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Abstract
Fine-tuning large language models for different
tasks can be costly and inefficient, and even meth-
ods that reduce the number of tuned parameters
still require full gradient-based optimization. We
propose HyperTuning, a novel approach to model
adaptation that uses a hypermodel to generate
task-specific parameters for a fixed downstream
model. We demonstrate a simple setup for hyper-
tuning with HyperT5, a T5-based hypermodel that
produces soft prefixes or LoRA parameters for a
frozen T5 model from few-shot examples. We
train HyperT5 in two stages: first, hyperpretrain-
ing with a modified conditional language mod-
eling objective that trains a hypermodel to gen-
erate parameters; second, multi-task fine-tuning
(MTF) on a large number of diverse language
tasks. We evaluate HyperT5 on P3, MetaICL and
Super-NaturalInstructions datasets, and show that
it can effectively generate parameters for unseen
tasks. Moreover, we show that using hypermodel-
generated parameters as initializations for further
parameter-efficient fine-tuning improves perfor-
mance. HyperTuning can thus be a flexible and
efficient way to leverage large language models
for diverse downstream applications.

1. Introduction
While language models (LMs) have achieved remarkable
capabilities with increasing model size (Brown et al., 2020),
fine-tuning them on specific downstream tasks introduces
significant engineering challenges and computational costs.
Although large models can perform zero-shot, instruction-
prompted, and few-shot learning (Sanh et al., 2022; Wei
et al., 2022), they are usually outperformed by fully fine-
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tuned models when sufficient training data is available.

To reduce the computational and memory overhead of fine-
tuning LMs, parameter-efficient fine-tuning (PEFT) meth-
ods have been proposed, such as adapters (Houlsby et al.,
2019), prefix tuning (Li & Liang, 2021), and prompt tun-
ing (Lester et al., 2021). These methods update only a
small subset of (possibly new) parameters of the LM, and
have achieved competitive performance with full fine-tuning
(Ding et al., 2022). However, PEFT methods still require full
back-propagation through the LM during training, which is
computationally expensive and memory intensive. Given
that (1) only a small number of parameters need to be up-
dated to adapt an LM to a given task, and (2) very large LMs
have demonstrated strong in-context learning capabilities
on a forward pass, we hypothesize that it is possible to train
a separate model to perform the optimization or adaptation
procedure entirely using only a forward pass.

To avoid the costly computation of back-propagating
through the LM to produce parameter updates, especially for
thousands or millions of iterations during training, we pro-
pose a new paradigm of hypertuning: using a hypermodel
to adapt a downstream LM to a desired application. As a
concrete proof of concept, we explore a simple setup where
hypermodels take as input a set of few-shot examples from
a given task, and output the PEFT parameters corresponding
to that task in a single forward pass.

To demonstrate the feasibility of this approach, we train
HyperT5: a set of T5-based hypermodels that output soft
prefixes (Li & Liang, 2021) or LoRA parameters (Hu et al.,
2022), to be incorporated into a frozen downstream T5 LM.
To train HyperT5, we introduce a two-stage procedure for
training hypermodels: hyperpretraining, where we adapt
a pretrained LM to generate PEFT parameters via a mod-
ified language modeling objective, followed by multi-task
fine-tuning (MTF) the hypermodel. HyperT5 models can
take few-shot examples from unseen tasks and generate the
corresponding PEFT parameters, allowing us to adapt a
downstream LM without back-propagation. We show that
hypertuning is effective on P3, Super-NaturalInstructions
and MetaICL datasets. Furthermore, we show that when
the hypermodel-generated parameters are used as initializa-
tions for further parameter-efficient fine-tuning, they achieve
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Figure 1: Overview of HyperTuning. (A) Fine-tuning, where all model parameters are updated (red). (B) Parameter-efficient
fine-tuning (PEFT), where all model parameters are frozen (blue) and only a small number of parameters, ϕ, are updated.
(C) HyperTuning, where a hypermodel is used to generate parameters ϕ for a frozen downstream model. For instance, a
hypermodel may take a set of few-shot examples to determine what ϕ to generate. Only the hypermodel’s parameters are
updated during training. (D) At inference time, the parameters ϕ only need to be generated once, and thereafter only need to
store ϕ, with no need to retain the few-shot examples.

faster training convergence and better performance.

This work serves as a first step toward hypertuning, and we
are aware of the limitations of this preliminary setup. Be-
cause our formulation of hypermodels can only take a small
number of examples as input, its performance cannot com-
pare to full parameter-efficient fine-tuning or full fine-tuning.
HyperT5 also generally underperforms T5 explicitly trained
for few-shot in-context learning with full attention across
examples, although we note that the latter is more compu-
tationally expensive at inference time. Nevertheless, we
believe that our results demonstrate a promising step toward
model adaptation without the need for back-propagation.

2. Related Work
HyperNetworks Several works have explored the con-
cept of ”hypernetworks,” where an auxiliary network is
used to generate parameters for a primary network. This
terminology was first introduced by Ha et al. (2017) and
applied to LSTMs. Among Transformer-based language
models, Karimi Mahabadi et al. (2021) and He et al. (2022)
incorporated hypernetworks into T5 models for knowledge
sharing during multitask fine-tuning. Peebles et al. (2022)
utilized a Transformer with diffusion for generating full
model parameters for image-recognition and Cartpole tasks.
Similarly, Lester et al. (2022) trained models to generate
soft prompts for transferring between downstream mod-
els. Deb et al. (2022) also used a hypernetwork to modify
downstream model parameters and applied their approach to
Super-NaturalInstuctions (S-NI). They found that incorpo-
rating instructions via a hypernetwork trained with MAML
(Finn et al., 2017) improved downstream performance. In
work that became available shortly before submission, Ivi-
son et al. (2022) applied hypernetworks to generate soft
prefixes for T5 models. In contrast to this work, they fully
tune the downstream model and apply fusion-in-decoder
attention over the hyper-encoder inputs.

Multi-task Training and Transfer A crucial ingredient
to hypertuning is the transferrability of task knowledge and
generalization to novel tasks. Many past works (Phang
et al., 2018; Pruksachatkun et al., 2020; Vu et al., 2020)
have explored the effectiveness of single- and multi-task
transfer learning. More recent work has shown that large-
scale multi-task training tends allows models to generalize
to unseen tasks (Sanh et al., 2022; Wei et al., 2022; Wang
et al., 2022; Chung et al., 2022). Min et al. (2022) and Chen
et al. (2022) show that few-shot learning also benefits from
multi-task training. Pfeiffer et al. (2020), Vu et al. (2021),
Gu et al. (2021), and Su et al. (2022) have also explored
transfer learning among PEFT methods.

3. HyperTuning
The impetus for using hypermodels for adapting down-
stream models derives from two recent developments in
natural language processing:

1) Large language models can perform in-context learn-
ing effectively. Large language models have been shown
to be able to learn from the context of a small number of
task examples or instructions, without any prior training on
that task (Brown et al., 2020; Min et al., 2022; Wang et al.,
2022). This suggests that models can “understand” what
the task is and how to tackle it based on a few samples or
a task description. This capability improves as the models
get larger or are trained on more relevant data (Chowdhery
et al., 2022; Ouyang et al., 2022; Bai et al., 2022).

2) Large language models can be adapted to downstream
tasks by tuning a small set of parameters. Along with
the growth in model sizes, there have been significant ad-
vances in fine-tuning methods that only modify a small
number of parameters (possibly adding some new ones) in a
frozen language model to adapt it to a specific task (Houlsby
et al., 2019; Li & Liang, 2021; Lester et al., 2021; Ding et al.,
2022). These methods often achieve performance compara-
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ble to fine-tuning all parameters in the model. Importantly,
the number of parameters that need to be changed is small
enough that it is feasible to train a model to generate them
(Qin et al., 2021; Lester et al., 2022).

Taken together, these findings suggest that we may be able
to use an auxiliary model that can first extract some task-
relevant knowledge from some input that describes the task
(e.g. instruction, few-shot examples), and then generate a
small number of adaptive parameters, thereby changing the
main model’s behavior to suit the task. This approach, if
successful, would enable us to adapt models to downstream
applications without using backpropagation, or storing the
encoded representations of few-shot examples in memory.
In other words, we can delegate the work of model adapta-
tion to a separate model.

We call this approach hypertuning, inspired by the work
on hypernetworks by Ha et al. (2017). Hypertuning uses a
hypermodel to adapt a downstream model to a target down-
stream task or application. This differs from fine-tuning,
which uses backpropagation and a gradient descent algo-
rithm to update model parameters. In this work, we present
one possible formulation of hypertuning using few-shot
examples and generating a small set of parameters with a
single forward pass through the hypermodel. However, this
is just one possible way of performing hypertuning, and the
idea of adapting models with hypermodels can be general-
ized to many other cases. For example, hypermodels could
also be trained to predict gradients or generate parameter
updates based on input-output pairs. This way, hypermodels
could work with large training sets, not just a few examples.
Ultimately, with sufficiently general and well-trained hyper-
models, we may be able to replace gradient-descent-based
fine-tuning pipelines with hypertuning for many applica-
tions, while achieving similar or better performance.

3.1. HyperTuning with Fewshot Examples

Let M be a model with parameters θ, initialized at θ0 from
pretraining, and L a loss function. Given a dataset of size
N with input-output pairs {(x, y)}, standard fine-tuning
minimizes the following objective over θ:

argmin
θ

1

N

∑
{(x,y)}

L
(
y,M(θ;x)

)
(1)

In the case of parameter-efficient fine-tuning (PEFT), we fix
θ = θ0 and introduce a small set of trainable parameters ϕ
(e.g. adapter parameters, soft prompts) that are injected into
M . We optimize only over ϕ:

argmin
ϕ

1

N

∑
{(x,y)}

L
(
y,M(θ0;x, ϕ)

)
(2)

Figure 2: Overview of HyperT5. (A) HyperT5 takes as
input few-shot examples and outputs PEFT parameters ϕ.
The model is initialized from an LM-adapted T5. (B) In
HyperT5-Prefix, ϕ are key and value prefixes for every
attention layer. (C) In HyperT5-LoRA, ϕ are additive low-
rank modifications to the query and value linear maps.

For hypertuning, we further define a hypermodel H with
parameters ξ that produces PEFT parameters ϕ̂ based on
its input, which can be a set of few-shot examples or task
instructions. For example, if the hypermodel input is a set
of few-shot examples {(xi, yi)}K , we have:

ϕ̂ = H
(
ξ; {(xi, yi)}K

)
(3)

One way to train the hypermodel (H, ξ) is to perform PEFT
on many tasks and use the resulting ϕ as targets. However,
this is costly in computation, requiring many fine-tuning
runs, and does not leverage cross-task knowledge transfer.
Instead, we propose to train the hypermodel end-to-end,
optimizing through the frozen model (M, θ0). Hence, the
hypermodel training objective is:

argmin
ξ

1

N

∑
{(x,y)}

{{(xi,yi)}K}

L
(
y,M(θ0;x,H(ξ; {(xi, yi)}K))

)
(4)

At each training step, we sample a target example (x, y)
and non-overlapping few-shot examples {(xi, yi)}K . We
generate ϕ̂ from the few-shot examples and compute the
loss with respect to (x, y) and ϕ̂. We then back-propagate
the gradients through both M and H to update ξ.

Note that since ϕ̂ does not depend on x, it can be computed
once for a given set of few-shot examples and reused for
downstream predictions. At inference time, we can use ϕ̂ di-
rectly without storing or recomputing the representations for
{(x, y)}, {(xi, yi)}K , saving memory and computation.1
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Figure 3: Overview of HyperPretraining using the Context-Augmented Conditional Language Modeling (CACLM) objective
to train a hypermodel to predict PEFT parameters ϕ. (A) Sample a sequence of 512 tokens from a pretraining corpus, and
splice into 4 segments A–D. (B) The frozen downstream model takes as input B and predicts continuation C. (C) The
hypermodel is trained to encode additional context A and D into PEFT parameters ϕ, providing additional information to
the downstream model to predict C.

4. HyperT5: A T5-Based HyperModel
4.1. Architecture and Setup

To demonstrate the feasibility of hypertuning, we propose
HyperT5, a hypermodel based on T5, where both the hy-
permodel and the downstream model share a T5 backbone
(Figure 2A). We use a frozen LM-adapted T52 as the down-
stream model. The hypermodel is also initialized with LM-
adapted T5 parameters, but with some architectural changes.
As defined in Equation 3, the hypermodel encoder takes the
few-shot examples (and/or task definitions, in the case of
S-NI) as input. The hypermodel decoder takes a fixed set of
newly learned token embeddings as input, and its output rep-
resentations are fed to a set of MLPs to generate the PEFT
parameters ϕ for the downstream model. We also remove
the causal masking from the decoder, since the hypermodel
does not perform autoregressive generation.

We experiment with two PEFT methods: prefix tuning (Li
& Liang, 2021) and LoRA (Hu et al., 2022). Prefix tun-
ing (Figure 2B) prepends a set of learned key and value
representations within each attention layer, while LoRA
(Figure 2C) learns a low-rank additive modification to the
query and value linear maps. Both PEFT methods have been
shown to achieve good performance across a wide range
of tasks (Ding et al., 2022). Chan et al. (2022) also sug-
gest that modifying in-context representations and model
weights can lead to different model behaviors, and we seek
to demonstrate that hypertuning is applicable to very differ-
ent PEFT methods. We name the respective hypermodels

1By construction, few-shot examples occupy at least K times
the memory of the target input x.

2This is the model introduced by Lester et al. (2021). We use
the T5 v1.1 architecture and initialize all experiments with the
LM-adapted parameters, unless stated otherwise.

HyperT5-Prefix and HyperT5-LoRA. Additional architec-
tural details and pseudo-code for both HyperT5-Prefix and
HyperT5-LoRA models can be found in Appendix C.

4.2. HyperPretraining

To train HyperT5, we first undergo an additional stage of
pretraining to adapt the hypermodel to generate parameters
ϕ for the downstream model, which we call hyperpretrain-
ing. As we show in Section 5.5, hyperpretraining is crucial
for good hypermodel performance.

We propose a simple scheme for hyperpretraining using a
Context-Augmented Conditional Language Modeling (CA-
CLM) objective, which extends the conditional language-
modeling (CLM) objective of T5 LM-adaptation. As shown
in Figure 3, we sample a 512-token sequence from a pre-
training corpus and split it into four consecutive segments
A–D. The downstream model receives segment B as input
and predicts segment C, following the CLM objective. The
hypermodel receives segments A and D as input, which
provide additional context from the same document, and
outputs PEFT parameters for the downstream model.3 The
hypermodel thus compresses contextual information to as-
sist the downstream model in its CLM task. We also make
segment B very short (32 tokens) to encourage the down-
stream model to depend on the hypermodel information
for accurate prediction of tokens in C. We compare to a
prefix-only hyperpretraining scheme in Appendix D.

During hyperpretraining, we freeze the downstream model
and only update the hypermodel parameters, training for
100K steps on C4 (Raffel et al., 2020). We perform hyperpre-
training separately for HyperT5-Prefix and HyperT5-LoRA
models. Hyperparameters can be found in Appendix A.

3Segments A and D are marked by sentinel tokens.
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5. Multi-Task Fine-Tuning with HyperT5
5.1. Multitask Fine-Tuning (MTF)

After hyperpretraining, we conduct a second stage of train-
ing to train the hypermodel to generate task-specific PEFT
parameters based on a small number of examples that we
provide as input (Figure 1C). By performing multi-task fine-
tuning on a sufficiently large number of tasks, we hope to
have the hypermodel learn to generalize to generate param-
eters for unseen tasks. We adopt a similar training setup
to MetaICL (Min et al., 2022), which uses multi-task fine-
tuning (Sanh et al., 2022; Wei et al., 2022) with both a
target input example (x) and a set of few-shot input-output
pairs {(xi, yi)}K as inputs. The hypermodel takes the ran-
domly sampled few-shot pairs as input, while the down-
stream model takes the target example as input, as shown in
Equation 3. We fine-tune only the hypermodel parameters
and keep the downstream model parameters fixed, unless
otherwise stated. Appendix A.1 shows how we format the
few-shot inputs.

We compare our approach with two baselines: multi-task
fine-tuning of a T5 model without few-shot inputs, and
MetaICL (multi-task fine-tuning with few-shot inputs). In
MetaICL, the few-shot pairs are concatenated with the target
example as input, both during training and evaluation on
new tasks. We also include baselines that use PEFT methods
for multi-task fine-tuning, i.e. learning a single set of prefix
tuning or LoRA parameters.

We perform multi-task fine-tuning for 10,000 steps with a
batch size of 256. For models that use few-shot inputs (MTF
with fewshot, and hypermodels), we use up to 16 examples,
and truncate tokens that exceed the maximum input length.
At evaluation time, we randomly sample the few-shot inputs
from the training sets of the respective datasets, for exam-
ple evaluated example, though we fix the few-shot inputs
seen by different models by using the same random seed.
Appendix B provides more details on the datasets.

5.2. Datasets

To demonstrate the generality of our approach, we conduct
experiments on three different multi-task training datasets,
each with different held-out tasks and evaluation protocols.

Public Pool of Prompts (P3) (Sanh et al., 2022) consists
of 62 task datasets, and was used to train the T0 models.
Prompts are formatted with 0-shot inference in mind, and of-
ten contain instructions or answer options. For training our
models, we use the T0-train subset. In order to fit multiple
examples into the hypermodel’s context, we further exclude
dataset-prompt subsets with average input sequence lengths
longer than 320 tokens. The list of included dataset-prompts
can be found in Figure 7. Evaluation is performed on a fixed
set of held-out tasks, based on multiple-choice scoring with

accuracy. We exclude StoryCloze from evaluation as the
task is not distributed with training data.

MetaICL (Min et al., 2022) introduced a few-shot multi-
task training dataset, which is an extension of CrossFit (Ye
et al., 2021) with UnifiedQA (Khashabi et al., 2020) and
the addition of training data. For brevity, we will refer
to this dataset as MetaICL. Unlike P3 and S-NI, the task
inputs are not formatted for 0-shot inference; for instance,
the task inputs may give no clue as to the goal of the task,
or what the output space is. They provide several different
train-task splits for tasks, of which we run our experiments
on three (HR→LR, Non-NLI→NLI, Non-Class→Class) to
economize on computation costs. Evaluation is performed
on held-out tasks, with ROUGE or Macro-F1 on model
generations depending on the task.

Super-NaturalInstructions (S-NI) (Wang et al., 2022) con-
sists of over 1,600 task datasets, each with a task definition
and fixed sets of positive and negative examples. Following
their findings, we focus our experiments on two settings:
using only task definition as the hypermodel input, and us-
ing definitions and two positive examples. We only use the
English tasks within the dataset. Evaluation is performed
on held-out tasks using ROUGE-L on model generations.

5.3. Results

5.3.1. P3

Table 1 and Table 2 show the results of our experiments
on the P3 dataset using T5-Large (∼770M parameters) and
T5-XL (∼3B parameters), respectively.

We compare our HyperT5-Prefix and HyperT5-LoRA,
which use hypermodels to generate task-specific PEFT pa-
rameters based on few-shot examples, with several baselines:
prefix tuning, LoRA tuning, T5-MTF, and T5-MTF-Few-
shot. T5-MTF is a model that roughly corresponds to the
T0 model, and we detail the differences in Appendix B.1.

We find that HyperT5-Prefix and HyperT5-LoRA signifi-
cantly outperform prefix and LoRA tuning baselines, indi-
cating the effectiveness of using hypermodels to adapt the
frozen downstream T5 LM to unseen tasks. HyperT5-Prefix
achieves performance close to T5-MTF, while T5-MTF-
Few-shot performs the best, in line with the findings of Min
et al. (2022). These trends are consistent across T5-Large
and T5-XL,4 demonstrating the scalability of hypertuning.

We emphasize that HyperT5-Prefix/LoRA only introduces
a very small number of PEFT parameters in the frozen
downstream T5 model, whereas all parameters are tuned
in the T5-MTF and T5-MTF-Few-shot models. Moreover,

4We note that T0-XL performs much worse than our trained
T5-MTF, which is in agreement with other work (Wu et al., 2022)
that report similar results in replicating T0.
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ANLI HSwag CB COPA RTE WiC WSC WGD AVG

Full Fine-Tuning
T5-MTF 33.4 28.0 63.0 77.9 71.1 50.8 61.0 53.4 54.8
T5-MTF-Few-shot 35.3 27.5 68.6 70.5 75.2 51.7 62.1 52.2 55.4

Parameter-Efficient Fine-Tuning (PEFT)
T5-MTF (Prefix) 33.1 26.1 53.9 67.8 60.5 49.8 54.7 51.4 49.7
T5-MTF (LoRA) 32.9 26.0 36.0 59.7 49.8 51.2 58.1 50.5 45.5

HyperTuning
HyperT5-Prefix 33.4 32.3 60.1 73.9 71.5 51.1 63.0 51.1 54.6
HyperT5-LoRA 33.6 33.0 49.5 74.2 67.4 52.0 64.0 52.9 53.3

HyperTuning + Fine-Tuning
HyperT5-Prefix+ 34.5 32.2 58.1 78.4 76.5 50.4 63.8 54.3 56.0
HyperT5-LoRA+ 33.9 30.7 62.1 75.8 72.3 50.8 64.6 54.5 55.6

Table 1: Results on P3 on held-out tasks (dev) with T5-Large models. T0 results taken from Sanh et al. (2022).

ANLI HSwag CB COPA RTE WiC WSC WGD AVG

Full Fine-Tuning
T5-MTF 39.9 29.4 64.5 88.0 80.8 51.7 60.7 57.9 59.1
T5-MTF-Few-shot 37.9 30.9 67.6 90.5 76.6 51.2 63.3 61.1 59.9

Parameter-Efficient Fine-Tuning (PEFT)
T5-MTF (Prefix) 38.3 31.2 61.4 82.4 78.6 52.6 57.0 54.3 57.0
T5-MTF (LoRA) 33.9 26.4 47.1 67.2 53.3 50.8 51.5 50.3 47.6

HyperTuning
HyperT5-Prefix 38.7 33.6 69.6 88.4 79.5 53.1 57.6 56.6 59.6
HyperT5-LoRA 35.3 30.8 66.4 83.3 68.5 50.3 60.0 56.1 56.4

Other results
T0 33.4 27.3 45.4 73.1 64.5 50.7 65.0 51.0 51.3

Table 2: Results on P3 on held-out tasks (dev) with T5-XL models. T0 results taken from Sanh et al. (2022).

HR
→LR

Non-NLI
→NLI

Non-Class
→Class

Full Fine-Tuning
T5-MTF 34.3 48.8 30.3
T5-MTF-Few-shot 41.0 56.7 40.6

Parameter-Efficient Fine-Tuning (PEFT)
T5-MTF (Prefix) 29.8 42.8 29.6
T5-MTF (LoRA) 31.5 41.3 28.7

HyperTuning
HyperT5-Prefix 38.0 58.3 38.6
HyperT5-LoRA 35.4 54.2 34.8

Table 3: Results on MetaICL (Test) with T5-Large models.

the P3 examples are written with prompt templates that are
optimized for zero-shot inference, which is the ideal input
format for T5-MTF. Furthermore, T5-MTF-Fewshot has
full, bidirectional self-attention between the target input x
and the few-shot examples, whereas HyperT5-Prefix and
HyperT5-Lora only incorporate information from the few-
shot examples via the respective PEFT parameters.

AVG

Full Fine-Tuning
T5-MTF (Def) 40.6
T5-MTF (Def+2Pos) 47.6

HyperTuning
HyperT5-Prefix (Def) 37.1
HyperT5-Prefix (Def+2Pos) 43.5
HyperT5-LoRA (Def) 34.9
HyperT5-LoRA (Def+2Pos) 42.0

Other Results
Tk-Instruct (Def+2Pos) 48.0

Table 4: Results on Super-NaturalInstuctions (S-NI; Test)
with T5-Large models. Tk-Instruct results taken from Wang
et al. (2022).

To investigate whether the hypermodel benefits are comple-
mentary to updating the downstream model parameters, we
conduct an additional set of experiments where we jointly
train both the hypermodel and the downstream model (Hy-
perTuning + Fine-Tuning), with results shown at the bottom
of Table 1. We observe that both HyperT5-Prefix+ and
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Figure 4: Performance of HyperT5 models on P3 evaluation
with different amounts of hyperpretraining. HyperPretrain-
ing is crucial for good performance of the hypermodels.
However, hyperpretraining for too many steps can also hurt
performance (as see in the case of HyperT5-LoRA).

HyperT5-Lora+ slightly surpass T5-MTF-Fewshot, suggest-
ing that the hypermodels can further enhance the perfor-
mance of fine-tuned downstream models.

5.3.2. METAICL

Table 3 shows the results on three MetaICL task splits. As in
the previous experiments, both HyperT5 models outperform
the PEFT models and T5-MTF. T5-MTF-Few-shot, outper-
forms HyperT5 models in all cases except Non-NLI→NLI,
where HyperT5-Prefix achieves a higher score. T5-MTF
performs poorly in MetaICL experiments as the MetaICL
inputs are not designed for zero-shot inference.

5.3.3. SUPER-NATURALINSTRUCTIONS (S-NI)

We report the results on the different S-NI settings in Ta-
ble 4 for T5-Large and Table 6 for T5-XL, using both Def
(definition-only) and Def+2Pos (definition and two fixed
positive examples) settings. The T5-MTF (Def) and T5-
MTF (Def+2Pos) models are similar to the corresponding
Tk-Instruct variants (Wang et al., 2022), with a slight dif-
ference in input formatting (see Appendix A.1). For the hy-
permodels, we prepend the task definitions to the few-shot
examples and treat them as part of the hypermodel input. On
average, the HyperT5 with Def+2Pos outperforms T5-MTF
(Def) by a large margin, but still underperforms T5-MTF
(Def+2Pos), in line with the above results.

5.4. Discussion

Above, we evaluated hypermodels on three multi-task
datasets, where they generate task-specific soft prefixes or
LoRA parameters from a few examples or instructions. In
general, HyperT5 matched or exceeded T5-MTF models,
but lagged behind T5-MTF-Fewshot models (or Def+2Pos
models, in the case of S-NI). This gap is expected, as T5-
MTF-Fewshot uses full self-attention between the examples
and the target input x, while HyperT5 encodes the exam-
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Figure 5: Prefix Tuning

Figure 6: Average performance on P3 held-out tasks with
prefix tuning, using different parameter initializations. Us-
ing hypermodel-generated initializations starts with higher
performance and continues to perform better on average
over the course of training.

ples into PEFT parameters that are independent of x. We
attribute some of the gap to this limitation.

However, this limitation also confers efficiency advantages
to HyperT5 at inference time compared to T5-MTF-Fewshot.
In encoder-decoders such as T5, the full self-attention be-
tween the examples and x means that a new forward pass is
needed for each new x. In contrast, for hypermodels only
need to encode the examples to generate parameters once,
and the generated parameters can be reused for all inputs.

We also observe a consistent trend where HyperT5-Prefix
outperforms HyperT5-LoRA. We speculate that it is easier
for hypermodels to learn to generate soft prefixes as com-
pared to LoRA weights, since soft prefix are effectively
model-internal hidden states, and the generated PEFT pa-
rameters are themselves transformations of the hypermodel
hidden states. Incidentally, another possible interpretation
of the HyperT5-Prefix model is that the combination of the
hypermodel and the downstream model can be seen as a
dual-encoder, single-decoder model with separate encoders
for the few-shot examples and the target example.

Lastly, most the experiments were conducted with minimal
hyperparameter-tuning, and the current results primarily
serve as a proof-of-concept of hypertuning being a viable
approach to adapt downstream models. We expect that fur-
ther exploration of hyperpretraining and MTF hyperparame-
ters as well as hypermodel architectures may lead to better
results and overcome some of the limitations we identified.

5.5. Is HyperPretraining Necessary?

We demonstrate the benefits of hyperpretraining for the
hypermodels in this section. As mentioned in Section 3,
we hyperpretrained the hypermodels for 100k steps before
multi-task fine-tuning. To examine the impact of hyperpre-
training, we also multi-task fine-tune HyperT5-Prefix and
HyperT5-Lora models on the intermediate checkpoints of
hyperpretraining. Figure 4 shows the average scores on the
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ANLI HSwg CB COPA RTE WiC WSC WGD AVG

Prefix (Rand Init) 54.6 50.5 98.8 79.0 78.8 71.6 63.5 52.2 68.6
Prefix (Shared Init) 60.8 51.6 99.4 85.7 84.8 72.4 72.6 65.1 74.0
Prefix (Hyper Init) 61.4 51.5 97.6 84.3 87.1 71.2 76.5 71.6 75.2

LoRA (Rand Init) 59.5 51.3 93.5 78.0 82.6 73.5 77.9 65.1 72.7
LoRA (Shared Init) 57.9 51.6 99.4 83.0 83.8 73.1 73.3 67.9 73.7
LoRA (Hyper Init) 57.7 48.4 99.4 87.3 84.1 73.0 83.9 66.2 75.0

Table 5: Prefix and LoRA tuning on T5-Large with different initializations on P3 held-out tasks. Using HyperT5-generated
parameters as an initialization achieves better average performance than using MTF or randomly initialized PEFT parameters.

held-out tasks for these models. Both HyperT5 models per-
form very poorly without any hyperpretraining, achieving
scores similar to PEFT-only (see Table 1). With hyperpre-
training, the performance of both hypermodels significantly
improves. While HyperT5-Prefix appears to consistently
improve over the course of 100k steps, HyperT5-LoRA per-
formance slightly declines after 50k steps. Hypermodels
targeting different PEFT methods may benefit from different
amounts of hyperpretraining, and our choice of hyperpre-
training steps is by no means considered to be optimal.5

6. HyperModels for Improved Parameter
Initialization

Thus far, we have discussed hypermodels in the context
of generating PEFT parameters in a single forward pass
through the hypermodel. We can also consider an alterna-
tive use of hypermodels: Instead of randomly initializing
new parameters, we can use hypermodels to produce task-
specific PEFT parameters based on a few examples from
the task. This can be seen as using task knowledge acquired
by the hypermodel during training to provide a first approx-
imation of PEFT parameters, and thereafter refining the
parmaeters via regular PEFT training.

In conventional PEFT, wherever new parameters are intro-
duced into the model, they are either initialized randomly,
or with fixed initial values (e.g. the up-projection weights in
LoRA are initialized to 0)–for brevity, we will refer to this
simply as random initialization. Beyond random initializa-
tion, Vu et al. (2021, SPoT) and Gu et al. (2021, PPT) have
explored transfer-learning within PEFT, first doing PEFT
on one or more upstream tasks, and then using the learned
PEFT parameters as an initialization for downstream PEFT.

This approach has two advantages over conventional PEFT
initializations. First, the hypermodel-generated parameters
already perform well on the task, as shown in Section 5.3,
so PEFT training can reach good performance faster. Sec-
ond, the hypermodel can transfer relevant knowledge from
previous tasks to the new task, similar to SPoT and PPT,

5We chose 100k steps based on the T5 LM-adaptation proce-
dure (Lester et al., 2021).

except we let the hypermodel determine what previously
learned task knowledge is most applicable to the new task.

To investigate the effectiveness of using hypermodels to
generate PEFT initializations, we use the P3-trained models
from Section 5.3.1, and perform prefix and LoRA tuning on
held-out tasks individually.6 For each method-task pair, we
sweep across learning rates {1e−3, 1e−4, 1e−5} and take
the best average result over 3 random seeds.

We consider two baselines for initializations: random initial-
ization (Rand Init) and using the multi-task fine-tuned PEFT
parameters from Section 5.3.1 as initializations (Shared Init).
The hypermodel-generated initialization (Hyper Init) is gen-
erated using a randomly sampled set of 16 examples from
the respective training sets.

We show the results of prefix tuning7 and LoRA tuning with
different initialization schemes in Table 5. We observe that
for both prefix tuning and LoRA tuning, shared initialization
significantly performs random initialization, while using a
hypermodel-generated initialization outperforms both on
average. We also show the average performance across
tasks over the course of tuning in Figure 6 and Figure 11.
We observe that hypermodel-generated initializations start
with much better performance compared to the other two
initialization schemes, and continue to outperform them
over the course of fine-tuning. Hence, hypermodels can be
complementary to a standard PEFT pipeline, providing both
performance gains and computational cost savings.

7. Societal Impact
While this work presents only an initial step toward hyper-
tuning, it is worth discussing the societal impact of this
line of research. The primary benefits of this line of work
is to reduce the cost of model adaptation for downstream
application, either to specific tasks or personalization of
models. This has benefits in reducing both the economic
and environmental costs of creating specialized models.

6We use one prompt for each task, listed in Appendix B.1.
7Prefix tuning is performed via a reparameterization, in line

with standard practice. Refer to Appendix E for details.
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However, it is also worth considering the negative impact
of this research. One limitation is that the hypermodel’s
capacity to adapt the downstream model is fairly limited:
both in terms of the extent to which the downstream model
can be modified (only via parameter-efficient tuning meth-
ods, to reduce the output space of the hypermodel), but also
the training data for the hypermodel. Compared to gradient
descent-based optimization, we expect that hypertuning will
be more constrained to model adaptation that is within the
training data already seen by the hypermodel during train-
ing, and would not be able to adapt a model to an entirely
new domain (e.g. fine-tuning a model to tackle a different
language). This may leave low-resource domains or speak-
ers or consumers of low-resource languages underserved by
hypertuning-based model adaptation.

8. Conclusion
We introduce the concept of hypertuning, which leverages
a hypermodel to adapt a downstream model to a specific
downstream application. We present a basic framework for
hypertuning, where a hypermodel is trained to produce pa-
rameters for a downstream model from few-shot examples
in one forward pass, and we apply this framework to train
HyperT5-Prefix and HyperT5-LoRA models that can adapt
a fixed downstream T5 model. We find that a two-stage
training procedure of hyperpretraining and multi-task fine-
tuning is effective for training hypermodels, and we evaluate
the HyperT5 models on P3, MetaICL and S-NI datasets,
showing that they can generate PEFT parameters that en-
able the downstream T5 models to perform well on unseen
tasks. Furthermore, the parameters generated by hypertun-
ing can also serve as improved parameter initializations for
parameter-efficient fine-tuning. We regard these findings
as an initial but encouraging indication of the potential of
adapting large language models without back-propagation.
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A. Training Details
All experiments are trained with 1-bit Adam (Dettmers et al., 2022) and batch size of 256, a learning rate of 5e-5, and a
linear decay schedule. Training was performed with ZeRO (Rajbhandari et al., 2020) and Transformers (Wolf et al., 2020).
For hypermodels, the hypermodel’s max input sequence length is 1024 tokens and the downstream model’s max input
sequence length is 384 tokens. Correspondingly, the max input sequence length for all non-few-shot models (e.g. T5-MTF,
T5-MTF(Prefix)) is 384. The max input sequence length of few-shot models (e.g. T5-MTF-Few-shot) is thus conservatively
set at 1024+384=1408 tokens. The max target sequence length is set to 128 for all experiments.

A.1. Input Formatting

Few-shot examples for hypermodels are formatted in the following manner:

<x> Input 1 <y> Target 1 <x> Input 2 <y> Target 2 <x> Input 3 <y> Target 3

where <x> and <y> and special tokens.

For S-NI, the task definitions are treated as just another example:

<x> Instruction <x> Input 1 <y>Target 1 <x> Input 2 <y>Target 2

B. Dataset-specific Details
B.1. P3 / T0

We highlight some differences our T0 baselines and the T0 setup described in the original paper (Sanh et al., 2022). Besides
the different optimizers and batch sizes listed above, we do not use packing to process our training data. Moreover, because
our focus is on few-shot learning, we remove a number of tasks formulations with longer inputs from the T0-train dataset,
listed in Section 7. For T0, we use an input sequence length of 384 and output length of 128, which matches the input and
output lengths of the downstream model in our hypermodel setup. For T5-MTF-Few-shot, we use an input sequence length
of 1024+384=1408, which is the combined input lengths of the hypermodel and downstream model. We believe that these
changes can meaningfully modify the performance of the T0 models, but provide a fairer baseline to the hypermodel setup.
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adversarial qa dbert answer the following q, adversarial qa dbert based on, adversarial qa dbert generate question, adversarial qa dbert question context answer, adversarial qa dbert tell what it is,
adversarial qa dbidaf answer the following q, adversarial qa dbidaf based on, adversarial qa dbidaf generate question, adversarial qa dbidaf question context answer,
adversarial qa dbidaf tell what it is, adversarial qa droberta answer the following q, adversarial qa droberta based on, adversarial qa droberta generate question,
adversarial qa droberta question context answer, adversarial qa droberta tell what it is, ag news classify, ag news classify question first, ag news classify with choices,
ag news classify with choices question first, ag news recommend, ag news which section, ag news which section choices, amazon polarity Is this product review positive,
amazon polarity Is this review, amazon polarity Is this review negative, amazon polarity User recommend this product, amazon polarity convey negative or positive sentiment,
amazon polarity flattering or not, amazon polarity negative or positive tone, amazon polarity user satisfied, amazon polarity would you buy, app reviews categorize rating using review,
app reviews convert to rating, app reviews convert to star rating, app reviews generate review, cnn dailymail 3.0.0 generate story, cnn dailymail 3.0.0 spice up story, common gen Example prompt,
common gen Given concepts type 1, common gen Given concepts type 2, common gen Put together, common gen choice in concept centric sentence generation,
common gen random task template prompt, common gen sentence to concepts, common gen topic to sentence, common gen topics from the sentence, cos e v1.11 aligned with common sense,
cos e v1.11 description question option id, cos e v1.11 description question option text, cos e v1.11 explain why human, cos e v1.11 generate explanation given text, cos e v1.11 i think,
cos e v1.11 question description option id, cos e v1.11 question description option text, cos e v1.11 question option description id, cos e v1.11 question option description text,
cos e v1.11 rationale, cosmos qa context answer to question, cosmos qa context description question answer id, cosmos qa context description question answer text,
cosmos qa context description question text, cosmos qa context question description answer id, cosmos qa context question description answer text, cosmos qa context question description text,
cosmos qa description context question answer id, cosmos qa description context question answer text, cosmos qa description context question text, cosmos qa no prompt id,
cosmos qa no prompt text, cosmos qa only question answer, dbpedia 14 given a choice of categories , dbpedia 14 given a list of category what does the title belong to,
dbpedia 14 given list what category does the paragraph belong to, dbpedia 14 pick one category for the following text, dream answer to dialogue, dream baseline, dream generate first utterance,
dream generate last utterance, dream read the following conversation and answer the question, duorc ParaphraseRC build story around qa, duorc SelfRC build story around qa, gigaword TLDR,
gigaword first sentence title, gigaword generate summary for this, gigaword in a nutshell, gigaword make a title, gigaword reverse writing, gigaword write a title for this sentence,
gigaword write an article, gigaword write its sentence, glue mrpc equivalent, glue mrpc generate paraphrase, glue mrpc generate sentence, glue mrpc paraphrase, glue mrpc replace,
glue mrpc same thing, glue mrpc want to know, glue qqp answer, glue qqp duplicate, glue qqp duplicate or not, glue qqp meaning, glue qqp quora, glue qqp same thing,
imdb Movie Expressed Sentiment, imdb Movie Expressed Sentiment 2, imdb Negation template for positive and negative, imdb Reviewer Enjoyment, imdb Reviewer Enjoyment Yes No,
imdb Reviewer Expressed Sentiment, imdb Reviewer Opinion bad good choices, imdb Reviewer Sentiment Feeling, imdb Sentiment with choices , imdb Text Expressed Sentiment,
imdb Writer Expressed Sentiment, kilt tasks hotpotqa combining facts, kilt tasks hotpotqa complex question, kilt tasks hotpotqa final exam, kilt tasks hotpotqa formulate,
kilt tasks hotpotqa straighforward qa, paws labeled final Concatenation, paws labeled final Concatenation no label, paws labeled final Meaning, paws labeled final Meaning no label,
paws labeled final PAWS ANLI GPT3, paws labeled final PAWS ANLI GPT3 no label, paws labeled final Rewrite, paws labeled final Rewrite no label, paws labeled final context question,
paws labeled final context question no label, paws labeled final paraphrase task, paws labeled final task description no label, qasc is correct 1, qasc is correct 2, qasc qa with combined facts 1,
qasc qa with separated facts 1, qasc qa with separated facts 2, qasc qa with separated facts 3, qasc qa with separated facts 4, qasc qa with separated facts 5, quarel choose between, quarel do not use,
quarel heres a story, quarel logic test, quarel testing students, quartz answer question based on, quartz answer question below, quartz given the fact answer the q, quartz having read above passage,
quartz paragraph question plain concat, quartz read passage below choose, quartz use info from paragraph question, quartz use info from question paragraph, ropes background new situation answer,
ropes background situation middle, ropes given background situation, ropes new situation background answer, ropes plain background situation, ropes plain bottom hint, ropes plain no background,
ropes prompt beginning, ropes prompt bottom hint beginning, ropes prompt bottom no hint, ropes prompt mix, ropes read background situation, rotten tomatoes Movie Expressed Sentiment,
rotten tomatoes Movie Expressed Sentiment 2, rotten tomatoes Reviewer Enjoyment, rotten tomatoes Reviewer Enjoyment Yes No, rotten tomatoes Reviewer Expressed Sentiment,
rotten tomatoes Reviewer Opinion bad good choices, rotten tomatoes Reviewer Sentiment Feeling, rotten tomatoes Sentiment with choices , rotten tomatoes Text Expressed Sentiment,
rotten tomatoes Writer Expressed Sentiment, samsum Generate a summary for this dialogue, samsum Given the above dialogue write a summary, samsum Sum up the following dialogue,
samsum Summarize , samsum Summarize this dialogue , samsum To sum up this dialog, samsum Write a dialogue that match this summary, sciq Direct Question, sciq Direct Question Closed Book ,
sciq Multiple Choice, sciq Multiple Choice Closed Book , sciq Multiple Choice Question First, social i qa Check if a random answer is valid or not, social i qa Generate answer,
social i qa Generate the question from the answer, social i qa I was wondering, social i qa Show choices and generate answer, social i qa Show choices and generate index,
trec fine grained ABBR, trec fine grained ABBR context first, trec fine grained DESC, trec fine grained DESC context first, trec fine grained ENTY, trec fine grained HUM,
trec fine grained HUM context first, trec fine grained LOC, trec fine grained LOC context first, trec fine grained NUM, trec fine grained NUM context first, trec fine grained open,
trec fine grained open context first, trec pick the best descriptor, trec trec1, trec trec2, trec what category best describe, trec which category best describes, wiki bio comprehension,
wiki bio guess person, wiki bio key content, wiki bio what content, wiki bio who, wiki qa Decide good answer, wiki qa Direct Answer to Question, wiki qa Generate Question from Topic,
wiki qa Is This True , wiki qa Jeopardy style, wiki qa Topic Prediction Answer Only, wiki qa Topic Prediction Question Only, wiki qa Topic Prediction Question and Answer Pair,
wiki qa automatic system, wiki qa exercise, wiki qa found on google, wiqa does the supposed perturbation have an effect, wiqa effect with label answer, wiqa effect with string answer,
wiqa what is the final step of the following process, wiqa what is the missing first step, wiqa what might be the first step of the process, wiqa what might be the last step of the process,
wiqa which of the following is the supposed perturbation, yelp review full based on that, yelp review full format rating, yelp review full format score, yelp review full format star,
yelp review full on a scale, yelp review full so i would, yelp review full this place

Figure 7: List of P3 dataset-prompts used for training. We chose a subset of T0-train with average input lengths shorter than
320 tokens.
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For the hypermodel initialization/PEFT experiments, we do single-task parameter-efficient fine-tuning on each of the
following dataset-prompts:

1. anli GPT 3 style r1

2. hellaswag complete first then

3. super glue cb GPT 3 style

4. super glue copa C1 or C2 premise so because

5. super glue rte GPT 3 style

6. super glue wic GPT 3 prompt

7. super glue wsc.fixed GPT 3 Style

8. winogrande winogrande debiased Replace

B.2. S-NI / T-KI

To standardize the preprocessing across our experiments, we do not use the input formatting provided in the original work
(Wang et al., 2022). Instead, we use the format described in Appendix A.1 for all experiments. Given that the same format is
used in multi-task fine-tuning and evaluation, this should not unfairly advantage any model. However, because the format
deviates from that of the original work, we do not directly evaluate the T-KI models.

Additionally, the Super-NaturalInstructions dataset (previously known as NaturalInstructions-v2) has undergone some
changes over time. In our experiments, we use the v2.5 version of the dataset.

AVG

Full Fine-Tuning
T5-MTF (Def) 46.6
T5-MTF (Def+2Pos) 54.3

HyperTuning
HyperT5-Prefix (Def) 38.9
HyperT5-Prefix (Def+2Pos) 48.6
HyperT5-LoRA (Def) 38.9
HyperT5-LoRA (Def+2Pos) 45.0

Other Results
Tk-Instruct (Def+2Pos) 54.0

Table 6: Results on Super-NaturalInstuctions (S-NI; Test) with T5-XL models. Tk-Instruct results taken from Wang et al.
(2022).

B.3. MetaICL

C. Model Details
The number of decoder input tokens and the size of the MLPs depend on the chosen PEFT method and its hyperparameters.
For example, for HyperT5-Prefix that generates soft prefixes, ϕ will be of the shape [L, 2, 2, P,H], where L is the number
of layers, 2 is for the encoder and decoder, 2 is for the key and value prefixes, P is the number of prefix tokens, and H is
the hidden size. We set the number of decoder input tokens to be 2P . We provide pseudo-code for HyperT5-Prefix and
HyperT5-LoRA models in the Figure 8 and Figure 9 in the Appendix.

We show the parameter counts for the respective hypermodels in Table 7.
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# B = b a t c h s i z e
# T = i n p u t l e n g t h
# P = number o f prompt t o k e n s
# H = h idden d im
# L = num l a y e r s i n e n c o d e r / d e c o d e r

# Shape : [B , T ]
f e w s h o t i n p u t i d s = . . .

# Shape : [B , T , H]
h y p e r e n c o u t = hypermodel . e n c o d e r ( f e w s h o t i n p u t i d s )

# Shape : [B , 2P , H]
# Decoder i m p l i c i t l y u s e s a f i x e d s e t o f i n p u t embeddings o f s i z e 2P
h y p e r d e c o u t = hypermodel . d e c o d e r ( h y p e r e n c o u t )

# Shape : [B , P , LH]
d o w n s t r e a m e n c k p r e f i x = hypermodel . e n c k h e a d ( h y p e r d e c o u t [ : , : P , : ] )
d o w n s t r e a m e n c v p r e f i x = hypermodel . e n c v h e a d ( h y p e r d e c o u t [ : , : P , : ] )
d o w n s t r e a m d e c k p r e f i x = hypermodel . d e c k h e a d ( h y p e r d e c o u t [ : , P : , : ] )
d o w n s t r e a m d e c v p r e f i x = hypermodel . d e c v h e a d ( h y p e r d e c o u t [ : , P : , : ] )

# Shape : [B , P , L H]
d o w n s t r e a m e n c k p r e f i x = d o w n s t r e a m e n c k p r e f i x . r e s h a p e (B , P , L , H)
d o w n s t r e a m e n c v p r e f i x = d o w n s t r e a m e n c v p r e f i x . r e s h a p e (B , P , L , H)
d o w n s t r e a m d e c k p r e f i x = d o w n s t r e a m d e c k p r e f i x . r e s h a p e (B , P , L , H)
d o w n s t r e a m d e c v p r e f i x = d o w n s t r e a m d e c v p r e f i x . r e s h a p e (B , P , L , H)
# These c o r r e s p o n d t o t h e per − l a y e r l e a r n e d p r e f i x e s f o r K and V

# where each o f t h e heads i s d e f i n e d ( e . g . ) :
hypermode . e n c k h e a d = nn . S e q u e n t i a l ( [

nn . LayerNorm ( ) ,
nn . L i n e a r (H) ,
nn . TanH ( ) ,
nn . L i n e a r ( L*H) ,

] )

Figure 8: Pseudo-code for HyperT5-Prefix
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# B = b a t c h s i z e
# T = i n p u t l e n g t h
# R = LoRA rank
# H = h idden d im
# L = num l a y e r s i n e n c o d e r / d e c o d e r

# Shape : [B , T ]
f e w s h o t i n p u t i d s = . . .

# Shape : [B , T , H]
h y p e r e n c o u t = hypermodel . e n c o d e r ( f e w s h o t i n p u t i d s )

# Shape : [B , 3L , H]
# Decoder i m p l i c i t l y u s e s a f i x e d s e t o f i n p u t embeddings o f s i z e 3L
h y p e r d e c o u t = hypermodel . d e c o d e r ( h y p e r e n c o u t )

# Shape : [B , L , H]
e n c r e p r = h y p e r d e c o u t [ : , : L , : ]
d e c r e p r = h y p e r d e c o u t [ : , L : 2 * L , : ]
c r o s s r e p r = h y p e r d e c o u t [ : , 2*L : , : ]

# Repea t f o r d e c r e p r , c r o s s r e p r f o r d e c o d e r s e l f − and c r o s s − a t t e n t i o n
# Shape : [B , L , 2RH]
e n c q r e p r = hypermodel . e n c q h e a d ( e n c r e p r )
e n c v r e p r = hypermodel . e n c v h e a d ( e n c r e p r )

# Shape : [B , L , 2RH]
e n c q r e p r = e n c q r e p r . r e s h a p e (B , L , 2 , R , H)
e n c v r e p r = e n c v r e p r . r e s h a p e (B , L , 2 , R , H)

# r a w e n c q g a t e and r a w e n c v g a t e a r e l e a r n e d p a r a m e t e r s o f s i z e [ L ]
# Shape : [ 1 , L , 1 , 1 , 1 ]
e n c q g a t e = t o r c h . t a n h ( r a w e n c q g a t e ) [ None , : , None , None , None ]
e n c v g a t e = t o r c h . t a n h ( r a w e n c v g a t e ) [ None , : , None , None , None ]

# Shape : L i s t o f [B , R , H]
e n c l o r a q u p l i s t = [ e n c q r e p r [ : , l , 0 , : , : ] f o r l i n r a n g e ( L ) ]
e n c l o r a q d o w n l i s t = [ e n c q r e p r [ : , l , 1 , : , : ] f o r l i n r a n g e ( L ) ]
e n c l o r a v u p l i s t = [ e n c v r e p r [ : , l , 0 , : , : ] f o r l i n r a n g e ( L ) ]
e n c l o r a v d o w n l i s t = [ e n c v r e p r [ : , l , 1 , : , : ] f o r l i n r a n g e ( L ) ]
# These c o r r e s p o n d t o up− and down−map d e l t a s i n LoRA i n Q and V
# a t t e n t i o n l i n e a r maps

# where each o f t h e heads i s d e f i n e d ( e . g . ) :
hypermode . e n c q h e a d = nn . S e q u e n t i a l ( [

nn . LayerNorm ( ) ,
nn . L i n e a r (H) ,
nn . TanH ( ) ,
nn . L i n e a r (2*R*H) ,

] )

Figure 9: Pseudo-code for HyperT5-LoRA
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Body Param Heads Total

HyperT5-Prefix-Large 750M 105M 855M
HyperT5-LoRA-Large 750M 107M 857M

HyperT5-Prefix-XL 2.78B 420M 3.20B
HyperT5-LoRA-XL 2.78B 428M 3.21B

Table 7: Parameter counts for the respective hypermodels. Param Heads refer to the new-initialized layers used to output the
Prefix or LoRA parameters for the downstream model.
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AVG

P3
HyperT5-Prefix (Prefix-only) 54.5
HyperT5-Prefix (Prefix-and-suffix) 52.6

Super-Natural Instructions
HyperT5-Prefix (Def+2Pos, Prefix-only) 43.6
HyperT5-Prefix (Def+2Pos, Prefix-and-suffix) 39.1

Table 8: Prefix-only and Prefix-and-suffix HyperPretraining on T5-Large models
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D. Ablations for HyperPretraining
Ivison et al. (2022) found that prefix-only pretraining worked better than prefix-and-suffix pretraining for HINT, another
T5-based hypermodel. There are several major differences between HyperT5 and HINT, particularly that the downstream
model is fully fine-tuned in HINT, whereas in HyperT5 the downstream model is frozen. Nevertheless, we conduct a short
ablation comparing prefix-only and prefix-and-suffix hyperpretraining (Table 8). We find that prefix-only hyperpretraining
performs worse that prefix-and-suffix hyperpretraining, justifying our use of the prefix-and-suffix setup for HyperT5.

E. Elaboration on Prefix Tuning Comparisons
While prefix tuning is generally presented as learning a set of prepended key and value representations for each Transformer
layer, in practice, the learned prefixes are not optimized directly. In the work that introduced prefix tuning (Li & Liang,
2021), Section 4.3 explains that directly optimizing the learned prefixes leads to unstable training and poorer performance,
and instead recommend optimizing a set of learned embeddings and a parameterized MLP to generate the learned prefixes.
(At inference time, the prefixes can be generated from the learned components–this only impacts the training process.) We
confirmed in our experiments that directly optimizing prefixes leads to poor perfomance, and other works involving prefix
tuning have similarly used this prefix reparamterization

Hence, we have two flavors of prefix tuning to consider: directly optimizing over prefixes (“Prefix-Flat”), and optimizing
with reparamterization (“Prefix-MLP”). The T5-MTF (Prefix) model uses Prefix-MLP, which is the appropriate approach to
tuning prefixes in that setting. However, because HyperT5-Prefix only generates the final prefixes, only Prefix-Flat tuning is
possible. Hence, when we perform the prefix tuning with different initializations in Section 6, we cannot fairly compare the
two methods directly–one which uses a reparameterization during training, and the other which uses direct optimization
which we know performs worse in practice.

Instead, we compare prefix tuning in the two different settings, Prefix-Flat and Prefix-MLP, completely separately. We
describe each individual initialization scheme:

Prefix-Flat

1. Prefix-Flat (Rand): Randomly initialize soft prefixes

2. Prefix-Flat (Shared): Run a forward pass through the prefix reparameterization to obtain the flat prefixes, and use them
as the initialization

3. Prefix-Flat (Hyper): Generate prefixes with HyperT5-Prefix

Prefix-MLP

1. Prefix-MLP (Rand): Randomly initialize the prefix reparameterization embeddings and MLPs (i.e. conventional prefix
tuning)

2. Prefix-MLP (Shared): Directly reuse the prefix reparameterization from T5-MTF (Prefix)

3. Prefix-MLP (Hyper): We train an entirely new HyperT5-Prefix-MLP model, where the parameter generation heads
directly correspond to the prefix tuning reparameterization MLPs. The encoder-decoder in the hypermodel will output
the “embeddings”, and we directly reuse the parameter generation heads during tuning.

The results for Prefix-MLP are presented in the body of the paper in Section 6. We believe that this approach provides the
fairest comparison of initializations. Importantly, both Prefix-MLP (Shared) and Preflix-MLP (Hyper) have been trained on
the same number of labeled examples (not including the few-shot examples, which are inputs), but where the Prefix-MLP
uses a single set of learned embeddings, HyperT5-Prefix-MLP generates the embeddings based on few-shot examples.

We present the full set of prefix tuning results in Table 9, the performance of Prefix-Flat Figure 12.
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ANLI HSwag CB COPA RTE WiC WSC WGD AVG

Prefix-Flat (Rand Init) 43.6 36.3 82.7 74.0 72.9 64.4 64.2 53.0 61.4
Prefix-Flat (Shared Init) 54.3 40.4 98.8 82.7 83.9 71.0 67.4 57.1 69.4
Prefix-Flat (Hyper Init) 56.6 43.5 91.7 84.3 85.3 69.3 73.0 67.6 71.4

Prefix-MLP (Rand Init) 54.6 50.5 98.8 79.0 78.8 71.6 63.5 52.2 68.6
Prefix-MLP (Shared Init) 60.8 51.6 99.4 85.7 84.8 72.4 72.6 65.1 74.0
Prefix-MLP (Hyper Init) 61.4 51.5 97.6 84.3 87.1 71.2 76.5 71.6 75.2

LoRA (Rand Init) 59.5 51.3 93.5 78.0 82.6 73.5 77.9 65.1 72.7
LoRA (Shared Init) 57.9 51.6 99.4 83.0 83.8 73.1 73.3 67.9 73.7
LoRA (Hyper Init) 57.7 48.4 99.4 87.3 84.1 73.0 83.9 66.2 75.0

Table 9: Prefix tuning (Flat and MLP) and LoRA fine-tuning on T5-Large with different initializations on P3 held-out tasks.
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Figure 10: LoRA

Figure 11: Average performance on P3 held-out tasks with LoRA, using different parameter initializations.
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Figure 12: Average performance on P3 held-out tasks with prefix tuning (flat), using different parameter initializations
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