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Abstract
The goal in episodic memory (EM) is to search
a long egocentric video to answer a natural lan-
guage query (e.g., “where did I leave my purse?”).
Existing EM methods exhaustively extract expen-
sive fixed-length clip features to look everywhere
in the video for the answer, which is infeasible for
long wearable-camera videos that span hours or
even days. We propose SpotEM, an approach
to achieve efficiency for a given EM method
while maintaining good accuracy. SpotEM con-
sists of three key ideas: 1) a novel clip selector
that learns to identify promising video regions to
search conditioned on the language query; 2) a
set of low-cost semantic indexing features that
capture the context of rooms, objects, and inter-
actions that suggest where to look; and 3) distil-
lation losses that address the optimization issues
arising from end-to-end joint training of the clip
selector and EM model. Our experiments on 200+
hours of video from the Ego4D EM Natural Lan-
guage Queries benchmark and three different EM
models demonstrate the effectiveness of our ap-
proach: computing only 10% – 25% of the clip
features, we preserve 84% – 97% of the original
EM model’s accuracy. Project page: https://
vision.cs.utexas.edu/projects/spotem

1. Introduction
The limitations of human memory can pose an obstacle for
our day-to-day activities. We forget where we put things
(“where did I leave my car keys?”), fail to notice the state
of particular objects (“did I turn off the stove? how much
milk is left in the fridge?”), and struggle to recall details
about past events (“who did I run into while jogging last
week? what was the name of the bakery where we bought
the muffins?”). First-person or “egocentric” perception from
wearable devices like augmented reality (AR) glasses could
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Q: Did I leave the refrigerator open?
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Figure 1. Standard EM methods (see left) divide videos into fixed-
length clips and perform costly processing of every clip. The pro-
cessed clips are provided to the EM model for query-conditioned
search. We propose SpotEM, a clip-selection approach that spots
clips relevant to the query cheaply, and selectively processes these
clips to serve as inputs to the EM model (see right).

remove that cognitive load, allowing a user to ask questions
on-the-fly about their own past visual experience. Similarly,
an intelligent mobile robot could relay valuable information
about what it has seen based on people’s conversational
queries (“did anyone feed the dog yet?”).

This vision of a personal episodic memory prompts inter-
esting new challenges in computer vision and multimodal
learning. Not only does it require recognizing objects and
activities from the first-person perspective, but also identify-
ing which visual content is sufficient to answer a question
expressed in free-form natural language, accounting for the
fact that the correct answer may occupy only a tiny portion
of the entire video. Moreover, all this must be done in a
scalable manner, given that the visual history of a user will
ultimately span hours, days, weeks, or more.

The recently introduced Episodic Memory (EM) bench-
mark1 from Ego4D targets this task (Grauman et al., 2022):
given a natural language query and a long egocentric video,
identify the precise temporal window containing the answer.
The EM benchmark has attracted significant attention and
is the subject of community-wide competitions (Grauman
et al., 2022; Liu et al., 2022; Lin et al., 2022b; Hou et al.,
2022; Mo et al., 2022; Chen et al., 2022) attracting dozens

1In particular, we focus on Ego4D’s NLQ, the EM variant with
natural language queries, as opposed to other variants defined with
object or activity queries.
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of submissions in the first year alone. Hallmarks of the
benchmark are the free-form nature of the natural language
queries, the long-form nature of the egocentric videos (8.2
minutes on average), and the short responses that span a tiny
fraction of the overall video (2% on average). The result is
a “needle-in-the-haystack” problem for video localization.
Importantly, these facets set the EM task apart from tradi-
tional activity recognition and language grounding tasks,
which feature much shorter videos in which most content
is relevant (Caba Heilbron et al., 2015; Jiang et al., 2018;
Gao et al., 2017) (e.g., 30 second video in which a third of
it displays the target action).

While current EM methods have made exciting headway,
they neglect the practical scaling issue that is so central to
episodic memory. Today’s methods extract expensive spatio-
temporal features for densely sampled clips throughout the
video (Feichtenhofer et al., 2019; Bertasius et al., 2021;
Tong et al., 2022; Girdhar et al., 2022). This step alone
contributes over 99.9% of an EM model’s computational
cost.2 Such an approach becomes intractable as the video
length grows, especially for real-time applications like AR
and robotics where the constrained on-board computation
severely limits the ability to operate such heavy-weight
models. Besides, EM is just one of several functions that
need to be supported by these devices—all resources cannot
be devoted to just computing features for EM.

We observe that 1) not all parts of the video are useful for
reasoning about a given query, and 2) there are high-level
visual semantics about rooms, objects and interactions that
could steer our attention towards where to look. For exam-
ple, given the queries, “did I leave the lights on in the living
room?” or “did I close the refrigerator?”, we can ignore
video clips recorded in rooms other than the living room
or kitchen, respectively. Notably, these associations cannot
be neatly enumerated, however, given the free-form nature
of the queries. In the query “who was I with when I first
boarded the golf cart?”, the chain of reasoning becomes
much more complex since we need to reason about all in-
stances of boarding a golf cart, and identify those instances
where there was someone else with you. This points to the
need for learning query-conditioned priors that can use such
high-level semantics to help narrow down the search task.

We build upon these intuitions to propose SpotEM, a novel
approach to make a given EM method efficient. See Fig-
ure 1. The idea is to preview the video using cheap indexing
features, intelligently select a small subset of query-relevant
clips, and only use these clips for the full EM search. This
can cut down computational costs without sacrificing model
performance. Our approach differs from prior work for

2A single clip feature from Chen et al. (2022) consumes 2.09
TFLOPs, while EM modules from Zhang et al. (2020a) (excluding
the video backbone) consume 3 GFLOPs for the whole video.

efficient action recognition (Wu et al., 2018; Yeung et al.,
2016; Wu et al., 2019a; Feichtenhofer, 2020; Gao et al.,
2020) and video captioning (Chen et al., 2018; Suin & Ra-
jagopalan, 2020) that assumes much shorter inputs and does
not condition on free-form language queries.

To tackle this challenging setting with long-form egocentric
videos and language queries, we design MemorySpotter,
a novel clip selection architecture that uses a cross-modal
transformer to recursively preview the video and identify
query-relevant clips. We further design a set of inexpen-
sive semantic-indexing features that capture video context
about rooms/scenes visited, interactions observed, and the
objects present (RIO), thereby exposing to the model the
high-level visual context that may support the free-form
query text. Further, we propose expert-based distillation
losses to address optimization issues arising from jointly
training MemorySpotter and the EM modules. Our experi-
ments on the Ego4D EM benchmark demonstrate that our
approach is effective and versatile: when tested with mul-
tiple EM methods, it achieves 95+% of the original EM
method’s performance while computing heavy-weight video
features for only 25% of the clips. We also perform abla-
tion studies to validate the design of SpotEM and present a
detailed study of its clip selection behaviors.

2. Related work
Egocentric video understanding. Unlike internet-style
data, egocentric video captures the camera wearer’s per-
spective of their activities, and is the subject of multiple
datasets (Fathi et al., 2011; Kazakos et al., 2019; Furnari &
Farinella, 2020; Damen et al., 2022; Grauman et al., 2022).
Ego-video raises new research problems in human-object
interaction (Cai et al., 2018; Damen et al., 2014), activity
recognition (Kazakos et al., 2019; Zhou & Berg, 2015),
anticipation (Abu Farha et al., 2018; Girdhar & Grauman,
2021), video summarization (Del Molino et al., 2016; Lee
& Grauman, 2015), and spatial organization (Ortis et al.,
2017; Furnari et al., 2016; Nagarajan et al., 2020; Price et al.,
2022). We focus on the recently introduced episodic mem-
ory task, which requires answering queries about long-form
egocentric videos (Grauman et al., 2022).

Episodic memory. The goal in episodic memory is to
temporally localize the response to natural language queries.
This task extends video question answering (Xu et al., 2017;
Rohrbach et al., 2017; Xu et al., 2021; Zhang et al., 2020a)
to the challenging egocentric setting. The EM benchmark
offers a compelling step towards episodic memory appli-
cations in AR and has been the subject of multiple chal-
lenges at top conferences (Grauman et al., 2022).3 Prior

3CVPR 2022: https://ego4d-data.org/workshops/cvpr22/
ECCV 2022: https://ego4d-data.org/workshops/eccv22/
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work adapts video-language grounding methods such as 2D-
TAN (Zhang et al., 2020b), VSLNet (Zhang et al., 2020a),
and VSLNet-L (Zhang et al., 2021) to perform EM search,
and the state-of-the-art methods develop video representa-
tions (Lin et al., 2022b; Chen et al., 2022) and data augmen-
tation strategies (Liu et al., 2022). Unlike prior work which
is purely motivated by accuracy, we tackle the orthogonal
problem of search efficiency, which is critical for real-world
EM applications. Our results show SpotEM’s versatility:
deployed to augment three popular EM models (Chen et al.,
2022; Liu et al., 2022; Lin et al., 2022b), it successfully
achieves substantial efficiency gains for each one.

Efficient video models. Prior work develops efficient
video recognition architectures through compute-efficient
modules (Feichtenhofer, 2020), feature-distillation (Zhang
et al., 2016; Gao et al., 2020), compressed video process-
ing (Zhang et al., 2016; Wu et al., 2018), or adaptively choos-
ing between cheap and expensive inputs and modules (Zhu
et al., 2020; Meng et al., 2020; Li et al., 2021). Orthogonal
to this are frame-sampling methods that select informative
subsets of the video for video recognition (Chen et al., 2011;
Yeung et al., 2016; Wu et al., 2019a), typically by first pre-
viewing the video with an inexpensive module. For example,
Chen et al. (2011) use an inexpensive background subtrac-
tion module to filter out irrelevant frames, while Korbar
et al. (2019) predict each clip’s saliency and select the most
salient clips for processing. Alternatively, reinforcement
learning (RL) can be used to learn frame-selection policies
for action recognition and detection (Yeung et al., 2016; Fan
et al., 2018). Wu et al. (2019a) improve over RL methods by
using the Gumbel-Softmax trick to reduce frame selection
to a supervised learning problem. Some methods further
leverage audio to guide the sampling process (Jiang et al.,
2015; Gao et al., 2020; Panda et al., 2021).

Rather than sequentially processing one clip at a time (Wu
et al., 2019b; Yeung et al., 2016; Wu et al., 2019a), our
clip selection architecture simultaneously previews all of
the video at once using cheap image features and makes
selection choices among all clips. Furthermore, prior mod-
els that do parallel sampling preview the entire video only
once to make sampling decisions (Korbar et al., 2019; Lin
et al., 2022a). We instead propose a recursive approach
that previews the video multiple times to actively grow the
set of observed clips. At each recursive step, we select a
subset of clips, extract their (heavier) features, and incor-
porate this knowledge for future clip selection steps. We
demonstrate the significance of these contributions in our
experiments. Beyond architectural improvements over prior
work, SpotEM also has novel contributions of designing
a) semantic index features relevant to EM and b) distilla-
tion losses to address optimization limitations arising from
jointly training a clip selector and the task models.

3. Approach
We propose SpotEM, a clip-selection approach that intel-
ligently spots query-relevant clips for efficient EM. Our
overall approach consists of a novel clip selection archi-
tecture called MemorySpotter, our RIO semantic indexing
features to select clips relevant for EM, and distillation
losses to address optimization issues arising from jointly
training MemorySpotter with EM task modules. Memo-
rySpotter previews the video using our RIO features, which
are obtained by selecting a single image from each clip and
encoding them using efficient image encoders (Tan & Le,
2019). Heavy clip features are then extracted from only the
smaller subset of clips selected by MemorySpotter. Next,
we review the EM task definition and discuss our approach.

3.1. Episodic memory task

The goal in natural-language episodic memory is to per-
form query-driven reasoning about long-form egocentric
videos (Grauman et al., 2022). Formally, given an egocen-
tric video V capturing a camera wearer’s past experiences
and a query text Q, the task requires temporally localizing
where the answer can be seen in the video, i.e., a response
window R = [ts, te] defined by start ts and end te.

Recent work adapts video-language grounding models like
VSLNet (Zhang et al., 2020a) and VSLNet-L (Zhang et al.,
2021) to achieve state-of-the-art results for EM (Lin et al.,
2022b; Liu et al., 2022; Chen et al., 2022). Our analysis
shows that these methods devote over 99.9% of their compu-
tation to extracting spatio-temporal features for fixed-length
clips that are sampled densely from the video. We instead
propose to preview the video cheaply and identify query-
relevant clips to perform EM efficiently.

3.2. SpotEM for efficient episodic memory

We now provide an overview of our SpotEM approach.
See Figure 2. The model inputs consist of the video V
with clips [V1, · · · ,VL], and a text query Q with words
[Q1, · · · ,QT ]. First, a pretrained semantic indexer, which
consists of one or more image encoders, is used to extract
semantic index features s ∈ RL×Ds .

s = [s1, s2, · · · , sL] = SemanticIndexer(V). (1)

These are image features extracted by sampling one image
within each video clip, and they are inexpensive to compute
(2-3 orders lower cost than clip features). These will serve
as an initial preview of the video for intelligent clip selection
(more details in Section 3.4).

A pretrained DistillBERT backbone (Sanh et al., 2019) is
then used to extract the query text features q ∈ RT×Dq .

q = [q1, q2, · · · , qT ] = TextBackbone(Q). (2)
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Figure 2. SpotEM for efficient video search in episodic memory: We enhance standard EM models with the ability to intelligently
select clips for expensive feature extraction, with the aim of reducing computational cost without affecting accuracy. First, we extract our
RIO semantic indexing features s that capture room, interaction, and object context in the video using a cheap semantic indexer. We
then encode the query using a text backbone to obtain query features q (see left). The MemorySpotter module operates recursively to
select a subset of clips relevant to the query (see center). It first previews the video using semantic index s. It then alternates between
selecting subsets of video clips V̄n for expensive feature extraction, and previewing the video again with both the semantic index s and the
previously selected clip features v̄n+1. After N steps of the MemorySpotter, we use its cumulative selected clip features v̄ = v̄N+1 and
semantic index s to perform EM (see right). A cross-modal encoder jointly reasons about the concatenated features s⊕ v̄ and q, to obtain
a cross-modal embedding c̄. A localization module then predicts the temporal extents of the response. Note that the cross-modal encoder
inside MemorySpotter shares weights with the cross-modal encoder on the right. At step n = 1, no clips are selected, i.e., v̄1 = 0⃗.

The MemorySpotter module uses the semantic index s,
query features q, and the video V to recursively identify
a final subset of video clips V̄ that are relevant to the query.
The expensive clip features for V̄ are obtained using pre-
trained video backbones like Timesformer (Bertasius et al.,
2021) and VideoMAE (Tong et al., 2022) (see Sec. 4.1).4

v̄ = VideoBackbone(V̄) ∈ RL×Dv (3)

A cross-modal encoder uses the concatenated clip and se-
mantic index features s ⊕ v̄ and the query features q to
perform cross-modal reasoning to enhance the video fea-
tures with query-specific information.

c̄ = CrossModalEncoder(s⊕ v̄, q) ∈ RL×Dh (4)

Finally, a localization module is used to predict the temporal
extent of the response R̂ based on c̄:

R̂ = [t̂s, t̂e] = LocalizationModule(c̄). (5)

This formulation augments existing EM methods to be effi-
cient. Specifically, EM methods like VSLNet (Zhang et al.,
2020a) and VSLNet-L (Zhang et al., 2021) use video back-
bones to extract clip features, a text backbone to extract
query features, a cross-model encoder to jointly encode the
two modalities, and a localization module to predict the
response locations (see Figure 6). SpotEM modulates the
video inputs to these EM models by intelligently selecting
a subset of clips for heavy clip feature extraction. While
the architectural details of the cross-modal encoder and
localization modules vary across EM methods (described
in Appendix A), our approach remains unchanged.

4The video features for clips not selected are set to zeros in v̄.

SpotEM achieves efficiency by previewing the video cheaply
using the semantic indexer (detailed in Sec. 3.4) and then
recursively selecting a subset of clips relevant to the query
using MemorySpotter, which we describe next.

3.3. MemorySpotter architecture description

One of our key contributions is the MemorySpotter architec-
ture for intelligent clip selection for EM. See Figure 2 (cen-
ter). It first previews the entire video using low-cost se-
mantic index (s). It then alternates between selecting video
clips for expensive feature extraction, and previewing the
video again with both the semantic indexing features and
the previously selected clip features (v̄n).

Specifically, let n ∈ [1, · · · , N ] denote the recursive step
and v̄n ∈ RL×Dv denote the clip features for the sub-
set of video clips selected from steps 1 to n − 1, where
v̄1 = [0]L×Dv

is a matrix of zeros. The semantic indexing
features s are computed once before step 1 and kept fixed.
At step n, the clip features v̄n are concatenated with s along
the feature dimension to get s ⊕ v̄n ∈ RL×(Dv+Ds). The
concatenated visual features s⊕ v̄n and q are used by the
cross-modal encoder to perform joint reasoning:

c̄n = CrossModalEncoder(s⊕ v̄n, q). (6)

The selection policy is a two-layered MLP that predicts a bi-
nary value (i.e., thresholded probabilities) per clip indicating
whether clip features ought to be computed or not:5

b̄n+1 = SelectionPolicy(c̄n) ∈ {0, 1}L. (7)

5Previously selected clips are excluded from predictions.
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Finally, the video backbone is used to extract clip features
for the clips selected in b̄n+1. They are added to v̄n to get
the updated clip features v̄n+1. This selection process is
repeated for N steps, and the cumulative set of clip features
(v̄ = v̄N+1) is used to predict the EM response as shown
in Equations (4) and (5).

3.4. RIO features for semantic indexing

Our SpotEM relies on cheap semantic indexing to preview
the video and select clips intelligently. Prior work on effi-
cient video recognition uses ImageNet-pretrained features
for this purpose (Wu et al., 2019b;a; Gowda et al., 2021).
However, ImageNet features capture only object-level in-
formation, which is insufficient for query-conditioned in-
dexing in EM, where contextual cues about human-object
interactions and room-level characteristics are needed. For
example, object interaction features may be useful for the
query, “What tool did I use for fixing this part of the bike
last time?” while room-level features may be useful for
the query, “Did I leave the lights on in the living room?”
Hence, we design a set of low-cost semantic indexing fea-
tures that capture context from the rooms/scenes visited,
human-object interactions, and the visible objects, which
we term RIO. For each feature, we train an EfficientNet-b0
image encoder, which incurs 2-3 orders lower computational
cost than typical clip encoders (Tan & Le, 2019).

Room features: We train an image encoder as a room/scene
classifier to capture scene characteristics using scene anno-
tations for Ego4D videos (Nagarajan et al., 2022). This
includes 28 categories of both indoor scenes (e.g., bedroom,
living room) and outdoor scenes (e.g., garden, porch).

Interaction features: We capture human-object interac-
tions by training another image encoder using the contrastive
vision-text pretraining objective from EgoVLP (Lin et al.,
2022b). The objective is to maximize feature similarity
between video frames and Ego4D’s time-synchronized tex-
tual narrations reporting every step of the camera-wearer’s
activity (Grauman et al., 2022). In addition to image-text
contrastive losses, we add losses to distill the clip-level fea-
tures from a pretrained EgoVLP TimeSformer (Bertasius
et al., 2021) backbone into the image encoder.

Object features: We replace the ImageNet features from
prior work with self-supervised VICReg (Bardes et al.,
2022) features trained on Ego4D images. The objective
in VICReg is to learn image representations in a self-
supervised way by minimizing reconstruction errors be-
tween two different views of an image (invariance), while
maintaining diversity over each feature dimension (vari-
ance), and decorrelating pairs of feature dimensions (covari-
ance). This captures object properties and also bridges the
visual domain gap experienced by ImageNet features.

Overall, we sample one image within each video clip, extract
each of the RIO features, and concatenate them to obtain
the semantic indexing features s described in Figure 2.

3.5. Model optimization

Our SpotEM approach uses a MemorySpotter module for
clip selection in conjunction with the EM modules, i.e., the
cross-modal encoder and the localization module (see Fig-
ure 2). We jointly optimize these modules end-to-end on the
EM task for improving task performance while only sam-
pling a subset of video clips. We keep the video, semantic
index, and text backbones frozen during training. Our loss
function consists of the following terms: an EM task loss
LEM, a selection loss LSEL, and two novel distillation losses
for feature distillation LFD and prediction distillation LPD.

EM task loss (LEM) optimizes the model to improve the
EM NLQ performance. It typically consists of prediction
losses for start and end locations, and a loss to prioritize
clips overlapping with the response (Zhang et al., 2020a).
The details are in Appendix B.

Selection loss (LSEL) optimizes the model to select a speci-
fied budget of clips and penalizes under-/over-sampling:

LSEL =

(
E(V,Q)∼Dtrain

[
1

L

L∑
l=1

b̄ljoint

]
− γ

)2

, (8)

where Dtrain is the training dataset and b̄joint =
∑N+1

n=1 b̄n
is the overall binary selections after N steps (refer to Equa-
tion (7)). LSEL limits the fraction of clips selected, in expec-
tation, to a predefined hyperparameter γ. This is similar to
binary selection losses used in prior work (Wu et al., 2019a;
Meng et al., 2020). We further regularize the per-step se-
lection b̄ln by encouraging the model to select ( γ

N )L clips
in each step from 1 to N . We ignore this term from Equa-
tion (8) for brevity. We observed this simple regulariza-
tion can improve training stability. However, we did not
explore more complex schemes that vary the number of se-
lections conditioned on the iteration. Since MemorySpotter
predicts binary selection values in Equation (7), it is not
differentiable for gradient-based optimization. Following
prior work, we use the Gumbel-Softmax trick to reparame-
terize argmax sampling using a softmax relaxation during
training (Hazan & Jaakkola, 2012; Maddison et al., 2017;
Jang et al., 2017; Wu et al., 2019a). See Appendix C for
details.

Distillation losses: We observed some optimization difficul-
ties during the joint optimization of MemorySpotter and EM
modules (i.e., cross-modal encoder and localization mod-
ule). Intuitively, the training of the EM modules is disrupted
by the noisy clip-selection from MemorySpotter during the
initial stage of learning. This in turn affects the optimization
of MemorySpotter since it gets noisy gradients from the

5
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Row Clip selection method η Sem. index MR@1 MR@5 TFLOPs

ZeroClips 100 ImageNet 3.85 8.64 0.1

1 Random 90 ImageNet 4.35 9.85 26.8
2 Uniform 90 ImageNet 4.32 9.89 26.8
3 LiteEval (Wu et al., 2019a) 90 ImageNet 5.82 11.53 26.6
4 OCSampler (Lin et al., 2022a) 90 ImageNet 5.72 12.32 26.8
5 SpotEM w/o distill 91 ImageNet 6.99 12.95 24.8
6 SpotEM w/o distill 90 RIO 7.48 14.82 26.9
7 SpotEM (ours) 90 RIO 9.62 17.07 27.0

1 Random 75 ImageNet 4.91 11.03 67.0
2 Uniform 75 ImageNet 5.62 12.08 67.0
3 LiteEval (Wu et al., 2019a) 75 ImageNet 7.12 13.27 66.0
4 OCSampler (Lin et al., 2022a) 75 ImageNet 7.34 14.49 67.0
5 SpotEM w/o distill 76 ImageNet 9.22 16.90 65.2
6 SpotEM w/o distill 75 RIO 9.92 17.27 66.9
7 SpotEM (ours) 76 RIO 11.06 18.92 64.9

1 Random 50 ImageNet 7.52 14.85 133.9
2 Uniform 50 ImageNet 8.24 15.75 133.9
3 LiteEval (Wu et al., 2019a) 50 ImageNet 8.70 16.21 132.8
4 OCSampler (Lin et al., 2022a) 50 ImageNet 9.11 16.93 133.9
5 SpotEM w/o distill 53 ImageNet 9.35 17.18 125.5
6 SpotEM w/o distill 52 RIO 9.84 18.70 129.5
7 SpotEM (ours) 51 RIO 11.56 19.90 131.9

AllClips (Chen et al., 2022) 0 - 11.45 20.56 267.6

Table 1. Comparing clip selection methods for the InternVideo EM
method (Chen et al., 2022) on the Ego4D NLQ benchmark.

remaining modules. To break this negative feedback loop,
we adopt a two-stage training pipeline. First, we train an ex-
pert EM model to perform the task without MemorySpotter
(but include the semantic index). Then we use the expert
to provide distillation supervision for joint optimization of
student EM modules with MemorySpotter.

For a given input (V,Q) and ground-truth response R,
let c̄expert and c̄student be the cross-modal encoder outputs
from Equation (4) for the expert and student EM models,
respectively. Unlike the student, the expert uses all the video
features. The feature distillation loss LFD trains the student
to match the expert’s cross-modal features.

LFD =
∥∥StopGrad(c̄expert)− c̄student

∥∥
1
, (9)

where the gradient is not propagated to the frozen expert.
Similarly, we also define the prediction distillation loss
LPD, which trains the student localization predictions to
match the expert localization predictions. For example,
in the VSLNet (Zhang et al., 2020a), this would train the
student EM model to minimize the KL divergence between
its predicted distribution over highlight scores, start and
end locations, and the corresponding expert distributions.
See Appendix B for more details. Overall, our final loss is:

Ltotal = LEM + λSELLSEL + λFDLFD + λPDLPD, (10)

where the λ∗ are loss scaling hyperparameters determined
via validation. Jointly, they encourage the model to improve
EM performance while limiting the budget of clips selected.

4. Experiments
We next validate SpotEM’s impact in practice.

4.1. Experimental setup

We evaluate our approach on the large-scale EM NLQ bench-
mark from Ego4D (Grauman et al., 2022), which is the only
public dataset supporting this task to our knowledge. The
dataset contains 11.3k/3.9k/4.0k queries annotated over
136/45/46 hours of train/val/test videos. Each video clip
is 8.2 minutes on average (with the longest video spanning
20 minutes), and each response window is 10.5 seconds
on average. Unlike Ego4D, prior query localization and
QA datasets focus only on third-person settings (Regneri
et al., 2013; Gao et al., 2017; Tapaswi et al., 2016), or derive
videos from simulation with strong assumptions of ground-
truth odometry (Datta et al., 2022).

While Ego4D uniquely supports the NLQ task by having
long-form egocentric videos and natural language queries,
we also test the generality of our approach by benchmarking
it on the TACoS dataset for natural language grounding
(NLG). Instead of localizing responses to natural language
queries in egocentric videos like Ego4D NLQ, the goal in
TACoS NLG is to localize short descriptions of the human
activities in exocentric videos. It contains long exo videos
of kitchen activities (5 minutes on average) and short natural
language moments (5 seconds on average).

Evaluation metrics: We measure NLQ and NLG accuracy
using MR@1 and MR@5 metrics, which are recall@{1, 5}
averaged over temporal IoU values [0.3, 0.5]. We measure
the savings in clip-feature computation using the efficiency-
level metric:

η = E(V,Q)∼Dval [100− k], (11)

where k = 100 × # sampled clips
# total clips . We quantify computa-

tional cost with TFLOPs measured using the DeepSpeed
library (Rasley et al., 2020). Since the clip feature extraction
accounts for over 99.9% of the computational cost, TFLOPs
is approximately inversely proportional to η.

4.2. Baselines

We perform experiments with multiple base EM methods
and compare against several clip-selection baselines. In
particular, we choose three state-of-the-art EM methods to
demonstrate the effectiveness and versatility of our clip-
selection approach.

InternVideo (Chen et al., 2022) proposes a video foun-
dation model that learns a single video representation to
achieve state-of-the-art on several tasks including EM. This
method won the ECCV 2022 EM challenge.

ReLER (Liu et al., 2022) uses a modified version of
VSLNet-L (Zhang et al., 2021) and proposes video-level
data augmentation techniques for NLQ. This method was
the winning entry in the CVPR 2022 EM challenge.
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InternVideo ReLER EgoVLP

Figure 3. Plot comparing accuracy (y axis) vs. computational cost (x axis) for clip selection methods with InternVideo (Chen et al., 2022),
ReLER (Liu et al., 2022), and EgoVLP (Lin et al., 2022b) EM methods. All methods are evaluated on the Ego4D NLQ benchmark.
SpotEM achieves over 84% – 97% of the most expensive AllClips method with 4-10× lower computational cost. Note that the computation
cost for each clip sampling method includes the cost of extracting semantic index features (see Appendix E for more details). For each
method, we show the complete results in Tables 1, 5 and 6.

EgoVLP (Lin et al., 2022b) performs large-scale egocentric
video-language pretraining on paired (video clip, narrations
text) from Ego4D. This method placed second in the CVPR
2022 EM challenge.

For each base EM method, we compare SpotEM against
several clip sampling baselines that represent alternate ways
to select clips for reducing the EM inference cost.

ZeroClips: This does not sample any clip features, and only
uses the (cheap) semantic indexing features for EM. This
serves as a lower bound for clip sampling methods and has
the lowest computational cost.

Random: This randomly samples k% of clips.

Uniform: This samples k% of clips, uniformly spaced.

LiteEval: This is our implementation of the model of Wu
et al. (2019a), which linearly scans the video clips while
making binary choices for clip selection. We modified it to
include query features as additional inputs to the model.

OCSampler: This is our implementation of the model
of Lin et al. (2022a), which previews each video clip in-
dependently, predicts per-clip selection scores and selects
the top k% clips with the highest scores. We modified it to
include query features as additional inputs.

AllClips: This is the base EM model which performs the
task using all video clips (i.e., no clip sampling). This serves
as an upper bound for clip sampling methods and has the
highest computational cost.

For all baselines other than AllClips, we use ImageNet
semantic indexing features in addition to the selected clip
features for performing EM. Please see Appendix D for
implementation details.

4.3. Experimental results

In Table 1, we compare SpotEM with naı̈ve baselines and
prior state-of-the-art clip selection methods (Wu et al.,
2019a; Lin et al., 2022a) on the Ego4D NLQ benchmark.
The base EM method is the state-of-the-art InternVideo
method (Chen et al., 2022). We evaluate methods at differ-
ent efficiency levels η = [50, 75, 90]. For random, uniform,
and all learned methods, we train one model per efficiency
level η. For random, uniform and OCSampler, this means
sampling k% = 100− η of clips during training and eval-
uation. For the LiteEval and SpotEM, we set γ = 1− η

100
in Equation (8) during training. Note that the efficiency
for LiteEval and SpotEM may be slightly larger than the
specified η since the selection is learned end-to-end without
any manual intervention.

Consider rows 1-5 in Table 1, which presents a comparison
across all methods with ImageNet features as the semantic
index. Among the baselines, we observe a consistent trend:

OCSampler ≥ LiteEval > Uniform ≥ Random > ZeroClips

As expected, all methods are better than the lower-bound
zero baseline. Uniform sampling captures information more
effectively than random sampling. Importantly, all learned
methods outperform naı̈ve baselines by a good margin, con-
firming the value of intelligent clip selection for EM.

Our SpotEM in row 5 outperforms all the baselines, even
before incorporating our RIO semantic index and distilla-
tion losses, showing the strength of our MemorySpotter
architecture. When compared to the linear clip-wise scan
strategy in LiteEval, our method previews the entire video
using transformer-based attention and makes selection de-
cisions for all clips at once. This results in 1 – 3 higher
absolute mean-recall (MR) than LiteEval. Our method also
obtains 0.5 – 2.5 higher absolute MR than OCSampler. Un-
like OCSampler, which performs one-shot score prediction
for all clips, SpotEM performs recursive clip selection by
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Ground-truth
Prediction

Query: Where did I put the ham?Video
0 sec 480 secs

Selected clips Predicted clip

Ground-truth clip

Figure 4. We visualize an example of how SpotEM efficiently performs EM. The query is shown on the top. Below the query, we show a
temporal plot containing the video (8 minutes long) overlayed with the timestamps of the clips selected by the policy in light blue (a
∼0.5 seconds chunk of video). The prediction (yellow) and ground truth (green) are shown above the video plot. For a representative set
of clips selected by the model, we show the image taken from the center of the clip (highlighted in blue), followed by images from the
center of the predicted (yellow) and ground-truth (green) time windows. SpotEM uses RIO semantic index to preview the video cheaply,
identifies clips that are likely to contain the interaction (put, ham), and correctly localizes the response. In Appendix J, we present more
examples that highlight the effective clip selection strategies learned by SpotEM. We also present failure cases where SpotEM confuses
closely related objects (e.g., salad dressing vs. salt container) and fine-grained attributes of objects (e.g., brown box vs. blue box).

previewing the video multiple times. At each step, it selects
a subset of video clips, extracts their (heavier) clip features,
and uses this knowledge for future steps. This results in
better performance, especially for higher efficiency levels.
This comparison is valuable to show how MemorySpotter’s
design overcomes limitations of SoTA sampling models de-
signed for action recognition rather than episodic memory.

While the SpotEM clip selection strategy from row 5 out-
performs prior methods, it falls short of the original In-
ternVideo results (NB: the latter uses dramatically more
computation). However, when we replace the ImageNet
features with our RIO features in row 6, we observe good
improvements of 0.5 – 2 MR with little to no increase in
the computational cost. This confirms the value of building
a (cheap) semantic index that captures room, interaction,
and object features for efficient EM. When we further add
distillation losses to improve model optimization in row 7,
the performance improves by 1.5 – 2 MR and effectively
bridges the gap between our efficient SpotEM and the base
(status quo) EM method which uses all clips. Specifically,
we can achieve 84%, 96.5% and 100% of original MR@1
metric with 10×, 4× and 2× reduction in computational
cost, respectively. By combining our novel clip selection
model, RIO semantic index, and distillation losses during
training, SpotEM successfully reduces the computational

cost by 4× while maintaining over 95% of the EM perfor-
mance. Please see Figure 3 (left) for a performance vs. cost
chart summarizing our findings. We present a qualitative
analysis of SpotEM in Figure 4.

We also test SpotEM on two more EM models: ReLER (Liu
et al., 2022) in Figure 3 (center) and EgoVLP (Lin et al.,
2022b) in Figure 3 (right). In both cases, SpotEM outper-
forms all baselines across efficiency levels, and attains at
least 95% of the original EM method’s accuracy with a 4×
reduction in computational cost. See Appendix F for results
analogous to Table 1 for ReLER and EgoVLP. The trends
are similar as those for InternVideo above, confirming that
our approach generalizes across multiple EM methods.

In Appendix K, we compare clip sampling methods on the
TACoS dataset for natural language grounding. The trends
largely echo our results on the Ego4D NLQ benchmark and
confirm the advantages of SpotEM for NLG on exo videos.
However, we find that the RIO features are not beneficial,
likely due to the ego-exo domain shift since RIO features
are trained on egocentric images.

4.4. Ablation studies

Thus far, we compared SpotEM with several clip-selection
baselines and demonstrated its superiority. We now present
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ablation studies on the Ego4D NLQ benchmark to analyze
different aspects of our model.

Ablation of RIO semantic index: In Section 4.3, we con-
firmed the benefits of using RIO features over standard
ImageNet features. We now study the impact of removing
each RIO feature, one by one, on the EM task (see Table 2).
The base EM method is InternVideo. We study SpotEM
without distillation losses to avoid exhaustively training ex-
pert models for each feature set. At η = 50%, the impact
of removing any one feature is minimal since 50% of the
expensive clip features are already available. At higher ef-
ficiencies, the performance noticeably decreases when we
remove any one feature. This study confirms our intuitions:
RIO semantic index captures complementary aspects of the
EM task and are critical to spotting query-relevant clips.

In Appendix G, we analyze the impact of removing RIO
features across query templates (e.g., where is object X?
what did I put in X? what is X before/after event Y?) and
study the role of RIO features for performing EM efficiently.
Our study indicates that each of the RIO features has a
varying impact on the templates. Removing room features
affects queries with strong scene association (e.g., ovens
are in kitchens), while removing interaction features affects
queries that require object-interaction reasoning (e.g., “how
many drawers did I open?”). We also found that RIO fea-
tures facilitate intelligent clip-selection, but do not improve
the absolute EM performance themselves.

Ablation of recursive clip selection: Unlike prior meth-
ods by Wu et al. (2019a) and Lin et al. (2022a) that were
designed to handle shorter videos for recognition, we ex-
plicitly target longer videos for EM using our recursive
clip-selection approach, where we preview the entire video,
and actively select subsets of clips over multiple steps. We
assess the impact of the recursion length N in Figure 5.
Specifically, we train SpotEM models with η = [50, 75, 90]
and N = [1, 2, 4, 8], where N = 4 is our default choice.
N = 1 is the non-recursive case where the model looks
at only the semantic index for selecting all clips, without
incorporating any heavy clip features for selection. Across
efficiency levels, we observe that the mean recall@5 in-
creases from N = 1 to N = 4, confirming the value of re-
cursively selecting clips and incorporating knowledge from
prior clips for future selection. The performance reduces
beyond N = 4 since gradient propagation becomes more
challenging.

We further analyze SpotEM’s performance as a function of
video duration in Appendix H and find that it continues to
perform well on long videos, outperforming the baseline
sampling methods. SpotEM also achieves 85% of the base
EM method’s performance, while sampling only 25% of
the clips. However, the absolute performance is ultimately
limited by the underlying EM method. We also present a

MR@1 at η MR@5 at η

R I O 50 75 90 50 75 90

✓ ✓ ✓ 9.84 9.92 7.48 18.70 17.27 16.83
✓ ✓ 9.83 9.26 7.26 17.38 17.08 13.36

✓ ✓ 9.52 8.36 5.89 17.23 14.83 11.05
✓ ✓ 10.38 9.04 6.94 18.53 16.30 13.12

Table 2. Ablation study of semantic index: We assess the impact
of removing each one of the RIO features on EM performance
of InternVideo (Chen et al., 2022). The first 3 columns indicate
whether object, room, interaction features are used, respectively.
The second row shows the efficiency level η of the model.
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Figure 5. Ablation study of # recursive steps: We assess the
impact of the recursive step size N for SpotEM on MR@1.

detailed study of SpotEM’s clip selection behaviors in Ap-
pendix I. Our experiments verify our intuition that SpotEM
samples query-relevant clips that are useful for the base EM
method to respond to the query. SpotEM does not try to
respond to the query directly on its own.

5. Conclusions
SpotEM tackles the efficiency challenge of answering
episodic memory queries on long egocentric video head-
on. Our novel MemorySpotter clip selection policy, learned
jointly with the EM model, leverages cheap video features
to prioritize the temporal regions most likely to yield a given
natural language query’s answer. Together with our novel
distillation losses and well-designed RIO semantic indexing
features, SpotEM successfully reduces the cost for multiple
SoTA EM methods—4 to 10× efficiency gains while main-
taining high accuracy. While the videos in our study already
represent a sizeable jump in length compared to mainstream
video understanding work, in future work, we are interested
in exploring a hierarchical variant of our model to triage the
video across hours of content.
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A. Description of EM methods
We experiment with three different EM methods in the main
paper (Liu et al., 2022; Lin et al., 2022b; Chen et al., 2022).
Figure 6 depicts the working of an abstracted episodic mem-
ory architecture that encapsulates these three methods. We
now provide more details about the individual methods.

InternVideo (Chen et al., 2022) proposes a video foun-
dation model that learns a single video representation to
achieve state-of-the-art on several tasks including EM. It pre-
trains two VideoMAE video backbones (Tong et al., 2022)
to predict verbs and nouns associated with Ego4D clips, re-
spectively. Overall, it combines the EgoVLP TimeSformer,
VideoMAE-verb, and VideoMAE-noun backbones to ob-
tain visual representations. It extracts query-text features
using the DistillBERT backbone pretrained by Lin et al.
(2022b). It uses the VSLNet architecture for temporal lo-
calization (Zhang et al., 2020a), where the cross-modal
encoder consists of a transformer encoder to independently
encode video and query features, and a context-query atten-
tion module to obtain cross-modal embeddings (Seo et al.,
2016). A span-based localizer is used to localize the re-
sponse. It consists of a highlight predictor that predicts the
probability of each clip overlapping with the response, and
uses normalized probabilities to re-weight the video features
for localization. A localizer the predicts the start-end prob-
abilities for the resonse conditioned on the output of the
highlight module. Please see Appendix B for more details.
This method won the ECCV 2022 EM challenge.

ReLER (Liu et al., 2022) uses a modified version of
VSLNet-L (Zhang et al., 2021) and proposes video-level
data augmentation techniques for NLQ. It uses a TimeS-
former backbone pretrained from (Lin et al., 2022b) and a
pretrained CLIP image encoder (Radford et al., 2021) as
video encoders. The text backbone is a pretrained CLIP
text encoder. It adapts the VSLNet-L architecture for tem-
poral localization (Zhang et al., 2021). The cross-modal
encoder consists of a multi-scale transformer encoder to
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Figure 6. Episodic Memory architecture: We depict how an ab-
stracted episodic memory model works for the natural language
queries task. Given video V and text query Q, it extracts cor-
responding features v and q using pretrained backbone models.
A cross-modal encoder is used to jointly reason across the two
modalities and obtain a cross-modal embedding c. The localiza-
tion model predicts the location of the response conditioned on the
cross-modal embedding.

encode video clips, a transformer encoder for the query, and
a cross-modal attention mechanism to obtain cross-modal
embeddings. A span-based localizer is used as the local-
ization module (similar to VSLNet). Please see (Liu et al.,
2022) for more details. This method was the winning entry
in the CVPR 2022 EM challenge.

EgoVLP (Lin et al., 2022b) performs large-scale egocentric
video-language pretraining on paired (video clip, narrations
text) from Ego4D. This method placed second in the CVPR
2022 EM challenge. It pretrains a TimeSformer (Bertasius
et al., 2021) video backbone and a DistillBERT (Sanh et al.,
2019) text backbone. Similar to InternVideo, EgoVLP uses
the VSLNet architecture for temporal localization (Zhang
et al., 2020a).

B. SpotEM distillation losses
We now describe the VSLNet architecture (Zhang et al.,
2020a), its EM task losses, and how we apply our distillation
losses to this model (refer Section 3.5).

VSLNet architecture

We first overview the architecture of VSLNet. Specifically,
we use the variant proposed by Grauman et al. (2022), where
the recurrent modules in the original model from Zhang et al.
(2020a) are replaced by transformer modules. Let v and
q denote the video and query features obtained from the
respective backbones (see Figure 6). A cross-modal encoder
is used to perform cross-modal reasoning:

c = CrossModalEncoder(v, q) ∈ RL×Dh .

This consists of a transformer encoder module that inde-
pendently updates the video features v and query features q
by performing self-attention. It then uses the context-query
attention mechanism to enhance the video features using
information from the query features (Zhang et al., 2020a;
Seo et al., 2016).

VSLNet then introduces the query-guided highlighting
(QGH) module, which is a 1D convolutional layer that
predicts the probability that a clip lies within a temporal
neighborhood of the response:

Ŝh = σ(Conv1D(c)) ∈ RL×1, (12)

where σ is the sigmoid activation function. These probabili-
ties are used to re-weight the cross-modal features c:

ch = Ŝh · c ∈ RL×Dh .

Finally, VSLNet uses a conditioned span predictor to infer
the probabilities of each feature location being the start and
end points of the response window:

p̂s, p̂e = ConditionalSpanPredictor(ch), (13)

where p̂s, p̂e ∈ RL×1 are log-probabilities per feature lo-
cation and “ConditionalSpanPredictor” consists of a trans-
former encoder for performing self-attention and an MLP
to predict the log-probabilities. Next, we describe the loss
functions proposed in VSLNet for the EM task.

EM task losses

VSLNet trains the model using a span loss and a QGH loss.
The span loss is used to supervise the start/end probability
predictions from Equation (13):

Lspan =
1

2

[
fCE(p̂s, p

∗
s) + fCE(p̂e, p

∗
e)
]
,

where p∗s, p
∗
e are the ground-truth labels for the response

start and end times, and fCE is the cross-entropy loss func-
tion. The QGH loss is used to supervise the query-guided
highlighting prediction from Equation (12):

LQGH = fCE(Ŝh, S
∗
h),

where S∗
h is the ground-truth highlight score that covers

an extended temporal window around the ground-truth re-
sponse R. Please see the work from Zhang et al. (2020a)
for more details. The overall EM loss combines the span
and QGH losses: LEM = Lspan + LQGH.

Distillation losses

In Section 3.5, we introduced our distillation losses to break
the negative feedback loop when jointly training Memo-
rySpotter and the EM model. Specifically, we trained an
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expert EM model that performs the task with all the video
and semantic index features without any clip sampling (i.e.,
no MemorySpotter). We then derived supervision from the
expert EM model in the form of distillation losses to train
our student model. We proposed the feature distillation loss
LFD to train the student model to match the expert’s cross-
modal features (see Equation (9)). We also proposed the
prediction distillation loss LPD to encourage the student’s
localization predictions to match those of the expert.

We now provide more details about LPD in the context of
VSLNet. Let us denote the highlight scores, start and end
log-probabilities predicted by the expert as Sexpert

h , pexpert
s

and pexpert
e , respectively 6 (refer to Equations 12 and 13). Let

Sstudent
h , pstudent

s , pstudent
e be the corresponding predictions

from the student model. Then, the prediction distillation
loss is defined as follows:

LPD = λh
PDDKL

(
Sstudent
h || Sexpert

h

)
+ λl

PDDKL

(
ϕ(pstudent

s ) || ϕ(pexpert
s )

)
+ λl

PDDKL

(
ϕ(pstudent

e ) || ϕ(pexpert
e )

)
,

(14)

where ϕ is the softmax activation to convert ps and pe into
probabilities, λh

PD is the loss scaling for highlight scores,
λl

PD is the loss scaling for localization predictions, and DKL
is the KL divergence between two probability distributions.

C. Gumbel-softmax for clip sampling
As discussed in Section 3.5, MemorySpotter predicts bi-
nary selection values in Equation (7) and is therefore non-
differentiable for gradient-based optimization. Prior work
has tackled this issue using black-box policy optimization,
i.e., reinforcement learning (Yeung et al., 2016; Wu et al.,
2019b) or the gumbel-softmax trick which uses a softmax
relaxation of argmax sampling during training for differen-
tiability (Hazan & Jaakkola, 2012; Maddison et al., 2017;
Jang et al., 2017; Wu et al., 2019a). In this work, we adopt
the gumbel-softmax formulation since RL has known is-
sues such as high-variance and instability in training, and
requires carefully designed reward functions.

We now formally describe how we use gubmel-softmax trick
for training our clip-selection model by adapting notations
from Jang et al. (2017). Let bl be a binary variable specify-
ing whether clip l should be sampled given a video-query
pair (V,Q) (refer to Equation (7)). Let πl be the probability
of selecting clip l predicted by the SelectionPolicy. We can
then use the gumbel-softmax trick to approximately draw
samples bl from the 2-class categorical distribution with
probabilities [π0, π1], where π0 = πl is the probability of
sampling clip l and π1 = 1− πl is the probability of ignor-

6The ˆ symbol is ignored for brevity.

ing clip l. The gumbel-softmax distribution is obtained as
follows:

yi =
exp

(
(log(πi) + gi)/τ

)
∑

j∈{0,1} exp
(
(log(πj) + gj)/τ

) , (15)

where i ∈ [0, 1] and τ is the softmax temperature. We
then use the “straight-through gumbel-softmax estimator”
from (Jang et al., 2017) for training.

During the forward pass, discrete samples bl are drawn
through argmax sampling from the gumbel-softmax distri-
bution in Equation (15).

b̄l = one hot
(
argmax(y0, y1)

)
bl = b̄l[0]

(16)

This is done for each clip l ∈ [1, · · · , L] to obtain the clip
selections b̄ from Equation (7).

During the backward pass, the gumbel-softmax approxi-
mation in Equation (15) is used to compute the gradients.
Specifically, we use the selection loss from Equation (8) to
encourage the model to select a specified budget of clips and
penalize under-/over-sampling. The underlying autograd
algorithm (pytorch, in our case) maintains the logits from
the forward pass (under the hood) for calculating gradients
during the backward pass.

D. Implementation details
We implement all experiments in PyTorch. We modify
the implementations of base EM methods to incorporate
our SpotEM model and loss functions. For InternVideo
and EgoVLP, we use the official NLQ repository released
by Grauman et al. (2022). For ReLER, we use the code
released by Liu et al. (2022). Unlike the former methods,
ReLER performs video-level augmentation, where clips
from other videos are randomly concatenated on either sides
of a given video. We found it unsuitable to train clip sam-
pling methods like SpotEM and LiteEval using this aug-
mentation since the clip selection budget used in the loss
function from Equation (8) is inconsistent between training
and inference. For example, if the model is trained to select
10% of clips during training, it may pick more than 10%
of clips during inference since there are several irrelevant
clips appended to the video during training. Therefore, we
pre-train the EM modules for SpotEM and LiteEval using
uniform clip sampling + video-level augmentation first, and
then learn the clip sampling policies in a second stage of
training without video-level augmentation. This was not
needed for OCSampler since it deterministically picks the
top-k clips during inference (instead of deciding the number
of clips to select based on a loss function). We provide the
hyperparameters for training SpotEM in Table 3.
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InternVideo / EgoVLP ReLER

Optimizer AdamW AdamW
Encoder hidden size 128 256

# recursive steps (N ) 4 4
# training epochs 200 200

Batch size 128 128
Learning rate scheduler Linear Warmup -

Initial learning rate 0.001 0.0004
λSEL [300.0, 1000.0] [30.0, 100.0, 300.0]
λFD 1.0 3.0
λPD 1.0 1.0
λl

PD 1.0 1.0
λh

PD [10.0, 30.0] 10.0

Table 3. Hyperparameters for training SpotEM. λSEL, λFD, λPD

are loss scaling hyperparameters from Equation (10). λl
PD, λ

h
PD

are loss scaling hyperparameters from Equation (14). For hyper-
parameters with multiple values, we perform a grid-search over
the specified values and pick the best model based on validation
performance.

Computational cost (in GFLOPs)

Base EM method Cv

(per clip)
Cs

(per image)
Ccs + Cem

(per (V,Q))

EgoVLP 185.8 2.3 7.27
ReLER 220.9 2.3 215.5

InternVideo 2090.8 2.3 7.27

Table 4. Computational cost breakdown for SpotEM

E. Calculating computational cost for SpotEM
In Tables 1, 5 and 6 and Figure 3, we reported the computa-
tional cost in terms of averaged TFLOPs per (video, query)
pairs. Here, we present a complete breakdown of the com-
pute costs during inference for SpotEM. The overall cost C
for a video-query pair (V,Q) is calculated as follows:

C = Cv ×N + Cs × L+ Ccs + Cem, (17)

where N is the number of clips selected by the SpotEM,
and L is the total number of video clips. The individual cost
terms are described as follows:

Cv = extract video features per clip (Equation 3)
Cs = extract semantic-index per image (Equation 1)
Ccs = recursive clip selection for (V,Q) (Equations 6, 7)
Cem = EM inference for (V,Q) (Equations 2, 4, 5)

InternVideo and EgoVLP use the VSLNet model with max-
imum clip length L = 128. ReLER uses the VSLNet-L
model with maximum clip length L = 600. The cost val-
ues for SpotEM when integrated with different base EM
methods are shown in Table 4.

F. Complete results for EgoVLP, ReLER
Analogous to Table 1 from the main paper, we present re-
sults on EgoVLP and ReLER methods in Tables 5 and 6.

Row Clip selection method η Sem. index MR@1 MR@5 TFLOPs

ZeroClips 100 ImageNet 3.62 8.19 0.1

1 Random 90 ImageNet 3.79 8.23 2.4
2 Uniform 90 ImageNet 4.29 9.02 2.4
3 LiteEval (Wu et al., 2019a) 90 ImageNet 5.08 10.13 2.2
4 OCSampler (Lin et al., 2022a) 90 ImageNet 5.17 10.62 2.4
5 SpotEM w/o distill (ours) 91 ImageNet 6.00 12.04 2.1
6 SpotEM w/o distill (ours) 90 RIO 7.08 13.73 2.6
7 SpotEM (ours) 90 RIO 8.37 15.26 2.6

1 Random 75 ImageNet 5.15 10.75 6.0
2 Uniform 75 ImageNet 5.32 10.23 6.0
3 LiteEval (Wu et al., 2019a) 75 ImageNet 5.40 11.56 5.9
4 OCSampler (Lin et al., 2022a) 75 ImageNet 6.60 12.17 6.0
5 SpotEM w/o dilstill (ours) 77 ImageNet 7.34 13.53 5.5
6 SpotEM w/o distill (ours) 76 RIO 8.15 15.59 5.9
7 SpotEM (ours) 75 RIO 9.17 16.44 6.1

1 Random 50 ImageNet 6.36 12.07 11.9
2 Uniform 50 ImageNet 6.97 13.67 11.9
3 LiteEval (Wu et al., 2019a) 50 ImageNet 6.74 13.27 11.9
4 OCSampler (Lin et al., 2022a) 50 ImageNet 6.74 12.68 11.9
5 SpotEM w/o distill (ours) 51 ImageNet 8.36 15.68 11.8
6 SpotEM w/o distill (ours) 52 RIO 8.44 15.89 11.8
7 SpotEM (ours) 51 RIO 9.29 17.08 11.9

AllClips (Lin et al., 2022b) 0 - 9.53 17.50 23.7

Table 5. Comparing efficient clip selection methods for the
EgoVLP NLQ method (Lin et al., 2022b) on the Ego4D NLQ
benchmark.

We observe trends that are similar to InternVideo, with the
exception of SpotEM w/o distill underperforming with Ima-
geNet features for ReLER.

G. Ablation study of RIO features
In Table 2, we studied the effect of RIO features on the
overall task performance. We observed that the each of the
features were important for obtaining our best performance,
especially at higher efficiency levels. We now perform a
more detailed study about how these features impact dif-
ferent query types. The NLQ dataset from Grauman et al.
(2022) was constructed based on 13 templates spanning
questions about objects, places and people. We evaluate the
performance of our SpotEM method and the impact of re-
moving different features on each template in Table 7. Since
the features are most impactful at higher efficiency levels
(as noted in Table 2), we directly evaluate with η = 90. We
only select 10/13 templates that have atleast 100 queries in
the validation set. Each of the RIO features has a varying
impact on the templates. Removing room features affects
3/10 templates where the query object has strong scene as-
sociation (e.g., ovens are in kitchens). Removing interaction
queries affects 7/10 templates which require reasoning about
object-interactions (e.g., “how many drawers did I open?”).
Finally, removing object features affects 2/10 of queries that
require object-oriented reasoning (e.g., “how many funnels
are on the shelf?”).

We further study the role of RIO features for efficiently
performing EM. Specifically, we are interested in knowing
if the features only help SpotEM select clips intelligently,
or do they help improve the base EM model’s performance
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Row Clip selection method η LW feats. MR@1 MR@5 TFLOPs

ZeroClips 100 ImageNet 5.66 7.52 0.3

1 Random 90 ImageNet 6.05 7.89 3.1
2 Uniform 90 ImageNet 6.23 7.95 3.1
3 LiteEval (Wu et al., 2019a) 90 ImageNet 7.16 9.10 3.1
4 OCSampler (Lin et al., 2022a) 90 ImageNet 8.64 11.14 3.1
5 SpotEM w/o distill (ours) 90 ImageNet 8.19 10.60 2.9
6 SpotEM w/o distill (ours) 90 ORInt 9.58 12.05 3.3
7 SpotEM (ours) 90 ORInt 9.79 12.16 3.3

1 Random 75 ImageNet 7.31 9.36 7.3
2 Uniform 75 ImageNet 8.19 10.59 7.3
3 LiteEval (Wu et al., 2019a) 75 ImageNet 8.81 11.50 7.2
4 OCSampler (Lin et al., 2022a) 75 ImageNet 9.20 11.65 7.3
5 SpotEM w/o distill (ours) 77 ImageNet 9.59 12.32 6.9
6 SpotEM w/o distill (ours) 75 ORInt 10.33 12.70 7.5
7 SpotEM (ours) 75 ORInt 10.85 13.89 7.5

1 Random 50 ImageNet 9.33 11.65 14.4
2 Uniform 50 ImageNet 9.46 12.46 14.4
3 LiteEval (Wu et al., 2019a) 50 ImageNet 10.37 13.06 14.3
4 OCSampler (Lin et al., 2022a) 50 ImageNet 9.87 12.41 14.4
5 SpotEM w/o distill (ours) 51 ImageNet 10.18 12.67 14.1
6 SpotEM w/o distill (ours) 50 ORInt 10.58 13.49 14.5
7 SpotEM (ours) 50 ORInt 11.19 14.16 14.6

AllClips (Liu et al., 2022) 0 - 11.50 14.65 28.4

Table 6. Comparing efficient clip selection methods for the ReLER
NLQ method (Liu et al., 2022) on the Ego4D NLQ benchmark.

as well. To study this, we trained each EM method —
InternVideo, ReLER, EgoVLP — by appending the RIO
features to the original clip features, and used all clips (i.e.,
no clip sampling). The results are shown in Table 8. Across
methods, we find that RIO features are not helpful when
simply concatenated to the original clip features. Their
primary utility is to provide cues for intelligent clip selection
to responding to a query.

H. NLQ performance vs. video duration
We now study the performance of clip selection methods as
a function of the video duration. Longer videos are more
challenging since the search space grows significantly and
more computational cost may be required for inference. We
group the NLQ validation video clips into four buckets:
0-5 mins, 5-10 mikns, 10-15 mins, and 15-20 mins. The
statistics of the number of queries and clips in each bucket
are shown in Table 9. Majority of the clips are 5-10 mins
long. To get reliable statistics for evaluation (i.e., at least
100 queries), we only evaluate on clips in the 5-10 mins
and 15-20 mins buckets. We compare the “mean R@1”
performance on 5-10 mins clips and 15-20 mins clips for
the following methods: AllClips (the upper bound baseline),
LiteEval, OCSampler, SpotEM. The base EM method is
InternVideo. The results are in Table 10.

We make a few observations. The performance of the All-
Clips “upper bound” is significantly worse on 15-20 mins
clips when compared to 5-10 mins clips, pointing to the
difficulty of the task. When sampling only 25% of the clips,
SpotEM recovers ∼ 85% of AllClips’ performance for 15
- 20 mins clips. While this reduces from ∼ 96% for 5 - 10

mins clips, it is still a relatively high number. Thus, SpotEM
continues to work well for longer videos, but the overall
performance is ultimately bottlenecked by the underlying
EM method. Finally, SpotEM outperforms the learned base-
lines LiteEval and OCSampler on all cases, confirming its
advantages over the baselines.

I. Clip-selection behaviors of SpotEM
As we motivate in Section 1, the key idea behind SpotEM
is that not all parts of the video are useful for a given query
and there are high-level visual semantics that could steer our
attention towards where to look (refer Section 1). Based on
this intuition, we decomposed the EM task into two steps:
(1) identify query-relevant clips using a high-level preview
— the role of SpotEM, and (2) solve the EM task using the
selected clips — the role of the base EM model. Importantly,
SpotEM is not trying to answer the query. Instead, it aims to
narrow the search to some relevant clips (and reject several
irrelevant clips) and enable the EM model to perform the
task using a lower computational budget.

Another reasonable alternative is to directly train an EM
model to predict the ground-truth response window using
only the semantic index, and use these predicted response
windows to select clips for the heavier video feature ex-
traction. Based on this, we created the direct-supervision
clip selector (as opposed to SpotEM, where we indirectly
supervise clip selection based on the EM performance us-
ing the selected clips). It works as follows: (1) train a
ZeroClips EM model to predict the GT response using RIO
features, (2) given an NLQ query during inference, use the
ZeroClips model to infer the top-k responses, and (3) select
clips that overlap with the top-k responses for expensive
feature computation. We then train new EM modules (i.e.,
CrossModalEncoder and LocalizationModule) to perform
NLQ using the clips selected by direct-supervision (i.e., RIO
features for all clips + video features for selected clips).

The results are in Table 11. When compared to SpotEM,
direct-supervision performs poorly. The problem with
direct-supervision is that the semantic indexes we use (RIO,
in this case) are low resolution in terms of the semantics en-
coded and may not be enough to infer the GT response accu-
rately. Given a clip with 16 frames (at 30 FPS), the semantic
index only encodes a single image within that clip using
an efficient image backbone (refer to Section 3.2). There-
fore, methods that directly predict the GT response using
the semantic index perform poorly (i.e., direct-supervision),
which eventually translates to poor clip selection. This
suggests that selecting query-relevant clips (and more im-
portantly, rejecting irrelevant clips) is critical for efficiently
performing EM.

To understand the clip-selection behaviors resulting from
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Object queries Place queries People queries

R I O Where is X
before/after Y?

Where
is X?

What did I
put in X?

How many
X’s?

In what location
did I see X?

What X
did I Y?

What X
is Y?

State? Where did
I put X

Who did I interact
with during Y?

✓ ✓ ✓ 16.55 9.30 18.89 23.68 8.18 17.72 11.52 16.87 11.09 13.04
✓ ✓ 14.77 10.39 16.94 21.05 7.43 13.91 8.98 19.63 11.27 13.04

✓ ✓ 11.88 8.21 13.02 15.79 5.76 9.77 9.18 18.40 10.64 9.24
✓ ✓ 15.79 8.70 16.94 19.47 7.62 11.42 11.33 18.10 9.66 13.04

Table 7. Impact of semantic index on different types of queries: We split the performance of different feature types reported in Table 2
across query types (shown in row 2). We report the mean recall@5 at the highest efficiency level η = 90, since the features have the
biggest impact at this level. Columns 1-3 indicate the presence of room (R), interaction (I), and object (O) features. Row 3 is our
proposed method that uses all features. For rows 4-6 are ablations where one of R/I/O features are removed. We highlight the cases where
performance drops by more than 2 points on mean recall (in red).

Method MR@1 MR@5

EgoVLP 9.54 17.50
EgoVLP + RIO 9.33 16.45

ReLER 11.50 14.65
ReLER + RIO 10.68 13.10

InternVideo 11.45 20.56
InternVideo + RIO 10.91 18.94

Table 8. Role of RIO features for EM: RIO features are not ben-
eficial when simply concatenated with the base EM model’s clip
features. Their primary role is to help SpotEM intelligently select
clips relevant to the query.

0-5 mins 5-10 mins 10-15 mins 15-20 mins

# video clips 13 289 0 18
# queries 43 3142 0 344

Table 9. Distribution of queries and video clips as a function of
video duration.

indirectly supervising the clip selection in SpotEM, we em-
pirically study the relationship between the clips selected
by SpotEM and the ground-truth response. For SpotEM
trained at 90% efficiency, we divide the validation queries
into cases where the model gets the prediction right (i.e.,
MR@5 = 1) and the model gets the prediction wrong (i.e.,
MR@5 < 1). We then measured two statistics for each case.

(1) mean IoU measures the intersection over union between
the clips selected by SpotEM and clips belonging to the GT
response, averaged over all queries.
(2) mean nonzero intersection measures the percentage of
queries where SpotEM selects at least one clip belonging to
the GT response.

Results are shown in Table 12. We make two observations.
The mean IoU is low for both correct and wrong cases, i.e.,
SpotEM does not limit itself to selecting clips within the
ground-truth response. The mean nonzero intersection is
high for correct cases, i.e., 90% of the time, SpotEM picks
at least one clip within the GT response when its prediction

5-10 mins clips 15 - 20 mins clips
Efficiency 0 50 75 90 0 50 75 90

AllClips 12.22 - - - 4.80 - - -
LiteEval - 9.34 7.72 6.29 - 2.03 1.31 1.02
OCSampler - 9.79 7.72 6.02 - 2.62 3.34 2.47
SpotEM - 12.27 11.73 10.20 - 4.65 4.07 3.20

% results - 100.4 95.9 83.4 - 96.8 84.7 66.6

Table 10. NLQ accuracy vs. video duration. The last row shows
the % of AllClips’ results achieved by SpotEM.

Method Efficiency MR@1 MR@5

Direct-supervision (top k=1) 90 5.27 9.50
SpotEM 90 7.48 14.82

Direct-supervision (top k=2) 75 5.48 10.24
SpotEM 75 9.92 17.27

Direct-supervision (top k=5) 50 7.64 13.23
SpotEM 50 9.84 18.70

Table 11. EM accuracy comparison between direct-supervision
and SpotEM. Note: We train both methods without distillation
losses for apples-to-apples comparison. For direct-supervision,
we train models for k = 1, 2, 3, 4, 5 and select the largest k that
satisfies the given efficiency budget.

is right. These results confirm our intuition that SpotEM
does not try to answer the query (since the mean IoU is low).
Instead, it rejects irrelevant clips and selects relevant clips
(including clips within the GT response).

J. Qualitative analysis of SpotEM
Analogous to Figure 4 in the main paper, we visualize five
success and two failure cases of SpotEM in the form of
videos.7 In each video, we visualize the clips selected by
SpotEM at each step, highlight their relevance to the query
(if any), and provide a textual description of SpotEM’s be-
havior. Finally, we visualize the predicted and ground-truth
responses. Additionally, we describe why SpotEM performs

7Qualitative visualizations are available here: https://utexas.
box.com/s/p8iheclayaoth2ey95m8o0w9m97snjmb
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SpotEM prediction mean IoU (×100)
mean non-zero

intersection

right ( 717/3529 queries ) 13.96 90.10
wrong ( 2812/3529 queries ) 3.12 32.79

Table 12. Studying the clip-selection behaviors of SpotEM

poorly in failure cases. In success cases, SpotEM is able to
identify query-relevant clips and use them to respond to the
query accurately. In failure cases, SpotEM tends to confuse
one object for another (e.g., dressing vs. salt container) or
confuse object colors (e.g., brown box vs. blue box). These
failures could be attributed to the similarity of these objects
in the RIO feature space.

K. Benchmarking SpotEM on TACoS dataset
Ego4D, to the best of our knowledge, is the first dataset to
introduce the EM task with unique properties of long-form
egocentric videos and natural-language query annotations.
To test our approach on another dataset, we identified a third-
person video dataset that may support the natural-language
grounding task with long video and short responses. The
TACoS dataset contains long third-person kitchen videos
( 5 mins on average) with relatively short natural language
moments ( 5 secs) (Rohrbach et al., 2014). Since TACoS
has third-person videos, we use clip features from a Slow-
Fast model pre-trained on Kinetics 400 (Feichtenhofer et al.,
2019). Our base method for TACoS NLG is a VSLNet
model with SlowFast features. We compare SpotEM with
all baselines across different efficiency levels in Table 13.
The trends echo results from Section 4.3 on Ego4D NLQ.
There are two key differences. LiteEval performs better than
OCSampler (row 3 vs. 4), and adding RIO features is not
helpful (row 5 vs. 6), likely due to the ego-exo domain shift
(RIO features are trained on egocentric images). Overall,
SpotEM outperforms the baselines (row 5) and adding distil-
lation losses improves performance by a good margin (row
6 vs. 7). These results confirm the benefits of SpotEM for
natural-language grounding on long exocentric videos.

Row Clip selection method η Sem. index MR@1 MR@5

ZeroClips 100 ImageNet 7.52 14.03

1 Random 90 ImageNet 8.09 14.42
2 Uniform 90 ImageNet 8.07 13.79
3 LiteEval (Wu et al., 2019a) 90 ImageNet 12.18 18.10
4 OCSampler (Lin et al., 2022a) 90 ImageNet 10.54 17.46
5 SpotEM w/o distill 91 ImageNet 13.34 19.82
6 SpotEM w/o distill 90 RIO 13.66 19.95
7 SpotEM (ours) 90 RIO 15.08 21.57

1 Random 75 ImageNet 9.31 17.03
2 Uniform 75 ImageNet 11.00 18.68
3 LiteEval (Wu et al., 2019a) 75 ImageNet 14.66 21.64
4 OCSampler (Lin et al., 2022a) 75 ImageNet 12.40 18.90
5 SpotEM w/o distill 76 ImageNet 15.25 23.60
6 SpotEM w/o distill 75 RIO 15.34 23.61
7 SpotEM (ours) 76 RIO 17.12 24.98

1 Random 50 ImageNet 12.96 21.00
2 Uniform 50 ImageNet 14.66 23.97
3 LiteEval (Wu et al., 2019a) 50 ImageNet 15.56 23.44
4 OCSampler (Lin et al., 2022a) 50 ImageNet 13.56 20.46
5 SpotEM w/o distill 53 ImageNet 16.44 24.81
6 SpotEM w/o distill 52 RIO 16.71 25.07
7 SpotEM (ours) 51 RIO 17.90 26.84

AllClips (Grauman et al., 2022) 0 - 18.27 26.54

Table 13. Comparing efficient clip selection methods on TACoS
NLG for the VSLNet baseline with SlowFast features (Feichten-
hofer et al., 2019).
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