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Abstract

Heavy-tail phenomena in stochastic gradient de-
scent (SGD) have been reported in several empir-
ical studies. Experimental evidence in previous
works suggests a strong interplay between the
heaviness of the tails and generalization behav-
ior of SGD. To address this empirical phenom-
ena theoretically, several works have made strong
topological and statistical assumptions to link the
generalization error to heavy tails. Very recently,
new generalization bounds have been proven, in-
dicating a non-monotonic relationship between
the generalization error and heavy tails, which is
more pertinent to the reported empirical obser-
vations. While these bounds do not require ad-
ditional topological assumptions given that SGD
can be modeled using a heavy-tailed stochastic
differential equation (SDE), they can only apply
to simple quadratic problems. In this paper, we
build on this line of research and develop gen-
eralization bounds for a more general class of
objective functions, which includes non-convex
functions as well. Our approach is based on de-
veloping Wasserstein stability bounds for heavy-
tailed SDEs and their discretizations, which we
then convert to generalization bounds. Our results
do not require any nontrivial assumptions; yet,
they shed more light to the empirical observations,
thanks to the generality of the loss functions.
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1. Introduction
Many supervised learning problems can be expressed as an
instance of the risk minimization problem

min
θ∈Rd

{F (θ) := Ex∼D[f(θ, x)]} , (1)

where x ∈ X is a random data point, distributed according
to an unknown probability distribution D and taking values
in the data space X , θ denotes the parameter vector of the
model to be learned and f(θ, x) is the instantaneous loss of
misprediction with parameters θ corresponding to the data
point x. With different choices of the function f , we can
recover many problems in supervised learning from deep
learning to logistic regression or support vector machines
(Shalev-Shwartz & Ben-David, 2014).

As D is unknown in many scenarios, directly attacking (1)
is often not possible. Assuming we have access to a training
dataset Xn = {x1, . . . , xn} ⊂ Xn with n independent
and identically distributed (i.i.d.) observations, in practice,
we can consider the empirical risk minimization (ERM)
problem instead, given as follows:

min
θ∈Rd

{
F̂ (θ,Xn) :=

1

n

n∑
i=1

f(θ, xi)

}
.

One of the most popular algorithms for attacking the ERM
problem is stochastic gradient descent (SGD) that is based
on the following recursion:

θk+1 = θk − η∇F̃k+1(θk, Xn), (2)

where η is the step-size (or learning-rate) and

∇F̃k(θ,X) :=
1

b

∑
i∈Ωk

∇f(θ, xi)

is the stochastic gradient, with Ωk ⊂ {1, . . . , n} being a
random subset drawn with or without replacement, and
b := |Ωk| ≪ n being the batch-size.

Understanding the generalization properties of SGD has
been a major challenge in modern machine learning. In this
context, the goal is to bound the so-called generalization
error: |F̂ (θ,Xn) − F (θ)|, either in expectation or in high
probability.
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While a plethora of approaches have been proposed to ad-
dress this task (Cao & Gu, 2019; Lei & Ying, 2020; Neu
et al., 2021; Park et al., 2022), a promising approach among
those has been based on the theoretical and empirical obser-
vations which showed that SGD can exhibit a heavy-tailed
behavior, depending on the choice of hyperparameters (η
and b), the data distribution D, and the geometry of the loss
function f (Gürbüzbalaban et al., 2021; Hodgkinson & Ma-
honey, 2021). This has motivated the use of ‘heavy-tailed
proxies’ for SGD, which –to some extent– facilitated the
analysis of SGD in terms of its generalization error. Exam-
ples of such proxies include gradient descent with additive
heavy-tailed noise:

θk+1 = θk − η∇F̂ (θk, Xn) + ξk+1, (3)

where (ξk)k≥1 is a sequence of heavy-tailed random vec-
tors, potentially with unbounded higher-order moment, i.e.,
E∥ξk∥p = +∞ for some p > 1 (see e.g., (Nguyen et al.,
2019; Zhang et al., 2020; Wang et al., 2021)).

Another popular proxy for heavy-tailed SGD is based on a
continuous-time version of (3), which is expressed by the
following stochastic differential equation (SDE):

dθt = −∇F̂ (θt, Xn)dt+ σdLα
t , (4)

where σ > 0 is a scale parameter, Lα
t is a d-dimensional α-

stable Lévy process, which has heavy-tailed increments and
will be formally defined in the next section1, and α ∈ (0, 2]
denotes the ‘tail-exponent’ such that as α gets smaller the
process Lα

t becomes heavier-tailed.

Within this mathematical framework, Şimşekli et al. (2020)
proved an upper-bound (which was then improved in
(Hodgkinson et al., 2021)) for the worst-case generaliza-
tion error over the trajectories of (4). The bound informally
reads as follows: with probability at least 1− δ, it holds that

sup
θ∈Θ

∣∣∣F̂ (θ,Xn)− F (θ)
∣∣∣ ≲√α+ I(Θ, Xn) + log(1/δ)

n
,

where Θ denotes the trajectory of (4), i.e.,

Θ :=
{
θ ∈ Rd : ∃t ∈ [0, 1], θ = θt

}
,

with θt being the solution of (4), and I(Θ, Xn) denotes
a form of ‘mutual information’ between the trajectory Θ
and the data sample Xn (cf. (Xu & Raginsky, 2017)). This
result suggests that the generalization error is essentially
determined by two terms: (i) the tail exponent α, as the tails
get heavier the generalization error will be lower, (ii) the
statistical dependency between the trajectory and the data

1This type of SDEs have also received some attention in terms
of limits of deterministic gradient descent with dynamical regular-
ization (Lim et al., 2022).

sample, the lower the dependency the better the generaliza-
tion performance.

While these results illuminated an interesting connection be-
tween heavy-tails and generalization, they unfortunately rely
on nontrivial topological assumptions on Θ and the mutual
information term cannot be controlled in an interpretable
way in general. On the other hand, Barsbey et al. (2021)
empirically illustrated that the relation between the tail ex-
ponent and the generalization error might not be monotonic
in practical applications; an observation which cannot be
directly supported by the bound in (Şimşekli et al., 2020)
and (Hodgkinson et al., 2021).

Aiming to alleviate these issues, very recently, Raj et al.
(2023) considered the same problem from the lens of algo-
rithmic stability (Bousquet & Elisseeff, 2002; Hardt et al.,
2016). They considered the SDE (4) and further simplified
it by choosing the loss function as a simple quadratic, i.e.,
f(θ, x) = (θ⊤x)2. They showed that any parameter vec-
tor θ provided by (4) (or its Euler-Maruyama discretization
with small enough small step-size) cannot be algorithmi-
cally stable. However, when the algorithmic stability is
measured by a surrogate loss function instead (reminiscent
of (Wang et al., 2021)), the parameter vector θ becomes
algorithmically stable, which immediately implies gener-
alization. Their bound further illustrated that the relation
between α and the generalization error might not be mono-
tonic, which is in line with the observations provided in
(Barsbey et al., 2021).

While the bounds in (Raj et al., 2023) do not require ad-
ditional topological assumptions and do not contain a mu-
tual information term as opposed to (Şimşekli et al., 2020;
Hodgkinson et al., 2021), their analysis technique heavily
relies on the fact that f is a quadratic, hence cannot be
directly extended beyond quadratic loss functions.

In this paper, we aim at filling this gap and prove algorith-
mic stability bounds the SDE (4) (and its Euler-Maruyama
discretization) with general loss functions, which can be
even non-convex. Our contributions are as follows:

• We first focus on the continuous-time setting and prove
Wasserstein stability bounds for two SDEs of the form of
(4) with different drift functions. Our results cover both
the finite-time case, i.e., t < ∞ and the stationary case,
i.e., t→ ∞. We build upon recently introduced stochas-
tic analysis tools for uniform-in-time Wasserstein error
bounds for Euler-Maruyama discretization (Chen et al.,
2022) to obtain a novel Wasserstein stability bound for
two α-stable Lévy-driven SDEs. Our analysis relies on an
additional pseudo-Lipschitz like condition for the underly-
ing process and the dataset (Assumption 3.1) and careful
adaption of the tools in (Chen et al., 2022) to our context
(Lemma C.5 and Theorem B.1 in the Supplementary Doc-
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ument) as well as additional analysis (Lemma 3.5) that
allows us to characterize the dependence of our bounds on
the tail-index α. Our derived bounds would be interesting
on their own to a much broader scope.

• By following (Raginsky et al., 2016), we translate the
derived Wasserstein stability bounds to algorithmic sta-
bility bounds. Similar to (Raj et al., 2023), our approach
necessitates surrogate loss functions to measure algorith-
mic stability. Our results reveal that the relation between
heaviness of the tail α and the generalization error might
not be monotonic, indicating that the conclusions of (Raj
et al., 2023) extends to the general case.

• By combining our results with (Chen et al., 2022), we
extend our bounds to the Euler-Maruyama discretization
of (4) (that is of the form of (3)) and show that for small
enough step-sizes the discrete-time process achieves al-
most identical stability bounds.

Contrary to (Şimşekli et al., 2020; Hodgkinson et al., 2021;
Lim et al., 2022), our bounds do not rely on any topological
regularity assumptions and they further do not contain a
mutual information term. Moreover, our results shed more
light to the non-monotonic relation between heavy tails and
the generalization error, as empirically observed in (Barsbey
et al., 2021; Raj et al., 2023), since they are applicable to
non-convex losses, as opposed to (Raj et al., 2023). We
also note that our generalization bounds and Wasserstein
bounds are independent of time. Such a result was previ-
ously shown in (Farghly & Rebeschini, 2021) in the context
of Brownian-motion driven SDEs and their discretizations,
our work uses different techniques considering Lévy-driven
SDEs and studies the link between the generalization and
the coefficient of heavy tail.

2. Notations and Technical Background
Gradients and Hessians. For any twice continuously dif-
ferentiable function f : Rd → R, we denote by ∇f and
∇2f the gradient and the Hessian of f . First-order and
second-order directional derivatives of f are defined as

∇vf(x) := lim
ϵ→0

f(x+ ϵv)− f(x)

ϵ
,

∇v2∇v1f(x) := lim
ϵ→0

∇v1f(x+ ϵv2)−∇v1f(x)

ϵ
, (5)

for any directions v, v1, v2 ∈ Rd. If f is three times contin-
uously differentiable, then third-order derivatives along the
directions v1, v2 are given by

∇v2∇v1∇f(x) := lim
ϵ→0

∇v1∇f(x+ ϵv2)−∇v1∇f(x)
ϵ

.

(6)

Wasserstein distance. For p ≥ 1, the p-Wasserstein dis-
tance between two probability measures µ and ν on Rd is
defined as (Villani, 2009):

Wp(µ, ν) = {inf E∥X − Y ∥p}1/p , (7)

where the infimum is taken over all coupling of X ∼ µ and
Y ∼ ν. In particular, the 1-Wasserstein distance has the
following dual representation (Villani, 2009):

W1(µ, ν) = sup
h∈Lip(1)

∣∣∣∣∫
Rd

h(x)µ(dx)−
∫
Rd

h(x)ν(dx)

∣∣∣∣ ,
(8)

where Lip(1) denotes the set of functions h : Rd → R that
are 1-Lipschitz.

Algorithmic stability. Algorithmic stability is an important
notion in learning theory, which has pave the way for several
important theoretical results (Bousquet & Elisseeff, 2002;
Hardt et al., 2016). Let us first state the notion of algorithmic
stability as defined in (Hardt et al., 2016).

Definition 2.1 (Hardt et al. (2016), Definition 2.1). For a
(surrogate) loss function ℓ : Rd × X → R, an algorithm
A :

⋃∞
n=1 Xn → Rd is ε-uniformly stable if

sup
X∼=X̂

sup
z∈X

E
[
ℓ(A(X), z)− ℓ(A(X̂), z)

]
≤ ε, (9)

where the first supremum is taken over data X, X̂ ∈ Xn

that differ by one element, denoted by X ∼= X̂ .

Here, we intentionally use a different notation for the loss ℓ
(as opposed to f ), as our theory will require the algorithmic
stability to be measured by using a surrogate loss function,
which might be different than the original loss f .

We now provide a result from (Hardt et al., 2016) which re-
lates algorithmic stability to the generalization performance
of a randomized algorithm. Before stating the result, sim-
ilar to F̂ and F , we respectively define the empirical and
population risks with respect to the loss ℓ as follows:

R̂(w,Xn) :=
1

n

n∑
i=1

ℓ(w, xi), R(w) := Ex∼D[ℓ(w, x)].

Theorem 2.2 (Hardt et al. (2016), Theorem 2.2). Suppose
that A is an ε-uniformly stable algorithm, then the expected
generalization error is bounded by∣∣∣EA,Xn

[
R̂(A(Xn), Xn)−R(A(Xn))

]∣∣∣ ≤ ε. (10)

Alpha-stable distributions. A scalar random variable X is
said to follow a symmetric α-stable distribution, denoted by
X ∼ SαS(σ), if its characteristic function takes the form:
E
[
eiuX

]
= exp (−σα|u|α), for any u ∈ R, where σ > 0 is
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known as the scale parameter that measures the spread of X
around 0 and for α ∈ (0, 2] which is known as the tail-index
that determines the tail thickness of the distribution. The tail
becomes heavier as α gets smaller. The α-stable distribution
SαS appears as the limiting distribution in the generalized
central limit theorems for a sum of i.i.d. random variables
with infinite variance (Lévy, 1937). The probability density
function of a symmetric α-stable distribution, α ∈ (0, 2],
does not yield closed-form expression in general except for
a few special cases; for example SαS reduces to the Cauchy
and the Gaussian distributions, respectively, when α = 1
and α = 2. When 0 < α < 2, the moments are finite only
up to the order α in the sense that E[|X|p] <∞ if and only
if p < α, which implies infinite variance.

Finally, α-stable distribution can be extended to the high-
dimensional case for random vectors. One of the most
commonly used extension is the rotationally symmetric α-
stable distribution. X follows a d-dimensional rotationally
symmetric α-stable distribution if it admits the character-
istic function E

[
ei⟨u,X⟩] = e−σα∥u∥α

2 for any u ∈ Rd.
For further details of α-stable distributions, we refer to
(Samorodnitsky & Taqqu, 1994).

Lévy processes. Lévy processes are stochastic processes
with independent and stationary increments. Their succes-
sive displacements can be viewed as the continuous-time
analogue of random walks. Lévy processes include the Pois-
son process, the Brownian motion, the Cauchy process, and
more generally stable processes; see e.g. (Bertoin, 1996;
Samorodnitsky & Taqqu, 1994; Applebaum, 2009). Lévy
processes in general admit jumps and have heavy tails which
are appealing in many applications; see e.g. (Cont & Tankov,
2004).

In this paper, we will consider the rotationally symmetric
α-stable Lévy process, denoted by Lα

t in Rd and is defined
as follows.

• Lα
0 = 0 almost surely;

• For any t0 < t1 < · · · < tN , the increments Lα
tn − Lα

tn−1

are independent;

• The difference Lα
t − Lα

s and Lα
t−s have the same distribu-

tion, with the characteristic function exp(−(t− s)α∥u∥α2 )
for t > s;

• Lα
t has stochastically continuous sample paths, i.e. for

any δ > 0 and s ≥ 0, P(∥Lα
t − Lα

s ∥ > δ) → 0 as t→ s.

When α = 2, Lα
t =

√
2Bt, where Bt is the standard d-

dimensional Brownian motion.

3. Main Results
In this section, we present our main theoretical results. To
ease the notation, we will consider the following SDE in

lieu of (4):

dθt = −∇F̂ (θt, Xn)dt+ dLα
t , (11)

in the rest of the paper2.

Our road map is as follows. We will first consider the
continuous-time case (11), i.e., we will set the learning al-
gorithm as A(Xn) = θt for some t ∈ [0,+∞], where θ∞
denotes a sample from the stationary distribution of the SDE
(11). As our aim is to prove algorithmic stability bounds for
this choice of algorithm, we then consider another dataset
X̂n

∼= Xn, which differ from Xn by one element, accord-
ingly define the following SDE:

dθ̂t = −∇F̂ (θ̂t, X̂n)dt+ dLα
t , (12)

such that A(X̂n) = θ̂t. Then, we will argue that, for any
time t, the laws of θt and θ̂t will be close to each other in
the 1-Wasserstein metric.

By considering a surrogate loss function ℓ, which we will
assume to be L-Lipschitz, our bound on the Wasserstein
distance between Law(θt) and Law(θ̂t) (Theorem 3.3) will
immediately provide us a generalization bound thanks to
the dual representation of the 1-Wasserstein distance (cf.
(Raginsky et al., 2016, Lemma 3)):∣∣∣Eθt,Xn

[
R̂(θt, Xn)−R(θt)

]∣∣∣
≤ L sup

Xn
∼=X̂n

W1

(
Law(θt),Law(θ̂t)

)
, (13)

where Law(θt) and Law(θ̂t) respectively depend on Xn

and X̂n due to the form of the SDEs. The reason why we
require a surrogate loss function is the fact that we need the
Lipschitz continuity of the loss to be able to derive the bound
in (13). However, as we will detail in the next subsection,
our assumptions on the true loss f will be incompatible with
the Lipschitz continuity of f .

After proving a generalization bound of the form (13), we
will further investigate the behavior of the bound with re-
spect to the heaviness of the tail which is characterized by
the tail-index α. Finally, we will consider the discrete-time
case, where we will show that almost identical results hold
for the Euler-Maruyama discretizations of (11) and (12), as
long as a sufficiently small step-size is chosen.

3.1. Assumptions

In this section we state our main assumptions and we will
assume that they hold throughout the paper. For anyw ∈ Rd,
we use θwt to denote the process θt that starts at θ0 = w.

2Note that the stationary distribution of (4) is the same as the
stationary distribution of dθt = −σ−α∇F̂ (θt, Xn)dt+dLα

t , and
so that we can easily adapt our main result (Theorem 3.3) to the
general case σ > 0.
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Assumption 3.1. There exist universal constants K1, K2

such that for every x, x̂ ∈ X and θ, θ̂ ∈ Rd:

∥∇f(θ, x)−∇f(θ̂, x̂)∥

≤ K1∥θ − θ̂∥+K2∥x− x̂∥(∥θ∥+ ∥θ̂∥+ 1). (14)

This assumption is a pseudo-Lipschitz like condition (simi-
lar to the one in (Erdogdu et al., 2018)) on the loss f . Under
this assumption, for two datasets Xn and X̂n, we immedi-
ately have the following property:∥∥∥∇F̂ (θ,Xn)−∇F̂

(
θ̂, X̂n

)∥∥∥ ≤ K1∥θ − θ̂∥

+ρ(Xn, X̂n)K2

(
∥θ∥+ ∥θ̂∥+ 1

)
, (15)

for any θ, θ̂ ∈ Rd, where

ρ(Xn, X̂n) :=
1

n

n∑
i=1

∥xi − x̂i∥. (16)

We will show that the term ρ(Xn, X̂n) will have an impor-
tant role in terms of Wasserstein stability.

By following (Chen et al., 2022), we also make the follow-
ing assumption.

Assumption 3.2. For every x ∈ X , f(·, x) is three-times
continuously differentiable, and there exist universal pos-
itive constants B, m, K, L, and M such that for any
θ1, θ2 ∈ Rd and x ∈ X :

∥∇f(0, x)∥ ≤ B,

⟨∇f(θ1, x)−∇f(θ2, x), θ1 − θ2⟩
≥ m∥θ1 − θ2∥2 −K,

and for any θ, v, v1, v2 ∈ Rd and x ∈ X :

∥∇v∇f(θ, x)∥ ≤ L∥v∥,
∥∇v1∇v2∇f(θ, x)∥ ≤M∥v1∥∥v2∥.

The first part of this assumption is common in stochastic
analysis and often referred to as dissipativity (Raginsky
et al., 2017; Gao et al., 2022). The second part of the
assumption amounts to requiring the drift ∇f(x) to have
bounded third-order directional derivatives (see also (Chen
et al., 2022)). This would be satisfied for instance if f has
bounded third-order derivatives on the set X .

3.2. Continuous-Time Dynamics

Now, we are ready to state our first theorem that character-
izes the 1-Wasserstein distance between θt and θ̂t at any
finite time t, which is uniform in t. As a result, we also ob-
tain an upper-bound on the 1-Wasserstein distance between

the unique invariant distribution µ of (θt)t≥0 and the unique
invariant distribution µ̂ of (θ̂t)t≥0.3

The full statement of the theorem is rather lengthy and
is given in the Section B.1 in the Supplementary Docu-
ment. For clarity, in the next theorem, we provide our
upper-bound on the distance between the invariant distri-
butions, i.e., t → ∞. The finite t case is handled in the
Supplementary Document.
Theorem 3.3. Suppose that Assumptions 3.1 and 3.2 hold.
Denote by µ, µ̂ the unique invariant distributions of (θt)t≥0

and (θ̂t)t≥0, respectively. Then, the following inequality
holds:

W1(µ, µ̂) ≤
(
C1λ

−1eλ + 1
)
eLρ(Xn, X̂n)K2 (2C0 + 1) ,

(17)

where K2 and L are defined in Assumption 3.1 and Assump-
tion 3.2 and C0, C1 and λ are some positive real constants.

This theorem shows that, as long as the datasets Xn and
X̂n are close to each other, i.e., ρ(Xn, X̂n) is small, the
distance between the solutions of the SDEs (11) and (12)
will be small as well for any time t. This result can be
seen as a heavy-tailed version of the results presented in
(Raginsky et al., 2017; Farghly & Rebeschini, 2021).

Generalization Bound. By combining Theorem 3.3 and
(13), we can now easily obtain generalization bound under
a Lipschitz surrogate loss function.
Corollary 3.4. Suppose that Assumptions 3.1 and 3.2 hold.
Assume that ℓ is L-Lipschitz in θ and supx,y∈X ∥x−y∥ ≤ D
for some D <∞. Then the following inequality holds:∣∣∣Eθ∞,Xn

[
R̂(θ∞, Xn)−R(θ∞)

]∣∣∣
≤

LD
(
C1λ

−1eλ + 1
)
eLK2 (2C0 + 1)

n
.

The proof of this corollary is straightforward, hence omitted.
Similar to Theorem 3.3, we presented Corollary 3.4 for the
stationary case, where t→ ∞; yet, we shall underline that
our theory holds for any finite time t.

Lower bounds on algorithmic stability have been discussed
in (Raj et al., 2023) for Ornstein-Uhlenbeck process with
α-stable Lévy noise. While comparing with the bound
obtained in this work, we can see that the obtained bound
has optimal dependence on the number of samples n.

Next, we will investigate how the constants in Theorem 3.3
behave with respect to varying α.

Constants in Theorem 3.3. In Theorem 3.3, we provided
an upper bound on W1(µ, µ̂) which depends on various

3Here, we know that under our assumptions by the results of
(Chen et al., 2022), invariant distributions µ and µ̂ exist.
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quantities, and our next goal is to figure out how the param-
eters C1, λ, L,K2 and C0 depend on the tail-index α.

First, we notice that the parameters L and K2 only depend
on the loss function. Second, the parameters C1, λ come
from the 1-Wasserstein contraction in Lemma C.2 in the
Supplementary Document which is a restatement of Propo-
sition 2.2 in (Chen et al., 2022); that is, for any w, y ∈ Rd:

W1 (Law (θwt ) ,Law (θyt )) ≤ C1e
−λt∥w − y∥, (18)

W1

(
Law

(
θ̂wt

)
,Law

(
θ̂yt

))
≤ C1e

−λt∥w − y∥, (19)

where θwt to denote the process θt that starts at θ0 = w.
Furthermore, Proposition 2.2 in (Chen et al., 2022) follows
from Theorem 1.2. in (Wang, 2016). A careful look at Theo-
rem 1.2. in (Wang, 2016) reveals that C1, λ are independent
of the tail-index α.

Finally, C0 depends on α and it comes from Lemma C.1
in the Supplementary Document which is a restatement of
Proposition 2.1. in (Chen et al., 2022); that is, which says
that for any w ∈ Rd:

E∥θwt ∥ ≤ C0(1 + ∥w∥), for any t > 0, (20)

E∥θ̂wt ∥ ≤ C0(1 + ∥w∥), for any t > 0. (21)

Notice that Proposition 2.1. in (Chen et al., 2022) does not
provide an explicit formula for C0, and in the next result, we
provide a more refined estimate to spell out the dependence
of C0 on the tail-index α.

Lemma 3.5. Suppose that Assumptions 3.1 and 3.2 hold.
For any w ∈ Rd, we have

E∥θwt ∥ ≤ C0(1 + ∥w∥), for any t > 0, (22)

E∥θ̂wt ∥ ≤ C0(1 + ∥w∥), for any t > 0, (23)

where we can take

C0 := 3 +
2 (K +B)

m

+
2α+1Γ

(
d+α
2

)
π−d/2σd−1

|Γ(−α/2)|m

( √
d

2− α
+

1

α− 1

)
, (24)

where Γ(·) is the gamma function and σd−1 = 2π
d
2 /Γ(d/2)

is the surface area of the unit sphere in Rd, and K,B,m
are defined in Assumption 3.2.

Hence, it follows from Theorem 3.3 and Lemma 3.5 that the
dependence on the tail-index α is only via the function:

g(α; d) :=
2αΓ

(
d+α
2

)√
d

|Γ(−α/2)|(2− α)
+

2αΓ
(
d+α
2

)
|Γ(−α/2)|(α− 1)

.

The next result formalizes how the function g(α; d) depends
on the tail-index α.

Proposition 3.6. Let α0 := 2(c0 − 1) ∈ (0, 2), where c0
is the unique critical value in (1, 2) such that the gamma
function Γ(x) is increasing for any x > c0 and decreasing
for any 1 < x < c0. Then, the following holds.

(i) For any d ≥ d0, where d0 := max
(
2, 1

(log 2)2(α0−1)4

)
,

the map α 7→ g(α; d) is increasing in α ∈ [α0, 2].

(ii) For any fixed d ∈ N, the map α 7→ g(α; d) is de-
creasing in α ∈ [1, α′

0], where α′
0 ≤ α0 is defined

as α′
0 := min

(
α0, 1 +

−1+
√

1+4y−1
0

√
d

2
√
d

)
, with y0 :=

log(2) + 1
2ψ(d +

α
2 ) +

3−α0

2−α0
, where ψ(·) is the digamma

function.

Proof. Let us first prove part (i). First, we can re-write
g(α; d) as

g(α; d) =
2αΓ

(
d+α
2

)
|Γ(−α/2)|(2− α)

(√
d+

2− α

α− 1

)
. (25)

By the properties of the gamma function, we have

Γ
(
2− α

2

)
=
(
1− α

2

)
Γ
(
1− α

2

)
=
(
1− α

2

) −α
2

Γ(−α/2).

Therefore, we have

|Γ(−α/2)|(2− α) =
4

α
Γ
(
2− α

2

)
. (26)

Moreover, by the properties of the gamma function,

Γ
(
2− α

2

)
= Γ

(
1−

(α
2
− 1
))

=
π

sin
(
π
(
α
2 − 1

))
Γ
(
α
2 − 1

) =
π
(
α
2 − 1

)
sin
(
π
(
α
2 − 1

))
Γ
(
α
2

) .
Hence, we conclude that

g(α; d) = 2α−2αΓ

(
d+ α

2

)
Γ
(α
2

)
·
sin
(
π
(
1− α

2

))
π
(
1− α

2

) (√
d+

2− α

α− 1

)
,

where we used sin(−x) = − sin(x) for any x ∈ R. Let us
define h(x) := sin(x)

x for any 0 ≤ x ≤ π/2. We can com-
pute that h′(x) = x cos(x)−sin(x)

x2 . Let p(x) := x cos(x) −
sin(x). Then p(0) = 0 and p′(x) = −x sin(x) < 0 for
any 0 < x < π/2 which implies that p(x) < 0 and thus
h′(x) < 0 for any 0 < x < π/2. Hence h(x) is decreasing
in x for any 0 ≤ x ≤ π/2. As a result, the map

α 7→
sin
(
π
(
1− α

2

))
π
(
1− α

2

) is increasing in α

for any 1 < α < 2. (27)
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It is well known that gamma function x 7→ Γ(x) is log-
convex for x > 0 and thus convex for any x > 0. Since
Γ(1) = Γ(2) = 1, there exists a unique critical value c0 ∈
(1, 2) such that the gamma function x 7→ Γ(x) is increasing
for any x ≥ c0 and decreasing for any 1 ≤ x ≤ c0.

Next, for any given α0 ∈ (1, 2) such that 1 + α0

2 ≥ c0, we
have for any 2 ≥ α2 > α1 ≥ α0 and d ≥ 2,

g(α2; d)

g(α1; d)

=
2α2−2α2Γ

(
d+α2

2

)
Γ
(
α2
2

) sin(π(1−α2
2 ))

π(1−α2
2 )

(√
d+ 2−α2

α2−1

)
2α1−2α1Γ

(
d+α1

2

)
Γ
(
α1
2

) sin(π(1−α1
2 ))

π(1−α1
2 )

(√
d+ 2−α1

α1−1

)

=
2α2Γ

(
d+α2

2

)
Γ
(
1 + α2

2

) sin(π(1−α2
2 ))

π(1−α2
2 )

(√
d+ 2−α2

α2−1

)
2α1Γ

(
d+α1

2

)
Γ
(
1 + α1

2

) sin(π(1−α1
2 ))

π(1−α1
2 )

(√
d+ 2−α1

α1−1

)
≥ 2α2−α1

√
d+ 2−α2

α2−1√
d+ 2−α1

α1−1

, (28)

where we used (27) and the fact that the gamma function
x 7→ Γ(x) is increasing in x ≥ 1 + α0

2 ≥ c0.

Next, let us define the function:

q(x) := 2x−α1

√
d+ 2−x

x−1√
d+ 2−α1

α1−1

, (29)

where 2 ≥ x ≥ α1 ≥ α0. It is clear that q(α1) = 1 and
moreover, we can compute that

q′(x) = log(2)2x−α1

√
d+ 2−x

x−1√
d+ 2−α1

α1−1

− 2x−α1

(x− 1)2
1√

d+ 2−α1
α1−1

=
2x−α1

√
d+ 2−α1

α1−1

(
log(2)

(√
d+

2− x

x− 1

)
− 1

(x− 1)2

)
≥ 2x−α1

√
d+ 2−α1

α1−1

(
log(2)

√
d− 1

(α0 − 1)2

)
≥ 0, (30)

provided that

d ≥ 1

(log 2)2(α0 − 1)4
. (31)

This implies that q(x) is increasing for 2 ≥ x ≥ α1 ≥ α0

provided that d ≥ 2, 1 + α0

2 ≥ c0 and (31) holds. Hence,
we conclude that g(α2; d) ≥ g(α1; d) for any d ≥ d0 =

max
(
2, 1

(log 2)2(α0−1)4

)
, and 2 ≥ α2 ≥ α1 ≥ α0.

Due to the space constraint, the proof of part (ii) will be
provided in the Supplementary Document. The proof is
complete.

This result reveals an interesting fact. Depending on the
dimension of the parameter vector d, the Wasserstein sta-
bility bound (Theorem 3.3) and the generalization bound

1.0 1.2 1.4 1.6 1.8 2.0

α

2

4

6

8

10

ĝ
(α
,d

)

d = 2

d = 5

d = 10

d = 20

Figure 1. Behavior of g(α; d) with respect to α. We scale g(α; d)
appropriately to fit all the plots in the same frame which we denote
as ĝ(α; d).

(Corollary 3.4) exhibit different behaviors with respect to
varying α. We observe that for sufficiently large d, there
exists a critical value α0 such that the bound is monotoni-
cally increasing for α ≥ α0. This suggests that for d large
enough, increasing the heaviness of the tails (i.e., smaller α)
can be beneficial unless α is smaller than α0.

For visualization, we also provide a pictorial illustration
of the function g(α; d) in Figure 1. The figure shows the
behavior of g(α; d) with respect to α for various dimensions
d. The observed non-globally monotonic behavior for large
d indicates that the conclusions of (Raj et al., 2023) extend
beyond quadratic loss functions.

On the other hand, Barsbey et al. (2021) and Raj et al. (2023)
reported several experimental results conducted on neural
networks, which illustrated the existence of a non-globally
monotonic relation between the generalization error and the
heaviness of the tails in practical settings (see Figure 7 in
(Barsbey et al., 2021) and Figure 2 in (Raj et al., 2023)).
Our result brings a stronger theoretical justification to these
empirical observations thanks to the generality of our theo-
retical framework.

3.3. Infeasibility of p-Wasserstein Distance for p ≥ α

Now, that we have provided result for the 1-Wasserstein
distance between the distribution of θ and θ̂. A natural ques-
tion to ask is whether similar results could be obtained more
generally in the p-Wasserstein distance for some arbitrary p.

Not surprisingly, the following result says that in general we
do not expect to control the p-Wasserstein distance when p

7
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is larger than the tail-index α.

Proposition 3.7. Let d = 1, α > 1, X ⊂ R, and f(θ, x) =
(θx)2. Denote µ and ν as the invariant measures of (11) and
(12), respectively. Then for any p > α, Wp(µ, ν) = +∞.

Proof. Due to our choice of the loss function f , the SDEs
(11) and (12) reduce to Ornstein-Uhlenbeck processes
driven by a symmetric α-stable Lévy process. Hence, we
can characterize the invariant distributions of the SDEs as
follows (see e.g. (Raj et al., 2023)):

θ∞ =d µ+ σξ, and θ̂∞ =d µ̂+ σ̂ξ̂, (32)

for some µ, µ̂ ∈ R and σ, σ̂ ∈ R+. Here, ξ and ξ̂ are
SαS(1) distributed (see Section 2 for definition) and =d de-
notes equality in distribution. Now recall that µ = Law(θ∞)

and ν = Law(θ̂∞), and the p-Wasserstein metric for one-
dimensional distributions is given by,

Wp
p (µ, ν) = inf

γ∈Γ(µ,ν)
E(x,y)∼γ(x,y)|x− y|p,

where Γ(µ, ν) is the set of all couplings of µ and ν. In our
case, x ∈ R and y ∈ R. For any coupling γ⋆ ∈ Γ(µ, ν), we
have∫

R×R
|x− y|p dγ⋆(x, y)

=

∫
R×R

[
|x− y|2

]p/2
dγ⋆(x, y)

=

∫
R×R

(x2 + y2 − 2xy)p/2 dγ⋆(x, y)

≥
∫
R+×R−

(x2 + y2 − 2xy)p/2 dγ⋆(x, y)

≥
∫
R+×R−

(|x|p + |y|p + |2xy|p/2) dγ⋆(x, y)

≥
∫
R+×R−

|x|p dγ⋆(x, y) +
∫
R+×R−

|y|p dγ⋆(x, y)

= C1

∫
R+

|x|p dµ(x) + C2

∫
R−

|y|p dν(y) = +∞,

where C1 and C2 are some finite, positive constants. The
last equation comes from the properties of the α-stable dis-
tribution. Since it holds for any γ⋆ ∈ Γ(µ, ν), we conclude
that Wp

p (µ, ν) = ∞. This completes the proof.

3.4. Discrete-Time Dynamics

Finally, we will illustrate that our theory also extends to
the discretizations of the SDEs (11) and (12). Consider the
following Euler-Maruyama discretization:

θk+1 = θk − η∇F̂ (θk, Xn) + η1/αSk+1, (33)

where Sk are i.i.d. rotationally invariant alpha-stable ran-
dom vectors with the characteristic function:

E
[
ei⟨u,Sk⟩

]
= e−∥u∥α

2 , for any u ∈ Rd. (34)

Similarly, with input data X̂n, we have

θ̂k+1 = θ̂k − η∇F̂ (θ̂k, X̂n) + η1/αSk+1. (35)

Let µ and µ̂ denote the stationary distributions of continuous-
time θt and θ̂t as t → ∞. Moreover, let ν and ν̂ denote
the stationary distributions of discrete-time θk and θ̂k as
k → ∞. It is proved in (Chen et al., 2022) that the 1-
Wasserstein distance of the discretization error is of order
η2/α−1. More precisely, they showed the following result.
Lemma 3.8 (Theorem 1.2. in Chen et al. (2022)). Suppose
that Assumptions 3.1 and 3.2 hold. Let m, L be as in As-
sumption 3.2. Then, there exists some constant Q (that may
depend on B,m,K,L,M from Assumption 3.2) such that
for every η < min{1,m/L2, 1/m}, one has

W1(µ, ν) ≤ Qη2/α−1, (36)

W1(µ̂, ν̂) ≤ Qη2/α−1. (37)

By applying the above 1-Wasserstein bound for the dis-
cretization error in Lemma 3.8 and Theorem 3.3, we obtain
the following corollary, which provides the 1-Wasserstein
distance of the stationary distributions of the discrete-time
(θk)k≥0 and (θ̂k)k≥0 processes.
Corollary 3.9. Under the assumptions in Theorem 3.3 and
Lemma 3.8, we have

W1(ν, ν̂) ≤ 2Qη2/α−1

+
(
C1λ

−1eλ + 1
)
eLρ(Xn, X̂n)K2 (2C0 + 1) . (38)

By using the same approach as we used in Corollary 3.4,
we can easily obtain a generalization bound for the discrete-
time as well. Note that the upper bound in Corollary 3.9
depends on the tail-index α only via η2/α−1, which is in-
creasing in α (since η < 1 as assumed in Lemma 3.8), and
the constant C0 which depends on α via g(α; d) function.
Therefore, by Proposition 3.6, the upper bound in Corol-
lary 3.9 is increasing in α ∈ [α0, 2], for any d ≥ d0, where
d0 and α0 are given in Proposition 3.6. Moreover, the proof
of Proposition 3.6 reveals that ∂

∂αg(α; d) tends to −∞ as α
tends to 1 and thus there exists some α′′

0 < α′
0, where α′

0 is
defined in Proposition 3.6, such that for any fixed d ∈ N, the
upper bound in Corollary 3.9 is decreasing in α ∈ [1, α′′

0 ].
Hence, the conclusions that we obtained for the continuous-
time processes remain valid for the discretizations as well.

4. Conclusion
In this work, we studied the relation between the gener-
alization behavior and the heavy tails arising in the SGD
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dynamics. Previous work on the topic obtained monotonic
relationship under strong topological and statistical regular-
ity assumptions, with the exception of the approach in (Raj
et al., 2023) which was limited to only quadratic losses. Fol-
lowing the literature, we considered heavy-tailed SDEs and
their discretization for modeling the heavy-tailed behavior
of SGD, and showed that the relation is non-monotonic for
a general class of losses satisfying a dissipativity condition
which generalizes the results of (Raj et al., 2023) beyond
quadratic losses. Our proof technique is based on a novel
1-Wasserstein stability bound for the symmetric α-stable
Lévy-driven SDEs, that model the SGD dynamics. Fur-
thermore, our results, when combined with the results of
(Raginsky et al., 2016), yield directly a generalization bound
for the class of Lipschitz functions.

Future Directions: As a future research direction, we
would like to obtain similar stability bounds without mak-
ing the dissipativity assumption on the objective function
as being done for Langevin Monte Carlo in (Kinoshita &
Suzuki, 2022). We would also like to consider specific class
of functions (e.g. one-layer neural network) and study the
effect of tail-index with other parameters and its effect on
the generalization.
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A. Background on Markov Semigroups
In this section, we introduce the concept of Markov semigroups, that will be used in the proofs of main results in Section B.

For a continuous-time Markov process (Xw
t )t≥0 that starts at X0 = w, its Markov semigroup Pt is defined as for any

bounded measurable function f : Rd → R,

Ptf(w) = Ef(Xw
t ), t ≥ 0. (39)

Similarly, for a discrete-time Markov process (Y w
k )∞k=0 that starts at Y0 = w, its Markov semigroup Qk is defined as for any

bounded measurable function f : Rd → R,

Qkf(w) = Ef(Y w
k ), k = 0, 1, 2, . . . . (40)

B. Proofs of Main Results
In this section, we provide the proofs of main results in our paper.

B.1. Proof of Theorem 3.3

We first provide the theorem statement with all the details.
Theorem B.1 (Restatement of Theorem 3.3). Assume θ0 = θ̂0 = w. Denote by µ, µ̂ the unique invariant distributions of
(θt)t≥0 and (θ̂t)t≥0 respectively. The following two statements hold:

(i) For every N ≥ 1 and η ∈ (0, 1), we have the following statements:

(I) If N = 1, then

W1

(
Law(θηN ),Law(θ̂ηN )

)
≤
(
K1 + ρ(Xn, X̂n)K2

)
(2C) ·

[
(1 + ∥w∥)η1+ 1

α + ρ(Xn, X̂n)K2(2∥w∥+ 1)η
]
. (41)

(II) If 2 ≤ N ≤ η−1 + 1, then

W1

(
Law(θηN ),Law(θ̂ηN )

)
≤
(
K1 + ρ(Xn, X̂n)K2

)
(2C)(1 + C0(1 + ∥w∥))η1+ 1

α + ρ(Xn, X̂n)K2(2C0(1 + ∥w∥) + 1)η

+ eL
(
K1 + ρ(Xn, X̂n)K2

)
(2C) (1 + C0(1 + ∥w∥))η 1

α

+ eLρ(Xn, X̂n)K2(2C0(1 + ∥w∥) + 1). (42)

(III) If N > η−1 + 1, then

W1

(
Law(θηN ),Law(θ̂ηN )

)
≤
(
K1 + ρ(Xn, X̂n)K2

)
(2C) (1 + C0(1 + ∥w∥))η1+ 1

α + ρ(Xn, X̂n)K2(2C0(1 + ∥w∥) + 1)η

+
(
C1λ

−1eλ + 1
)
eL
(
K1 + ρ(Xn, X̂n)K2

)
(2C) (1 + C0(1 + ∥w∥))η 1

α

+
(
C1λ

−1eλ + 1
)
eLρ(Xn, X̂n)K2(2C0(1 + ∥w∥) + 1). (43)

(ii) We have

W1(µ, µ̂) ≤
(
C1λ

−1eλ + 1
)
eLρ(Xn, X̂n)K2 (2C0 + 1) . (44)

Here, K1,K2 and L are defined in Assumption 3.1 and Assumption 3.2 and C0, C1 and λ are some positive real constants.
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Proof of Theorem 3.3. (i) We first prove part (i). For any h ∈ Lip(1), by the semigroup property, we have

PNηh(w)− P̂Nηh(w) =

N∑
i=1

(
P̂(i−1)ηP(N−i+1)ηh(w)− P̂iηP(N−i)ηh(w)

)
=

N∑
i=1

P̂(i−1)η

(
Pη − P̂η

)
P(N−i)ηh(w).

Therefore, we can compute that

W1

(
Law (θηN ) ,Law

(
θ̂ηN

))
= sup

h∈Lip(1)

∣∣∣PNηh(w)− P̂Nηh(w)
∣∣∣

≤ sup
h∈Lip(1)

∣∣∣P̂(N−1)η

(
Pη − P̂η

)
h(w)

∣∣∣+ N−1∑
i=1

sup
h∈Lip(1)

∣∣∣P̂(i−1)η

(
Pη − P̂η

)
P(N−i)ηh(w)

∣∣∣ . (45)

Let us first bound the first term in (45). For any h ∈ Lip(1) and η < 1, by applying Lemma C.5, we get∣∣∣(Pη − P̂η

)
h(w)

∣∣∣ ≤ (K1 + ρ(Xn, X̂n)K2

)
(2C) (1 + ∥w∥)η1+ 1

α + ρ(Xn, X̂n)K2(2∥w∥+ 1)η.

Hence, we have

sup
h∈Lip(1)

∣∣∣P̂(N−1)η

(
Pη − P̂η

)
h(w)

∣∣∣
≤
(
K1 + ρ(Xn, X̂n)K2

)
(2C) (1 + E∥θ̂w(N−1)η∥)η

1+ 1
α + ρ(Xn, X̂n)K2

(
2E∥θ̂w(N−1)η∥+ 1

)
η (46)

≤
(
K1 + ρ(Xn, X̂n)K2

)
(2C) (1 + C0(1 + ∥w∥))η1+ 1

α + ρ(Xn, X̂n)K2(2C0(1 + ∥w∥) + 1)η,

where we applied Lemma C.1 to obtain the last inequality above.

Next, let us bound the second term in (45) and hence bound the 1-Wasserstein distance W1

(
Law(θηN ),Law(θ̂ηN )

)
.

We consider three cases: (I) N = 1; (II) 2 ≤ N ≤ η−1 + 1 and (III) N > η−1 + 1.

Case (I): N = 1. One can apply (46) and obtain

W1

(
Law(θη),Law(θ̂η)

)
≤
(
K1 + ρ(Xn, X̂n)K2

)
(2C) (1 + E∥θ̂w0 ∥)η1+

1
α + ρ(Xn, X̂n)K2

(
2E∥θ̂w0 ∥+ 1

)
η

=
(
K1 + ρ(Xn, X̂n)K2

)
(2C) (1 + ∥w∥)η1+ 1

α + ρ(Xn, X̂n)K2(2∥w∥+ 1)η. (47)

This completes the proof of part (I).

Case (II): 2 ≤ N ≤ η−1 + 1. By Lemma C.5, for any i ≥ 1, we have∣∣∣(Pη − P̂η

)
P(N−i)ηh(w)

∣∣∣
≤ ∥∇P(N−i)ηh∥∞

[(
K1 + ρ(Xn, X̂n)K2

)
(2C) (1 + ∥w∥)η1+ 1

α + ρ(Xn, X̂n)K2(2∥w∥+ 1)η
]

≤ eL
[(
K1 + ρ(Xn, X̂n)K2

)
(2C) (1 + ∥w∥)η1+ 1

α + ρ(Xn, X̂n)K2(2∥w∥+ 1)η
]
, (48)

where we used Lemma C.3 and the fact that for any i ≥ 1 and 2 ≤ N ≤ η−1 + 1 we have (N − i)η ≤ 1 in the inequality
(48).

12
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By applying Lemma C.1, we obtain

sup
h∈Lip(1)

∣∣∣P̃(i−1)η

(
Pη − P̂η

)
P(N−i)ηh(w)

∣∣∣
≤ eL

[(
K1 + ρ(Xn, X̂n)K2

)
(2C)

(
1 + E∥θ̂(i−1)η∥

)
η1+

1
α + ρ(Xn, X̂n)K2

(
2E∥θ̂(i−1)η∥+ 1

)
η
]

≤ eL
(
K1 + ρ(Xn, X̂n)K2

)
(2C) (1 + C0(1 + ∥w∥)) η1+ 1

α

+ eLρ(Xn, X̂n)K2(2C0(1 + ∥w∥) + 1)η. (49)

Hence, we conclude that

W1

(
Law(θηN ),Law(θ̂ηN )

)
≤ sup

h∈Lip(1)

∣∣∣P̂(N−1)η

(
Pη − P̂η

)
h(w)

∣∣∣+ N−1∑
i=1

sup
h∈Lip(1)

∣∣∣P̂(i−1)η

(
Pη − P̂η

)
P(N−i)ηh(w)

∣∣∣
≤
(
K1 + ρ(Xn, X̂n)K2

)
(2C) (1 + C0(1 + ∥w∥)) η1+ 1

α + ρ(Xn, X̂n)K2 (2C0(1 + ∥w∥) + 1) η

+ (N − 1)eL
(
K1 + ρ(Xn, X̂n)K2

)
(2C) (1 + C0(1 + ∥w∥)) η1+ 1

α

+ (N − 1)eLρ(Xn, X̂n)K2 (2C0(1 + ∥w∥) + 1) η

≤
(
K1 + ρ(Xn, X̂n)K2

)
(2C) (1 + C0(1 + ∥w∥)) η1+ 1

α + ρ(Xn, X̂n)K2 (2C0(1 + ∥w∥) + 1) η

+ eL
(
K1 + ρ(Xn, X̂n)K2

)
(2C) (1 + C0(1 + ∥w∥)) η 1

α

+ eLρ(Xn, X̂n)K2 (2C0(1 + ∥w∥) + 1) . (50)

This completes the proof of (I).

Case (III): N > η−1 + 1. We can compute that

sup
h∈Lip(1)

∣∣∣P̂(i−1)η

(
Pη − P̂η

)
P(N−i)ηh(w)

∣∣∣
= sup

h∈Lip(1)

∣∣∣P̂(i−1)η

(
Pη − P̂η

)
P1P(N−i)η−1h(w)

∣∣∣
≤ sup

g∈Lip(1)

∣∣∣P̂(i−1)η

(
Pη − P̂η

)
P1g(w)

∣∣∣ sup
h∈Lip(1)

∥∇P(N−i)η−1h∥∞.

By Lemma C.2, for any h ∈ Lip(1),

|Pth(w)− Pth(y)| ≤ C1e
−λt∥w − y∥, (51)

for any t ≥ 0 and w, y ∈ Rd. This implies that for any h ∈ Lip(1),

∥∇Pth∥∞ ≤ C1e
−λt. (52)

Hence, we conclude that

sup
h∈Lip(1)

∣∣∣P̂(i−1)η

(
Pη − P̂η

)
P(N−i)ηh(w)

∣∣∣ ≤ C1e
−λ((N−i)η−1) sup

g∈Lip(1)

∣∣∣P̂(i−1)η

(
Pη − P̂η

)
P1g(w)

∣∣∣ ,
where i ≤ ⌊N − η−1⌋.

Moreover, by Lemma C.5, we have∣∣∣PηP1g(w)− P̂ηP1g(w)
∣∣∣

≤ ∥∇P1g∥∞
[(
K1 + ρ(Xn, X̂n)K2

)
(2C) (1 + ∥w∥)η1+ 1

α + ρ(Xn, X̂n)K2(2∥w∥+ 1)η
]

≤ eL
[(
K1 + ρ(Xn, X̂n)K2

)
(2C) (1 + ∥w∥)η1+ 1

α + ρ(Xn, X̂n)K2(2∥w∥+ 1)η
]
, (53)

13
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which by Lemma C.1 implies that

sup
g∈Lip(1)

∣∣∣P̂(i−1)η(Pη − P̂η)P1g(w)
∣∣∣

≤ eL
[(
K1 + ρ(Xn, X̂n)K2

)
(2C) (1 + E∥θw(i−1)η∥)η

1+ 1
α + ρ(Xn, X̂n)K2

(
2E∥θw(i−1)η∥+ 1

)
η
]

≤ eL
[(
K1 + ρ(Xn, X̂n)K2

)
(2C) (1 + C0(1 + ∥w∥)) η1+ 1

α + ρ(Xn, X̂n)K2 (2C0(1 + ∥w∥) + 1) η
]
.

Therefore, we have

⌊N−η−1⌋∑
i=1

sup
h∈Lip(1)

∣∣∣P̂(i−1)η

(
Pη − P̂η

)
P(N−i)ηh(w)

∣∣∣
≤

⌊N−η−1⌋∑
i=1

C1e
−λ((N−i)η−1)eL

(
K1 + ρ(Xn, X̂n)K2

)
(2C) (1 + C0(1 + ∥w∥)) η1+ 1

α

+

⌊N−η−1⌋∑
i=1

C1e
−λ((N−i)η−1)eLρ(Xn, X̂n)K2 (2C0(1 + ∥w∥) + 1) η

≤ C1λ
−1eλeL

(
K1 + ρ(Xn, X̂n)K2

)
(2C) (1 + C0(1 + ∥w∥))η 1

α

+ C1λ
−1eλeLρ(Xn, X̂n)K2 (2C0(1 + ∥w∥) + 1) ,

where we used the fact that

⌊N−η−1⌋∑
i=1

e−λ((N−i)η−1) ≤ eλ
∫ N−1

⌊η−1⌋−1

e−ληrdr ≤ eλη−1

∫ ∞

0

e−λrdr = λeλη−1.

Next, when i ≥ ⌊N − η−1⌋+ 1, by applying (49), we have

N−1∑
i=⌊N−η−1⌋+1

sup
h∈Lip(1)

∣∣∣P̂(i−1)η

(
Pη − P̂η

)
P(N−i)ηh(w)

∣∣∣
≤

N−1∑
i=⌊N−η−1⌋+1

eL
(
K1 + ρ(Xn, X̂n)K2

)
(2C) (1 + C0(1 + ∥w∥)) η1+ 1

α

+

N−1∑
i=⌊N−η−1⌋+1

eLρ(Xn, X̂n)K2 (2C0(1 + ∥w∥) + 1) η

≤ eL
(
K1 + ρ(Xn, X̂n)K2

)
(2C) (1 + C0(1 + ∥w∥)) η 1

α

+

N−1∑
i=⌊N−η−1⌋+1

eLρ(Xn, X̂n)K2 (2C0(1 + ∥w∥) + 1) .

Therefore, we obtain

N−1∑
i=1

sup
h∈Lip(1)

∣∣∣P̂(i−1)η

(
Pη − P̂η

)
P(N−i)ηh(w)

∣∣∣
≤
(
C1λ

−1eλ + 1
)
eL
(
K1 + ρ(Xn, X̂n)K2

)
(2C) (1 + C0(1 + ∥w∥)) η 1

α

+
(
C1λ

−1eλ + 1
)
eLρ(Xn, X̂n)K2 (2C0(1 + ∥w∥) + 1) .
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Hence, we conclude that

W1

(
Law (θηN ) ,Law

(
θ̂ηN

))
≤ sup

h∈Lip(1)

∣∣∣P̂(N−1)η

(
Pη − P̂η

)
h(w)

∣∣∣+ N−1∑
i=1

sup
h∈Lip(1)

∣∣∣P̂(i−1)η

(
Pη − P̂η

)
P(N−i)ηh(w)

∣∣∣
≤
(
K1 + ρ(Xn, X̂n)K2

)
(2C) (1 + C0(1 + ∥w∥)) η1+ 1

α + ρ(Xn, X̂n)K2 (2C0(1 + ∥w∥) + 1) η

+
(
C1λ

−1eλ + 1
)
eL
(
K1 + ρ(Xn, X̂n)K2

)
(2C) (1 + C0(1 + ∥w∥)) η 1

α

+
(
C1λ

−1eλ + 1
)
eLρ(Xn, X̂n)K2 (2C0(1 + ∥w∥) + 1) . (54)

This completes the proof of part (III).

(ii) Now, we are ready prove part (ii). By triangle inequality for 1-Wasserstein distance,

W1 (µ, µ̂) ≤ W1 (Law(θηN ), µ) +W1

(
Law(θηN ),Law(θ̂ηN )

)
+W1

(
Law(θ̂ηN ), µ̂

)
.

It follows from Lemma C.1 that by letting N → ∞, we have

W1 (µ, µ̂)

≤ lim sup
N→∞

W1

(
Law(θηN ),Law(θ̂ηN )

)
≤
(
K1 + ρ(Xn, X̂n)K2

)
(2C) (1 + C0(1 + ∥w∥)) η1+ 1

α + ρ(Xn, X̂n)K2 (2C0(1 + ∥w∥) + 1) η

+
(
C1λ

−1eλ + 1
)
eL
(
K1 + ρ(Xn, X̂n)K2

)
(2C) (1 + C0(1 + ∥w∥)) η 1

α

+
(
C1λ

−1eλ + 1
)
eLρ(Xn, X̂n)K2 (2C0(1 + ∥w∥) + 1) , (55)

where we used part (III) from part (i). Since W1 (µ, µ̂) is independent of η and the initial state x ∈ Rd, we can set η = 0
and x = 0 in (55) and conclude that

W1 (µ, µ̂) ≤
(
C1λ

−1eλ + 1
)
eLρ(Xn, X̂n)K2 (2C0 + 1) .

The proof is complete.

B.2. Proof of Lemma 3.5

Proof of Lemma 3.5. First of all, the infinitesimal generator of θt process is given by

Lαf(θ) =
〈
−∇F̂ (θ,Xn),∇f(θ)

〉
+ (−∆)α/2f(θ), (56)

where (−∆)α/2 is the fractional Laplacian operator defined as a principal value integral:

(−∆)α/2f(θ) = dα · p.v.
∫
Rd

(f(θ + y)− f(θ))
dy

∥y∥α+d
, (57)

where (see e.g. (Wang, 2016))

dα :=
2αΓ

(
d+α
2

)
π−d/2

|Γ(−α/2)|
. (58)

We derive from Assumption 3.2 that for any dataset Xn ∈ Xn, we have the following property:∥∥∥∇F̂ (0, Xn)
∥∥∥ ≤ B,〈

∇F̂ (θ1, Xn)−∇F̂ (θ2, Xn), θ1 − θ2

〉
≥ m∥θ1 − θ2∥2 −K,
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and ∥∥∥∇v∇F̂ (θ,Xn)
∥∥∥ ≤ L∥v∥,

∥∥∥∇v1∇v2∇F̂ (θ,Xn)
∥∥∥ ≤M∥v1∥∥v2∥,

for any θ, θ1, θ2, v, v1, v2 ∈ Rd so that we can apply Proposition 2.1. in (Chen et al., 2022).

Next, let V (w) := (1 + ∥w∥2)1/2. It is shown in the proof of Proposition 2.1. in (Chen et al., 2022) that V ∈ D(Lα), i.e.
the domain of the infinitesimal generator Lα and moreover

LαV (w) ≤ −λ1V (w) + q1, (59)

where

λ1 :=
1

2
m, q1 := m+K +B + Cd,α, (60)

where

Cd,α :=
dα

√
dσd−1

2− α
+
dασd−1

α− 1
=

2αΓ
(
d+α
2

)
π−d/2

√
dσd−1

|Γ(−α/2)|(2− α)
+

2αΓ
(
d+α
2

)
π−d/2σd−1

|Γ(−α/2)|(α− 1)
, (61)

where σd−1 := 2π
d
2 /Γ(d/2) is the surface area of the unit sphere in Rd, a positive constant that depends only on d.

Next, let us define the extended infinitesimal generator Lα
t :

Lα
t f(t, θ) := ∂tf(t, θ) + Lαf(t, θ). (62)

Then, it follows from (59) that

Lα
t e

λ1tV (θ) = λ1e
λ1tV (θ) + eλ1tLαV (θ) ≤ λ1e

λ1tV (θ) + eλ1t (−λ1V (w) + q1) = q1e
λ1t. (63)

By Dynkin’s formula,

E
[
eλ1tV (θwt )

]
= V (w) + E

[∫ t

0

Lα
s e

λ1sV (θws ) ds

]
≤ V (w) +

∫ t

0

q1e
λ1sds = V (w) + q1

eλ1t − 1

λ1
,

which implies that

E∥θwt ∥ ≤ E [V (θwt )] ≤ e−λ1tV (w) + q1
1− e−λ1t

λ1
≤ 1 + ∥w∥+ q1

λ1
, (64)

where we used the definition V (w) = (1+∥w∥2)1/2 and the inequality ∥w∥ ≤ (1+∥w∥2)1/2 ≤ 1+∥w∥. Hence, we have

E∥θwt ∥ ≤ C0(1 + ∥w∥), (65)

where we take

C0 := 1 +
q1
λ1

= 1 +
2 (m+K +B + Cd,α)

m

= 3 +
2 (K +B)

m
+

2

m

(
2αΓ

(
d+α
2

)
π−d/2

√
dσd−1

|Γ(−α/2)|(2− α)
+

2αΓ
(
d+α
2

)
π−d/2σd−1

|Γ(−α/2)|(α− 1)

)
.

Since C0 in the above equation is uniform in the dataset, similarly, we also have

E∥θ̂wt ∥ ≤ C0(1 + ∥w∥), (66)

which completes the proof.
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B.3. Proof of Proposition 3.6 (ii)

Proof of Proposition 3.6 (ii). Now, let us prove part (ii) of Proposition 3.6. We recall from (25) that

g(α; d) =
2αΓ

(
d+α
2

)
|Γ(−α/2)|(2− α)

(√
d+

2− α

α− 1

)
. (67)

We can compute that

∂

∂α
g(α; d) =

2αΓ
(
d+α
2

)
|Γ(−α/2)|(2− α)

−1

(α− 1)2
+

∂

∂α

{
2αΓ

(
d+α
2

)
Γ(−α/2)(α− 2)

}(√
d+

2− α

α− 1

)
,

where we can further compute that

∂

∂α

{
2αΓ

(
d+α
2

)
Γ(−α/2)(α− 2)

}
=

log(2)2αΓ
(
d+α
2

)
+ 2α−1Γ

(
d+α
2

)
ψ
(
d+α
2

)
Γ(−α/2)(α− 2)

−
2αΓ

(
d+α
2

) (
− 1

2 (α− 2)ψ(−α
2 ) + 1

)
Γ(−α/2)(α− 2)2

,

where ψ(·) denotes the digamma function. This implies that

∂

∂α
g(α; d) =

2αΓ
(
d+α
2

)
|Γ(−α/2)|(2− α)

p(α; d), (68)

where

p(α; d) :=
−1

(α− 1)2
+

(
log(2) +

1

2
ψ

(
d+ α

2

))(√
d+

2− α

α− 1

)
+

(
1

2
ψ
(
−α
2

)
+

1

2− α

)(√
d+

2− α

α− 1

)
.

By the property of the digamma function, we have ψ(−α
2 ) = ψ(1 − α

2 ) +
2
α and ψ(x) is increasing in x > 0 and

ψ(−1/2) < 0. Therefore, for any 1 < α ≤ α0, we have

p(α; d) =
−1

(α− 1)2
+

(
log(2) +

1

2
ψ

(
d+ α

2

))(√
d+

2− α

α− 1

)
+

(
1

2
ψ
(
1− α

2

)
+

1

α
+

1

2− α

)(√
d+

2− α

α− 1

)
≤ −1

(α− 1)2
+

(
log(2) +

1

2
ψ

(
d+ α0

2

))(√
d+

1

α− 1

)
+

(
1 +

1

2− α0

)(√
d+

1

α− 1

)
.

It follows that p(α; d) ≤ 0 holds if
y0
√
d(α− 1)2 + y0(α− 1)− 1 ≤ 0, (69)

where
y0 := log(2) +

1

2
ψ
(
d+

α

2

)
+

3− α0

2− α0
,

and it is easy to compute that (69) holds provided that

α ≤ 1 +
−1 +

√
1 + 4y−1

0

√
d

2
√
d

. (70)

Hence, we conclude that p(α; d) is non-positive and thus ∂
∂αg(α; d) is non-positive (by (68)) and therefore g(α; d) is

decreasing for any α ∈ [1, α′
0], where α′

0 := min

(
α0, 1 +

−1+
√

1+4y−1
0

√
d

2
√
d

)
. The proof is complete.
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B.4. Proof of Corollary 3.9

Corollary B.2 (Restatement of Corollary 3.9). Under the assumptions in Theorem B.1 and Lemma C.6, we have:

(i) For any 2 ≤ N ≤ η−1 + 1,

W1

(
Law(θηN ),Law(θ̂ηN )

)
≤
(
K1 + ρ(Xn, X̂n)K2

)
(2C)(1 + C0(1 + ∥w∥))η1+ 1

α + ρ(Xn, X̂n)K2(2C0(1 + ∥w∥) + 1)η

+ eL
(
K1 + ρ(Xn, X̂n)K2

)
(2C) (1 + C0(1 + ∥w∥))η 1

α

+ eLρ(Xn, X̂n)K2(2C0(1 + ∥w∥) + 1) + 2Q(1 + ∥w∥)η2/α−1, (71)

and for any N > η−1 + 1,

W1

(
Law(θηN ),Law(θ̂ηN )

)
≤
(
K1 + ρ(Xn, X̂n)K2

)
(2C) (1 + C0(1 + ∥w∥))η1+ 1

α + ρ(Xn, X̂n)K2(2C0(1 + ∥w∥) + 1)η

+
(
C1λ

−1eλ + 1
)
eL
(
K1 + ρ(Xn, X̂n)K2

)
(2C) (1 + C0(1 + ∥w∥))η 1

α

+
(
C1λ

−1eλ + 1
)
eLρ(Xn, X̂n)K2(2C0(1 + ∥w∥) + 1) + 2Q(1 + ∥w∥)η2/α−1. (72)

(ii) We have

W1(µ, µ̂) ≤
(
C1λ

−1eλ + 1
)
eLρ(Xn, X̂n)K2 (2C0 + 1) + 2Qη2/α−1. (73)

Proof. Let us prove part (ii) and the proof for part (i) is similar. It follows directly from Lemma 3.8 and Theorem 3.3 and
the triangle inequality for 1-Wasserstein distance:

W1(ν, ν̂) ≤ W1(ν, µ) +W1(ν̂, µ̂) +W1(µ, µ̂). (74)

The proof is complete.

C. Technical Lemmas
In this section, we provide some technical results that are used in the proofs of main results in Section B. First, we have the
following technical result from (Chen et al., 2022).
Lemma C.1 (Proposition 2.1. in Chen et al. (2022)). Under Assumption 3.2, (θwt )t≥0 and (θ̂wt )t≥0 admit unique invariant
probability measures µ and µ̂ respectively such that

sup
|f |≤V

|E[f(θwt )]− µ(f)| ≤ c1V (w)e−c2t, for any t > 0, (75)

sup
|f |≤V

∣∣∣E[f(θ̂wt )]− µ̂(f)
∣∣∣ ≤ c1V (w)e−c2t, for any t > 0, (76)

for some constants c1, c2 > 0 where V (w) := (1 + ∥w∥2)1/2 is a Lyapunov function. In particular, there exists a constant
C0 > 0 such that

E∥θwt ∥ ≤ C0(1 + ∥w∥), for any t > 0, (77)

E∥θ̂wt ∥ ≤ C0(1 + ∥w∥), for any t > 0. (78)

Moreover, we recall the following technical lemma.
Lemma C.2 (Proposition 2.2 in Chen et al. (2022)). There exist constants C1, λ > 0 such that for any t > 0 and w, y ∈ Rd,
we have

W1 (Law (θwt ) ,Law (θyt )) ≤ C1e
−λt∥w − y∥, (79)

W1

(
Law

(
θ̂wt

)
,Law

(
θ̂yt

))
≤ C1e

−λt∥w − y∥. (80)
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Let Pt and P̂t denote the Markov semigroups of θt and θ̂t processes respectively, that is, for any bounded function
f : Rd → R,

Ptf(x) = Ef(θwt ), P̂tf(x) = Ef(θ̂wt ). (81)

We have the following technical lemma from (Chen et al., 2022).
Lemma C.3 (Lemma 3.1 in Chen et al. (2022)). For any h ∈ Lip(1) and v, w ∈ Rd and t ∈ (0, 1], we have

∥∇vPth(w)∥ ≤ eL∥v∥,
∥∥∥∇vP̂th(w)

∥∥∥ ≤ eL∥v∥, (82)

where L is defined in Assumption 3.2.

We recall the following technical lemma from (Chen et al., 2022).
Lemma C.4 (Lemma 3.2 in Chen et al. (2022)). There exist constants C > 0 such that for all w ∈ Rd, t ≥ 0, we have

E∥θwt − w∥ ≤ C(1 + ∥w∥)
(
t ∨ t1/α

)
, (83)

E∥θ̂wt − w∥ ≤ C(1 + ∥w∥)
(
t ∨ t1/α

)
. (84)

Next, we state and prove the following key technical lemma.
Lemma C.5. There exist constants C > 0 such that for all w ∈ Rd, η ∈ (0, 1), f : Rd → R with ∥∇f∥∞ <∞, we have∣∣∣Pηf(w)− P̂ηf(w)

∣∣∣
≤ ∥∇f∥∞

[(
K1 + ρ(Xn, X̂n)K2

)
2C(1 + ∥w∥)η1+ 1

α + ρ(Xn, X̂n)K2(2∥w∥+ 1)η
]
. (85)

Proof of Lemma C.5. We can compute that∣∣∣Pηf(w)− P̂ηf(w)
∣∣∣ = ∣∣∣E [f (θwη )− f

(
θ̂wη

)]∣∣∣
=

∣∣∣∣E [f (w +

∫ η

0

∇F̂ (θwr , Xn) dr + Lα
η

)
− f

(
w +

∫ η

0

∇F̂
(
θ̂wr , X̂n

)
dr + Lα

η

)]∣∣∣∣
≤ ∥∇f∥∞E

∥∥∥∥∫ η

0

∇F̂ (θwr , Xn) dr −
∫ η

0

∇F̂
(
θ̂wr , X̂n

)
dr

∥∥∥∥
≤ ∥∇f∥∞E

∫ η

0

∥∥∥∇F̂ (θwr , Xn)−∇F̂
(
θ̂wr , X̂n

)∥∥∥ dr
≤ ∥∇f∥∞E

∫ η

0

(
K1∥θwr − θ̂wr ∥+ ρ(Xn, X̂n)K2

(
∥θwr ∥+ ∥θ̂wr ∥+ 1

))
dr

= ∥∇f∥∞
[
K1

∫ η

0

E∥θwr − θ̂wr ∥dr + ρ(Xn, X̂n)K2

∫ η

0

E
(
∥θwr ∥+ ∥θ̂wr ∥+ 1

)
dr

]
.

By Lemma C.4, we have∫ η

0

E∥θwr − θ̂wr ∥dr ≤
∫ η

0

E∥θwr − w∥dr +
∫ η

0

E∥θ̂wr − w∥dr

≤ C(1 + ∥w∥)
∫ η

0

r1/αdr + C(1 + ∥w∥)
∫ η

0

r1/αdr

≤ 2C(1 + ∥w∥)η1+ 1
α .

By applying Lemma C.4 again, we have∫ η

0

E
(
∥θwr ∥+ ∥θ̂wr ∥+ 1

)
dr ≤

∫ η

0

E
(
∥θwr − w∥+ ∥θ̂wr − w∥+ 2∥w∥+ 1

)
dr

≤
∫ η

0

(
C(1 + ∥w∥)r1/α + C(1 + ∥w∥)r1/α + 2∥w∥+ 1

)
dr

≤ 2C(1 + ∥w∥)η1+ 1
α + (2∥w∥+ 1)η.
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Hence, we conclude that∣∣∣Pηf(w)− P̂ηf(w)
∣∣∣ = ∣∣∣E [f(θwη )− f(θ̂wη )

]∣∣∣
≤ ∥∇f∥∞

[(
K1 + ρ(Xn, X̂n)K2

)
(2C) (1 + ∥w∥)η1+ 1

α + ρ(Xn, X̂n)K2(2∥w∥+ 1)η
]
.

This completes the proof.

Lemma C.6 (Restatement of Lemma 3.8 (Theorem 1.2. in Chen et al. (2022))). Let µt and µ̂t denote the distributions of
continuous-time θt and θ̂t and µ and µ̂ denote the distributions of continuous-time θ∞ and θ̂∞. Moreover, let νk and ν̂k
denote the distributions of discrete-time θk and θ̂k and ν and ν̂ denote the distributions of discrete-time θ∞ and θ̂∞. Assume
the dynamics start at w at time 0. Let m, L be as in Assumption 3.2.

Then, there exists some constant Q (that may depend on B,m,K,L,M from Assumption 3.2) such that the followings hold.

(i) For every N ≥ 2 and η < min{1,m/(8L2), 1/m}, one has

W1(µNη, νN ) ≤ Q(1 + ∥w∥)η2/α−1, (86)

W1(µ̂Nη, ν̂N ) ≤ Q(1 + ∥w∥)η2/α−1. (87)

(ii) For every η < min{1,m/L2, 1/m}, one has

W1(µ, ν) ≤ Qη2/α−1, (88)

W1(µ̂, ν̂) ≤ Qη2/α−1. (89)
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