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Abstract
Federated Learning (FL) is a machine learning
framework where many clients collaboratively
train models while keeping the training data de-
centralized. Despite recent advances in FL, the
uncertainty quantification topic (UQ) remains par-
tially addressed. Among UQ methods, conformal
prediction (CP) approaches provides distribution-
free guarantees under minimal assumptions. We
develop a new federated conformal prediction
method based on quantile regression and take into
account privacy constraints. This method takes
advantage of importance weighting to effectively
address the label shift between agents and pro-
vides theoretical guarantees for both valid cover-
age of the prediction sets and differential privacy.
Extensive experimental studies demonstrate that
this method outperforms current competitors.

1. Introduction
Federated learning is an increasingly important framework
for large-scale learning. FL allows many agents to train a
model together under the coordination of a central server
without ever transmitting the agents’ data over the network,
in an attempt to preserve privacy. There has been a con-
siderable amount of FL work over the past 5 years, see
e.g. (Bonawitz et al., 2019; Yang et al., 2019; Kairouz
et al., 2021; Li et al., 2020). Compared to classical machine
learning techniques, FL has two unique features. First, the
networked agents are massively distributed, communication
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bandwidth is limited, and agents are not always available
(system heterogeneity). Second, the data distribution at dif-
ferent agents can vary greatly (statistical heterogeneity);
see (Huang et al., 2022; Yoon et al., 2022). These features
lead to serious challenges for both training and inference in
federated systems. The focus of this work is on federated
inference procedures that allow to build prediction sets for
each agent with a confidence level that can be guaranteed.

Conformal Prediction, originally introduced in (Vovk
et al., 1999; Shafer and Vovk, 2008; Balasubramanian et al.,
2014), has recently gained popularity. It generates predic-
tion sets with guaranteed error rates. Conformal algorithms
are shown to be always valid: the actual confidence level is
the nominal one, without requiring any specific assumption
about the distribution of the data beyond exchangeability;
see (Lei et al., 2013; Fontana et al., 2023) and references
therein. With few exceptions, CP methods were developed
for centralized environments.

We consider below a supervised learning problem with fea-
tures x taking values in X and labels y taking values in
Y . Let (Xk, Yk)Ntrain+N

k=1 be an independent and identically
distributed (i.i.d.) dataset. We divide the data into a training
and a calibration dataset. Formally, let {Ktrain,Kcal} be a
partition of {1, . . . , Ntrain +N}, and let N = |Kcal |. With-
out loss of generality, we take Kcal = {1, . . . , N}. We learn
a predictor f̂ : X → ∆|Y| on the training set Ktrain, where
|Y| is the number of classes and ∆|Y| is the |Y|-dimensional
probability simplex. For any covariate x ∈ X associated
with a label y ∈ Y , consider a classification score func-
tion S : Y ×∆|Y| → [0, 1], independent of other covariates
and labels, which yields a non-conformity score given by
V (x, y) = S(y, f̂(x)). This non-conformity measure es-
timates how unusual an example looks. Based on these
non-conformity scores, standard CP procedure constructs,
for each significance level α ∈ [0, 1], a (measurable) set-
valued predictor Cα(x) using {(Xk, Yk)}Nk=1 that satisfies
the following conditions

P (YN+1 ∈ Cα(XN+1)) ≥ 1− α, (1)

where (XN+1, YN+1) is a test point that is independent of
Ktrain and Kcal. The quantity 1− α is called the confidence
level. The guarantee (1) is set up in a centralized environ-
ment – all data are available at a central node and usually
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assuming that the distributions of calibration and test data
satisfy P cal = P ?Y . If there is a mismatch between the dis-
tributions P cal and P ?Y , then corrections should be made to
ensure an appropriate confidence level; see (Tibshirani et al.,
2019; Podkopaev and Ramdas, 2021; Barber et al., 2022)
and references therein.

Setup. In this work, we consider a federated learning system
with n agents. We assume that, instead of storing the entire
dataset on a centralized node, each agent i ∈ [n] owns
a local calibration set Di = {(Xi

k, Y
i
k )N

i

k=1}, where N i

is the number of calibration samples for the agent i. We
further assume that the calibration data are i.i.d. and that the
statistical heterogeneity is due to label shifts:

(Xi
k, Y

i
k ) ∼ P i = PX|Y × P iY ,

where PX|Y , the conditional distribution of the feature given
the label, is assumed identical among agents but P iY , the
prior label distribution, may differ across agents. In fed-
erated learning, statistical heterogeneity is the rule rather
than the exception, and it is essential to take into account
the presence of label shift at the agent level. We assume
that a predictive model f̂ has been learned by federated
learning. The results we present are agnostic to the learning
procedure.

For an agent ? ∈ [n], and each α ∈ (0, 1), we are willing
to compute a set-valued predictor, Cα with confidence level
1 − α, which depends on the calibration data of all the
agents. The goal is to construct informative conformal
prediction sets for each agent, even when its calibration set
is limited in size, by using the calibration data of all the
agents participating in the FL; we stress that the calibration
data must always remain local to the networked agents.
Most importantly, the resulting algorithm should attain both
conformal and theoretical privacy guarantees – matched
to the privacy guarantees that can be obtained in the FL
training procedure.

Our main contributions to solving this challenging problem
can be summarized as follows.

• We introduce a new method, DP-FedCP, to construct
conformal prediction sets in a federated learning context
that addresses label shift between agents; see Section 2.
DP-FedCP is a federated learning algorithm based on
federated computation of weighted quantiles of agent’s
non-conformity scores, where the weights reflect the label
shift of each client with respect to the population. The
quantiles are obtained by regularizing the pinball loss
using Moreau-Yosida inf-convolution and a version of
federated averaging procedure; see Section 3.

• We establish conformal prediction guarantees, ensur-
ing the validity of the resulting prediction sets. Addi-
tionally, we provide differential private guarantees for
DP-FedCP; see Section 4.

• We show that DP-FedCP provides valid confidence sets
and outperforms standard approaches in a series of experi-
ments on simulated data and image classification datasets;
see Section 5.

Related Works. The construction of predictions sets with
confidence guarantees has been the subject of much work,
mostly in a centralized framework. The conformal frame-
work, introduced in the pioneering works of (Vovk et al.,
1999) is appealing in its simplicity/flexibility; see e.g. (An-
gelopoulos et al., 2021; Fontana et al., 2023) and the ref-
erences therein. For exchangeable data, this framework
provides a model-free methodology for constructing predic-
tion sets that satisfy the desired coverage (Shafer and Vovk,
2008; Papadopoulos et al., 2002; Fannjiang et al., 2022;
Angelopoulos et al., 2022b).

These results can also be extended to non-exchangeable
data. A method has been developed for dealing with co-
variate shift (Tibshirani et al., 2019). This method is based
on evaluating the discrepancy between the distribution of
the calibration data set P cal and the test point distributed
according to P ?Y . Using an estimate of the Radon-Nikodym
derivative dP ?Y /dP

cal, a valid prediction set can be obtained
by weighting the non-conformity scores. The seminal work
of (Tibshirani et al., 2019) led to several improvements, ei-
ther to form valid prediction sets as long as the f -divergence
of the discrepancy remains small (Cauchois et al., 2020),
or to formulate hypothesis tests under covariate shifts (Hu
and Lei, 2020). In addition, Gibbs and Candes (2021) exam-
ine the shift in an online environment; and Lei and Candès
(2021) show the validity of the prediction sets even when
the distributional shift is only approximated. Since many
real-world data sets do not satisfy exchangeability, valid
prediction sets are developed in (Barber et al., 2022) that
put more mass around the point of interest.

Conformal methods adapted to label shift are considered
in (Podkopaev and Ramdas, 2021; 2022) and have similar
guarantees to those in (Tibshirani et al., 2019, Corollary 1).
Methods for detecting and quantifying label shift have been
proposed in (Lipton et al., 2018; Garg et al., 2020).

Differentially private quantiles can be derived based either
on the exponential or Gaussian mechanisms (Gillenwater
et al., 2021; Pillutla et al., 2022). Using the exponential
mechanism, valid prediction sets are generated in (An-
gelopoulos et al., 2022a). However, quantile computation
in a federated learning environment remains a challenge. A
first federated approach based on quantile averaging was
proposed in (Lu and Kalpathy-Cramer, 2021). However,
this work does not provide theoretical guarantees, and the
proposed method is vulnerable to distribution shifts. For
federated deep learning, the differentially private versions
are based on various techniques combination like gradient
clipping and the addition of random noise (Triastcyn and
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Faltings, 2019; Wei et al., 2020).

Notation. Denote by [n] the set {1, . . . , n} and consider a
finite number of labels, i.e., |Y| < ∞. Each agent i ∈ [n]
has N i

y calibration samples of label y ∈ Y , and denote
Ny =

∑n
i=1N

i
y their total number over all the calibration

examples. Recall that N i the total number of calibration
samples on agent i, i.e., N i =

∑
y∈Y N

i
y. Define the total

number of calibration data points N :=
∑n
i=1

∑
y∈Y N

i
y.

For a cumulative distribution function F and β ∈ [0, 1],
define by Qβ(F ) := inf{z : F (z) ≥ β} the β-quantile.
Finally, for v ∈ R denote by δv the point-mass distribution.

2. Conformal Prediction for Federated
Systems under Label Shift

Non-exchangeable data. In this section, we explain how
to take advantage of calibration data to obtain a valid
(1 − α)-prediction set. Consider the calibration dataset
{(Xi

k, Y
i
k ) : k ∈ [N i]}i∈[n] with data distributed according

to {P i}i∈[n]. For {πi}i∈[n] ∈ ∆n we define the mixture
distribution of labels given for y ∈ Y by

P cal
Y (y) =

∑n
i=1 πiP

i
Y (y).

Our goal is to determine a set of likely outputs for a new
data point (X?

N?+1, Y
?
N?+1) drawn on agent ? ∈ [n] from

the distribution P ?. The conformal approach relies on non-
conformity scores V ik = V (Xi

k, Y
i
k ), i ∈ [n], k ∈ [N i] to

determine the prediction set – see (Shafer and Vovk, 2008).
These non-conformity scores are uniformly weighted to
generate the conventional prediction set

Cα,µ̄(x) = {y ∈ Y : V (x,y) ≤ Q1−α (µ̄)} ,

µ̄ = (N + 1)−1(
∑n
i=1

∑Ni

k=1 δV ik + δ1).
(2)

However, this method can lead to significant under-coverage
in the presence of label shift (Podkopaev and Ramdas, 2021).
In fact, since the data {(Xi

k, Y
i
k ) : k ∈ N i}i∈[n] are often

not exchangeable, it is required to correct the quantile to
account for label shift to obtain valid prediction sets (Tibshi-
rani et al., 2019). As proposed by Podkopaev and Ramdas
(2021), we begin by assuming that, for all i ∈ [n] and y ∈ Y ,
we have access to the likelihood ratios:

wiy = P iY (y)/P cal
Y (y).

Denote by I = {(i, k) : i ∈ [n], k ∈ [N i]}∪{(?,N? + 1)}.
Using the weights {W i

k : (i, k) ∈ I} provided in (40), the
non-exchangeability correction of Tibshirani et al. (2019) is
given for any y ∈ Y by

p?Y ik ,y
=

W i
k

W ?
N?+1 +

∑n
j=1

∑Nj

l=1W
j
l

, (3)

µ?y = p?y,yδ1 +

n∑
i=1

Ni∑
k=1

p?Y ik ,y
δV ik .

For any covariate x ∈ X , define the (1− α)-prediction set
with oracle weights

Cα,µ?(x) =
{
y ∈ Y : V (x,y) ≤ Q1−α

(
µ?y
)}
.

In contrast to the exchangeable setting, the quantile is calcu-
lated based on a weighted empirical distribution depending
on y. The validity of the prediction set is based on the
concept of weighted exchangeability, which was introduced
in (Tibshirani et al., 2019, Definition 1); see also (Podkopaev
and Ramdas, 2021, Theorem 2). In the following, we will
suppose that the next assumption holds.

H1. The calibration data points {(Xi
k, Y

i
k ) : (i, k) ∈ I}

are pairwise independent, and there are no ties between
{V ik : (i, k) ∈ I} almost surely.

Theorem 2.1. If H1 holds, then for any α ∈ [0, 1), we
have

1− α ≤ P
(
Y ?N?+1 ∈ Cα,µ?(X?

N?+1)
)

≤ 1− α+ E
[

max
(i,k)∈I

{
p?Y ik ,Y ?N?+1

}]
, (4)

where p?
Y ik ,Y

?
N?+1

is defined in (3).

This theorem is directly adapted from (Tibshirani et al.,
2019, Corollary 1). For completeness, a formal proof is
postponed to Appendix C.1. It is important to note that
the lower bound in (4) holds even in the presence of ties
between non-conformity scores. Although Theorem 2.1
guarantees the validity of Cα,µ?(X?

N?+1), this prediction set
requires the challenging computation of the weights p?y,y.
Indeed, the calculation ofWy,y requires the summation over
N ! elements. The first key contribution of our work is given
in Theorem 2.2, where we show that alternative weights,
which are easier to compute, can lead to valid prediction sets.
Specifically, the new weights p̄?y,y are computed on a smaller
number of data points N̄ ≤ N , which are randomly selected
based on a multinomial random variable with parameter
(N̄ , {πi}i∈[n]). Actually, we denote by N̄ i the multinomial
count associated with agent i. We take N̄ i ∧N i calibration
data from agent i and denote V ik = V (Xi

k, Y
i
k ). For any

label y ∈ Y , the weight p̄?y,y is given by:

p̄?y,y =
w?y

w?y +
∑n
i=1

∑Ni∧N̄i
k=1 w?

Y ik

. (5)

In addition, consider the following prediction set

µ̄?y = p̄?y,yδ1 +
∑n
i=1

∑Ni∧N̄i
k=1 p̄?

Y ik ,y
δV ik ,

Cα,µ̄?(x) =
{
y ∈ Y : V (x,y) ≤ Q1−α(µ̄?y)

}
.

(6)

Denote by ‖w?‖∞ = maxy∈Y{w?y}. Using the new predic-
tion set Cα,µ̄? , we obtain the following result.

Theorem 2.2. Assume H1. Set N̄ = bN/2c and πi =
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N i/N , for any i ∈ [n]. Then,∣∣P (Y ?N?+1 ∈ Cα,µ̄?(X?
N?+1)

)
− 1 + α

∣∣ ≤ 6

N

+
36 + 6 logN

N
‖w?‖2∞+

14 logN

N

∑
i : N

i

12 <logN

√
N i.

The preceding theorem shows that Cα,µ̄?(X?
N?+1) contains

the true label Y ?N?+1 with probability close to 1 − α. If
n = 1 and N ≥ 46, the set {i ∈ [n] : N i < 12 logN}
is empty. In this case, the convergence rate reduces to
N−1 logN . More precisely, if each agent has the same
number of calibration data, the convergence rateN−1 logN
is ensured when N ≥ 12n logN . This is for example the
case when N i = 200 and n ≤ 86538. On the other hand, if
n = N , each agent has only one data point, and in this case
the bound becomes N−1n(logN)3/2.

Approximate Weights. Ideally, we would like to use the
weights defined in equation (5) to compute valid prediction
sets. However, these weights depend on the probability
distribution of the labels for each agent, which in many
scenarios must be estimated (and therefore known up to
an error). Based on empirical estimation of these label
probability distributions {P̂ iY }i∈[n], for each label y, define
the likelihood ratio as follows:

ŵ?y =
P̂ ?Y (y)∑n

i=1 πiP̂
i
Y (y)

, (7)

and denote by p̂?y,y the weight defined in (5) with w?y re-
placed by ŵ?y . We also consider µ̂y defined as in (6) with
p̄?y,y replaced by p̂?y,y. The prediction set becomes

Cα,µ̂(x) = {y ∈ Y : V (x,y) ≤ Q1−α (µ̂y)} . (8)

Since computing the exact weights p̄?y,y in (5) may not be
feasible, we consider the approximation p̂?y,y given in (7).
We also construct a random variable (X̂?

N?+1, Ŷ
?
N?+1)

as in (Lei and Candès, 2021) such that P(Ŷ ?N?+1 =

y) = [
∑
ỹ∈Y ŵ

?
ỹP

cal
Y (ỹ)]−1ŵ?yP

cal
Y (y), where ŵ?y is de-

fined in (7); and X̂?
N?+1|Ŷ ?N?+1 is drawn according to PX|Y .

The validity of the resulting prediction set is established in
Lemma 2.3. Note that this approach makes the weights’
computation feasible, at the cost of introducing one addi-
tional approximation.

Lemma 2.3. For any α ∈ (0, 1), we have∣∣∣P(Y ?N?+1 ∈ Cα,µ̂(X?
N?+1))− P(Ŷ ?N?+1 ∈ Cα,µ̂(X̂?

N?+1))
∣∣∣

≤ 1

2

∑
y∈Y

∣∣∣∣∣P ?Y (y)−
ŵ?yP

cal
Y (y)∑

ỹ∈Y ŵ
?
ỹP

cal
Y (ỹ)

∣∣∣∣∣ := R, (9)

where ŵ?y , Cα,µ̂ are defined in (7) and (8), respectively.

When ŵ?y is sufficiently close to w?y , Lemma 2.3 shows
that the approximate weights generate accurate prediction

sets (as discussed in Appendix C.1). The error disappears
entirely when ŵ?y = w?y for all y ∈ Y . Furthermore, us-
ing (Tibshirani et al., 2019, Corollary 1), we can establish
that Ŷ ?N?+1 ∈ Cα,µ̂(X̂?

N?+1) with probability nearly 1− α.
Finally, similar ideas that developed for Theorem 2.2 on
Y ?N?+1, in conjunction with Lemma 2.3, give a more accu-
rate bound on the coverage validity.

Theorem 2.4. Assume H1. For any i ∈ [n], set πi = N i/N
and take N̄ = bN/2c. Then,∣∣P (Y ?N?+1 ∈ Cα,µ̂(X?

N?+1)
)
− 1 + α

∣∣ ≤ 36‖ŵ?‖2∞
N(Eŵ?

Y cal)2

+R +
6

N
+

2 logN

N

(
3‖ŵ?‖2∞

(Eŵ?
Y cal)2

∨ 7
∑
i : N

i

12 <logN

√
N i

)
,

where ŵ?
Y ik

, R are defined in (7)-(9) and Y cal ∼ P cal
Y .

This theorem provides a lower bound on the probability
of coverage that is independent of the data distribution. A
formal proof can be found in Appendix C.5. This result
demonstrates that it is essential to include all agents with the
most data. However, it also highlights a counterproductive
effect when incorporating agents with few data.

Maximum Likelihood Estimation Weights. Denote by
Mi
y the number of training data on agent i associated to

label y. Consider the total number of local data M? =∑
y∈Y M

i
y , the number of training data with label y written

by My =
∑n
i=1 M

i
y , and the total number of samples on all

agents by M =
∑
y∈Y My . When each agent independently

learns its approximate label distribution based on counting
the number of label in its training datasets, the empirical
counterpart of (7) is given for any labels (y,y) ∈ Y2 by

ŵ?y =
MM?

y

M?My
1My≥1. (10)

All the results in this article are given conditionally to the
training dataset, meaning that they hold regardless of the
specific training data. In order to determine the order of
magnitude of the bound of Theorem 2.4, we analyze the
average value of R. Given the number of training samples
{Mi}i∈[n], if we assume that each training point (Xi

k, Y
i
k )

is distributed according to P i, then taking the expectation
over the training set yields:

E [R] ≤ 6√
M?

+ 12

√
log |Y|+ logM?

Mminy∈Y P cal
Y (y)

.

The proof is given in Appendix C.3. Interestingly, if the
previous upper bound is plugged in Theorem 2.4 instead of
Lemma 2.3, then the leading error of order O(M?−1/2 ∨
N−1 logN) is due to the weights’ estimates {p̂?y,y}y∈Y .
This bound shows that we should not attempt to estimate
the likelihood ratios for a single agent, especially when the
square root number of local training data on agent ? is small
compared to the number of calibration data. Rather, we need
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to do this for a group of agents that have approximately the
same distribution, which will give us more stable estimators.
The agent can benefit from learning simultaneous tasks by
exploiting common structures (Caruana, 1998).

3. Privacy Preserving Federated CP
In the previous section, we constructed prediction sets that
were valid in theory. However, their practical implemen-
tation in a federated environment posed challenges due to
the reliance on estimations that are difficult to evaluate. In
particular, estimating Q1−α (µ̂y) in order to derive the pre-
diction set Cα,µ̂(x), defined in (8), is challenging because
it requires knowledge of the global distribution µ̂y. This
section is divided into two parts: (1) a new method is de-
veloped, called DP-FedCP, for estimating quantiles under
the federated constraints; (2) then, a method for comput-
ing probabilities {p̂?y,y}y,y∈Y with differential privacy (DP)
guarantees is presented.

Quantile Regression and Moreau-Yosida Regulariza-
tion. Let α ∈ (0, 1), we now propose to estimate the
weighted (1 − α)-quantile of µ̂y defined in (13). To this
end, we develop a federated optimization algorithm based
on “pinball loss” minimization, a quantile regression tech-
niques with asymmetric penalties (Koenker and Hallock,
2001). For v ∈ R and q ∈ R define the pinball loss as

Sα,v(q) = (1− α)(v − q)1{v≥q} + α(q − v)1{q>v}.

For any y ∈ Y , the (1− α)-quantile of µ̂y is given by

Q1−α (µ̂y) ∈ arg min
q∈R

{
EV∼µ̂y

[Sα,V (q)]
}

; (11)

e.g. see (Buhai, 2005). The pinball loss Sα,v is lower semi-
continuous but not differentiable on R. Hence, we consider
the Moreau-Yosida inf-convolution (or envelope) Sγα,v in-
stead of Sα,v – where γ is the regularization parameter; see
e.g. (Moreau, 1963) and (Parikh et al., 2014, Chapter 3),
whose expression is given by

Sγα,v(q) = min
q̃∈R

{
Sα,v(q̃) +

1

2γ
(q̃ − q)2

}
.

The function Sγα,v(·) has an explicit expression given in (17).
Note that the minima of Sα,v and Sγα,v coincide. We obtain
the weighted quantile by considering Sγα,v instead of Sα,v.
An important property is that the inf-convolution of a proper
lower semicontinuous convex function is a differentiable
function whose derivative is Lipschitz; see (Rockafellar
and Wets, 2009, Theorem 2.26). The original optimization
problem given in (11) is replaced by a convex/smooth loss:

Qγ1−α (µ̂y) ∈ arg min
R
{Sγα(q)}, (12)

where Sγα : R→ R+ is the function given by

Sγα : q 7→ EV∼µ̂y
[Sγα,V (q)].

Algorithm 1 DP-FedAvgQE
Input: initial quantile q0, target significance level α,
number of rounds T , learning rate η, Moreau regular-
ization parameter γ, local gradients {∇ Si,γα }i∈[n], local
non-conformity scores {V ik}k∈[Ni+1], mixture weights
{λiy}i∈[n], standard deviation of Gaussian mechanism
noise σg , K number of local iteration.
for t = 0 to T − 1 do

St+1 ← random subset of [n] // Server side
for each agent i ∈ St+1 do // In parallel

Initialize quantile qit,0 ← qt
for k = 0 to K − 1 do

// Gradient with DP noise
git,k ← ∇Si,γα (qit,k)+zit,k, zit,k ∼ N (0, σ2

g)
// Update local quantile
qit,k+1 ← qit,k − ηgit,k

(∆qit+1,∆q̄
i
t+1)← (qit,K − qit,0,

∑
k∈[K]

qit,k
K )

// On the central server
qt+1 ← qt + n

|St+1|
∑
i∈St+1

∆qit+1

q̄t+1 ← t
t+1 q̄t + n

|St+1|
∑
i∈St+1

λiy∆q̄it+1

t+1

Output: Q̂γ1−α,T (µ̂y)← q̄T .

For almost every value of α ∈ (0, 1), there exists a unique
minimizer of Sγα. This minimizer Qγ1−α(µ̂y) of the regular-
ized loss function deviates from the true quantile. However,
the error is controlled by the regularization parameter γ and
is asymptotically exact when γ → 0. More precisely (see
Appendix A.2 for a proof) it holds that:

Theorem 3.1. Let γ > 0 and α ∈ (0, 1). Assume that for
all {y`}`∈[N+1] ∈ Y [N+1], 1− α /∈ {Wk/WN+1}k∈[N+1],
where Wk =

∑k
`=1 ŵ

?
y`

. Then, we have
∣∣Qγ1−α(µ̂y) −

Q1−α(µ̂y)
∣∣ ≤ γ.

The condition on α assumed in Theorem 3.1 ensures the
uniqueness of the minimizer of Sγα.

Federated quantile computation. We now describe the
Differentially Private Federated Average Quantile Estima-
tion (DP-FedAvgQE) algorithm (see Algorithm 1), a novel
method to compute quantile in a federated learning setting,
with DP guarantees. We briefly described this method be-
low. For each query y ∈ Y , we consider the distributions
µ̂y =

∑n
i=1 λ

i
yµ̂

i
y, where λiy and µ̂iy are given by

λiy = Ni

N p̂?y,y +
∑Ni∧N̄i
k=1 p̂?

Y ik ,y
,

µ̂iy =
Nip̂?y,y
λiyN

δ1 +
∑Ni∧N̄i
k=1

p̂?
Y i
k
,y

λiy
δV ik .

(13)

To simplify the notation, for any client i ∈ [n], we introduce
the local loss function Si,γα : q ∈ R 7→ EV∼µ̂iy [Sγα,V (q)];
see (18) for explicit expression.
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At each iteration t ∈ [T ], the server subsamples the par-
ticipating agents St+1 ⊆ [n] independently from the past.
Each selected agent i ∈ St+1 performs K local updates:
(1) they independently compute their local gradient; (2) a
Gaussian noise is added as in (14) to ensure the differen-
tial privacy. More precisely, for agent i ∈ St+1, at local
iteration k ∈ {0, . . . ,K − 1}, we define:

git,k = ∇Si,γα (qit,k) + zit,k, (14)

where {zit,k : (t, k) ∈ {0, . . . , T − 1} × [K]}i∈[n] are i.i.d.
Gaussian random variables with zero mean and variance
σ2
g . For any agent i ∈ St+1, git,k is an unbiased esti-

mate of ∇ Si,γα (qit,k). (3) The participating agents update
their local quantiles qit,k+1 ← qit,k − ηgit,k, where η is
a positive stepsize; (4) then transmit (∆qit+1,∆q̄

i
t+1) =

(qit,K − qit,0,
∑
k∈[K] q

i
t,k/K) to the central server. The pa-

rameter ∆qit+1 is used to update the common parameter qt,
while ∆q̄it+1 is necessary to keep track of the average of
the sampled parameters denoted q̄t; see (Nemirovski et al.,
2009; Bubeck et al., 2015). (5) Finally, the server performs
an online average to update q̄t and computes the new param-
eter following

qt+1 = qt + (n/|St+1|)
∑
i∈St+1

∆qit+1.

At the final stage, the central server output the quantile
estimate is given by

Q̂γ1−α,T (µ̂y) =
∑T
t=1(n/|St|)

∑
i∈St λ

i
y∆q̄it/T. (15)

Algorithm 1 is a Federated Averaging procedure (McMahan
et al., 2017) applied to the Moreau envelope of the pinball
loss. As we will see in Section 4, the addition of an indepen-
dent Gaussian noise on the parameter at each update round
provides differential privacy guarantees; see Theorem 4.4
for more details.
Remark 3.2. Privacy is also at risk when computing
probabilities {p̂?y,y}y,y∈Y . To compute the probabilities
{p̂?y,y}y,y∈Y while preserving privacy, we need specific
mechanisms to transmit the number of training labels
(Mi

y)y∈Y from each agent i to the server. For this pur-
pose, we use the method proposed in (Canonne et al.,
2020). The idea is to add a discrete noise to the counts
{Mi

y : i ∈ [n]}y∈Y and then transmit these noisy proxies.
The resulting algorithm that combines the differentially-
private count queries and federated quantile computation is
given in Algorithm 2.
Remark 3.3. Algorithm 2 is designed to build a confidence
set for the single agent ?. By vectorizing all computations,
the algorithm can be scaled to compute a confidence set for
each agent. This would result in an algorithm that remains
linear in the number of clients but would be more efficient
than computing several independent runs. From a practical
perspective, complexity can be further improved by cluster-
ing clients into groups based on their label distributions and

Algorithm 2 DP-FedCP

Input: calibration dataset {(Xi
k, Y

i
k ) : k ∈ [N i]}i∈[n],

covariate x, communication round number T , subsam-
pling number N̄ , Gaussian noise parameters σg, σ̄ ≥ 0.
for each agent i ∈ [n] ∪ {?} do // In parallel

Set ∀y ∈ Y,Mi
y ← number train data with label y

Generate {ηiy}y∈Y i.i.d. according to NZ
(
0, σ̄2

)
Send ∀y ∈ Y, M̂i

y ← max(1,Mi
y + ηiy)

Compute & Send {V (Xi
k, Y

i
k ) : k ∈ [N i]}i∈[n]

// On the central server
Aggregate M̂y ←

∑
i∈[n] M̂

i
y,∀y ∈ Y

Aggregate M̂←
∑
y∈Y M̂y

for each query y ∈ Y do
Sample {N̄ i}i∈[n] ∼Multi(N̄ , {N i/N}i∈[n])
Compute p̂?y,y as in (5) with ŵ?y given in (10)
Compute Q̂γ1−α,T (µ̂y)←DP-FedAvgQE

Output: Ĉγα,µ̂(x)←
{
y : V (x,y) ≤ Q̂γ1−α,T (µ̂y)

}
.

performing conformal prediction on a group level.
Remark 3.4. The local loss functions Si,γα are expressed as
the expectation of pinball loss functions. Since the sensi-
tivity of these pinball loss functions is 1, there is no need
to clip the gradient. It is sufficient adding Gaussian noise
N (0, σ2

g) to guarantee differential privacy. The value of σg
is chosen to provide a suitable trade-off between privacy
and utility, balancing the need for strong privacy protection
with useful outputs. For an explicit setting of σg, refer to
Theorem 4.4.

4. Theoretical Guarantees
Convergence guarantee. We provide a convergence guar-
antee for DP-FedAvgQE. Details of the proofs can be
found in the supplementary paper. We show the conver-
gence of {Q̂γ1−α,t(µ̂y)}t∈N to a minimizer which is unique
under the assumptions discussed in Appendix A.2. We
briefly sketch key steps from the theoretical derivations,
since the local loss functions {Si,γα }i∈[n] have different min-
imizers, this client drift/heterogeneity may slow down the
convergence (Li et al., 2019). This dissimilarity is evaluated
by the parameter ζ ≥ 0, which is given by

ζ = maxi∈[n] ‖∇ Si,γα −∇Sγα‖
1/2
∞ .

The convergence analysis is performed for the estimate
parameter Q̂γ1−α,T (µ̂y) given in (15). We provide below
the statements without subsampling, i.e. St = [n], given in
Appendix B. Recall that Qγ1−α(µ̂y) is provided in (12) and
denote ∆ = Eq0‖q0 −Qγ1−α(µ̂y)‖2. The following results
hold with fixed train/calibration datasets (Dtrain,Dcal), and
define their union by D = Dtrain ∪ Dcal.
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Theorem 4.1. Let γ ∈ (0, 1], St = [n] and consider the
stepsize η ∈ (0, γ/10]. Then, for t ∈ {0, . . . , T − 1}, k ∈
{0, . . . ,K − 1}, we have

E
[
Sγα(Q̂γ1−α,T (µ̂y)) | D

]
− Sγα(Qγ1−α(µ̂y))

≤ (ηKT )−1∆ + 14γ−1η2K(σ2
g +Kζ2).

The presence of heterogeneity among local datasets signifi-
cantly influences convergence dynamics, particularly when
the number of targets K, is significantly larger than 1. In
such cases, the term K2ζ2 poses challenges by potentially
hindering the effectiveness of numerous local steps. Con-
sider the stepsize η? defined by

η? = min

{
γ

10
,

(
γ∆

13K2T (σ2
g + ζ2K)

)1/3
}
.

Setting η = η?, we obtain the following result.

Corollary 4.2. Let γ ∈ (0, 1], St = [n] and consider
the stepsize η?. Then, for any t ∈ {0, . . . , T − 1}, k ∈
{0, . . . ,K − 1}, we have

ε
(γ)
optim = E

[
Sγα(Q̂γ1−α,T (µ̂y)) | D

]
− Sγα(Qγ1−α(µ̂y))

≤ 10∆

γKT
+

5
(
σ2
g + ζ2K

)1/3
∆2/3

(γKT 2)1/3
. (16)

As shown in Corollary 4.2, ε(γ)
optim increases inversely pro-

portional to γ. The smaller the regularization parameter γ,
the smaller the stepsize η must be, and the more iterations
are required to achieve the same accuracy. However, the
error caused by the Moreau envelope vanishes for γ ↓ 0+,
i.e. Qγ1−α(µ̂y) approaches Q1−α(µ̂y). Thus, there is a
tradeoff between the accuracy of the quantile approximation
Q̂γ1−α,T (µ̂y) and the computational cost.

Conformal guarantees for DP-FedCP. We show that the
confidence set Ĉγα,µ̂(X?

N?+1) provided by DP-FedCP con-
stitutes valid coverage of Y ?N?+1. The theoretical derivations
and complete statements are given in Appendix C. For all
i ∈ [n], denote by P iV the distribution of V (Xi, Y i) where
(Xi, Yi) ∼ P i, and consider Y cal ∼ P cal

Y .

Theorem 4.3. Assume there exist m,M > 0 such that for
any i ∈ [n], P iV admits a density f iV with respect to the
Lebesgue measure that satisfies m ≤ f iV ≤ M . For any
α ∈ [0, 1] \Q, it holds∣∣∣P(Y ?N?+1 ∈ Ĉ

γ
α,µ̂(X?

N?+1))− P(Y ?N?+1 ∈ Cα,µ̂(X?
N?+1))

∣∣∣
≤ 6M

√
log(N)

∑
y∈Y P

cal
Y (y)ŵ?y

mminy∈Y ŵ?y

(
E
[
ε
(γ)
optim|Dtrain

]
+ γ
)

+
2M logN

mN
+

4 Var(ŵ?Y cal)

N(Eŵ?
Y cal)2

+
2Eŵ?Y ?

N?+1

NEŵ?
Y cal

+
m

2N logN
+

1

N2
,

where ε(γ)
optim is defined in (16).

This result illustrates an interesting tradeoff introduced by
the regularization parameter γ. As shown in Corollary 4.2,
ε
(γ)
optim increases inversely proportional to γ. Therefore,

setting γ ≈ T−1/2 ensures a convergence rate of order
T−1/4 for the optimization procedure. In this case, the error
term of order O(N−1 logN) is guaranteed by choosing
the number of iterations T ≈ N4. The condition α ∈
[0, 1] \Q is a strong but unnecessary assumption. However,
it provides a simple way to ensure that µ̂y has no jump at
level 1− α. Interestingly, the same condition on α is used
in (Podkopaev and Ramdas, 2021, Corollary 1), where the
authors explain why this condition cannot be avoided to
ensure the consistency of the empirical quantile estimator.

Differential privacy guarantees. The (ε, δ)-differentially
private nature of DP-FedAvgQE relies on two components:
the additional Gaussian noise, combined with the bounded
gradient which avoids extreme values/outliers. The parame-
ter ε controls the level of privacy protection provided by a
differentially private algorithm, by limiting the probability
of inferring any information about an individual in a given
dataset. However, there is a small chance that the algorithm
may leak some information, even though this probability is
kept under control by the parameter δ. Based on the Rényi
differential privacy (Mironov, 2017), joined to agent sub-
sampling mechanism (Balle et al., 2018), we establish the
(ε, δ)-DP property following similar ideas to those of (Noble
et al., 2022, Theorem 4.1). Detailed proof and definitions
are provided in Appendix D.

Theorem 4.4. If there is a constant number S ∈ [n] of
sampled agents, i.e., St = S, for all t ∈ [T ]. Then, for all
ε > 0 and δ ∈ (0, 1−(1+

√
ε)(1−S/n)T ), the Algorithm 1

is (ε, δ)-DP towards a third party when

σg ≥ 2

√√√√K maxi∈[n] λiy
ε

(
1 +

24S
√
T log(1/δ̄)

εn

)
,

where δ̄ =
n

S

[
1−

(
1− δ

1 +
√
ε

)1/T
]
.

5. Numerical experiments
We conducted the experimental study of DP-FedCP us-
ing both synthetic toy examples and real datasets. To per-
form a comprehensive evaluation, we compared our method
with relevant baselines, namely Unweighted Local
and Unweighted Global (see Appendix E for details).
The Unweighted Local method computes the quantile
based on the local validation data of the agent ? and derives
the local unweighted prediction set with (1−α) confidence
level, given by

Cα,µ̄loc,?(x) =
{
y ∈ Y : V (x,y) ≤ Q1−α

(
µ̄loc,?
y

)}
,

7
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where µ̄loc,?
y = 1

N?+1

∑N?

k=1 δV ?k + 1
N?+1δ1. This method

is the adaptive classification technique with split-conformal
calibration applied to agent ?, as introduced in (Romano
et al., 2020) and also described in (Angelopoulos et al.,
2021). On the other hand, the Unweighted Global
method estimates the quantile based on aggregated non-
conformity scores from all the agents, without taking into
account the shift between calibration and target distributions.
This method computes the (1−α)-quantile in an analogous
way to the “classical” conformal method recalled in (2).

For our experiments, we apply split-conformal calibration
on the entire dataset, which requires all agents to report their
non-conformity scores to a central server. We use the same
non-conformity score V (x, y) as considered in (Romano
et al., 2020; Angelopoulos et al., 2021). Given the covariate
x, the predictor f̂ : X → ∆|Y| estimates the probability
of each class, and orders them from the most to the least
likely label. The non-conformity score is then computed as
the sum of all the probabilities greater than the true label y.
Formally, the non-conformity scores are given by

ρ(Xi
k, Y

i
k ) =

∑
y∈Y f̂(Xi

k)[y]1{f̂(Xik)[y]>f̂(Xik)[Y ik ]},

V (Xi
k, Y

i
k ) = ρ(Xi

k, Y
i
k ) + U ik × f̂(Xi

k)[Y ik ],

where U ik ∈ [0, 1] is a uniform random variable.

Simulated Data Experiment. In the first experiment, we
demonstrate that it is necessary to consider label shifts be-
tween agents to obtain valid coverage of prediction sets.
We consider a simple classification problem with 3 labels.
The conditional distributions of the features given the class
label are 3 two-dimensional Gaussian distributions with
means θ1 = [−1, 0],θ2 = [1, 0],θ3 = [1, 3] and with iden-
tity covariance matrices. We consider n = 2 agents with
the distribution of labels {P 1

Y (y)}y∈[3] = {0.8, 0.1, 0.1}
and {P 2

Y (y)}y∈[3] = {0.1, 0.1, 0.8}. We use the Bayes
classifier and consider calibration data with (N1, N2) =
(1000, 50). The inference is performed for agent 2.

We run independently 1000 experiments with different splits
and record the obtained empirical coverage each time. Fig-
ure 1a shows the distribution of non-conformity scores
for the different labels, and Figure 1b shows the empir-
ical coverage of (1 − α) prediction sets with α = 0.1
using the DP-FedCP method (Algorithm 2) compared to
Unweighted Local and Unweighted Global. We
also included results obtained with oracle-weights, in
which the conformal prediction sets are obtained using (85),
i.e., assuming that the exact ratios {w?y}y∈Y are known.

The quantiles calculated via the Unweighted Global
method are mostly due to the non-conformity scores from
agent 1. This is due to the larger local dataset of agent 1,
whose label distribution is very different from that of the
target; see Figure 1a. The Unweighted Local method
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Figure 1: Simulated data experiment with 2D data. Target
confidence level (1− α) = 0.9.
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Figure 2: Empirical coverage on the CIFAR-10 data.

computes the quantiles based on the local data of agent 2,
which has too little data to produce robust prediction sets.
Therefore, DP-FedCP yields much better conformal pre-
diction sets (see Figure 1b), which are little different from
those obtained using the adaptive prediction set methods
with oracle weights of (Podkopaev and Ramdas, 2022).

CIFAR-10 Experiments. We investigate the performance
of DP-FedCP on the CIFAR-10 dataset. We use a ResNet-
56 (He et al., 2016) pre-trained on the CIFAR-10 train-
ing dataset as the underlying classifier with temperature
scaling T = 1.6. We also randomly split the CIFAR-10
test dataset into a calibration dataset and a test dataset,
each containing 5000 points, and repeat the experiment
1000 times. The number of agents is n = 10, and the
prediction set is learned for the agent ? = 4 that has the
smallest number of data points. The distribution of labels
for agent i is P iY (i) = 0.55 and P iY (y) = 0.05 for all
y ∈ [10]\{i}. We set the validation size for agent ? to
N? = 50, and for agent 2 the validation size is N2 = 2150.
The remaining agents have the same validation size of
N i = 350 for all i ∈ [10]\{2, 4}. The significance level
α is set to 0.1. In this configuration, both Unweighted
Local and Unweighted Global methods perform sig-
nificantly worse than DP-FedCP; see Figure 2.

ImageNet Experiments. We use a pre-trained ResNet-
152 (He et al., 2016) as a base model with temperature
scaling T = 10. We perform 1000 runs with different splits
of the 50K ImageNet test dataset into calibration and test
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Figure 3: ImageNet experimental results: (a) Empirical coverage comparison of DP-FedCP with unweighted baselines
(b) Empirical coverage comparison of DP-FedCP with non-DP version at different privacy parameter values (c) Effect of
distribution shifts on empirical coverage for DP-FedCP and unweighted baselines.

datasets of size 40K and 10K samples, respectively. The
calibration data is split into 11 agents. For agent i ∈ [10],
the size of the calibration dataset is N i = 3950, while
we N11 = 500. For ImageNet, the distribution of non-
conformity scores V (f̂(X), Y ) varies significantly as a
function of the given label Y = y. In this experiment,
we distribute the data between agents to ensure distinct non-
conformity score distributions across agents, illustrated in
Figures 6a and 6b. For this, we compute the mean of the
non-conformity scores in function of the given label. We
call G1 the set of the 500 labels with the lowest means and
G2 the set of the remaining 500 labels. Agents i ∈ [10]
(low-score group) take 90% of their data from G1 and
the remaining 10% from G2. Agent 11 takes 90% of its
calibration data from G2 and the remaining 10% from G1.

We construct a prediction set with significance level α = 0.1
for the distribution of the 11-th agent. Figure 3a shows the
empirical coverage of the prediction sets. In contrast to
unweighted alternatives, DP-FedCP achieves valid cover-
age. In Figure 3c, we evaluate the sensitivity of the different
methods to the shift between G1 and G2. We repeat the
previous experiment varying the shift parameter (90% in
the first experiment) with 100 runs for each coefficient and
show the Violin plot of the obtained empirical coverage.
The experimental results show that DP-FedCP overcomes
the challenge of obtaining valid conformal predictions in
the presence of label shifts at a federated level compared to
alternative methods.

Differential Privacy Experiments. We explore the trade-
off between privacy and coverage quality. We conducted the
ImageNet experiment with different values of σg in the set
{10, 30, 60, 100}. The results of the experiment are shown
in Figure 3b, which illustrates the tradeoff between the dif-
ferential privacy parameter σg and the robustness of the
method. In particular, we observe that as σg increases, the
robustness of the method decreases.

6. Conclusion
We present a novel method called DP-FedCP, which is
designed to construct personalized conformal prediction
sets in a federated learning scenario. Unlike existing algo-
rithms, the proposed method takes into account the label
shifts between different agents, and computes prediction
sets with a prescribed confidence level. The resulting sets
are theoretically guaranteed to provide valid coverage, while
ensuring differential privacy. Finally, we illustrate the strong
performance of DP-FedCP in a series of benchmarks.
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A. Moreau Envelope for Quantile Computation

!TEX root = ../icml-2023.tex

A.1. Federated quantile using the Moreau envelope

Lemma A.1. Let α ∈ [0, 1] and (v, q) ∈ R2, the Moreau envelope of the pinball loss with regularization parameter γ > 0
is given by

Sγα,v(q) =


(1− α)(v − q)− γ(1−α)2

2 ; v−qγ > 1− α,
(q−v)2

2γ ; 0 ≤ q−v
γ + 1− α ≤ 1,

α(q − v)− γα2

2 ; q−v
γ > α.

(17)

Moreover, its gradient is given by

∇Sγα,v(q) = −(1− α)1{q<v−γ(1−α)} + α1{q>v+γα} +
1

γ
(q − v)1{v−γ(1−α)<q<v+γα}.

Proof. For all α ∈ [0, 1], (v, q) ∈ R2, recall that the pinball loss and its subgradient are given by

Sα,v(q) = (1− α)(v − q)1{v≥q} + α(q − v)1{q>v}, ∂Sα,v(q) =


−(1− α), q < v

[−(1− α), α], q = v

α, q > v

.

12
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Note that, by construction

Sγα,v(q) = min
q̃∈R

{
Sα,v(q̃) +

1

2γ
(q̃ − q)2

}
= min

q̃∈R

{
(1− α)(v − q̃)1{v≥q̃} + α(q̃ − v)1{v<q̃} +

1

2γ
(q̃ − q)2

}
.

Denote q? = arg minq̃∈R{Sα,v(q̃) + 1
2γ (q̃ − q)2} which exists and is unique (the function to be minimized is coercive and

strongly convex). The stationary condition for the Moreau envelope is given by:

0 ∈ ∂Sα,v(q?) +
1

γ
(q? − q), with ∂Sα,v(q) =


−(1− α), q < v

[−(1− α), α], q = v

α, q > v

.

Considering the 3 different cases, we find that:

q? =


q + γ(1− α), q < v − γ(1− α)

v, q ∈ [v − γ(1− α), v + γα]

q − γα, q > v + γα

.

We conclude the derivation by using the identity from Moreau envelope: Sγα,v(q) = Sα,v (q?) + 1
2γ (q? − q)2 and plugging

in q?.

To simplify the manuscript presentation, we now provide the definition of the local loss function Si,γα : q ∈ R 7→
EV∼µ̂iy [Sγα,V (q)] ∈ R+. Recall the weights p̂?y,y are given in (7), and also that

λiy =
N i

N
p̂?y,y +

Ni∑
k=1

p̂?Y ik ,y
.

Therefore, for q ∈ R, we have

Si,γα (q) =
N ip̂?y,y
λiyN

Sγα,1(q) +

Ni∑
k=1

p̂?
Y ik ,y

λiy
Sγ
α,V ik

(q). (18)

A.2. Moreau’s approximation error

In this section, we consider fixed parameters α ∈ (0, 1), γ > 0, {vk}k∈[N ] and {pk}k∈[N ] ∈ [0, 1]N satisfying
∑
k pk = 1.

We define F :=
∑N
k=1 pkSα,vk and Fγ :=

∑N
k=1 pkS

γ
α,vk

, where Sα,vk and Sγα,vk are the pinball loss and its Moreau
envelope defined for v, q ∈ R by (17). Without loss of generality, it is assumed that {vk}k∈[N ] is increasing since we can re-
index {vk}k∈[N ] and if there exist (j, j′) ∈ [N ]2 such that j 6= j′ and vj = vj′ , we have pjSα,vj+pj′Sα,vj′ = (pj+p

′
j)Sα,vj .

Finally, for k ∈ [N ], denote
Ik = [vk − γ(1− α), vk + γα] . (19)

Lemma A.2. If (1 − α) /∈ {
∑k
l=1 pl}k∈[n], then F admits a unique minimizer. Moreover, this minimizer belongs to

{vk}k∈[n] and we denote k? ∈ [n] its index, i.e., vk? = arg minF . In addition, F is decreasing on (−∞, vk? ] and
increasing on [vk? ,∞). The function Fγ also admits a unique minimizer denoted Qγ1−α ∈ R, and Fγ is decreasing on
(−∞, Qγ1−α] and increasing on [Qγ1−α,∞).

Proof. Note that F is differentiable on R \ {vk}k∈[N ], and for all q ∈ R \ {vk}k∈[N ], we have

F ′(q) = α
∑

k : vk<q

pk − (1− α)
∑

k : vk≥q

pk =
∑

k : vk<q

pk − (1− α).

Since α ∈ (0, 1) with (1 − α) /∈ {
∑k
l=1 pl}k∈[N ], we deduce that there exists a unique vk? ∈ {vk}k∈[N ] such that, for

q ∈ R, ∑
k : vk<q

pk − (1− α) is

{
< 0 if q < vk? ,
> 0 if q > vk? .
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Thus, from the continuity of F it follows that F is decreasing on (−∞, vk? ] and increasing on [vk? ,∞). Moreover, since
F ′γ = F ′ on R \ {∪k∈[N ]Ik}, its minimizer lies in ∪k∈[N ]Ik, where Ik is defined in (19). Finally, the strong convexity of Fγ
on ∪k∈[N ]Ik shows the uniqueness of Qγ1−α = arg minFγ and also that Fγ is decreasing on (−∞, Qγ1−α] and increasing
on [Qγ1−α,∞).

Denote by ∂F subgradient of F . If F is differentiable at q ∈ R, then ∂F (q) = {F ′(q)}. When ∂F (q) is a singleton, by an
abuse of notation, we use the same notation for the set and the unique element it contains.

Theorem A.3. Assume (1− α) /∈ {
∑k
l=1 pl}k∈[N ], then the unique minimizers (vk? , Qγ1−α) resp. of (F , Fγ) resp. satisfy

|Qγ1−α − vk? | ≤ γ.

Proof. First, for any k ∈ [N ] such that vk? − γ(1− α) ∈ Ik, we obtain

vk? − vk − γ(1− α)

γ
≤

{
−(1− α) if vk ≥ vk? ,
α else vk < vk? .

(20)

Since Lemma A.2 shows that F is decreasing on (−∞, vk? ] and increasing on [vk? ,∞) where vk? is the unique minimizer
of F (vk?), the convexity of F implies that:

∂F (q) ⊂

{
(−∞, 0) if q < vk? ,
(0,∞) if q > vk? .

(21)

Thus, (20) combined with (21) give that

F ′γ
(
vk? − γ(1− α)

)
=

∑
k : vk?−γ(1−α)/∈Ik

pkS
′
α,vk

(
vk? − γ(1− α)

)
+

∑
k : vk?−γ(1−α)∈Ik

pk

(
vk? − vk − γ(1− α)

)
γ

≤ α
∑

k : vk<vk?

pk − (1− α)
∑

k : vk≥vk?

pk = ∂F (vk? − ε) < 0,

where ε = 2−1 minN−1
k=1 {vk+1 − vk}. A similar reasoning shows that F ′γ(vk? + γα) ≥ ∂F (vk? + ε) > 0. Since Fγ is

decreasing on (−∞, Qγ1−α] and increasing on [Qγ1−α,∞) by Lemma A.2, we have F ′γ < 0 on (−∞, vk? − γ(1− α)] and
F ′γ > 0 on [vk? − γα,∞). Therefore, we deduce that Qγ1−α ∈ Ik? . Using that the interval Ik? is of length γ, this implies
that |Qγ1−α − vk? | ≤ γ.

B. FL convergence guarantee: proof of Theorem 4.1

In this section, we suppose that {St}t∈[T ] is a sequence of i.i.d. random variables, such that, for any (i, i′) ∈ [n]2, i ∈ St
and i′ ∈ St are independent if i 6= i′. For any i ∈ [n], let {zit,k : k ∈ {0, . . . ,K}}Tt=0 be a sequence of i.i.d. standard
Gaussian variables. Moreover, consider the local loss function F i : R→ R and denote, for t ∈ {0, . . . , T}, k ∈ {0, . . . ,K}

F =

n∑
i=1

λiyF
i, git,k = ∇F i(qit,k) + zit,k.

In this section, we establish the convergence of the iterates given by Theorem B.3 under the following assumptions:

H2. The function
∑n
i=1 λ

i
yF

i admits at least a minimizer in R, we denote q? one of them, i.e., q? ∈ arg min{
∑n
i=1 λ

i
yF

i}.

H3. For any i ∈ [n], F i is continuously differentiable and convex, i.e., for any q, q̃ ∈ R,

F i(q̃) ≤ F i(q) + 〈∇F i(q), q̃ − q〉.

H4. For any i ∈ [n], t ∈ {0, . . . , T},K ∈ {0, . . .K}, ∇F i is continuously differentiable. In addition, there exist Hi ≥ 0
such that the function∇F i is Hi-smooth, i.e., for any q, q̃ ∈ R,

∇F i(q̃) ≤ ∇F i(q) +
〈
∇F i(q), q̃ − q

〉
+ (Hi/2) ‖q̃ − q‖2 .
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Moreover, denote H = maxi∈[n]{Hi}.

We introduce the key assumptions appearing in the theoretical derivations below.

H5. For any i ∈ [n], the variance of the gradients is uniformly bounded, for all q ∈ R, we have

E

[∥∥∥∥ 1i∈St
P(i ∈ St)

∇F i(q)−∇F i(q)
∥∥∥∥2
]
≤ ξ2, E

∥∥∥∥∥∑
i∈St

λiy
P(i ∈ St)

∇F i(q?)−∇F (q?)

∥∥∥∥∥
2
 ≤ ξ2

? .

H6. The heterogeneity denoted ζ is bounded everywhere

max
i∈[n]

{
‖∇F i −∇F‖∞

}
≤ ζ2.

We prove Theorem B.3 using Lemma B.1 and Lemma B.2. Note that these results are close to Woodworth et al. (2020,
Appendix C). However, we treat partial participation, i.e., St ⊆ [n] and consider an objective function defined by importance
weights {λiy}i∈[n]. At time t ∈ {0, . . . , T}, denote

q̄t,k =

n∑
i=1

λiy(1St+1
(i)/P(i ∈ St+1))qit,k

the average of the local parameters defined in Algorithm 1. Finally, we introduce the following stepsize:

η0 =
1

10
min

(
1

H
,
n

min
i=1

{
P (i ∈ St)
λiyH

i

})
. (22)

Lemma B.1. Assume H2-H3-H4-H5 and consider η ∈ (0, η0]. Then, for any t ∈ {0, . . . , T − 1}, k ∈ {0, . . . ,K − 1}, we
have

E [F (q̄t,k)− F (q?)] ≤
1

η
E ‖q̄t,k − q?‖2 −

1

η
E ‖q̄t,k+1 − q?‖2 + 2H

n∑
i=1

λiyE
∥∥q̄t,k − qit,k∥∥2

+ 3ηξ2
? + η2σ2

n∑
i=1

(λiy)2

P(i ∈ St+1)
.

Proof. Developing the squared norm, we find

E ‖q̄t,k+1 − q?‖2 = E

∥∥∥∥∥q̄t,k − η
n∑
i=1

λiy∇F i
(
qit,k
)
− q?

∥∥∥∥∥
2

+ η2E

∥∥∥∥∥
n∑
i=1

λiy

{
1St+1

(i)

P(i ∈ St+1)
git,k −∇F i

(
qit,k
)}∥∥∥∥∥

2

. (23)

We start by upper bounding the first term, we have

E

∥∥∥∥∥q̄t,k − η
n∑
i=1

λiy∇F i
(
qit,k
)
− q?

∥∥∥∥∥
2

= E ‖q̄t,k − q?‖2 − 2η

n∑
i=1

λiyE
〈
q̄t,k − q?,∇F i

(
qit,k
)〉

+ η2E

∥∥∥∥∥
n∑
i=1

λiy∇F i
(
qit,k
)∥∥∥∥∥

2

. (24)

Using H4, we know that F i is Hi-smooth and thus F =
∑n
i=1 λ

i
yF

i is H̄-smooth, where H̄ =
∑n
i=1 λ

i
yH

i. Following
(Nesterov, 2003), the smoothness and convexity of F imply that

‖∇F (q̄t,k)−∇F (q?)‖2 ≤ 2H̄ (F (q̄t,k)− F (q?)) .

For any a, b ∈ R, using that ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2, the last term of (24) can be upper bounded as follows:

E

∥∥∥∥∥
n∑
i=1

λiy∇F i
(
qit,k
)∥∥∥∥∥

2

≤ 2E

∥∥∥∥∥
n∑
i=1

λiy
{
∇F i

(
qit,k
)
−∇F i (q̄t,k)

}∥∥∥∥∥
2

+ 2E

∥∥∥∥∥
n∑
i=1

λiy
{
∇F i (q̄t,k)−∇F i (q?)

}∥∥∥∥∥
2
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≤ 2

n∑
i=1

λiyE
∥∥∇F i (qit,k)−∇F i (q̄t,k)

∥∥2
+ 2E ‖∇F (q̄t,k)−∇F (q?)‖2

≤ 2

n∑
i=1

(Hi)2λiyE
∥∥qit,k − q̄t,k∥∥2

+ 4H̄E [F (q̄t,k)− F (q?)] . (25)

Regarding the inner product in (24), H3 and H4 show

−
n∑
i=1

λiyE
〈
q̄t,k − q?,∇F i

(
qit,k
)〉

= −
n∑
i=1

λiyE
〈
qit,k − q?,∇F i

(
qit,k
)〉

+

n∑
i=1

λiyE
〈
qit,k − q̄t,k,∇F i

(
qit,k
)〉

≤ −
n∑
i=1

λiyE
[
F i
(
qit,k
)
− F i (q?)

]
+

n∑
i=1

λiyE
[
F i
(
qit,k
)
− F i (q̄t,k) +

Hi

2
E
∥∥qit,k − q̄t,k∥∥2

]

≤ −E [F (q̄t,k)− F (q?)] +
1

2

n∑
i=1

Hiλiy
∥∥qit,k − q̄t,k∥∥2

. (26)

Moreover, recall that the estimator (1St+1
(i)/P(i ∈ St+1))∇F i is unbiased, i.e.,

E

[
1St+1

(i)

P(i ∈ St+1)
∇F i(qit,k)−∇F i

(
qit,k
)]

= 0, (27)

and we also have

1St+1
(i)

P(i ∈ St+1)
∇F i

(
qit,k
)
−∇F i

(
qit,k
)

=

{
1St+1

(i)

P(i ∈ St+1)
∇F i (q?)−∇F i (q?)

}

+

{
1i∈St+1

P(i ∈ St+1)
∇F i (q̄t,k)−

1St+1
(i)

P(i ∈ St+1)
∇F i (q?)−∇F i (q̄t,k) +∇F i (q?)

}

+

{
1St+1

(i)

P(i ∈ St+1)
∇F i

(
qit,k
)
−

1St+1
(i)

P(i ∈ St+1)
∇F i (q̄t,k)−∇F i

(
qit,k
)

+∇F i (q̄t,k)

}
. (28)

We now upper bound the second term of (23). Since for all random variable X , E[‖X − EX‖2] ≤ E‖X‖2, combining (27)
and (28) gives

E

∥∥∥∥∥
n∑
i=1

λiy

{
1St+1

(i)

P(i ∈ St+1)
git,k −∇F i

(
qit,k
)}∥∥∥∥∥

2

=

n∑
i=1

(λiy)2E

∥∥∥∥∥ 1St+1
(i)

P(i ∈ St+1)
∇F i

(
qit,k
)
−∇F i

(
qit,k
)∥∥∥∥∥

2

+

n∑
i=1

(λiy)2E

∥∥∥∥∥ 1St+1
(i)

P(i ∈ St+1)
zit,k

∥∥∥∥∥
2

≤ 3

n∑
i=1

(λiy)2(1− P (i ∈ St+1))

P (i ∈ St+1)

[
E
∥∥∇F i (qit,k)−∇F i (q̄t,k)

∥∥2
+ E

∥∥∇F i (q̄t,k)−∇F i (q?)
∥∥2
]

+ 3E

∥∥∥∥∥
n∑
i=1

λiy
1St+1

(i)

P(i ∈ St+1)
∇F i (q?)−∇F (q?)

∥∥∥∥∥
2

+

n∑
i=1

(λiy)2

P(i ∈ St+1)
E
∥∥zit,k∥∥2

≤ 3

n∑
i=1

(λiy)2

P (i ∈ St+1)

{
(Hi)2E

∥∥qit,k − q̄t,k∥∥2
+ 2HiE

[
F i (q̄t,k)− F i (q?)

]}
+ 3ξ2

? +

n∑
i=1

(λiy)2

P(i ∈ St+1)
σ2

≤ 3

n∑
i=1

(λiy)2

P (i ∈ St+1)
(Hi)2E

∥∥qit,k − q̄t,k∥∥2
+ 6

n∑
i=1

(λiy)2

P (i ∈ St+1)
HiE

[
F i (q̄t,k)− F i (q?)

]

16
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+ 3ξ2
? + σ2

n∑
i=1

(λiy)2

P(i ∈ St+1)
. (29)

Plugging (25)-(26)-(29) back into (23) with η ≤ η0, it holds

E ‖q̄t,k+1 − q?‖2 ≤ E ‖q̄t,k − q?‖2 + η

n∑
i=1

(
1 + 2ηHi + 3η

λiyH
i

P (i ∈ St+1)

)
λiyH

iE
∥∥qit,k − q̄t,k∥∥2

+ η

(
4ηH̄ + 6η

n
max
i=1

{
(λiy)2Hi

P (i ∈ St+1)

}
− 2

)
E [F (q̄t,k)− F (q?)] + 3η2ξ2

? + η2σ2
n∑
i=1

(λiy)2

P(i ∈ St+1)

≤ E ‖q̄t,k − q?‖2 + 2Hη

n∑
i=1

λiyE
∥∥qit,k − q̄t,k∥∥2 − ηE [F (q̄t,k)− F (q?)] + 3η2ξ2

? + η2σ2
n∑
i=1

(λiy)2

P(i ∈ St+1)
.

Lemma B.2. Assume H2-H3-H4-H5-H6, and for all t ∈ [T ], suppose that St = [n]. We consider η ∈ (0, 2/
∑n
i=1 λ

i
yH

i].
Then, for any t ∈ {0, . . . , T − 1}, k ∈ {0, . . . ,K − 1}, we have

n∑
i=1

λiyE
∥∥qit,k − q̄t,k∥∥2 ≤ 6Kη2

(
σ2 + ξ2 +Kζ2

)
.

Proof. Let ε > 0, for any i, i′ ∈ [n] and any k ∈ [K],

E
∥∥qit,k − qi′t,k∥∥2 − 2η2(σ2 + ξ2) = E

∥∥∥qit,k−1 − qi
′

t,k−1 − η
(
git,k−1 − gi

′

t,k−1

)∥∥∥2

− 2η2(σ2 + ξ2)

= E
∥∥∥qit,k−1 − qi

′

t,k−1 − η
(
∇F i(qit,k−1)−∇F i

′
(qi
′

t,k−1)
)∥∥∥2

+ η2E
∥∥∥(∇F i(qit,k−1)−∇F i

′
(qi
′

t,k−1)
)
−
(
git,k−1 − gi

′

t,k−1

)∥∥∥2

− 2η2(σ2 + ξ2)

≤ E
∥∥∥qit−1 − qi

′

t−1 − η
(
∇F (qit−1)−∇F (qi

′

t−1)
)

+ η
(
∇F (qit−1)−∇F i(qit−1)−∇F (qi

′

t−1) +∇F i
′
(qi
′

t−1)
)∥∥∥2

≤
(

1 +
1

ε

)
E
∥∥∥qit−1 − qi

′

t−1 − η
(
∇F (qit−1)−∇F (qi

′

t−1)
)∥∥∥2

+ (1 + ε)η2E
∥∥∥∇F (qit−1)−∇F i(qit−1)−∇F (qi

′

t−1) +∇F i
′
(qi
′

t−1)
∥∥∥2

≤
(

1 +
1

ε

)
E
∥∥∥qit−1 − qi

′

t−1

∥∥∥2

+ (1 + ε)η2E
∥∥∇F (qit−1)−∇F i(qit−1)

∥∥2

+ (1 + ε)η2E
∥∥∥∇F (qi

′

t−1)−∇F i
′
(qi
′

t−1)
∥∥∥2

− 2(1 + ε)η2E
〈
∇F (qit−1)−∇F i(qit−1),∇F (qi

′

t−1)−∇F i
′
(qi
′

t−1)
〉
. (30)

The third inequality is implied by the co-coercivity: η ∈ (0, 2/
∑n
i=1 λ

i
yH

i], ∀(q, q̃) ∈ R2,

‖q − q̃ − η (∇F (q)−∇F (q̃))‖2

= ‖q̃ − q‖2 − η
[
2 〈q − q̃,∇F (q)−∇F (q̃)〉+ η ‖∇F (q)−∇F (q̃)‖2

]
≤ ‖q̃ − q‖2 ,

and we also have
n∑
i=1

n∑
i′=1

λiyλ
i′

yE
〈
∇F (qit−1)−∇F i(qit−1),∇F (qi

′

t−1)−∇F i
′
(qi
′

t−1)
〉

= E

∥∥∥∥∥
n∑
i=1

λiy
(
∇F (qit−1)−∇F i(qit−1)

)∥∥∥∥∥
2

≥ 0.
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Therefore, summing (30) gives that
n∑
i=1

n∑
i′=1

λiyλ
i′

yE
∥∥qit,k − qi′t,k∥∥2 ≤

(
1 +

1

ε

) n∑
i=1

n∑
i′=1

λiyλ
i′

yE
∥∥qit−1 − qnt−1

∥∥2
+ 2η2

(
σ2 + ξ2 + (1 + ε)ζ2

)
.

Set ε = K − 1, since for any i, i′ ∈ [n], xit,0 = xi
′

t,0, we get

n∑
i=1

n∑
i′=1

λiyλ
i′

yE
∥∥qit,k − qi′t,k∥∥2 ≤ 2η2

(
σ2 + ξ2 + (1 + ε)ζ2

)K−1∑
k′=0

(
1 +

1

ε

)k′
≤ 6Kη2

(
σ2 + ξ2 + (1 + ε)ζ2

)
.

Since
∑n
i=1 λ

i
y = 1, the Jensen’s inequality yields that

∑n
i=1 λ

i
yE
∥∥qit,k − q̄t,k∥∥2 ≤

∑n
i=1

∑n
i′=1 λ

i
yλ

i′

yE
∥∥qit,k − qi′t,k∥∥2

,
which concludes the proof.

In addition, with the previous notations consider the stepsize

η? = min

{
η0,

(
E ‖q̄0 − q?‖2

14HK2T [σ2 +Kζ2]

)1/3
}
, (31)

and define the average parameter

q̂T =
1

T

T−1∑
t=0

{
n∑
i=1

λiy

[
1

K

K−1∑
k=0

qit,k

]}
. (32)

Theorem B.3. Assume H2-H3-H4-H5-H6. We consider η ∈ (0, η0] with St = [n], for all t ∈ [T ]. Then, for any
t ∈ {0, . . . , T − 1}, k ∈ {0, . . . ,K − 1}, we have

EF (q̂T )− F (q?) ≤
E ‖q̄0 − q?‖2

ηKT
+ 2η2

[
6H(Kζ)2 + σ2

(
6HK + max

i∈[n]
λiy

)]
,

where η0, q̂T are given in (22) and (32). Moreover, for η = η? defined in (31) and H ≥ K−1 maxi∈[n] λ
i
y, it follows

EF (q̂T )− F (q?) ≤
E ‖q̄0 − q?‖2

η0KT
+

5(E ‖q̄0 − q?‖2)2/3
[
H
(
σ2 +Kζ2

)]1/3
(KT 2)1/3

.

Proof. For any η ≤ η0, using Lemma B.1 we have

E [F (q̄t,k)]− F (q?) ≤
1

η
E ‖q̄t,k − q?‖2 −

1

η
E ‖q̄t,k+1 − q?‖2 + 2H

n∑
i=1

λiyE
∥∥q̄t,k − qit,k∥∥2

+ 2η2σ2 max
i∈[n]
{λiy}. (33)

Moreover, by Lemma B.2 it follows that
n∑
i=1

λiyE
∥∥qit,k − q̄t,k∥∥2 ≤ 6Kη2(σ2 +Kζ2). (34)

Combining (33) and (34), we obtain

E[F (q̄t,k)− F (q?)] ≤
1

η
E ‖q̄t,k − q?‖2 −

1

η
E ‖q̄t,k+1 − q?‖2 + 12H(Kηζ)2 + 2(ησ)2

(
6HK + max

i∈[n]
{λiy}

)
.

Moreover, telescoping proves that

T−1∑
t=0

K−1∑
k=0

[
E ‖q̄t,k − q?‖2 − E ‖q̄t,k+1 − q?‖2

]
≤ E ‖q̄0 − q?‖2 .

Therefore, the convexity H3 gives that

E

[
F

(
1

KT

KT∑
t=1

q̄t,k

)
− F (q?)

]
≤ 1

KT

T−1∑
t=0

K−1∑
k=0

E [F (q̄t,k)− F (q?)]

18
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≤ E ‖q̄0 − q?‖2

ηKT
+ 2η2

[
6H(Kζ)2 + σ2

(
6HK + max

i∈[n]
{λiy}

)]
.

Finally, the choice of η provided in (31) ensures that

E [F (q̂T )]− F (q?) ≤
E ‖q̄0 − q?‖2

η0KT
+

5(E ‖q̄0 − q?‖2)2/3
[
H
(
σ2 +Kζ2

)]1/3
(KT 2)1/3

.

Now, we denote α ∈ (0, 1) the confidence level, and consider the functions defined for t ∈ {0, . . . , T}, k ∈ {0, . . . ,K} by

F = Sγα,µ̂y
, F i = Sγα,µ̂iy

.

Denote by q? the minimizer of Sγα,µ̂y
=
∑n
i=1 λ

i
yS

γ
α,µ̂iy

, which always exists. with the following variables:

Hi =
1

γ
, ζ = max

i∈[n]
‖∇ Si,γα −∇ Sγα‖1/2∞ . (35)

Corollary B.4. Let γ ∈ (0, (maxi∈[n] λ
i
y)−1K] and consider the stepsize η0 = γ/10. Then, for any t ∈ {0, . . . , T − 1},

k ∈ {0, . . . ,K − 1}, we have

ESγα,µ̂y
(q̂T )− Sγα,µ̂y

(q?) ≤
E ‖q̄0 − q?‖2

η0KT
+

5(σ2 +Kζ2)1/3(E ‖q̄0 − q?‖2)2/3

(γKT 2)1/3
,

where q̂T is provided in (32).

Proof. Since H2-H3-H4-H5-H6 are satisfied with {Hi}i∈[n], ζ provided in (35), applying Theorem B.3 concludes the
proof.

C. Theoretical Coverage Guarantee

C.1. General coverage guarantee

Consider an increasing sequence {vk}k∈[N+1] ∈ (R ∪ {+∞})N+1 and {pk}k∈[N+1] ∈ ∆N+1. For any α ∈ [0, 1], recall
that

Q1−α

(∑N+1
k=1 pkδvk

)
= inf

{
t ∈ [−∞,∞] : P (V ≤ t) ≥ 1− α, where V ∼

∑N+1
k=1 pkδvk

}
.

Lemma C.1. Let {v`}`∈[N+1] be an increasing sequence and {p`}`∈[N+1] ∈ ∆N+1. If V ∼
∑N+1
l=1 plδvl , then, for all

α ∈ [0, 1), we have

1− α ≤ P
(
V ≤ Q1−α

(∑N+1
k=1 pkδvk

))
< 1− α+ maxN+1

k=1 {pk} .

Proof. Fix α ∈ [0, 1), and by convention set
∑0
k=1 pk = 0. There exists k ∈ [N+1], such that 1−α ∈ (

∑k−1
l=1 pl,

∑k
l=1 pl],

hence Q1−α(
∑N+1
l=1 plδvl) = vk. This last identity implies that

1− α ≤ P
(
V ≤ Q1−α

(∑N+1
l=1 plδvl

))
=
∑k
l=1 pl < 1− α+ maxN+1

k=1 {pk} .

Denote {(Xk, Yk)}k∈[N+1] a set of pairwise independent random variables and for k ∈ [N + 1], denote Zk = (Xk, Yk),
Vk = V (Xk, Yk). Let SN+1 be the set of all permutations of [N + 1] and consider Sk

N+1 = {σ ∈ SN+1 : σ(N + 1) = k}.
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Moreover, write f the joint density of {Zk}k∈[N+1], and for all k ∈ [N + 1] define

p
z1:N+1

k =


1

N+1 if
∑
σ∈SN+1

f(zσ(1), . . . , zσ(N+1)) = 0∑
σ∈Sk

N+1
f(zσ(1),...,zσ(N+1))∑

σ∈SN+1
f(zσ(1),...,zσ(N+1))

otherwise
. (36)

Lemma C.2. For any α ∈ [0, 1), we have∫
1
vN+1≤Q1−α(

∑N+1
k=1 p

z1:N+1
k δvk)f(z1, . . . , zN+1)dz1 · · · dzN+1

=

∫ [N+1∑
k=1

p
z1:N+1

k 1
vk≤Q1−α(

∑N+1

k̄=1
p
z1:N+1

k̄
δvk̄)

] ∑
σ∈SN+1

f(zσ(1), . . . , zσ(N+1))

 dz1 · · · dzN+1

(N + 1)!
.

Proof. First, let’s show the invariance of σ ∈ SN+1 7→ Q1−α(
∑N+1
k=1 p

zσ(1):σ(N+1)

σ(k) δvσ(k)
) ∈ R. For that, fix

σ̃ ∈ SN+1. The invariance is immediate when
∑
σ∈SN+1

f(zσ(1), . . . , zσ(N+1)) = 0. Therefore, assume that∑
σ∈SN+1

f(zσ(1), . . . , zσ(N+1)) 6= 0. We get

N+1∑
k=1

p
zσ̃(1):σ̃(N+1)

σ̃(k) δvσ̃(k)
=

N+1∑
k=1

∑
σ∈Sσ̃(k)

N+1

f(zσ(1), . . . , zσ(N+1))∑
σ∈SN+1

f(zσ(1), . . . , zσ(N+1))
δvσ̃(k)

=

N+1∑
k=1

∑
σ∈SkN+1

f(zσ(1), . . . , zσ(N+1))∑
σ∈SN+1

f(zσ(1), . . . , zσ(N+1))
δvk =

N+1∑
k=1

p
z1:N+1

k δvk .

Moreover, we can write∫
1
vN+1≤Q1−α(

∑N+1
k=1 p

z1:N+1
k δvk)f(z1, . . . , zN+1)dz1 · · · dzN+1

=
∑

σ∈SN+1

∫
1
vσ(N+1)≤Q1−α

(∑N+1

k̄=1
p
zσ(1):σ(N+1)

σ(k̄)
δv
σ(k̄)

)f(zσ(1), . . . , zσ(N+1))
dzσ(1) · · · dzσ(N+1)

(N + 1)!

=

N+1∑
k=1

∑
σ∈SkN+1

∫
1
vσ(N+1)≤Q1−α

(∑N+1

k̄=1
p
zσ(1):σ(N+1)

σ(k̄)
δv
σ(k̄)

)f(zσ(1), . . . , zσ(N+1))
dzσ(1) · · · dzσ(N+1)

(N + 1)!

=

N+1∑
k=1

∫
1
vk≤Q1−α(

∑N+1

k̄=1
p
z1:N+1

k̄
δv
k̄
)

 ∑
σ∈SkN+1

f(zσ(1), . . . , zσ(N+1))

 dz1 · · · dzN+1

(N + 1)!

=

N+1∑
k=1

∫
1
vk≤Q1−α(

∑N+1

k̄=1
p
z1:N+1

k̄
δv
k̄
)p
z1:N+1

k

 ∑
σ∈SN+1

f(zσ(1), . . . , zσ(N+1))

 dz1 · · · dzN+1

(N + 1)!
.

Given z = (x,y) ∈ X × Y define

Dz
N = (z1, . . . , zN , z) , µNy = p

Dz
N

N+1δ1 +

N∑
k=1

p
Dz
N

k δVk ,

and consider the prediction set given by

Cα,µN (x) =
{
y ∈ Y : V (x,y) ≤ Q1−α(µNy )

}
.

Theorem C.3. Assume there are no ties between {Vk}k∈[N+1] almost surely. Then, for any α ∈ [0, 1), we have

1− α ≤ P
(
YN+1 ∈ Cα,µN (XN+1)

)
≤ 1− α+ E

[
N+1
max
k=1
{pZ1:N+1

k }
]
,
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where pZ1:N+1

k is defined in (36).

Proof. Let α be in [0, 1) and for any (xk, yk) ∈ X × Y , denote zk = (xk, yk), vk = V (xk, yk). First, we can write

P
(
YN+1 ∈ Cα,µN (XN+1)

)
= P

(
YN+1 ∈

{
y ∈ Y : V (XN+1,y) ≤ Q1−α(µNy )

})
= P

(
V (XN+1, YN+1) ≤ Q1−α(µNYN+1

)
)

(?)
= P

(
V (XN+1, YN+1) ≤ Q1−α

(∑N+1
k=1 p

Z1:N+1

k δVk

))
=

∫
(X×Y)N+1

1
vN+1≤Q1−α(

∑N+1
k=1 p

z1:N+1
k δVk)f(z1, . . . , zN+1)dz1 · · · dzN+1.

Where (?) holds since(
VN+1 ≤ Q1−α(µNYN+1

)
)

⇐⇒
(
p
D

(XN+1,YN+1)

N

N+1 δ1≤VN+1
+
∑N
k=1 p

D
(XN+1,YN+1)

N

k δVk≤VN+1
≤ α

)
⇐⇒

(
p
D

(XN+1,YN+1)

N

N+1 δVN+1≤VN+1
+
∑N
k=1 p

D
(XN+1,YN+1)

N

k δVk≤VN+1
≤ α

)
⇐⇒

(
V (XN+1, YN+1) ≤ Q1−α

(∑N+1
k=1 p

Z1:N+1

k δVk

))
.

Define the set E ⊂ (X × Y)N+1 of points such that the non-conformity scores are pairwise distinct:

E = {(z1, . . . , zN+1) ∈ (X × Y)N+1 :
∏
k<` (v(xk, yk)− v(x`, y`)) 6= 0},

Ec = (X × Y)N+1 \ E,
F = {(z1, . . . , zN+1) ∈ (X × Y)N+1 :

∑
σ∈SN+1

f(zσ(1), . . . , zσ(N+1)) 6= 0}

In addition, combining Lemma C.2 with the no-tie assumption on {Vk}k∈[N+1] gives that∫
1
vN+1≤Q1−α(

∑N+1
k=1 p

z1:N+1
k δvk)f(z1, . . . , zN+1)dz1 · · · dzN+1 (37)

=

∫
E∩F

[
N+1∑
k=1

p
z1:N+1

k 1
vk≤Q1−α(

∑N+1

k̄=1
p
z1:N+1

k̄
δv
k̄
)

] ∑
σ∈SN+1

f(zσ(1), . . . , zσ(N+1))

 dz1 · · · dzN+1

(N + 1)!
.

Consider the random variable V ∼
∑N+1
k=1 p

z1:N+1

k δvk , we have

P

(
V ≤ Q1−α

(
N+1∑
k̄=1

p
z1:N+1

k̄
δvk̄

))
=

N+1∑
k=1

p
z1:N+1

k 1
vk≤Q1−α(

∑N+1

k̄=1
p
z1:N+1

k̄
δv
k̄
).

Therefore, applying Lemma C.1 on (z1, . . . , zN+1) ∈ E ∩ F implies that

1− α ≤
N+1∑
k=1

p
z1:N+1

k 1
vk≤Q1−α(

∑N+1

k̄=1
p
z1:N+1

k̄
δvk̄) ≤ 1− α+

N+1
max
k=1
{pz1:N+1

k }. (38)

Lastly, using that∫
E∩F

[ ∑
σ∈SN+1

f(zσ(1), . . . , zσ(N+1))

]
dz1 · · · dzN+1

(N + 1)!

=

∫
E

[ ∑
σ∈SN+1

f(zσ(1), . . . , zσ(N+1))

]
dz1 · · · dzN+1

(N + 1)!
= 1, (39)

and combining the bounds (38)-(39) with (37) yields the result.
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C.2. Proof of Theorem 2.1

First, recall that
I = {(?,N? + 1)} ∪

{
(i, k) : i ∈ [n], k ∈ [N i]

}
.

For any {(xik, yik)}(i,k)∈I ∈ (X × Y)N+1, we define the set

D
(x?N?+1,y

?
N?+1)

N = {(xik, yik) : i ∈ [n], k ∈ [N i]} ∪ {(x?N?+1, y
?
N?+1)}.

We consider a bijection (φ, ϕ) between the set [N + 1] and I. This bijection is defined for any k ∈ [N ] as follows:

(φ(k), ϕ(k)) =

{
(j, `) if 1 ≤ ` := k −

∑j−1
i=1 N

i ≤
∑j
i=1N

i

(?,N? + 1) otherwise
.

Recall that ∀i ∈ [n] and y ∈ Y , the likelihood ratio is given by

wiy =
P iY (y)

P cal
Y (y)

,

and for all (i, k) ∈ I we write

Pi
k = {σ ∈ SN+1 : φ(σ(N + 1)) = i, ϕ(σ(N + 1)) = k} ,

W i
k(D

(x?N?+1,y
?
N?+1)

N ) = w?yik

∑
σ∈Pik

N∏
`=1

w
φ(`)

y
φ(`)

ϕ(`)

.
(40)

Given the set of points D(x,y)
N , for all (i, k) ∈ I define

p?i,k =
W i
k(D

(x,y)
N )∑N+1

`=1 W
φ(`)
ϕ(`) (D

(x,y)
N )

. (41)

Finally, define the probability measure and the prediction set given by

µ?y = p??,N?+1δ1 +

n∑
i=1

Ni∑
k=1

p?i,kδV ik ,

Cα,µ?(x) =
{
y ∈ Y : V (x,y) ≤ Q1−α(µ?y)

}
.

Theorem C.4. If H1 holds, then for any α ∈ [0, 1), we have

1− α ≤ P
(
Y ?N?+1 ∈ Cα,µ?(X?

N?+1)
)
≤ 1− α+ E

[
max

(i,k)∈I
{p?k,i}

]
,

where p?i,k is defined in (41).

Proof. By independence, the joint density f of {(Xj
` , Y

j
` ) : (j, `) ∈ I} with respect to (PX|Y × P cal

Y )⊗(N+1) is given for
{(xik, yik) : (i, k) ∈ I} ∈ (X × Y)N+1 by

f
(
(x1

1, y
1
1), . . . , (x1

N1 , y1
N1), . . . , (xn1 , y

n
1 ), . . . , (xnNn , y

n
Nn), (x?N?+1, y

?
N?+1)

)
= w?y?

N?+1

n∏
j=1

Nj∏
`=1

wj
yj`
.

Using the definition of p?i,k (41), for all (i, k) ∈ I we have

p?i,k =
W i
k(DN+1)∑N+1

`=1 W
φ(`)
ϕ(`) (DN+1)

=

∑
σ∈Pik

f(z
φ◦σ(1)
ϕ◦σ(1), . . . , z

φ◦σ(N+1)
ϕ◦σ(N+1))∑

σ∈SN+1
f(z

φ◦σ(1)
ϕ◦σ(1), . . . , z

φ◦σ(N+1)
ϕ◦σ(N+1))
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=

∑
σ∈SN+1 : σ(N+1)=(φ,ϕ)−1(i,k) f(z

φ◦σ(1)
ϕ◦σ(1), . . . , z

φ◦σ(N+1)
ϕ◦σ(N+1))∑

σ∈SN+1
f(z

φ◦σ(1)
ϕ◦σ(1), . . . , z

φ◦σ(N+1)
ϕ◦σ(N+1))

.

Therefore, applying Theorem C.3 concludes the proof.

C.3. Proof of Lemma 2.3 and Equation (2)

In this section, we consider a probability measure P cal
Y dominating P ?Y and suppose that the likelihood ratios are given by

w?y = P ?Y (y)/P cal
Y (y). Let {ŵ?y}y∈Y be fixed, and ∀y ∈ Y , define νy = [

∑
ỹ∈Y ŵ

?
ỹP

cal
Y (ỹ)]−1ŵ?yP

cal
Y (y). Denote Ŷ ?N?+1

a multinomial random variable of parameter ν independent of the calibration dataset
{

(Xi
k, Y

i
k ) : k ∈ [N i]

}
i∈[n]

and write

P(Y) the partition of the set Y . Moreover, denote P̂ ?Y the probability distribution of Ŷ ?N?+1, and consider X̂?
N?+1 such that

(X̂?
N?+1, Ŷ

?
N?+1) ∼ PX|Y × P̂ ?Y .

Lemma C.5. For any prediction set C : X → P(Y) independent of (X?
N?+1, Y

?
N?+1) and (X̂?

N?+1, Ŷ
?
N?+1), we have∣∣∣P(Y ?N?+1 ∈ C(X?

N?+1))− P(Ŷ ?N?+1 ∈ C(X̂?
N?+1))

∣∣∣ ≤ 1

2

∑
y∈Y

∣∣∣∣∣P ?Y (y)−
ŵ?yP

cal
Y (y)∑

ỹ∈Y ŵ
?
ỹP

cal
Y (ỹ)

∣∣∣∣∣ .
Proof. Developing the left-hand side as follows, we get∣∣∣P (Y ?N?+1 ∈ C(X?

N?+1)
)
− P

(
Ŷ ?N?+1 ∈ C(X̂?

N?+1)
)∣∣∣

=
∣∣∣E [1Y ?

N?+1
∈C(X?

N?+1
)

]
− E

[
1Ŷ ?

N?+1
∈C(X̂?

N?+1
)

]∣∣∣
=

∣∣∣∣∣∣
∑
y∈Y

P cal
Y (y)

(
w?y −

ŵ?y∑
ỹ∈Y ŵ

?
ỹP

cal
Y (ỹ)

)∫
E1y∈C(x)dPX|Y=y(x)

∣∣∣∣∣∣
≤ 1

2

∑
y∈Y

P cal
Y (y)

∣∣∣∣∣w?y − ŵ?y∑
ỹ∈Y ŵ

?
ỹP

cal
Y (ỹ)

∣∣∣∣∣ .
Finally, using that P cal

Y (y)w?y = P ?Y (y) concludes the proof.

Remark C.6. If for some probability atoms {mi}i∈[n] ∈ ∆n, we know good approximations ŵ?y of the likelihood ratios
[(P cal

Y )−1(
∑n
i=1miP

i
Y )](y). Then, Lemma C.5 implies the following result:∣∣∣P (Y ?N?+1 ∈ C(X?
N?+1)

)
− P

(
Ŷ ?N?+1 ∈ C(X̂?

N?+1)
)∣∣∣

≤ dTV

(
P ?Y ,

n∑
i=1

miP
i
Y

)
+

1

2

∑
y∈Y

∣∣∣∣∣
(

n∑
i=1

miP
i
Y

)
(y)−

ŵ?yP
cal
Y (y)∑

ỹ∈Y ŵ
?
ỹP

cal
Y (ỹ)

∣∣∣∣∣ .
Lemma C.7. If |Y| ≥ 2 and M ∈ N?, then we have

|Y| exp

(
−Mmin

y∈Y
{P cal

Y (y)}
)
∧ 1 ≤

√
2 log |Y|

(log 2)Mminy∈Y{P cal
Y (y)}

.

Proof. Introduce the set E = {2 log |Y| ≤ Mminy∈Y{P cal
Y (y)}}, we obtain

|Y| exp
(
−Mmin

y∈Y
{P cal

Y (y)}
)
∧ 1 ≤ 1E exp

(
−Mmin

y∈Y
{P cal

Y (y)}/2
)

+ 1Ec . (42)

We also have that for all x ≥ 0, that e−x ≤ 1/
√
x. Using this inequality on the first right-side term implies that

exp

(
−Mmin

y∈Y
{P cal

Y (y)}/2
)
≤
√

2

Mminy∈Y{P cal
Y (y)}

≤

√
log |Y|
log 2

√
2

Mminy∈Y{P cal
Y (y)}

.

23



Conformal Prediction for Federated Uncertainty Quantification Under Label Shift

Moreover, remark that

1Ec ≤ 1Ec

√
2 log |Y|

Mminy∈Y{P cal
Y (y)}

.

Finally, plugging the two previous inequalities in (42) concludes the proof.

Recall that Mi
y denotes the number of training data on agent i associated to label y ∈ Y . Consider the total number of

local data M? =
∑
y∈Y M

i
y, the number of training data with label y is given by My =

∑n
i=1 M

i
y, and the total number of

samples on all agents is written by M =
∑
y∈Y My . Recall that the likelihood ratios and the weights are given for any labels

(y,y) ∈ Y2 by

ŵ?y =

{
MM?y
M?My

if My ≥ 1

0 otherwise
, p̂?y,y =

(M?
y/My) · 1My≥1

M? + (M?
y/My) · 1My≥1

.

For any y ∈ Y , we also consider ν ∈ ∆Q
|Y| = {p′ ∈ Q|Y|+ :

∑
y∈Y p

′
y = 1} defined by

νy =
ŵ?yP

cal
Y (y)∑

ỹ∈Y ŵ
?
ỹP

cal
Y (ỹ)

.

For any parameter p ∈ ∆Q
|Y|, denote Mp a multinomial random variable independent of the training/calibration datasets, and

define Ŷ ?N?+1 = Mν . For any set A in the partition of Y , we have M−1
ν (A) = ∪p∈∆Q

|Y|
{ν−1({p}) ∩M−1

p (A)}. Therefore,

Ŷ ?N?+1 is a valid random variable. Given the target coverage level 1− α, recall that the prediction set is defined for any
x ∈ X by

µ̂MLE

y = p̂?y,yδ1 +
∑n
i=1

∑Ni∧N̄i
k=1 p̂?

Y ik ,y
δV ik , ,

Cα,µ̂MLE (x) =
{
y : V (x,y) ≤ Q1−α

(
µ̂MLE

y

)}
.

Since the considered likelihood ratios are now depending on the training dataset, it is no longer possible to apply Lemma C.5.
However, conditioning by the training dataset, a similar reasoning shows that∣∣∣P(Y ?N?+1 ∈ Cα,µ̂MLE (X?

N?+1))− P(Ŷ ?N?+1 ∈ Cα,µ̂MLE (X̂?
N?+1))

∣∣∣ ≤ 1

2

∑
y∈Y

E

∣∣∣∣∣P ?Y (y)−
ŵ?yP

cal
Y (y)∑

ỹ∈Y ŵ
?
ỹP

cal
Y (ỹ)

∣∣∣∣∣ . (43)

By utilizing the following lemma combined with (43), we can control the difference between the probabilities of the events
Y ?N?+1 ∈ Cα,µ̂MLE (X?

N?+1) and Ŷ ?N?+1 ∈ Cα,µ̂MLE (X̂?
N?+1).

Theorem C.8. For any α ∈ (0, 1), we have

∑
y∈Y

E

∣∣∣∣∣P ?Y (y)−
ŵ?yP

cal
Y (y)∑

ỹ∈Y ŵ
?
ỹP

cal
Y (ỹ)

∣∣∣∣∣ ≤ 6√
M?

+ 12

√
log |Y|+ logM?

Mminy∈Y{P cal
Y (y)}

.

Proof. For any y ∈ Y , introduce the following quantities: f̂?y = M?
y/M

?, f? = {P ?Y (y)}y∈Y , f̂? = {f̂?y }y∈Y , and
r̂ = {(P cal

Y (y)M/My)1My>0}y∈Y . We denote � the Hadamard product, i.e., for any vectors a, b ∈ R|Y|, a� b is the vector
of the component-wise product between a and b. We now bound the quantity in the right-hand side of the previous inequality,
we obtain ∑

y∈Y
E

∣∣∣∣∣P ?Y (y)−
ŵ?yP

cal
Y (y)∑

ỹ∈Y ŵ
?
ỹP

cal
Y (ỹ)

∣∣∣∣∣ =
∑
y∈Y

E

∣∣∣∣∣f?y − f̂?y + f̂?y −
f̂?y r̂y∑
ỹ∈Y f̂

?
ỹ r̂ỹ

∣∣∣∣∣
≤ E

∥∥∥∥∥f? − f̂? + f̂? − f̂? � r̂
1 + 〈f̂?, r̂ − 1〉

∥∥∥∥∥
1

≤ E‖f? − f̂?‖1 + E

∥∥∥∥∥ f̂?〈f̂?, r̂ − 1〉 − f̂? � (r̂ − 1)

1 + 〈f̂?, r̂ − 1〉

∥∥∥∥∥
1

.
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First, we establish the following equality that will be injected in the computation of E‖f? − f̂?‖1.

‖f? − f̂?‖1 = max
u∈[−1/2,1/2]|Y|

〈f? − f̂?, u+ 1/2〉 = max
u∈[0,1]|Y|

〈f? − f̂?, u〉. (44)

Then, using the result provided by (Agrawal and Jia, 2017, Lemma C.2), for any δ ∈ (0, 1), we get

P

(
max

u∈[0,1]|Y|
〈f? − f̂?, u〉 ≥

√
−2 log δ

M?

)
≤ δ. (45)

Looking back to E‖f? − f̂?‖1 and using the two previous identities, the following lines hold

E‖f? − f̂?‖1 =

∫
t≥0

P
(
‖f? − f̂?‖1 ≥ t

)
dt

≤ δ +

∫
t≥δ

P
(
‖f? − f̂?‖1 ≥ t

)
dt

≤ δ +

∫
t≥δ

exp
(
−M?t2/2

)
dt using (44)-(45)

≤ δ +
1√
M?

∫
t≥δ
√
M?

exp
(
−t2/2

)
dt.

After optimizing for δ > 0, we can retrieve the following upper bound

E‖f? − f̂?‖1 ≤
1.4√
M?

.

Let ε ∈ (0, 1/2], we have that ∥∥∥∥∥ f̂?〈f̂?, r̂ − 1〉 − f̂? � (r̂ − 1)

1 + 〈f̂?, r̂ − 1〉

∥∥∥∥∥
1

≤ 21‖r̂−1‖∞>ε +
2ε

1− ε
.

Taking the expectation for both sides, it shows

E

∥∥∥∥∥ f̂?〈f̂?, r̂ − 1〉 − f̂? � (r̂ − 1)

1 + 〈f̂?, r̂ − 1〉

∥∥∥∥∥
1

≤ 2P (‖r̂ − 1‖∞ > ε) +
2ε

1− ε
.

We now upper bound the first term in the right-hand side of the inequality, we obtain

P (‖r̂ − 1‖∞ > ε) = P

(
max
y∈Y

∣∣∣∣∣P cal
Y (y)1My>0

My/M
− 1

∣∣∣∣∣ > ε

)

≤
∑
y∈Y

P

(∣∣∣∣∣P cal
Y (y)1My>0

My/M
− 1

∣∣∣∣∣ > ε

)

≤
∑
y∈Y

{
P

(
My

M
<
P cal
Y (y)1My>0

1 + ε

)
+ P

(
My

M
>
P cal
Y (y)

1− ε

)}
. (46)

Since the random variable My is the sum of independent Bernoulli random variables, using the Chernoff bound it follows
that

P
(
My/M < P cal

Y (y)/(1 + ε)
)
≤ exp

(
−2ε2NP cal

Y (y)/9
)
,

P
(
My/M > P cal

Y (y)/(1− ε)
)
≤ exp

(
−4ε2NP cal

Y (y)/3
)
.

(47)

Therefore, combining (46) with (47) gives

P (‖r̂ − 1‖∞ > ε) ≤
∑
y∈Y

[
P (My = 0) + 2 exp

(
−ε2NP cal

Y (y)/5
)]
.
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Putting all the previous results together, we obtain∑
y∈Y

P cal
Y (y)E

∣∣∣∣∣w?y − ŵ?y∑
ỹ∈Y ŵ

?
ỹP

cal
Y (ỹ)

∣∣∣∣∣ ≤ 1.4√
M?

+ 4ε+ 4
∑
y∈Y

exp
(
−2ε2NP cal

Y (y)/9
)

+
∑
y∈Y

(1− P cal
Y (y))M. (48)

Consider the following quantity

ε =
3

2

√
2 log |Y|+ logM?

Mminy∈Y{P cal
Y (y)}

.

If ε ≤ 1/2, it yields that∑
y∈Y

exp
(
−2ε2NP cal

Y (y)/9
)
≤
∑
y∈Y

exp (− log |Y| − (1/2) logM?) =
1√
M?

.

Therefore, combining this last inequality with (43)-(48) implies that

∣∣∣P(Y ?N?+1 ∈ Cα,µ̂MLE (X?
N?+1))− P(Ŷ ∈ Cα,µ̂MLE (X?

N?+1))
∣∣∣ ≤ 3√

M?
+ 3

√
2 log |Y|+ logM?

Mminy∈Y{P cal
Y (y)}

+ |Y|
(

1−min
y∈Y
{P cal

Y (y)}
)M

∧ 1.

Otherwise, if ε > 1/2, then, the last inequality immediately holds since the right-hand term is greater than 1. Lastly,
applying Lemma C.7 concludes the proof

C.4. Proof of Theorem 4.3

First, for all i ∈ [n], denote by F iV : u ∈ [0, 1] 7→ P(V (X,Y ) ≤ u) ∈ [0, 1] the cumulative distribution function of
V (Xi, Y i), where (Xi, Y i) ∼ P i. Recall that N =

∑n
i=1N

i, I = (i, k) : i ∈ [n], k ∈ [N i]∪ {(?,N? + 1)}, and also that
there is almost surely no ties between the {V (Xi

k, Y
i
k )}(i,k)∈I . To simplify the notation, we re-index {(Xi

k, Y
i
k , V

i
k )}(i,k)∈I

into {Xk, Yk, Vk}k∈[N+1], sorted such that {Vk}k∈[N+1] is non-decreasing.

Now, we consider α ∈ [0, 1] \Q. Using Theorem A.3, this condition ensures the existence and uniqueness of kopt ∈ [N + 1]
such that Vkopt = arg minq∈R

{
EV∼µ̂y

[Sα,V (q)]
}

, and this condition also proves the existence and uniqueness of Qγ1−α
minimizing {EV∼µ̂y

[Sγα,V (q)] : q ∈ R}. Moreover, for any k ∈ [N + 1] \ {kopt}, define

ρ̂kc
=

{∑
` : V`∈(Vkopt ,Vk] p̂

?
Y`,Y ?N?+1

, if k > kopt∑
` : V`∈[Vk,Vkopt ) p̂

?
Y`,Y ?N?+1

, if k < kopt

. (49)

Lemma C.9. Let α ∈ [0, 1] \Q, for any Vk ∈ [min(Q̂γ1−α,T (µ̂y), Vkopt
),max(Q̂γ1−α,T (µ̂y), Vkopt

)], we have

|Q̂γ1−α,T (µ̂y)− Vk| ≤ ρ̂−1
kc

(
Sγα(Q̂γ1−α,T (µ̂y))− Sγα(Qγ1−α(µ̂y))

)
+ ρ̂−1

kc
γ,

where ρ̂kc
is given in (49).

Proof. First, suppose that Vkopt
≤ Vk < Q̂γ1−α,T (µ̂y). Since ∂Sα,µ̂y

(Vk) = ρ̂kc
+ ∂Sα,µ̂y

(Vkopt
), the convexity of Sα,µ̂y

implies that

Q̂γ1−α,T (µ̂y)− Vk ≤ ρ̂−1
kc

(
Sα,µ̂y

(Q̂γ1−α,T (µ̂y))− Sα,µ̂y
(Vk)

)
≤ ρ̂−1

kc

(
Sγα(Q̂γ1−α,T (µ̂y))− Sγα(Qγ1−α(µ̂y))

)
+ ρ̂−1

kc
γ. (50)

The last inequality holds since ‖Sγα−Sα,µ̂y
‖∞ ≤ γ/2. Moreover, (50) is immediately satisfied when Vk = Q̂γ1−α,T (µ̂y).

Therefore, (50) holds for all Vk ∈ [Vkopt
, Q̂γ1−α,T (µ̂y)]. Finally, the same lines show that (50) is also satisfied when

Q̂γ1−α,T (µ̂y) ≤ Vk ≤ Vkopt .
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For any γ > 0 and T ∈ N?, recall that Qγ1−α(µ̂y) and Q̂γ1−α,T (µ̂y) are defined in (3), (15). Consider

CγT =
2N
∑
y∈Y P

cal
Y (y)ŵ?y

miny∈Y ŵ?y

[
ESγα(Q̂γ1−α,T (µ̂y))− Sγα(Qγ1−α(µ̂y)) + γ

]
(51)

and define

kc =


kopt + Ent

(√
mNCγT
2 logN

)
if kopt + Ent

(√
mNCγT
2 logN

)
≤ N + 1

kopt − Ent

(√
mNCγT
2 logN

)
otherwise

. (52)

Lemma C.10. Assume there exists m > 0 such that for any i ∈ [n], P iV admits a density f iV with respect to the Lebesgue
measure that satisfies m ≤ f iV . Fix α ∈ [0, 1] \Q, and suppose that CγT < 2m−1N logN . We have kc ∈ [N + 1], and with
probability at least m(2N logN)−1 +N−2 the next inequality holds

|Vkc − Vkopt | ≤
√

2CγT logN

mN
+

2 logN

mN
.

Proof. Since we suppose α ∈ [0, 1]\Q, we can apply Theorem A.3 to prove the existence and uniqueness of kopt ∈ [N + 1]
such that Q1−α(µ̂y) = Vkopt . Since by assumption we have

mNCγT
2 logN

< (N + 1)2.

Therefore, it holds that

Ent

√mNCγT
2 logN

 ≤ N.
Hence, we deduce that kc ∈ [N + 1]. Next, consider

LN =
2 logN

mN

and denote by PN the partitioned obtained by splitting the interval [0, 1] into intervals of length LN . Finally, define

AN =
{
∀S ∈ PN ,∃(i, k) ∈ I, V ik ∈ S

}
.

Note that |PN | = d1/LNe ≤ mN/(2 logN) + 1 and log(1−mLN ) ≤ −mLN , thus

P (AN ) ≤
∑
S∈PN

∏
(i,k)∈I

P
(
V ik /∈ S

)
≤
∑
S∈PN

n∏
i=1

P
(
V i1 /∈ S

)Ni+1?(i)

≤ |PN |(1−mLN )N+1

≤ (mN/(2 logN) + 1) exp (−m(N + 1)LN )

≤ m

2N logN
+

1

N2
.

Without loss of generality, we can assume that kopt < kc. Denote K = {kopt, . . . , kc} the indices between kc and kopt.
Consider S = {I ∈ PN : ∃k ∈ K,Vk ∈ I}, on the event AN we get

|Vkc
− Vkopt

| ≤
∑
I∈S
|I|

≤ LN (|kc − kopt|+ 1)

≤ LN

√
mNCγT
2 logN

+ LN =
√
CγTLN + LN .
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Lemma C.11. For any (i, k) ∈ I, assume that (Xi
k, Y

i
k ) is distributed according to PX|Y × P iY and suppose the random

variables are pairwise independent. We have

P

(
min
y∈Y

p̂?y,Y ?
N?+1

<
miny∈Y ŵ

?
y

2N
∑
y∈Y P

cal
Y (y)ŵ?y

)
≤

4 Var(ŵ?Y cal)

N(Eŵ?
Y cal)2

+
2Eŵ?Y ?

N?+1

NEŵ?
Y cal

.

Proof. First, recall that I = {(i, k) : i ∈ [n], k ∈ [N i]} ∪ {(?,N? + 1)}. We have

E

 ∑
(i,k)∈I

ŵ?Y ik

 =

n∑
i=1

∑
y∈Y

(
N i + 1?(i)

)
P iY (y)ŵ?y

=
∑
y∈Y

P ?Y (y)ŵ?y +N
∑
y∈Y

(
n∑
i=1

πiP
i
Y (y)

)
ŵ?y

=
∑
y∈Y

[
P ?Y (y) +NP cal

Y (y)
]
ŵ?y.

Therefore, using the Bienaymé-Tchebytchev inequality implies that

P

(
min

(i,k)∈I
{p̂?Y ik ,Y ?N?+1

} <
miny∈Y ŵ

?
y

2N
∑
y∈Y P

cal
Y (y)ŵ?y

)

= P

 min
(i,k)∈I

{ŵ?Y ik } <
miny∈Y ŵ

?
y

2N
∑
y∈Y P

cal
Y (y)ŵ?y

∑
(i,k)∈I

ŵ?Y ik


≤ P

 ∑
(i,k)∈I

ŵ?Y ik
≥ 2N

∑
y∈Y

P cal
Y (y)ŵ?y


≤ P

 n∑
i=1

Ni∑
k=1

(
ŵ?Y ik
− Eŵ?Y ik

)
≥ N

2

∑
y∈Y

P cal
Y (y)ŵ?y

+ P

ŵ?Y ?
N?+1

≥ N

2

∑
y∈Y

P cal
Y (y)ŵ?y


≤

4 Var(ŵ?Y cal)

N(Eŵ?
Y cal)2

+
2Eŵ?Y ?

N?+1

NEŵ?
Y cal

.

Theorem C.12. Assume there exist m,M > 0 such that for any i ∈ [n], P iV admits a density f iV with respect to the
Lebesgue measure that satisfies m ≤ f iV ≤M . Let α ∈ [0, 1] \Q, and suppose that CγT < 2m−1N logN . It holds

∣∣∣P(Y ?N?+1 ∈ Ĉ
γ
α,µ̂(X?

N?+1))− P(Y ?N?+1 ∈ Cα,µ̂(X?
N?+1))

∣∣∣ ≤ 3M

√
2CγT logN

mN

+
2M logN

mN
+

4 Var(ŵ?Y cal)

N(Eŵ?
Y cal)2

+
2Eŵ?Y ?

N?+1

NEŵ?
Y cal

+
m

2N logN
+

1

N2
, (53)

where CγT is defined in (51).

Proof. Using the definitions of Ĉγα,µ̂(X?
N?+1), Cα,µ̂(X?

N?+1) provided in Algorithm 2 and (8), we can write

P(Y ?N?+1 ∈ Ĉ
γ
α,µ̂(X?

N?+1))− P(Y ?N?+1 ∈ Cα,µ̂(X?
N?+1))

= P
(
V (X?

N?+1, Y
?
N?+1) ≤ Q̂γ1−α,T (µ̂y)

)
− P

(
V (X?

N?+1, Y
?
N?+1) ≤ Q1−α(µ̂y)

)
. (54)
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Recall that kopt = arg mink∈[N+1] EV∼µ̂y
[Sγα,V (Vk)] is a random variable and consider the event

BN =

{
|Vkc
− Vkopt

| ≤
√
CγTLN + LN

}
∩

{
min
y∈Y

p̂?y,Y ?
N?+1

≥
miny∈Y ŵ

?
y

2N
∑
y∈Y P

cal
Y (y)ŵ?y

}

and denote by BcN its complement. Since V (X?
N?+1, Y

?
N?+1) and {Q̂γ1−α,T (µ̂y), Q1−α(µ̂y)} are independent, we have∣∣∣P(V (X?

N?+1, Y
?
N?+1) ≤ Q̂γ1−α,T (µ̂y))− P(V (X?

N?+1, Y
?
N?+1) ≤ Q1−α(µ̂y))

∣∣∣
=
∣∣∣E [1V (X?

N?+1
,Y ?
N?+1

)≤Q̂γ1−α,T (µ̂y) − 1V (X?
N?+1

,Y ?
N?+1

)≤Q1−α(µ̂y)

]∣∣∣
≤ P (BcN ) + E

[
1BN

∣∣∣FV ?(Q̂γ1−α,T (µ̂y))− FV ?(Q1−α(µ̂y))
∣∣∣] . (55)

The following inequality holds∣∣∣FV ?(Q̂γ1−α,T (µ̂y))− FV ?(Q1−α(µ̂y))
∣∣∣ ≤ ‖FV ?(·+ Q̂γ1−α,T (µ̂y)−Q1−α(µ̂y))− FV ?‖∞.

Thus, using that FV ? is M -Lipschitz, we get

E
[
1BN ‖FV ?(·+ Q̂γ1−α,T (µ̂y)−Q1−α(µ̂y))− FV ?‖∞

]
≤ME

[
1BN |Q̂

γ
1−α,T (µ̂y)−Q1−α(µ̂y)|

]
. (56)

Furthermore, we have

E
[
1BN |Q̂

γ
1−α,T (µ̂y)−Q1−α(µ̂y)|

]
≤ E

[
1BN

∣∣Vkc
− Vkopt

∣∣]+ E
[
1Vkc∈[min(Q̂γ1−α,T (µ̂y),Vkopt ),max(Q̂γ1−α,T (µ̂y),Vkopt )]|Q̂

γ
1−α,T (µ̂y)− Vkc

|
]
.

Applying Lemma C.9, this implies that

1Vkc∈[min(Q̂γ1−α,T (µ̂y),Vkopt ),max(Q̂γ1−α,T (µ̂y),Vkopt )]|Q̂
γ
1−α,T (µ̂y)− Vkc

|

≤

{
ρ̂−1
kc

(
Sγα(Q̂γ1−α,T (µ̂y))− Sγα(Qγ1−α(µ̂y))

)
+ ρ̂−1

kc
γ if kc 6= kopt

0 otherwise
,

where recall that ρ̂kc is defined in (49) and also that I = {(i, k) : i ∈ [n], k ∈ [N i]} ∪ {(?,N? + 1)}. Moreover, on the
event BN , we immediately have that

ρ̂kc
≥ |kc − kopt| min

(i,k)∈I
{p̂?Y ik ,Y ?N?+1

} ≥
|kc − kopt|miny∈Y ŵ

?
y

2N
∑
y∈Y P

cal
Y (y)ŵ?y

.

Finally, recall that kc is given in (52) and suppose that CγT < 2m−1N logN . Therefore, using the bound provided in
Lemma C.10 implies that

E
[
1BN |Q̂

γ
1−α,T (µ̂y)−Q1−α(µ̂y)|

]
≤ E

[
1BN

∣∣Vkc
− Vkopt

∣∣]+ E


(
ESγα(Q̂γ1−α,T (µ̂y))− Sγα(Qγ1−α(µ̂y)) + γ

)
1kc 6=kopt

(2N
∑
y∈Y P

cal
Y (y)ŵ?y)−1|kc − kopt|miny∈Y ŵ?y


≤
√

2CγT logN

mN
+

2 logN

mN
+
CγT1mNCγT≥2 logN

Ent

(√
mNCγT
2 logN

) . (57)

Combining (54)-(55)-(56)-(57) shows that∣∣∣P(Y ?N?+1 ∈ Ĉ
γ
α,µ̂(X?

N?+1))− P(Y ?N?+1 ∈ Cα,µ̂(X?
N?+1))

∣∣∣ ≤ P (BcN ) +M

(
3

√
2CγT logN

mN
+

2 logN

mN

)
. (58)
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Using Lemma C.11 gives that

P (BcN ) ≤
4 Var(ŵ?Y cal)

N(Eŵ?
Y cal)2

+
2Eŵ?Y ?

N?+1

NEŵ?
Y cal

+
m

2N logN
+

1

N2
. (59)

Lastly, plugging (59) into (58) concludes the proof when CγT < 2m−1N logN . However, if CγT ≥ 2m−1N logN then (53)
immediately holds. Thus, (53) always holds.

C.5. Proofs of Theorem 2.2 and Theorem 2.4

Recall that {πi}i∈[n] ∈ ∆n and P cal =
∑n
i=1 πiP

i. Moreover, draw (X̂?
N?+1, Ŷ

?
N?+1) according to PX|Y × P̂ ?Y , where

P̂ ?Y is defined in Appendix C.3 and denote V̂N+1 = V (X̂?
N?+1, Ŷ

?
N?+1). In the following paragraph, we explain how to

construct a sequence {Vk}k∈[N ] of i.i.d. random variables distributed according to P cal(V ) – see Lemma C.13, where
P cal(V ) denotes the distribution of V (X,Y ) with (X,Y ) ∼ P cal. We also explain the construction of a bijection
ψ : {(i, k) : i ∈ [n], k ∈ [N i]} → [N ]. For all k ∈ [N ], draw Mk according to a categorical random variable with
parameter {πi}i∈[n] and define N̄ i

k =
∑k
l=1 1{i}(Ml). If N̄Mk

k ≤ NMk then define (Xk, Yk) ← (XMk

N̄
Mk
k

, YMk

N̄
Mk
k

) and

ψ(Mk, N̄
Mk

k ) = k. Else N̄Mk

k > NMk , then draw (Xk, Yk) according to PMk – where we recall that PMk is the distribution
of calibration of agent Mk ∈ [n]. If there exists k ∈ [N ] such that N̄Mk

k > NMk , consider

J0 =
{
k ∈ [N ] : N̄Mk

k > NMk

}
, J1 =

{
(i, k) ∈ [n]× N : N̄ i

N < k ≤ N i
}
.

Since the following inequalities hold:

Card(J0) +

n∑
i=1

min(N i, N̄ i
N ) = N, Card(J1) +

n∑
i=1

min(N i, N̄ i
N ) = N,

we deduce that Card(J0) = Card(J1). Moreover, using the existence of k ∈ [N ] such that N̄Mk

k > NMk , we deduce that
J0 6= ∅. Therefore, there exists a bijection ϕ : J0 → J1. We have previously defined ψ on {(i, k) : i ∈ [n], k ∈ [N i]} \ J1.
For any k ∈ J0, define ψ(ϕ(k)) = k. Remark, ψ is now correctly defined on {(i, k) : i ∈ [n], k ∈ [N i]} → [N ].

Lemma C.13. Denote P cal(V ) the distribution of V (X,Y ) with (X,Y ) ∼ P cal. The sequence {Vk}k∈[N ] is a sequence
of i.i.d. random variables distributed according to P cal(V ).

Proof. Let h : RN → R be a continuous and bounded function, we have

E [h(V1, . . . , VN )] =
∑

i1,...,iN∈[n]

(
N∏
k′=1

πik′

)∫
h(v1, . . . , vN )

N∏
k=1

dP ik(vk)

=
∑

i1,...,iN−1∈[n]

(
N−1∏
k′=1

πik′

)∫
h(v1, . . . , vN )

N−1∏
k=1

dP ik(vk)

(
n∑
i=1

πidP
i

)
(vN )

=
∑

i1,...,iN−1∈[n]

(
N−1∏
k′=1

πik′

)∫
h(v1, . . . , vN )

N−1∏
k=1

dP ik(vk)dP cal(vN )

= · · · =
∫
h(v1, . . . , vN )

N∏
k=1

dP cal(vk).

This last line concludes the proof.

In the following, we consider general likelihood ratios {ŵ?y}y∈Y and recall that w?y = P ?Y (y)/P cal
Y (y). In addition, let
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N̄ ∈ [N ], denote for any i ∈ [n], k ∈ [N i ∧ N̄ i
N̄

], k′ ∈ [N̄ ], Vk′ = V (Xk′ , Yk′) and define

D̄Ŷ ?
N?+1

= {Ŷ ?N?+1} ∪ {Yk : k ∈ [N̄ ]}, D̂Ŷ ?
N?+1

= {Ŷ ?N?+1} ∪ {Yk : i ∈ [n], k ∈ [N i ∧ N̄ i
N̄ ]}

p̄
D̄Ŷ ?

N?+1

Yk′
=

ŵ?Yk′

ŵ?
Ŷ ?
N?+1

+
∑N̄
l=1 ŵ

?
Yl

, p̂
D̂Ŷ ?

N?+1

Y ik
=

ŵ?
Y ik

ŵ?
Ŷ ?
N?+1

+
∑n
j=1

∑Nj∧N̄j
N̄

l=1 ŵ?
Y jl

.
(60)

Moreover, consider p̄
D̄Ŷ ?

N?+1

Ŷ ?
N?+1

= ŵ?
Ŷ ?
N?+1

(ŵ?
Ŷ ?
N?+1

+
∑N̄
l=1 ŵ

?
Yl

)−1 and p̂
D̂Ŷ ?

N?+1

Ŷ ?
N?+1

= ŵ?
Ŷ ?
N?+1

(ŵ?
Ŷ ?
N?+1

+∑n
j=1

∑Nj∧N̄j
N̄

l=1 ŵ?
Y jl

)−1. Lastly, define

X =

N̄∑
k=1

p̄
D̄Ŷ ?

N?+1

Yk
1Vk<V̂N+1

,

δ =

n∑
i=1

Ni∧N̄i
N̄∑

k=1

p̂
D̂Ŷ ?

N?+1

Y ik
1V ik<V̂N+1

−
N̄∑
k=1

p̄
D̄Ŷ ?

N?+1

Yk
1Vk<V̂N+1

.

(61)

Lemma C.14. For any {πi}i∈[n] ∈ ∆n, it holds

− ε− P (δ ≤ −ε) ≤ P

(
V̂N+1 ≤ Q1−α

(∑n
i=1

∑Ni∧N̄i
N̄

k=1 p̂
D̂Ŷ ?

N?+1

Y ik
δV ik + p̂

D̂Ŷ ?
N?+1

Ŷ ?
N?+1

δ1

))
− 1 + α

≤ E
[
N̄+1
max
k=1
{p̄
D̄Ŷ ?

N?+1

Yk
}
]

+ ε+ P (δ ≥ ε) ,

where p̄
D̄Ŷ ?

N?+1

Yk
and p̂

D̂Ŷ ?
N?+1

Y ik
are defined in (60).

Proof. By the definition of the quantile combined with (61), we get(
V̂N+1 ≤ Q1−α

(∑n
i=1

∑Ni∧N̄i
N̄

k=1 p̂
D̂Ŷ ?

N?+1

Y ik
δV ik + p̂

D̂Ŷ ?
N?+1

Ŷ ?
N?+1

δ1

))
⇐⇒ (X + δ > α) .

Therefore, it holds that

P

(
V̂N+1 ≤ Q1−α

(∑n
i=1

∑Ni∧N̄i
N̄

k=1 p̂
D̂Ŷ ?

N?+1

Y ik
δV ik + p̂

D̂Ŷ ?
N?+1

Ŷ ?
N?+1

δ1

))
= E [1X>α] + E [1X+δ>α − 1X>α] . (62)

Remark that

1X>α+ε − 1X>α − 1δ≤−ε ≤ 1X+δ>α − 1X>α ≤ 1X>α−ε − 1X>α + 1δ≥ε. (63)

Thus, combining (63) with (62) gives

P (X > α+ ε)− P (δ ≤ −ε)

≤ P

(
V̂N+1 ≤ Q1−α

(∑n
i=1

∑Ni∧N̄i
N̄

k=1 p̂
D̂Ŷ ?

N?+1

Y ik
δV ik + p̂

D̂Ŷ ?
N?+1

Ŷ ?
N?+1

δ1

))
≤ P (X > α− ε) + P (δ ≥ ε) . (64)

Consider α̃ ∈ (0, 1),

(X > α̃) ⇐⇒
(
V̂N+1 ≤ Q1−α̃

(
p̄
D̄Ŷ ?

N?+1

Ŷ ?
N?+1

δ1 +
∑N̄
k=1 p̄

D̄Ŷ ?
N?+1

Yk
δVk

))
.
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Hence P(X > α̃) = P(V̂N+1 ≤ Q1−α̃(p̄
D̄Ŷ ?

N?+1

Ŷ ?
N?+1

δ1 +
∑N̄
k=1 p̄

D̄Ŷ ?
N?+1

Yk
δVk)). Applying Theorem C.3 gives that

0 ≤ P
(
V̂N+1 ≤ Q1−α̃

(
p̄
D̄Ŷ ?

N?+1

Ŷ ?
N?+1

δ1 +
∑N̄
k=1 p̄

D̄Ŷ ?
N?+1

Yk
δVk

))
− 1 + α̃ ≤ E

[
N̄+1
max
k=1
{p̄
D̄Ŷ ?

N?+1

Yk
}
]
.

Therefore, plugging the previous inequality into (64) concludes the proof.

Recall that (ŵ?Y1
− Eŵ?Y1

) is σ-sub Gaussian if for any s ∈ R, the following inequality holds∫
y∈Y

exp

(
s

[
ŵ?y −

∫
y′∈Y

ŵ?y′dP
cal
Y (y′)

])
dP cal

Y (y) ≤ exp

(
σ2s2

2

)
.

Lemma C.15. Assume the random variable (ŵ?Y1
− Eŵ?Y1

) is σ-sub Gaussian with parameter σ ≥ 0. For any ε ≥
8σ2 logN/(N̄E[ŵ?Y1

]2) and {πi}i∈[n] ∈ ∆n, we have

P (|δ| > ε) ≤ P

(
n∑
i=1

(
N̄ i
N̄ −N

i
)

+
>
Nε

4

)
+

4 Var
(
ŵ?Y1

)
N̄E

[
ŵ?Y1

]2 +
1

N
,

where δ is defined in (61).

Proof. First, denote J0 = J0 ∩ [N̄ ] and remark that Card(J0) =
∑n
i=1(N̄ i

N̄
−N i)+. Moreover, recall that δ is defined by

δ =

n∑
i=1

Ni∧N̄i
N̄∑

k=1

(
p̂
D̂Ŷ ?

N?+1

Y ik
− p̄

D̄Ŷ ?
N?+1

Yψ(i,k)

)
1V ik<VN+1

−
∑
k∈J0

p̄
D̄Ŷ ?

N?+1

Yk
1Vk<V̂N+1

.

Using definition of the weighs p̄D̄ given in (60) and the definition of ψ provide at the beginning of this section, note that∑
k∈J0

p̄
D̄Ŷ ?

N?+1

Yψ(i,k)
1Vk<V̂N+1

≤
∑
k∈J0

ŵ?Yk

ŵ?
Ŷ ?
N?+1

+
∑N̄
l=1 ŵ

?
Yl

. (65)

From the definition of p̂
D̂Ŷ ?

N?+1

Y ik
and p̄

D̄Ŷ ?
N?+1

Yψ(i,k)
provided in (60), we obtain

n∑
i=1

Ni∧N̄iN∑
k=1

(
p̂
D̂Ŷ ?

N?+1

Y ik
− p̄

D̄Ŷ ?
N?+1

Yψ(i,k)

)
1V ik<VN+1

=

n∑
i=1

Ni∧N̄iN∑
k=1

 ŵ?
Y ik
1V ik<VN+1

ŵ?
Ŷ ?
N?+1

+
∑n
j=1

∑
l∈Ji ŵ

?
Y jl

−
ŵ?
Y ik
1V ik<VN+1

ŵ?
Ŷ ?
N?+1

+
∑N̄
l=1 ŵ

?
Yl

 ,

=

(
1∑

l∈[N̄+1]\J0
ŵ?Yl
− 1∑

l∈[N̄+1]\J0
ŵ?Yl +

∑
l∈J0

ŵ?Yl

) ∑
k∈[N̄ ]\J0

ŵ?Yk1V ik<VN+1
.

Therefore, we know that∣∣∣∣∣∣
n∑
i=1

Ni∧N̄iN∑
k=1

(
p̂
D̂Ŷ ?

N?+1

Y ik
− p̄

D̄Ŷ ?
N?+1

Yψ(i,k)

)
1V ik<VN+1

∣∣∣∣∣∣ ≤
∑
k∈J0

ŵ?Yk

ŵ?
Ŷ ?
N?+1

+
∑N̄
l=1 ŵ

?
Yl

.

Hence, plugging the previous line into (61) combined with (65) gives

|δ| ≤
2
∑
k∈J0

ŵ?Yk

ŵ?
Ŷ ?
N?+1

+
∑N̄
l=1 ŵ

?
Yl

. (66)

Moreover, define the following event:

EN =

{
n∑
i=1

(
N̄ i
N̄ −N

i
)

+
≤ Nε

4

}
.
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Next, using the event EN , we decompose the following probability

P

 ∑
k∈J0

ŵ?Yk

ŵ?
Ŷ ?
N?+1

+
∑N̄
l=1 ŵ

?
Yl

≥ ε

2
;EN

 ≤ P

(∑
k∈J0

ŵ?Yk ≥
εN̄E

[
ŵ?Y1

]
4

;EN

)

+ P

ŵ?
Ŷ ?
N?+1

+

N̄∑
l=1

ŵ?Yl <
N̄E

[
ŵ?Y1

]
2

 . (67)

Since the {ŵ?Yk}k∈[N ] are σ-sub Gaussian, the first term of the previous right-hand side inequality is upper bounded thanks
to Hoeffding’s inequality

P

(∑
k∈J0

ŵ?Yk ≥
εN̄E

[
ŵ?Y1

]
4

;EN

)
= E

[
P

(∑
k∈J0

ŵ?Yk ≥
εN̄E

[
ŵ?Y1

]
4

∣∣∣Card(J0)

)
1EN

]

≤ exp

(
−

(εN̄/4)2E[ŵ?Y1
]2

2Card(J0)σ2

)
≤ 1

N
, (68)

where the last inequality holds by setting ε ≥ 8σ2 logN/(N̄E[ŵ?Y1
]2). Moreover, since ŵ?Y1

≥ 0 almost surely, from the
Chebyshev inequality we deduce that

P

ŵ?
Ŷ ?
N?+1

+

N̄∑
l=1

ŵ?Yl <
N̄E

[
ŵ?Y1

]
2

 ≤ 4 Var
(
ŵ?Y1

)
N̄E

[
ŵ?Y1

]2 . (69)

Therefore, combining (67), (68) and (69) shows

P

 ∑
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ŵ?Yk

ŵ?
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?
Yl

≥ ε

4
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N
+

4 Var
(
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[
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]2 . (70)

Lastly, using (66) we derive the next inequality:

P (|δ| > ε) ≤ 1− P (EN ) + P

 ∑
k∈J0

ŵ?Yk

ŵ?
Ŷ ?
N?+1

+
∑N̄
l=1 ŵ

?
Yl

≥ ε

2
;EN

 .

Plugging (70) into the previous line completes the proof.

Lemma C.16. For any i ∈ [n], consider πi = N i/N and 2N̄ ≤ N . We have

P

 n∑
i=1

(
N̄ i
N̄ −N

i
)

+
>

7

4
log(nN)

∑
j : N

j

6 <log(nN)

√
N j

 ≤ 1

N
. (71)

Proof. First, define ε = 7[log(nN)/N ]
∑
j∈A
√
N j where we consider the following set

A =
{
i ∈ [n] : N i < 6 log(nN)

}
.

If A 6= ∅, for all i ∈ A take

αi =

√
πi∑

j∈A
√
πj
.

Using the union bound, we get

P

(
n∑
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(
N̄ i
N̄ −N

i
)

+
>
Nε

4

)
≤

∑
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P
(
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i
)

+
∑
i∈A

P
(
N̄ i
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αiNε

4

)
. (72)
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If i ∈ [n] \A, then applying the Chernoff bound gives

P
(
N̄ i
N̄ ≥ N

i
)
≤ exp

(
− πi(N − N̄)

1 + 2N̄/(N − N̄)

)
≤ exp

(
−πiN

6

)
≤ 1

nN
. (73)

If i ∈ A, then applying the Bernstein inequality gives

P
(
N̄ i
N̄ ≥ N

i +
αiNε

4

)
≤ exp

(
− (αiNε/4)2

2N̄πi(1− πi) + αiNε/6

)
. (74)

Moreover, we can suppose that n ≥ 2 otherwise (71) immediately holds. Thus, nN ≥ 4 and using the fact that 2N̄ ≤ N we
deduce that

4

(
2

3
+

√
2N̄

N log(nN)

)
≤ 7.

Therefore, it follows

Nε ≥ 4 log(nN)

(
2

3
+

√
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N log(nN)

)∑
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√
N j .

The last inequality is enough to ensure that

(Nε)2/8

4(N̄/N)(
∑
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√
N j)2 +Nε
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j∈A
√
N j/3

≥ log(nN). (75)

Moreover, using the definition of αi implies

(αiNε/4)2

2N̄πi(1− πi) + αiNε/6
≥ (Nε)2/8
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.

Hence, combining (74) with (75) shows that

P
(
N̄ i
N̄ ≥ N

i +
αiNε

4

)
≤ 1

nN
. (76)

Finally, plugging (73) and (76) into (72) yields the result.

Lemma C.17. Recall that {p̄
D̄Ŷ ?

N?+1

Yk
}k∈[N̄ ] is defined in (60) and for the sake of simplicity define YN̄+1 = Ŷ ?N?+1. If

‖ŵ‖∞ <∞, then

E
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)
.

Moreover, if the random variables (ŵYk − EŵYk)k∈[N̄+1] are σ-subGaussian with parameter σ ≥ 0, then

E
[
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2 Var(ŵYN̄+1

)
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)
.

Proof. By definition of the probabilities {p̄
D̄YN̄+1

Yk
}k∈[N̄+1], we have

E
[
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}
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]
.

The expectation is split by introducing AN+1 = {
∑N̄+1
l=1 ŵYl ≤ (N̄EŵY1

+ EŵYN̄+1
)/2}, we obtain

E

[
maxN̄+1

k=1 {ŵYk}∑N̄+1
l=1 ŵYl

]
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N̄EŵY1

E
[
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{ŵYk}

]
+ P (AN+1) . (77)

Using the Chebyshev’s inequality it follows that
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P (AN+1) = P

2

N̄+1∑
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When ŵ is bounded, combining (77) with (78) gives

E
[
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N̄EŵY1
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.

Otherwise, if we suppose that the (ŵYk −EŵYk)k∈[N̄+1] are σ-sub-Gaussian, then applying the result given in (Boucheron

et al., 2013, Section 2.5) combined with (77)-(78) concludes the proof since it follows that E[maxN̄+1
k=1 {ŵYk}] ≤

maxN̄+1
k=1 {EŵYk}+ σ

√
2 log(N̄ + 1).

Finally, for any point (x,y) ∈ X × Y , define the following measure and prediction set

µ̂y = p̂
D̂y
y δ1 +

∑n
i=1

∑Ni∧N̄i
N̄

k=1 p̂
D̂y

Y ik
δV ik

Cα,µ̂(x) = {y ∈ Y : V (x,y) ≤ Q1−α(µ̂y)} .

Theorem C.18. For any i ∈ [n], let πi = N i/N and consider N̄ = bN/2c. If ‖ŵ?‖∞ <∞, then it holds
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Since {ŵ?y}y∈Y are bounded, we deduce that ŵ?Y1
is σ-subGaussian with σ = 2−1(maxy∈Y{ŵ?y} − miny∈Y{ŵ?y}).

Therefore, the inequality derived in Lemma C.16 combined with Lemma C.15 provide an upper bound on P(|δ| > ε) with
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.

Plugging this result into the bound derived in Lemma C.14 shows that∣∣∣P(Ŷ ?N?+1 ∈ Cα,µ̂(X̂?
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ŵ?Y1

)
N̄(Eŵ?Y1
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N̄E[ŵ?Y1
]2
∨

7 log(nN)
∑
j : N

j

6 <log(nN)

√
N j

N
. (80)

Moreover, applying Lemma C.17, we deduce that

E
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Therefore, combining (80) with (81) implies that
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If N ≥ 6, then remark that N/N̄ ≤ 3. Thus, we deduce that
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Finally, using the next inequality combined with (79) and (82) concludes the proof

P(Y ?N?+1 ∈ Cα,µ̂(X?
N?+1)) = P(Y ?N?+1 ∈ Cα,µ̂(X?

N?+1))− P(Ŷ ?N?+1 ∈ Cα,µ̂(X̂?
N?+1)) + P(Ŷ ?N?+1 ∈ Cα,µ̂(X̂?

N?+1)).

The proof of the following result is similar to that of Theorem C.18.

Theorem C.19. For any i ∈ [n], let πi = N i/N and set N̄ = bN/2c. Moreover, for y ∈ Y consider ŵ?y = w?y . If
‖w?‖∞ <∞, then it holds∣∣P (Y ?N?+1 ∈ Cα,µ̂(X?
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Proof. First, for y ∈ Y recall thatw?y = (P ?Y /P
cal
Y )(y). Thus, we remark that Ew?Y1

= 1. Therefore, applying Theorem C.18
concludes the proof.

D. Differential privacy guarantee: proof of Theorem 4.4

In this section, we recall the definition of being (ε, δ)-DP (Dwork et al., 2014). The idea behind differential privacy is
to ensure that no attacker can determine with high confidence whether a particular individual’s data is included in the
dataset or not. Often, a controlled amount of random noise is added to the data, so that any individual data point becomes
indistinguishable from the noise. This ensures that the probability distribution of an algorithm’s output does not change
significantly when a single individual’s data is added or removed.

Definition D.1. For any ε > 0 and δ ∈ [0, 1), a randomized mechanism A is said to be (ε, δ)-DP, if for all neighboring
datasets D, D′, and for any event E:

P (A(D) ∈ E) ≤ exp(ε)P (A(D′) ∈ E) + δ.

The following result gives the noise level sufficient to ensure the (ε, δ)-DP regarding the third-party attacker. This type
of attacker is an external entity who does not have access to the private data but can observe the algorithm outputs. This
attacker tries to infer sensitive information about individuals by analyzing the output.

Theorem D.2. Assume there is a constant number S ∈ [n] of sampled agents, i.e., St = S, for all t ∈ [T ]. Then, for all
ε > 0 and δ ∈ (0, 1− (1 +

√
ε)(1− S/n)T ), the Algorithm 1 is (ε, δ)-DP towards a third party if

σg ≥ 2
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εn

)
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(
1− δ

1 +
√
ε

)1/T
]
.

Proof. The loss function ∇Si,γα has a sensitivity of 1. Therefore, for any α̃ > 1, we know that ∇Si,γα + N (0, σ2
g) is
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(α̃, α̃/2σ2
g)-RDP (Mironov, 2017, Corollary 3). By assumption, note that δ̄ ∈ (0, 1) and for any t ∈ [T ], consider

εt =
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i
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,
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2
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TS log(1/δ̄)

nK maxi∈[n] λiy
.

After K local iterations, using the RDP composition result, the mechanism becomes (α̃,Kα̃/2σ2
g)-RDP. Using the

aggregation step on the server, the mechanism is now (α̃, nKα̃maxi∈[n] λ
i
y/2(t+ 1)Sσ2

g)-RDP. Based on the RDP to DP
conversion, we know that the mechanism is (εt, δ̄)-DP. Define f : x ∈ R 7→ log{1 + (S/n)(ex − 1)} ∈ R. For any x ∈ R,
we have

f ′(x) =
S

n+ 2x (n− S)
.

In addition, since the agents are subsampled, it yields the (ε̃t, δ̃t)-DP (Balle et al., 2018, Theorem 9), where we denote

ε̃t = f (εt) , δ̃t =
Sδ̄

n
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For all a, b ∈ R, using that (a+ b)2 ≤ 2a2 + 2b2 gives that
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Plugging the definition of α̃ into (83) combined with
∑T+1
t=2 t−2 ≤ 1 show that
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By assumption, recall that

σg ≥ 2
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Therefore, we obtain
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The previous inequality combined with (84) implies that

T∑
t=1

ε̃2t ≤ ε2/16.

Define the following quantity

δ̃ =
1− δ∏T

t=1(1− δ̃t)
− 1.

Since 1 − (1 − δ)1/T ≤ δ̃t ≤ 1 − [(1 − δ)/2]1/T , we can verify that δ̃ ∈ [0, 1] and also δ̃ =
√
ε. Using the assumption
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δ ≤ 1− (1 +
√
ε)(1− S/n)T , it yields

e + δ̃−1
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.

Since (exp(ε̃t)− 1)/(exp(ε̃t) + 1) ≤ ε̃t, we deduce that

T∑
t=1

exp(ε̃t)− 1

exp(ε̃t) + 1
≤

T∑
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ε̃2t ≤
ε2

16
.

Finally, applying (Kairouz et al., 2015, Theorem 3.5) concludes the proof.

Note that the local loss function Si,γα : q ∈ R 7→ EV∼µ̂iy [Sγα,V (q)] ∈ R+ is expressed as the expectation of pinball loss
functions. Since the sensitivity of these pinball loss functions is 1, we do not need to clip the gradient. It is sufficient to
add additional Gaussian noise N (0, σg) to guarantee differential privacy. The value of σg is chosen to provide a suitable
trade-off between privacy and utility, balancing the need for strong privacy protection with the requirement for useful
output.

E. Additional numerical results

E.1. Algorithm design

The objective is to generate valid federated prediction sets for the testset by leveraging the calibration datasets of the agents.
In this section, we present four different algorithms that were compared in our experiments. The first two are unweighted
algorithms (Unweighted Local and Unweighted Global), while the other two are weighted benchmarks: Oracle
Weights which uses true weights, and Estimated Weights which employs estimated weights. Additionally, we
propose the DP-FedCP method, available in both basic and differentially private versions. The main differences between
these approaches lie in the way the resulting quantile is computed, such as the importance given to the set of non-conformity
scores and their corresponding weights. Moreover, the approaches’ ability to maintain coverage and privacy guarantees
varies.

Unweighted Local. The Unweighted method assigns equal weight to all non-conformity scores, regardless of the agent or
label. As a result, the resulting quantile and prediction sets are only influenced by the local scores of the querying agent.
Specifically, the Unweighted Local approach only employs the local calibration dataset of Agent ? to compute the
corresponding prediction set. This approach is easily computable because it does not involve any exchange of information
between agents. Formally, the confidence set can be expressed as follows:

µ̄loc,? =
1

N? + 1

N?∑
k=1

δV ?k +
1

N? + 1
δ1,

Cα,µ̄loc,?(x) =
{
y ∈ Y : V (x,y) ≤ Q1−α

(
µ̄loc,?

)}
.

Unweighted Global. The Unweighted Global approach calculates the quantile by using all non-conformity scores
gathered on the central server from all agents. This approach violates FL constraints since all non-conformity scores are
shared with the central server. Furthermore, each collected score is given equal weight, without taking into account any
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label shift. The corresponding prediction set is represented as follows:

µ̄ =
1

N + 1

n∑
i=1

Ni∑
k=1

δV ik +
1

N + 1
δ1,

Cα,µ̄(x) = {y ∈ Y : V (x,y) ≤ Q1−α (µ̄)} .

Oracle Weights. This approach utilize importance weights to compute the prediction set. The Oracle Weights
method has access to the true distribution of all the agents, enabling it to calculate the exact likelihood ratios. For this
method, a number of N̄ = bN/2c data points of the calibration dataset is randomly selected — denoted as (Xk, Yk)k∈[N̄ ].
This sumbsampling is based on a multinomial random variable with parameter (N̄ , {N i/N}i∈[n]); more details are provided
in Section 2 (see for example Theorem 2.2). For any label y ∈ Y , the prediction set is determined by:

µ̄?y = p̄?y,yδ1 +

N̄∑
k=1

p̄?Yk,yδVk ,

Cα,µ̄?(x) =
{
y ∈ Y : V (x,y) ≤ Q1−α(µ̄?y)

}
.

(85)

Estimated Weights. The empirical equivalent of Oracle Weights based on client label counts is Estimated
Weights. However, two sources of error are introduced: (1) the calibration subsampling and (2) the likelihood ratio estima-
tions (refer to (10)). Similar to Oracle Weights, we draw a multinomial distribution {N̄ i}i∈[n] ∼M(N̄ , {N i/N}i∈[n])
and subsample N i ∧ N̄ i calibration data from each client i. The resulting prediction set is represented by:

p̂?y,y =
(M?

y/My) · 1My≥1

(M?
y/My) · 1My≥1 +

∑
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(
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y

)}
.

E.2. Additional Details on Numerical Experiments

To provide a comprehensive overview of our experimental methodology, we present additional details about the federated
optimization parameters, along with supplementary figures to complement those presented in Section 5.

Optimization parameters. For all experiments, we split the initial dataset D across the clients (Di)i∈[n] and the test
dataset Dtest as detailed in Section 5. Label shift is then simulated by resampling using the clients’ local distributions
{P y}y∈Y . For ImageNet experiments, we also assume that we have labels sampled from the target client’s distribution for
weights’ approximation. The optimization parameters taken for DP-FedCP experiments are T = 200 iterations, γ = 1e−6

regularization parameter, η = 1e−3 stepsize, and K = 20 local iteration rounds. We sample all clients during each
communication round with the server.

Simulated Data Experiments. The generated data consists of 3 Gaussians, two of which significantly overlap each other,
see Figure 4. This data design is chosen such that we obtain different distributions of non-conformity scores for different
classes, which is directly related to the different degrees of model confidence for different data samples.

CIFAR-10 Experiments. Using the CIFAR-10 data, we demonstrate a comparison of the empirical coverage for all
considered methods: Unweighted Local, Unweighted Global, Oracle Weights, Estimated Weights
and the proposed DP-FedCP method version with (σg = 0), see Figure 5a. DP-FedCP along with weighted baselines,
shows valid coverage results, unlike unweighted baselines. At the same time, both weighted algorithms are extremely similar
in performance to DP-FedCP. Unlike weighted baselines, DP-FedCP is federated and privacy preserving.

ImageNet Experiments. The ImageNet experiment is designed to have very different score distributions across agents. The
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Figure 4: Simulated data distribution: 3 two-dimensional Gaussians with means θ1 = [−1, 0],θ2 = [1, 0],θ3 = [1, 3] and
identity covariance matrices.
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Figure 5: Experimental results with all benchmarks. (a) CIFAR-10 empirical coverage. (b) ImageNet empirical coverage.
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Figure 6: ImageNet complementary results. (a) Score distributions of the classes with the lowest non-conformity scores.
(b) Score distributions of the classes with the highest non-conformity scores. (c) Violin plot of the empirical coverage
distribution for DP-FedCPwith different DP regimes.

grouping scheme of clients into a low-score group (Figure 6a) and a high-score group that consists of the querying
agent (Figure 6b) creates adversial heterogeneity, possible in real-life scenarios, under which unweighted methods are more
prone to perform very poorly. Comparing the DP-FedCP method with weighted and unweighted baselines on ImageNet
data, we note the same behavior as on CIFAR-10 dataset, see Figure 5b. Only algorithms that account for shifts between
agents’ data achieve the desired empirical coverage. There is an additional violin plot for the ImageNet differential privacy
study that demonstrates the effect of the DP parameter σg on the resulting empirical coverage; see Figure 6c.
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