lemma, we turn to the proof of Lemma A.7. Notice that, as π and π′ have the same gains, Lπ = Lπ′ . Therefore,
following the proof of Lemma A.1 (see, specifically, the proof of Claim G.7), we have that for ∥Aπ′

cl,k − I∥ and ∥Aπcl,k − I∥
are both at most κ := 3τLfLπ for τ ≤ 1/6LfLπ .

Let us now construct an interpolating curves Xk(s) with Xk(0) = Aπcl,k and Xk(1) = Aπ
′

cl,k, and define the interpolating
Lyapunov function

ΛK+1(s) = I, Λk(s) = Xk(s)
⊤Λk+1Xk(s) + τI,

Define

∆ = 3 sup
s∈[0,1]

max{1, 2κ}
K∑

k=k0

∥X′k(s)∥

= max{1, 2κ}
K∑

k=k0

∥Aπ
′

cl,k − Aπcl,k∥

= max{3, 18LfLπ}
K∑

k=k0

∥Aπ
′

cl,k − Aπcl,k∥.

and recall the the shorthand ∥Λk0:K+1(s)∥max,op := maxk∈[k0:K+1] ∥Λk(s)∥. Then, as long as ∥Λk0:K+1(0)∥max,op∆ < 1,
Lemma F.13 (re-indexing to terminate the backward recursion at k0 instead of 1) implies

∥Λk0:K+1(1)∥max,op ≤ (1− ∥Λk0:K+1(0)∥max,op∆)−1∥Λk0:K+1(0)∥max,op.

We see that ∥Λk0:K+1(0)∥max,op = ∥Λπk0:K+1∥max,op = Kπ,⋆, and ∥Λk0:K+1(1)∥max,op = ∥Λπ′

k0:K+1∥max,op = µπ′,⋆.
Thus, combining with the inequality (1− x)−1 ≤ 1 + 2x for x ∈ [0, 1/2], we have that as long as ∆µπ,⋆ ≤ 1/2,

µπ′,⋆ ≤ (1 + 2∆µπ,⋆)µπ,⋆.

Lastly, we can bound

2∆µπ,⋆ = max{6, 36LfLπ}µπ,⋆

K∑
k=k0

∥Aπ
′

cl,k − Aπcl,k∥

≤ max{6, 36LfLπ}µπ,⋆ · 12TMfLπ(1 + LfKπ)B∞︸ ︷︷ ︸
:=1/Bstab,π

B2. (Lemma D.6)

In sum, for B∞ ≤ Bstab,π , we have µπ′,⋆ ≤ (1 +B∞/Bstab,π)µπ,⋆, which concludes the proof.

Proof of Lemma D.6. Due to Proposition A.5, and the fact that xπ′
(t) = x̃π(t | u1:K) and uπ′

(t) = ũπk(t) (u1:K), we have
that

∀t ∈ [0, T ], ∥xπ′
(t)∥ ∨ ∥uπ′

(t)∥ ≤ Rfeas. (D.10)
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Moreover each initial condition ξ with norm ∥ξ∥ = 1, we have that from Lemma C.10 and the definitions of Aπ
′

cl,k, A
π
cl,k

from Definition C.8 that

(Aπ
′

cl,k − Aπcl,k)ξ = z2(τ)− z1(τ),

where

z2(0) = z1(0) = ξ,

and where d
dtz2(t) = Aπ′

ol (tk + t)z2(t) +Bπ′

ol (tk + t)Kkξ, and where d
dtz1(t) = Aπ

ol(tk + t)z2(t) +Bπ
ol(tk + t)Kkξ.

By the Picard Lemma, Lemma C.9, and by bounding ∥Aπ′

ol (t)∥ ≤ Lf by Eq. (D.10) and Assumption 4.1, it follows that

∥(Aπ
′

cl,k − Aπcl,k)ξ∥ ≤ exp(τLf )

∫ τ

0

(∥Aπ′

ol (tk + t)−Aπ
ol(tk + t)∥∥z1(t)∥+ ∥Bπ′

ol (tk + t)−Bπ
ol(tk + t)∥∥Kk∥∥ξ∥)dt

≤ exp(τLf )

∫ τ

0

(∥Aπ′

ol (tk + t)−Aπ
ol(tk + t)∥∥z1(t)∥+ ∥Bπ′

ol (tk + t)−Bπ
ol(tk + t)∥Lπ)dt

Set Lol = exp(τLf ). Following the computation in , we can bound supt∈[0,τ ∥z1(t)∥ ≤ ∥Aπcl,k∥ = ∥Φπcl,k+1,k∥ ≤ 5/3
provided τ ≤ 1/4LfLπ (recall we assume Lπ ≥ 1). Hence,

∥(Aπ
′

cl,k − Aπcl,k)ξ∥ ≤ Lol

∫ τ

0

(
5

3
∥Aπ′

ol (tk + t)−Aπ
ol(tk + t)∥+ ∥Bπ′

ol (tk + t)−Bπ
ol(tk + t)∥Lπ)dt

Finally, by the smoothness on the dynamics Assumption 4.1 and invoking Eq. (D.10) and feasibility of π to ensure all
relevant (x, u) pairs are feasible, we have

∥Aπ′

ol (tk + t)−Aπ
ol(tk + t)∥ = ∥∂xfdyn(xπ′

(t),uπ′
(t))− ∂xfdyn(xπ(t),uπ(t))∥

≤Mf

(
∥xπ′

(t)− xπ(t)∥+ ∥uπ′
(t)− uπ(t))∥

)
≤Mf

(
∥xπ′

(t)− xπ(t)∥+ ∥δuk∥
)
.

Applying a similar bound to the term ∥Bπ′

ol (tk + t)−Bπ
ol(tk + t)∥, we conclude

∥Aπ
′

cl,k − Aπcl,k∥ ≤ sup
ξ:∥ξ∥

= ∥(Aπ
′

cl,k − Aπcl,k)ξ∥

≤ LolMf (
5

3
+ Lπ)

∫ τ

0

(
∥xπ′

(t)− xπ(t)∥+ ∥δuk∥
)
dt

≤ τLolMf (
5

3
+ Lπ)

(
(1 + τLolLf )∥δuk∥+ Lol(1 + τLπLf )∥xπ′

(tk)− xπ(tk)
)

(Lemma D.5)

≤ τLolMf (
5

3
+ Lπ)

(
5Lol

4
∥δuk∥+

5

4
Lol∥xπ′

(tk)− xπ(tk)

)
(Lol ≥ 1, τ ≤ 1/4LfLπ ≤ 1/4Lf )

= τ
5L2

ol

4
Mf (

5

3
+ Lπ)

(
∥δuk∥+ ∥xπ′

(tk)− xπ(tk)∥
)

= τMf ·
5e1/2

4
· 8
3
· Lπ

(
∥δuk∥+ ∥xπ′

(tk)− xπ(tk)∥
)

(Lπ ≥ 1, τLf ≤ 1/4)

≤ 6τMfLπ

(
∥δuk∥+ ∥xπ′

(tk)− xπ(tk)∥
)

≤ 6τMfLπ (∥δuk∥+ 2Lfκπ,1B∞) . (Proposition A.5)

Summing the bound, and using Kτ = T , we have

K∑
k=1

∥Aπ
′

cl,k − Aπcl,k∥ ≤ 6MfLπ

(
τ

K∑
k=1

∥δuk∥+ 2TLfκπ,1B∞

)
≤ 6MfLπ (KτB∞ + 2TLfκπ,1B∞)

≤ 12TMfLπ(1 + Lfκπ,1)B∞.
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D.4. Proof of Lemma A.8

Proof. Using Condition F.3 and and 1 ∨ ∥Kk∥ ≤ Lπ ,

∥(∇J disc
T (π))k∥ ≤ τ∥Qu(x

π
k , u

π
k , tk)

2∥2 + ∥Ψπcl,K+1,k)
⊤Vx(x

π
K+1∥

+

∥∥∥∥∥∥τ
K∑

j=k+1

(Ψπcl,j,k)
⊤(Qx(x

π
j , u

π
j , tj) + (Kπj )

⊤Qu(x
π
j , u

π
j , tj))

∥∥∥∥∥∥
≤ τLcost + τ∥Ψπcl,K+1,k∥L2

cost + 2L2
πL

2
cost

τ

K∑
j=k+1

∥Ψπcl,j,k∥

2

.

Using τ ≤ 1/4Lf and Lemma I.3, we can bound ∥Ψπcl,j,k∥ = ∥Φπcl,j,k+1B
π
ol,k∥ ≤ τLf exp(τLf )∥Φπcl,j,k+1∥ ≤

τLf exp(1/4)∥Φπcl,j,k+1∥. As exp(1/2) ≤ 3/4, we conclude that

∥(∇J disc
T (π))k∥ ≤ τLcost +

3

2
τ2LfLcost + 3τLπLcost

τ

K∑
j=k+1

∥Φπcl,j,k∥

2

.

≤ τLcost +
3

2
τLfLcost∥Φπcl,K+1,k+1∥+ 3LπLcostκπ,1.

Using ∥Φπcl,K+1,k+1∥ ≤ κπ,∞gives the boudn ∥(∇J disc
T (π))k∥ ≤ τLcost(1 +

3Lf

2 κπ,∞ + 3Lπκπ,1) =: L∇,π,∞.

E. Estimation Proofs
E.1. Estimation of Markov Parameters: Proof of Proposition A.9

We begin with two standard concentration inequalities.
Lemma E.1. Let (yi, xi, wi)

n
i=1 be an independent sequence of triples of random vectors in with yi, xi ∈ Rd, w ∈ Rd′

and suppose that yi | xi, wi ∼ N (xi, σ
2Id) and maxi ∥wi∥ ≤ R. Then,

P

[∥∥∥∥∥ 1

N

N∑
i=1

(yi − xi)wi

∥∥∥∥∥ ≤ Rσ
√

2 · d log 5 + log((d′ + 1)/δ)

N

]
≥ 1− δ.

Proof of Lemma E.1. By a standard covering argument (see, e.g. Vershynin (2018, Chapter 4)), there exists a finite covering
T of unit vectors z ∈ Rd such that (a) log |T | ≤ d log 5 and (b), for all vectors v ∈ Rd,

∥v∥ ≤ 2 sup
z∈T
⟨v, z⟩.

Hence, ∥∥∥∥∥ 1

N

N∑
i=1

(yi − xi)wi

∥∥∥∥∥
op

≤ 2 sup
z∈T

∥∥∥∥∥ 1

N

N∑
i=1

⟨z, yi − xi⟩ · wi

∥∥∥∥∥ = 2σ sup
z∈T

∥∥∥∥∥ 1

N

N∑
i=1

ξi(z) · wi

∥∥∥∥∥ , (E.1)

where above we define ξi(z) := σ−1⟨z, yi − xi⟩. Notice that ξi(z) | wi are standard Normal random variables. Thus, by
standard Gaussian concentration (e.g. Boucheron et al. (2013, Chapter 2)),

P

[∥∥∥∥∥ 1

N

N∑
i=1

ξi(z)wi

∥∥∥∥∥ ≤ R
√
2
log((d′ + 1)/δ)

N

]
≥ 1− δ.

Hence, union bounding over z ∈ T , bounding |T | ≤ d log 5, Eq. (E.1) implies the desired bound.

P

[∥∥∥∥∥ 1

N

N∑
i=1

(yi − xi)wi

∥∥∥∥∥ ≤ Rσ
√
2
d log 5 + log((d′ + 1)/δ)

N

]
≥ 1− δ.
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Lemma E.2 (Assymetric Matrix Hoeffding). Let X1, . . . , Xn be an independent sequence of matrices in Rd1×d2 with
∥Xi∥ ≤ R. Then,

P

 1

N

∥∥∥∥∥∑
i

Xi − E[Xi]

∥∥∥∥∥ ≤ 4R

√
log(d1+d2

δ )

N

 ≥ 1− δ.

Proof of Lemma E.2. By recenteringXi ← Xi−E[Xi], we may assume E[Xi] = 0 and ∥Xi∥ ≤ 2R. Define the Hermitian
dilation

Yi =

[
0 Xi

X⊤
i 0

]
.

Then

Y 2
i =

[
XiX

⊤
i 0

0 X⊤
i Xi

]
⪯ ∥Xi∥2Id1+di ≤ 4R2Id1+d2

Applying standard Matrix Hoeffding Tropp (2012, Theorem 1.4) for Hermitian matrices to the Yi’s yields

P

[∥∥∥∥∥∑
i

Yi

∥∥∥∥∥ ≥ t

]
≤ (d1 + d2)e

− t2

32NR2 .

Hence, by rearranging,

P

[∥∥∥∥∥∑
i

Yi

∥∥∥∥∥ ≤ 4R

√
2N log(

d1 + d2
δ

)

]
≥ 1− δ

As ∥
∑

i Yi∥ =
√
2 ∥
∑

iXi∥, we conclude

P

 1

N

∥∥∥∥∥∑
i

Xi

∥∥∥∥∥ ≤ 4R

√
log(d1+d2

δ )

N

 ≥ 1− δ.

We now turn to concluding the proof of Proposition A.9. We begin with a claim which bounds maxk ∥x̂k− xπk∥. Through-
out, d⋆ := max{dx, du}.
Claim E.1. With probability at least 1− δ/3, the following bound holds

max
k
∥x̂k − xπk∥ ≤ σorac

√
2
d⋆ log 5 + log(6(K + 1)/δ)

N
≤ Errx̂(δ).

Proof. The result follows directly from Lemma E.1, with wi = 1 ∈ R for each i.

Proof of Proposition A.9. Throughout, suppose the event of Claim E.1 holds. We also note that

∥w(i)j ∥ ≤ σw
√
du ≤ σw

√
d⋆ a.s.. (E.2)

This covers the first inequality of the proposition. To bound the error on the transition operator, tet us fix indices j, k; we
perform a union bound at the end of the proof. For each perturbation sampled perturbation w

(i)
1:K , define a perturbed control

input

ǔ
(i)
k = uπk + w

(i)
k + Kπk (x

π
k − x̂k), ũik = uπk + w

(i)
k − Kπk x̂k.
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and observe that

xπorac,k (ũ
(i)
1:K) = x̃k (ǔ

(i)
1:K), ∀k ∈ [K]. (E.3)

Hence, we have that yk defined in Line 7 satisfies

y
(i)
k ∼ N (x̃k (ǔ

(i)
1:K), σ2

oracIdx).

Now, define the terms

z
(i)
k := y

(i)
k − xπk

Lastly, let Eorac[·] denote expectations with respect to the Gaussian noise of the oracle, (conditioning on w
(i)
1:K) while E[·]

denotes total expectation. We argue an error bound on∥∥∥∥∥σ−2
w

N

N∑
i=1

z
(i)
k w

(i)⊤
j − Ψπcl,k,j

∥∥∥∥∥
op

≤ σ−2
w

N

∥∥∥∥∥
N∑
i=1

Eorac[z
(i)
k w

(i)⊤
j ]− z

(i)
k w

(i)⊤
j

∥∥∥∥∥
op︸ ︷︷ ︸

=Term1

+
σ−2
w

N

∥∥∥∥∥
N∑
i=1

E[z(i)k w
(i)⊤
j ]− Eorac[z

(i)
k w

(i)⊤
j ]

∥∥∥∥∥
op︸ ︷︷ ︸

=Term2

+

∥∥∥∥∥σ−2
w

N

N∑
i=1

E[z(i)k w
(i)⊤
j ]− Ψπcl,k,j

∥∥∥∥∥
op︸ ︷︷ ︸

=Term3

,

which essentially bounds the estiation error of Ψπcl,k,j in the absence of observation noise.

Bounding Term1. Applying Lemma E.1 with ∥w(i)j ∥ ≤
√
d⋆σw, we have that with probability 1− δ/3,

Term1 ≤
σorac
σw

√
2d⋆ ·

d⋆ log 5 + log(6(d⋆ + 1)/δ)

N

≤ σorac
σw

√
2d⋆ ·

d⋆ log 5 + log(12d⋆/δ)

N
.

Bounding Term2. On the event of Claim E.1, then as long as Errx̂(δ) ≤ σw
√
d⋆/Lπ

∥ǔ(i)k − uπk∥ = ∥w
(i)
k + Kπk (x

π
k − x̂k)∥ ≤ ∥w(i)k ∥+ LπErrx̂(δ) ≤ σw

√
d⋆ + LπErrx̂(δ) ≤ 2σw

√
d⋆.

Notice that as Errx̂(δ) = σorac
√

2d⋆ι(δ)/N , Errx̂(δ) ≤ σw
√
d⋆/Lπ holds for N ≥ (σorac/σw)

22Lπι(δ), i.e. which
holds for when π is estimation-friendly.

Moroever, when π is estimation-friendly, Btay,inf,π ≥ 2σw
√
d⋆, so the conditions of Proposition A.5 hold. Therefore,

∥z(i)k ∥ ≤ 2σwLtay,∞,π

√
d⋆.

and thus

∥w(i)j z
(i)
k ∥ ≤ 2d⋆σ

2
wLtay,∞,π.

Applying Lemma E.2 with Xi ← z
(i)
k w

(i)⊤
j with R← 2d⋆Ltay,∞,πσ

2
w, it holds that with probability 1− δ/3 that

Term2 ≤ σ−2
w · 8Ltay,∞,πσ

2
wdu

√
log( 3(du+dx)

δ )

N
≤ 8Ltay,∞,πd⋆

√
log(6d⋆/δ)

N
.
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Bounding Term3 . As establish in the bound on Term2, the conditions of Proposition A.5 hold, and ∥ǔ(i)k − uπk∥ ≤
2σw
√
d⋆.. Therefore,

∥z(i)k −
k∑

ℓ=1

Ψπcl,k,ℓ(ǔ
(i)
ℓ − uπℓ )∥ ≤ 4σ2

wMtay,2,πd⋆.

Consequently, bounding ∥w(i)j ∥ ≤ σwd⋆,

1

σ2
w

∥z(i)k w
(i)
j −

k∑
ℓ=1

Ψπcl,k,ℓ(ǔ
(i)
ℓ − uπℓ )w

(i)
j ∥ ≤ 4σwMtay,2,πd

3/2
⋆

and thus, by Jensen’s inequality,

4σwMtay,2,πd
3/2
⋆ ≥ 1

Nσ2
w

∥
∑
i=1

E[z(i)k w
(i)
j ]−

k∑
ℓ=1

E[Ψπcl,k,ℓ(ǔ
(i)
ℓ − uπℓ )w

(i)
j ]∥

=
1

Nσ2
w

∥
∑
i=1

E[z(i)k w
(i)
j ]−

k∑
ℓ=1

Ψπcl,k,ℓE[(w
(i)
k [ℓ] + Kπk (x

π
ℓ − x̂ℓ))w

(i)
j ]∥

=
1

Nσ2
w

∥
∑
i=1

E[z(i)k w
(i)
j ]− σ2

w

k∑
ℓ=1

Ψπcl,k,ℓIℓ=j ]∥

=
1

Nσ2
w

∥
∑
i=1

E[z(i)k w
(i)
j ]− σ2

wΨ
π
cl,k,j ] = Term3.

In sum, with probability at least 1− 3δ/4, the following bound holds∥∥∥∥∥σ−2
w

N

N∑
i=1

z
(i)
k w

(i)⊤
j − Ψπcl,k,j

∥∥∥∥∥
op

≤ Term1 +Term2 +Term3

≤ σorac
σw

√
2d⋆ ·

d⋆ log 5 + log( 12d⋆

δ )

N
+ 8Ltay,∞,πd⋆

√
log(6d⋆/δ)

N
+ 4σwMtay,2,πd

3/2
⋆

≤

√
log 12d⋆

δ

N

(
2σorac
σw

d
3/2
⋆ + 8Ltay,∞,πd⋆

)
+ 4σwMtay,2,πd

3/2
⋆ .

The final bound follows from a union bound over all
(
K
2

)
≤ K2 pairs, and replacing δ with δ/2niter.

E.2. Error in the Gradient (Proof of Lemma A.10)

Recall the definitions

(∇J disc
T (π))k = τQu(x

π
k , u

π
k , tk) + (Ψπcl,K+1,k)

⊤Vx(x
π
K+1)+

+ τ

K∑
j=k+1

(Ψπcl,j,k)
⊤(Qx(x

π
j , u

π
j , tj) + (Kπj )

⊤Qu(x
π
j , u

π
j , tj))

and

∇̂k = Qu(x̄
π
k , u

π
k , tj) + Ψ̂

⊤
K+1,kVx(x̄K+1)

+ τ

K∑
j=k+1

Ψ̂
⊤
j,k

(
Qx(x̂j , u

π
j , tj) + (Kπj )

⊤Qu(x̂j , u
π
j , tj)

)
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Using Vx(·) and Qx(·), Qu(·) are all at most Lcost in magnitude, that the gradients of the cost are Mcost-Lipschitz, and
1 ∨ ∥Kπj ∥ ≤ Lπ we can bound

∥(∇J disc
T (π))k − ∇̂k∥

≤ Lcost∥Ψ̂K+1,k − Ψπcl,K+1,k∥+ 2LπLcostτ

K∑
j=k+1

∥Ψ̂j,k − Ψπcl,j,k∥

+Mcost

∥xπk − x̄πk∥+ ∥Ψπcl,K+1,k∥ · ∥xπK+1 − x̂K+1∥+ 2τLπ

K∑
j=k+1

∥Ψπcl,j,k∥∥xπj − x̂j∥


≤ LcostErrΨ,π(δ)(1 + 2LπτK) +McostErrx̂(δ)

1 + ∥Ψπcl,K+1,k∥+ 2τLπ

K∑
j=k+1

∥Ψπcl,j,k∥


≤ LcostErrΨ,π(δ)(1 + 2LπτK) +McostErrx̂(δ) (1 + κπ,∞ + 2KτLπκπ,∞)

= LcostErrΨ,π(δ)(1 + 2TLπ) +McostErrx̂(δ) (1 + (1 + 2TLπ)κπ,∞)

≤ (LcostErrΨ,π(δ) + (1 + κπ,∞)McostErrx̂(δ))(1 + 2TLπ)︸ ︷︷ ︸
:=Err∇,π(δ)

E.3. Discrete-Time Closed-Loop Controllability (Proposition A.11)

We begin by lower bounding the continuous-time controllability Grammian under a policy π, and then turn to lower
bounding its discretization. At the end of the proof, we remark upon how the bound can be refined. The first part of the
argument follows (Chen & Hazan, 2021).

Equivalent characterization of controllability Gramian smallest singular value. The following is a continuous-time
analogue of Chen & Hazan (2021, Lemma 15).

Lemma E.3 (Characterization of Controllability Gramian smallest singular value). Let Ψ(t, s) ∈ Rdx×du be an arbitrary
( locally square integrable), and set

Λ :=

∫ t

s=t−tctrl

Ψ(t, s)Ψ(t, s)⊤ds.

Then, λmin(Λ) ≥ ν if and only if for all unit vectors ξ, there exists some uξ(s) such that ξ =
∫ t

s=t−tctrl
Ψ(t, s)uξ(s) and∫ t

s=t−tctrl
∥uξ(s)∥2 ≤ ν−1.

Proof of Lemma E.3. Fix any unit vector ξ ∈ Rn, define. First, suppose
∫ t

s=t−tctrl
Ψ(t, s)Ψ(t, s)⊤ds ≥ ν.

uξ(s) := Ψ(t, s)⊤Λ−1ξ.

One can verify then that

∫ t

s=t−tctrl

Ψ(t, s)uξ(s)ds = ΛΛ−1ξ = ξ

∫ t

s=t−tctrl

∥uξ(s)∥2ds = ξΛ−1 · Λ · Λ−1ξ = ξΛ−1ξ ≤ λmin(Λ)
−1.

On the other hand, suppose that there exists a control uξ(s) with
∫ t

s=t−tctrl
∥uξ(s)∥2 ≤ λmin(Λ)

−1 such that
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s=t−tctrl
Ψ(t, s)uξ(s)ds = ξ. As ξ is a unit vector, i.e. ξ⊤ξ = 1,

1 =

(
ξ⊤
∫ t

s=t−tctrl

Ψ(t, s)uξ(s)ds

)2

=

(∫ t

s=t−tctrl

ξ⊤Ψ(t, s)uξ(s)ds

)
≤
(∫ t

s=t−tctrl

∥ξ⊤Ψ(t, s)∥2ds
)
·
(∫ t

s=t−tctrl

∥uξ(s)∥2ds
)

≤ ξ⊤Λξ ·
(∫ t

s=t−tctrl

∥uξ(s)∥2ds
)

≤ ξ⊤Λξ · λmin(Λ)
−1.

The bound follows.

Lower bounding the controllability Gramian until algernative policies. This next part is the continuous-time analogue
of (?)Lemma 16]chen2021black, establishing controllability of the closed-loop linearized system in feedback with policy
π.
Lemma E.4 (Controllabiity of Closed-Loop Transitions, Continuous-Time). Recall Lπ ≥ 1, and γctr := max{1, Lf tctrl}.
Then, under Assumption 4.4, ∫ t

s=t−tctrl

Ψπ
cl(t, s)Ψ

π
cl(t, s)

⊤ds ⪰ νctrl
4L2

πγ
2
ctr exp(2γctr)

.

Proof of Lemma E.4. Fix any ξ ∈ Rdx of unit norm. Lemma E.3 and Assumption 4.4 guarantee the existence of an input
uξ(s) for which ∫ t

s=t−tctrl

Φπ
ol(t, s)B

π
ol(s)uξ(s)ds = ξ,

∫ t

s=t−tctrl

∥uξ(s)∥2ds ≤ ν−1
ctrl.

Let

zξ(s
′) =

∫ s′

s=t−tctrl

Φπ
ol(t, s)B

π
ol(s)uξ(s)ds.

Define now the input

ũξ(s) := uξ(s)− I{tk(s) > t− tctrl}Kπk(s)zξ(tk(s)).

It can be directly verified (by induction on k) that

∀s′ ∈ [t− tctrl, t],
∫ s′

s=t−tctrl

Φπ
ol(t, s)B

π
ol(s)uξ(s)ds =

∫ s′

s=t−tctrl

Ψπ
cl(t, s)ũξ(s)ds,

so in particular

ξ =

∫ t

s=t−tctrl

Ψπ
cl(t, s)ũξ(s)ds.

We may now bound∫ t

s=t−tctrl

∥ũξ(s)∥2 =

∫ t

s=t−tctrl

(
∥uξ(s)− I{tk(s) > t− tctrl}Kπk(s)zξ(tk(s))∥

2
)
ds

≤ 2

∫ t

s=t−tctrl

(
∥uξ(s)∥2 + ∥Kπk(s)∥∥zξ(tk(s))∥

2
)
ds

≤ 2(ν−1
ctrl + L2

π

∫ t

s=t−tctrl

∥zξ(tk(s))∥2ds), (E.4)

We now adopt the following claim, mirroring the proof of Chen & Hazan (2021, Lemma 16).
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Claim E.2. The following bound holds:

∀s′ ∈ [t− tctrl, t], ∥zξ(s′)∥2 ≤ tctrlν−1
ctrlL

2
f exp(2tctrlLf ).

Proof of Claim E.2. We bound

∥zξ(s′)∥2 =

∥∥∥∥∥
∫ s′

s=t−tctrl

Φπ
ol(t, s)B

π
ol(s)uξ(s)ds

∥∥∥∥∥
2

≤

(∫ s′

s=t−tctrl

∥Φπ
ol(t, s)∥∥Bπ

ol(s)∥∥uξ(s)∥ds

)2

≤ L2
f

(∫ s′

s=t−tctrl

∥Φπ
ol(t, s)∥∥uξ(s)∥ds

)2

(Assumption 4.1)

≤ L2
f

(∫ s′

s=t−tctrl

∥Φπ
ol(t, s)∥2ds

)2(∫ s′

s=t−tctrl

∥uξ(s)∥ds

)2

(Cauchy-Schwartz)

≤ L2
f

(∫ t

s=t−tctrl

∥Φπ
ol(t, s)∥2ds

)(∫ t

s=t−tctrl

∥uξ(s)∥ds
)

≤ ν−1
ctrlL

2
f

(∫ t

s=t−tctrl

∥Φπ
ol(t, s)∥2ds

)
.

By Lemma I.4, we can bound can bound ∥Φπ
ol(t, s)∥ ≤ exp(Lf (t − s)) ≤ exp(Lf tctrl) for s ∈ [t − tctrl, t], yielding∫ t

s=t−tctrl
∥Φπ

ol(t, s)∥2 ≤ tctrl exp(2Lf tctrl). The bound claim.

Combining Eq. (E.4) and Claim E.2,

∫ t

s=t−tctrl

∥ũξ(s)∥2 ≤ 2ν−1
ctrl

(
1 + t2ctrlL

2
fL

2
π exp(2Lf tctrl)

)
≤ 2ν−1

ctrlL
2
π

(
1 + t2ctrlL

2
f exp(2Lf tctrl)

)
(Lπ ≥ 1)

≤ 2ν−1
ctrlL

2
π

(
1 + γ2ctr exp(2γctr)

)
(γctr = max{1, tctrlLf})

≤ 4ν−1
ctrlL

2
πγ

2
ctr exp(2γctr), (γctr ≥ 1)

which concludes the proof.

Discretizing the Closed-Loop Gramian. To conclude the argument, we relate the controllability of the closed-loop
Gramian in continuous-time to that in discrete-time.

Lemma E.5 (Discretization of Controllability Grammian). Suppose Assumption 4.4 holds and τ ≤ Lf/4, then following
holds: ∥∥∥∥∥∥

∫ tk

s=tk−tctrl

Ψπ
cl(tk, s)Ψ

π
cl(tk, s)

⊤ds− 1

τ

k−1∑
j=k−kctrl

Ψπcl,k,j(Ψ
π
cl,k,j)

⊤

∥∥∥∥∥∥
op

≤ 4τγctrκ
2
π,∞

(
κfMf + 2L2

f

)
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Proof. Recall the shorthand Lol := exp(τLf ), used in the discretization arguments in Appendix I. We can write∥∥∥∥∥∥
∫ tk

s=tk−tctrl

Ψπ
cl(tk, s)Ψ

π
cl(tk, s)

⊤ds− τ−1
k−1∑

j=k−kctrl

Ψπcl,k,j(Ψ
π
cl,k,j)

⊤

∥∥∥∥∥∥
=

∥∥∥∥∥∥
k−1∑

j=k−kctrl

∫ tj+1

s=tj

Ψπ
cl(t, s)Ψ

π
cl(t, s)

⊤ds− 1

τ
Ψπcl,k,j(

1

τ
Ψπcl,k,j)

⊤

∥∥∥∥∥∥
≤ τ

k−1∑
j=k−kctrl

max
s∈Ij

∥∥∥∥Ψπ
cl(tk, s)Ψ

π
cl(tk, s)

⊤ − 1

τ
Ψπcl,k,j(

1

τ
Ψπcl,k,j)

⊤
∥∥∥∥

≤ 2τ

k−1∑
j=k−kctrl

max
s∈Ij

∥∥∥∥Ψπ
cl(tk, s)−

1

τ
Ψπcl,k,j

∥∥∥∥ ·max

{
∥Ψπ

cl(tk, s)∥,
1

τ
∥Ψπcl,k,j∥

}

≤ 2LfLolτκπ,∞

k−1∑
j=k−kctrl

max
s∈Ij

∥∥∥∥Ψπ
cl(tk, s)−

1

τ
Ψπcl,k,j

∥∥∥∥ (Lemma I.8(d))

≤ 2LfLolκ
2
π,∞

(
κfMf + 2L2

f

) k−1∑
j=k−kctrl

τ2 (Lemma I.8(b))

≤ 2LfL
2
olκ

2
π,∞

(
κfMf + 2L2

f

) k−1∑
j=k−kctrl

τ2

≤ 2LfL
2
olκ

2
π,∞

(
κfMf + 2L2

f

)
kctrlτ

2

= 2τtctrlLfL
2
olκ

2
π,∞

(
κfMf + 2L2

f

)
.

As τ ≤ Lf/4, L2
ol ≤ exp(1/2) ≤ 2 , so that the above is at most 4τtctrlLfκ

2
π,∞

(
κfMf + 2L2

f

)
. Recalling γctr :=

max{1, tctrlLf} concludes.

Concluding the proof.

Proof of Proposition A.11. The proof follows by combining the bounds in Lemmas E.4 and E.5. These yield

1

τ
λmin

 k−1∑
j=k−kctrl

Ψπcl,k,j(Ψ
π
cl,k,j)

⊤

 ⪰ νctrl
4L2

πγ
2
ctr exp(2γctr)

− κ2π,∞ · 4τγctr
(
κfMf + 2L2

f

)
Recall γctr = tctrlLf . Hence, if

τ ≤ νctrl

8L2
πκ

2
π,∞γ

3
ctr exp(2γctr)

(
κfMf + 2L2

f

) ,
it holds that

λmin

 k−1∑
j=k−kctrl

Ψπcl,k,j(Ψ
π
cl,k,j)

⊤

 ⪰ νctrl
8L2

πγ
2
ctr exp(2γctr)

.

E.4. Recovery of State-Transition Matrix (Proposition A.12)

The analysis is based on the Ho-Kalman scheme. We begin with the observation that

Ψπcl,k,j = Aπcl,kΨ
π
cl,k−1,j , ∀j < k.
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To this end, define the matrices

Ck|j2,j1 := [Ψπcl,k+1,j2 | Ψ
π
cl,k+1,j2−1 | . . . Ψπcl,k+1,j1 ],

Then, we have the identity

Ck|k−1,j = Aπcl,kCk−1|k−1,j ,

so that if rank(Ck−1|k−1,j) = dx, we have Aπcl,k = Ck|k−1,jC†k−1|k−1,j , where (·)† denotes the Moore-Penrose pseudoin-
verse. We now state and prove a more-or-less standard perturbation bound.

Lemma E.6. Suppose rank(Ck−1|k−1,j) = dx, and consider any estimates Ĉk|k−1,j , Ĉk−1|k−1,j of Ck|k−1,j , Ck−1|k−1,j .
Define

∆ := max{∥Ck|k−1,j − Ĉk|k−1,j∥, ∥Ck−1|k−1,j − Ĉk−1|k−1,j∥}
M := max{∥Ck|k−1,j∥, ∥Ck−1|k−1,j∥}.

Then, if ∆ ≤ σmin(Ck−1|k−1,j)/2, the estimate Ãk := Ĉk|k−1,j Ĉ†k−1|k−1,j satisfies

∥Ãk − Aπcl,k∥ ≤ 6∆Mσmin(Ck−1|k−1,j)
−2.

Proof of Lemma E.6. Then, we have (provided rank(Ĉk−1|k−1,j) = rank(Ck−1|k−1,j) = dx), we have

∥Ãk − Aπcl,k∥ = ∥Ck|k−1,jC†k−1|k−1,j − Ĉk|k−1,j Ĉ†k−1|k−1,j∥

≤ ∥Ĉ†k−1|k−1,j∥∥Ck|k−1,j − Ĉk|k−1,j∥+ ∥Ĉ†k−1|k−1,j − C
†
k−1|k−1,j∥∥Ck|k−1,j∥

≤ ∥Ĉ†k−1|k−1,j∥∥Ck|k−1,j − Ĉk|k−1,j∥

+
1 +
√
5

2
∥Ĉ†k−1|k−1,j∥ · ∥C

†
k−1|k−1,j∥ · ∥Ck−1|k−1,j − Ĉk−1|k−1,j∥ · ∥Ĉk|k−1,j∥

(cite (Stewart, 1977), and also (Xu, 2020))
(i)

≤ ∆∥Ĉ†k−1|k−1,j(1 +
1 +
√
5

2
∥C†k−1|k−1,j∥∥Ck|k−1,j∥)

(ii)

≤ 3∆M∥Ĉ†k−1|k−1,j∥C
†
k−1|k−1,j∥,

where in (i) we use ∆ := max{∥Ck|k−1,j − Ĉk|k−1,j∥, ∥Ck−1|k−1,j − Ĉk−1|k−1,j∥}, and in (ii), we use M =

max{∥Ck|k−1,j∥, ∥Ck−1|k−1,j∥}, which admits the simplification in (ii) because ∥Ck−1|k−1,j∥∥C†k−1|k−1,j∥ ≥ 1. In par-

ticular, if rank(Ck−1|k−1,j) = dx, and ∆ ≤ σmin(Ck−1|k−1,j)/2, then ∥Ĉ†k−1|k−1,j∥ ≤ 2/σmin(Ck−1|k−1,j), and we
obtain

∥Ãk − Aπcl,k∥ ≤ 6∆Mσmin(Ck−1|k−1,j)
−2.

Next, restricting our attention to k ≥ kctrl + 2, we specialize the above analysis to

Ck,in := Ck−1|k−1,k−k0+1, Ck,out := Ck|k−1,k−k0+1

Ĉk,in := Ĉk−1|k−1,k−k0+1, Ĉk,out := Ĉk|k−1,k−k0+1

where Ĉ(·) arises from the plug-in estimates

Ĉk|j2,j1 := [Ψ̂k+1,j2 | Ψ̂k+1,j2−1 | . . . Ψ̂k+1,j1 ]

Define further

Ãk := Ĉk,outĈ†k,in, so that Âk = Ãk − B̂kK
π
k .
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Recall t0 = k0/τ. We can now bound, recalling Lol := exp(τLf ) ≤ 2 for τ ≤ Lf/4 and γctr = max{1, tctrlLf} =
max{1, τkctrlLf},

max{∥Ck,in∥, ∥Ck,out∥} ≤
√
k0 max

j<k
∥Ψπcl,k,j∥

≤
√
kctrlτLfLolκπ,∞ (Lemma I.8(d))

≤
√
τt0τLfLolκπ,∞ (t0 = k0τ)

≤ 2κπ,∞γctr
√
τt0. (γctr ≥ 1)

Invoking Proposition A.11, we also have that provided τ ≤ min{τdyn, τctrl,π}, since k0 ≥ kctrl + 2,

σmin(Ck−1|k−1,j)
2 = λmin

 k−1∑
j=k−k0+1

Ψπcl,k−1,j(Ψ
π
cl,k−1,j)

⊤


≥ λmin

 k−1∑
j=k−kctrl−1

Ψπcl,k−1,j(Ψ
π
cl,k−1,j)

⊤

 ⪰ τ · νctrl
8L2

πγ
2
ctr exp(2γctr)

.

Therefore, as long as

∆ := max{∥Ck,in − Ĉk,in∥, ∥Ck,out − Ĉk,out∥} ≤
√
τνctrl

2
√
2Lπγctr exp(γctr)

,

we have

∥Ãk − Aπcl,k∥ ≤
√
t0
τ

96∆

νctrl
· κπ,∞L2

πγ
3
ctr exp(2γctr).

Lastly, we can upper bound ∆ ≤
√
kctrlErrΨ,π(δ) =

√
t0/τErrΨ,π(δ), from which we cconlude that as long as ErrΨ(δ) ≤

τ

√
νctrl/t0

2
√
2Lπγctr exp(γctr)

, we have

∥Ãk − Aπcl,k∥ ≤ t0κπ,∞L2
π ·

96ErrΨ,π(δ)

τνctrl
· γ3ctr exp(2γctr).

Now to wrap up. We observe that Bπol,k = Ψπcl,k+1,k, so

∥B̂k − Bπol,k∥ = ∥Ψπcl,k+1,k − Ψ̂k+1,k∥ ≤ ErrΨ,π(δ).

Therefore,

∥Âk − Aπol,k∥ = ∥Ãk − (Aπcl,k − Bπol,kK
π
k )∥

≤ ∥Ãk − Aπcl,k∥+ ∥B̂kKπk − Bπol,kK
π
k∥

≤ ∥Ãk − Aπcl,k∥+ ∥B̂k − Bπol,k∥Lπ

≤ LπErrΨ,π(δ) + t0κπ,∞L
2
π ·

96ErrΨ,π(δ)

τνctrl
· γ3ctr exp(2γctr).

Lastly, we notice this upper bound on ∥Âk − Aπol,k∥ is larger than that on ∥B̂k − Bπol,k∥, as Lπ ≥ 1 by assumption, and that

for τ ≤ τctrl,π , LπErrΨ,π(δ) ≤ t0κπ,∞L2
π ·

96ErrΨ,π(δ)
τνctrl

· γ3ctr exp(2γctr). Thus,

∥Âk − Aπol,k∥ ∨ ∥B̂k − Bπol,k∥ ≤
ErrΨ,π(δ)

τ
· t0κπ,∞L2

πγ
3
ctr exp(2γctr) ·

192

νctrl
.
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F. Certainty Equivalence
In this section, we establish a general certainty equivalence bound for linear time-varying discrete-time systems; we apply
this in the proof Proposition A.14 in Appendix G.1.

Let Θ⋆ := (A⋆1:K , B
⋆
1:K) denote ground-truth system parameters, and let Θ̂ := (Â1:K , B̂1:K) denote estimates. We work

with a slightly different discretization parameterization, where the dynamics are given by xh+1 = Akxh + τBkuh. This
parametrization ensures that the norms of Bk scale like constants independent of τ when instantiated with Ak ← Aπol,k and
Bk ← 1

τ
Bπol,k.

Definition F.1. Given cost matrices Q,R, step τ, and parameters Θ = (A1:K , B1:K), we define Poptk (Θ) as the solution to
the following program

x⊤Poptk (Θ)x = min
uk:H

x⊤K+1QxK+1 + τ

K∑
h=k

(x⊤hQxh + u⊤hQuh)

s.t. xh+1 = Ahxh + τBhuh, xk = x.

(F.1)

The closed form for Poptk is given by the follow standard computation, modified with the reparametrized dynamics xh+1 =
Ahxh + τBhuh)

Lemma F.1. The optimal Riccati cost-to-go P
opt
1:K+1 = P

opt
k (Θ) is given by the solution to the following recursion with

final condition P
opt
K+1 = Q and

P
opt
k = A⊤k P

opt
k+1Ak − τ

(
BkP

opt
k+1Ak

)⊤
(R+ τB⊤k P

opt
k+1Bk)

−1
(
BkP

opt
k+1Ak

)
+ τQ

Moreover, defining K
opt
k = K

opt
k (Θ) := −(R + τB⊤k P

opt
k Bk)

−1B⊤k P
opt
k Ak, the optimal control for Eq. (F.1) is given by

xk = K
opt
k uk.

Proof. This follows by reparametrizing the standard discrete-time Ricatti update (see e.g. Anderson & Moore (2007,
Section 2.4)), with Bk ← τBk, Q← τQ, and R← τR, and simplifying dependence on τ.

The following identity is also standard (again, consult Anderson & Moore (2007, Section 2.4), albeit again with the
reparamerizations Bk ← τBk, Q← τQ,and R← τR):

P
opt
k = (Ak + τBkK

opt
k )⊤Poptk+1(Ak + τBkK

opt
k ) + τ(Q+ (Koptk )⊤R(Koptk )) (F.2)

Next, we define the cost-to-go functions associated for arbitrary sequences of feedback matrices, and from the optimal
feedback matrices from another instance Θ′.

Definition F.2 (Feedback and Certainty Equivalent Cost-to-go). Given a sequence of feedback gains K1:K , we define the
induced cost-to-go

Pfeedk (Θ; K1:K) := x⊤K+1QxK+1 + τ

K∑
h=k

(x⊤hQxh + u⊤hQuh)

s.t. xh+1 = (Ah + τBhKk)xh xk = x.

And define the certainty equivalent cost-to-go as Pcek (Θ;Θ′) = Pfeedk (Θ; Kopt1:K(Θ′)) as the feedback cost-to-go for Θ using
the optimal gains for Θ′.

In particular, Pcek (Θ;Θ) = P
opt
k (Θ). We now present upper bounds on Pcek (Θ;Θ′). We assume bounds on the various

parameters of interest.

Condition F.1. We have that there are constants KB ,KA ≥ 1 such that, for all k ∈ [K],

∥B⋆k∥ ∨ ∥B̂k∥ ≤ KB ∥A⋆k∥ ∨ ∥Âk∥ ≤ KA,
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Condition F.2. We assume that there exists ∆A,∆B > 0,

∀k, ∥B̂k − B⋆k∥ ≤ ∆B and ∥τ−1(Âk − A⋆k)∥ ≤ ∆A.

Condition F.3. We assume the a normalization on the cost matrices satisfy R ⪰ I, Q ⪰ I and ∥Q∥ ≥ ∥R∥. As a special
case, Q = I and R = I suffices.

Lastly, the following assumption is needed to derive an upper bound on the closed-loop transition operator.

Condition F.4. We assume that maxk ∥Ak − I∥ ≤ τκA.

Theorem 4 (Main Perturbation). Suppose Conditions F.1 to F.3 hold. Define the terms

∆ce := 80C4K3
AK

3
B(1 + τCKB)(∆A +∆B), C := max

k∈[K+1]
∥Poptk (Θ)∥.

Then, as long as ∆ce < 1, we have

(a)

max
k∈[K+1]

∥Pcek (Θ; Θ̂)∥ ≤ (1−∆ce)
−1

max
k∈[K+1]

∥Poptk (Θ)∥

(b) maxk∈[K+1] ∥Koptk (Θ̂)∥ ≤ 5
4KBKAC.

(c) Moreover, if Condition F.4 holds, then the transition operators defined as

Φcej,k := (Aj−1 + τBj−1K
opt
j−1(Θ̂)) · (Aj−2 + τBj−2K

opt
j−2(Θ̂)) · · · · · (Ak + τBkK

opt
k (Θ̂)),

with the convention Φcek,k+ = I satisfy, for all 1 ≤ j ≤ k ≤ K,

∥Φcej,k∥2 ≤ 2κ(1− τγ)j−k, where κ = κA +
5

4
K2

BKAC, γ =
1−∆ce

C
,

provided κ ≤ 1/2τ.

The proof of the Theorem 4 is outlined in Appendix F.1, and the supporting lemmas are proved in the subsequent sections.
We now use this guarantee to establish Proposition A.14.

F.1. Proof Overview of Theorem 4

Step 0: Notation & Interpolating segments. To simplify notation, introduce the maximal operator norms, such that for
an H-tuple of matrices X1:H = (X1, . . . ,X[H]),

∥X1:H∥max,op := max
k∈[H]

∥Xk∥op.

Let us a consider the line segment joining these the parameters

Θ(s) = (A1:K(s), B1:K(s)) = (1− s)Θ⋆ + sΘ̂ (F.3)

For fixed cost matrices Q and R, let P1:K+1(s) and P1:K(s) denote the solution to the finite-time Riccati recursion with
parameters Θ(s), where here Q also serves as a terminal cost at stepK+1. We let P⋆1:K+1, K

⋆
1:K be the solution for the truth

Θ⋆ and P̂1:H , K̂1:H the solution to the Riccati equation with Θ̂; i.e. the certainty equivalent solution. By construction,

(P1:K+1(0), K1:K(0)) = (P⋆1:K+1, K
⋆
1:K), (P1:K+1(1), K1:K(1)) = (P̂1:K+1, K̂1:K+1)

For all quantity X(s) paramterized by s ∈ [0, 1], adopt the shorthand X′(s) := d
dsX(s).
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Step 1. Self-Bounding ODE Method. We use an interpolation argument to study the certainty equivalence controller.
Our main tool is the following interpolation bound, which states that if the norm of the s-derivative of a quantity is bounded
by the norm of the quantity its self, then that quantity is uniformly bounded on a small enough range.
Lemma F.2 (Self-Bounding ODE Method, variant of Corollary 3 in (Simchowitz & Foster, 2020)). Fix dimensions
d1, d2 ≥ 1, let V ⊂ Rd1 , let f : V → Rd2 be a C1 map and let v(s) : [0, 1] → V be a C1 curve defined on [0, 1].
Finally, let ∥ · ∥ be an arbitrary norm on Rd2 and suppose that c > 0 and p ≥ 1 satisfy

∥ d
ds
f(v(s))∥ ≤ cmax{∥f(v(s))∥, ∥f(v(0))∥}p ∀s ∈ [0, 1]. (F.4)

Then, if p > 1 and if α = c(p− 1)∥f(v(0))∥p−1 satisfies α < 1, the following bound holds for all s ∈ [0, 1]:

∥f(v(s)∥ ≤ (1− α)−
1

p−1 ∥f(v(0))∥, ∥ d
ds
f(v(s)∥ ≤ c(1− α)−

p
p−1 ∥f(v(0))∥p

Step 2. Perturbation of P1:K+1(t) First, we show that the Riccati-updates obey the structure of Lemma F.2.
Lemma F.3. Suppose (for simplicity) that λmin(Q), λmin(R) ≥ 1. Then, for all s ∈ [0, 1]

∥P′1:K+1(s)∥max,op ≤ 2(∆A +KAKB∆B)∥P1:K+1(s)∥3max,op,

Our next result gives uniform bounds on P1:K+1 and its derivative by invoking Lemma F.2.
Lemma F.4. Suppose (for simplicity) that λmin(Q), λmin(R) ≥ 1, and that (∆A + KAKB∆B) ≤
1/8∥Popt1:K+1(Θ)∥2max,op. Then, for all s ∈ [0, 1],

∥P1:K+1(s)∥max,op ≤ 1.8∥P⋆1:K+1∥max,op

∥P′1:K+1(s)∥max,op ≤ 12(∆A +KAKB∆B)∥P⋆1:K+1∥3max,op

As the gains P1:K(s) are explicit function of P1:K+1(s), we optain the following perturbation bound for the gains.
Lemma F.5. Under the assumptions of Lemma F.4, the following holds:

∥Kopt1:K(Θ)− K
opt
1:K(Θ̂)∥max,op ≤ 20C3K3

AK
2
B(1 + τCKB)(∆A +∆B), C := ∥Popt1:K+1(Θ)∥

F.1.1. PROOF OF THEOREM 4

Proof of part (a). Consider the curve

Kk(s) = (1− s)Koptk (Θ⋆) + sKoptk (Θ̂).

We then note that the curve

Pcek (s) = Pfeedk (Θ; K1:K(s))

satisfies Pcek (0) = Pcek (Θ⋆;Θ⋆) = P
opt
k (Θ⋆) = P⋆k and Pcek (0) = Pfeedk (Θ⋆; Koptk (Θ̂)) = Pcek (Θ⋆; Θ̂)

By Definition F.2, we can write Pcek (s) = Λk(s), where Λk solve the following Lyapunov equation

PceK+1(s) = Q, Pcek (s) = Xk(s)
⊤Pcek+1(s)Xk(s) + τQ(s) + Yk(s) where

Xk(s) := Ak + τBkKk(s) and Yk(s) := τK(s)⊤RK(s).
(F.5)

As X′k(s) = τBkK
′
k(s) and Y′k(s) = Sym(K(s)⊤RK′(s)), salient term from Proposition F.12 evaluates to

∆(s) = max
j∈[k]

τ−1
(
2∥Xj(s)′∥+ ∥Pce1:K+1(s)∥−1

max,op∥Yj(s)′∥
)

= max
j∈[k]

τ−1
(
2τKB∥K′(s)∥+ τ∥Pce1:K+1(s)∥−1

max,op∥Kk(s)∥∥R∥K′k(s)∥
)

= max
j∈[k]

(
2KB + ∥Pce1:K+1(s)∥−1

max,op∥Kk(s)∥
)
∥K′k(s)∥ (R = I)
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We further bound

∥Kk(s)∥ = ∥(1− s)Koptk (Θ) + sKoptk (Θ̂)∥

≤ ∥Koptk (Θ⋆)∥ ∨ ∥Koptk (Θ̂)∥

≤ ∥(R+ τB⊤k P
opt
k (Θ⋆)Bk)

−1(B⊤k P
opt
k (Θ⋆)Ak)∥ ∨ ∥(R+ τB̂

⊤
k P

opt
k (Θ̂)B̂)−1(B̂

⊤
k P

opt
k (Θ̂)Âk)∥

≤ ∥B⊤k P
opt
k (Θ⋆)Ak∥ ∨ ∥B̂

⊤
k P

opt
k (Θ̂)Âk∥ (R = I)

≤ KBKA(∥Poptk (Θ⋆)∥ ∨ ∥Poptk (Θ̂)∥)
≤ 2KBKA∥Popt1:K+1(Θ

⋆)∥max,op (Lemma F.5)

= 2KBKA∥Pce1:K+1(0)∥max,op (definition of Pcek )

Thus,

∆(s) ≤
(
2KB + 2KBKA∥Pce1:K+1(s)∥−1

max,op∥Pce1:K+1(0)∥max,op

)
max
j∈[k]
∥K′k(s)∥ (R = I)

≤ 4KBKA

(
1 ∨ ∥Pce1:K+1(s)∥−1

max,op∥Pce1:K+1(0)∥max,op

)
max
j∈[k]
∥K′k(s)∥. (KA ≥ 1)

Hence, setting ∆K := sups∈[0,1] maxj∈[k] ∥K′k(s)∥, Proposition F.12 implies

Pcek (s)′ ≤ ∥Pce1:K+1(s)∥2max,op∆(s)

≤ 4KBKA∥Pce1:K+1(s)∥2max,op

(
1 ∨ ∥Pce1:K+1(s)∥−1

max,op∥Pce1:K+1(0)∥max,op

)
max
j∈[k]

∆K

≤ 4KBKA

(
∥Pce1:K+1(s)∥2max,op ∨ ∥Pce1:K+1(0)∥2max,op

)
∆K

Hence, Lemma F.2 implies that as long as 4KBKA∆K∥Pce1:K+1(0)∥max,op < 1, we have

sup
s∈[0,1]

∥Pce1:K+1(s)∥max,op ≤ (1− 4KBKA∆K∥Pce1:K+1(0)∥max,op)
−1∥Pce1:K+1(0)∥max,op

Using Pce1:K+1(0) = P
opt
1:K+1(Θ

⋆), Pce1:K+1(1) = Pce1:K+1(Θ
⋆; Θ̂), and defining the shorthand

C := ∥Popt1:K+1(Θ
⋆)∥,

we conclude that for any upper bound ∆ ≥ 4KBKA∆KC satisfying ∆ < 1,

∥Pce1:K+1(Θ
⋆; Θ̂)∥max,op ≤ (1−∆)−1∥Popt1:K+1(Θ

⋆)∥max,op.

By Lemma F.5, it holds thats if 8∥Popt1:K+1(Θ
⋆)∥2max,op(∆A + KAKB∆B) < 1, we can bound. we can take ∆K ≤

20C3K3
AK

2
B(1 + τCKB)(∆A +∆B). Hence, we can bound

4KBKA∆KC ≤ 80C4K4
AK

3
B(1 + τCKB)(∆A +∆B) := ∆ce,

which concludes the proof of part (a).

Proof of part (b). We bound

∥Kopt1:K(Θ̂)∥max,op ≤ (∥Kopt1:K(Θ⋆)∥max,op + 1/4KB) (Lemma F.5, definition of ∆ce, and using KB ,KA, C ≥ 1)

= (1/4KB) + ∥(R+ τB⊤k P
opt
k (Θ⋆)Bk)

−1B⊤k P
opt
k (Θ⋆)Ak∥max,op

(Definition of Koptk , Definition G.1)

=
1

4KB
KBKA∥Popt1:K+1(Θ

⋆)∥max,op (Definition of KA,KB in Condition F.1, R ⪰ I)

=
1

4KB
+KBKAC (Definition of C)

≤ 5

4
KBKAC. (C,KA,KB ≥ 1)
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Proof of part (c). We aim to bound the square of the operator norm of the following term

Φcej,k := (Aj−1 + τBj−1K
opt
j−1(Θ̂)) · (Aj−2 + τBj−2K

opt
j−2(Θ̂)) · · · · · (Ak + τBkK

opt
k (Θ̂)).

Using the fact that Pcek (Θ; Θ̂) solves the Lyapunov equation Eq. (F.5), it follows from Lemma F.10 that if

κ0 := τ−1 max
k
∥I− (Ak + τBkKk(1))∥op = τ−1 max

k
∥I− (Ak + τBkK

opt
k (Θ̂)∥op ≤ 1/2τ,

then

∥Φcej,k∥2 ≤ max{1, 2κ0}(1− τγ0)
j−k, γ0 :=

1

∥Pce1:K+1(Θ; Θ̂)∥max,op

(F.6)

From part (a), we can lower bound γ0 ≥ γ := 1−∆ce

C . Moreover, we can bound κ0

κ0 ≤ τ−1 max
k
∥I− Ak∥+max

k
∥Bk∥∥Koptk (Θ̂)∥

≤ κA +KB∥Kopt1:K(Θ̂)∥max,op (Conditions F.1 and F.4)

≤ κA +
5

4
K2

BKAC := κ (Theorem 4(b))

As κ ≥ 1, we conclude via Eq. (F.6) that

∥Φcej,k∥2 ≤ 2κ(1− τγ)j−k, κ = κA +
5

4
K2

BKAC, γ =
1−∆ce

C
.

F.2. Proof of Lemma F.3

To apply the self-bounding ODE method, we bound P′
1:H(s) in terms of P1:K+1(s). To prove Lemma F.3 Let us first

introduce some notation. Further, for simplicity, we shall suppress s in equations and let (·)
∣∣
s

to denote evaluation at s.
With this convention, define the matrices

Ξk(s) := (A′k + τKkB
′
k)

⊤Pk+1(Ak + τBkKk) (F.7)

and define the operator

Tk+1(· ; s) := {(Ak + BkKk)
⊤(·)(Ak + BkKk)}

∣∣
s
, with the convention Tk+1(·)

∣∣
s
= Tk+1(·; s), (F.8)

Lastly, we define their compositions

Tk+i,k := Tk(·) ◦ Tk+1(·) ◦ · · · ◦ Tk+i(·)
∣∣
s
,

with the convention Tk;k is the identity map. These operators give an expression for the derivatives P′
k−1(s).

Lemma F.6. For all s, it holds that

P′
k(s) =

K+1∑
j=k

Tk;j(Ξk + Ξ⊤k )
∣∣
s

Proof. Let Sym(X) = X+X⊤. The Ricatti update (backwards in time) is

Pk = A⊤k Pk+1Ak − τ(A⊤k Pk+1Bk)(R+ τB⊤k Pk+1Bk)
−1(A⊤k Pk+1Bk)

⊤ + τQ
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Let Sym(X) := X+X⊤. Then, we compute

Pk(s)
′

= Sym
(
(A′k)

⊤Pk+1Ak
)
− τSym

(
(A′k)

⊤Pk+1Bk + A⊤k Pk+1(B
′
k))(R+ τB⊤Pk+1B)−1(A⊤k Pk+1Bk)

⊤)
+ τ2(A⊤k Pk+1Bk)(R+ τB⊤k Pk+1Bk)

−1(Sym((B′k)
⊤Pk+1Bk))(R+ τB⊤k Pk+1Bk)

−1(A⊤k Pk+1Bk)
⊤

+ A⊤k (P
′
k+1)Ak − τSym

(
(A⊤k (P

′
k+1)Bk)(R+ τB⊤k Pk+1Bk)

−1(A⊤k Pk+1Bk)
⊤)

+ τ2(A⊤k Pk+1Bk)(R+ B⊤k Pk+1Bk)
−1(B⊤k P

′
k+1B

⊤
k )(R+ B⊤k Pk+1Bk)

−1(A⊤k Pk+1Bk)
⊤

= Sym
(
(A′k)

⊤Pk+1Ak + τ((A′k)
⊤Pk+1Bk + A⊤k Pk+1(B

′
k))Kk + τ2K⊤

k (((B
′
k)

⊤Pk+1Bk))Kk

)
+ A⊤k (P

′
k+1)Ak + τSym

(
(A⊤k (P

′
k+1)Bk)Kk

)
+ τ2(BkKk)(P

′
k+1)(BkKk)

= Sym
(
(A′k)

⊤Pk+1Ak + τ((A′k)
⊤Pk+1Bk + A⊤k Pk+1(B

′
k))Kk + τ2K⊤

k ((B
′
k)

⊤Pk+1Bk))Kk

)
+ (Ak + τBkKk)

⊤(P′k+1)(Ak + τBkKk)
⊤

where above we the fact that Kk = −(R+ τB⊤k Pk+1Bk)
−1(A⊤k Pk+1Bk)

⊤. Noting that

Sym
(
(A′k)

⊤Pk+1Ak + τ((A′k)
⊤Pk+1Bk + A⊤k Pk+1(B

′
k))Kk + τ2K⊤

k ((B
′
k)

⊤Pk+1Bk))Kk

)
(i)
= Sym

(
(A′k)

⊤Pk+1(Ak + τBkKk) + τA⊤k Pk+1(B
′
k)Kk + τ2K⊤

k ((B
′
k)

⊤Pk+1Bk))Kk

)
(ii)
= Sym

(
(A′k)

⊤Pk+1(Ak + τBkKk) + τK⊤
k (B

′
k)Pk+1Ak + τ2K⊤

k ((B
′
k)

⊤Pk+1Bk))Kk

)
= Sym

(
(A′k)

⊤Pk+1(Ak + τBkKk) + τK⊤
k (B

′
k)Pk+1(Ak + τBkKk)

)
= Sym

(
(A′k + τKkB

′
k)

⊤Pk+1(Ak + τBkKk)
)
:= Sym(Ξk)

Therefore, we have

P′
k = Tk+1(P

′
k+1) + Sym(Ξk)

Thus, unfolding the recursion, we have

P′
k = Tk+1(P

′
k+1) + Sym(Ξk)

= Tk+1(Tk+2(P
′
k+1) + Sym(Ξk+1)) + Sym(Ξk)

= Tk+1(Tk+2(P
′
k+1)) + Tk+1(Sym(Ξk+1)) + Sym(Ξk)

= . . .

=

K+1∑
j=k

Tk;j(Sym(Ξk+j)).

Using this fact, a standard Lyapunov argument gives a generic upper bound on sums of these operators.

Lemma F.7. The operators Tj,k(·; s) are matrix monotone. Hence, if X1:K are any sequence of Rn×n matrices,

∥
K+1∑
j=k

Tj,k(Xj + X⊤j ; s)∥op ≤
2∥Pk∥op maxj≥k ∥Xk∥op

τ

∣∣
s

Consequently, by Lemma F.6,

∥P′k(s)∥op ≤
2∥Pk∥op maxj≥k ∥Ξk∥op

τ

∣∣
s
. (F.9)

Proof. This is a direct consequence of rewriting Pk as in Eq. (F.2), applying Lemma F.10(a) with Xk = Ak + BkKk, and
upper bounding ∥Xj + X⊤j ∥ ≤ ∥Xj∥op.
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Finally, let us upper bound the norm of the matrices Ξk
Lemma F.8.

τ−1∥Ξk(s)∥ ≤ (∆A +∆BKAKB) ∥P1:K+1∥2max,op.

Proof of Lemma F.8. Recall

Ξk := (A′k + τKkB
′
k)

⊤Pk+1(Ak + τBkKk),

∥Kk∥ = ∥(R+ τB⊤k Pk+1Bk)
−1B⊤k Pk+1Ak∥

= λmin(R)−1∥B⊤k Pk+1Ak∥
≤ λmin(R)−1∥Bk∥∥Ak∥∥Pk+1∥
≤ λmin(R)−1KAKB∥Pk+1∥
≤ KAKB∥Pk+1∥ (F.10)

Next,

τ−1∥(A′k + τKkB
′
k)

⊤Pk+1(Ak + τBkKk)∥

≤ τ−1 (∥A′k∥+ τ∥B′k∥∥Kk∥) ∥P
1
2

k+1∥∥P
1
2

k+1(Ak + BkKk)∥
(i)

≤ τ−1 (∥A′k∥+ τ∥B′k∥∥Kk∥) ∥P
1
2

k+1∥∥P
1
2

k ∥

≤ τ−1 (∥A′k∥+ τ∥B′k∥KAKB∥Pk+1∥) ∥P
1
2

k+1∥∥P
1
2

k ∥
≤ τ−1 (∥A′k∥+ τ∥B′k∥KAKB∥P1:K+1∥max,op) ∥P1:K+1∥max,op

≤ τ−1 (∥A′k∥+ τ∥B′k∥KAKB) ∥P1:K+1∥2max,op (∥P1:K+1∥max,op ≥ ∥Q∥ ≥ 1)

≤ (∆A +∆BKAKB) ∥P1:K+1∥2max,op,

where in (i) we use Eq. (F.2), which under the present notation gives

Pk = (Ak + BkKk)Pk+1(Ak + BkKk) + τQ,

and since Pk ⪰ τQ,

∥P
1
2

k+1(Ak + BkKk)∥2 = ∥(Ak + BkKk)Pk+1(Ak + BkKk)∥ = ∥Pk − τQ∥ ≤ ∥Pk∥.

Proof of Lemma F.3. From Eq. (F.9) in Lemma F.7, followed by Lemma F.8, we have for k ∈ [K] that

∥P′k(s)∥op ≤ τ−12∥Pk∥op max
j≥k
∥Ξk∥op

∣∣
s

≤ 2 (∆A +∆BKAKB) ∥P1:K+1(0)∥3max,op.

F.3. Proof of Lemma F.4

Let us apply the Lemma F.3 with v(s) = Θ(s) = (A1:K(s),B1:K(s)) as in Eq. (F.3) and f as the mapping from
(A1:K ,B1:K) → P1:K+1. This map is algebraic and thus C1, and v(s) is also C1 as it is linear. Finally, take ∥ · ∥ to be
∥ · ∥max,op, take g(z) = czp, where p = 3 and c = 2(∆A + KAKB∆B). The corresponding α in Lemma F.3 is α =
c(p− 1)∥f(v(0))∥p−1 = 2(∆A +KAKB∆B)∥P1:K+1∥2, then, if α ≤ 1/4, i.e. (∆A +KAKB∆B) ≤ /8∥P1:K+1(0)∥2,
we have by Lemma F.3 that
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∥P1:K(s)∥max,op ≤ (1− α)−
1

p−1 ∥P⋆
1:K∥max,op ≤ (4/3)2∥P⋆

1:K∥max,op ≤ 1.8∥P⋆
1:K(0)∥max,op.

and

∥P1:K(s)′∥max,op ≤ 2(4/3)6(∆A +KAKB∆B)∥P⋆
1:K∥3max,op ≤ 12(∆A +KAKB∆B)∥P⋆

1:K(0)∥3max,op

F.4. Perturbation on the gains (Lemma F.5)

Proof. Observe that

Kk = −(R+ τB⊤k Pk+1Bk)
−1B⊤k Pk+1Ak

Therefore,

K′
k = (R+ τB⊤k Pk+1Bk)

−1 · (R+ τB⊤k Pk+1Bk)
′ · (R+ B⊤k Pk+1Bk)

−1B⊤k Pk+1Ak︸ ︷︷ ︸
=Kk

(F.11)

− (R+ τB⊤k Pk+1Bk)
−1(B⊤k Pk+1Ak)

′. (F.12)

Introduce the constant C := ∥P⋆1:K+1∥max,op. Using R ⪰ I, we have

∥K′
k∥ = ∥(R+ τB⊤k Pk+1Bk)

′∥∥K∥+ ∥(B⊤k Pk+1Ak)
′∥

= τ∥(B⊤k Pk+1Bk)
′∥∥Kk∥+ ∥B⊤k Pk+1Ak)

′∥
≤ τ(2∥Bk∥∥Pk+1∥∥B′

k∥+ ∥Bk∥2∥P′k+1∥)∥Kk∥+ (∥B′k∥∥Ak∥+ ∥A′k∥∥Bk∥∥) ∥Pk+1∥+ ∥P′k+1∥∥Ak∥)
≤ τ(2KB∆B∥Pk+1∥+K2

B∥P′k+1∥)∥Kk∥+ (∆BKA + τ∆AKB∥) ∥Pk+1∥+ ∥P′k+1∥KAKB)

≤ τ(2K2
BKA∆B∥Pk+1∥2 +K3

BKA∥P′k+1∥∥Pk+1∥+∆AKB∥∥Pk+1∥)
+
(
∥Pk+1∥∆BKA + ∥P′k+1∥KAKB

)
≤ τ(2 · 1.82K2

BKA∆BC
2 + 12(∆A +KAKB∆B)K

3
BKAC

4 + 1.8∆AKBC)

+ (1.8C∆BKA + 12(∆A +KAKB∆B)KAKBC) (Lemma F.4)

≤ τC4(2 · 1.82K2
BKA∆B + 12(∆A +KAKB∆B)K

3
BKA + 1.8∆AKB)

+ C3 (1.8∆BKA + 12(∆A +KAKB∆B)KAKB)

≤ τC4K3
BK

2
A(1.8

2 · 2∆B + 12(∆A +∆B) + 1.8∆A)

+ C3K2
AK

2
B (1.8∆B + 12(∆A +∆B))

≤ C3K2
AK

2
B(1 + τCKB)(1.8

2 · 2∆B + 12(∆A +∆B) + 1.8∆A)

≤ 20C3K3
AK

2
B(1 + τCKB)(∆A +∆B).

It follows from Taylors theorem that ∥Koptk (Θ)−Koptk (Θ̂)∥ ≤ 20C3K3
AK

2
B(1+τCKB)(∆A+∆B). The result follows.

F.5. Proof of Lemma F.2

Lemma F.2 is a special case of Simchowitz & Foster (2020, Corollary 3). To check this, we first establish the following
special case of Theorem 13 in (Simchowitz & Foster, 2020).
Lemma F.9 (Comparison Lemma ). Fix dimensions d1, d2 ≥ 1, let V ⊂ Rd1 , let f : V → Rd2 be a C1 map and let
v(s) : [0, 1] → V be a C1 curve defined on [0, 1]. Suppose that g(·) : R → R is non-negative and non-decreasing scalar
function, and ∥ · ∥ be an arbitrary norm on Rd2 such that

∥ d
ds
f(v(s))∥ ≤ g(∥f(v(s))∥) (F.13)

Finally, let η > 0 and g̃ : R → R be a scalar function such that (a) for all z ≥ ∥v(0)∥, g̃(z) ≥ η + g(z) and (b) the
following scalar ODE has a solution on [0, 1]:

z(0) = ∥v(0)∥+ η, z′(s) = g̃(z(s))
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Then, it holds that

∀s ∈ [0, 1], ∥f(v(s))∥ ≤ z(s).

Proof. Theorem 13 in (Simchowitz & Foster, 2020) proves a more general result for implicit ODEs, such as those that
arise in infinite-horizon Riccati equations. We do not need these complication here, so we specialize their result. Define
the function F : Rd1 × Rd2 → Rd2 via F(v,w) = f(v(s)) − w. It is then clear that w̃(s) = f(ṽ(s)) is the unique
solution to F(ṽ(s), w̃(s)) = 0 for any C1 curve ṽ(z); since f is C1, any such solution w̃ is also C1. Thus, F is a
“valid implicit function” on V in the sense of Simchowitz & Foster (2020, Definition 3.2) with . Moreover, by Eq. (F.13),
(F ,V, g, ∥ · ∥,v(·)) form a self-bounding tuple in the sense of Simchowitz & Foster (2020, Definition 3.3). The result now
follows from Simchowitz & Foster (2020, Theorem 13).

Proof of Lemma F.2. Take g(z) = czp. Define hη = c(z+η)p. For any η > 0, there exist an η′ such that hη′(z) ≤ g(z)+η
for z ≥ z0. Moreover, as η approaches 0, we can take η′ → 0 as wel. Solving the ODE z(0) = ∥f(v(0))∥ + η and
z′(s) = c(z + η)p, we see the solution is given by

dz

(z + η′)p
= cds.

As z′(s) ≥ 0, it suffices to bound z(1). For p > 1, the solution to this ODE when it exists satisfies

1

(p− 1)(∥f(v(0))∥+ η + η′)p−1
− 1

(p− 1)(z(1) + η′)p−1
= c

Rearranging and setting η, η′ → 0 lets check that, as long as 1
(p−1)∥f(v(0))∥p−1 > c, Lemma F.9 yields

max
s∈[0,1]

∥f(v(s))∥ ≤
(

1

∥f(v(0))∥p−1
− (p− 1)c

) 1
−(p−1)

= (1− α)
1

−(p−1) ∥f(v(0))∥.

For p = 1, we instead get

ln(z(1) + η′)− ln(∥f(v(0))∥+ η + η′) = c

Again, taking η′, η → 0, Lemma F.9 yields

max
s∈[0,1]

∥f(v(s))∥ ≤ exp(c+ ln(∥f(v(0))∥) = ∥f(v(0))∥ec.

F.6. Perturbation bounds for Lyapunov Solutions

Lemma F.10 (Basic Lypaunov Theory). Let X1:K and Y1:K be a sequence of matrices of appropriate dimension. Suppose
that Yk ⪰ 0, and let Q ⪰ I. Define Λk as via the solution to the Lyapunov recursion

ΛK+1 = Q, Λk = X⊤k Λk+1Xk + τQ+ Yk.

and define the matrix Φj+1,k := (Xj ·Xj−1 · · · ·Xk+1 ·Xk), with the convention Φk,k = I, let and define the operator
Tj,k(·) = Φ⊤j,k(·)Φj,k. Then

(a) For any symmetric matrices Zj , we have

τ

K∑
j=k

Tk,j(Zj) ⪯
K

max
j=k
∥Zj∥Λk.

(b) If, in addition, maxk ∥I− Xk∥op ≤ κτ for some κ ≤ 1/2τ, λmin(Λk) ≥ min{ 1
2κ , 1}
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(c) Under the condition in part (b), we have

∥Φj,k∥2 ≤ max{1, 2κ}∥Λ1:K+1∥max,op(1− τγ)j−k, γ :=
1

∥Λ1:K+1∥max,op
.

In particular, ∥Tk,j(Zj)∥ ≤ max{1, 2κ}∥Λ1:K+1∥max,op∥Zk(j)∥.

Proof. We begin with part (a). By unfolding the recusion, we get

Λk = X⊤k Λk+1Xk + τ(Q+ τ−1Yk)

=
(
τ Tk,k(Q+ τ−1Yk) + Tk+1,k(Λk+1)

)
= τ

K∑
j=k

Tk,j(Q+ τ−1Yk) + TK+1,k(ΛK+1)

⪰ τ

K∑
j=k

Tk,j(I)

where in the last line, we use Q + τ−1Yk ⪰ Q ⪰ I. AS Tk,j(·) is a matrix monotone operator, we have that symmetric
matrix Z, we have

τ

K∑
j=k

Tj,k(Zj) ⪯ τ
K

max
j=k
∥Zj∥

K∑
j=k

Tj,k(I) ⪯ Λk,

and similarly for −τ
∑K

j=k Tj,k(Zj).

Part (b). We argue part (b) by induction backwards on k, noting that k = K + 1 is immediate. We have

Λk ⪰ X⊤k Λk+1Xk + τQ ⪰ X⊤k Λk+1Xk + τ

Hence,

λmin(Λk) ≥ λmin(Λk+1)σmin(Xk)
2 + τ

≥ λmin(Λk+1)(1− ∥Xk − I∥)2 + τ

≥ λmin(Λk+1)(1− κτ)2 + τ

≥ λmin(Λk+1)(1− 2κτ) + τ

Applying the inductive hypothesis, we see that the above is at least

λmin(Λk) ≥
1

2κ
(1− 2κτ) + τ ≥ 1

2κ
, as needed.

Part (c). We have

X⊤j Λj+1Xj = Λj − τ(Q+ Yk) ⪯ Λj(1− τΛ
−1/2
j QΛ

−1/2
j ) ⪯ Λj(1− τγ),

where we recall γ = 1/∥Λ1:K+1∥max,op and use Q ⪰ I. By unfolding the bound, we find

∥Φ⊤j+1,kΛj+1Φj+1,k∥ ≤ (1− τγ)j+1−k∥Λk∥.

Hence,

∥Φj+1,k∥2 ≤ λmin(Λj+1)
−1∥Φ⊤j+1,kΛj+1Φj+1,k∥ ≤ 2∥Λj+1∥κ(1− τγ)j+1−k.

Moreover, as κ ≥ 1, the bound also applies to Φj+1,j+1 = I.
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Lemma F.11 (Formula for Lyapunov Curve Derivatives). Consider curves X1:K(s), Y1:K(s), let Q ⪰ I , and define

ΛK+1(s) = Q, Λk(s) = Xk(s)
⊤Λk+1Xk(s) + τQ+ Yk(s)

Again, let Φk,j := (Xj−1 ·Xj−2 · · · ·Xk+1 ·Xk), with the convention Φk,k = I, define the operator Tk,j(·) = Φ⊤k,j(·)Φj,j .
Then,

Λ′k =

K∑
j=k

Tk,j(Ωk), Ωk := Sym(X⊤k Λk+1X
′
k) + Y′k.

Proof. We compute

Λ′k = Sym(X⊤k Λk+1X
′
k) + Y′k︸ ︷︷ ︸

=Ωk

+Xk(s)
⊤Λk+1Xk(s).

The result follows by unfolding the recursion, with the base case Λ′K+1 = d
dsQ = 0.

We now state our Lyapunov perturbation bound:

Proposition F.12 (Lyapunov Function Perturbation). Consider curves X1:K(s), Y1:K(s), and define for Q ⪰ I

ΛK+1(s) = Q, Λk(s) = Xk(s)
⊤Λk+1Xk(s) + τQ+ Yk(s)

Then,

Λk(s)
′ ≤ ∥Λ1:K+1(s)∥2max,op∆(s), where

∆(s) = max
j∈[k]

τ−1
(
2∥Xj(s)′∥+ ∥Λ1:K+1(s)∥−1

max,op∥Yj(s)′∥
)

Moreover, as long as ∥Λ1:K+1(0)∥max,op sups∈[0,1] ∆(s) < 1,

max
s∈[0,1]

∥Λ1:K+1(s)∥max,op ≤

(
1− ∥Λ1:K+1(0)∥max,op sup

s∈[0,1]

∆(s)

)−1

∥Λ1:K+1(0)∥max,op,

The above bound also holds when ∆(s) is replaced by the simpler term

∆̃(s) := max
j∈[k]

τ−1 (2∥Xj(s)′∥+ ∥Yj(s)′∥) (F.14)

Proof. We write

Λ′k =

K∑
j=k

Tk,j(Ωk), Ωk := Sym(X⊤k Λk+1X
′
k) + Y′k (F.15)

We have

∥Ωk∥ ≤ 2∥X⊤k Λk+1∥∥X′k∥+ ∥Y′k∥

≤ 2∥X⊤k Λ
1
2

k+1∥∥Λ
1
2

k+1∥∥X
′
k∥+ ∥Y′k∥.

Observe that ∥X⊤k Λ
1
2

k+1∥ = ∥X⊤k Λk+1Xk∥
1
2 . As 0 ⪯ X⊤k Λk+1X

⊤
k = Λk − Yk ⪯ Λk, we conclude,

∥Ωk∥ ≤ 2∥Λk∥
1
2 ∥Λ

1
2

k+1∥∥X
′
k∥+ ∥Y′k∥

≤ ∥Λ1:K+1∥max,op2∥X′k∥+ ∥Λ1:K+1(s)∥−1
max,op∥Y′k∥

≤ ∥Λ1:K+1∥max,op

(
2∥X′k∥+ ∥Λ1:K+1(s)∥−1

max,op∥Y′k∥
)

≤ ∥Λ1:K+1∥max,op max
j∈[K]

(
2∥X′j∥+ ∥Λ1:K+1(s)∥−1

max,op∥Y′j∥
)
≤ τ∥Λ1:K+1∥max,op∆(s).
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Thus, from Eq. (F.15) and Lemma F.10, we conclude

Λk(s)
′ ≤ τ−1 · τ∥Λk∥∥Λ1:K+1(s)∥max,op∆(s)

≤ ∥Λ1:K+1(s)∥2max,op∆(s)

The final result follows by applying Lemma F.2 with p = 2, c = maxs∈[0,1] ∆, and α = ∆(s)∥Λ1:K+1(0)∥max,op. That
Eq. (F.14) follows from the fact that if Q ⪰ I, ∥Λ1:K+1(s)∥max,op ≥ 1.

Lemma F.13 (Average Perturbation). Let κ ≤ 1/2τ. Consider a curve X1:K(s) such maxk sups∈[0,1] ∥I−Xk(s)∥op ≤ κτ.
Then,

ΛK+1(s) = I, Λk(s) = Xk(s)
⊤Λk+1Xk(s) + τI.

Fix

∆sum = 3 sup
s∈[0,1]

max{1, 2κ}
K∑

k=1

∥X′k(s)∥.

Then, as long as ∥Λ1:K+1(0)∥max,op∆sum < 1, we have

∥Λ1:K+1(1)∥max,op ≤ (1− ∥Λ1:K+1(0)∥max,op∆sum)
−1∥Λ1:K+1(0)∥max,op.

Proof. We have that

Λ′k =

K∑
j=k

Tk,j(Ωk), Ωk := Sym(X⊤k Λk+1X
′
k)., (F.16)

so by Lemma F.10(c),

∥Λ′k∥op ≤ ∥Λ1:K+1∥max,op max{1, 2κ}
K∑

j=k

∥Ωj∥

≤ 2∥Λ1:K+1∥max,op max{1, 2κ}
K∑

j=k

∥Xk∥∥X′k∥∥Λk+1∥

≤ 2∥Λ1:K+1∥2max,op max{1, 2κ}
K∑

j=k

∥X′k∥∥Xk∥

≤ 2∥Λ1:K+1||2max,op max{1, 2κ} (1 + κτ)︸ ︷︷ ︸
≤ 3

2

K∑
j=k

∥X′k∥

≤ ∆sum∥Λ1:K+1∥2max,op.

The result now follows from Lemma F.2.

G. Instantiantions of Certainty Equivalence Bound
Definition G.1. Given a sequence of gains K̃1:K ∈ (Rdu×dx)K , we define the discrete cost-to-go matrix as

PπK+1 = I, Pπk [K̃k:K ] = (Aπol,k + Bπol,kK̃k)
⊤Pπk+1 [K̃k+1:K ](Aπol,k + Bπol,kK̃k) + τ(I+ K̃

⊤
k K̃k).

The follow is standard (see, e.g. Anderson & Moore (2007, Section 2.4)).

Lemma G.1. There exists a unique minimizer sequence K
π,⋆
1:K such that, for all other K̃1:K , Pπk [K

π,⋆
k:K ] ⪯ Pπk [K̃k:K ]. We

denote this minimize P-matrix Pπopt,k := Pπk [K
π,⋆
k:K ].
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Proposition G.2. Recall the definition of τric from Definition A.2,

τric :=
1

4µ2
ric

(
3MfκfµricLf + 13L2

f (1 + Lfµric)2
) =

1

O⋆(1)

Then, as long as τ ≤ min{τric,π, 1/4Lf}, it holds that for any feasible policy π, maxk∈[K+1] ∥Pπopt,k∥ ≤ 2µric.

The following lemma bounding the constant Kπ for the initial policy π can be estabilished along the same lines of Propo-
sition G.2. Its proof is given in Appendix G.2.

Lemma G.3. Suppose that τ ≤ τric. For π = π(1), µπ,⋆ ≤ 2µric and Lπ = 1.

Proposition G.4 (Certainty Equivalence Bound). Let Â
π
k and B̂

π
k be estimates of Aπol,k and Bπol,k, and let K̂k denote the

corresponding certainty equivalence controller sythesized by solving the following recursion given by P̂K+1 = I, and for
k ∈ [k0 : K], setting

P̂k = (Â
π

k )
⊤P̂k+1Â

π

k −
(
B̂
π

k P̂k+1Â
π

k

)⊤
(τ−1I+ (B̂

π

k )
⊤P̂k+1B̂

π

k )
−1
(
B̂
π

k P̂k+1Â
π

k

)
+ τI

K̂k = −(τ−1I+ (B̂
π

k )
⊤P̂kB̂

π

k )
−1(B̂

π

k )
⊤P̂kÂ

π

k ,

Then, as long as maxk∈[k0:K] ∥Â
π

k−Aπol,k∥op∨∥B̂
π

k−Bπol,k∥op ≤ (217τµ4
ric max{1, L3

f})−1, and τ ≤ min{τric, 1/4LfLπ},
we have

max
k≥k0

∥Pπk [K̂k:K ]∥ ≤ 4µric, and max
k≥k0

∥K̂k∥ ≤ 6max{1, Lf}µric.

We can now prove Proposition A.14.

Proof. Let K̂1:K be the gains synthesized according to Algorithm 1(Line 7-10), and π′ = (uπ1:K , K̂1:K) be the policy with
the same inputs as π but with these new gains. Definining the shorthand P̃k := ∥Pπk [K̂k:K ]∥, Proposition G.4 then implies
that

max
k≥k0

∥P̃k∥ ≤ 4µric, and max
k≥k0

∥K̂k∥ ≤ 6max{1, Lf}µric.

Since K̂k = 0 for k < k0, we conclude maxk∈[K+1] ∥K̂k∥ ≤ 6max{1, Lf}µric, which we note is ≥ 1 as µric ≥ 1. Thus,
we can take Lπ′ = 6max{1, Lf}µric. Moreover, for this policy π, we have Aπ

′

cl,k = (Aπol,k + Bπol,kK̂k), so that the matrices
P̃k are given by the recursion

P̃K+1 = I, P̃k = (Aπ
′

cl,k)
⊤P̃k+1(A

π′

cl,k) + τ(I+ K̂
⊤
k K̂k).

Hence, P̃k ⪰ Λπ
′

k , where we recal that Λπ
′

k satisfy the recursion

Λπ
′

K+1 = I, Λπ
′

k = (Aπ
′

cl,k)
⊤Λπ

′

k+1(A
π′

cl,k) + τI.

Thus, µπ′,⋆ := maxk∈[k0:K] ∥Λπ
′

k ∥ ≤ maxk∈[k0:K] ∥P̃k∥ ≤ 4µric.

G.1. Proof of Proposition G.4

Essentially, we instantiate Theorem 4 with appropriate bounds on parameters, and using the last part of the recursion for
k ≥ k0. Fix an index k0 ∈ [K], let K0 = K − k0 − 1, and recall [k0 : j] := {k0, . . . , j}. Throughout, we suppose

τ ≤ 1/4Lf max{1, Lπ, µric} (G.1)

Suppose we have givens estimates Â
π

k and B̂
π

k satisfying

max
k∈[k0:K]

τ−1∥Âπk − Aπol,k∥op ≤ ϵA, max
k∈[k0:K]

τ−1∥B̂πk − Bπol,k∥op ≤ ϵB
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We apply Theorem 4 with the substitutions

K ← K0, B̂k ← τB̂
π
k+k0−1, Bk ← τBπol,k+k0−1, Âk ← Â

π
k+k0−1, Ak ← τAπol,k+k0−1,

So that, with Θ = (Aj , Bj)j∈[K0] and Θ̂ = (Âj , B̂j)j∈[K0], we have

K̂k =

{
0 k < k0

K
opt
k−k0

(Θ̂) k ≥ k0

and thus,

P
opt
j (Θ) = Pπopt,k, Pcek (Θ; Θ̂) = Pπj+k0−1 [K̂k0:K ].

With the above substitutions, we can apply Proposition G.2 as long as τ satisfies the condition stipulated in that proposition,
we have

max
j∈[K0+1]

∥Poptj (Θ)∥ ≤ 2µric. (G.2)

Moreover, we have that by Lemmas I.3, I.4 and I.7, the following holds for τ ≤ 1/4Lf max{1, Lπ},

max
k

τ−1∥Bπol,k∥ ≤ exp(1/4)Lf

max
k
∥Aπol,k∥ = max

k
∥Φπcl,k+1,k∥ ≤

5

3

max
k∈[K]

∥Ak − I∥ = max
k∈[K]

∥Φπ
ol(tk+1, tk)− I∥ ≤ exp(1/4)τLf

(G.3)

Hence Conditions F.1 and F.4 hold for

KA = 1 ∨ max
k∈[k0:K]

∥Aπol,k∥ ∨ ∥Â
π

k∥ ≤
5

3

KB = 1 ∨ max
k∈[k0:K]

τ−1(∥Bπol,k∥ ∨ ∥B̂
π

k∥) ≤ exp(1/4)max{1, Lf}

κA := τ−1 max
k∈[k0:K]

∥Ak − I∥ = exp(1/4)Lf .

(G.4)

Moreover, Condition F.2 holds with ∆A = ϵA, ∆B = ϵB . We can now apply Theorem 4. We take and for ϵA ≤ 1/3 and
ϵB ≤ Lf/2, we may take

∆ce := 80C4K3
AK

3
B(1 + τCKB)(∆A +∆B)

C := max
j∈[K0+1]

∥Poptj (Θ)∥ ≤ 2µric (by Eq. (G.2))

And we can bound (recalling τ ≤ 1/4Lfµric and µric ≥ 1)

∆ce ≤ 80µ4
ric · (16 · (5/3)3 · exp(3/4))max{1, L3

f}(1 + 4τLfµric)(ϵA + ϵB)

≤ 214µ4
ric ·max{1, L3

f}(ϵA + ϵB)(1 + 4τLfµric)

≤ 215µ4
ric ·max{1, L3

f}(ϵA + ϵB).

Hence, as long as

216µ4
ric max{1, L3

f}(ϵA + ϵB) ≤ 1,

we have

∆ce ≤ 1/2 (G.5)

64



Learned Locally Linear Models for Nonlinear Policy Optimization

and therefore, by Theorem 4(a),

max
k∈[k0:K+1]

∥Pπk [K̂k0:K ]∥ = max
j∈[K0+1]

∥Pcej (Θ; Θ̂)∥ ≤ 2 max
j∈[K0+1]

∥Poptj (Θ)∥ ≤ 4µric.

Next, Theorem 4(b), we can take Lπ′ = 6max{1, Lf}µric:

max
k∈[K]

∥K̂π′
∥ = max

j∈[K0]
∥Koptj (Θ̂)∥

≤ 5

4
KBKAC ≤

5

4
(5/3) exp(1/1)max{1, Lf} · 2µric ≤ Lπ′ := 6max{1, Lf}µric.

G.2. Proof of Proposition G.2

G.2.1. PRELIMINARIES.

We recall the following, standard definition of continuous-time cost to-go matrices (see, e.g. (?)Section 2.3]ander-
son2007optimal):
Definition G.2 (Cost-to-Go Matrices). Given a policy π, and a sequence of controls ũ(·) ∈ U , let Pπ(· | ũ) as the
cost-to-go matrix satisfying ξ⊤Pπ(t | ũ)ξ =

∫ T

s=t
(∥x̃(s)∥2 + ∥ũ(s)∥2)ds + ∥x̃(T )∥2, under the dynamics d

ds x̃(s) =
Aπ

ol(s)x̃(s) + Bπ
ol(s)ũ(s), x̃(t) = ξ. We let Pπ

opt(t) denote the optimal cost-to-go matrix, i.e., the matrix satisfying
ξ⊤Pπ

opt(t)ξ = minũ∈U ξ
⊤Pπ(t | ũ)ξ := V π(t | ũ, ξ).

Recall that Assumption 4.3 implies V π(t | ũ, ξ) ≤ µric∥ξ∥2, so that ∥Pπ
opt(t)∥ ≤ µric. In what follows, we supress

superscript dependence on π, assume π is feasible, and adopt the shorthand P(t) = Pπ
opt(t), A(t) = Aπ

ol(t), B(t) =
Bπ

ol(t), x(t) = xπ(t), and u(t) = uπ(t). We also use the shorthand

Lcl := Lf (1 + Lfµric). (G.6)

The optimal input defining P(t) in Assumption 4.3 selects ũ(t) = K(t)x̃(t), where K(t) = B(t)⊤P(t) (again, Anderson
& Moore (2007, Section 2.3)). Introduce the evaluations of the continuous value function P(t) and K(t) at the time steps
tk:

Pctk := P(tk), Kctk := K(tk) (G.7)

We also define an suboptimal discrete-time value function by taking Psubk = Pπk [K
ct
1:K ], defined in Definition G.1, which

satisfies

Psubk ⪰ Pπopt,k.

by optimality of Pπopt,k. Hence, it suffices to bound Psubk . To do this, first express both Psubk and Pctk as discrete Lyapunov
recusions. To do so, we require the relevant transition operators.
Definition G.3 (Relevant Transitions Operators). For k ∈ [K] and s ∈ Ik, let Φ1(s, tk) and Φ2(s, tk) denote the solution
to the ODEs

d

ds
Φ1(s, tk) = (A(s) +B(s)K(s))Φ1(s, t) (G.8)

d

ds
Φ2(s, tk) = A(s)Φ2(s, t) +B(s)Kk(tk).

with initial conditions Φ1(tk, tk) = Φ2(tk, tk) = I. We define

Xctk := Φ1(tk+1, tk), Xsubk := Φ2(tk+1, tk)

Definition G.4 (Relevant Cost Matrices). For k ∈ [K], define

Yctk :=

∫ tk

s=tk

Φ1(s, tk)
⊤(I+K(s)⊤K(s))Φ1(s, tk)ds

Ysubk := τ(I+K(tk)
⊤K(tk))
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Lemma G.5. The cost-to-go matrices Pctk and Psubk are given by the following Lyapunov recursions, with initial conditions
PctK+1 = PsubK+1 = I:

Pctk = (Xctk )⊤Pctk+1X
ct
k + Yctk

Psubk = (Xsubk )⊤Psubk+1X
sub
k + Ysubk

Proof of Lemma G.5. The recursion for Psubk is directly from Definition G.1, and the fact that Xsubk = Aπcl,k due to
Lemma C.10. To verify the recursion for Pctk , we note that we can express P(t) = Pπ

opt(t) in Definition G.2 as satis-
fying the following ODE (see Anderson & Moore (2007, Section 2.3)):

P(T ) = I, − d

dt
P(t) = (A(t) +B(t)K(t))⊤P(t)(A(t) +B(t)K(t)) + I+K(t)⊤K(t)

It can be checked then by computing derivatives and using existence and uniqueness of ODEs that

P(s, t) = Φ1(s, t)
⊤P(s)Φ1(s, t) +

∫ s

s′=t

Φ1(s
′, t)⊤(I+K(s′)⊤K(s′))Φ(s′, t)ds′

Specializing to s = tk+1 and t = tk verifies the desired recursion.

As Pctk = P(tk), the terms Pctk are bounded whenever P(·) is. Therefore, we use a Lyapunov perturbation bound to bound
Psubk in terms of Pctk . This requires reasoning about the differences Xctk − Xsubk and Yctk − Ysubk , which we do in just below.

G.2.2. CONTROLLING THE RATE OF CHANGE OF K(t).

Our first step in controlling the perturbation term is to argue that the optimal controller K(t) does not change too rapidly.
As K(t) = B(t)⊤P(t), we begin by bounding the change in B(t).

Claim G.1 (Change in B(t)). B(t) is differentiable in t on for t ∈ int(Ik), and satisfies ∥ d
dtB(t)∥ ≤Mfκf

Proof. Recall that B(t) = ∂uf(x(t),u(t)). For t ∈ int(Ik), u(t) is constant, and x(t), being the solution to an ODE, is
also t-differentiable. We now bound ∥ d

dtB(t)∥. We have

∥ d
dt

B(t)∥ = ∥ d
dt
∂uf(x(t),u(t))∥

= ∥∂uuf(x(t),u(t))
d

dt
u(t) + ∂xuf(x(t),u(t))

d

dt
x(t)∥

≤Mf∥
d

dt
x(t)∥ ≤Mfκf

where the second-to-last inequality is the limiting consequence holds from Assumption 4.1, and where the term
∂uuf(x(t),u(t))

d
dtu(t) vanishes vanishes because u(t) = uπ(t) is constant on Ik.

Next, we bound the change in P(t):

Claim G.2 (Change in P(t)). P(t) is differentiable in t, and ∥ d
dtP(t)∥ ≤ (Lcl/Lf )

2.

Proof. Note that P(t) is given by the ODE

P(T ) = I, − d

dt
P(t) = A(t)⊤P(t) +P(t)A(t)−P(t)B(t)B(t)⊤P(t) + I,

which ensures differentiability. Thus, as ∥A(t)∥ ∨ ∥A(t)∥ ∨ 1 ≤ Lf by Assumption 4.1 and Assumption 4.3,

∥ d
dt

P(t)∥ ≤ 1 + 2Lf∥P(t)∥+ L2
f∥P(t)∥2 ≤ (1 + 2Lfµric + L2

fµ
2
ric) ≤ (1 + Lfµric)

2,

which is precisely (Lcl/Lf )
2.
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We now establish a bound on the change in K(t).

Claim G.3 (Continuity of Optimal Controller). For all t ∈ Ik,

∥ d
dt

K(t)∥ ≤Mfκfµric + L−1
f L2

cl.

Proof of Claim G.3. By Claims G.1 and G.2, we have

∥ d
dt

K(t)∥ ≤ ∥ d
dt

B(t)∥∥P(t)∥+ ∥B(t)∥∥ d
dt

P(t)∥

≤ ∥ d
dt

B(t)∥µric + Lf (Lcl/Lf )
2

≤Mfκfµric + L−1
f L2

cl.

By integrating, we arrive at the next claim.

Claim G.4. The following bound holds

sup
s∈Ik

∥K(s)−K(tk)∥ ≤ τ
(
Mfκfµric + L−1

f L2
cl

)
.

Proof of Claim G.4. Directly from Claim G.3.

G.2.3. CONTROLLING DIFFERENCES IN ∥Xctk − Xsubk ∥ AND ∥Yctk − Ysubk ∥

We first state a bound on the magnitudes of various quantities of interest.

Claim G.5. ∥K(t)∥ ≤ µricLf and ∥A(t) +B(t)K(t)∥ ≤ Lcl, where we recall Lcl := Lf (1 + Lfµric).

Proof. Recall that K(t) = B(t)⊤P(t). From Assumption 4.3, ∥P(t)∥ ≤ µric, and ∥B(t)∥ ≤ Lf by Assumption 4.1,
which gives ∥K(t)∥ ≤ µricLf . Bounding ∥A(t)∥ ∨ ∥B(t)∥ by Lf (again, invoking Assumption 4.1), concludes the
demonstration.

Next, we show that Φ1(s, tk) is close to the identity for sufficiently small τ.

Claim G.6. Suppose that τLcl ≤ 1/2. Then,

∥I−Φ1(s, tk)∥ ≤ τLcl exp(1/2) ≤ min{1, 2τLcl}

Proof of Claim G.6. It suffices to bound, for all ξ ∈ Rdx : ∥ξ∥ = 1 the differences ∥y1(s) − ξ∥ where y1 = Φ1(s, tk)ξ.
We do this via Picard’s lemma.

Specifically, write d
dsy1(s) = f̃(y1(s), s), where f̃(y, s) = (A(s) + B(s)K(s))y, and z(s) = ξ. As f̃(y, s) is

sups∈Ik
∥A(s) + B(s)K(s)∥ ≤ Lcl Lipchitz is y (here, we use Claim G.5) and as d

dsξ = 0, and the Picard Lemma
(Lemma C.9) gives

∥ξ − y1(s)∥ ≤ exp((s− tk)(2L2
fµric))

∫ s

s′=tk

∥(A(s′) +B(s′)K(s′))ξ∥ds′

≤ exp((s− tk)Lcl)

∫ s

s′=tk

∥(A(s′) +B(s′)K(s′))∥ds′ (∥ξ∥ ≤ 1)

≤ exp((s− tk)Lcl) · (s− tk)Lcl,

≤ exp(τLcl) · τLcl,

≤ exp(1/2)τLcl

where we assume τLcl ≤ 1/2.
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We can now bound the differences between ∥Xctk − Xsubk ∥ = ∥Φ2(tk+1, tk)−Φ1(tk+1, tk)∥.
Lemma G.6. For k ∈ [K] and s ∈ Ik, let Φ1(s, tk) and Φ2(s, tk) denote the solution to the ODEs

d

ds
Φ1(s, tk) = (A(s) +B(s)K(s))Φ1(s, t),

d

ds
Φ2(s, tk) = A(s)Φ2(s, t) +B(s)Kk(tk).

with initial conditions Φ1(tk, tk) = Φ2(tk, tk) = I. Then, if τLcl ≤ 1/2,

∥Xctk − Xsubk ∥ = ∥Φ2(tk+1, tk)−Φ1(tk+1, tk)∥ ≤ 2τ2
(
LfµricMfκf + 3L2

cl

)
.

Proof. It suffices to bound, for all initial conditions, ξ ∈ Rdx with ∥ξ∥ = 1, the solutions yi(s) = Φi(s)ξ. We apply
the Picard Lemma, with z(s) ← y1(s), and express y2(s) = f̃(y2(s), s), where f̃(y, s) = A(s)y + B(s)K(t). As
∥A(s)∥ ≤ Lf , the Picard Lemma (Lemma C.9) yields

∥y1(tk+1)− y2(tk+1)∥ ≤ exp(Lf (t− s))
∫ tk+1

s=t

∥A(s)y1(s) +B(s)K(tk)ξ −
d

ds
y1(s)∥ds

≤ exp(Lfτ)

∫ tk+1

s=t

∥A(s)y1(s) +B(s)K(tk)ξ − (A(s) +B(s)K(s))y1(s)∥ds

≤ exp(Lfτ)

∫ tk+1

s=t

∥B(s)(K(s)y1(s)−K(tk)ξ)∥ds

≤ Lf exp(Lfτ)

∫ tk+1

s=t

∥K(s)y1(s)−K(tk)ξ∥ds

≤ Lf exp(Lfτ)

∫ tk+1

s=t

(∥(K(s)−K(tk))ξ∥+ ∥K(s)(ξ − y1(s))∥)ds

≤ Lf exp(Lfτ)

∫ tk+1

s=t

(∥K(s)−K(tk)∥+ Lfµric∥ξ − y1(s)∥)ds

≤ exp(1/2)Lfτmax
s∈Ik

(∥K(s)−K(tk)∥+ Lfµric∥ξ − y1(s)∥)

where the second-to-last line uses ∥ξ∥ = 1 and ∥K(s)∥ ≤ Luµric, and the last uses τ ≤ 1/2Lx and well as a bound of an
integral by a maximum. By claims Claims G.4 and G.6,

max
s∈Ik

(∥K(s)−K(tk)∥+ Lfµric∥ξ − y1(s)∥)

≤ τ
(
Mfκfµric + L−1

f L2
cl

)
+ Lfµric exp(1/2)τLcl

= τ
(
µricMfκf + Lcl(Lfµric exp(1/2) + L−1

f Lcl)
)

≤ τ
(
µricMfκf + 3L−1

f L2
cl

)
,

where in the last inequality we use exp(1/2) ≤ 2 and Lfµric ≤ (1 + Lfµric) = LclL
−1
f . Therefore, again using

exp(1/2) ≤ 2,

∥y1(tk+1)− y2(tk+1)∥ ≤ 2τ2
(
LfµricMfκf + 3L2

cl

)
.

Quantifying over all unit-norm initial conditions ξ concludes the proof.

We now establish a qualitatively similar bound on τ∥Yctk − Ysubk ∥.
Lemma G.7. ∥Yctk − Ysubk ∥ ≤ 2τ2

(
Mfκfµ

2
ricLf + 7µricL

2
cl

)
.

Proof. Recall the definitions

Yctk :=

∫ tk

s=tk

Φ1(s, tk)
⊤(I+K(s)⊤K(s))Φ1(s, tk)ds

Ysubk := τ(I+K(tk)
⊤K(tk))
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We can then express

Yctk − Ysubk = Yctk − τ(I+K(tk)K(tk)
⊤) =

∫ tk

s=tk

Zk(s),

Zk(s) :=
{
Φ1(s, tk)

⊤(I+K(s)⊤K(s))Φ1(s, tk)− (I+K(tk)
⊤K(tk))

}
ds

Thus,

∥Yctk − Ysubk ∥ ≤ τmax
s∈Ik

∥Zk(s)∥. (G.9)

With numerous applications of the triangle inequality,

∥Zk(s)∥ ≤ ∥I−Φ1(s, tk)∥∥I+K(s)⊤K(s)∥∥Φ1(s, tk)∥
+ ∥I+K(s)⊤K(s)∥∥I−Φ1(s, tk)∥+ ∥K(s)−K(tk)∥(∥K(s)∥+ ∥K(tk)∥).

Using ∥K(s)∥ ∨ ∥K(tk)∥ ≤ Lfµric due to Claim G.3, we have

∥Zk(s)∥ ≤ (1 + L2
fµ

2
ric)(1 + ∥Φ1(s, tk)∥)∥I−Φ1(s, tk)∥+ 2µricLf∥K(s)−K(tk)∥

≤ 3(1 + L2
fµ

2
ric)∥I−Φ1(s, tk)∥+ 2µricLf∥K(s)−K(tk)∥ (Claim G.6)

≤ 6τLcl(1 + L2
fµ

2
ric) + 2µricLf∥K(s)−K(tk)∥ (Claim G.6)

≤ 12τL2
fµric(1 + L2

fµ
2
ric) + 2τµricLf

(
Mfκfµric + L−1

f L2
cl

)
. (Claim G.4)

We can upper bound L2
f (1 + L2

fµ
2
ric) ≤ L2

f (1 + Lfµric)
2 = L2

cl, and simplify 2τµricLf

(
Mfκfµric + L−1

f L2
cl

)
=

2τ
(
Mfκfµ

2
ricLf + µricL

2
cl

)
. This gives

∥Zk(s)∥ ≤ 12τµricL
2
cl + 2τ

(
Mfκfµ

2
ricLf + µricL

2
cl

)
= 2τ

(
Mfκfµ

2
ricLf + 7µricL

2
cl

)
.

Plugging the above bound into Eq. (G.9) concludes.

G.2.4. CONCLUDING THE PROOF OF PROPOSITION G.2

From Lemmas G.6 and G.7, we have

∥Xctk − Xsubk ∥ ≤ 2τ2
(
LfµricMfκf + 3L2

cl

)
, ∥Yctk − Ysubk ∥ ≤ 2τ2µric

(
MfκfµricLf + 7L2

cl

)
Therefore, using µric ≥ 1

2∥Xctk − Xsubk ∥+ ∥Yctk − Ysubk ∥ ≤ 2τ2µric

(
3MfκfµricLf + 13L2

cl

)
. (G.10)

Now, we invoke Proposition F.12. We construct linear interpolation (here, s ∈ [0, 1] parametrizes the interpolation and not
time)

Xk(s) = (1− s)Xctk + sXsubk , Yk(s) = (1− s)Yctk + sYsubk .

Then, by Lemma G.5, the interpolator Λk(s) defined in Proposition F.12 satisfies Λk(0) = Pctk and Λk(1) = Psubk . In
particular,

∥Λ1:K+1(0)∥max,op = max
k∈[K+1]

∥Pctk ∥ (since Λk = Pctk and definition of ∥ · ∥max,op)

= max
k∈[K+1]

∥P(tk)∥ (by Eq. (G.7))

≤ sup
t∈[T ]

∥P(t)∥

≤ µric, (G.11)
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where the last inequality is by Assumption 4.3. Moreover, the term ∆̃(s) defined in Eq. (F.14) satisfies

∀s ∈ [0, 1], ∆̃(s) = τ−1(2∥Xctk − Xsubk ∥+ τ∥Yctk − Ysubk ∥
≤ τ · 2µric

(
3MfκfµricLf + 13L2

cl

)
. (by Eq. (G.10))

Hence, recalling ∥Λ1:K+1(0)∥max,op ≤ µric due to Eq. (G.11), it holds that long as 2τµ2
ric

(
3MfκfµricLf + 13L2

cl

)
≤ 1

2 ,
it holds that

max
k∈[K+1]

∥Psubk ∥ = ∥Λ1:K+1(1)∥max,op ≤ 2∥Λ1:K+1(0)∥max,op ≤ 2µric.

Lastly, we note the condition 2τµ2
ric

(
3MfκfµricLf + 13L2

cl

)
≤ 1

2 is equivalent to

τ ≤ 1

4µ2
ric (3MfκfµricLf + 13L2

cl)

≤ 1

4µ2
ric

(
3MfκfµricLf + 13L2

f (1 + Lfµric)2
) := τric (Definition of Lcl in Eq. (G.6))

This concludes the proof of Proposition G.2.

G.3. Proof of Lemma G.3

The proof is similar to Proposition G.2. Let π = π(1). As Kπk = 0 for all k, we that Lπ = 1, and that ΛπK+1 = I, and

Λπk = (Aπol,k)
⊤Λπk+1A

π
ol,k + τI (G.12)

On the other hand, following the arguments of Proposition G.2, we it can be shown that V π(tk;u = 0, ξ) = ξ⊤Pctk ξ, where
Pctk satisfies the recursion PctK+1 = I and

Pctk = Φ1(tk+1, tk)
⊤Pctk+1Φ1(tk+1, tk) + Yctk , Yctk :=

∫ tk

s=tk

Φ1(s, tk)
⊤Φ1(s, tk)ds,

where Φ1(s, s) = I and where (using that we consider V π(tk;u = 0, ξ) with u = 0, so the corresponding K(t) in
Eq. (G.8) vanishes)

d

dt
Φ1(t, s) = Aπ

ol(s)Φ1(t, s).

Hence, Φ1(tk+1, tk) = Aπol,k, so that

Pctk = (Aπol,k)
⊤Pctk+1A

π
ol,k + Yctk , Yctk :=

∫ tk

s=tk

Φ1(s, tk)
⊤Φ1(s, tk)ds

Along the lines of Lemma G.7, it can be shown that for τ ≤ τric, Φ1(s, tk)
⊤Φ1(s, tk) ⪰ 1

2I for all t ∈ Ik. Thus,

Pctk ⪰ (Aπol,k)
⊤Pctk+1A

π
ol,k +

1

2
I.

Comparing to Eq. (G.12), we find that Pctk ⪰ 1
2Λ

π
k . As ∥Pctk ∥ = supξ:∥ξ∥=1 V

π(tk;u = 0, ξ) ≤ µric, we conclude
∥Λπk∥ ≤ 2µric, as neeeded.

G.4. Proof of Lemma A.1

We recall the definitions κπ,∞ := max1≤j≤k≤K+1 ∥Φπcl,k,j∥, and

κπ,1 := max
k∈[K+1]

τ

 k∑
j=1

∥Φπcl,k,j∥ ∨
K+1∑
j=k

∥Φπcl,j,k∥


κ2π,2 := max

k∈[K+1]
τ

 k∑
j=1

∥Φπcl,k,j∥2 ∨
K+1∑
j=k

∥Φπcl,j,k∥2
 ,
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and recall the definitions ΛπK+1 = I, and Λπk = (Aπcl,k)
⊤Λπk+1A

π
cl,k + τI, and µπ,⋆ := maxk∈{k0,k0+1,...,K+1} ∥Λπk∥.

Let us first bound ∥Φπcl,k,j∥ for j ≥ k0.

Claim G.7. For j ≥ k0, and τ ≤ 1/6LfLπ , ∥Φπcl,k,j∥ ≤
√
max{1, 6LfLπ}µπ,⋆(1− τ/µπ,⋆)k−j

Proof. We apply Lemma F.10 with Xk ← Aπol,k, Q = I, and Yk = 0, and only take the recursion back to k = k0. That
lemma shows that, as long as ∥Aπol,k − I∥ ≤ κτ for some κ ≤ 2/τ, it holds that (for j ≥ k0)

∥Φπcl,k,j∥2 ≤ max{1, 2κ}µπ,⋆(1− τ/µπ,⋆)
k−j .

Lemmas I.3 and I.4, and using Lπ ≥ 1, we have that for τ ≤ 1/4Lf , ∥Aπcl,k − I∥ ≤ ∥Aπol,k − I∥ + ∥Bπol,kKπk∥ ≤
exp(1/4)τLf (1 + Lπ) ≤ 2 exp(1/4)τLfLπ ≤ 3τLfLπ . Hence, for τ ≤ 1/6LfLπ , we can take κ := 3LfLπ and have
κ ≤ 1/2τ. For this choice of κ, we get

∥Φπcl,k,j∥2 ≤ max{1, 6LfLπ}µπ,⋆(1− τ/µπ,⋆)
k−j .

Next, we bound ∥Φπcl,k,j∥ for k ≤ k0.

Claim G.8. For k ≥ k0, ∥Φπcl,k,j∥ ≤ exp(k0τLf ).

Proof. For j ≤ k ≤ k0, we have Kπj = 0. Hence Aπcl,j = Aπol,j , and from Lemma I.4, we get ∥Aπcl,j∥ ≤ exp(τLf ). Thus

∥Φπcl,k,j∥ ≤
∏k

j=1 ∥Aπol,j∥ ≤ exp(kτLf ) ≤ exp(k0τLf ).

Finally, we bound we bound ∥Φπcl,k,j∥ for j ≤ k0.

Claim G.9. For j ≤ k0, ∥Φπcl,k,j∥ ≤
√
max{1, 6LfLπ}µπ,⋆ exp(τk0Lf ).

Proof. For j < k0, we have ∥Φπcl,k,j∥ = ∥Φπcl,k,k0
Φπcl,k,j∥ ≤ ∥Φπcl,k,k0

∥∥Φπcl,k0,j
∥. The first term is at most

max{1, 6LfLπ}µπ,⋆ by Claim G.7, and the second term at most exp(τk0Lf ) by Claim G.8.

We can now bound all terms of interest. Directly from the dichotmoty in Claim G.7, we have κπ,∞ ≤√
max{1, 6LfLπ}µπ,⋆ exp(τk0Lf ). Next, for any k, we can bound via Claims G.7 and G.9

τ

k∑
j=1

∥Φπcl,k,j∥2 ≤ τ

k0∑
j=1

∥Φπcl,k,j∥2 + τ

k∑
j=k0

∥Φπcl,k,j∥2

≤ max{1, 6LfLπ}µπ,⋆

(τk0) exp(2τk0Lf ) + τ

k∑
j=k0

(1− τ/µπ,⋆)
k−k0

 (Claims G.7 and G.9)

≤ max{1, 6LfLπ}µπ,⋆

(τk0) exp(2τk0Lf ) + τ

∞∑
n=0

(1− τ/µπ,⋆)
n

︸ ︷︷ ︸
= 1

1−(1−τ/µπ,⋆)
=µπ,⋆/τ


≤ max{1, 6LfLπ}µπ,⋆ ((τk0) exp(2τk0Lf ) + µπ,⋆) .
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and show the same bound for τ
∑K+1

j=k ∥Φπcl,j,k∥2, which yields the desired upper bound on κπ,2. Finally, to bound κπ,1,

τ

k∑
j=1

∥Φπcl,k,j∥ ≤ τ

k0∑
j=1

∥Φπcl,k,j∥+ τ

k∑
j=k0

∥Φπcl,k,j∥

≤
√

max{1, 6LfLπ}µπ,⋆

(τk0) exp(τk0Lf ) + τ

k∑
j=k0

√
(1− τ/µπ,⋆)k−k0

 (Claims G.7 and G.9)

≤
√

max{1, 6LfLπ}µπ,⋆

(
(τk0) exp(τk0Lf ) + τ

∞∑
n=0

√
(1− τ/µπ,⋆)n

)
(i)

≤
√
max{1, 6LfLπ}µπ,⋆

(
(τk0) exp(τk0Lf ) + 2τ

∞∑
n=0

(1− τ/µπ,⋆)
n

)
=
√
max{1, 6LfLπ}µπ,⋆ ((τk0) exp(τk0Lf ) + 2µπ,⋆) ,

where in (i), we use that
∑

n≥0

√
(1− γ)n =

∑
n≥0

√
(1− γ)2n +

√
(1− γ)2n+1 ≤ 2

∑
n≥0

√
(1− γ)2n =

2
∑

n≥0(1− γ)n. One can establish the same bound for τ
∑K+1

j=k ∥Φπcl,j,k∥, which gives the desired bound on κπ,1.
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H. Optimization Proofs
H.1. Proof of Descent Lemma (Lemma A.13)

Proof of Lemma A.13. For simplicity, write Err∇ = Err∇,π(n)(δ), L∇,π,∞ = L∇,π(n),∞, and Errx̂ = Errx̂(δ) and Err∇(δ)

and M ≥ MJ ,tay,π(n) . Note that if π and π̃ have the same input sequence but possibly different gains, J disc
T (π) =

J disc
T (π̃). Therefore,

J disc
T (π(n+1)) = J disc

T (π̃(n+1)).

Define the input

ǔ
(n)
k = u

(n)
k − η∇̂

(n)

k + Kπ
(n)

k (xπk − x̂k)

Then, as in Eq. (E.3),

uπ̃
(n)

k = uπ
(n)

orac,k (ũ1:K) = ũπ
(n)

k (ǔ1:K), xπ̃
(n)

k = xπ
(n)

orac,k (ũ1:K) = x̃π
(n)

k (ǔ1:K), ∀k ∈ [K].

Consequently, we have the quality

J disc
T (π̃(n)) := J π̃(n+1),disc

T (uπ̃
(n)

1:K ) = J π(n),disc
T (ǔ1:K) = J π(n),disc

T (uπ
(n)

1:K + δǔ
(n)
k ),

where we introduced

δǔ
(n)
k := ǔ

(n)
k − u

(n)
k = −η

τ
∇̂

(n)

k︸ ︷︷ ︸
=δǔ

(n;1)
k

+ Kπ
(n)

k (xπk − x̂k)︸ ︷︷ ︸
=δǔ

(n;2)
k

Claim H.1. We have

√
τ∥δǔ(n)1:K∥ℓ2 ≤

√
T (η(L∇,π,∞ +

1

τ
Err∇) + Errx̂)

max
k
∥δǔ(n)k ∥ ≤ (η(L∇,π,∞ +

1

τ
Err∇) + Errx̂)

Proof. The first bound follows from the second. We have that

max
k
∥δǔ(n)k ∥ ≤ max

k
∥δǔ(n;1)k ∥+max

k
∥δǔ(n;2)k ∥

≤ η

τ
max

k
∥∇̂

(n)

k ∥+ Errx̂

≤ η

τ

(
max

k
∥J π(n),disc

T (uπ
(n)

1:K )∥+ Err∇

)
+ Errx̂

≤ η

τ
(τL∇,π,∞ + Err∇) + Errx̂ (Lemma A.8)

= η(L∇,π,∞ +
1

τ
Err∇) + Errx̂

As a consequence of the above claim, it holds that if

(η(L∇,π,∞ +
1

τ
Err∇) + Errx̂) ≤ min

{
Rfeas

8
, Bstab,π, Btay,inf,π,

Btay,2,π√
T

}
,

then (a) Lemma A.7 implies stability of π̃(n):

µπ̃(n),⋆ ≤ 2µπ(n),⋆, Lπ̃(n) = Lπ(n) ,
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and (b) the Taylor expansion in Lemma A.6 implies that

J disc
T (π̃(n)) = J π(n),disc

T (uπ
(n)

1:K + δǔ
(n)
k )

= J disc
T (π(n)) +

〈
δǔ

(n)
1:K ,∇J

π(n),disc
T (uπ

(n)

1:K )
〉
+
Rτ

2
∥δǔ(n)1:K∥

2
ℓ2

≤ J disc
T (π(n)) +

2∑
i=1

〈
δǔ

(n;i)
1:K ,∇J π(n),disc

T (uπ
(n)

1:K )
〉
+Mτ∥δǔ(n;i)1:K ∥

2
ℓ2︸ ︷︷ ︸

Termi

. (AM-GM)

It remains to massage the above display to obtain the descent descent guarantee:

Term1 =
〈
δǔ

(n;1)
1:K ,∇J π(n),disc

T (uπ
(n)

1:K )
〉
+Mτ∥δǔ(n;1)1:K ∥

2
ℓ2

≤ ⟨δǔ(n;1)1:K , ∇̂
(n)

1:K⟩+ ∥δǔ
(n;1)
k ∥ℓ2

√
KErr∇+Mτ∥δǔ(n;1)1:K ∥

2
ℓ2

≤ ⟨δǔ(n;1)1:K , ∇̂
(n)

1:K⟩+
K

4Rτ
Err2∇+ 2Mτ∥δǔ(n;1)1:K ∥

2
ℓ2

= (−η
τ
+ 2M

η2

τ
)∥∇̂

(n)

1:K∥2ℓ2 +
T

4Rτ2
Err2∇

≥ − η

2τ
∥∇̂

(n)

1:K∥2ℓ2 +
T

4Mτ2
Err2∇,

where the last step uses η ≤ 1
4M . Then,

Term2 =
〈
δǔ

(n;2)
1:K ,∇J π(n),disc

T (uπ
(n)

1:K )
〉
+Mτ∥δǔ(n;2)1:K ∥

2
ℓ2

≤ ∥δǔ(n;2)1:K ∥ℓ2∥∇J
π(n),disc
T (uπ

(n)

1:K )∥ℓ2 +Mτ∥δǔ(n;2)1:K ∥
2
ℓ2

≤
√
τ∥δǔ(n;2)1:K ∥ℓ2 ·

√
KτL∇,π,∞ +Mτ∥δǔ(n;2)1:K ∥

2
ℓ2 (Lemma A.8)

≤
√
Kmax

k
∥δǔ(n;2)k ∥ ·

√
KτL∇,π,∞ +MτKmax

k
∥δǔk∥2

= T (Errx̂L∇,π,∞ +MErr2x̂).

Thus,

J disc
T (π(n+1))− J disc

T (π(n))

≤ Term1 +Term2

≤ − η

2τ
∥∇̂

(n)

1:K∥2ℓ2 + T (
1

4Mτ2
Err2∇+ Errx̂L∇,π,∞ +MErr2x̂).

H.2. Proof of Proposition 4.1

The proof of Proposition 4.1 makes liberal use of the definitions of the linearizations given in Appendix C.1, which we
recall without further comment. Going forward, introduce the Jacobian linearization of the stabilized cost:

J π,jac
T (ū) := V (x̃π,jac(t | ū)) +

∫ T

0

Q(x̃π,jac(t | ū), ũπ,jac(t | ū), t)dt.

We now characterize some properties of J π,jac
T .

Lemma H.1 (Valid First-Order Approximation). We have that ∇ūJ π
T (ū) = ∇ūJ π,jac

T (ū).

Proof. Immediate from the chain rule, and the fact that the Jacobian linearizations are defined as the first-order Taylor
expansion of the true dynamics.

74



Learned Locally Linear Models for Nonlinear Policy Optimization

Lemma H.2 (Congruence with the Open-Loop).

inf
ũ
J π,jac
T (ũ) = inf

ũ
J jac
T (ũ;uπ).

Proof. We prove inf ũ J π,jac
T (ũ) ≤ inf ũ J jac

T (ũ;uπ); the converse can be proved similarly. Fix any ū1 ∈ U . It suffices to
exhibit some ū2 ∈ U such that, for all t ∈ [0, T ],

x̃π,jac(t | ū2) = xjac(t | ū1;u
π), ũπ,jac(t | ū2) = ū1(t).

By substracting off xπ(t) and uπ(t), it suffices to show that

δx̃π,jac(t | ū2) = δxjac(t | ū1;u
π), δũπ,jac(t | ū2) = δū1(t).

It can be directly checked from Lemmas C.1 and C.2 that the input ū2(t) = ū1(t) − Kπk(t)δx
jac(t | ū1;u

π) ensures the
above display holds.

The last lemma contains our main technical endeavor, and its proof is defered to Lemma H.3 just below.

Lemma H.3 (Strong Convexity). Suppose τ ≤ min{ 1
4Lf

, 1
16LπLf

}. Then, ū 7→ J π,jac
T (ū)−απ∥ū∥2L2(U) is convex, where

απ := α
64max{1,L2

π}
.

We may now conclude the proof of our proposition.

Proof of Proposition 4.1. Suppose that π satisfies Definition 4.7, and suppose τ ≤ min{ 1
4Lf

, 1
16LπLf

} and

∥∇ūJ π
T (ū)

∣∣
ū=uπ∥L2(U)) ≤ ϵ0. By Lemma H.1, ∥∇ūJ π,jac

T (ū)
∣∣
ū=uπ∥L2(U)) ≤ ϵ0. By Lemma H.3 and the fact that

strong convex functions satisfy the PL-inequality (e.g. Karimi et al. (2016, Theorem 2)), we have

J π,jac
T (uπ) ≤ inf

ū
J π,jac
T (ū) +

ϵ20
απ

= inf
ū
J π,jac
T (ū) +

64ϵ20 max{1, L2
π}

α
.

Finally, by Lemma H.2, inf ū J π,jac
T (ū) = inf ū J jac

T (ū;u), which implies the proposition.

H.2.1. PROOF OF LEMMA H.3

Proof. We claim that suffices to show the following PSD lower bound:

∀ū ∈ U ,Qπ(ū) ≥ απ

α
∥ū∥2L2

, (H.1)

where we define

Qπ(ū) :=

∫ T

0

(∥δx̃π,jac(t | ū)∥2 + ∥δũπ,jac(t | ū)∥2)dt,

and where we define the deviations δ(·) as in Lemma C.2.

Claim H.2. If Eq. (H.1) holds, then Lemma H.3 holds.

Proof of Claim H.2. Note that ū 7→ x̃π,jac(t | ū) and ū 7→ ũπ,jac(t | ū) are affine, that δx̃π,jac(t | ū) = x̃π,jac(t |
ū) − xπ(t) and δũπ,jac(t | ū) = ũπ,jac(t | ū) − uπ(t) are linear (no affine term), and that the diferences x̃π,jac(t |
ū)− δx̃π,jac(t | ū) = xπ(t) and ũπ,jac(t | ū)− δũπ,jac(t | ū) = uπ(t) are independent of ū. Hence, we cocnludeQπ(ū)
is a quadratic function with no linear term, and Q̃π(ū)−Qπ(ū) is linear, where we define

Q̃π(ū) :=

∫ T

0

(∥x̃π,jac(t | ū)∥2 + ∥ũπ,jac(t | ū)∥2)dt,

Assumption 2.1 implies that J π,jac
T (ū) − αQ̃π(ū) is convex, and since the difference Q̃π(ū) − Qπ(ū) is linear, that

J π,jac
T (ū) − αQ̃π(ū) is also convex. Lastly, as Qπ(ū) is quadratic with no linear term, Eq. (H.1) implies αQπ(ū) −

απ∥ū∥2L2
is convex. Thus, J π,jac

T (ū)− απ∥ū∥2L2
= (J π,jac

T (ū)− αQ̃π(ū))− (αQπ(ū)− απ∥ū∥2L2
) is convex.
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To verify Eq. (H.1), let us define a few salient operators. Let X denote the space of L2 bounded curves x(t) ∈ Rdx . We
define linear operators T1 : U → X and T2 : U → X and K : X → U via

T1[ū](t) = δx̃π,jac(tk(t) | ū), T2[ū](t) = δx̃π,jac(t | ū), K[x̄](t) = Kπk(t)x̄(t).

Then, letting IU denote the identity operator of U , we can write

Qπ(ū) = ∥T2[ū]∥2L2(X ) + ∥(IU +KT1)[ū]∥2L2(U).

Next, we relate T2 and T1. Define the operators L : X → X and W : U → X by

L[x̄](t) = Φπ
ol(t, tk(t))x̄(t), W[ū](t) =

∫ t

s=tk(t)

Φπ
ol(t, s)B

π
ol(s)ū(s)ds.

Then, it can be checked from Lemmas C.2 and C.10 that

T2[ū] = LT1[ū] +W[ū].

Hence,

Qπ(ū) = ∥(LT1 +W)[ū]∥2L2(X ) + ∥(IU +KT1)[ū]∥2L2(U).

With this representation of Qπ , we establish a lower bound by applying the following lemma, whose proof we below:

Lemma H.4. Let A,B be Hilbert spaces with norms ∥ · ∥A and ∥ · ∥B, let IA denote the identity operator on U, and
let T,W : A → B, L : B → B, and K : B → A be linear operators, and let ∥ · ∥op denote operator norms. Then, if
∥W∥op ≤ min{1,σmin(L)}

4∥K∥ , it holds for any a ∈ A,

∥(LT+W)[a]∥2B + ∥(IA +KT)[a]∥2A ≥ ∥a∥2 ·
min{1, σmin(L)2}
16max{1, ∥K∥2op}

,

where σmin(L) := infa:∥a∥A=1 ∥La∥A.

To apply the lemma, we first perform a few computations. Throughout, we use ∥ · ∥op to denote operator norm, and σmin

to denote minimal singular value as an operator, e.g.

∥K∥op = sup
x̸̄=0

∥K[x̄]∥L2(U)

∥x̄∥L2(X )
, σmin(L) = inf

x̄ ̸=0

∥L[x̄]∥L2(U)

∥x̄∥L2(X )
.

Claim H.3. Under Definition 4.7, ∥K∥op ≤ Lπ .

Proof. Since K is a (block-)diagonal operator in t, i.e. K[x̄](t) = Kπk(t)x̄(t), its L2(X ) → L2(U) operator is bounded by
maxk ∥Kπk∥, which is at most Lπ under Definition 4.7.

Claim H.4. For τ ≤ Lf/4, σmin(L) ≥ 1− τLf exp(τLf ) ≥ 1
2 .

Proof. Again, since L is a block-diagonal operator in t, i.e. L[x̄](t) = Φπ
ol(t, tk(t))x̄(t), σmin(L) =

inft∈[0,T ] σmin(Φ
π
ol(t, tk(t))). By . . . , ∥Φπ

ol(t, tk(t)) − I∥ ≤ τLfτ(τLf ) ≤ 1/2. Thus,inft∈[0,T ] σmin(Φ
π
ol(t, tk(t))) ≥

1/2.

Claim H.5. ∥W∥op ≤ τLf exp(τLf ), which is at most 2τLf for τ ≤ Lf/4.
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Proof. For any ū, we bound

∥W[ū]∥2L2(U) =

∫ T

t=0

∥∥∥∥∥
∫ t

s=tk(t)

Φπ
ol(t, s)B

π
ol(s)ū(s)ds

∥∥∥∥∥
2

≤
∫ T

t=0

(t− tk(t))
∫ t

s=tk(t)

∥Φπ
ol(t, s)B

π
ol(s)ū(s)ds∥

2 (Cauchy-Schwartz)

≤ τ exp(2τLf )

∫ T

t=0

∫ t

s=tk(t)

∥Bπ
ol(s)∥2 ∥ū(s)ds∥

2 (t− tk(t) ≤ τ, Lemma I.4)

≤ τL2
f exp(2τLf )

∫ T

t=0

∫ t

s=tk(t)

∥ū(s)ds∥2 (Assumption 4.1)

= τL2
f exp(2τLf )

∫ T

s=0

∫ tk+1(t)

t=s

∥ū(s)ds∥2 ds

≤ τ2L2
f exp(2τLf )

∫ T

s=0

∥ū(s)ds∥2 ds

= (τLf exp(τLf ))
2∥ū∥2L2(U).

With the above three claims, Lemma H.4 implies that as long as τ ≤ min{ 1
4Lf

, 1
16LπLf

},

Qπ(ū) = ∥(LT1 +W)[ū]∥2L2(X ) + ∥(IU +KT1)[ū]∥2L2(U) ≥
1

64max{1, L2
π}

=
απ

α
.

Proof of Lemma H.4. Without loss of generality, assume ∥a∥A = 1, and define η = min{1,σmin(L)}
2∥K∥op

. We consider two
cases: First, if ∥Ta∥ ≤ η, then

∥(LT+W)[a]∥2B + ∥(IA +KT)[a]∥2A ≥ ∥(IA +KT)[a]∥2A ≥ (∥a∥ − ∥K∥opη)2 = (1− 1

2
)2 ≥ 1

4
.

Otherwise, suppose ∥Ta∥ > η. Then,

∥(LT+W)[a]∥2B + ∥(IA +KT)[a]∥2A ≥ ∥(LT+W)[a]∥2B ≥ (η − ∥W∥op∥a∥)2 = (
min{1, σmin(L)}

2∥K∥op
− ∥W∥op)2.

Hence, if ∥W∥op ≤ min{1,σmin(L)}
4∥K∥op

, the above is at least

min{1, σmin(L)2}
16max{1, ∥K∥2op}

.

I. Discretization Arguments
In this section, we use discretizations of the Markov and transition operators. Again, we assume π is feasible. We define
the shorthand.

Definition I.1 (Useful Shorthand). Define the short hand

ψπ(k2, k1) := ∥Φπcl,k2,k1+1∥, Lol := exp(τLf ), (I.1)

and note that ψπ(k2, k1) ≤ κπ,∞ due to Lemma A.1.
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I.1. Discretization of Open-Loop Linearizations

All lemmas in this section assume π is feasible.
Lemma I.1 (Continuity of xπ(·)). Then,

∥xπ(t)− xπ(t′)∥ ≤ κf |t− t′|

Proof. Assume without loss of generality that t′ ≥ t. By Assumption 4.1 feasibility of π,

∥ d
ds

xπ(s)∥ = ∥fdyn(xπ(s),uπ(s)∥ ≤ κf .

Hence, as xπ(t′) = xπ(t) +
∫ t′

s=t
fdyn(x

π(s),uπ(s))ds, the bound follows.

Lemma I.2. For all k, s ∈ Ik, we have ∥Bπ
ol(t)−Bπ

ol(s)∥ ∨ ∥Aπ
ol(t)−Aπ

ol(s)∥ ≤ τκfMf .

Proof. We bound ∥Bπ
ol(t)−Bπ

ol(s)∥ as ∥Aπ
ol(t)−Aπ

ol(s)∥ is similar. Assume s ≤ t without loss of generality. Then,

∥Bπ
ol(t)−Bπ

ol(s)∥ = ∥∂ufdyn(xπ(t),uπ(t))− ∂ufdyn(xπ(s),uπ(s))

= ∥∂ufdyn(xπ(t),uπ(s))− ∂ufdyn(xπ(s),uπ(s))∥ (uπ ∈ Uτ)
= ∥∂ufdyn(xπ(t),uπ(s))− ∂ufdyn(xπ(s),uπ(s))∥ (uπ ∈ Uτ)
≤ ∥xπ(t)− xπ(s)∥ max

α∈[0,1]
∥∂ufdyn(αxπ(t) + (1− α)xπ(s),uπ(s))∥ (Mean Value Theorem)

≤ ∥xπ(t)− xπ(s)∥Mf (Assumption 4.1 and convexity of feasibility)
≤ (t− s)κfMf ≤ τκfMf . (Lemma I.1)

Lemma I.3 (Bound on Bπol,k). For any k ∈ [K], ∥Bπol,k∥ ≤ τLolLf = τLf exp(τLf ).

Proof. ∥Bπol,k∥ =
∫ tk+1

s=tk
Φπ

ol(tk+1, s)B
π
ol(s)ds ≤ τmaxs∈Ik

∥Φπ
ol(tk+1, s)∥∥Bπ

ol(s)∥. We bound ∥Bπ
ol(s)∥ ≤ Lf by

Assumption 4.1 and ∥Φπ
ol(tk+1, s)∥ ≤ Lol by Lemma I.4 below.

I.2. Discretization of Transition and Markov Operators

We begin by discretizing the open-loop transition operator.
Lemma I.4 (Discretization of Open-Loop Transition Operator). Recall Lol = exp(τLol). ∥Φπ

ol(t
′, t) − I∥ ≤ (t′ −

t)Lf exp((t
′ − t)Lf ). Moreover, Φπ

ol(t, t
′) ≤ exp((t′ − t)Lf ). In particular, if t, t′ ∈ Ik, then

∥Φπ
ol(t

′, t)− I∥ ≤ τLfLol, Φπ
ol(t

′, t) ≤ Lol = exp(τLf )

Proof of Lemma I.4. For the first part, it suffices to bound the ODE y(t′) = Φπ
ol(t

′, t)ξ, where ξ ∈ Rdx is an arbitrary
initial condition with ∥ξ∥ = 1. Then y(t) = Φπ

ol(t, t)ξ = ξ, and d
dsy(s) = Aπ

ol(s)y(s). Hence, ∥ d
dsy(s)∥ ≤ Lf∥y(s)∥.

The result now follows by comparison to the constant ODE z(t) = y(t), d
dsz(s) = 0, and Picard’s Lemma (Lemma C.9).

The second part follows from Picard’s lemma with comparison the to the stationary curve z(0) = 0.

Next, we bound the difference between the operator Φ̃
π

cl in the definition of Φπ
cl, and the identity matrix.

Lemma I.5. Recall the definition Lol = exp(τLf ) and

Φ̃
π

cl(s, tk) = Φπ
ol(s, tk) + (

∫ s

s′=tk

Φπ
ol(s, s

′)Bπ
ol(s

′)ds)Kk.

Then,

∥Φ̃π

cl(t, tk(t))− I∥ ≤ τLfLol(1 + Lπ).

Similary,

∥Φ̃π

cl(t, tk(t))− I∥ ≤ τLfLol(1 + Lπ).
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Proof of Lemma I.5. Let tk = tk(t) for shorthand. We have

∥Φ̃π

cl(t, tk)− I∥ = ∥Φπ
ol(t, tk) +

∫ t

s=tk

Φπ
ol(t, s)B

π
ol(s)ds)K

π
k − I∥

≤ ∥Φπ
ol(t, tk)− I∥+ |t− tk|∥Kπk∥ max

s∈[tk,t]
∥Φπ

ol(t, s)B
π
ol(s)∥

≤ ∥Φπ
ol(t, tk)− I∥+ |t− tk|LπLf max

s∈[tk,t]
∥Φπ

ol(t, s)∥ (Assumption 4.1)

≤ |t− tk|Lf exp(Lf (t− tk)) + |t− tk|LπLf max
s∈[tk,t]

exp(Lf (t− tk)) (Lemma I.4)

≤ τLf (1 + Lπ) exp(Lfτ) = τLf (1 + Lπ)Lol.

The bound on ∥Φ̃π

cl(t, tk(t))− I∥ can be derived similarly.

Lemma I.6 (Discretization of Closed-Loop Transition Operator). Let s > t such that tk(s) > tk(t). Then, under Defini-
tion 4.7,

∥Φπ
cl(s, tk(t)+1)− Φπcl,k(s),k(t)+1∥ ≤ 2LfLolLπψπ(k(s), k(t)).

Proof of Lemma I.6. As tk(s) > tk(t), we can write s ∈ Ik2
and t ∈ Ik1

for k2 > k1; then

k2 = k(s), k1 = k(t).

We now have

∥Φπ
cl(s, tk(t)+1)− Φπcl,k(s),k(t)+1∥ = ∥Φ̃

π

cl(s, tk2
)− I∥ · ∥Φπcl,k2,k1+1∥

= ∥Φ̃π

cl(s, tk2)− I∥ · ψπ(k2, k1)

Directly from Lemma I.5 and k2 = k(s), ∥Φ̃π

cl(s, tk2
)− I∥ ≤ τLfLol(1 + Lπ). This yields, with Lπ ≥ 1,

∥Φπ
cl(s, tk(t)+1)− Φπcl,k(s),k(t)+1∥ ≤ τLfLol(1 + Lπ)ψπ(k2, k1) ≤ 2LfLolLπψπ(k2, k1).

Lemma I.7. Suppose Definition 4.7 holds and that τ ≤ 1/4Lf max{1, Lπ}. Then, ∥Φπcl,k+1,k∥ ≤ 5/3.

Proof. We have

∥Φπcl,k+1,1∥ = ∥Φ
π
ol(tk+1, tk) + Bπol,kKk∥ ≤ ∥Φ

π
ol(tk+1, tk)∥+ Lπ∥Bπol,k∥,

where we use ∥Kk∥ ≤ Lπ under Definition 4.7. By Lemma I.3, ∥Bπol,k∥ ≤ τLf exp(τLf ) and by
Lemma I.4,∥Φπ

ol(tk+1, tk)∥ ≤ Lol = exp(τLf ). Then, ∥Φπcl,k+1,1∥ ≤ exp(τLf )(1+τLfLπ). For τ ≤ 1/Lf max{1, Lπ},
we have ∥Φπcl,k+1,1∥ ≤ exp(1/4)(1 + 1/4) ≤ 5/3.

Finally, we turn to a discretization of the Markov operator:

Lemma I.8 (Discretization of Closed-Loop Markov Operator). The following bounds hold:

(a) For any k2 > k1, we have

max
t∈Ik1

,s∈Ik2

∥τ−1Ψπcl,k2,k1
−Ψπ

cl(s, t)∥ ≤ τψπ(k2, k1)Lol

(
κfMf + 4L2

fLπ

)︸ ︷︷ ︸
Lcl,1

.
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(b) For any k2 > k1, we have

sup
t∈Ik1

∥τ−1Ψπcl,k2,k1
−Ψπ

cl(k2, t)∥ ≤ τψπ(k2, k1)Lol

(
κfMf + 2L2

f

)︸ ︷︷ ︸
Lcl,2

≤ τκπ,∞Lol

(
κfMf + 2L2

f

)
.

(c) For any (s, t) with tk(s) = tk(t), we have

∥Ψπcl,tk(s),tk(t)
∥ ≤ LolLf

(d) For any 1 ≤ k1 < k2 ≤ K and t for which tk(t) = k1,

1

τ
∥Ψπcl,k2,k1

∥ ∨ ∥Ψπ
cl(tk2

, t)∥ ≤ LolLfψπ(k2, k1) ≤ LolLfκπ,∞.

Proof. Let us start with the first bound. Set k1 = k(t), and k2 = k(s). Note that Ψπcl,k2,k1
:= Φπcl,k2,k1+1B

π
ol,k1

∥τ−1Ψπcl,k2,k1
−Ψπ

cl(s, t)∥
= ∥τ−1Φπcl,k2,k1+1B

π
ol,k1
−Φπ

cl(s, tk1+1)Φ
π
cl(tk1+1, t)B

π
ol(t)∥

≤ ∥Φπcl,k2,k1+1(Φ
π
cl(tk1+1, t)B

π
ol(t)− τ−1Bπol,k1

)∥+ ∥(Φπ
cl(s, tk1+1)− Φπcl,k2,k1+1)B

π
ol(t)∥

≤ ψπ(k2, k1)∥Φπ
cl(tk1+1, t)B

π
ol(t)− τ−1Bπol,k1

∥+ Lf∥Φπ
cl(s, tk1+1)− Φπcl,k2,k1+1∥ (Assumption 4.1 and Eq. (I.1))

≤ ψπ(k2, k1)∥Φπ
cl(tk1+1, t)B

π
ol(t)− τ−1Bπol,k1

∥+ 2τL2
fLolLπψπ(k2, k1). (Lemma I.6)

Finally, we bound

∥Φπ
cl(tk1+1, t)B

π
ol(t)− τ−1Bπol,k1

∥

= ∥Φπ
ol(tk1+1, t)B

π
ol(t)− τ−1

∫ tk1+1

s=tk1

Φπ
ol(tk1+1, s)B

π
ol(s)ds∥

≤ ∥Φπ
ol(tk1+1, t)B

π
ol(t)− τ−1

∫ t

s=tk1

Φπ
ol(tk1+1, t)B

π
ol(s)ds∥+ ∥τ−1

∫ t

s=tk1

Φπ
ol(tk1+1, s)−Φπ

ol(tk1+1, t)B
π
ol(s)ds∥

≤ ∥Φπ
ol(tk1+1, t)∥ max

s∈Ik1

∥Bπ
ol(t)−Bπ

ol(s)∥+ Lf max
s∈Ik1

∥Φπ
ol(tk1+1, s)−Φπ

ol(tk1+1, t)∥∥Bπ
ol(s)∥

≤ τLolκfMf + Lf max
s∈Ik1

∥Φπ
ol(tk1+1, s)−Φπ

ol(tk1+1, t)∥

≤ τLolκfMf + 2τL2
fLol

where the second-tolast step uses Lemmas I.2 and I.4 and Assumption 4.1, and the last step uses ∥∥Φπ
ol(tk1+1, s) −

Φπ
ol(tk1+1, t)∥ ≤ ∥Φπ

ol(tk1+1, s) − I∥ + ∥Φπ
ol(tk1+1, t) − I∥ ≤ 2τLfLol by Lemma I.4. Combining with the previous

display,

∥τ−1Ψπcl,k2,k1
−Ψπ

cl(s, t)∥
≤ τψπ(k2, k1)

(
LolκfMf + 2L2

fLol + 2L2
fLolLπ

)
≤ τLolψπ(k2, k1)

(
κfMf + 4L2

fLπ

)
(Lπ ≥ 1)

This concludes the proof of (a).

For (b), the argument is the same, but the contribution of 2L2
fLolLπ vanishes, as Φπ

cl(tk(s), tk1+1) = Φπcl,k2,k1+1.

For (c), we note that if tk(s) = tk(t), ∥Ψπ
cl(s, t)∥ = ∥Φ

π
ol(s, t)B

π
ol(t)∥ ≤ LolLf by Assumption 4.1 and Lemma I.4. For

the final inequality, we have by Eq. (I.1) and Lemma I.3 that

∥Ψπcl,tk(s),tk(t)
∥ = ∥Φπcl,k2,k1+1B

π
ol,k1
∥ ≤ τLolLfψπ(k2, k1).

The bound on ∥Ψπ
cl(tk2

, t)∥ is similar.
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I.3. Discretization of the Gradient (Proof of Proposition A.4)

We use the shorthand from Definition I.1. Recall that ∇̃JT (π) = 1
τ
τ(∇J disc

T (π)) is the continuous-time inclusion of the
discrete-time gradient, renormalized by τ−1. Thus, from Lemma C.7,

∇̃JT (π)(t) = τ−1Qπ
u(tk(t)) + τ−1(Ψπcl,T,tk(t)

)⊤ (∂xV (xπ(T )))

+

K∑
j=k(t)+1

(Ψπcl,j,k(t))
⊤(Qπ

x(tj) + KjQ
π
u(tj)).

From Lemma C.6, we can write

∇JT (π)(t) = Qπ
u(t) +Ψπ

cl(T, t)
⊤ (∂xV (xπ(T )))

+

∫ t

s=tk(t)

Ψπ
cl(s, t)

⊤Qπ
x(s)ds

+

K∑
j=k(t)+1

∫
s∈Ij

(
Ψπ

cl(s, t)Q
π
x(s) +Ψπ

cl(tj , t)
⊤Kj⊤Qπ

u(s)
)
ds,

and therefore decompose the error into five terms via the triangle inequality.

∥∇̃JT (π)(t)−∇JT (π)(t)∥ ≤ ∥Qπ
u(t)−Qπ

u(tk(t))∥︸ ︷︷ ︸
:=Term1

+ ∥(Ψπ
cl(T, t)− τ−1(Ψπcl,T,tk(t)

))⊤ (∂xV (xπ(T ))) ∥︸ ︷︷ ︸
:=Term2

+

∫ tk(t)+1

s=t

∥Ψπ
cl(tk(s), tk(t))

⊤Qπ
x(s)∥ds︸ ︷︷ ︸

:=Term3

+ τ

K∑
j=k(t)+1

Term4,j +Term5,j ,

where we further define

Term4,j := sup
s∈Ij

∥Ψπ
cl(s, t)Q

π
x(s)− τ−1(Ψπcl,j,k(t))

⊤(Qπ
x(tj)∥

Term5,j := sup
s∈Ij

∥Ψπ
cl(tj , t)

⊤(Kj)
⊤Qπ

u(s)− τ−1(Ψπcl,j,k(t))
⊤(Kj)

⊤Qπ
u(tj)∥

Before contitnuous, we apply the following lemma.

Lemma I.9 (Discretization of Cost-Gradient). For z ∈ {x, u},

∥Qπ
x(t)−Qπ

x(tk(t))∥ ∨ ∥Qπ
u(t)−Qπ

u(tk(t))∥ ≤ τMcost(1 + κf ).

Proof. We bound ∥Qπ
x(t)−Qπ

x(tk(t))∥ as the bound on ∥Qπ
u(t)−Qπ

u(tk(t))∥ is similar.

∥Qπ
x(t)−Qπ

x(tk(t))∥ = ∥∂xQ(xπ(t),uπ(t), t))− ∂xQ(xπ(tk(t))u
π(tk(t)), tk(t))∥

= ∥∂xQ(xπ(t),uπ(tk(t)), t))− ∂xQ(xπ(tk(t)),u
π(tk(t)), tk(t))∥ (uπ(·) ∈ Uτ)

≤Mcost|t− tk(t)|+Mcost∥xπ(tk(t))− xπ(t)∥ (Integrating Assumption 4.2)
≤Mcostτ+Mcostκfτ = τMcost(1 + κf ). (Lemma I.1)

From Lemma I.9, we bound

Term1 ≤ τMcost(1 + κf ).
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Next, using that T/τ is integral by assumption, i.e. t = tk(T ), we have

Term2 = ∥(Ψπ
cl(T, t)− τ−1(Ψπcl,T,tk(t)

))⊤ (∂xV (xπ(T ))) ∥

≤ Lcost∥Ψπ
cl(T, t)− τ−1(Ψπcl,T,tk(t)

)∥ (Assumption 4.2)

≤ τLcostLcl,2ψπ(k(T ), k(t)) = τLcostLcl,2ψπ(K + 1, k(t)), (Lemma I.8(b))

For the third term, we have

Term3 =

∫ tk(t)+1

s=t

∥Ψπ
cl(tk(s), tk(t))

⊤Qπ
x(s)∥ds

≤ Lcost

∫ tk(t)+1

s=t

∥Ψπ
cl(tk(s), tk(t))

⊤∥ds (Assumption 4.2)

≤ τLcost max
s∈[t,tk(t)+1)

∥Ψπ
cl(tk(s), tk(t))

⊤∥ (ignoring interval endpoint due to integration)

= LcostLolLf ,

where in the last step we use Lemma I.8(c). Summarizing these the bounds on the first and third term,

Term1 +Term2 +Term3 ≤ τ(LcostLolLf +Mcost(1 + κf ) + LcostLcl,2ψπ(K + 1, k(t)) (I.2)

Next, we turn to the fourth and and fifth terms. We bound

Term4,j := sup
s∈Ij

∥Ψπ
cl(s, t)Q

π
x(s)− τ−1(Ψπcl,j,k(t))

⊤(Qπ
x(tj)∥

≤ ∥τ−1Ψπcl,j,k(t)∥ · sup
s∈Ij

∥Qπ
x(s)−Qπ

x(tj)∥+ ∥τ−1Ψπcl,j,k(t) −Ψπ
cl(s, t)∥∥Qπ

x(tj)∥

≤ LolLfψπ(j, k(t)) · sup
s∈Ij

∥Qπ
x(s)−Qπ

x(tj)∥+ τLcl,1ψπ(j, k(t))∥Qπ
x(tj)∥ (Lemma I.8(a&c))

≤ LolLfψπ(j, k(t)) · τMcost(1 + κf )) + τLcl,1ψπ(j, k(t))Lcost (Assumption 4.2 and Lemma I.9)
= τψπ(j, k(t))(LolLfMcost(1 + κf ) + LcostLcl,1).

Moreover,

Term5,j = sup
s∈Ij

∥Ψπ
cl(tj , t)

⊤(Kj)
⊤Qπ

u(s)− τ−1(Ψπcl,j,k(t))
⊤(Kj)

⊤Qπ
u(tj)∥

≤ ∥τ−1(Ψπcl,j,k(t))∥∥Kj∥ sup
s∈Ij

∥Qπ
u(s)−Qπ

u(tj)∥

+ sup
s∈Ij

∥τ−1(Ψπcl,j,k(t))−Ψπ
cl(tj , t)∥∥Kj∥∥Qπ

u(tj)∥

≤ Lπ∥τ−1(Ψπcl,j,k(t))∥ sup
s∈Ij

∥Qπ
u(s)−Qπ

u(tj)∥

+ Lπ sup
s∈Ij

∥τ−1(Ψπcl,j,k(t))−Ψπ
cl(tj , t)∥∥Qπ

u(tj)∥ (Definition 4.7)

≤ LπLolLfψπ(j, k(t)) sup
s∈Ij

∥Qπ
u(s)−Qπ

u(tj)∥ (Lemma I.8(d))

+ LπLcl,2ψπ(j, k(t))∥Qπ
u(tj)∥ (Lemma I.8(b))

≤ τLπLolLfψπ(j, k(t))Mcost(1 + κf ) + LπLcl,2ψπ(j, k(t))Lcost (Assumption 4.2 and Lemma I.9)
= τψπ(j, k(t)) (LπLolLfMcost(1 + κf ) + LπLcl,2Lcost) .

Hence,

Term4,j +Term5,j ≤ τψπ(j, k(t)) ((1 + Lπ)LolLfMcost(1 + κf ) + Lcost(Lcl,1 + LπLcl,2))
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Using the definitions of Lcl,1, Lcl,2 in Lemma I.8 and Lπ ≥ 1, we have

(Lcl,1 + LπLcl,2) = Lol(κfMf + 4L2
fLπ + Lπ(κfMf + 2L2

f ))

= Lol((1 + Lπ)κfMf + 6L2
fLπ ≤ Lπ(2κfMf + 6L2

f ))

Substituing into the the previous display and again using Lπ,≥ 1,

Term4,j +Term5,j ≤ τψπ(j, k(t))Lol

(
2LπLfMcost(1 + κf ) + LcostLπ(2κfMf + 6L2

f )
)

≤ 2Lπτψπ(j, k(t))Lol

(
LfMcost(1 + κf ) + Lcost(κfMf + 3L2

f )
)

≤ τψπ(j, k(t)) 2LπLol

(
LfMcost(1 + κf ) + Lcost(κfMf + 3L2

f )
)︸ ︷︷ ︸

:=Lcl,3

.

Hence,

τ

K∑
j=k(t)+1

Term4,j +Term5,j ≤ τLcl,3 · (τ
K∑

j=k(t)+1

ψπ(j, k(t)))

≤ τLcl,3κπ,1. (τ
∑K

j=k(t)+1 ψπ(j, k(t)) = τ
∑K

j=k(t)+1 ∥Φπcl,j,k∥ ≤ κπ,1)

In sum, we conclude that

∥∇̃JT (π)(t)−∇JT (π)(t)∥
≤ τ (LcostLolLf +Mcost(1 + κf ) + LcostLcl,2ψπ(K + 1, k(t)) + κπ,1Lcl,3)

≤ τ (LcostLolLf +Mcost(1 + κf ) + LcostLcl,2κπ,∞ + κπ,1Lcl,3)

≤ τmax{κπ,∞, κπ,1, 1} (LcostLolLf +Mcost(1 + κf ) + (LcostLcl,2 + Lcl,3)) .

Finally, using the definition of Lcl,2 := Lol

(
κfMf + 2L2

f

)
in Lemma I.8(b) and the definition of Lcl,3 :=

2LπLol

(
LfMcost(1 + κf ) + Lcost(κfMf + 3L2

f )
)

defined above, and Lπ ≥ 1,

Mcost(1 + κf ) + LcostLolLf + LcostLcl,2 + Lcl,3 ≤ LπLol

(
(1 + Lf )Mcost(1 + κf ) + Lcost(3κfMf + 8L2

f + Lf )
)
.

Thus, recalling Lol = exp(τLf ),

∥∇̃JT (π)(t)−∇JT (π)(t)∥ ≤ τeτLf max{κπ,∞, κπ,1, 1}Lπ

(
(1 + Lf )Mcost(1 + κf ) + Lcost(3κfMf + 8L2

f + Lf )
)
,

as needed.

Part II

Experiments
J. Experiments Details
J.1. Implementation Details

trajax (Frostig et al., 2021) is used for nonlinear iLQR trajectory optimization and haiku+optax (Hennigan et al.,
2020; Babuschkin et al., 2020) for training neural network dynamics models.
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J.2. Environments

J.2.1. PENDULUM

We consider simple pendulum dynamics with state (θ, θ̇) and input u:

θ̈ = sin(θ) + u.

To integrate these dynamics, we use a standard forward Euler approximation with step size τ = 0.15, applying a zero-order
hold to the input. The goal is to swing up the pendulum to the origin state (0, 0). We consider the cost function:

c((θ, v), u) = θ2 + v2 + u2.

Evaluation details. All methods were evaluated over a horizon of length T = 25 on initial states sampled from
Unif([−1 + π, 1 + π]× {0}).

Random state sampling distribution. For learning from random states and actions, we sample the initial condition from
Unif([−5, 5]2) and random actions from Unif([−1, 1]).

Optimization Details. We use N = 100 samples

J.2.2. QUADROTOR

The 2D quadrotor is described by the state vector:

(x, z, ϕ, ẋ, ż, ϕ̇),

with input u = (u1, u2) and dynamics:

ẍ = −u1 sin(ϕ)/m,
z̈ = u1 cos(ϕ)/m− g,
ϕ̈ = u2/Ixx.

The specific constants we use are m = 0.8, g = 0.1, and Ixx = 0.5. Again, we integrate these dynamics using forward
Euler with step size τ = 0.1. The task is to move the quadrotor to the origin state. The cost function we use is:

c((x, z, ϕ, ẋ, ż, ϕ̇), (u1, u2)) = x2 + z2 + 10ϕ2 + 0.1(ẋ2 + ż2 + ϕ̇2) + 0.1(u21 + u22).

Evaluation details. All methods were evaluated over a horizon of length T = 25 on initial states sampled from
Uniform([−0.5, 0.5]2 × {0}4)

Random state sampling distribution. For learning from random states and actions, we sample the initial condition from
Unif([−1, 1]6) and random actions from Unif([−0.5, 0.5]).

J.3. Neural network training

For modeling environment dynamics, we consider three layer fully connected neural networks For pendulum, we set the
width to 96, the learning rate to 10−3, and the activation to swish. For quadrotor, we set the width to 128, the learning rate
to 5 × 10−3, and the activation to gelu. We use the Adam optimizer with 10−4 additive weight decay and a cosine decay
learning schedule.
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J.4. Least Squares

While Algorithm 1 features a method of moments estimator to estimate the Markov transition operators, our implementa-
tion relies on using regularized least squares. Specifically, we solve:


Ψ̂j,1
Ψ̂j,2
. . .

Ψ̂j,j−1


⊤

︸ ︷︷ ︸
∈Rdx×(j−1)du

=


N∑
i=1


w
(i)
1

w
(i)
2

. . .

w
(i)
j−1


︸ ︷︷ ︸
∈R(j−1)du


w
(i)
1

w
(i)
2

. . .

w
(i)
j−1


⊤

+ λI



−1

·
N∑
i=1


w
(i)
1

w
(i)
2

. . .

w
(i)
j−1

 (y
(i)
j − x̂j)

⊤ (J.1)

J.5. Scaling the gain matrix

In order to stabilize the gain computation during gain estimation (Algorithm 3), we scale the update to the P̂k matrix as:

P̂k ← P̂k ·
1

1 + 0.01∥P̂k∥F
.
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