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Abstract

Self-supervised learning (SSL) for clinical time
series data has received significant attention in
recent literature, since these data are highly rich
and provide important information about a pa-
tient’s physiological state. However, most exist-
ing SSL methods for clinical time series are lim-
ited in that they are designed for unimodal time
series, such as a sequence of structured features
(e.g., lab values and vitals signs) or an individ-
ual high-dimensional physiological signal (e.g.,
an electrocardiogram). These existing methods
cannot be readily extended to model time series
that exhibit multimodality, with structured fea-
tures and high-dimensional data being recorded
at each timestep in the sequence. In this work, we
address this gap and propose a new SSL method
— Sequential Multi-Dimensional SSL — where a
SSL loss is applied both at the level of the entire
sequence and at the level of the individual high-
dimensional data points in the sequence in order
to better capture information at both scales. Our
strategy is agnostic to the specific form of loss
function used at each level – it can be contrastive,
as in SimCLR, or non-contrastive, as in VICReg.
We evaluate our method on two real-world clinical
datasets, where the time series contains sequences
of (1) high-frequency electrocardiograms and (2)
structured data from lab values and vitals signs.
Our experimental results indicate that pre-training
with our method and then fine-tuning on down-
stream tasks improves performance over baselines
on both datasets, and in several settings, can lead
to improvements across different self-supervised
loss functions.
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1. Introduction
In clinical settings such as the intensive care unit (ICU),
patients are closely monitored and consequently generate
a profusion of time series data. This rich data contains sig-
nificant physiological information about a patient’s state
and progression over time (Johnson et al., 2016). As a re-
sult, there have been many efforts to study representation
learning and pre-training on these data, particularly using
self-supervised learning (SSL) strategies, with the goal of
using the pre-trained models for various downstream pre-
dictive tasks (McDermott et al., 2021; Weatherhead et al.,
2022; Tonekaboni et al., 2021; Yèche et al., 2021; Tipirneni
& Reddy, 2022).

Although these works develop effective strategies to model
clinical time series data, they focus only on unimodal time
series, such as a sequence of structured features alone, or
an individual high dimensional physiological signal. In re-
ality however, data originating from a patient’s encounter
is significantly more complex, containing multimodal data
recorded at regular intervals. As an example, a given pa-
tient may have two very different types of data recorded
hourly: (1) high-frequency physiological signals (e.g., an
electrocardiogram recorded at 240 Hz); and (2) structured
data from labs and vitals signs. These modalities provide
complementary information about a patient’s physiological
state. Extending existing SSL methods to operate on these
time series is challenging, since they do not deal with se-
quences of high-dimensional data, and do not contend with
the multimodal data stream.

In this paper, we take steps towards addressing this gap and
outline an approach for self-supervised pre-training on these
complex clinical time series. We propose a SSL strategy
where we jointly optimize two SSL losses to better capture
structure in the data. Our contributions are as follows:

1. We formalize the problem of self-supervised learning
(SSL) on trajectories, our abstraction of a multimodal
time series that contains complex, high-dimensional data
recorded at each timestep in the sequence.

2. We outline a new SSL method, Sequential Multi-
Dimensional Self-Supervised Learning (SMD SSL), for
trajectories. Motivated by the structure of trajectories,
SMD SSL incorporates two losses: (1) a component
SSL loss on the level of individual high dimensional
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data points in the sequence; and (2) a global SSL loss
on the level of the overall sequence. SMD SSL can be
instantiated with contrastive losses, as in SimCLR (Chen
et al., 2020a) or non-contrastive losses, as in VICReg
(Bardes et al., 2022a). This is beneficial since different
loss functions may be effective in different applications.

3. We evaluate SMD SSL on two real-world clinical
datasets where the time series contains sequences of
(1) high-frequency electrocardiograms and (2) structured
data from labs and vitals signs. On both datasets and
on two downstream tasks — (1) detecting elevated pul-
monary pressures and (2) predicting 24 hour mortality —
we find SMD SSL improves performance over baselines.
In several settings, we observe performance boosts using
both SimCLR and VICReg objective functions.

2. Related work
Self-supervised learning (SSL). SSL methods are used
to pre-train models and/or learn generalizable representa-
tions using unlabeled data. Many existing methods take
either a multiview perspective (Chen et al., 2020a;c; Bardes
et al., 2022a; He et al., 2020; Chen et al., 2020c; Grill et al.,
2020) or an autoregressive denoising approach (Vincent
et al., 2008; He et al., 2022). Here, we focus on multiview
approaches since they have been effective in improving pre-
dictive performance on clinical tasks (Weatherhead et al.,
2022; Tonekaboni et al., 2021).

SSL for clinical data. Existing applications of multiview
SSL to medical data have been focused either on physio-
logical signals, such as electrocardiograms (ECGs) (Cheng
et al., 2020; Kiyasseh et al., 2021; Gopal et al., 2021; Dia-
mant et al., 2021; Oh et al., 2022), on sequences of tabular
data, such as laboratory tests (Yèche et al., 2021; Li et al.,
2021), or on medical imaging (Ren et al., 2022). In contrast,
we consider SSL on time series where individual timesteps
contain both high-dimensional data (such as ECGs) and
structured features. Prior studies exploring SSL on mul-
timodal medical data typically infer one modality of data
from the other at test time, such as predicting radiologist
comments from chest X-ray images (Tiu et al., 2022), rather
than modeling sequences of multimodal data where the
modalities present non-overlapping sources of information,
as we do here.

Multilevel SSL loss functions. Our method uses a two-level
loss function that is motivated by the complex structure of
the data stream we consider: sequences in which individual
elements are themselves high-dimensional. A related ap-
proach in computer vision, VICRegL (Bardes et al., 2022b),
applies multilevel self-supervision to images where patch-
level similarity is defined using spatial transformations. In
contrast to VICRegL, which formulates a component level
loss using patches, our method formulates a component

level loss on entire signals, and so operates on a differ-
ent level of abstraction. Another recent method decouples
local and global representation learning for a single time
series (Tonekaboni et al., 2022). This work also operates
on a different level of abstraction, since it does not con-
sider sequences of time series. Finally, Ren et al. (2022)
demonstrate that multiscale SSL for neuroimaging offers
improvement on downstream tasks. However, their tech-
niques are tailored for neuroimaging and do not generalize
readily to the data we consider.

3. Methods
In this section, we describe our approach for self-supervised
learning (SSL) on multimodal clinical time series: Sequen-
tial Multi-Dimensional SSL. We first outline our problem
setup, describing the multimodal data stream that we con-
sider. We then detail our SSL scheme, specifying the loss
functions used to learn representations on both an individ-
ual timestep (component) level and on a overall sequence
(global) level. We conclude with a discussion of other appli-
cations of the method.

3.1. Problem Setup

Defining trajectories. We use the term trajectory to refer
to a sequence of physiological signals and structured data
collected over time for a patient. This definition is moti-
vated by an important use-case in cardiovascular medicine,
where patients may be monitored with telemetry devices
that regularly record physiological waveforms in addition
to having lab tests and vitals signs periodically measured.
The concept of a trajectory could be readily expanded to
include other information, such as imaging or medications,
depending on the context.

Formally, a trajectory τ of length T has the structure:

τ = (d, {(wt, st)}Tt=1).

Here, d ∈ RL represents a set of static features that do not
change over the trajectory (such as demographic informa-
tion or infrequently measured lab values). The sequence
{(wt, st)}Tt=1 contains a vector of structured data w ∈ RM ,
and a high-dimensional signal s ∈ RC×P , where C is the
number of signal channels and P is the number of samples
in the signal (typically on the order of a few thousand). A
visualization of a trajectory is shown in Figure 1.

Trajectory neural network. Trajectories are mapped
into vector representations using a neural network fθ with
three components (Figure 5): (1) a static and structured
features encoder fw,dθ ; (2) a signals encoder fsθ ; (3) a
sequence module fτθ . At each timestep t, the modal-
ities are embedded and concatenated into timestep rep-
resentations: zt = concat

(
fw,dθ (wt, d), f

s
θ (st)

)
. The se-
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Figure 1: An example of a multimodal clinical time-series or ‘trajectory’. The trajectory τ contains an static vector d consisting of
measurements that remain constant over the time period, and a time series of high-dimensional physiological signals st and structured
data wt measured at each time step. Here, each time step is a 1 hour window.

quence module maps these representations into a vector:
z = fτθ (z1, z2, . . . , zT ). In a supervised setting, a classifier
cψ maps z to a predicted label ŷ.

Trajectory self-supervised learning (SSL). Inspired by
recent work in SSL (Chen et al., 2020a;b; Bardes et al.,
2022a; Zhang et al., 2022), we consider a two-stage learn-
ing problem: pre-training (PT) followed by fine-tuning (FT).
We first pre-train the model fθ on an unlabelled dataset
of trajectories using some SSL algorithm, and then evalu-
ate the SSL method by FT this pre-trained model on a set
of downstream tasks and measuring performance on these
tasks. At FT time, different paradigms could be used – we
could initialize a classification head and then fine-tune the
whole model, or train a linear classifier on the frozen model.

To pre-train the model, we assume access to an unlabelled
PT dataset of NPT patient trajectories, DPT = {τ (n)}NPT

n=1.
To fine-tune the model, we assume access to a set of labelled
FT datasets – given K FT tasks indexed by k, we denote

each FT dataset as D(k)
FT = {(τ (n), y(n)}N

(k)
FT

n=1 , where y(n)

denotes the label for a trajectory τ (n).

3.2. Sequential Multi-Dimensional SSL

We propose a new method for SSL on trajectories – Se-
quential Multi-Dimensional SSL (SMD SSL), depicted in
Figure 2. Our approach builds on multi-view SSL like Sim-
CLR (Chen et al., 2020a) and VICReg (Bardes et al., 2022a),
since prior work has successfully used these strategies on
clinical data (Diamant et al., 2021; Kiyasseh et al., 2021;
Gopal et al., 2021; Vu et al., 2021; Oh et al., 2022).

SMD SSL uses a loss function with two terms – a global
loss, computed at the trajectory level, and a component loss,
computed at the individual signal level. We now describe
these two losses, and then present the overall objective.

3.2.1. GLOBAL LOSS

The global loss LG encourages the encoding model fθ to
embed similar trajectories to similar points in the represen-
tation space. We follow related work (Chen et al., 2020a)

and define a similar (or positive) pair of trajectories to be
those that are augmentations of the same base trajectory.

Given a trajectory-level augmentation function, the compu-
tation of the global loss proceeds as follows:

1. Sample a batch of trajectories from the PT dataset:
{τ (n)}Bn=1, where B is the batch size.

2. For each trajectory τ (n), generate two augmented views
of it: τ̃ (n) and τ̂ (n).

3. Pass the augmented views through the representation
model fθ and a projection head gϕ generating two sets
of projections: h̃(n) and ĥ(n).

4. Assemble projected pairs into two sets of matrices: Ĥ =
[ĥ(1), . . . , ĥ(B)], H̃ = [h̃(1), . . . , h̃(B)].

5. The global loss is equal to the trajectory self-supervised
loss LτSSL computed on these projections:

LG = LτSSL(Ĥ, H̃). (1)

The choice of the trajectory self-supervised loss LτSSL is a
design decision; one choice is the normalized temperature-
scaled cross-entropy loss (NT-Xent) as in SimCLR (Chen
et al., 2020a;b). Given all 2B positive pairs (hi, hj) as the
rows of the two matrices [Ĥ, H̃] and [H̃, Ĥ], we compute:

LτNT-Xent =
1

2B

2B∑
i=1

− log
exp(sim(hi, hj)/γ)∑2B

k=1 1[k ̸=i] exp(sim(hi, hk)/γ)
,

(2)

where sim(a, b) is cosine similarity and γ is the tempera-
ture hyperparameter. Another choice is the VICReg loss,
minimizing mean squared error between positive pairs, with
variance and covariance regularizers (Bardes et al., 2022a):

LτVICReg = λI(Ĥ, H̃) + µVar(Ĥ, H̃) + νCov(Ĥ, H̃),

(3)

where I() is the mean squared error, Var() is the variance
regularizer, Cov() is the covariance regularizer, and λ, µ,
and ν are hyperparameters. Flexibility in the form of the
loss function is beneficial since different applications might
benefit from different losses. In our experiments, we focus
on the NT-Xent and VICReg loss functions.
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Figure 2: Overview of Sequential Multi-Dimensional Self-Supervised Learning (SMD SSL), which uses losses at two levels to
encourage effective pre-training on complex time series. We start with a batch of trajectories, each denoted τ , consisting of a static vector
d (not shown for clarity) and a sequence of signals st and structured data wt (sequence of length 2 here). These data are augmented on a
per-modality and per-timestep basis (arrows show flow for the data at a single timestep) and passed through encoders fs

θ and fw,d
θ to

generate local embeddings of the signals and structured data at each timestep. The signal embeddings pass through a projection head gsϕ,
after which we compute a component SSL loss LC. Separately, the embedding of the entire trajectory (obtained by concatenating the
per-modality embeddings) is passed through a sequence model fτ

θ and a global projection head gϕ, on which we compute the global SSL
loss LG. The total loss LPT is a weighted sum of the component and global losses. SMD SSL can be instantiated with both contrastive and
non-contrastive losses – shown here is a contrastive framing (as in SimCLR) with explicit negative pairs.

3.2.2. COMPONENT LOSS

Pre-training with the global loss is a straightforward ap-
plication of SSL to trajectories. However, each trajectory
contains complex substructures (the high-frequency signals
st) and the global loss alone may not be sufficient to guide
the model to learn useful representations of these substruc-
tures. We hypothesize that incorporating a second loss term
on the individual signal level, the component loss LC, would
lead to learning richer representations of the signals.

Given a signal augmentation function, we compute the com-
ponent loss as follows:

1. Sample a batch of trajectories from the PT dataset:
{τ (n)}Bn=1, where B is the batch size.

2. Generate two augmented views of each signal in each
trajectory. For a given trajectory τ (n), let the two aug-
mented sets of signals be: {s̃(n)t }Tt=1 and {ŝ(n)t }Tt=1.

3. Pass the augmented views through the signal encoder
model fsθ and a signal projection head gsϕ generating two

sets of projections: {h̃(n)
t }Tt=1 and {ĥ(n)

t }Tt=1.
4. Assemble these pairs of projections into pairs on a

per-timestep basis: Ŝt = [ĥ
(1)
t , . . . , ĥ

(B)
t ], S̃t =

[h̃
(1)
t , . . . , h̃

(B)
t ],∀t = 1, . . . , T .

5. The component loss is equal to the signal self-supervised

loss LsSSL averaged over timesteps:

LC =
1

T

T∑
t=1

LsSSL(Ŝt, S̃t). (4)

As with the global loss, the form of the signal SSL loss
used is a design decision. The intuition for computing the
signal SSL loss separately at each timestep is that nearby
timesteps in a trajectory can be very similar. Particularly
if we use a contrastive loss such as NT-Xent, we do not
want these nearby timesteps to serve as negative examples
in the contrastive loss. Separating out the computation over
timesteps addresses this issue.

3.2.3. OVERALL OBJECTIVE

The overall objective used at PT is:

LPT = αLG + βLC. (5)

The hyperparameters α and β control the contributions of
the global and component losses. Fixing α = 0 is SSL
on a signal-level alone (only PT the signal encoder) and
fixing β = 0 is SSL on the overall trajectory level alone;
we evaluate both in our experiments, finding that combining
the two losses is beneficial to performance. In Appendix
B.3, we study the evolution of the two losses over SMD SSL
training, which provides intuition as to the effect of each
term during pre-training.
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3.3. Augmentation Functions

SMD SSL requires augmentations for trajectories and sig-
nals in order to compute the global and component losses
respectively. We now describe these.

Trajectory augmentation. We form an augmented trajec-
tory by separately augmenting each of the data modalities
within the trajectory, using the following approach for each
data type (further details in Appendix A):

• High-frequency signal s: For each signal in the trajec-
tory of length T , we form a pair of augmented views by
first splitting the signal into two disjoint segments (e.g.,
taking the first 10 seconds as one view, and the second 10
seconds as the second view) and then applying random
masking and noise addition as augmentations to each view
independently, similar to the approach used in CLOCS
(Kiyasseh et al., 2021). The intuition is that two segments
of a signal that are close in time should encode similar
physiology, and can therefore be considered paired views.
Random masking and noise addition are commonly used
as time-series augmentations (Gopal et al., 2021; Zhang
et al., 2022; Raghu et al., 2022; Iwana & Uchida, 2021).

• Structured-time series data w: The tabular data se-
quence forms a T ×M matrix over all timesteps of the
trajectory. Following prior work (Yèche et al., 2021),
we apply two data augmentation strategies to this matrix:
Gaussian noise addition and history cutout.

• Static features d: Following Yèche et al. (2021), we
use random dropout and noise addition. Other corruption
strategies (e.g., Bahri et al. (2021)), were found to be less
effective, potentially due being too strong (also seen in
Levin et al. (2022)).

We note that our approach of forming augmented trajectories
by independently transforming each individual data type
is straightforward, but not necessarily optimal. Exploring
other strategies for generating multiple views of trajectory
data is an important direction of future work.

Signal augmentation. For computational efficiency, we
re-use the augmentated signals already generated during
the trajectory-level augmentation when computing the com-
ponent loss. However, additional/different augmentations
could be applied on the signal level.

3.4. Broader Applications of SMD SSL

We have instantiated SMD SSL for a setting in which multi-
modal trajectories consists of a sequence of structured data
and high-dimensional signals. More generally, our approach
is valuable in any setting where we have sequences of high-
dimensional data – the two-level loss function encourages
representation learning on both an individual signal level
and an overall sequence level. For example, SMD SSL
could be useful in modeling sequence of medical images

for a patient taken over time. The component loss encour-
ages learning rich embeddings of individual images, and the
global loss encourages learning temporal trends.

4. Experiments
In this section, we evaluate Sequential Multi-Dimensional
Self-Supervised Learning (SMD SSL) on two clinical
datasets 1. We begin by describing the datasets, tasks, and
experimental setup. We then evaluate SMD SSL and base-
lines in two settings: unimodal, with trajectories that contain
only a sequence of physiological signals; and multimodal,
with trajectories containing both signals and structured data.
We find that SMD SSL performs strongly in both settings.
We also analyze SMD SSL’s sensitivity to the component
loss weight and its learned representations.

4.1. Datasets and Tasks

We consider two clinical datasets (Table 1):

• Dataset 1 is a private dataset from Massachusetts General
Hospital (MGH), consisting of 9605 patients with a prior
diagnosis of heart failure.

• Dataset 2 is a public dataset derived from the commonly
used MIMIC-III clinical database (Johnson et al., 2016;
Goldberger et al., 2000) and its associated database of
physiological signals (Moody et al., 2020). We use the
preprocessing pipeline introduced in Harutyunyan et al.
(2019) to form our cohort of 5689 patients and extract the
structured data features.

Constructing PT and FT sets. Each dataset consists of
a number of patient hospital visits. We resample each pa-
tient’s hospital visit at hourly resolution, and each hour of a
patient’s stay represents a single timestep in our trajectory
abstraction. For simplicity, we fix the length of trajecto-
ries to be 8 elements (letting a trajectory correspond to a
common shift length of 8 hours).

To generate PT trajectories from these resampled visits, we
first split each visit into non-overlapping contiguous 12 hour
blocks. A PT trajectory is formed by first sampling a 12
hour block, and then selecting 8 contiguous timesteps from
that block (with the starting timestep selected randomly).
We discuss the implications of this (particularly relating to
negative samples in contrastive losses) in Appendix B.1.

To generate FT trajectories, we use a sliding window to
select contiguous 8 hour blocks at 1 hour increments from
each visit. Each of these contiguous 8 hour blocks is a
trajectory in the FT dataset. The trajectory labels are formed
based on the specific task, as described below.

1Code at https://github.com/aniruddhraghu/
smd-ssl.
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Table 1: Dataset Statistics.

Dataset 1 Dataset 2

Task # Patients # Trajectories Prevalence # Patients # Trajectories Prevalence

Pre-training 8888 43858 N/A 5022 26615 N/A
Elevated mPAP 2025 48511 77.5% 500 14957 87.9%
24hr Mortality 9605 57758 1.4% 5689 318306 2.3%

Fine-tuning tasks. We consider two predictive tasks:

• Elevated mPAP: Each hour, detect whether a patient’s
mean Pulmonary Arterial Pressure (mPAP) is abnormally
high. This task is of clinical interest since the mPAP is
typically measured via an invasive study, and so inferring
whether it is abnormal using minimally invasive signals
(i.e., the ECG, labs, and vitals signs) is valuable. Prior
work (Schlesinger et al., 2022; Raghu et al., 2023) studied
similar tasks of predicting hemodynamic variables from
the 12-lead ECG, but not in the context of online trajectory
data, as we do here.

• 24hr Mortality: Each hour, predict whether the patient is
going to die in the next 24 hours. This task is commonly
used to evaluate predictive models for ICU time series data
(McDermott et al., 2021; Yèche et al., 2021) – our goal
with studying this task is to understand how our approach
performs when compared to other established methods.
In Dataset 2, this task is named ‘Decompensation’ in the
preprocessing pipeline from Harutyunyan et al. (2019);
we refer to it at 24hr mortality here.

Trajectory features and preprocessing. The trajectories in
PT and FT sets consist of static features d and a time-series
of structured data and physiological signals {(wt, st)}Tt=1,
as presented in Section 3.1. The static features d contain
information on infrequently measured vitals signs and lab
values; d ∈ R9 in Dataset 1 and d ∈ R38 in Dataset 2.
At each timestep, wt captures summary statistics related
to regularly measured vitals signs within a 1 hour window;
wt ∈ R30 in Dataset 1 and wt ∈ R13 in Dataset 2. st is a
10 second electrocardiogram (ECG) signal extracted from
a longer signal measured within each 1 hour window; in
Dataset 1, st ∈ R4×2400 is a 240 Hz 4-channel ECG, and in
Dataset 2, st ∈ R1×1250 is a 125 Hz 1-channel ECG.

Missing structured data are forward-fill imputed if part of a
time series and otherwise imputed with the mean over the
training dataset. Missing signals are represented with zeros.
Any trajectories that have more than 1 timestep with a miss-
ing signal are excluded. Further dataset and preprocessing
details are in the appendix.

4.2. Experimental Setup

Dataset splits. We split Dataset 1 on a per-patient level into
80/20 development/test sets and use 20% of the development
set as a validation set. For Dataset 2, we use the predefined
development/test split defined in the preprocessing pipeline
(Harutyunyan et al., 2019), and use 20% of the development
set (splitting on a per-patient basis) as a validation set.

Model architecture. Recall that the encoder fθ has three
components: we implement the structured features encoder
as a 2-layer MLP, the signals encoder as a 1-D ResNet18
CNN (He et al., 2016), and the sequence model as a 4-layer
GRU. We use a 2-layer MLP for the projection head gϕ. The
model architecture is described more fully in Appendix B.2.

Training setup. We conduct pre-training for 15 epochs,
using a batch size of 128, with the Adam optimizer (Kingma
& Ba, 2014). We found that model performance did not
improve with longer pre-training times (Appendix B.3).

At fine-tuning time, we consider two evaluation strategies:

1. Linear evaluation: train a linear classifier on the frozen
representations from fθ (Chen et al., 2020a).

2. Full FT: initialize a new linear layer after fθ and fine-
tune the entire model for a maximum of 10 epochs with
Adam (performance did not improve after this point),
with early stopping based on validation AUROC.

For each method and task, we report the test set AUROC
from the evaluation strategy that obtains the best validation
set AUROC. We adopt this approach since our goal is de-
termine to which self-supervised pre-training approach is
best – in order to do so fairly, we compare results under the
evaluation strategy that obtains the highest performance. To
obtain error bars, we use bootstrapping: we sample with
replacement 100 bootstraps from the testing dataset, and
report the 95% confidence interval in AUROC over these
bootstraps. Since the mortality task has low prevalence, we
additionally check trends in AUPRC in Appendix B.3.

Unimodal and Multimodal evaluation. SMD SSL is
generally applicable when we have sequence-structured
data where elements of the sequence are themselves high-
dimensional. We consider two instantiations of such se-
quences here: (1) the unimodal setting, where the input
trajectory only contains the signals sequence of the input,
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Table 2: Pre-training with the SMD SSL objective improves performance on both datasets in the unimodal setting. Mean and
95% confidence interval of AUROC on FT tasks. We observe that PT methods outperform not doing PT, and training with the SMD SSL
(component and global) losses boosts performance the most.

(a) Results on Dataset 1.

Elevated mPAP 24hr Mortality

RandInit 65.0 ± 0.1 56.1 ± 0.6
SimCLR (global) 68.1 ± 0.1 66.7 ± 0.5
VICReg (global) 66.6 ± 0.1 64.9 ± 0.5
SimSiam (global) 63.8 ± 0.1 50.6 ± 0.6
SimCLR (component) 67.5 ± 0.1 71.7 ± 0.5
VICReg (component) 68.7 ± 0.1 63.5 ± 0.4
SimSiam (component) 64.2 ± 0.1 54.3 ± 0.5

SMD SSL (SimCLR) 69.9 ± 0.1 72.3 ± 0.4
SMD SSL (VICReg) 67.6 ± 0.1 74.6 ± 0.5

(b) Results on Dataset 2.

Elevated mPAP 24hr Mortality

RandInit 63.4 ± 0.4 54.6 ± 0.2
SimCLR (global) 65.9 ± 0.4 56.6 ± 0.2
VICReg (global) 66.7 ± 0.4 53.6 ± 0.2
SimSiam (global) 61.9 ± 0.4 61.1 ± 0.2
SimCLR (component) 65.7 ± 0.4 61.1 ± 0.2
VICReg (component) 66.7 ± 0.4 63.1 ± 0.2
SimSiam (component) 65.9 ± 0.4 50.3 ± 0.2

SMD SSL (SimCLR) 67.0 ± 0.4 65.9 ± 0.2
SMD SSL (VICReg) 66.6 ± 0.4 58.5 ± 0.2

τ = {st}Tt=1; (2) the full multimodal setting, where the in-
put trajectory contains the full input sequence of structured
data and signals, τ = (d, {(wt, st)}Tt=1).

Baselines and SMD SSL variations. Existing methods for
SSL on clinical data are not exactly applicable, since they do
not study pre-training pipelines for multimodal and multi-
dimensional time series; e.g., Neighbourhood Contrastive
Learning (NCL) (Yèche et al., 2021) is primarily designed
for structured data time series alone, and CLOCS (Kiyasseh
et al., 2021) and SACL (Cheng et al., 2020) operate on
single physiological waveforms (rather than sequences of
waveforms).

As a result, we focus in the main paper on evaluating gen-
eral SSL methods as baselines (with further baselines in
Appendix B.3), varying whether we use the component
and/or global loss, in both unimodal and multimodal set-
tings. Our goal is to understand whether the two-level loss
formulation boosts performance. The full set of baselines is
as follows (further details in Appendix B.2):

• RandInit: A standard baseline: train a model from ran-
dom initialization on each FT task.

• SimCLR (global) (Chen et al., 2020a): Pre-train using
the NT-Xent global loss alone. This is SimCLR PT on the
trajectory level, setting α = 1, β = 0 in Eqn. 5.

• VICReg (global) (Bardes et al., 2022a): Pre-train using
the VICReg global loss alone. This is VICReg PT on the
trajectory level, setting α = 1, β = 0 in Eqn. 5.

• SimSiam (global) (Chen & He, 2021): Pre-train using
SimSiam at a global level. This is SimSiam PT on the
trajectory level.

• SimCLR (component): Pre-train using the NT-Xent com-
ponent loss alone (α = 0, β = 1 in Eqn. 5).

• VICReg (component): Pre-train using the VICReg com-
ponent loss alone(α = 0, β = 1 in Eqn. 5).

• SimSiam (component): Pre-train using SimSiam at com-

ponent level.

We consider two variations of SMD SSL:

• SMD SSL (SimCLR): Pre-train using SMD SSL with
the NT-Xent loss (Eqns. 2 and 5), fixing the global loss
weight α = 1 and tuning the component loss weight β.

• SMD SSL (VICReg): Pre-train using SMD SSL with
the VICReg loss (Eqns. 3 and 5), fixing the global loss
weight α = 1 and tuning the component loss weight β.

Hyperparameters. There are various hyperparameters to
tune, such as learning rates and loss weighting for VICReg
and SMD SSL. Evaluating many hyperparameters is compu-
tationally expensive (involves doing both PT and FT runs),
so we conduct a reduced search on a subset of the hyperpa-
rameters. We include full details in Appendix B.2.

4.3. Results

4.3.1. UNIMODAL EVALUATION

Table 2 shows results in the unimodal setting, where the
input trajectories consist only of the signals. We highlight
three key takeaways from these results:

1. Pre-training (PT) helps performance. In the unimodal
setting, PT (particularly SimCLR or VICReg variants in
Tables 2a and 2b) almost always improve performance
over not doing any PT (RandInit in Tables 2a and 2b).
This result is expected, since we would expect that given
the complex input space, a PT phase for the highly-
parameterized CNN encoder and GRU should condition
the model better for the downstream tasks, given the
limited amount of labelled data on these tasks.

2. SMD SSL obtains the best performance. On both
datasets, we observe that a SMD SSL method does best,
suggesting the utility of a two-level loss, which encour-
ages the learning of informative representations on both
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Table 3: Pre-training with the SMD SSL objective improves performance in three settings in a multimodal evaluation. Mean and
95% confidence interval of AUROC on FT tasks. In all settings except 24hr Mortality on Dataset 1, we observe that SMD SSL obtains the
best performance. The 24 hour mortality task on Dataset 1 appears to benefit little from incorporating the high-dimensional signals, which
could explain why SMD SSL does not improve performance here.

(a) Results on Dataset 1.

Elevated mPAP 24hr Mortality

RandInit (signals) 65.0 ± 0.1 56.1 ± 0.6
SSL (signals) 69.9 ± 0.1 74.6 ± 0.5
RandInit (structured) 65.3 ± 0.1 79.1 ± 0.4
SSL (structured) 66.7 ± 0.1 79.0 ± 0.4

RandInit 69.1 ± 0.1 79.0 ± 0.4
SimCLR (global) 69.8 ± 0.1 76.4 ± 0.5
VICReg (global) 69.4 ± 0.1 78.0 ± 0.4
SimSiam (global) 69.6 ± 0.1 78.4 ± 0.4
SimCLR (component) 71.4 ± 0.1 78.6 ± 0.4
VICReg (component) 64.0 ± 0.1 74.0 ± 0.5
SimSiam (component) 68.4 ± 0.1 79.0 ± 0.4

SMD SSL (SimCLR) 72.3 ± 0.1 77.4 ± 0.4
SMD SSL (VICReg) 70.3 ± 0.1 77.0 ± 0.4

(b) Results on Dataset 2.

Elevated mPAP 24hr Mortality

RandInit (signals) 63.4 ± 0.4 54.6 ± 0.2
SSL (signals) 67.0 ± 0.4 65.9 ± 0.2
RandInit (structured) 65.3 ± 0.3 90.0 ± 0.1
SSL (structured) 68.3 ± 0.3 89.3 ± 0.1

RandInit 65.3 ± 0.3 87.8 ± 0.1
SimCLR (global) 63.7 ± 0.4 86.6 ± 0.1
VICReg (global) 70.4 ± 0.4 87.8 ± 0.1
SimSiam (global) 60.6 ± 0.3 90.4 ± 0.1
SimCLR (component) 59.7 ± 0.4 89.8 ± 0.1
VICReg (component) 67.1 ± 0.4 84.4 ± 0.1
SimSiam (component) 67.4 ± 0.4 90.6 ± 0.1

SMD SSL (SimCLR) 69.9 ± 0.3 88.1 ± 0.1
SMD SSL (VICReg) 71.6 ± 0.3 90.7 ± 0.1

a signal-level and a sequence-level.
3. SMD SSL vs single-level SSL. When using SimCLR,

we find that SMD SSL consistently improves on a
component-only or global-only SimCLR model. With
VICReg, improvements are less consistent, and the
component-only VICReg variation often performs the
best. This may be because VICReg has many loss weight-
ing terms, and these were not jointly tuned with the
component loss weight in SMD SSL. A more thorough
hyperparameter search, perhaps using efficient gradient-
based methods (Raghu et al., 2021), might improve per-
formance of SMD SSL (VICReg).

4.3.2. MULTIMODAL EVALUATION

Table 3 shows results in the multimodal setting, where the
input trajectories consist of both signals and structured data.
In addition to the aforementioned baselines, we also include
results from RandInit and SSL methods trained on only
signals and on only structured data. We highlight some key
takeaways from these results:

1. The effect of multimodal data is task-specific. Incor-
porating both the signals and structured data leads to im-
provements in the Elevated mPAP task on both datasets
(particularly with SMD SSL), but has less significant ef-
fects in the 24hr Mortality task. This is likely because the
structured data in their raw (relatively low-dimensional)
form are highly predictive of mortality, and so there is lit-
tle benefit to be gained from PT. This is seen clearly when
comparing the performance of RandInit (structured) and
SSL (structured). This phenomenon has been observed

in prior work (McDermott et al., 2021).
2. SMD SSL performs effectively. On the Elevated mPAP

task (both datasets) and 24hr mortality task (Dataset 2),
SMD SSL, either with the SimCLR or VICReg loss func-
tion, obtains the best performance among all methods.

3. SMD SSL vs single-level SSL. When compared to
single-level SSL, we observe improvements when us-
ing SMD SSL on Elevated mPAP for both SimCLR and
VICReg. However, this is not the case for 24hr Mortality
– for example, component-only SSL with SimCLR on this
task performs better than SMD SSL. This may arise be-
cause structured data PT does not improve performance
significantly, and so it is preferable to only pre-train the
signals encoder rather than the entire model.

4.3.3. FURTHER RESULTS

Additional evaluation. In Appendix B.3, we present three
additional experiments: (1) comparing SMD SSL to other
global-only baselines using different loss functions (NCL,
CLOCS, and SACL), finding that SMD SSL improves on
these methods; (2) comparing linear evaluation to full FT for
different methods, finding that full FT improves on linear
evaluation; and (3) studying the effect of longer PT times,
finding that performance does not improve.

Component loss weight sensitivity. Considering SMD SSL
(SimCLR) in the unimodal setting, we fix the global loss
weight α = 1.0 and vary the component loss weight β for
the Elevated mPAP task. The validation set AUROC results
are shown in Figure 3. The optimal value of the component
loss weight is higher for Dataset 1, perhaps because the
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Figure 3: Studying sensitivity to the component loss weight.
We find a higher optimal loss weight on Dataset 1 compared to
Dataset 2, possibly due to Dataset 1 having more complex signals.
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Figure 4: Learned representations from SMD SSL are simi-
lar to both component-only and global-only SSL. Comparing
learned representations of the signals using different SimCLR-
based SSL strategies – SMD SSL, Global, and Component, using
Centered Kernel Alignment (CKA). Global and Component SSL
show low representational similarity (right-most bar) but SMD
SSL shows higher similarity with both individually, suggesting
that learned representations in SMD SSL encode aspects of both
component and global SSL.

signals in Dataset 1 are more complex than the signals in
Dataset 2 (higher sampling rate, multiple channels).

Representational similarity analysis. Using Centered Ker-
nel Alignment (CKA) (Kornblith et al., 2019), we study the
representations learned by the signal encoder on Dataset 2
under different SSL methods. Our findings are: (1) represen-
tations from SMD SSL encode aspects of both component-
only SSL and global-only SSL (illustrated in Figure 4); (2)
the component loss appears to have more effect in the ear-
lier layers of the signal encoder, whereas the global loss has
more effect in later layers (details in Appendix B.3).

5. Scope and Limitations
Intended use-case. Our method is most appropriate in set-
tings where we have multimodal trajectory data for patients,
i.e., both structured data and ECGs are available. This use
case is driven by our target application of monitoring pa-
tients with cardiovascular disease (Dataset 1), where the
majority of patients have structured data and ECGs. In
datasets where a small proportion of patients have multi-
modal data (such as in Dataset 2), it may be preferable to

use other unimodal SSL approaches so that patients without
multimodal data can still be included in model development.
Although Dataset 2 does not exactly match our intended use
case, we still considered it because it is publicly available
and well-studied in related work.

Choice of data augmentations. SMD SSL uses data aug-
mentations to generate different views. Our main contri-
bution is in our two-level loss function, so we did not in-
vestigate novel augmentation strategies, instead leveraging
existing effective data augmentations for clinical data. Our
framework could equally apply with different augmentations
or multiview generation approaches.

Additional data modalities. Our experiments focused on
clinical time series consisting of a sequence of structured
data and high-dimensional physiological signals; we did
not include predictive information that may be available
from other modalities, such as medical imaging. SMD SSL
could be readily extended to this scenario, and it could be a
valuable direction to explore.

6. Conclusion
In this work, we outlined a self-supervised learning (SSL)
strategy for complex clinical time series where individual
timesteps in the sequence also contain high-dimensional
information, such as physiological signals. Our method,
Sequential Multi-Dimensional SSL (SMD SSL), encour-
ages effective pre-training on both a component level (level
of individual signals) and a global level (level of the en-
tire sequence). In experiments on two clinical datasets,
pre-training with SMD SSL and then fine-tuning improves
performance on downstream tasks compared to baselines.
Future work could extend SMD SSL’s component level
loss into multiple levels by adopting frameworks from re-
cent work (Tonekaboni et al., 2022; Bardes et al., 2022b).
This could induce more structure in the pre-training phase,
potentially improving performance.

Social impact. Our contribution in this work is mostly
methodological. However, given that our application do-
main is in medicine, a high-risk setting, our method must be
thoroughly validated in larger retrospective and prospective
studies before any real-world use. This is to understand any
potential risks from its use in practice.

Acknowledgements
This work was supported in part by funds from Quanta Com-
puter, Inc. The authors thank the members of the Clinical
and Applied Machine Learning group at MIT, the mem-
bers of the Computational Cardiovascular Research Group
at MIT, Paige Stockwell, Neel Dey, and the reviewers for
helpful feedback and assistance with the work.

9



Sequential Multi-Dimensional Self-Supervised Learning for Clinical Time Series

References
Bahri, D., Jiang, H., Tay, Y., and Metzler, D. SCARF: Self-

Supervised Contrastive Learning using Random Feature
Corruption. In International Conference on Learning
Representations, 2021.

Bardes, A., Ponce, J., and LeCun, Y. VICReg:
Variance-Invariance-Covariance Regularization For Self-
Supervised Learning. In ICLR, 2022a.

Bardes, A., Ponce, J., and LeCun, Y. VICRegL: Self-
Supervised Learning of Local Visual Features. In
NeurIPS, 2022b.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A
simple framework for contrastive learning of visual rep-
resentations. arXiv preprint arXiv:2002.05709, 2020a.

Chen, T., Kornblith, S., Swersky, K., Norouzi, M., and
Hinton, G. Big self-supervised models are strong semi-
supervised learners. arXiv preprint arXiv:2006.10029,
2020b.

Chen, X. and He, K. Exploring simple siamese represen-
tation learning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp.
15750–15758, 2021.

Chen, X., Fan, H., Girshick, R., and He, K. Improved
baselines with momentum contrastive learning. arXiv
preprint arXiv:2003.04297, 2020c.

Cheng, J. Y., Goh, H., Dogrusoz, K., Tuzel, O., and Azemi,
E. Subject-aware contrastive learning for biosignals.
arXiv preprint arXiv:2007.04871, 2020.

Diamant, N., Reinertsen, E., Song, S., Aguirre, A., Stultz,
C., and Batra, P. Patient contrastive learning: a perfor-
mant, expressive, and practical approach to ecg modeling.
2021.

Goldberger, A., Amaral, L. A., Glass, L., Hausdorff, J. M.,
Ivanov, P., Mark, R., Mietus, J., Moody, G., Peng, C., and
Stanley, H. PhysioBank, PhysioToolkit, and PhysioNet:
components of a new research resource for complex phys-
iologic signals. Circulation, 101 23:E215–20, 2000.

Gopal, B., Han, R. W., Raghupathi, G., Ng, A. Y., Tison,
G. H., and Rajpurkar, P. 3KG: Contrastive Learning of 12-
Lead Electrocardiograms using Physiologically-Inspired
Augmentations. 2021.
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A. Augmentation Functions for Sequential Multi-Dimensional Self-Supervised Learning
In this section, we specify more details about augmentation functions used in our method.

A.1. Augmentation Details

We form an augmented trajectory by separately augmenting each of the data modalities within the trajectory, using the
following approach for each data type.

High-frequency signal s: For each signal in the trajectory of length T , we form a pair of augmented views by first splitting
the signal into two disjoint segments and then applying random masking and noise addition as augmentations to each view
independently, similar to the approach used in CLOCS (Kiyasseh et al., 2021). The intuition is that two segments of a signal
that are close in time should encode similar physiology, and can therefore be considered paired views. Random masking and
noise addition are commonly used as time-series augmentations (Gopal et al., 2021; Zhang et al., 2022; Raghu et al., 2022;
Iwana & Uchida, 2021). In more detail:

• Signal splitting: We split a raw signal of 30 seconds into two disjoint 10 second segments for the first phase of the
augmentation process.

• Random signal masking: we choose a random 25% of the signal to set to zero – this was found to overall be more
effective than masking proportions of 10% and 50%.

• Noise addition: we add Gaussian noise with standard deviation 0.25 to the signal.

Structured-time series data w: The tabular data sequence forms a T × M matrix over all timesteps of the trajectory.
Following prior work (Yèche et al., 2021), we apply two data augmentation strategies to this matrix: history cutout and
noise addition. In more detail:

• History cutout: For each feature, with probability 0.25, randomly set 25% of the timesteps in that timeseries to be
missing. Forward fill impute this value. This mirrors the imputation strategy used in our raw data. Unlike in Yèche et al.
(2021), we use forward filling rather than replacing with zeros, because our time series are much shorter (8 timesteps
rather than 48) and therefore replacing with zeros destroyed too much information. Using more aggressive cutout
augmentations was found to worsen performance, likely because they destroyed too much information in the data. This
is in general a challenge when using relatively short time series.

• Noise addition: For each feature, add Gaussian noise with standard deviation equal to 10% of the standard deviation of
that feature’s values in the training set.

Static features d: Following Yèche et al. (2021), we use random dropout and noise addition. Other corruption strategies
(e.g., Bahri et al. (2021)), were found to be less effective, potentially due being too strong (also seen in Levin et al. (2022)).
We randomly drop out 25% of the features (impute with the mean value) and add add Gaussian noise with standard deviation
equal to 10% of the standard deviation of that feature’s values in the training set.

A.2. Other Augmentations

Early on in our experiments, we investigated other augmentation functions such as channel dropout for the structured
time-series data (Yèche et al., 2021) and more complex signal augmentations, such as random lead masking (Oh et al.,
2022). However, we found the improvements from these to be inconsistent and the hyperparameters to be difficult to tune,
so we opted for this more focused set of augmentations.

B. Further Experimental Details
In this section, we provide further details about our experiments. We first describe more about the datasets and data
preprocessing. We then provide further information on the model architecture for our method and baselines, and discuss our
hyperparameter search and settings. We then provide additional quantitative results and representational similarity analysis.

B.1. Dataset Details

As discussed in the main text, we consider two clinical datasets in our experiments:

• Dataset 1 is a private dataset derived from the electronic health record (EHR) of the Massachusetts General Hospital
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Table 4: Dataset statistics.

Dataset 1 Dataset 2

Task # Patients # Trajectories # Patients # Trajectories

Pre-Training 8888 43858 5022 26615
Elevated mPAP 2025 48511 500 14957
24hr mortality 9605 57758 5689 318306

(MGH), consisting of a cohort of patients with a prior diagnosis of heart failure. For each patient, we have structured
data from the EHR and physiological signals measured by a bedside telemetry monitor. These signals include vitals
signs such as heart rate (HR) and oxygen saturation (SpO2), measured at a low frequency (0.5 Hz), and waveforms
such as the electrocardiogram (ECG), measured at a high frequency (240 Hz).
This dataset was obtained with IRB approval (protocol number 2020P003053). Since the dataset has some identifiable
information, all computations are performed on a server that sits behind the hospital firewall. Due to restrictions
surrounding its use, this dataset cannot be released at this stage.

• Dataset 2 is a public dataset derived from the commonly used MIMIC-III clinical database (Johnson et al., 2016;
Goldberger et al., 2000) and its associated database of physiological signals (Moody et al., 2020). The clinical database
contains structured data over a patient’s stay, and the physiological signals database contains vitals signs (HR, SpO2)
and waveforms (ECG) measured by a bedside telemetry monitor.
We use the widely adopted preprocessing pipeline introduced in Harutyunyan et al. (2019) to form the specific cohort
and extract the structured data features used in modeling. This pipeline also provides the functionality to create
development and testing sets for the different downstream tasks we consider.
The clinical database is available on PhysioNet (Goldberger et al., 2000) to credentialed users. The database of
physiological signals is open-access on PhysioNet.

Constructing PT and FT sets. As outlined in Section 4.1, both datasets consist of a number of hospital visits, which we
resample at hourly resolution. We extract 30 seconds of the high-dimensional physiological signals at each hour marker
from the raw data store.

To generate PT trajectories from these resampled visits, we first split each visit into non-overlapping contiguous 12 hour
blocks. A PT trajectory is formed by first sampling a 12 hour block from all the extracted blocks, and then selecting 8
contiguous timesteps from the sampled block (with the starting timestep selected randomly). This trajectory construction
strategy has implications in terms of the negative samples in both losses:

• Global loss. Consider a sampled anchor trajectory from a given patient i, timesteps 1− 8. When computing the global
loss, the negative pairs for that anchor trajectory are either: (1) a trajectory from a different patient j ̸= i; or (2) or a
trajectory from that same patient i starting after timestep 8.

• Component loss. When computing the component loss, recall that for an anchor signal, other signals from the same
trajectory are not used as negatives, in order to minimize correlation between the anchor and negatives. Therefore,
negative pairs for an anchor signal are either signals from a different patient, or signals from that same patient from
further off in time.

This strategy of sampling trajectories that do not overlap was applied to ensure that we do not use highly correlated
trajectories/signals as negatives. We note that this strategy is not necessarily optimal, and that different approaches could be
used for both the component and global loss terms. Our framework could easily be used with these other sampling strategies
and loss formulations.

To generate FT sets, we first use a sliding window to select contiguous 8 hour blocks at 1 hour increments from each visit.
Each of these contiguous 8 hour blocks becomes a trajectory in the FT dataset. The trajectory labels are formed based on the
nature of the specific task. For example, for the 24 hour mortality task, the label is based on whether the patient dies within
24 hours of the ending time of that trajectory.

Trajectory Features and Preprocessing. The trajectories in PT and FT sets consist of static features d and a time-series of
structured data and physiological signals {(wt, st)}Tt=1, as presented in Section 3.1.

In Dataset 1, d ∈ R9 contains the following features from the EHR: BUN, Chloride, CO2, Creatinine, Glucose, Potassium,
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Sodium, Systolic Blood Pressure, Diastolic Blood Pressure. We take the average if multiple values are recorded in each time
window. wt ∈ R30 has mean, standard deviation, maximum, and minimum of heart rate and SpO2 recorded within each
hour window (this is sourced from the telemetry monitor), and also 22 heart rate variability features from the ECG recorded
by the telemetry monitor during each time window. st ∈ R4×2400 is a 10 second 4-channel ECG measured at 240 Hz,
containing leads I, II, III, and V1, extracted from a longer ECG measured by the telemetry monitor during that hour window.

In Dataset 2, d ∈ R38 contains the following features from the EHR: FiO2, Glucose, Temperature, pH, and one-hot encoded
Glasgow Coma Scale measures, following Harutyunyan et al. (2019). wt ∈ R13 contains the following information from
the physiological signals database: mean, standard deviation, maximum, and minimum of heart rate and SpO2 recorded
within each hour window from the telemetry monitor, diastolic blood pressure, systolic blood pressure, mean blood pressure,
heart rate, and SpO2 from the EHR. st ∈ R1×1250 is a 10 second 1-channel ECG measured at 125 Hz, containing lead II,
extracted from a longer ECG measured by the telemetry monitor during that hour window.

Missing structured data are forward-fill imputed where possible (for example, if part of a time series) and otherwise imputed
with the mean over the training dataset. Missing signals are represented with zeros. We drop any trajectories that have more
than 1 timestep with a missing signal. For Dataset 2, we note that by dropping any trajectory with more than 1 timestep with
a missing signal, we have a smaller dataset than in Harutyunyan et al. (2019).

Forming labels. The FT labels for the Elevated mPAP task are formed based on the PA pressure waveform recorded
for patients (when available) – if the mean pressure is over 20 mmHg over a 1 minute period at the final timestep of the
trajectory, we assign a binary label of 1, and else 0. For the 24 hour mortality task, we use the recorded time of death
recorded in the EHR and if it is less than 24 hours from the end time of the trajectory, we assign a label of 1, and otherwise
0. This is as was done in Harutyunyan et al. (2019).

B.2. Experimental Setup

Figure 5: Model architecture used in our experiments. We show the architecture used to model trajectories in a scenario where the
input trajectory has 3 timesteps.

B.2.1. MODEL ARCHITECTURE

We use the following architecture for the encoder and projection head for all methods:

• Encoder: Each signal st in the trajectory is passed through a ResNet-styled 1-D CNN encoder with global average
pooling. We base our CNN encoder model off a ResNet-18 architecture with kernel size of 15. Following global
average pooling over the temporal dimension, each signal is projected into 128 dimensions with a linear layer.
The structured data wt at each timestep is embedded with a 2-layer fully-connected network with 128 hidden units and
ReLU activation at each layer, and this embedding is then concatenated with the signal embedding. The static features
d are passed through a different 2-layer fully-connected network with 128 hidden units and ReLU activation at each
layer, and then concatenated with the embeddings of the signal and structured data timeseries at each timestep. The
resulting sequence of vectors is passed into a 4-hidden layer GRU with hidden size of 384, with the last hidden state of
the GRU being used as the overall trajectory embedding vector.
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• Projection heads: The two projection heads for the signal and the trajectory are both 2-layer fully connected networks
with batch normalization and ReLU activation with 2048 hidden units. The trajectory projection head takes the last
hidden state of the GRU as input, and the signal projection head takes the output of the signals encoder as the input.
When using the NT-Xent loss, the resulting projection is normalized (Chen et al., 2020a) before computing the NT-Xent
loss over the batch.

Figure 5 shows the model architecture in a scenario in which the input trajectory has 3 timesteps.

B.2.2. SSL METHODS: IMPLEMENTATION

We describe the implementation of the SimCLR and VICReg methods in the main paper, Section 3. For SimSiam, we follow
the setup in Chen & He (2021) and use a predictor network in the trainable branch, and minimize cosine distance between
the output of the predictor network in the trainable branch and the output of the projection head in the stop-gradient branch.

For simplicity, we let this predictor network have the same architecture as the projection head – a two layer fully connected
network with batch normalization and ReLU activation, with 2048 hidden units. We did not find a bottleneck structure to
improve performance in initial investigations, but further experiments may be warranted here.

B.2.3. LOSS, ARCHITECTURE, AND OPTIMIZATION HYPERPARAMETERS

There are various hyperparameters to tune, such as learning rates, loss weighting for VICReg loss terms, and loss weighting
for SMD SSL. Evaluating many hyperparameter settings is very computationally expensive (since it entails doing both a PT
and FT run), so we conduct a reduced search on a subset of the hyperparameters focusing only on the Elevated mPAP task in
the unimodal setting, optimizing validation AUROC.

In our hyperparameter search, we use the following setup:

• Learning rate: tune on a randomly initialized model for the elevated mPAP task on each dataset, and then use this
learning rate for all other experiments. We compared Adam with a learning rate of 1e-4, 3e-4, 1e-3, and 3e-3. We
found 1e-3 to be the most stable and best performing.

• VICReg loss weights: Tune these for the VICReg (global) model only, and use the best hyperparameters for all other
uses of the VICReg loss, including SMD SSL (VICReg). Following the original paper, we set the covariance weight
ν = 1 and then tune the invariance weight λ and variance weight µ. We found in early experiments that the variance
weight did not have much impact on performance, and so focused on the invariance weight, studying λ = 1, 2, 5. We
found λ = 1 to perform the best on both datasets.

• SMD SSL (SimCLR) component loss weight: Set the global weight α = 1 in Eqn. 5, and tune the component weight
β, on both datasets separately, comparing β = 0.25, 0.5, 1.0, 2.0. We found β = 1.0 to perform the best on Dataset 1,
and β = 0.25 to perform the best on Dataset 2.

• SMD SSL (VICReg) component loss weight: Use the best VICReg loss weights found above, set the global weight
α = 1 in Eqn. 5, and tune the component loss weight β, comparing β = 0.1, 0.25, 0.5, 1.0, 2.0. We found β = 1.0 to
perform the best on Dataset 1, and β = 0.1 to perform the best on Dataset 2.

We fixed the temperature of the NT-Xent loss to 0.1, following Yèche et al. (2021).

We did not conduct tuning of the architecture hyperparameters, and instead opted to use architectural choices that were
found to be effective in previous works, such as a ResNet signal encoder (Raghu et al., 2021; 2022), a wide projection head
(Chen et al., 2020b; Bardes et al., 2022a), and a GRU sequence model (McDermott et al., 2021). Similar to McDermott et al.
(2021), we did not find a transformer model to be beneficial as the sequence model, though perhaps architectural tuning
could improve its performance.

B.2.4. COMPUTE DETAILS

All models were trained on either a single NVIDIA Quadro RTX 8000 or a single NVIDIA RTX A6000 GPU. Pre-training
takes about 8 hours on Dataset 1 and about 2 hours on Dataset 2. Fine-tuning on Dataset 1 tasks takes about 4 hours.
Fine-tuning in Dataset 2 on Elevated mPAP takes about 30 minutes, and about 4 hours on 24hr Mortality. Pre-training uses
approximately 20 GB of GPU memory, and fine-tuning uses approximately 10 GB of GPU memory.
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Figure 6: Studying training loss curves for SMD SSL and variations. We observe that SMD SSL effectively minimizes both the
component and global NT-XEnt losses during training. Interestingly, we observe that the NT-Xent loss computed on the signal level and
trajectory level reduces somewhat even when it is not explicitly minimized. To see this, consider the SimCLR (global) method and the
component Loss – the component loss reduces over training even with a random projection head, without adding this term to the objective.
This indicates that the global loss and component loss are not entirely independent (as is expected).

Table 5: Mean and 95% confidence interval of AUROC on fine-tuning tasks in the unimodal setting when only using structured data,
comparing no PT (RandInit) to PT with the SimCLR and VICReg global losses. We find that when considering structured data alone, PT
does not offer much benefit to performance; however, there are improvements seen in the Elevated mPAP task.

(a) Results on Dataset 1.

Elevated mPAP 24hr Mortality

RandInit 65.3 ± 0.1 79.0 ± 0.4
SimCLR 66.8 ± 0.1 79.0 ± 0.4
VICReg 66.0 ± 0.0 77.9 ± 0.4

(b) Results on Dataset 2.

Elevated mPAP 24hr Mortality

RandInit 65.0 ± 0.3 90.1 ± 0.1
SimCLR 66.8 ± 0.3 88.1 ± 0.1
VICReg 68.1 ± 0.3 89.3 ± 0.1

B.3. Additional Results

Studying loss curves. Figure 6 shows training loss curves for SimCLR-based models on Dataset 2. We observe that SMD
SSL effectively minimizes both component and global losses over training. Considering the component loss alone (left
plot), we see that this loss naturally reduces during training of the SimCLR (global) model even though this is not explicitly
enforced during model training – we compute the component loss in this case with a randomly initialized signal level
projection head that is not updated, and the network parameters are also not updated to minimize this component loss. An
analogous situation with SimCLR (component) and the global loss is seen in the right plot. This suggests that training with
one of the losses does encourage structure in both representation spaces, even with random projections, but this structure is
more clearly defined when the loss is explicitly minimized (as in SMD SSL).

Trends in AUPRC. Since the mortality task has low prevalence, we study trends in AUPRC among methods as they compare
to AUROC. We find that in the unimodal setting, on both datasets, our objective improves AUPRC by 1-2% over baselines,
but AUPRCs are all relatively low (<5%) due to the limited predictive signal in the ECGs alone for the mortality prediction
task. In the multimodal setting, on Dataset 1, SMD SSL worsens AUPRC over the single-level approach by 2.9% AUPRC
(10.8% vs 7.9%) – this is consistent with what was seen with AUROC. On Dataset 2, the AUPRC with our approach is
28.4%, an improvement of about 4% over the best baseline.

Unimodal experiments with structured data. Table 5 shows results when training on only the structured data (structured
time-series and static vector) in the trajectory. We find that the Elevated mPAP task can benefit from pre-training, but the
24hr Mortality task performance is not boosted by pre-training. This is likely because the structured data are relatively
simple and low-dimensional, and there is enough data to learn useful predictive information from these data as-is, without
pre-training.

Additional baselines. As discussed in the main text, related SSL strategies for time series data are not exactly applicable in
our setting since they formulate pipelines for structured data-only time series (rather than multimodal time series), or are
concerned with individual physiological waveforms (rather than sequences of waveforms).
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Table 6: Test AUROC of different SSL algorithms on Dataset 2 (MIMIC) in the multimodal setting. We observe that SMD SSL (VICReg)
improves on these additional SSL baselines.

Elevated mPAP 24hr Mortality

SMD SSL (VICReg) 71.6 90.7
NCL (Structured data only) 67.6 87.7
NCL (Multimodal) 65.5 89.9
SACL 64.7 89.8
CLOCS 64.3 89.9

Table 7: Comparing test AUROC of the two evaluation paradigms — Linear Evaluation and Full Fine-tuning (FT) — with selected SSL
algorithms on Dataset 2 (MIMIC) in the multimodal setting. We find that Full FT routinely performs better than linear evaluation.

Elevated mPAP 24hr Mortality

Full FT Linear Evaluation Full FT Linear Evaluation

RandInit 65.3 N/A 87.8 N/A
SMD SSL (VICReg) 71.6 65.0 90.7 72.2
VICReg (Global) 70.4 64.4 87.8 71.7
SimCLR (Global) 63.7 63.1 86.8 71.7
SimSiam (Component) 67.4 61.6 90.6 71.9
SimSiam (Global) 60.6 50.6 90.4 50.0

Despite these differences, for completeness, we study here the performance of adapted versions of three related methods
from the literature for Dataset 2 (MIMIC-III), focusing on the multimodal setting. Specifically, we evaluate the SSL
objective functions proposed in NCL (Yèche et al., 2021), SACL (Cheng et al., 2020), and CLOCS (specifically the CMSC
formulation) (Kiyasseh et al., 2021). We use each of these losses in a global-only SSL setup in order to compare how they
perform to our proposed two-level loss function. We additionally evaluate structured data-only NCL.

We evaluate these methods using the same experimental setup (augmentation pipeline, optimization hyperparameters, model
architecture, etc) as what was used when evaluating our method. For NCL, we considered two values of α (0.3 and 0.5), and
fixed w = 16 as in the original paper’s configuration on MIMIC. We select the value of α that obtained the best validation
AUROC on each downstream task.

Results are shown in Table 6. As seen, the best two-level approach, SMD SSL (VICReg), outperforms the different baselines.
This indicates that a two-level loss is not easily outperformed by other global-only loss functions. An important investigation
is to conduct a more thorough hyperparameter search for these alternative loss functions, and also evaluate whether two-level
versions of these other objectives could improve on SMD SSL (VICReg).

Linear Evaluation vs Full Fine-tuning. As discussed in the main paper, our goal is to develop a self-supervised pre-training
algorithm that finds an effective model initialization for adaptation to downstream tasks (i.e., a transfer learning setting). As
a result, we evaluate both full FT and linear evaluation, reporting the evaluation strategy that obtains the best validation
AUROC on a per-method and per-task basis. It is important to consider full FT since it almost always outperforms linear
evaluation – we observed this in our results, and a similar finding was see in the evaluation from McDermott et al. (2021).
Table 7 highlights this finding for a subset of the methods on Dataset 2 (MIMIC), in the multimodal setting.

Studying longer Pre-training. On Dataset 2 (MIMIC), we pre-trained methods for longer (50 epochs) and compared
performance after 15 and 50 epochs, following the best of full FT and linear evaluation (following our standard experimental
setup). Results are in Table 8, indicating that performance did not improve following longer PT.

Additional representational similarity experiments. In the main text, we presented a simple representational similarity
study examining the how the learned representations by the CNN signals encoder compared in SMD SSL (SimCLR) vs.
SimCLR (component only) and SimCLR (global only) pre-training. We found that SMD SSL representations had reasonable
Centered Kernel Alignment (CKA) similarity (Kornblith et al., 2019) with both component-only and global-only PT. On the
other hand, global-only and component-only PT were quite dissimilar.
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Table 8: Comparing test AUROC after different amounts of PT with selected SSL algorithms on Dataset 2 (MIMIC) in the multimodal
setting. Performance does not appear to improve after more PT.

Elevated mPAP 24hr Mortality

15 epochs PT 50 epochs PT 15 epochs PT 50 epochs PT

SMD SSL (VICReg) 71.6 66.6 90.7 89.3
VICReg (Global) 70.4 63.2 87.8 78.8
SimSiam (Component) 67.4 59.6 90.6 78.8
SimSiam (Global) 60.6 51.1 90.4 88.2
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Figure 7: Studying per-block representational similarity in the CNN encoder between SMD SSL pre-training and component-only
and global-only pre-training. SMD SSL representations are more similar to component-only PT early on in the CNN signals encoder,
and more similar to global-only PT deeper in the network.

To further understand the effect of training with the component and global losses in SMD SSL, we conduct a finer-grained
CKA study. We take the output of each residual block of the CNN signals encoder and compare the CKA similarity in these
representations (following pooling over the sequence dimension) to the CKA similarity of component-only and global-only
PT models, on a per-block basis. That is, we average the CKA similarity between SMD SSL (block i) and component-only
PT (blocks 1, 2, 3, 4), and similarly for global-only PT. The results are shown in Figure 7. We see that SMD SSL PT has
more similarity with component-only PT in the first block, and greater similarity with global-PT in the remaining blocks.
This suggests that the component loss is having the most impact on SMD SSL representations in the earlier CNN layers,
indicating that these low-level features are particularly relevant for minimizing the component loss – this makes sense, since
we would expect lower-level features to matter more in a per-signal embedding, and global-level features to matter more in a
sequence-level embedding.
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