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Abstract
We develop a novel theoretical framework for un-
derstating Optimal Transport (OT) schemes re-
specting a class structure. For this purpose, we
propose a convex OT program with a sum-of-
norms regularization term, which provably recov-
ers the underlying class structure under geometric
assumptions. Furthermore, we derive an acceler-
ated proximal algorithm with a closed-form pro-
jection and proximal operator scheme, thereby af-
fording a more scalable algorithm for computing
optimal transport plans. We provide a novel argu-
ment for the uniqueness of the optimum even in
the absence of strong convexity. Our experiments
show that the new regularizer not only results in
a better preservation of the class structure in the
data but also yields additional robustness to the
data geometry, compared to previous regularizers.

1. Introduction
Optimal transport (OT) is a classical mathematical discipline
for discovering a transport map from a source distribution
to a target distribution with a minimum cost of the trans-
port. It has recently been successfully used in various appli-
cations in computer vision, texture analysis, tomographic
reconstruction and clustering, as documented in the recent
surveys (Kolouri et al., 2017) and (Solomon, 2018). In many
of these applications, OT exploits the geometry of the un-
derlying spaces to effectively yield improved performance
over the alternative of obviating it.

The main purpose of this paper is to provide a theoretical
foundation for OT in such geometrically-aware conditions.
We focus on a scenario where a common, potentially hidden
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class structure is present in both domains. Examples are
abundant, such as (Long et al., 2022) and (Ott et al., 2022),
where respecting the class structure can significantly im-
prove the performance. In our setup, classes are associated
with well separated regions of the data space, called com-
ponents, on which the source and target distributions are
supported. Each component is associated with a class and
hence there is a correspondence between the components of
the source and target domains. Such a model may become
relevant after a suitable re-representation (embedding) of
the data in a latent space.

Our central question is to identify conditions on the geome-
try of the components, under which OT can be performed
in a polynomial time, with an additional property that each
source sample is mapped to its corresponding component in
the target domain. For this purpose, we introduce and study
a two-stage procedure, where in the first stage the compo-
nents and their association is recovered and in the second
one, OT is exclusively performed over the corresponding
component pairs. Any off-the-shelf OT method can be used
in the second stage, and hence our results mainly pertain
to the recovery condition in the first stage. For this, we
introduce a novel convex optimization framework, combin-
ing two popular procedures: the celebrated Kantorovich
relaxation scheme of OT and the well-known sum-of-norms
(SON) formulation for vector clustering (Lindsten et al.,
2011a; Hocking et al., 2011), used as a regularization. Ac-
cordingly, we show for the first time that sufficiently well-
separated and associated components in the two domains
can be recovered by a regularized OT scheme, which natu-
rally enjoys a polynomial algorithm due to convexity. No
such results, to the best of our knowledge, are known for
other regularizers. We also experimentally show that our
regularizer does not only yield a better class structure preser-
vation, but also provides additional robustness compared to
other class-based regularizers

Computational benefits: Despite a convex nature, the im-
provements of OT often come at a significant computational
cost. We further argue that the SON regularization of OT
also enjoys practical computational benefits by proposing a
novel stochastic incremental algorithm. First, we construct
an abstract stochastic framework that is based on a combina-
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tion of proximal and projection iterations, for which we give
a generic proof of convergence at rate O(1/

√
T ). Subse-

quently, we specialize this general scheme for our problem,
which leads to an algorithm with computationally low-cost
iterations. Beyond the proposed SON-based framework, our
proximal scheme can be used to avoid the reported conver-
gence difficulties of gradient-based methods (Patrascu and
Necoara, 2018).

Summary of contributions: Our main contributions can be
summarized as follows:
i. In section 2.1, we develop a theoretical framework
for class-based OT, where we introduce the concept of
multi-class recovery schemes.
ii. As an instance of a multi-class recovery scheme, we
propose in Section 2.2 a new regularized formulation of OT
that recovers a class structure typically arising in real-world
problems.
iii. We derive the first rigorous results for recovering an OT
plan that respects class structure, presented in section 3,
with more details provided in the appendix (section A).
iv. We develop in Section 4 a general accelerated stochastic
incremental proximal-projection optimization scheme,
for which we give a proof of convergence at a rate
O(1/

√
T ) without a decaying step size. We specialize the

general scheme with an explicit closed form of proximal
operators and fast projections to yield a scalable stochastic
incremental algorithm for computing our OT formulation.
v. In section 5 and further in the appendix (section C),
we investigate the algorithm on several synthetic and
benchmark data sets, and demonstrate the benefits of the
new regularizer.
vi. In the appendix (section D), we develop a new proof
for the uniqueness of the optimal solution of our convex
formulation in spite of its non-strong convexity, with wide
applicability in other model recovery studies.

1.1. Relation to Literature

OT, first proposed by Monge as an analysis problem (Monge,
1781), has become a classic topic in probability and statis-
tics. A comprehensive introduction and theoretical frame-
work can be found in (Villani, 2008; Santambrogio, 2015;
Peyré et al., 2019). Theoretical works on extensions of OT
have only recently received more attention. (Redko et al.,
2017), for example, provides an analysis of OT in the con-
text of domain adaptation. In (Gordaliza et al., 2019), OT is
studied from the fairness point of view. To the best of our
knowledge, there is no study on the geometrically-aware
extensions (regularizations) of OT, as this paper offers.

Regularized OT: A case for exploring new regularizers
was made in (Courty et al., 2017) in the context of domain
adaptation applications. In (Blondel et al., 2018) the pri-

mal and dual formulations of OT are regularized with a
strongly convex term, and the constraints are relaxed with
smooth approximations. (Dessein et al., 2018) also propose
a framework to solve discrete optimal transport problems
with smooth convex regularization. Regularization is often
introduced to promote sparsity. The L2 regularization for
example yields a sparse plan. It has been used in a doubly
stochastic scheme in (Seguy et al., 2018). These techniques
are not tailored to the underlying class structure of the data,
which may not be known in advance. Hidden class structure
is addressed in (Courty et al., 2017) by the so-called Lapla-
cian regularizer. However, no theoretical study is provided.
We further illustrate the differences between the Laplacian
regularizer and our framework in the experiments. Recently,
a related attempt is made in (Asadulaev et al., 2022) to ad-
dress class structures in the two domains. Our formulation
differs from the partial domain adaption (Cao et al., 2018)
and robust domain adaption (Balaji et al., 2020) settings
which do not generally take the class structure into account.

Computational aspects: Much attention has focused on
efficient computational and numerical algorithms for OT,
and a monograph focusing on this topic has appeared in
(Peyré et al., 2019). In (Guo et al., 2020a), an ”accelerated
primal-dual randomized coordinate descent (APDRCD)” al-
gorithm is developed to solve the OT problem. An upper
bound is also provided for the complexity of the algorithm
and it is shown that it could be used for large-scale pur-
poses. In (Courty et al., 2017), a generalized conditional
gradient method is used to compute OT with the help of a
couple of regularizers. Most notably Cuturi introduced an
entropic regularizer and showed that its adoption with the
Sinkhorn algorithm yields a fast computation of OT (Cuturi,
2013); a theoretical guarantee that the Sinkhorn iteration
computes the approximation in near linear time was also
provided by (Altschuler et al., 2017). Screenkhorn algo-
rithm proposed in (Alaya et al., 2019) performs screening to
eliminate (and accelerate) the solution of the Sinkhorn algo-
rithm. Another computational breakthrough was achieved
by (Genevay et al., 2016) who gave a stochastic incremen-
tal algorithm to solve the entropic regularized OT problem.
Proximal method has been used in OT but not in a stochastic
scheme. Examples include (Alvarez-Melis et al., 2018) that
uses notions of sub-modularity and also (Papadakis et al.,
2014). Unlike the above works, our algorithm is tailored
to the class-based OT framework, and exploits proximal/
projection operators in a stochastic way.

2. Problem Formulation and SON-regularized
Optimal Transport

2.1. Problem Formulation

Consider two probability measures µ, ν defined on data
spaces Ys,Yt, respectively referred to as the source and the
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target domains. Further, assume a non-negative function
d : Ys × Yt → R≥0 evaluating the transport cost between
the two domains. Classical Monge problem seeks a measur-
able transport map T : Ys → Yt such that the push-forward
measure T♯µ of µ under T coincides with ν and the ex-
pected transport cost E [d(Y, T (Y ))] is minimized, where
Y ∼ µ.

We similarly define the class-based OT problem:

Definition 1. A K-class structure is a pair of mixtures of
K probability measures:

µ =

K∑
α=1

pαµα, ν =

K∑
β=1

qβνβ (2.1)

on Ys and Yt, respectively, with a one-to-one correspon-
dence π between the components of the two domains (i.e.
µα, νβ). We define a solution to the K−class Monge prob-
lem as a transport map T : Ys → Yt such that:

1. For every corresponding pair (µα, νβ) ∈ π we have
T♯µα = νβ , i.e T transports any component to its
corresponding component.

2. The expected transport cost E [d(Y, T (Y ))] is mini-
mized, where Y ∼ µ.

Note that a solution T of the multi-class Monge problem de-
pends on the components and their association. We consider
a case that these are not provided:

Definition 2. Given a transport cost function d, a
Monge recovery scheme assigns to each pair (µ, ν) of
source and target distributions, a K−class structure
((µα, pα)α, (νβ , qβ)β , π) for some K ≥ 0, and its corre-
sponding K−class Monge solution T such that equation 2.1
holds true. A recovery scheme is said to recover a family
F of multi-class structures if it assigns to any (µ, ν) of F
its corresponding mixture components and their associa-
tion in F . This naturally requires the components and their
association to be unique in F .

The main purpose of this paper is to introduce a wide fam-
ily F of mixture models and a particular Monge recovery
scheme recovering it in a polynomial time with the problem
size.

2.1.1. DISJOINT SUPPORTS AND TWO-STAGE SCHEMES

Our focus is on mixture models with disjoint supports. For
this case, we make the following straightforward observa-
tion:
Proposition 1. Consider a multi-class structure
((µα, pα)α, (νβ , qβ)β , π) and suppose that the sup-
ports Sα of µα are disjoint, and the same property holds

for the supports Tβ of νβ . Then the multi-class Monge
solution comprises the restricted maps Tα : Sα → Tβ , for
(α, β) ∈ π, each being the solution of the conventional
Monge problem for (µα, νβ).

For such families of structures, the above observation sug-
gests a two-stage recovery scheme: Given a pair of distri-
butions (µ, ν), first recover the components (µα), (νβ) and
their association π. Next, solve the conventional Monge
problem over each associated pair. We adopt this strategy,
and as a rich theory already exists for the conventional
Monge problem, we mainly focus on the first stage, i.e.
recovering the components and their association.

2.2. Optimal Transport with SON

A major challenge in optimal transport is that only a finite
number of samples from each distribution is given. Other-
wise the distributions are unknown. Consider two finite sets
{ys

i }mi=1, {yt
j}nj=1 of points, respectively sampled from µ

and ν. Let D = (Dij = d(ys
i ,y

t
j)) be the m× n matrix of

transport costs. We denote the ith row and jth column of D
by di and dj , respectively. We let the positive probability
masses µi, νj be respectively assigned to the data points ys

i

and yt
j . In this discrete setup, the Monge problem is often

solved with a linear programming relaxation scheme known
as the Kantorovich problem:

min
X∈B(µ,ν)

⟨D,X⟩. (2.2)

Here, the variable matrix X = (xi,j) is called the transport
map and B(µ,ν) = {X ∈ Rm×n,X1ns = µ,XT1nt =
ν} is the set of all discrete coupling distributions between µ
and ν, respectively denoting the vectors of elements µi, νj .
Moreover, ⟨D,X⟩ = Tr(DTX) =

∑
i,j XijDij is the Eu-

clidean inner product of two matrices. In an ideal case, one
hopes that the optimal solution for X become an assignment
(permutation matrix) in which case it is seen to coincide
with the solution of the Monge problem for the empirical
distributions.

2.2.1. MULTI-CLASS RECOVERY SCHEME

Now, we introduce our multi-class recovery scheme by the
following convex optimization problem:

X∗ = arg min
X∈B(µ,ν)

⟨D,X⟩

+λ

(∑
l,k

Rl,k∥xl − xk∥2 +
∑
l,k

Sl,k∥xl − xk∥2

)
,(2.3)

where xl and xk denote the (transpose of the) lth row and
kth column of X, respectively. Compared to equation 2.2, a
regularization term with a tuning parameter λ > 0 is intro-
duced, known as sum-of-norms (SON). SON is well-known
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for its clustering properties and hence equation 2.3 com-
bines the class discovery properties of SON with OT. The
positive kernel coefficients Sl,k, Rl,k are also introduced to
incorporate class prior information.

The effect of the SON regularization in equation 2.3 is ex-
plained in (Lindsten et al., 2011b; Panahi et al., 2017). In
short, it enforces many vanishing regularization terms (spar-
sity), hence yielding identical columns and identical rows
in the solution. In other words, the resulting map X∗ after a
suitable permutation of rows and columns is a block matrix
with constant values in each block. The block structure
reflects the discovered components in the source and tar-
get domains. Under suitable conditions , the constraints of
the Kanturovitch problem will further force many blocks to
be zero. If each row and column will contain exactly one
non-zero block (i.e. a block diagonal matrix under a correct
order), the solution further reflects an assignment π between
the components. In this way, equation 2.3 performs the first
stage in the two-stage multi-class recovery scheme. This is
made precise and proved in section 3.

The regularization parameter λ sets a desired balance be-
tween the cluster structure and the underlying transport
problem. When λ = 0, equation 2.3 reduces to equation 2.2.
For large values of λ, the SON regularization dominates
the result. In a typical situation, λ→∞ results in all data
in each domain assigned to the same cluster, hence a triv-
ial transformation between single clusters in each domain.
Smaller values of λ lead to a larger number of identified
classes in the solution.

As mentioned, the kernel coefficients Rl,k, Sl,k are related
to the prior knowledge of the components. For example if a
perfect knowledge of the components in the source domain
is available, we may set Rl,k = 0 if ys

l and ys
k belong

to different components (classes), otherwise set Rl,k =
ks(y

s
l ,y

s
k) for a suitable (differentiable) kernel ks. On the

target side where no class information is ordinarily provided,
we may set Sl,k = kt(y

t
l ,y

t
k) for a suitable kernel kt of

choice.

3. Main Theoretical Results
Geometric threshold: To provide the main geometric in-
tuitions of our analysis, we start by a simplified case with
well-separated components. Next, we will present a more
extensive study, which is also used for proving the simplified
result:

Theorem 3.1. Consider a mixture of K components in each
domain with m samples from each component, hence a
total of n = Km samples in each domain. Suppose that
(α, α) ∈ π for all α.

1. Consider the ℓ2 distance, d(y1,y2) = ∥y1 − y2∥2

Figure 1. An example of three pairs of Gaussian clusters in the
source (blue) and target (red) domains. The maximum distance
d between associated (paired) centers, the minimum distance D
between unassociated centers and the maximum distance E of
centers between two domains are respectively shown by solid,
dashed and dash-dotted lines.

and assume that the components are supported on
spheres of radius ω and centered on θs

α,θ
t
α for α =

1, 2, . . . ,K, in the source and target domains, respec-
tively. With a suitable choice of λ, the solution of
equation 2.3 recovers the K−class structure if:

D − d− 2ω

K
3
2

≥ Cω, (3.1)

for some universal constant C, where D =
minα̸=β ∥θs

α − θt
β∥ and d = maxα ∥θs

α − θt
α∥.

2. Consider the ℓ22 distance, d(y1,y2) = ∥y1 − y2∥22.
Assume that the components are isotropic Gaussian
with means θs

α,θ
t
α for α = 1, 2, . . . ,K, in the source

and target domains, respectively. All variances are
equal to ω2. With a probability higher than 1− 1/n10

the solution of equation 2.3 with a suitable choice of λ
recovers the K−class structure if:

D2 − d2

K
3
2

≥ Cω
√

(E + ω)2 + 1 log(nK), (3.2)

where E = maxα,β ∥θs
α − θt

β∥.

Fig. 1 clarifies in a simple example the geometric meaning
of the concepts used in the above result. As seen, the condi-
tions in equation 3.2 and equation 3.1 require the associated
clusters to be substantially closer to each other than the
other clusters. As expected, there are differences between
the ℓ2 and ℓ22 geometries. For example, the scale E of the
problem only appears in the latter. However, in both cases
we may bound the maximum number of resolvable compo-
nents K by a purely geometric parameter that we refer to as
the geometric threshold. In case 1), for example, defining
r = D−d−2ω

ω , we observe that the geometric threshold is
O(r

2
3 ). Part 2) has a similar interpretation.

Deterministic guarantee: Now, we present an extended
deterministic result that is used to prove theorem 3.1. In
many respects, the presented results are still simplified and
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the most comprehensive analysis is postponed to Appendix
B. For simplicity, K components with equal size (number
of samples) m is assumed. The resulting data partitions in
the source and target domains are respectively denoted by
{Sα}, {Tβ}. The total number of points in each domain
is n = mK . Further, Sα is paired with {Tα} for every
α ∈ [K], i.e. (α, α) ∈ π. We investigate that the transport
plan obtained by solving equation 2.3 consists of blocks,
recovering both the sets of clusters {Sα}, {Tβ} and their
association. For this, we ensure that Xij remains zero for
the ith data point in the source domain and jth data point
in the target domain, belonging to unassociated clusters.
Accordingly, we require the ideal solution to be the one
with Xi,j = Xα,β for i ∈ Sα and j ∈ Tβ , where Xα,β are
constants satisfying Xα,β = 0 for β ̸= α.

For simplicity, we take Sj,j′ = 1 everywhere and study
two cases where Ri,i′ = 1 holds true either everywhere
(no kernel) or for i, i′ belonging to the same cluster and
Ri,i′ = 0 otherwise (perfect kernels in the source domain).
The general case is presented in Appendix B. Introducing
an indicator variable R, the first case is referred to by R = 0
and the second one by R = 1. Note also that we assume the
ideal solution to be feasible for the optimization problem
in equation 2.3, which requires for every i, i′ ∈ Sα and
j, j′ ∈ Tα that µi = µi′ = νj = νj′ . In Appendix B, we
treat the general infeasible cases by considering a relaxation
of equation 2.3.

In the context of recovery by the Kantorovich relaxation, a
key concept is cyclical monotonicity (Villani, 2008), which
we slightly modify and state below:

Definition 3. We say that a set of coefficients Dα,α′ for
α, α′ ∈ [K] satisfies the δ−strong cyclical monotonicity
condition if for each simple loop α1 → α2 → . . .→ αk →
αk+1 = α1 with length k > 1 we have

k∑
l=1

Dαlαl+1
>

k∑
l=1

Dαlαl
+ kδ. (3.3)

Compared to the standard notion of cyclic monotonic-
ity, we introduce a constant δ ≥ 0 on the right hand
side of equation 3.3, which can be nonzero only when
(Dα,β) has a discrete or discontinuous nature. We apply
this condition to the average distance of clusters given by
Dα,β = 1

m2

∑
i∈Sα,j∈Tβ

Di,j .

We denote by ∆ the maximum of the values ∥di−di′∥/
√
n

and
∥∥∥dj−dj′

∥∥∥/√n where source points i, i′ and target points
j, j′ belong to the same cluster and we remind that di,d

j

respectively refer to the rows and columns of D. We also
define ωα :=

∑
i∈Sα

µi =
∑

j∈Tα

νj and then take Tα,β =

∑
γ∈[K]

(
Rωα√
ω2

α+ω2
γ

+
ωβ√

ω2
β+ω2

γ

)
− 1+R√

2
. Finally, we define

Λα,β =

Tα,β +
ωα +Rωβ√
ω2
β + ω2

β

−1

,

and take Λ as its maximum over α ̸= β. Accordingly, we
obtain the following result:
Theorem 3.2. Suppose that (Dα,β) is δ−strongly cyclical
monotone. Take λ such that ∆ ≤ λ

√
m/K. Then, the

solution of equation 2.3 is given by Xij = Xα,β for i ∈ Sα

and j ∈ Tβ satisfying one of the following two conditions:

1. We have Xα,β = ωα/m2δβ,α if ∆
√
K ≤ λ

√
m ≤ Λδ

2. Otherwise, we have δ
∑
β ̸=α

Xα,β ≤ λ(1 +

R)
√
m
∑

α ̸=α′

√
ω2
α + ω2

α′ .

Furthermore, the solution is unique in part 1 if all inequali-
ties are strict.

Proof. Proof can be found in section A.1.

The first part of theorem 3.2 establishes ideal recovery. It
can be understood in light of theorem 3.1, e.g., in part 1. The
term ∆ corresponds to ω in 3.1. It is the maximal cluster
diameter in a geometry embedded by the vectors di,d

j1.
On the other hand, δ corresponds to D − d− 2ω which is
the gain of the assignment. The second part gives an upper
bound on the error

∑
β ̸=α

Xα,β . Note that ∆ is always smaller

with R = 1 compared to R = 0, making the conditions less
restrictive. This reflects the intuitive fact that introducing
kernels simplifies the recovery.

4. Stochastic Incremental Algorithms
4.1. Accelerated Proximal-Projection Scheme

An important advantage of the framework in equation 2.3
is the possibility of applying stochastic optimization tech-
niques. Since the objective term includes a large number of
non-smooth SON terms, our stochastic optimization avoids
calculating the (sub)gradient or the proximal operator of
the entire objective function, which is numerically infeasi-
ble for large-scale problems. Our algorithm is obtained by
introducing the following ”template function”:

ϕρ,ζ,η(p,q) = ⟨p, ζ⟩+ ⟨q,η⟩+ ρ∥p− q∥2, (4.1)

1Note that here di,d
j are treated as a special embedding of

the source and target points, respectively, which may be called
the distance embedding. As seen, we do not assume any inherent
geometry in the two domains and instead rely on the induced ℓ2
geometry of the distance embedding.
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and noting that the objective function in equation 2.3 can be
written as

∑
l ̸=k

ϕRl,k,
1

2(n−1)
dl,

1
2(n−1)

dk
(xl,xk)+∑

l ̸=k

ϕSl,k,
1

2(m−1)
dl, 1

2(m−1)
dk(xl,xk),

(4.2)

with a total number of P = m(m − 1) + n(n − 1) sum-
mands in the form of the template function. This places the
problem in the setting of finite sum optimization problems
(Bottou et al., 2018). However, there are two obstacles to
the application of stochastic optimization techniques: First,
the terms in (4.2) are not smooth, so gradient methods do
not apply and second, equation 2.3 involves a fairly complex
constraint. We address these issues in the following.

Non–smooth terms: We exploit the highly effective prox-
imal methodology for optimizing non–smooth functions
(Parikh and Boyd, 2016; Combettes and Pesquet, 2011) us-
ing a proximal operator. Defazio further gives a stochastic
acceleration technique using proximal operators for uncon-
strained problems (Defazio, 2016). In addition to its fast
convergence, the main advantage of this scheme is its poten-
tial constant step size convergence in contrast to the ordinary
stochastic gradient approach. It unfortunately does not ad-
dress constrained optimization problems.

Constrained optimization: Facing a constrained optimiza-
tion problem, the calculation of the proximal operators over
the feasible set is numerically intractable. However, we
observe an appealing structure in the constraint which lends
itself to a more efficient stochastic implementation: Recall-
ing the definition of an n−dimensional standard simplex

S(n) =

{
x = (xi ≥ 0)ni=1 |

∑
i

xi = 1

}
,

we define the weighted cylinder-simplices Sl(µ) = {X |
xl ∈ µS(n)} and Sk(ν) = {X | xk ∈ νS(m)} respec-
tively corresponding to the lth row and kth column of X
with weights µ, ν ≥ 0. We then observe that the con-
straint set B(µ,ν) is equal to B(µ,ν) = (

⋂m
l=1 Sl(µl)) ∩

(
⋂m

k=n S
k(νk)), which is an intersection of Q = m + n

weighted cylinder-simplices.

In summary, the optimization problem in equation 2.3 can
be written in the following abstract form:

min
x∈RD

P∑
p=1

ϕp(x) st x ∈
Q⋂

q=1

Sq, (4.3)

where each term ϕp denotes a template function term in the
objective and each set Sq is a weighted cylinder-simplex.
The values of P,Q in equation 2.3 are given above and

D = mn. (Bertsekas, 2011), (Wang and Bertsekas, 2016)
and (Patrascu and Necoara, 2018) give general stochastic
incremental schemes that combine gradient, proximal and
projected schemes for optimizing such finite sum problems
with convex constraints. These do not, however, use accel-
eration and their respective convergence is only guaranteed
with a variable and vanishing step size, which is practically
difficult to control and often yields extremely slow conver-
gence.

Our proposed method: We herein jointly exploit the two
ideas in (Defazio, 2016) and (Wang and Bertsekas, 2016)
to obtain an accelerated proximal scheme for constrained
framework in equation 2.3. Further, we shortly show in
Lemma 4.2 that the proximal operator can be computed in
closed form for our problem. Together with the projection
to the simplex from (Condat, 2016; Duchi et al., 2008), this
gives a stochastic incremental algorithm with much less
costly iterations.

We extend the acceleration techniques of unconstrained
optimization as in the Defazio’s scheme (known as Point–
SAGA) to the constrained setting. Point–SAGA utilizes
individual ”memory” vectors for each term in the objective
function, which store a calculated subgradient of a selected
term in every iteration. These vectors are subsequently used
as an estimate of the subgradient at subsequent iterations.
We extend this scheme by introducing similar memory vec-
tors to constraints. Each memory vector hm for a constraint
Sm stores the last observed normal (separating) vector to
Sm. At each iteration either an objective term ϕp or a con-
straint component Sq is considered by random selection.
Accordingly, we propose the following rule for updating the
solution:

xt+1 =

{
proxµϕpt

(xt + µgpt
) , ϕpt

is selected
projSqt

(xt + µhqt) Sqt is selected ,

(4.4)
where t is the iteration number, µ > 0 is the fixed step size
and pt, qt denote the selected index in this iteration (only
one of them exists). At each iteration, the corresponding
memory vector to the selected term is also updated. Depend-
ing on the choice of ϕpt or Sqt , either gpt ← gpt + at or
hqt ← hqt + at, where

at = ρ
xt − xt+1

µ
− α

(∑
n

gn +
∑
m

hm

)
, (4.5)

where ρ ∈ (0 1) and α > 0 are design constants. The vector
at consists of two parts: the first part ρxt−xt+1

µ calculates a
sub-gradient or a normal vector at point xt+1 correspond-
ing to the selected term. The second term, the sum of the
memory terms, implements acceleration. Our algorithm
bears marked differences with Point-SAGA. While accel-
eration by the sum of memory vectors is also employed in
Point-SAGA, it is moved in our scheme from the update

6
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Algorithm 1 OT-SON
Input: Source and Target data: {ys

i }mi=1, {yt
j}nj=1, µ,

ρ ∈ (0 1) and α > 0
Initialize x ∈ RD, where D = mn
for t = 1, 2, 3, . . . do

Randomly select objective or constraint and then a
random index pt ∈ [P ] or qt ∈ [Q]
if pt is selected then
xt+1 = proxµϕpt

(xt + µgpt
) which can be com-

puted based on Theorem 4.2
gpt ← gpt + at, where at is given in equation 4.5

else
xt+1 = projSqt

(xt + µhqt)
hqt ← hqt + at

end if
end for

rule of xt to the update rule of gt. Also, the design pa-
rameters ρ and α are introduced to improve convergence.
Similar to Point-SAGA we only need to calculate the sum
of memory terms once in the beginning and later update it
by simple manipulations. As we later employ initialization
of the memory vectors by zero, the first summation trivially
leads to zero. Algorithm 1 summarizes our optimization
algorithm (OT-SON).

Convergence analysis: We show that for a generic convex
optimization problem of the form in equation 4.3, the algo-
rithmic scheme in section 4.1 converges with a guaranteed
rate, under the following mild assumptions:
Assumption 1. The functions ϕp are β−Lipschitz.
Assumption 2. We require the monotone inclusion problem

0 ∈
P∑

p=1

∂ϕp(x) +

Q∑
q=1

∂ISq
(x) (4.6)

to have a solution at x = x∗ with a finite optimal value ϕ∗

and g∗
p ∈ ∂ϕp(x

∗) and h∗
q ∈ ∂ISq

(x∗) satisfying
∑

p g
∗
p +∑

q h
∗
q = 0. Furthermore, we assume that∑

p

∥∥g∗
p

∥∥2 +∑
q

∥∥h∗
q

∥∥2 = O(β2R) (4.7)

where R = P +Q is the total number of terms.

Here, ∂ϕ(x) and ∂IS(x) respectively denote the subdiffer-
ential of the function ϕ and the cone of normal vectors to the
set S at x. It is well-known that any solution to equation 4.6
is an optimal feasible solution to equation 4.3.
Assumption 3. We assume that the algorithm is initialized
with gp = hq = 0.

Then, we can show the following result.

Theorem 4.1. Suppose that Assumption 1-3 are satisfied.
Then for α, ρ, µ > 0 and α < 2(1− ρ) the following holds
true:

1. Defining x̄t = 1
t

t−1∑
τ=0

xτ and η = (1 +

Q/P)(∥x0−x∗∥2
/βµ + βµR) we have

E

[∑
p
ϕp(x̄t)

]
− ϕ∗ ≤ cβP

(
η
t +

√
βµη
t

)
,

E

[∑
q
dist2(x̄t, Sq)

]
≤ cβµP η

t , (4.8)

where c is a constant depending on ρ, α and the under-
lying constant in equation 4.7.

2. Moreover,
∞∑
τ=0

E[∥xτ+1 − xτ∥2] ≤ c µβP
P+Qη.

Proof. The proof is given in section B.

Comment: As expected, the results only depend on βµ,
except for the optimality gap being linearly proportional
to β. Applying this technique to our problem of interest
and assuming that m,n are of the same order, we observe
that P = O(n2) and Q = O(n). Since many terms in our
objective function are for regularization, it is fair to consider
the relative optimality gap obtained by driving the optimal-
ity gap to the number of objective terms. We observe that
this quantity is controlled by η/t. We conclude that t ∼ η
iterations is required to achieve a desired relative optimality
gap. The total feasibilty gap is controlled by βµPη. If we
take βµ ∼ 1/n, we obtain η ∼ n and the relative optimality
gap vanishes in O(n) iterations. Then, the total optimality
gap and feasibility gap will vanish in O(n3) and O(n2) it-
erations, respectively. In the absence of the regularization
terms, we may reorganize the objective to have only O(n)
terms. In this case, taking βµ ∼ 1/

√
n, we get η ∼ O(

√
n)

and we require O(n
3
2 ) and O(n) iterations to control the

total optimality and feasibility gaps. Compared to the re-
sults of (Guo et al., 2020b), which establishes convergence
in O(n

5
2 ) our convergence rates are better. Moreover, the

O(n2) dependence can be improved by reducing the number
of terms in the objective function. It has been pointed out
that in the sum of norms approach many terms may be re-
dundant and only O(n) terms corresponding to pre-selected
pairs (i, j) can be sufficient.

4.2. Proximal Operator for the SON-Regularized
Kantorovich Relaxation

We next show that we can explicitly compute the proximal
operator for each term in (4.2):

7
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Theorem 4.2. The proximal operator of the template func-
tion ϕρ,ζ,η is given by Tµρ(p− µζ,q− µη), where

Tλ(a,b) =
(
a+b
2 + Tλ

(
a−b
2

)
, a+b

2 − Tλ
(
a−b
2

))
,(4.9)

and Tλ(c) is a thresholding operator given by ∥c∥−λ
∥c∥ c if

∥c∥ ≥ λ and is zero otherwise.

Proof. Proof is found in section B.3.

5. Experiments
We now investigate the effectiveness of our OT framework
for the well-known domain adaptation problem which aims
at improving the performance of a model in a target domain
by utilizing the knowledge available in a different but related
source domain. In the appendix (section C), we investigate
the benefits of several other aspects of our framework, such
as early stopping, class diversity, and unsupervised domain
adaptation. We compare our method (OT-SON) with the
other regularized optimal transport-based methods OT-l1l2,
OT-lpl1 and OT-Sinkhorn, as developed and used in (Courty
et al., 2017; Cuturi, 2013; Perrot et al., 2016).

5.1. Domain Adaptation with Real-World Datasets

5.1.1. MNIST AND USPS

In these experiments, we compare the different models on
the real-world images of digits. For this, we consider the
MNIST data as the source and the USPS data as the tar-
get. To further increase the difficulty of the problem, we
use all 10 classes of the source (MNIST) data, and we dis-
card some of the classes of the target (USPS) data. In our
experiments, each object (image) is represented by 256 fea-
tures. By discarding the different subsets from the USPS
data, we consider several pairs of source and target datasets.
i) real1: the USPS classes are 1, 2, 3, 5, 6, 7, 8, ii) real2:
the USPS classes are 0, 2, 4, 5, 6, 7, 9, iii) real3: the USPS
classes are 0, 1, 3, 5, 7, 9, and iv) real4: the USPS classes
are: 0, 1, 3, 4, 6, 8, 9. We note that these settings where the
number of classes is different between the domains are the
typical cases in practice. Therefore, our class-specific OT
approach is more suitable and robust to class imbalance, as
it avoids splitting a class in one domain among multiple
classes in another domain.

The transformed source samples are used to train a 1-nearest
neighbor classifier. We then use this (parameter-free) clas-
sifier to estimate the class labels in the target data and then
compute the respective accuracy. Table 1 shows the best
accuracy results for different OT-based models when using
different values of the regularization parameters λ1 and λ2

(i.e., λ1, λ2 ∈ {10−5, ..., 103})2. Specifically, for each OT

2For OT-l1l2 and OT-lpl1, λ1 is the entropic regularization

method we use different values of regularization parameters
and we report the best accuracy achieved by that method.
We observe, i) OT-SON yields the highest accuracy scores,
and ii) it is significantly more robust to variation of the
regularization parameters, in comparison to the other meth-
ods. Moreover, the other methods are prone to yielding
numerical errors for small regularizations.

model real1 real2 real3 real4
OT-SON 0.550 0.564 0.608 0.628
OT-l1l2 0.421 0.507 0.500 0.621
OT-lpl1 0.457 0.521 0.516 0.592
OT-Sinkhorn 0.414 0.521 0.508 0.621

Table 1. Accuracy scores on MNIST and USPS.

5.1.2. CALTECH OFFICE

A commonly used dataset for domain adaptation is an object
recognition dataset known as Caltech Office (Saenko et al.,
2010; Griffin et al., 2006) which consists of four different
domains: A (Amazon, 958 samples) , W (Webcam, 295
samples), C (Caltech, 1123 samples), and D (DSLR, 157
samples). These domains have 10 classes of objects in com-
mon that are represented with two sets of features: SURF
(800 features) and DeCAF (4096 features). Similar to the
setting in (Courty et al., 2017), we use all possible pairs of
the four domains as source and target with SURF features,
and we remove the classes 3, 5, and 7 from the target domain.
Similar to the previous study, we assume imbalanced source
and target classes in order to make the task more realistic.
Table 2 compares the classification accuracies achieved by
our method with the scores obtained by the three other meth-
ods. We calculate the accuracy similar to Section 5.1.1. In
these experiments we use class information in the source
domain together with Gaussian kernels. Specifically, we
set Rl,k = 0 if ysl and ysk are not in the same classes and
otherwise we set Rl,k = λ exp(−∥ysl − ysk∥2) for different
values of λ. We observe that our method yields the best
results in seven cases. In other cases, our method is still
competitive compared to the alternatives. In addition, we
conclude that the different methods may perform differently
on different datasets. Even though the setting of imbalanced
classes is more important in practice and we have focused
more on that, for the sake of completeness, we also com-
pare our method with the three other methods in a setting
where the classes are balanced. We use the same number
of classes in the source (W ) and target (C) domains. The
accuracy results for the different methods are respectively:
i) OT-SON: 0.260, ii) OT-l1l2: 0.244, iii) OT-lpl1: 0.247,
and iv) OT-Sinkhorn: 0.243. We observe that even in this
setting, our method yields the highest accuracy.

parameter and λ2 is class regularization parameter.
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S→T OT-SON OT-l1l2 OT-lpl1 OT-Sinkhorn
A→C 0.3552 0.3229 0.3565 0.3018
A→D 0.3274 0.3097 0.3539 0.3008
A→W 0.3144 0.2577 0.3092 0.2422
C→A 0.4601 0.3714 0.4120 0.3548
C→D 0.3982 0.3274 0.4424 0.3362
C→W 0.3556 0.2474 0.3144 0.2474
D→A 0.3248 0.2812 0.3248 0.2812
D→C 0.2720 0.2658 0.2956 0.2621
D→W 0.7216 0.7628 0.5876 0.7525
W→A 0.2661 0.2225 0.2616 0.2210
W→C 0.2149 0.1962 0.2124 0.2012
W→D 0.8230 0.7964 0.6637 0.8141

Table 2. Accuracy scores on Caltech Office (S: source, T: target).

6. Conclusion
We introduced a novel theoretical framework for OT in the
presence of a multi-class structure in the two domains. Ac-
cordingly, we provided first theoretical guarantees for the
recovery of the class structure, and developed constrained
incremental algorithms which are generally suitable for non-
smooth problems and enjoy theoretical convergence guar-
antees. Our experimental studies have substantiated the
effectiveness of our proposed approach in different illustra-
tive settings and datasets.
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A. Extension of Theorem 3.2
We consider the analysis of our proposed method for general kernel coefficient and cluster sizes. Hence, we respectively
consider two partitions {Cα}, {Dβ} of [n], [m] with the same number of parts K. We denote the cardinalities of Cα and Dβ

by nα and mβ , respectively. Further, we consider a permutation π on [K] as the target of OT. Also, we address infeasibility
by consider the following optimization:

min
X∈Rn×n

≥0

⟨D,X⟩+

λ

(∑
i,i′

Ri,i′∥xi − xi′∥2 +
∑
j,j′

Sj,j′∥xj − xj′∥2

)
+ θ

2

(
∥X1− µ∥22 +

∥∥XT1− ν
∥∥2
2

)
(A.1)

where θ > 0 is a design parameter and we remind that xi = (Xi,j)j , xj = (Xi,j)i, and Ri,i′ and Sj,j′ are positive kernel
coefficients. Now, we introduce few intermediate optimizations to carry out the analysis. Define the following more general
characteristic optimization:

min
Xα,β≥0

∑
α,β

nαmβXα,βDα,β +

λ

(∑
α,α′

Rα,α′∥xα − xα′∥M +
∑
β,β′

Sβ,β′∥xβ − xβ′∥N

)

+ θ
2

(∑
α
nα

(
aTMxα − µα

)2
+
∑
β

mβ

(
aTNxβ − νβ

)2)
(A.2)

where
Rα,α′ =

∑
i∈Cα, i′∈Cα′

Ri,i′ , Sβ,β′ =
∑

j∈Dβ , j′∈Dβ′

Sj,j′

Dα,β =

∑
i∈Cα,j∈Dβ

Di,j

nαmβ
, µα =

∑
i∈Cα

µi

nα
, νβ =

∑
j∈Dβ

νj

mβ
,

∥x∥O =
√
xTOx, N,M are diagonal matrices with nα mβ as diagonals, resepectively, xα = (Xα,β)β and xβ = (Xα,β)α,

and aM = (mα)α, aN = (nα)α.

Further, define the ideal optimization:

min
Yα,β≥0

∑
α,β

Yα,βDα,β

s.t

qβ : 1Tyβ = σβ , pα : 1Tyα = σα (A.3)

where σα = (nαµα +mπ(α)ν
π(α))/2, σβ = σπ−1(β) = (nπ−1(β)µπ−1(β) +mβν

β)/2, and {pα}, {qβ} are dual variables.
Also, define δα = (µαnα −mπ(α)ν

π(α))/2, δβ = −δπ−1(β) = (mβν
β − nπ−1(β)µπ−1(β))/2 and δ = (δα). Finally, take

Ri,α =
∑

i′∈Cα

Ri,i′ , Sj,β =
∑

j′∈Dβ

Sj,j′

12



Recovery Bounds on Class-Based Optimal Transport

In case δ = 0, we may also define the tight characteristic optimization:

min
Xα,β≥0

∑
α,β

nαmβXα,βDα,β +

λ

(∑
α,α′

Rα,α′∥xα − xα′∥M +
∑
β,β′

Sβ,β′∥xβ − xβ′∥N

)
s.t.

aTMxα = µα, aTNxβ = νβ

(A.4)

which in this case, coincides with equation A.2 when θ =∞. We also define

Tα = 1
nαmπ(α)

∑
α′ ̸=α

Rα,α′
σα

nαmπ(α)√(
σα

nαmπ(α)

)2

+

(
σ
α′

n
α′mπ(α′)

)2
,

Uβ = 1
nπ−1(β)mβ

×

∑
β′ ̸=β

Sβ,β′ σβ

n
π−1(β)

mβ√(
σβ

n
π−1(β)

mβ

)2

+

(
σβ′

n
π−1(β′)mβ′

)2

Λα,β =

(
Tα + Uβ +

1
nαmβ

Rα,π−1(β)
σβ

n
π−1(β)

mβ
+Sβ,π(α)

σα
nαmπ(α)√(

σα
nαmπ(α)

)2

+

(
σβ′

n
π−1(β′)mβ′

)2

)−1

(A.5)

Then, we have the following more general result:

Theorem A.1.

1. Suppose that D̃α,α′ = Dα,π(α′) satisfies the strong cyclical monotonicity condition, where for each simple loop
i1 → i2 → . . .→ ik → ik+1 = i1 with length k > 1 we have

k∑
l=1

D̃ilil+1
≥

k∑
l=1

D̃ilil + kδ. (A.6)

Then, the solution Xα,β of the characteristic optimization in equation A.2 satisfies one of the following:

(a) If δ = 0 and θ =∞, we have Xα,β = δβ,π(α)
σα

mαnβ
with δ.,. being the Kronecker index, if

λ ≤ δmax
α̸=β

Λα,β

(b) Otherwise,
δ
∑

β ̸=π(α)

Xα,β ≤

λ
∑
α ̸=α′

(
Rα,α′

nαnα′

√
n2
α′σ2

α

mπ(α)
+

n2
ασ

2
α′

mπ(α′)

+
Sπ(α),π(α′)

mπ(α)mπ(α′)

√
m2

π(α′)σ
2
α

nα
+

m2
π(α)σ

2
α′

nα′

)

+
θ

2

(∑
α

δ2α
nα

+
∑
α

δ2α
mπ(α)

)
+

∆2
1n

θ
+∆0 (∥δ∥1 − ∥δ∥∞)

13
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where
∆0 = max

α,α′

∣∣∣2D̃α,α′ − D̃α,α − D̃α′,α′

∣∣∣ ,
∆1 =

∆0 +max
α
|D̃α,α|

2

2. The solution of equation A.1 is given by Xij = Xα,β if there exist positive constants a, c, d such that 2a+ c+ d ≤ 1
and for all i, i′ ∈ Cα and j, j′ ∈ Dβ , √∑

j∈[m]

(Dij −Di′j)
2 ≤ 2anαλRi,i′ ,

√∑
i∈[n]

(Dij −Dij′)
2 ≤ 2amβλSj,j′

|µi − µi′ | ≤
cλnαRi,i′

θ
√
m

, |νj − νj′ | ≤
cλmβSj,j′

θ
√
n√√√√√∑

α′ ̸=α

Ri,α′ −Ri′,α√
mα +mα′

2

+
∑
α′ ̸=α

(
Ri,α′ −Ri′,α√
mα +mα′

)2

≤

dnαRi,i′√√√√√∑
β′ ̸=β

Sj,β′ − Sj′,β√
nβ + nβ′

2

+
∑
α′ ̸=α

(
Sj,β′ − Sj′,β√

nβ + nβ′

)2

≤

dmβSj,j′

Proof. Denote the optimal value of equation A.3 and equation A.2 by C0 and C1, respectively. Also, notice that since D̃α,α′

satisfies the strong cyclical monotonicity condition, Yα,β = δβ,π(α)σα is the solution of equation A.3 and there exist dual
variables pα, qβ such that

Dα,β − pα − qβ

{
= 0 β = π(α)
≥ δ β ̸= π(α)

Moreover,
C0 =

∑
α

σαpα +
∑
β

σβqβ

For part 1.a, we note that under the given conditions, the solution Xα,β of equation A.2 coincides with that of equation A.4.
Now, we show that X ′

α,β =
Yα,β

nαmβ
=

δβ,π(α)σα

nαmβ
satisfies with the dual parameters p′α, q

′
β , the optimality condition of

equation A.4, which can be written as

(Dα,β − p′α − q′β)nαmβ + λAα,β

{
= 0 β = π(α)
≥ 0 β ̸= π(α)

where Aα,β is the partial derivative at X ′
α,β of the SON term w.r.t Xα,β . By direct calculation, we observe that

Aα,β =


nαmβ(Tα + Uβ) β = π(α)

−
Rα,π−1(β)

σβ

n
π−1(β)

mβ
+Sβ,π(α)

σα
nαmπ(α)√(

σα
nαmπ(α)

)2

+

(
σβ′

n
π−1(β′)mβ′

)2
β ̸= π(α)

It is now simple to check that under the given assumption, taking p′α = pα + λTα and q′β = qβ + λUβ will satisfy the
optimality conditions.

14
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For part 1.b, we note that for the solution Xα,β of equation A.2,

C1 = F ({Xα,β}) ≥
∑
α,β

nαmβXα,βDα,β+

θ

2

∑
α

nα

(
aTMxα − µα

)2
+
∑
β

mβ

(
aTNxβ − νβ

)2
=
∑
α,β

nαmβXα,β (Dα,β − pα − qβ) +
∑
α

pασα +
∑
β

σβqβ

+
∑
α

(aTMxα − µα)pαnα +
∑
β

(aTNxβ − νβ)qβmβ+

∑
α

(µαnα − σα)pα +
∑
β

(νβmβ − σβ)qβ

+
θ

2

∑
α

nα

(
aTMxα − µα

)2
+
∑
β

mβ

(
aTNxβ − νβ

)2
≥ δ

∑
β ̸=π(α)

Xα,β + C0 +
∑
α

pαδα +
∑
β

δβqβ

− 1

2θ

∑
α

p2αnα +
∑
β

q2βmβ

 ,

where F (. ) denotes the objective function in equation A.2. On the other hand for X ′
α,β =

Yα,β

nαmβ
=

δβ,π(α)σα

nαmβ
, we have that

C1 ≤ F ({X ′
α,β}) = C0+

λ
∑
α̸=α′

(
Rα,α′

nαnα′

√
n2
α′σ2

α

mπ(α)
+

n2
ασ

2
α′

mπ(α′)
+

Sπ(α),π(α′)

mπ(α)mπ(α′)

√
m2

π(α′)σ
2
α

nα
+

m2
π(α)σ

2
α′

nα′

)

+
θ

2

(∑
α

δ2α
nα

+
∑
α

δ2α
mπ(α)

)
We conclude that

δ
∑

β ̸=π(α)

Xα,β ≤

λ
∑
α̸=α′

(
Rα,α′

nαnα′

√
n2
α′σ2

α

mπ(α)
+

n2
ασ

2
α′

mπ(α′)

+
Sπ(α),π(α′)

mπ(α)mπ(α′)

√
m2

π(α′)σ
2
α

nα
+

m2
π(α)σ

2
α′

nα′

)

+
θ

2

(∑
α

δ2α
nα

+
∑
α

δ2α
mπ(α)

)
+

1

2θ

∑
α

p2αnα +
∑
β

q2βmβ

−
15
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α

pαδα −
∑
β

δβqβ

Lemma A.2 gives the result in part 1.

For part 2, notice that the optimality condition of Xα,β yields

nαmβDα,β + λ
∑
α′ ̸=α

Rα,α′mβ(zα,α′)β + λ
∑
β′ ̸=β

Sβ,β′nα(z
β,β′

)α

+θnαmβ(a
T
Mxα − µα) + θmβnα(a

T
Nxβ − νβ) = 0

where

zα,α′ =
xα − xα′

∥xα − xα′∥M
, zβ,β

′
=

xβ − xβ′

∥xβ − xβ′∥N
Define for i, i′ ∈ Cα and j, j′ ∈ Dβ

(zi,i′)j =
1

2λnαRi,i′

(
−Dij +Di′j −

∑
j′∈Dβ

Dij′

mβ
+∑

j′∈Dβ

Di′j′

mβ
− 2θµi + 2θµi′

)
− 1

nαRi,i′

∑
α′ ̸=α

(Ri,α′ −Ri′,α′) (zα,α′)β

(zj,j
′
)i =

1

2λmβSj,j′

(
−Dij +Dij′ −

∑
i′∈Cα

Di′j

nα

+

∑
i′∈Cα

Di′j′

nα
− 2θνj + 2θνj′

)
− 1

mβSj,j′

∑
β′ ̸=β

(Sj,β′ − Sj′,β′) (zβ,β
′
)α

Also for i ∈ Cα, i
′ ∈ Cα′ and j ∈ Dβ , j

′ ∈ Dβ′ , where α ̸= α′ and β ̸= β′, take (zii′)j = (zα,α′)β , (zjj
′
)i = (zβ,β

′
)α.

Then, it simple to check that Xij = Xα,β satisfies the optimality conditions of equation A.1 under conditions of the theorem
and noticing that by the root-means-square and arithmetic mean (RMS-AM) inequality, we also have√√√√√√ ∑

β∈[K]

mβ


∑

j∈Dβ

(Dij −Di′,j)

mβ


2

≤ 2aλnαRi,i′

√√√√√ ∑
α∈[K]

nα


∑

i∈Cα

(Dij −Dij′)

nα

2

≤ 2aλmβSj,j′

Lemma A.2. Suppose that the ideal optimization in equation A.3 has a solution where Xα,π(α) > 0 holds for every α. For
every δ = (δα)α satisfying 1T δ = 0 and any choice of the optimal dual parameters {pα, qβ} we have that∑

α

pαδα +
∑
β

qβδ
β ≤ ∆0 (∥δ∥1 − ∥δ∥∞)

where δβ = −δπ−1(β). As a result in this case, equation A.3 has optimal dual parameters {pα, qβ} satisfying

|pα| ≤ ∆1, |qβ | ≤ ∆1

16



Recovery Bounds on Class-Based Optimal Transport

Proof. Denote the minimum value of Xα,π(α) by ϵ. Without loss of generality, we assume that ∥δ∥1 − ∥δ∥∞ ≤ ϵ. Take
α0 ∈ argmin

α
|δα|. Hence, ∥δ∥1 − ∥δ∥∞ =

∑
α̸=α0

|δα|.

Denote the optimal value of equation A.3 by C0. From the strong duality theorem we have that

C0 =
∑
α

pασα +
∑
β

qβσ
β

Take

C1 = min
Yα,β≥0

∑
α,β

Yα,βDα,β

s.t

1Tyβ = σβ + δβ ,1Tyα = σα + δα (A.7)

We notice that {pα, qβ} are feasible dual vectors for equation A.7. Hence, from the weak duality theorem we have

C1 ≥
∑
α

pα(σα + δα) +
∑
β

qβ(σ
β + δβ)

= C0 +
∑
α

pαδα +
∑
β

qβδ
β

Now take the solution

Y ′
α,β = Yα,β



−|δα| α ̸= α0, β = π(α)
−
∑

α̸=α0

|δα| α = α0, β = π(α0)

+(δβ)+ α = α0, β ̸= π(α0)
+(δα)+ α ̸= α0, β = π(α0)
+0 Otherwise

It is simple to check that Y ′
α,β is feasible in equation A.7. Moreover, we have

C1 ≤
∑
α,β

Y ′
α,βDα,β = C0+

∑
α ̸=α0

(
2Dα0π(α)(δα)+ + 2Dαα0(δα)−−

(Dα,α +Dα0,α0
)|δα|)

≤ C0 +∆0

∑
α̸=α0

|δα|

We conclude that ∑
α

pαδα +
∑
β

qβδ
β ≤ ∆0

∑
α ̸=α0

|δα|

which proves the first part. Now, notice that for any pair (α1, α2) of distinct indices, taking δα1 = 1 and δα1 = −1 gives

pα1 − pα2 − qα1 + qα2 ≤ ∆0

switching α1, α2 yield
|pα1
− pα2

− qα1
+ qα2

| ≤ ∆0

Now, notice that from the optimality of equation A.3 we have pα + qα = Dα,α, which leads to

2|pα1 − pα2 | ≤ ∆0 + |Dα1,α1 −Dα2,α2 |

which yield ∣∣∣∣(pα1 +
Dα1,α1

2

)
−
(
pα2

+
Dα2,α2

2

)∣∣∣∣ ≤ ∆0

17
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The result is obtained by noticing that the set of optimal dual solutions is invariant under shift, i.e. pi + λ and qi − λ are
also solutions for any λ ∈ R. Hence, we may take λ such that∣∣∣∣pα +

Dα,α

2

∣∣∣∣ ≤ ∆0

2

and hence ∣∣∣∣qα − Dα,α

2

∣∣∣∣ ≤ ∆0

2

Triangle inequality gives the result.

A.1. Proof of Theorem 3.2

The first claim that Xij = Xα,β follows by specializing part 2 of Theorem A.1 for the conditions of Theorem 3.2 with
a = 1/2, b = c = 0: θ =∞ and inside clusters we have Ri,i′ = Sj,j′=1 = 1, Ri,α′ = Ri′,α and Sj,β′ = Rj′,β . Moreover
nα = mβ = m.

Part 1 in the main text also is achieved by specializing part 1.a.: We will have σα = ωα, nα = mβ = m, Rα,α′ = m2R and
Sβ,β′ = m2.

Finally, part 2 is a result of 1.b. with θ =∞, δ = 0.

A.2. Proof of Theorem 3.1

Based on theorem 3.2, we present a sketch of the proof for theorem 3.1. Under the assumptions of theorem 3.1, we directly
verify that Λ = Λα,β =

√
2/K(1+R). For part 1) δ = D − d− 2ω, ∆ ≤ 2ω and for part 2) δ = D2 − d2 are valid choices.

Finally, for part 2) we may conclude by Chernoff bound that with a probability exceeding 1−1/n10 (the power 10 is arbitrary)
we have ∆ = O(ω

√
(E + ω)2 + 1 log(nK)). Replacing these expression in the first part of theorem 3.2 gives us the result.

B. Proof of Theorem 4.1
To simplify the notation, we introduce ϕP+q = ISq for q = 1, 2 . . . , Q, where IS denotes the indicator function of a convex
set S. It is well-known that the proximal operator of IS coincides with the orthogonal projection operator onto S. Hence,
we may simplify our algorithm to

xt+1 = prox (xt + µgrt) , at = ρ
xt − xt+1

µ
− αḡt,

grt ← grt + at,

where we introduce gP+q = hq for q = 1, 2 . . . , Q and denote ḡt =
R∑

r=0
gr with R = P + Q. Moreover, rt is equal to

either pt or P + qt, depending on the random choice. We also define x†
r,t = prox (xt + µgr) and hence xt+1 = x†

r,t.

To prove convergence, we adopt a so-called Lyapunov function approach. We introduce two non-negative functions L,M of
the state variables, x and {gr} such that

E[Lt+1]− E[Lt] + E[Mt] ≤ 0, t = 1, 2, . . . , (B.1)

where Lt,Mt denote the values of L,M at the variables of the tth iteration. Then, summing these inequalities up to an
arbitrary time t gives

E[Lt]− L0 +

t−1∑
τ=0

E[Mτ ] ≤ 0 (B.2)

which by the non-negativity of L implies
t−1∑
τ=0

E[Mτ ] ≤ L0. (B.3)

18



Recovery Bounds on Class-Based Optimal Transport

In particular, we take

Mt = Ft +
1−ρ

2µ(1+ρ)

∑
r

∥∥∥xt − x†
r,t

∥∥∥2
+µ

ρ

[
2+α
2 −

α2

1−ρ

]
∥ḡt∥2 (B.4)

where

Ft =

P∑
r=1

[
ϕr

(
x†
r,t

)
− ϕr(x

∗)− ⟨g∗
r ,x

†
r,t − x∗⟩

]
(B.5)

and g∗
r ∈ ∂ϕr(x

∗) for r ∈ [R] satisfy the monotone inclusion problem in equation 4.6 at x∗, i.e
∑
r
g∗
r = 0. Then,

the non-negativity of each summand of Ft follows from the convexity of ϕr. The third term of Mt is also positive for
α < 1+

√
17

4 (1− ρ). This establishes the non-negativity of Mt. We further define

Γt =

R∑
r=1

∥gr − g∗
r∥2, Gt = ∥µḡt + ρ(xt − x∗)∥2,

Dt = ∥x∗ − xt∥2
(B.6)

and take

Lt =
R

2µ
Dt +

1

2ρµα
Gt +

Rµ

2ρ
Γt (B.7)

B.1. Proof of Theorem Under equation B.1

Let us first prove the theorem assuming equation B.1 holds true for the given L,M . Then equation B.3 also holds true and
we conclude from the definition of M that

1

t

t−1∑
τ=0

E[Fτ ] ≤
L0

t
,

1− ρ

2t(1 + ρ)

t−1∑
τ=0

∑
r

E
[∥∥∥xt − x†

r,t

∥∥∥2] ≤ µL0

t

(B.8)

Now from equation B.5 and the triangle inequality, we conclude that

E[Fτ ] ≥ E

[
P∑

r=1

ϕr(xτ )− ϕr(x
∗)

]

−
P∑

r=1

E
∣∣ϕr

(
x†
r,τ

)
− ϕr(xτ )

∣∣−
P∑

r=1

E
∣∣⟨g∗

r ,x
†
r,τ − xτ ⟩

∣∣
(B.9)

Further since the functions are β−Lipschitz, we observe that ∥g∗
r∥ ≤ β. Hence,

P∑
r=1

E
∣∣⟨g∗

r ,x
†
r,τ − xτ ⟩

∣∣ ≤ β

P∑
r=1

E
∥∥x†

r,τ − xτ

∥∥
≤ β
√
P

√√√√ P∑
r=1

E
∥∥∥x†

r,τ − xτ

∥∥∥2
(B.10)
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Similarly,
P∑

r=1

E
∣∣ϕr

(
x†
r,τ

)
− ϕr(xτ )

∣∣ ≤ β

P∑
r=1

E
∥∥x†

r,τ − xτ

∥∥
≤ β
√
P

√√√√ P∑
r=1

E
∥∥∥x†

r,τ − xτ

∥∥∥2
(B.11)

We conclude that

E

[
P∑

r=1

ϕr(xτ )− ϕr(x
∗)

]

≤ E[Fτ ] + 2β
√
P

√√√√ P∑
r=1

E
∥∥∥x†

r,τ − xτ

∥∥∥2
(B.12)

and hence,

1
t

t−1∑
τ=0

E
[

P∑
r=1

ϕr(xτ )− ϕr(x
∗)

]
≤ 1

t

t−1∑
τ=0

E[Fτ ] +
2β

√
P

t

t−1∑
τ=0

√
P∑

r=1
E
∥∥∥x†

r,τ − xτ

∥∥∥2
≤ 1

t

t−1∑
τ=0

E[Fτ ] +

2β
√
P

√
1
t

t−1∑
τ=0

P∑
r=1

E
∥∥∥x†

r,τ − xτ

∥∥∥2 (B.13)

Using Jensen’s inequality and equation B.8, we obtain

E

[
P∑

r=1

ϕr(x̄τ )− ϕr(x
∗)

]
≤

1

t

t−1∑
τ=0

E

[
P∑

r=1

ϕr(xτ )− ϕr(x
∗)

]
≤

L0

t
+ 2β

√
2PµL0(1 + ρ)

t(1− ρ)

(B.14)

This proves the first bound in part 1 noting that for a suitable constant c only depending on ρ, α and the constant in
equation 4.7

L0 ≤ cβPλ. (B.15)

For the second bound in part 1 note that for r = P + 1, P + 2, . . . , P +Q, we have dist(xt, Sr) ≤ ∥x†
r,t − xt∥, since by

definition x†
r,t ∈ Sr. We conclude that

Q∑
q=1

dist2(x̄t, Sq) ≤
1

t

t−1∑
τ=0

R∑
r=P+1

∥x†
r,t − xt∥2 ≤

µL0

t
(B.16)

For part 2, note that

E
[
∥xt+1 − xt∥2

]
= E

[
E
[
∥xt+1 − xt∥2 | xt

]]
=

E

[
1

R

∑
r

∥∥∥x†
r,t − xt

∥∥∥2]
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We conclude from equation B.3 that ∑
t

E
[
∥xt+1 − xt∥2

]
≤ µL0

R
(B.17)

which completes the proof.

B.2. Proof of equation B.1

It remains to prove equation B.1. We first state the following intermediate results that characterize the term E[Lt]−E[Lt−1]
in equation B.1. They can be proven by direct substitution and hence the proofs are neglected.
Lemma B.1. The average dynamics of Gt is given by:

E[Gt+1]− E[Gt] = −µ2
[
1− (1− α)2

]
E∥ḡt∥2

+ 2ρµαE ⟨x∗ − xt, ḡt⟩
(B.18)

Lemma B.2. The average dynamics of Γt is given by:

E[Γt+1]− E[Γt] =
1

R

∑
r

E

∥∥∥∥∥ρxt − x†
r,t

µ
− αḡt

∥∥∥∥∥
2

+
2ρ

Rµ

∑
r

E
〈
xt − x†

r,t,gr − g∗
r

〉
− 2α

R
∥ḡt∥2

(B.19)

Lemma B.3. The average dynamics of Dt is given by:

E[Dt+1]− E[Dt] = −
1

R

∑
r

E∥x†
r,t − xt∥2

+
2

R

∑
r

E⟨xt − x†
r,t,x

∗ − x†
r,t⟩

(B.20)

Now, we state a crucial inequality that connects the dynamics of L to M :
Lemma B.4. The following inequality holds at every time:

Ft +

R∑
r=1

〈
xt − x†

r,t

µ
+ gr − g∗

r ,x
∗ − x†

r,t

〉
≤ 0 (B.21)

Proof. From the definition of a proximal operator for r = 1, 2, . . . , P , we have
xt−x̄†

r,t

µ + gr ∈ ∂ϕr(x̄
†
r,t). hence

ϕr(x
∗) ≥ ϕr(x̄

†
r,t) +

〈
xt − x̄†

r,t

µ
+ gr,x

∗ − x̄†
r,t

〉
(B.22)

Adding and subtracting the term ⟨g∗
r , x̄

†
r,t − xt⟩ and summing over r ∈ [P ] gives

Ft +

P∑
r=1

〈
xt − x†

r,t

µ
+ gr − g∗

r ,x
∗ − x†

r,t

〉
≤ 0 (B.23)

Now, note that by the definition of a projection operator for r = P + 1, P + 2, . . . , R we have
xt−x̄†

r,t

µ + gr is normal to Sr

at x̄†
r,t. Since x∗ ∈ Sr, we have 〈

xt − x†
r,t

µ
+ gr,x

∗ − x†
r,t

〉
≤ 0 (B.24)

Similarly, we obtain that
⟨g∗

r , x̄
†
r,t − xt⟩ ≤ 0 (B.25)

Summing (44) and (45) over r = P + 1, P + 2, . . . , R and adding to (43) gives the desired result.
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B.2.1. COMBINING BOUNDS

To obtain equation B.1, we combine the inequalities in the above four lemmas in the following way. Respectively multiplying
equation B.20, equation B.18 and equation B.19 by R

2µ , 1
2ρµα and Rµ

2ρ and adding to equation B.21 and after straightforward
calculations, we obtain:

E[Lt+1]− E[Lt] +
1

2µ

∑
r

∥∥∥xt − x†
r,t

∥∥∥2 +
µ

[
1− (1− α)2

2αρ
+

α

ρ

]
∥ḡt∥2

− 1

2ρµ

∑
k∈[K]

∥∥∥ρ(x− x†
k

)
− µαg

∥∥∥2 ≤ 0.

By invoking Jensen’s inequality, we have,∥∥∥ρ(x− x†
k

)
− µαg

∥∥∥2 ≤ 2ρ2

1 + ρ

∥∥∥x− x†
k

∥∥∥2 + 2µ2α2

1− ρ
∥g∥2,

which yields the desired result.

B.3. Proof of Theorem 4.2

The proximal operator of ϕk,ζ,η is defined as

argmin
(x,y)∈Rm×Rm

1

2µ
∥x− p∥22 +

1

2µ
∥y − q∥22 + ϕρ,ζ,η(x,y). (B.26)

We introduce a change of variables by u = (x+y)/2,v = (x−y)/2. First note that ∥a∥2 + ∥b∥2 = (∥a+ b∥2 + ∥a− b∥2)/2.
Hence

1

2µ
∥x− p∥22 +

1

2µ
∥y − q∥22 =

1

µ

(∥∥∥∥u− p+ q

2

∥∥∥∥2 + ∥∥∥∥v − p− q

2

∥∥∥∥2
)

Furthermore,
⟨x, ζ⟩+ ⟨y,η⟩ = ⟨u+ v, ζ⟩+ ⟨u− v,η⟩ = ⟨u, ζ + η⟩+ ⟨v, ζ − η⟩

Hence equation B.26 can be written as

argmin
(u,v)∈Rm×Rm

1

µ

(∥∥∥∥u− p+ q

2

∥∥∥∥2 + ∥∥∥∥v − p− q

2

∥∥∥∥2
)
+

⟨u, ζ + η⟩+ ⟨v, ζ − η⟩+ 2ρ∥v∥2

(B.27)

= argmin
(u,v)∈Rm×Rm

1

µ

(∥∥∥∥u− p+ q− µζ − µη

2

∥∥∥∥2
)
+

1

µ

(∥∥∥∥v − p− q− µζ + µη

2

∥∥∥∥2
)

+ 2ρ∥v∥2

(B.28)

This is separable over u and v, and can be analytically solved. We get

u =
p+ q− µζ − µη

2
,

v = Tµρ
(
p− q− µζ + µη

2

)
The result is obtained by setting x = u+ v,y = u− v.
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C. Additional experiments
C.1. Impact of SON-Regularizer

We investigate the models on a simple dataset, shown in Fig. 2. We illustrate the behavior of each model with respect
to two different values of its regularization parameter (low and high) respectively at the first and the second row (low:
λ1 = 0.01, λ2 = 0.0, high: λ1 = 10, λ2 = 5). In the low setting, instead of λ2 = 0.0 any other small value also yields
consistent results. The source data, target data and transported source data are respectively shown by yellow, blue and red
points. Each column of the sub-figures in Fig. 2 corresponds to a particular model performance respectively OT-l1l2, OT-lpl1,
OT-Sinkhorn and OT-SON (our model). We observe that OT-SON yields stable and consistent results for different values
of its parameters. Moreover, the data points transported by the proposed model are always informative providing a good
representation of the underlying classes. Whereas, the other OT models are sensitive to the values of their regularization
parameters and might thus transport the source data to somewhere in the middle of the actual target data, or away from the
actual classes in the target domain.

Figure 2. Illustration of different models on simple data, where the source and target domains have the same number of classes and similar
distributions. The columns respectively correspond to OT-l1l2, OT-lpl1, OT-Sinkhorn and OT-SON. For each model, we illustrate the
results for two different values of its regularization parameter. Among different models, OT-SON yields consistent, informative and stable
transports for different regularization parameters.

We next study the interesting case where the source and target domains do not include the same number of classes, as shown
in Fig. 3. In this experiment, we assume that the source data contains three classes, whereas the target domain has only two
classes. Using the same color code as in Fig.2, we see in Fig. 3 the target classes and the transported source classes to the
target domain are shown in yellow, blue and red respectively corresponding to OT-l1l2, OT-lpl1, OT-Sinkhorn and OT-SON.
We again illustrate the behavior of each model w.r.t. two different values of its regularization parameter (low and high)
respectively at the first and the second row. We observe that among all different models, only OT-SON with an appropriate
parameter is able to identify that the source and the target domains have different number of classes, and subsequently,
matches the corresponding classes correctly. It maps the superfluous class to a space between the two matched classes.
However, the other models assign the superfluous class to the two other classes and do not distinguish the presence of such
an extra class in the source domain. This observation is consistent with the assumptions made in (Courty et al., 2017). The
unbalanced method in (Chizat et al., 2018) might be relevant but its use is unclear to us. In the last column of Fig. 3, the
heat maps show the mapping cost among different source and target classes, and as well as the transport map obtained by
our algorithm (OT-SON with a high regularization). We observe that the transport map respects the class structure.

C.2. Experiments on path-based data

In Fig. 4, we investigate the different OT-based domain adaptation models on a commonly-used synthetic dataset, wherein
the three classes have diverse shapes and forms (Chang and Yeung, 2008). In particular, we consider the case where one of
the source classes is absent in the target domain. With the same number of classes in the source and target domains, the
different models perform equally well. Fig. 4(a) shows a case where the source data (yellow points) and the target data (blue
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Figure 3. Illustration of different methods where the source and target domains have different number of classes. The first four columns
respectively correspond to OT-l1l2, OT-lpl1, OT-Sinkhorn and OT-SON. Only OT-SON with an appropriate parameterization (the forth
column and the second row) identifies the presence of a superfluous class in the source and handles it properly. The last column shows the
consistency between the mapping costs and the transport map.

(a) Path-based data. (b) Path-based transport. (c) Accuracy results.

Figure 4. Path-based source (yellow points) and target (blue points) datasets. Using OT-SON to transfer the path-based source data to the
target domain (shown by red) yields the best results.

points), differ in the fact that the target data is missing the upper left Gaussian cloud of points appearing in the source data.
Fig. 4(b) shows the two source and target datasets, as well as the transported data by our model (OT-SON). The transported
data points are shown in red. We observe that our method avoids mapping the source data of the missing class to any of the
present classes in the target domain. The points with white interior are those not assigned to any class in the target. This
thus leads to a better prediction of the target data. In the table of Fig. 4(c), we compare the accuracy scores of different
models on the target data, where our model yields the highest score.

C.3. Unsupervised domain adaptation

In all prior experiments, we have assumed that the class labels of the source data are available. This setup is consistent with
the study in (Courty et al., 2017). We consequently evaluate in a side study the fully unsupervised setting, i.e., the case
where no class label is available for the source or the target data. We consider the setting used in Fig. 3 with, this time, no
given class labels. While the other methods fail for this task, the OT-SON with proper parameterization (i.e., the setting
shown in the second row and the forth column) yields meaningful and consistent results. Fig. 5 shows the OT-SON results
and the consistency of transport costs and transport maps computed by OT-SON.
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Figure 5. Unsupervised OT-SON, the OT-SON results and the consistency of transport costs and transport maps.

Figure 6. Early stopping of the optimization after a finite number of epochs. The results are very consistent and stable even of we stop the
algorithm very early.

C.4. Early stopping of the optimization

We study the early stopping of our optimization procedure. We use the data in Fig. 3 and investigate the results with different
number of epochs. Here, we employ the OT-SON with proper parameterization, i.e., the results shown in the forth column
and the second row for OT-SON in Fig. 3. In the experiments in Fig. 3 we performed the optimization with 20 epochs.
Here, we study early stopping, i.e., we study the quality of results if we stop after a smaller number of epochs. According
to the results in Fig. 6, we observe that even after a small number of epochs, we obtain reliable and stable results that
represent well the ultimate solution. Such a property is very important in practice, as it can significantly reduce the heavy
computations. Fig. 7 illustrates the transport maps for different number of epochs. The different transport maps at different
number of epochs are consistent with the transport cost shown in the last row of Fig. 7.

C.5. Diverse classes in the source

We next study the case where two of the three source classes have the same label, as shown in Fig. 8. In the source data
(shown by yellow), the left and the middle data clouds have the same class labels. This example shows why the transport
based on only the pairwise distances between the source and target data is insufficient. In Fig. 8, the left plot corresponds to
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Figure 7. Consistency of the transport maps with the transport costs (shown at the last row) when using different finite number of epochs.
Thus, early stopping can be useful for efficiency purposes.

λ1 = λ2 = 0, the middle plot corresponds to λ1 = 10, λ2 = 0.01, and the right plot corresponds to λ1 = 100, λ2 = 0.01.
We observe that the left plot (with λ1 = λ2 = 0) fails to perform a proper transport of the source data. On the other hand,
with incorporating our proposed regularization, the two different classes (even-though one of them is diverse) are properly
transported to the target domain. We observe this kind of transfer in both of the middle (λ1 = 10, λ2 = 0.01) and right
(λ1 = 100, λ2 = 0.01) plots.

C.6. Fewer classes in the source

In the experiments of Fig. 3, we studied the case where the number of source classes is larger the number of target classes.
Here, we consider an opposite setting: we assume two classes in the source and three classes in the target, as illustrated
in Fig. 9. The source, target and transported data points are respectively shown by yellow, blue, and red. We use the
same setting and parameters as in Fig. 3, i.e., the first row corresponds to low regularization and the second row to high
regularization (low regularization: λ1 = 0.01, λ2 = 0.0, high regularization: λ1 = 10, λ2 = 5). We observe that similar to
the results in Fig. 3, only OT-SON with high regularization prevents splitting the source data among all the three target
classes. The last row in Fig. 9 indicates the consistency between the mapping costs and transport map for this setting (for
OT-SON with high regularization).

D. Uniqueness
An elementary question concerning any optimization formulation, including the Kantorovich problem and its regularization
in equation 2.3, is the uniqueness of their optimal solution, and a standard method for verifying uniqueness is to establish
strong convexity of the objective function. Even though it is seen that the objective in (2.3) is not strongly convex, we are
nevertheless able to identify conditions, under which the solution still remains unique. For this, we develop an alternative
approach, which is not only useful in our framework, but may also be generically used in many similar problems including a
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Figure 8. The impact of SON regularization when the class members are diverse. The plot on the left (where λ1 = λ2 = 0) performs
transportation solely based on pairwise distances, thus fails to transfer the classes properly. Our SON regularization (either λ1 = 10, λ2 =
0.01 or λ1 = 100, λ2 = 0.01) improves the transportation by enforcing block-specific transfers.

wide range of linear programming (LP) relaxation problems, and for this reason it is first presented. Our approach is based
on the following definition:

Definition D.1. We call a (global) optimal solution X0 of a convex optimization problem

min
X∈S

F (X),

where F (. ) is a convex function and S is a convex set, a resistant optimal point if adding a linear perturbation term
⟨D̃,X⟩ with sufficiently small coefficients in D̃ to the objective leads to an arbitrarily small perturbation of the solution X0.
In mathematical terms for any open neighborhoodN of X0 there exists an open neighborhoodM of D̃ around D̃ = 0 such
that

∀D̃ ∈M, N ∩ arg min
X∈S

F (X) + ⟨D̃,X⟩ ≠ ∅.

Accordingly, we have the following result:

Theorem D.2. A resistant optimal point of a convex optimization problem is its unique optimal point.

Proof. Suppose that there exists a different optimal point X′. Take D0 = X0−X′

∥X0−X′∥ , r = ∥X0 −X′∥ and D̃ = ϵD0 for
arbitrary ϵ > 0. Further, define N as the ball of radius δ = r/2 centered at X0. Note that for each Y ∈ N we have

F (Y) + ⟨D̃,Y⟩ ≥ F (X0) + ⟨D̃,Y⟩ =

F (X′) + ⟨D̃,X′⟩+ ⟨D̃, (Y −X0) + (X0 −X′)⟩.

Now, note that ⟨D̃, (Y −X0) + (X0 −X′)⟩ ≥ −δϵ+ rϵ > 0, which establishes

F (Y) + ⟨D̃,Y⟩ > F (X′) + ⟨D̃,X′⟩.

Hence, N ∩ arg min
X∈S

F (X) + ⟨D̃,X⟩ = ∅ and since ϵ = ∥D̃∥ is arbitrarily small, we conclude that X0 is not a resistant

optimal point. This contradicts the assumption and shows that the solution is unique.
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Figure 9. Performance of different methods when the source has two classes and the target consists of three classes. The columns in
order represent OT-l1l2, OT-lpl1, OT-Sinkhorn and OT-SON. Among different methods, only OT-SON with high regularization prevents
splitting the source data among all the three target classes. The last row shows the consistency between the mapping costs and the transport
map for OT-SON with high regularization.

Theorem D.2 is a general way to establish uniqueness. In fact, we can show that the strong convexity condition is a special
case of this result:

Theorem D.3. If F is continuous and strongly convex, then the global minimal point of F over a convex set S is resistant.

Proof. Denote the optimal point by X∗. By strong convexity, there exists a γ > 0 such that for any feasible point
X ∈ S , we have F (X) − F (X∗) ≥ γ

2 ∥X − X∗∥2F. Take G = F + ⟨D̃,X⟩ and note that G (X) − G (X∗) ≥
γ
2 ∥X−X∗∥2F+ ⟨D̃,X−X∗⟩ ≥ γ

4 ∥X−X∗∥2F− 2
γ ∥D̃∥

2
F. This shows that G > G (X∗) and hence does not have any global

optimal point outside the closed sphere {X | ∥X−X∗∥F ≤
√
8

γ ∥D̃∥F}. Since G is continuous, it also attains a minimum
inside the sphere, which then becomes the global optimal point. We conclude that for any ϵ > 0, taking ∥D̃∥ < γϵ√

8
leads to

an optimal solution inside a ball of radius ϵ centered at X∗. This shows that the solution is resistant.

Uniqueness for equation 2.3: One special case of resistant optimal points, that will be useful in our analysis, is when there
exists a neighborhoodM of 0 such that

∀D̃ ∈M, X∗ ∈ arg min
X∈S

F (X) + ⟨D̃,X⟩.

We call such a resistant optimal point an extremal optimal point. Later, we consider an analysis where we give conditions
on D to ensure that a desired solution X∗ is achieved. Our strategy for uniqueness in this analysis is to show that under the
same conditions, the desired optimal point is also extremal and hence unique, according to Theorem 1. In the case of the
problem in equation 2.3, adding the term ⟨D̃,X⟩ modifies the cost matrix D to D+ D̃. Hence, being an extremal optimal
point is in this case equivalent to the solution X∗ being maintained following a perturbation of the matrix D in a sufficiently
small open neighborhood. This is easy to achieve in our planted model analysis, because the optimality of X∗ is guaranteed
by a set of inequalities on D, which remain valid under small perturbations, simply by requiring the inequalities to be strict.
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As seen, Theorem D.2 and extremal optimality, in particular, can be powerful tools for establishing uniqueness beyond
strong convexity.

E. Remarks on the Optimization Algorithm
Efficient Computation: While the objective in (4.2) may appear complex as it involves n2 terms, the associated algorithm
is stochastic and incremental, thus only involving one term in (4.2) for each iteration, thus greatly reducing the complexity
as a result. The simplification of the algorithm is also due to the proximal update detailed in Theorem 4.2 (and subsequent
projection) used in each iteration update of a pair of rows or columns. We further note that an early stopping typical of
stochastic schemes is likely, making a full-run to convergence unnecessary (see Section 4.4 in (Bottou et al., 2018)), and in
practice avoiding the impact of the n2 terms on the performance. When the underlying data satisfies the structure of the
stochastic block model, the problem size is essentially B2 ≪ n2, as the number of required iterations is determined by an
adequate sampling of all blocks.

Just-in-Time Update: In our problem of interest in equation 2.3, the number of variables quadratically grows with the
problem size. For such problems, incremental algorithms may become infeasible in large-scale. Note that each iteration
of our algorithm includes proximal and projection operators, that update only a small group of variables. This allows us
to apply the Just-in-Time approach in (Schmidt et al., 2017) to resolve the problem with the number of variables. In our
problem, each term ϕn(x) and constraint Sm only involves a small subset xIn := (xi, i ∈ In) of the variables, where
In ⊆ [D]. Hence, the projection and proximal operators alter only a small subset of variables, dramatically reducing the
amount of computation. We exploit this to give an algorithm that has much cheaper per-iteration cost. Note that the vanilla
algorithm explained in equation 4.4 and equation 4.5 still operates on the full set of variables as the memory vectors become
non-sparse by the updating rule in equation 4.5. We resolve this issue by following the Just-in-Time approach in (Schmidt
et al., 2017) and modifying equation 4.5 to

at = ρ
xt − xt+1

µ
− α

(∑
n

gn +
∑
m

hm

)
It

(E.1)

where It denotes the set of variables involved in the tth iteration and we define (y)I for a vector y = (y1, y2, . . . , yd) as a
vector y′ = (y′1, y

′
2, . . . , y

′
d) such that

y′i =

{
Kyi

Ki
i ∈ I

0 i /∈ I

where K = M +N and Ki is the number of objective terms ϕn and constraint sets Sm including the ith variable xi.
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