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Abstract
We consider the problem of solving large-scale
instances of the Max-Cut semidefinite program
(SDP), i.e., optimizing a linear function over n×n
positive semidefinite (PSD) matrices with unit
diagonal. When the cost matrix is PSD, we
show how to exactly reformulate the problem
as maximizing a smooth concave function over
PSD matrices with unit trace. By applying the
Frank-Wolfe method, we obtain a simple algo-
rithm that is compatible with recent sampling-
based techniques to solve SDPs using low mem-
ory. We demonstrate the practical performance of
our method on 106×106 instances of the max-cut
SDP with costs having up to 5 × 106 non-zero
entries. Theoretically, we show that our method
solves problems with diagonally dominant costs
to relative error ϵ in O(nϵ−1) calls to a random-
ized approximate largest eigenvalue subroutine,
each of which succeeds with high probability af-
ter O(log(n)ϵ−1/2) matrix-vector multiplications
with the cost matrix.

1. Introduction
Semidefinite programs (SDPs) involve optimizing a linear
functional over positive semidefinite matrix satisfying lin-
ear constraints. SDPs arise naturally in a wide range of
machine learning problems, including various clustering
formulations, kernel learning (Lanckriet et al., 2004), vari-
ational inference (Bach, 2022) and robustness certification
for neural networks (Raghunathan et al., 2018). While small
and medium-scale SDPs can be solved to high accuracy
using interior point methods that exploit second-order in-
formation, solving large-scale instances of SDPs remains
a challenge. One reason for this is simply because even
storing an n× n dense matrix of decision variables rapidly
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becomes prohibitive as n grows.

To deal with this basic storage challenge, it is common to
consider alternative representations of the positive semidefi-
nite matrix decision variable. Many of these are based on
the observation that for n× n SDPs with O(d) constraints,
there is an optimal solution with rank O(

√
d) (Pataki, 1998;

Barvinok, 1995). Parameterizing the decision variable as
X = UUT where U is an n× r matrix (Burer & Monteiro,
2003), allows for a reduction in storage to O(nr). However,
the problem is no longer convex in these variables, and spu-
rious second order critical points can occur whenever r is
smaller than ∼

√
2d (Waldspurger & Waters, 2020).

Storage can be further reduced, and convexity preserved,
by using sketching-based methods (Yurtsever et al., 2017;
2021). Rather than working with the full decision variable,
this approach employs algorithms, based on enhancements
of the Frank-Wolfe method, that track a random projection
of the decision variable of sufficient dimension to recon-
struct a (1 + ζ)-optimal best rank r approximation of an
ϵ-optimal SDP solution. The working storage cost (i.e., the
storage in addition to that required to specify the instance)
is O(d+ nr/ζ).

A related approach due to Shinde et al. (2021), seeks algo-
rithms that generate a Gaussian random vector with covari-
ance equal to a (near-optimal, near-feasible) solution of an
SDP. Such samples are sufficient to implement many round-
ing schemes, such as the Goemans-Williamson rounding for
Max-Cut (Shinde et al., 2021, Section 4). By applying a
sketching method to the samples, a near-optimal best rank r
approximation of the SDP solution can also be constructed
in low memory (Tropp et al., 2017). The algorithm proposed
by Shinde et al. (2021) has working storage O(n+d) and is
based on modifying the Frank-Wolfe method to track Gaus-
sian samples with covariance equal to the algorithm’s matrix
iterates. It is similar in spirit to the basic sketching-based
method of Yurtsever et al. (2017).

For general SDPs, both factorization-based methods and the
sketching and sampling-based methods typically penalize
violation of the linear constraints in the objective, no longer
ensuring feasibility. This also tends to cause running times
with poor dependence on the desired accuracy ϵ, since the
penalty parameter typically depends on ϵ, and in turn affects
the smoothness of the objective function.
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The Max-Cut SDP Seeking to improve upon these low-
memory methods, in this paper we focus on the Max-Cut
SDP, perhaps the simplest interesting family of SDPs. This
problem (see (SDP-P) in Section 3) involves maximizing a
linear functional over the set of PSD matrices with diagonal
entries equal to one. It arises naturally in SDP relaxations
of unconstrained binary quadratic optimization problems,
such as the celebrated Goemans-Williamson approximation
algorithm for the NP-complete combinatorial optimization
problem Max-Cut (Goemans & Williamson, 1995). The
Max-Cut SDP also arises, e.g., in convex relaxations of the
correlation clustering problem (Charikar & Wirth, 2004), the
factor analysis problem in statistics (Della Riccia & Shapiro,
1982), and as a computational primitive in approaches to
low-rank matrix optimization problems via max-norm regu-
larization (Srebro & Shraibman, 2005; Jaggi, 2013).

As far as we are aware, the earliest low-memory first-
order algorithm for the Max-Cut SDP is due to Klein and
Lu (1998), (reducing the memory use of (Klein & Lu, 1996)).
For a graph with n vertices and m edges, it achieves relative
error ϵ for Laplacian costs in Õ(mn/ϵ3) time using O(n1.5)
working storage. When specialized to the Max-Cut SDP,
the method of (Shinde et al., 2021, Section 4) samples a
Gaussian vector with covariance that achieves relative error
ϵ for the SDP. The method uses O(n) working storage and
Õ(n2/ϵ2) calls to a largest eigenvalue routine that must be
solved to relative error ϵ/n. (Each call costs Õ(m(ϵ/n)−

1
2 )

if implemented using the Lanczos method—see Section 5.)
The time complexity analysis in (Yurtsever et al., 2021) is
focused on ϵ-dependence, with O(ϵ−2) calls to a largest
eigenvalue routine. However, the method has strong practi-
cal performance (see Table 1 in Section 6).

There is a significant literature on theoretical algorithms
for SDP in general, and for the Max-Cut SDP in particular.
The most prominent methods are based on variations on
the matrix multiplicative weights algorithm (Arora et al.,
2005; Arora & Kale, 2016). The state-of-the-art for the
Max-Cut SDP appears to be (Lee & Padmanabhan, 2020),
which achieves ϵ

∑n
i,j=1 |Cij | additive error in Õ(mϵ−3.5)

operations. We are not aware of any practical evaluation of
the algorithms proposed in this general line of work.

Among factorization-based methods, one with good practi-
cal performance and theoretical guarantees is a block coor-
dinate descent method due to Erdogdu et al. (2022). This
applies without assumptions on the cost matrix and achieves
ϵ relative error using storage O(nϵ−1). For diagonally dom-
inant costs, it has theoretical running time Õ(nmϵ−3).

1.1. Our Contributions

Our first contribution is to exactly reformulate the Max-
Cut SDP as the maximization of a concave function with
bounded curvature constant (see Section 2.2) over a compact

convex set for which linear optimization can be reduced to
a symmetric largest eigenvalue problem. This reformulation
is naturally suited to applying the Frank-Wolfe method with
the Gaussian-sampling based low-memory modifications
of Shinde et al. (2021). Our algorithm is just this lightly
modified version of Frank-Wolfe (see Algorithm 2 and Algo-
rithm 3) followed by a non-linear transformation that can be
carried out either at the level of the matrix decision variable
or the Gaussian samples (see Lemma 4.2).

Our reformulation has two parameters, α and µ, both of
which are entry-wise positive vectors. We choose these
based on a feasible point z for the dual of the Max-Cut
SDP (SDP-D). Carefully doing so ensures that the smooth
problem is an exact reformulation, and allows us to reduce
the curvature constant of the objective. Our second contri-
bution is to show how to choose these parameters so that
the algorithm achieves promising theoretical running time
guarantees. If ρ denotes the ratio of the dual cost of z and
a lower bound on the primal objective value, the algorithm
achieves ϵ relative error in O(ρn/ϵ) calls to an approximate
largest eigenvalue subroutine (see Theorem 4.10), which
needs to be solved to relative error O(ϵ/ρ). This can be
achieved (with high probability) using a randomized (block)
Krylov subspace method in O(ρ1/2 log(n)ϵ−1/2) matrix-
vector multiplications with the cost matrix. (See Section 5.)
The overall running time for a PSD cost matrix with m
non-zero entries isO(mn log(n)(ϵ/ρ)−3/2). For diagonally
dominant costs, we can take ρ = 2 (see Section 4.3).

We test our method on instances of the Max-Cut SDP with
diagonally dominant costs. Our numerical experiments in-
dicate that, at least for these instances, the practical perfor-
mance of the method is (much) better than the theoretical
bounds suggest, with both better dependence on n and ϵ.

Our algorithm is very simple. The novelty comes from the
reformulation and understanding its properties. As such, is
likely that there is significant scope for further algorithm
engineering to improve the method’s practical performance.
The numerical experiments also suggest that there is scope
to improve the theoretical analysis of the algorithm.

2. Preliminaries
2.1. Notation and Terminology

We briefly introduce notation not explicitly defined else-
where. Let Rn denote n-dimensional real vectors, Rn×m

denote n × m real matrices, and Sn denote n × n sym-
metric matrices. If x, y ∈ Rn then ⟨x, y⟩ :=

∑n
i=1 xiyi

and ∥x∥2 := ⟨x, x⟩1/2. If X,Y ∈ Rn×m then ⟨X,Y ⟩ :=
tr(XTY ) (where XT denotes the transpose of X) and
∥X∥F = ⟨X,X⟩1/2 is the Frobenius norm.

If A is a linear map between inner product spaces, its adjoint
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is A⋆. The map diag : Sn → Rn returns the diagonal
entries of an n × n matrix as a vector. Its adjoint, diag⋆

takes a vector and forms a diagonal matrix with those entries
on the diagonal. We use the notation 1 for the vector with
all entries equal to one, and I for the identity matrix.

For x ∈ Rn, by x ≥ 0 (resp., x > 0) we mean that x is entry-
wise nonnegative (resp., positive). For x, y ∈ Rn, x ◦ y ∈
Rn denotes the entry-wise product. For X ∈ Sn, X ⪰
0 indicates that X is positive semidefinite. A symmetric
matrix X is diagonally dominant if |Xii| ≥

∑
j ̸=i |Xij | for

all i. If X ∈ Rn×n, the spectral norm, denoted ∥X∥, is the
largest singular value. If X ⪰ 0 then ∥X∥ = λmax(X), the
largest eigenvalue ofX . We also use ∥·∥ to denote a general
norm and ∥x∥∗ = sup∥y∥≤1 ⟨x, y⟩ to denote its dual norm.

If f : Rn → R is differentiable, ∇f denotes the gradient of
f . In the univariate case, f ′ denotes the derivative of f .

2.2. Frank-Wolfe Algorithm

Let f be a concave, continuously differentiable function,
and let S be a compact convex subset of the domain of f .
One way to solve the convex optimization problem

f∗ := sup
x∈S

f(x). (1)

is to use the Frank-Wolfe method (Frank & Wolfe, 1956),
described in Algorithm 1. It is particularly suitable when
we have access to an efficient linear maximization oracle
(LMO) that performs linear optimization over S.

Algorithm 1 Frank-Wolfe algorithm

input Initial point x(0) ∈ S, ϵ > δ > 0
output x(t) ∈ S such that f∗ − f(x(t)) ≤ ϵ+ δ

1: q(0) := LMO(∇f(x(0)),S, δ)
2: t := 0
3: while ⟨∇f(x(t)), q(t) − x(t)⟩ > ϵ do
4: γ(t) := 2

t+2

5: x(t+1) := x(t) + γ(t)(q(t) − x(t))
6: q(t+1) := LMO(∇f(x(t+1)),S, δ)
7: t := t+ 1
8: end while
9: function q = LMO(y,S, δ′)

10: Find q ∈ S such that ⟨q, y⟩ ≥ supq̂∈S ⟨q̂, y⟩ − δ′

11: end function

Stopping criterion If x∗ is optimal for (1), and the stop-
ping criterion in line 3 holds, we have that

f(x∗)− f(x(t)) ≤
〈
∇f(x(t)), x∗ − x(t)

〉
≤ sup

q̂∈S

〈
∇f(x(t)), q̂ − x(t)

〉
=: GAP(x(t))

≤
〈
∇f(x(t)), q(t) − x(t)

〉
+ δ ≤ ϵ+ δ.

Curvature constant The convergence analysis of Frank-
Wolfe-type algorithms usually relies on the curvature con-
stant (see, e.g., (Jaggi, 2013)), defined as

M(f |S) :=sup
x,s∈S,
γ∈[0,1]

2
γ2Bf ((1− γ)x+ γs ||x) (2)

where, for a concave function f , Bf (y||x) := [g(x) +
⟨∇g(x), y − x⟩] − g(y) is the Bregman divergence. The
curvature constant for f is bounded if ∇f is Lipschitz con-
tinuous with respect to some norm.

Lemma 2.1 (Lemma 7, Appendix D, (Jaggi, 2013)). Let
∥ · ∥ and ∥ · ∥∗ be a dual pair of norms. Let f be a concave
and differentiable function and S a compact subset of the
domain of f . Suppose that ∥∇f(x)−∇f(y)∥∗ ≤ L∥x−y∥
for all x, y ∈ S. Then

M(f |S) ≤ L diam∥·∥(S)2

where diam∥·∥(S) := supx,y∈S ∥x− y∥.

Convergence analysis The following is a standard con-
vergence result for the Frank-Wolfe algorithm. Since the
duality gap GAP(x(t)) may not be monotonically decreasing,
we consider the smallest duality gap up to iteration t.

Lemma 2.2 (Bound 3.1, Theorem 5.1, Theorem 5.2, (Fre-
und & Grigas, 2016)). The iterates x(t), for t ≥ 1, of
Algorithm 1 applied to (1) satisfy

f∗ − f(x(t)) ≤ 2M(f |S)
t+ 3

+ δ and

min
τ≤t

GAP(x(τ)) ≤ 4.5M(f |S)
t

+ δ.

In particular, if δ < ϵ, the algorithm terminates after at
most 4.5M(f |S)/(ϵ− δ) iterations.

3. Formulations of the Max-Cut SDP
3.1. Standard Formulation of the Max-Cut SDP

In this section we state the Max-Cut SDP and record some
of its basic properties. Omitted proofs for this section are
in Appendix A. The Max-Cut SDP is

F ∗
C := sup

X∈Sn
⟨C,X⟩ s.t.

{
X ⪰ 0

diag(X) = 1.
(SDP-P)

The corresponding dual SDP is

G∗
C := inf

z∈Rn
⟨1, z⟩ s.t. diag⋆(z) ⪰ C (SDP-D)

Since X = I is strictly feasible for (SDP-P), Slater’s con-
dition holds and so this pair of SDPs satisfies strong dual-
ity (Vandenberghe & Boyd, 1996).
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Lemma 3.1. If C is symmetric then F ∗
C = G∗

C .

Since X = I is primal feasible, we obtain a simple a priori
lower bound on F ∗

C .
Lemma 3.2. If C is symmetric then F ∗

C ≥ tr(C).

Likewise, the objective value of any dual feasible point
for (SDP-D) will also provide us an upper bound on F ∗

C . In
the special case where C is diagonally dominant with posi-
tive diagonal entries, we can use the diagonal to construct
such a dual feasible point.
Lemma 3.3. If C is diagonally dominant and diag(C) > 0
then z = 2 diag(C) is dual feasible and F ∗

C ≤ 2 tr(C).

For the smoothing strategy we introduce in Section 4, the
following entry-wise bounds on feasible dual variables play
an important role.
Lemma 3.4. If C ⪰ 0 with diag(C) > 0 and z is feasible
for (SDP-D) then zi ≥ Cii > 0 for i = 1, 2, . . . , n.

3.2. Nesterov Formulation of the Max-Cut SDP

If the cost matrix C is positive semidefinite, it has a fac-
torization of C = ATA, where A ∈ Rm×n. In this case,
Nesterov derived an alternative formulation of the Max-Cut
SDP (Nesterov, 2011). In this section, we summarize this
formulation and its properties. All omitted proofs for this
section are in Appendix B. Let

S̃C := {ATPA ∈ Sn : P ⪰ 0, tr(P ) = 1} and (3)

SC := diag(S̃C) (4)

(While the sets S̃C and SC do depend on the choice of
factorization of C = ATA, this factorization will not play a
significant role, so we suppress it from the notation.) The
Nesterov reformulation is

sup
x∈SC

n∑
i=1

√
xi = sup

W∈S̃C

n∑
i=1

√
Wii (Nesterov-P)

Note that the second, equivalent, formulation explicitly
keeps track of a matrix variable. This matrix is needed
to explicitly relate optimal points of (Nesterov-P) to those
of (SDP-P) (see Lemma 3.6).

This formulation is potentially amenable to being solved
efficiently using the Frank-Wolfe algorithm. This is because
linear maximization over the constraint set SC can be ex-
pressed in terms of solving a largest eigenvalue problem
for a symmetric matrix. (The optimal value of the LMO is
called the support function of SC , and is denoted σSC

(·).)
Lemma 3.5. If y ∈ Rn and C = ATA then

σSC
(y) := sup

q∈SC

⟨q, y⟩ = λmax

(
A diag⋆(y)AT

)
. (5)

If y > 0 then σSC
(y) = ∥diag⋆(y)1/2Cdiag⋆(y)1/2∥.

Recent work on low-memory algorithms for semidefinite
programming (Shinde et al., 2021; Yurtsever et al., 2017)
also make crucial use of the Frank-Wolfe method over con-
straint sets with LMOs that reduce to extreme eigenvalue
problems. One obstacle to using the Frank-Wolfe algorithm
for (Nesterov-P) is that the objective function (7) does not
have a bounded curvature constant. In Section 4, we show
how to modify (Nesterov-P) to obtain a smooth problem
with the same optimal point and optimal value to which the
analysis tools introduced in Section 2.2 can be applied.

It is fruitful to view (Nesterov-P) in terms of a smooth sad-
dle point problem. Let ϕ : SC × (0,∞)n be the concave-
convex function defined by

ϕ(x, y) =

n∑
i=1

1

4yi
+ xiyi. (6)

The partial infimum over y is

f(x) := inf
y>0

ϕ(x, y) =

n∑
i=1

√
xi, (7)

which holds because
√
x is the concave conjugate of

−1/(4y). The partial supremum over x is

g(y) := sup
x∈SC

ϕ(x, y) =

n∑
i=1

1

4yi
+ σSC

(y). (8)

The problem (Nesterov-P) can then be expressed as

f∗C := sup
x∈SC

inf
y>0

ϕ(x, y) = sup
x∈SC

f(x)

Exchanging the order of the supremum and infimum gives a
natural dual problem

g∗C := inf
y>0

sup
x∈SC

ϕ(x, y) = inf
y>0

g(y). (Nesterov-D)

Since SC is compact, ϕ(x, ·) has closed convex sublevel
sets for any x ∈ SC , and ϕ(·, y) has closed convex suplevel
sets for any y > 0, it follows from Sion’s minimax theo-
rem (Sion, 1958) that f∗C = g∗C .

The following result explicitly relates (Nesterov-P)
and (SDP-P), by showing how feasible points for one prob-
lem can be mapped to feasible points for the other in such
a way that the objective value improves. This implies the
problems are equivalent (see Corollary 3.7) and also shows
how to map near-optimal points of one problem to the other.

Lemma 3.6. Let C ⪰ 0 with diag(C) > 0.

• If X is feasible for (SDP-P) then

ψC(X) := (CXC)/ ⟨C,X⟩ ∈ S̃C

and f(diag(ψC(X)))2 ≥ ⟨C,X⟩.
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• Suppose W ∈ S̃C , and x = diag(W ). For i =
1, 2, . . . , n let

di =

{
x
−1/2
i if xi > 0

0 otherwise,

and let δi = 1− d2ixi. Then

ξ(W ) := diag⋆(d)Wdiag⋆(d) + diag⋆(δ)

is (SDP-P)-feasible and ⟨C, ξ(W )⟩ ≥ f(diag(W ))2.

By considering optimal points for (Nesterov-P)
and (SDP-P), we obtain the following.

Corollary 3.7. If W ∗ is optimal for (Nesterov-P) then
ξ(W ∗) is optimal for (SDP-P). Conversely if X∗ is opti-
mal for (SDP-P) then ψC(X

∗) is optimal for (Nesterov-P).
Moreover (f∗C)

2 = F ∗
C .

The following result specifies the relationship be-
tween (Nesterov-D) and (SDP-D).

Lemma 3.8. Let C ⪰ 0 with diag(C) > 0.

• If z is feasible for (SDP-D) then

ψ(z)i := ⟨1, z⟩1/2 /(2zi) for i = 1, 2, . . . , n

satisfies ψ(z) > 0 and g(ψ(z))2 ≤ ⟨1, z⟩.

• If y > 0 then

ξC(y)i := y−1
i σSC

(y) for i = 1, 2, . . . , n (9)

is feasible for (SDP-D) and ⟨1, ξC(y)⟩ ≤ g(y)2.

By a similar argument to Lemma 3.6, (g∗C)
2 = G∗

C and
ψ(z∗) and ξC(y∗) are corresponding optimal points.

4. Smoothing the Nesterov Formulation
4.1. Smoothing Approach

In this section we describe how we smooth the objective
function of (Nesterov-P) so that we can obtain convergence
guarantees for the Frank-Wolfe algorithm. All omitted
proofs for this section are in Appendix C.

In smoothing the objective we would like to obtain a
bounded curvature constant and preserve the optimal value
of the original problem. We use a variation on the standard
idea of smoothing by regularizing the dual (Nesterov, 2005).
To preserve the optimal value we will do this by adding
constraints to the dual that are satisfied at optimality.

Initially, let α > 0 be any entry-wise positive vector in Rn.
Consider adding the (entry-wise) constraint y ≤ α to the

saddle point problems, i.e., consider

f∗α,C := sup
x∈SC

inf
α≥y>0

ϕ(x, y)

= inf
α≥y>0

sup
x∈SC

ϕ(x, y) =: g∗α,C .

By Sion’s minimax theorem, the smoothed primal and dual
problems have the same optimal value. The new dual is
obtained by adding our constraint to (Nesterov-D), i.e.,

inf
α≥y>0

g(y), (Smooth-D)

where g(·) is the objective function defined in (8). To write
down the smoothed primal problem, we define hβ(x) :=
infβ≥y>0 xy + 1/(4y), given explicitly by

hβ(x) =

{√
x if x ≥ 1

4β2

βx+ 1
4β if 0 ≤ x < 1

4β2 .
(10)

Note that βx+ 1
4β is the linearization of

√
· at 1

4β2 . Since√
· is concave, hβ(x) ≥

√
x for all x ≥ 0.

The smoothed primal problem is then

sup
x∈SC

fα(x) = sup
W∈S̃C

fα(diag(W )), (Smooth-P)

where fα(x) = inf
α≥y>0

ϕ(x, y) =
∑n

i=1hαi
(xi). (11)

The following result shows that if we choose α appropriately,
the optimal values and points are unchanged by smoothing.
Lemma 4.1. Let y∗ be optimal for (Nesterov-D) and W ∗

be optimal for (Nesterov-P). If α ≥ y∗ then

fα(diag(W ∗)) = f∗α,C = f∗C = f(diag(W ∗)).

Given a feasible point for (Smooth-P), we can construct a
feasible point for the original semidefinite program (SDP-P)
with improved objective function value, as long as α is large
enough.1 The construction can also be implemented at the
level of Gaussian samples, so that it is also compatible with
sample-based memory-efficient variants on the Frank-Wolfe
algorithm, as discussed in Section 5.
Lemma 4.2. Let C be positive semidefinite with diag(C) >

0. Suppose that αi ≥ (F∗
C)1/2

Cii
for all i.

Suppose W ∈ S̃C and x = diag(W ). For i = 1, 2, . . . , n

let di := min{x−1/2
i , 2αi} and δi = 1− d2ixi. Then

ζα(W ) := diag⋆(d)W diag⋆(d) + diag⋆(δ)

is (SDP-P)-feasible and ⟨C, ζα(W )⟩ ≥ fα(diag(W ))2.

If s ∼ N (0,W ) and s′ ∼ N (0, I) are independent then

diag⋆(d)s+ diag⋆(δ)1/2s′ ∼ N (0, ζα(W ))

which can be computed based on x and s alone.

1Taking αi → ∞ for all i recovers one part of Lemma 3.6.
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For this approach to be useful, we would like to choose
the smoothing parameter to satisfy the requirements both
of Lemmas 4.1 and 4.2. The next definition ensures this.

Definition 4.3. Let C be positive semidefinite with pos-
itive diagonal entries. A point α ∈ Rn is C-valid if
αi ≥ (F ∗

C)
1/2/Cii for all i = 1, 2, . . . , n.

Lemma 4.4. If α is C-valid and y∗ is an optimal point
for (Smooth-D) then y∗ ≤ α.

In practice we would like to choose an α that is C-valid
based on data that are available to us. We do this assuming
we have access to some feasible point for (SDP-D), which
gives us an upper bound on F ∗

C .

Lemma 4.5. Let C be positive semidefinite with positive
diagonal entries. If z is feasible for (SDP-D) then αi =
⟨1,z⟩1/2

Cii
for i = 1, 2, . . . , n is C-valid.

4.2. Bounding the Curvature Constant

In this section, we establish bounds on the curvature con-
stant of the smoothed primal objective function fα. We do
this by bounding the diameter and Lipschitz constant of
∇fα in a norm adapted to the problem. All omitted proofs
for this section are in Appendix D.

Given a vector z > 0, define ∥x∥z :=
∑n

i=1 z
−1
i |xi|.

Lemma 4.6. If z > 0 is feasible for (SDP-D) then
diam∥·∥z

(SC) ≤ 2.

Next, we bound the Lipschitz constant of ∇fα.

Lemma 4.7. Let α > 0 and z > 0 be entry-wise positive
vectors and let L = maxi 2α

3
i z

2
i . Then ∇fα is L-Lipschitz

with respect to ∥ · ∥z over SC .

Substituting the C-valid choice of α from Lemma 4.5 into
these bounds for the Lipschitz constant of ∇fα and diameter
of SC , directly gives a bound on M(fα|SC).

Theorem 4.8. Let C be positive semidefinite with
diag(C) > 0. Let z satisfy diag⋆(z) ⪰ C, and let
αi = ⟨1, z⟩1/2 /Cii for i = 1, 2, . . . , n. Then

M(fα|SC) ≤ 8 ⟨1, z⟩1/2 max
i

⟨1,z⟩z2
i

C3
ii

.

Unless the diagonal entries of C are uniformly bounded
below, the bound on the curvature constant in Theorem 4.8
could be arbitrarily bad if C has small diagonal entries.

4.3. Improving the Conditioning of diag(C)

Since (SDP-P) has the constraint diag(X) = 1, diagonally
shifting the cost matrix from C to C + diag⋆(µ) has the
effect of just adding the constant value ⟨1, µ⟩ to the objective
function (and the optimal value). It does not change the

optimal primal solution. We use this observation to carefully
choose a shifting µ that improves the conditioning of the
diagonal of the cost matrix while only increasing the optimal
value of the problem by a constant factor. All omitted proofs
for this section are in Appendix E.

The following result bounds the curvature constant after
both choosing the smoothing parameter and shifting the cost
based on the dual feasible point z. Crucially, now, the bound
is no longer sensitive to small entries on the diagonal of C.
Theorem 4.9. Let C be positive semidefinite with
diag(C) > 0. Let z satisfy diag⋆(z) ⪰ C. Let

µi = zi +
1
n ⟨1, z⟩ for i = 1, 2, . . . , n

and let Cµ = C + diag⋆(µ). Let zµ = z + µ and let
[αµ]i = ⟨1, zµ⟩1/2 /[Cµ]ii for i = 1, 2, . . . , n. Then

M(fαµ |SCµ) ≤ 32 · 3
√
3n ⟨1, z⟩1/2 .

The smoothed problem with the shifted objective can be
used to solve the original semidefinite program (SDP-P).
We do this by running Algorithm 2 with appropriate parame-
ter choices. We require an a priori lower bound FLB ≤ F ∗

C ,
which we take to be tr(C) in many cases.
Theorem 4.10. Let C ⪰ 0 with diag(C) > 0. Let z satisfy
diag⋆(z) ⪰ C. Define µ, αµ, Cµ, and zµ as in Theorem 4.9.
Let FLB be any lower bound on F ∗

C and let ρ = ⟨1,z⟩
FLB

. Let

ϵ′ = 3ϵ
8
√
3

⟨1,z⟩1/2
ρ and δ′ = ϵ′/3. If

(x,W, s) = FW-sampling(fαµ
, Cµ, ϵ

′, δ′, x(0))

then F ∗
C −

〈
C, ζαµ

(W )
〉
≤ ϵFLB ≤ ϵF ∗

C after at most
O
(
nρ
ϵ

)
calls to FACTORED-LMO(·,SCµ

, δ′).

Shifting the diagonal of C in this z-dependent way also
ensures that the optimal value of the LMO is not too large.
This is important because the complexity of our LMO will
depend on the desired relative error (see Theorem 5.1).
Lemma 4.11. Let C ⪰ 0 with diag(C) > 0. Let z satisfy
diag⋆(z) ⪰ C. Define µ, αµ, Cµ, and zµ as in Theorem 4.9.
Then hSCµ

(∇fαµ(x)) ≤ 2
√
3 ⟨1, z⟩1/2 for all x ∈ SCµ .

Remark 4.12. If δ′ is chosen as in Theorem 4.10 we can im-
plement FACTORED-LMO(·,SCµ

, δ′) by solving the LMO
to relative error δrel =

1
48 (ϵ/ρ).

If we apply Frank-Wolfe to (Smooth-P) with cost Cµ, we
obtain convergence bounds that depend only on ρ = ⟨1,z⟩

FLB
.

• If C is diagonally dominant with diag(C) > 0, we can
take z = 2 diag(C) and FLB = tr(C), so ρ ≤ 2

• If C ⪰ 0 with diag(C) > 0 and C is sparse with
respect to a graph with maximum degree ∆, then
(see Lemma E.1) C ⪯ diag⋆(z) where z = (∆ +
1) diag(C). Taking FLB = tr(C) gives ρ ≤ ∆+ 1.

6
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• For a general C ∈ Sn with diag(C) > 0, the matrix
Cd = C + diag⋆(d) where di =

∑
j ̸=i |Cij | is diago-

nally dominant with FLB = tr(Cd) ≥
∑

i,j |Cij | =:
∥C∥1. Applying our method to Cd shows that we
can solve general instances of (SDP-P) to additive er-
ror ϵ∥C∥1 (the error model in (Lee & Padmanabhan,
2020)) by reducing to the diagonally dominant case.

5. Implementation
Algorithm 2 gives pseudo-code for Frank-Wolfe specialized
to solve problems of the form (Smooth-P). The basic form
of the algorithm (skipping lines 6–12) works only with the
n-dimensional decision variable x(t) ∈ SC , and suffices to
(approximately) compute the optimal value. If our aim is to
compute a near-optimal point for (SDP-P), it suffices to also
instantiate, update (by running lines 6–8), and return the
n× n matrix variable W (t) ∈ S̃C . If the memory required
to store the W (t) variable is prohibitive, we can instead
instantiate, update (by running lines 9–12), and return the
variable s(t), which is updated to maintain the property of
being a random vector with distribution N (0,W (t)).

Given s(t) and x(t) (but not W (t)), Lemma 4.2 tells us how
to sample a Gaussian random variable with zero mean and
covariance equal to a near-optimal point for the original
Max-Cut SDP, (SDP-P). This sample-based representation
of the solution of an SDP was introduced in (Shinde et al.,
2021). It is of particular interest for the Max-Cut SDP,
since such a Gaussian random vector is all that is required to
implement the rounding scheme of (Goemans & Williamson,
1995). For further details see (Shinde et al., 2021).

The other minor difference between Algorithm 2 and the
basic version of Frank-Wolfe in Algorithm 1 is the presence
of the FACTORED-LMO subroutine. This returns q, a valid
output of the LMO with respect to SC , as well as a vector
v such that vvT ∈ S̃C is a valid output of the LMO with
respect to S̃C . This takes advantage of the fact that it is
always possible for the LMO with respect to S̃C to return
a rank one solution, since the extreme rays have rank one.
Maintaining this LMO output in factored form (as v rather
than vvT ) means that when Algorithm 2 is run without
instantiating the matrix variable W (t), the only variables
being maintained are n-dimensional vectors.

5.1. LMO Implementation

In this section, we give more details about the LMO in Al-
gorithm 2 (see Algorithm 3). Since ∇fα(x) > 0 for any
x ∈ SC , we only need to implement the LMO for entry-
wise positive costs. Due to Lemma 3.5, the LMO reduces to
approximately finding the largest (magnitude) eigenvalue of
a positive semidefinite matrix. The two cases in Algorithm 3
depend on whether we can compute matrix-vector multi-

Algorithm 2 Frank-Wolfe with sampling (x,W, s) =
FW-sampling(f, C, ϵ, δ, x(0))

input C ⪰ 0, x(0) ∈ SC , ϵ > δ > 0.
output x(t) ∈ SC such that f∗ − f(x(t)) ≤ ϵ+ δ,

W (t) ∈ S̃C such that x(t) = diag(W (t)),
Gaussian vector s(t) ∼ N (0,W (t))

1: (q(0), v(0)) := FACTORED-LMO(∇f(x(0)),SC , δ)
2: t := 0
3: while

〈
∇f(x(t)), q(t) − x(t)

〉
> ϵ do

4: γ(t) := 2/(t+ 2)
5: x(t+1) := (1− γ(t))x(t) + γ(t)q(t)

6: if Returning W then
7: W (t+1) := (1− γ(t))W (t) + γ(t)v(t)(v(t))T

8: end if
9: if Returning s then

10: sample ω ∼ N (0, 1)
11: s(t+1) := (1− γ(t))1/2s(t) + (γ(t))1/2ωv(t)

12: end if
13: (q(t+1), v(t+1)) :=

FACTORED-LMO(∇f(x(t+1)),SC , δ)
14: t := t+ 1
15: end while

plications with A and AT or only with C. In Lemma F.1
we justify the correctness of choosing v via line 6 of Algo-
rithm 3 in the case where we only have access to C.

In either case, the core of the LMO is finding an approximate
largest eigenvalue of a positive semidefinite matrix (lines 2
or 5 of Algorithm 3). We could do this using the Lanczos
method with random start (see (Yurtsever et al., 2021) for
storage-efficient pseudocode), which has the following con-
vergence guarantee (Kuczyński & Woźniakowski, 1992).

Theorem 5.1. Let M ⪰ 0, let δrel ∈ (0, 18 ) and p ∈
(0, 12 ). Then with probability at least p, after q =

O(δ
−1/2
rel log(n/p2)) matrix-vector multiplications with M

and O(qn) addition operations, the Lanczos method finds a
unit vector u satisfying uTMu ≥ (1− δrel)λmax(M).

6. Numerical Experiments
In this section, we summarize our computational results
from applying Algorithm 2 with C = 1

4LG where LG is
the Laplacian of an (unweighted) graph. In all cases, C is
diagonally dominant and we set z = 2 diag(C) and αi =
(2tr(C))1/2

Cii
for all i. For the examples we tried, we found that

diagonal shifting did not improve the practical performance.

The algorithm was implemented using Julia 1.7.1. All com-
putations were performed on a machine with 4 cores, 8
2.5GHz-CPUs and 16GB of RAM. In all experiments, the
starting vector x(0) for Algorithm 2 is given as x(0) =

7
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Table 1. Average iteration count and corresponding average relative error comparison between our method and methods of Shinde et
al. (2021) and Yurtsever et al. (2021) for Gset graphs. The averages are over the groups of graphs. The smallest average iteration counts
for each group are highlighted in bold.

GRAPH
GROUP

NUMBER

MEMBERS
OF GROUP

GRAPH PARAMETER YURTSEVER ET AL SHINDE ET AL. THIS PAPER

VXS
n

EDGES
m

AVG
ITER

AVG
REL
ERR

AVG
ITER

AVG
REL
ERR

AVG
ITER

AVG
REL
ERR

1 G1 TO G5 800 19176 138.2 0.008 30469.20 0.027 147.00 0.005
2 G14 TO G17 800 ≈4675 913.15 0.023 193806.25 0.049 79.00 0.017
3 G22 TO G26 2000 19990 126.80 0.007 154352.60 0.040 155.60 0.004
4 G35 TO G37 2000 ≈11775 2314 0.020 711903.67 0.047 99.33 0.013
5 G43 TO G47 1000 9990 130.20 0.008 28197.20 0.030 132.60 0.005
6 G48 TO G50 3000 6000 145.67 0.005 17417.33 0.015 407.67 0.003
7 G51 TO G54 1000 ≈5915 1149.75 0.022 242651.50 0.038 92.00 0.013

Algorithm 3 LMO for SC with additive error δ
(q, v) = FACTORED-LMO(y,SC , δ)

input vector y > 0, accuracy δ, C ⪰ 0
output v such that vvT ∈ S̃C and〈

vvT , diag⋆(y)
〉
≥ σS̃C

(diag⋆(y))− δ,

and q = v ◦ v = diag(vvT ).
1: if Have access to A such that C = ATA then
2: Find u such that ∥u∥2 = 1 and

uT (A diag⋆(y)AT )u ≥ λmax(A diag⋆(y)AT )− δ.
3: v := ATu
4: else
5: Find u such that ∥u∥2 = 1 and

uT diag⋆(y)
1
2Cdiag⋆(y)

1
2u ≥

λmax(diag⋆(y)
1
2Cdiag⋆(y)

1
2 )− δ.

6: v := Cdiag⋆(y)
1
2u/(uT diag⋆(y)

1
2Cdiag⋆(y)

1
2u)

1
2

7: end if
8: q := v ◦ v

1
mdiag(C) where m is the number of edges. We stop when

RFWgap(x(t)) := ⟨∇f(x(t)),q(t)−x(t)⟩
f(x(t))

≤ ϵ,

an easily computed bound on the relative error.

For the LMO subroutine, in practice we use a Julia imple-
mentation, ArnoldiMethod.jl, of the Krylov-Schur
method (Stewart, 2002). The method terminates when
∥Ax− xλ∥2 < tol |λ|, where tol is the tolerance pa-
rameter. We initially set tol = 1 and reduce it by a factor
of 10−0.25 every time the RFWgap decreases by a factor of
10−0.25, while ensuring tol ≤ RFWgap.

Gset experiments For our first experiment, we use un-
weighted graphs from the Gset dataset (gse). To display the
results concisely, we grouped the graphs into groups consist-
ing of graphs with similar properties (see Table 1). We tested
our method with both the scheduled step size γ(t) = 2

t+2

and a line search. We stopped when RFWgap < 10−2.5.

10
0

10
1

10
2

10
3

Iteration

10
-2

10
-1

10
0

R
F

W
G

a
p

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6

Group 7

Figure 1. Plot of minτ≤t RFWgap(x(τ)) vs Frank-Wolfe itera-
tions for the line-search variant of our algorithm applied to Gset
graphs. Each line represents a single graph. The lines are colored
by group membership.

Figure 1 shows the convergence of RFWgap as a function
of the number of Frank-Wolfe iterations for the line-search
variant. (Results for the scheduled step size are very similar,
and are shown in Figure 3 of Appendix G.)

While our theory predicts a (global) convergence rate of
O(1/t), in practice the local convergence rate is significantly
better, being possibly more like O(1/t2).

We compare our results on the Gset graphs with related
memory-efficient approaches by Shinde et al. (2021) and
Yurtsever et al. (2021). Both are Frank-Wolfe-based meth-
ods with LMOs of similar cost to ours, so we compare the
number of Frank-Wolfe iterations. Due to differing stopping
criteria, for each case we set ϵ so that we reach a relative er-
ror at least as good as the best-performing previous method.
Because the comparison methods work with (SDP-P) and
our experiments work with (Smooth-P) (having optimal
value (F ∗

C)
1/2), we scaled the relative error for the compar-

ison methods down by a factor of two. The ‘true’ optimal

8

https://docs.juliahub.com/ArnoldiMethod/zP00S/0.2.0/
https://www.cise.ufl.edu/research/sparse/matrices/Gset/index.html


A Scalable Frank-Wolfe-Based Algorithm for the Max-Cut SDP

10
0

10
1

10
2

Iteration

10
-2

10
-1

10
0

R
F

W
G

a
p

Figure 2. Plot of minτ≤t RFWgap(x(τ)) vs Frank-Wolfe itera-
tions for our algorithm applied to 3-regular graphs with 10q/2

vertices. Each line represents a single graph. Colors indicate
graphs with the same parameters.

value used for relative error calculations is the square root
of the value generated using SDPT3 (Toh et al., 1999).

Table 1 summarizes our results. (See Table 2 in Appendix G
for the full results.) Our method significantly outperforms
the method proposed by Shinde et al. (2021), and performs
better for some graphs, and worse for others, than the
method of Yurtsever et al. (2021). The groups of graphs for
which our method performs best are those where the method
of Yurtsever et al. (2021) performs worst, and conversely.
From initial observations, our method performs better than
that of Yurtsever et al. (2021) on graphs with skewed degree
distributions, while performing worse on instances that are
sparse with respect to torus graphs.

Large-scale d-regular random graphs We demonstrate
the scalability of our method by applying it to large ran-
dom d-regular graphs, generated using the method in (Kim
& Vu, 2003). For each (n, d) with d = 3, 5 and n =
101, 101.5, 102, . . . , 106 we generated two random graphs.
The convergence plots for the 3-regular graphs are shown
in Figure 2. The plot for the 5-regular graph is remarkably
similar and is included in Figure 4 in Appendix G. While our
theoretical convergence rates are O(n/t), Figure 2 shows
much more mild dependence on n. The local convergence
rate appears close to O(1/t2), just as in Figure 1.
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A. Additional proofs for Section 3.1
Proof of Lemma 3.3. If z = 2diag(C) then [diag⋆(z) − C]ii = Cii for all i, and [diag⋆(z) − C]ij = −Cij for all i ̸= j.
Therefore if C is diagonally dominant with positive diagonal entries, then so is diag⋆(z) − C. By the Gershgorin circle
theorem, diagonally dominant matrices with positive diagonal entries are positive semidefinite. Therefore z is dual feasible
and F ∗

C ≤ ⟨1, z⟩ = 2 tr(C).

Proof of Lemma 3.4. This follows from the fact that positive semidefinite matrices have nonnegative diagonal entries. Then
diag⋆(z)− C ⪰ 0 implies that zii ≥ Cii for all i.

B. Additional proofs for Section 3.2
Proof of Lemma 3.5. If y ∈ Rn then

sup
q∈SC

⟨q, y⟩ = sup
P⪰0,

tr(P )=1

〈
diag(ATPA), y

〉
= sup

P⪰0,
tr(P )=1

〈
P,A diag⋆(y)AT

〉
= λmax

(
A diag⋆(y)AT

)
.

If y > 0 then we can factor A diag⋆(y)AT = (A diag⋆(y)1/2)(A diag⋆(y)1/2)T . Then

λmax

(
A diag⋆(y)AT

)
=

∥∥∥A diag⋆(y)1/2
∥∥∥2 = λmax

(
diag⋆(y)1/2ATA diag⋆(y)1/2

)
= λmax

(
diag⋆(y)1/2Cdiag⋆(y)1/2

)
=

∥∥∥diag⋆(y)1/2Cdiag⋆(y)1/2
∥∥∥ .

Proof of Lemma 3.6. Let ψ(X) = AXAT

tr(AXAT )
. Clearly ψ(X) ⪰ 0 and tr(ψ(X)) = 1 so ψ(X) is feasible for (Nesterov-P).

Let x1, x2, . . . , xn be unit vectors such that Xij = ⟨xi, xj⟩, and let R be the matrix with columns given by the xi. Let
Y (X) = RAT /∥RAT ∥F and note that ψ(X) = Y (X)TY (X). Now,

f(ψ(X)) =

n∑
i=1

(AT
i ψ(X)Ai)

1/2

=

n∑
i=1

∥Y (X)Ai∥2

≥
n∑

i=1

⟨Y (X)Ai, xi⟩ (since ∥xi∥ = 1 for all i)

=

n∑
i=1

〈
RAT , xiA

T
i

〉
/∥RAT ∥F

=
〈
RAT , RAT

〉
/∥RAT ∥F

= ⟨C,X⟩1/2 .

The fact that ξ(W ) = diag⋆(d)Wdiag⋆(d) + diag⋆(δ) is feasible for (SDP-P) and satisfies ⟨C, ξ(W )⟩1/2 ≥ f(W ) is the
limiting case of Lemma 4.2 as αi → ∞ for all i, so we omit the proof.

Proof of Corollary 3.7. Given W ∗ such that f(diag(W ∗)) = f∗(C) we have

F ∗(C) ≥ ⟨C, ξ(W ∗)⟩ ≥ f(diag(W ∗))2 = f∗(C)2.

Given X∗ such that ⟨C,X∗⟩ = F ∗(C) we have

f∗(C)2 ≥ f(diag(ψC(X
∗)))2 ≥ ⟨C,X∗⟩ = F ∗(C).

Combining these gives F ∗(C) = f∗(C)2. Moreover ⟨C, ξ(W ∗)⟩ ≥ ⟨C,X∗⟩ and f(diag(ψC(X
∗))) ≥ f(diag(W ∗)),

establishing optimality of ξ(W ∗) and ψC(X
∗), respectively.

11
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Proof of Lemma 3.8. Suppose that diag⋆(z) ⪰ C and diag(C) > 0. Then zii > 0 for all i and so ψ(z)i > 0. Therefore
ψ(z) is feasible for (Nesterov-D). Since XTX ⪯ I is equivalent to ∥XXT ∥ ≤ 1 for any real matrix X , it follows that

diag⋆(z) ⪰ C = ATA ⇐⇒ I ⪰ diag⋆(z)−1/2ATA diag⋆(z)−1/2 ⇐⇒ σS(z
−1) =

∥∥A diag⋆(z)−1AT
∥∥ ≤ 1.

Now,

g(ψ(z)) =

n∑
i=1

1

4ψ(z)i
+ σS(ψ(z)) =

1

2 ⟨1, z⟩1/2
n∑

i=1

zi +
⟨1, z⟩1/2

2
σS(z

−1) ≤ ⟨1, z⟩1/2 .

On the other hand, suppose that y > 0. Then

diag⋆(ξ(y)) ⪰ C = ATA ⇐⇒

∥∥∥∥∥
n∑

i=1

AiA
T
i yi

∥∥∥∥∥ I ⪰ diag⋆(y)1/2ATA diag⋆(y)1/2

which holds because XTX ⪯ ∥XXT ∥I for any real matrix X . Therefore ξ(y) is feasible for (SDP-D). Now,

g(y) =

n∑
i=1

1

4yi
+ σS(y) =

1

4σS(y)

n∑
i=1

ξ(y)i + σS(y) ≥ min
α>0

1

α

⟨1, ξ(y)⟩
4

+ α = ⟨1, ξ(y)⟩1/2 ,

where we have used the fact that if β > 0 then minα>0 β/α+ α = 2
√
β.

C. Additional proofs for Section 4.1
Proof of Lemma 4.1. We first show that y∗ is optimal for (Smooth-D). Since y∗ is feasible for (Smooth-D) by assumption,
we have that g∗α,C ≤ g(y∗) = g∗C . Since (Smooth-D) is obtained from (Nesterov-D) by adding constraints, we have that
g∗C ≤ g∗α,C . Therefore g∗C = g∗α,C and y∗ is optimal for both problems.

Since
√
x ≤ hβ(x) for all x ≥ 0, we have that

f∗C = f(diag(W ∗)) ≤ fα(diag(W ∗)) ≤ f∗α,C = g∗α,C = g∗C = f∗C .

We conclude that all these quantities are equal.

Proof of Lemma 4.4. If z∗ is optimal for (SDP-D) then, by Lemma 3.8, we have that

y∗i =
⟨1, z∗⟩1/2

z∗i
=

(F ∗
C)

1/2

z∗i
for i = 1, 2, . . . , n.

The result then follows from the bound z∗i ≥ Cii from Lemma 3.4.

C.1. Proof of Lemma 4.2

Before giving the proof, we establish some preliminary results. Let Hα : Rn → R be defined by

Hα(x) =

{
∥x∥2 if ∥x∥2 > 1

2α

α∥x∥22 + 1
4α if ∥x∥2 ≤ 1

2α .
(12)

This function is of interest because it has the property that

Hα(x) = hα(∥x∥2)

where hα is the smoothing of the square root function defined in (10).

Lemma C.1. The convex conjugate of Hα is the extended real-valued function given by

H∗
α(w) =

{
∥w∥2

2−1
4α if ∥w∥2 ≤ 1

∞ otherwise.
(13)

12
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Proof. We need to compute
H∗

α(w) = sup
x
⟨w, x⟩ −Hα(x).

If ∥w∥2 > 1 then consider x = τw for some τ > 1/(2α). Then ∥x∥2 > 1/(2α) and so

⟨x,w⟩ −Hα(x) = τ∥w∥22 − τ∥w∥2 = τ∥w∥2(∥w∥2 − 1) → ∞ as τ → ∞.

This shows that H∗
α(w) = ∞ if ∥w∥2 > 1.

Assume ∥w∥2 ≤ 1. The first-order optimality conditions give

w = ∇Hα(x) =

{
x

∥x∥2
if ∥x∥2 > 1

2α

2αx if ∥x∥2 ≤ 1
2α .

If ∥w∥2 ≤ 1 then x = w/2α satisfies the first-order optimality conditions. Substituting back into the objective gives

H∗
α(w) = ∥w∥2/(2α)− α∥w∥22/(4α2)− 1

4α
=

∥w∥22 − 1

4α
.

Proof of Lemma 4.2. Suppose that W is feasible for (Smooth-P). Since W ⪰ 0 it has a representation as W = RTR. Let
r1, . . . , rn denote the columns of R. Wince W = ATPA for some P ⪰ 0 with tr(P ) = 1, it follows that ri = P 1/2Ai

where ∥P 1/2∥F = tr(P )1/2 = 1. Then we have

fα(diag(W )) =

n∑
i=1

hαi
(Wii) =

n∑
i=1

Hαi
(ri)

where Hα is defined in (12).

For i = 1, 2, . . . , n let

wi(ri) = argmax
w

⟨ri, w⟩ −H∗
α(w) =

{
2αri if ∥ri∥2 ≤ 1/(2α)

ri/∥ri∥2 if ∥ri∥2 > 1/(2α).

Then
Hαi(ri) = ⟨wi(ri), ri⟩ −H∗

αi
(wi(ri)).

Therefore

fα(diag(W )) =

n∑
i=1

⟨wi(ri), ri⟩ −H∗
αi
(wi(ri))

=

n∑
i=1

〈
wi(ri), P

1/2Ai

〉
−H∗

αi
(wi(ri))

≤ sup
∥Y ∥F=1

〈
n∑

i=1

wi(ri)A
T
i , Y

〉
−H∗

αi
(wi(ri)) (since ∥P 1/2∥F = 1)

=

∥∥∥∥∥
n∑

i=1

wi(ri)A
T
i

∥∥∥∥∥
F

+

n∑
i=1

1− ∥wi(ri)∥22
4αi

(since sup∥Y ∥F=1 ⟨X,Y ⟩ = ∥X∥F )

=

tr

 n∑
i,j=1

wi(ri)A
T
i Ajwj(ri)

T

1/2

+
n∑

i=1

1− ∥wi(ri)∥22
4αi

= ⟨C,M⟩1/2 +
n∑

i=1

1− ∥wi(ri)∥22
4αi

13
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where M is the positive semidefinite matrix with Mij = ⟨wi(ri), wj(rj)⟩. Note that M = diag⋆(d)ATPAdiag⋆(d) =
ζα(W )− diag⋆(δ). Therefore

fα(diag(W )) ≤ ⟨C, ζα(W )− diag⋆(δ)⟩1/2 +
n∑

i=1

δi
4αi

. (14)

Since
√
x is concave,

√
x ≤

√
a + x−a

2
√
a

for all x, a > 0. Applying this with a = ⟨C, ζα(W )⟩ and x = ⟨C, ζα(W )⟩ −
⟨C, diag⋆(δ)⟩ gives

(⟨C, ζα(W )⟩ − ⟨C, diag⋆(δ)⟩)1/2 +
n∑

i=1

δi
4αi

≤ ⟨C, ζα(W )⟩1/2 − 1

2 ⟨C, ζα(W )⟩1/2
n∑

i=1

Ciiδi +

n∑
i=1

δi
4αi

. (15)

Now, by assumption, αi ≥ (F∗
C)1/2

Cii
for i = 1, 2, . . . , n. Furthermore, since ζα(W ) is positive semidefinite with unit

diagonal, it is feasible for (SDP-P) and so ⟨C, ζα(W )⟩ ≤ F ∗
C . Substituting these two inequalities in (15) gives

⟨C, ζα(W )⟩1/2− 1

2 ⟨C, ζα(W )⟩1/2
n∑

i=1

Ciiδi+

n∑
i=1

δi
4αi

≤ ⟨C, ζα(W )⟩1/2− 1

4(F ∗
C)

1/2

n∑
i=1

Ciiδi ≤ ⟨C, ζα(W )⟩1/2 . (16)

Combining (14), (15), and (16) completes the proof.

D. Additional proofs for Section 4.2
Proof of Lemma 4.6. First, note that

diam∥·∥z
(S) = sup

x1,x2∈S
∥x1 − x2∥z ≤ 2 sup

x∈S
∥x∥z.

So it is enough to show that supx∈S ∥x∥z ≤ 1. By the definition of S, if x ∈ S then there exists P ⪰ 0 with tr(P ) = 1
such that x = diag(ATPA). Now,

∥x∥z =

n∑
i=1

z−1
i |AT

i PAi|

=

〈
P,

n∑
i=1

z−1
i AiA

T
i

〉
≤ tr(P )λmax(Adiag⋆(z)−1AT )

= λmax(Adiag⋆(z)−1AT ).

Now, since z is feasible for (SDP-D), we have that diag⋆(z) ⪰ C = ATA. It follows that I ⪰
diag⋆(z)−1/2ATAdiag⋆(z)−1/2 which is equivalent to λmax(diag⋆(z)−1/2ATAdiag⋆(z)−1/2) ≤ 1. Since λmax(X

TX) =
λmax(XX

T ), it follows that λmax(Adiag⋆(z)−1AT ) ≤ 1, as required.

Proof of Lemma 4.7. First we note that hα(x) (defined in (10)) has first derivative

h′α(x) =

{
α if 0 < x ≤ 1/(4α2)

(1/2)x−1/2 if x ≥ 1/(4α2)

and second derivative (defined except at x = 1/(4α2))

h′′α(x) =

{
0 if 0 < x < 1/(4α2)

−(1/4)x−3/2 if x > 1/(4α2).

It follows that supx>0 |h′′α(x)| = (1/4)(4α2)3/2 = 2α3. Therefore, by the mean value theorem, we have that

|h′α(x1)− h′α(x2)| ≤ 2α3|x1 − x2|

14
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for all x1, x2 > 0.

The dual norm of ∥ · ∥z is
∥x∥z,∗ = max

i
zi|xi|.

We now consider the Lipschitz constant of ∇fα. First, note that

∂fα
∂xi

= h′αi
(xi).

Let x,w ∈ S ⊆ Rn
+, be chosen arbitrarily. Then

∥∇fα(x)−∇fα(w)∥z,∗ = max
i
zi|h′αi

(xi)− h′αi
(wi)|

≤ max
i
zi2α

3
i |xi − wi|

≤
(
max

i
2α3

i z
2
i

) n∑
j=1

z−1
j |xj − wj |

= L∥x− w∥z.

E. Additional proofs for Section 4.3
Proof of Theorem 4.9. We substitute zµ and Cµ into Theorem 4.8. It is straightforward to check that ⟨1, zµ⟩ = 3 ⟨1, z⟩.
Furthermore, we have that

⟨1, zµ⟩
[Cµ]ii

= 3
⟨1, z⟩

Cii + zi +
1
n ⟨1, z⟩

≤ 3n and

[zµ]ii
[Cµ]ii

=
2zi +

1
n ⟨1, z⟩

Cii + zi +
1
n ⟨1, z⟩

≤
2zi +

2
n ⟨1, z⟩

zi +
1
n ⟨1, z⟩

= 2.

Proof of Theorem 4.10. From our choice of ϵ′ = 3ϵ
8
√
3

FLB

⟨1,z⟩1/2 and δ′ = ϵ′/3 it follows from the properties of the stopping
criterion discussed in Section 2.2 that

f∗αµ,Cµ
− fαµ

(diag(W )) ≤ ϵ

2
√
3

FLB

⟨1, z⟩1/2
≤ ϵ

2
√
3

F ∗
C

⟨1, z⟩1/2
.

Since αµ is Cµ-valid, we have that f∗αµ,Cµ
= f∗Cµ

= (F ∗
Cµ

)1/2.

Multiplying both sides of the inequality by

(F ∗
Cµ

)1/2 + fαµ(diag(W )) ≤ 2(F ∗
Cµ

)1/2 ≤ 2 ⟨1, zµ⟩1/2 = 2
√
3 ⟨1, z⟩1/2

gives
F ∗
Cµ

− (fαµ(diag(W )))2 ≤ ϵF ∗
C .

Since αµ is Cµ-valid we have that 〈
Cµ, ζαµ

(W )
〉
≥ (fαµ

(diag(W )))2.

Let X∗ be optimal for (SDP-P). Then

⟨C,X∗⟩ −
〈
C, ζαµ

(W )
〉
= ⟨Cµ, X

∗⟩ −
〈
Cµ, ζαµ

(W )
〉
≤ F ∗

Cµ
− (fαµ

(diag(W )))2 ≤ ϵ F ∗
C ,

as required.
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To bound the number of iterations, we use Lemma 2.2 and Theorem 4.9. Indeed, we know that the stopping criterion holds
after at most

T =
27
2 M(fαµ

|SCµ
)

ϵ′ − δ′

iterations. Substituting in the bound on the curvature constant from Theorem 4.9 and using ϵ′ − δ′ = ϵ
4
√
3

FLB

⟨1,z⟩1/2 , gives

T ≤ 32 · 3
√
3 · 4

√
3

ϵ

⟨1, z⟩
FLB

iterations.

Proof of Lemma 4.11. Let AT
µAµ = Cµ and note that

hSCµ
(y) =

∥∥Aµdiag⋆(y)AT
µ

∥∥
=

∥∥∥diag⋆(y)1/2Cµdiag⋆(y)1/2
∥∥∥ .

For simplicitly of notation let dµ = diag(Cµ), and note that dµ ≥ µ ≥ z.

Now, since 0 < ∇fαµ
(x) ≤ αµ it follows that

hSCµ
(∇fαµ

(x)) ≤ hSCµ
(αµ)

= ⟨1, zµ⟩
∥∥∥diag⋆(dµ)−1/2Cµdiag⋆(dµ)−1/2

∥∥∥
=

√
3 ⟨1, z⟩

∥∥∥diag⋆(dµ)−1/2Cµdiag⋆(dµ)
−1/2

∥∥∥
where the last equality holds because ⟨1, zµ⟩ = 3 ⟨1, z⟩.

Now
Cµ = C + diag⋆(µ) ⪯ diag⋆(z + µ) ⪯ 2diag⋆(dµ)

Therefore
diag⋆(dµ)−1/2Cµdiag⋆(dµ)−1/2 ⪯ 2I,

completing the proof.

Lemma E.1. Suppose that C is positive semidefinite with diag(C) > 0. Assume, in addition, that C is sparse with respect
to a graph G = (V,E) with maximum degree ∆, i.e., Cij = 0 if (i, j) /∈ E. If z = (∆+ 1)diag(C) then C ⪯ diag⋆(z).

Proof. Let d = diag(C) and consider C̃ = diag⋆(d)−1/2Cdiag⋆(d)−1/2. The entries of C̃ are

C̃ij =

{
1 if i = j

Cij√
CiiCjj

if i ̸= j.

Since C ⪰ 0, we have that every 2× 2 principal minor is nonnegative, and so that CiiCjj ≥ C2
ij for all i ̸= j. Now consider

the matrix
(∆ + 1)I − C̃ = diag⋆(d)−1/2(diag⋆(z)− C)diag⋆(d)−1/2.

Let ∆j denote the degree of the jth vertex of G. Then, for any j, we have∑
i ̸=j

|C̃ij | ≤ ∆j ≤ ∆ = [(∆ + 1)I − C̃]jj .

This shows that (∆ + 1)I − C̃ is diagonally dominant and so that C ⪯ diag⋆(z).
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F. Correctness of LMO implementation without factorizing C

Lemma F.1. Let A ∈ Rn×m be such that C = ATA. Let y > 0 be a positive vector. Suppose that u is a unit vector such
that

uT diag⋆(y)1/2Cdiag⋆(y)1/2u ≥ λmax(diag⋆(y)1/2Cdiag⋆(y)1/2)− δ

and

v =
Cdiag⋆(y)1/2u

(uT diag⋆(y)1/2Cdiag⋆(y)1/2u)1/2
.

Then vvT ∈ S̃C and
vT diag⋆(y)v ≥ uT (diag⋆(y)1/2Cdiag⋆(y)1/2u.

Proof. First we check that vvT ∈ S̃C . We can write vvT = ATPA where P is the unit trace positive semidefinite matrix
given by

P =
Adiag⋆(y)1/2uuT diag⋆(y)1/2AT

tr(Adiag⋆(y)1/2uuT diag⋆(y)1/2AT )
.

To see that vvT = ATPA we observe that ATA = C and that

tr(Adiag⋆(y)1/2uuT diag⋆(y)1/2AT ) = uT diag⋆(y)1/2Cdiag⋆(y)1/2u.

Now, let M = diag⋆(y)1/2Cdiag⋆(y)1/2. Our aim is to show that vT diag⋆(y)v ≥ uTMu. This can be reformulated as

vT diag⋆(y)v =
uTM2u

uTMu
≥ uTMu ⇐⇒ (uTM2u)1/2 ≥ uTMu.

Let λ1 ≥ · · · ≥ λn ≥ 0 denote the eigenvalues of M with corresponding eigenvectors w1, . . . , wn. Since the wi form an
orthonormal basis for Rn, we have that

n∑
i=1

(uTwi)
2 =

〈
uuT ,

n∑
i=1

wiw
T
i

〉
=

〈
uuT , I

〉
= 1.

So the (uTwi)
2 are non-negative and sum to one. By the concavity of the square root,

(uTM2u)1/2 =

[
n∑

i=1

λ2i (u
Twi)

2

]1/2

≥
n∑

i=1

(uTwi)
2(λ2i )

1/2 = uTMu,

completing the proof.

G. Additional experimental results
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Figure 3. Plot of minτ≤t RFWgap(x(τ)) vs Frank-Wolfe iter-
ations for our algorithm applied to Gset graphs with scheduled
step size. Each line represents a single graph. The lines are
colored by group membership.
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Figure 4. Plot of minτ≤t RFWgap(x(τ)) vs Frank-Wolfe iter-
ations for our algorithm applied to 5-regular graphs with 10q/2

vertices. Each line represents a single graph. Colors indicate
graphs with the same parameters.

Table 2. Iteration count and relative error comparison between our method and the methods of Shinde et al. (2021) and Yurtsever et
al. (2021) for Gset graphs. The iteration count for each graph is highlighted in bold.

GRAPH
GRAPH PARAMETER YURTSEVER ET AL. SHINDE ET AL. THIS PAPER

N M ITER
REL
ERR

ITER
REL
ERR

ITER
REL
ERR

G1 800 19176 149 0.007 25285 0.025 156 0.005
G2 800 19176 139 0.007 25027 0.024 122 0.007
G3 800 19176 123 0.008 53597 0.039 149 0.005
G4 800 19176 141 0.008 23282 0.022 146 0.005
G5 800 19176 139 0.008 25155 0.024 162 0.004

G14 800 4694 897 0.024 186125 0.049 73 0.017
G15 800 4661 910 0.024 213059 0.052 69 0.021
G16 800 4672 933 0.019 180269 0.047 91 0.013
G17 800 4667 915 0.024 195772 0.047 83 0.015
G22 2000 19990 118 0.008 359679 0.045 172 0.004
G23 2000 19990 119 0.007 127076 0.040 149 0.005
G24 2000 19990 123 0.007 114487 0.040 155 0.004
G25 2000 19990 127 0.007 75340 0.037 156 0.004
G26 2000 19990 147 0.008 95181 0.039 146 0.005
G35 2000 11778 2245 0.019 600032 0.048 119 0.011
G36 2000 11766 1919 0.018 730590 0.046 93 0.014
G37 2000 11785 2778 0.024 805089 0.047 86 0.016
G43 1000 9990 122 0.008 27416 0.029 133 0.005
G44 1000 9990 127 0.007 25333 0.029 143 0.004
G45 1000 9990 116 0.008 28319 0.030 118 0.006
G46 1000 9990 164 0.008 25574 0.027 137 0.005
G47 1000 9990 122 0.008 34344 0.033 132 0.005
G48 3000 6000 153 0.005 14145 0.013 381 0.004
G49 3000 6000 148 0.005 18803 0.016 387 0.004
G50 3000 6000 136 0.004 19304 0.017 455 0.003
G51 1000 5909 1102 0.023 327568 0.037 89 0.014
G52 1000 5916 979 0.018 139494 0.037 103 0.011
G53 1000 5914 1201 0.025 232629 0.038 84 0.015
G54 1000 5916 1317 0.024 270915 0.038 92 0.013
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