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Alexandre Ramé 1 2 Kartik Ahuja 1 Jianyu Zhang 1 3 Matthieu Cord 2 4 Léon Bottou 1 3 David Lopez-Paz 1

Abstract
Foundation models are redefining how AI sys-
tems are built. Practitioners now follow a stan-
dard procedure to build their machine learning
solutions: from a pre-trained foundation model,
they fine-tune the weights on the target task of
interest. So, the Internet is swarmed by a handful
of foundation models fine-tuned on many diverse
tasks: these individual fine-tunings exist in isola-
tion without benefiting from each other. In our
opinion, this is a missed opportunity, as these spe-
cialized models contain rich and diverse features.
In this paper, we thus propose model ratatouille,
a new strategy to recycle the multiple fine-tunings
of the same foundation model on diverse auxil-
iary tasks. Specifically, we repurpose these auxil-
iary weights as initializations for multiple parallel
fine-tunings on the target task; then, we average
all fine-tuned weights to obtain the final model.
This recycling strategy aims at maximizing the
diversity in weights by leveraging the diversity in
auxiliary tasks. Empirically, it improves the state
of the art on the reference DomainBed benchmark
for out-of-distribution generalization. Looking
forward, this work contributes to the emerging
paradigm of updatable machine learning where,
akin to open-source software development, the
community collaborates to reliably update ma-
chine learning models. Our code is released here.

1. Introduction
The framework of foundation models (Bommasani et al.,
2021) is fueling a spectacular adoption of machine learning
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solutions for real-world applications: also known as pre-
trained models, these machine learning systems are trained
on large-and-diverse data (Fang et al., 2022; Nguyen et al.,
2022; Abnar et al., 2022) and easy to adapt to downstream
tasks. Having ditched the “training from scratch” mentality,
practitioners now follow a standardized two-step transfer
learning strategy (Oquab et al., 2014). From some founda-
tion model, they fine-tune on their target task with usually
a limited amount of in-house data. Unfortunately, each of
these fine-tunings risks latching onto specific patterns from
the practitioners’ training data (Arjovsky et al., 2019; Miller
et al., 2020; Shah et al., 2020). Thus, these shortsighted
models struggle to generalize on out-of-distribution (OOD)
samples (Hendrycks & Dietterich, 2019; Taori et al., 2020;
Gulrajani & Lopez-Paz, 2021; Hendrycks et al., 2021), neg-
atively impacting human lives (Taylor et al., 2016; Zech
et al., 2018). Increased OOD generalization would enable
the responsible use of machine learning in real-world ap-
plications where robustness and safety are critical, such as
medical imaging (DeGrave et al., 2021) and autonomous
driving (Kuutti et al., 2020).

How to best fine-tune foundation models for OOD gener-
alization is thus becoming a central topic of research. In
particular, the recently discovered ability to average neural
networks’ weights (Izmailov et al., 2018; Neyshabur et al.,
2020) has inspired a plethora of modern fine-tuning ap-
proaches. We illustrate some of them in Figure 1, such
as moving averages (Izmailov et al., 2018), WiSE fine-
tuning (Wortsman et al., 2022b), model soups (Wortsman
et al., 2022a) and DiWA (Ramé et al., 2022). However,
these strategies cannot accommodate the swarms of special-
ized fine-tunings of the same foundation model increasingly
available in the Internet. Recent inter-training (Phang et al.,
2018; Pruksachatkun et al., 2020) and fusing (Choshen et al.,
2022b; Don-Yehiya et al., 2022) strategies recycle interme-
diate fine-tunings on auxiliary tasks to enrich the features
before fine-tuning on the target task. However, the success
of these recycling strategies usually depend on the similarity
between the auxiliary and target tasks. We also argue in Sec-
tion 2 that these strategies fail to fully leverage the diversity
in auxiliary tasks, even though feature diversity improves
OOD generalization (Laakom et al., 2021; Nayman et al.,
2022; Jain et al., 2022; Zhang et al., 2022).
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Figure 1. The different fine-tuning strategies discussed in this paper: vanilla fine-tuning (Oquab et al., 2014), moving average (Izmailov
et al., 2018) and variants (Wortsman et al., 2022b), model soups (Wortsman et al., 2022a) and DiWA (Ramé et al., 2022), inter-training
(Phang et al., 2018), fusing (Choshen et al., 2022b) and our proposed model ratatouille. They all start with a pre-trained foundation
model. Some strategies fine-tune the pre-trained model on auxiliary tasks (thin solid arrows ): these auxiliary fine-tunings can be
performed by different contributors of the community on their own data. Then, all strategies perform fine-tuning on the target task of
interest (thick solid arrows ). Finally, the weights fine-tuned on the target task are used as is, or are averaged (dashed arrows ) into a
final model. Ratatouille (i) enables compute parallelism throughout training, (ii) maximizes the amount of diversity in models’ predictions,
(iii) achieves state-of-the-art performance in DomainBed (Gulrajani & Lopez-Paz, 2021), the standard computer vision benchmark for
OOD generalization and (iv) does not incur any inference or training overhead compared to a traditional hyperparameter search.

Thus, the central question of this paper is:

How can we best recycle diverse fine-tunings of a given
foundation model towards strong out-of-distribution

performance on our target task?

Our answer is a simple fine-tuning strategy we named model
ratatouille,1 illustrated in Figure 1 and described in Sec-
tion 3. In a similar fashion to converting waste into reusable
material for new uses, we take fine-tunings of the same foun-
dation model on diverse auxiliary tasks and repurpose them
as initializations to start multiple fine-tunings on the target
downstream task. Specifically, we (i) fine-tune a copy of the
foundation model on each auxiliary task, (ii) fine-tune each
auxiliary model on the target task, and (iii) return as the final
model the average of all target fine-tuned weights. In brief,
while model soups (Wortsman et al., 2022a) averages multi-
ple weights fine-tuned from a shared initialization, model
ratatouille averages multiple weights fine-tuned from differ-
ent initializations each inter-trained (Phang et al., 2018) on
different auxiliary tasks. As we will see, ratatouille works
because the fine-tunings remain linearly connected (Frankle
et al., 2020; Mirzadeh et al., 2021) in the loss landscape
(despite having different initializations) and thus can be
averaged for improved performance.

We show the efficacy of model ratatouille in Section 4,

1We named our method after this traditional French dish for
two main reasons. Firstly, the ratatouille is often used as a way
to recycle leftover vegetables. Secondly, the ratatouille is better
prepared by cooking each ingredient separately before mixing
them: this technique ensures that each ingredient “will taste truly
of itself”, as noted by chef Joël Robuchon (Monaco, 2020).

where we set a new state of the art on DomainBed (Gulrajani
& Lopez-Paz, 2021), the reference benchmark evaluating
OOD generalization. We will show how we leverage the
diversity across the auxiliary tasks to construct a final model
with decreased over-fitting to task-specific patterns. As we
discuss in our closing Section 5, this work contributes to
the emerging paradigm of updatable machine learning (Raf-
fel, 2023), where practitioners work in collaboration to-
wards incrementally and reliably updating the capabilities
of a machine learning model. As also highlighted in re-
cent works (Matena & Raffel, 2022; Li et al., 2022a), we
envision a future where deep neural networks are trained
by following similar pipelines to the ones in open-source
development with version control systems.

2. Fine-Tuning for OOD Generalization
We start by describing our setup. We train a deep model
fθ = fw ◦fϕ, where the featurizer fϕ is parametrized by the
weights ϕ, the classifier fw is parametrized by the weights w,
and the joint model fθ is parametrized by the concatenation
weights θ = (w, ϕ). We are dealing with out-of-distribution
(OOD) generalization, and our aim is to find θ maximizing
the test accuracy accte(θ). Specifically, while both train and
test data correspond to the same target task—classifying
images into a fixed set of classes—we allow a diversity
(Ye et al., 2022) (a.k.a. covariate) distribution shift between
the two, i.e., that the input distributions may change at test
time. We highlight that this OOD generalization is critical
in real-life applications, where the model needs to predict
on samples from a new domain.
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Vanilla fine-tuning. For OOD generalization, transfer
learning (Oquab et al., 2014; Kirsch et al., 2022; Wenzel
et al., 2022) with empirical risk minimization (Vapnik, 1992,
ERM) is frustratingly difficult to beat (Gulrajani & Lopez-
Paz, 2021), as measured on real-world datasets (Fang et al.,
2023) such as PACS (Li et al., 2017), VLCS (Fang et al.,
2013), OfficeHome (Venkateswara et al., 2017), TerraIncog-
nita (Beery et al., 2018) or DomainNet (Peng et al., 2019).
The recipe is (i) download a pre-trained featurizer with pa-
rameters ϕpt, (ii) plug a classifier wlp compatible with the
target task, and (iii) fine-tune the network with ERM on
the target task. While the classifier wlp could be initial-
ized at random, linear probing (i.e., first learning only the
classifier with frozen featurizer) improves results by pre-
venting feature distortion (Kumar et al., 2022). For most
users, particularly those with modest computation resources,
the standard strategy is thus to transfer the knowledge from
models pre-trained on large dataset such as ImageNet (Rus-
sakovsky et al., 2015), downloaded from public reposito-
ries such as torchvision (Marcel & Rodriguez, 2010),
huggingface (Wolf et al., 2020) or timm (Wightman,
2019). The users usually launch multiple fine-tunings with
different hyperparameters, and select the best based on some
validation metric (Gulrajani & Lopez-Paz, 2021).

Weight averaging over epochs. Recently, weight averaging
strategies came to the foreground (Szegedy et al., 2016; Iz-
mailov et al., 2018; Draxler et al., 2018). While fine-tuning
a pre-trained model, they saved and averaged checkpoints
every few epochs to build the final model. Due to the non-
linear nature of deep neural networks, the efficacy of weight
averaging was a surprising observation, that Frankle et al.
(2020) latter called the linear mode connectivity.

Observation 1 (LMC with different epochs (Izmailov et al.,
2018)). Two weights θa and θb, obtained at two different
epochs of the same fine-tuning, satisfy the linear mode con-
nectivity (LMC): for all λ ∈ [0, 1],

accte((1− λ) · θa + λ · θb) ≳
(1− λ) · accte(θa) + λ · accte(θb).

(1)

The LMC holds if the accuracy of the interpolated weights
is above the interpolated accuracy. This definition is more
restrictive than in the literature; for example, Frankle et al.
(2020) only required less than 2% in error increase with
regard to the worst endpoints. Consistently with Observa-
tion 1, recent works (Arpit et al., 2021; Cha et al., 2021;
Wortsman et al., 2022b; Kaddour, 2022) weight average
checkpoints along training to improve accuracies.

Weight averaging over runs. Perhaps motivated by these
results, Neyshabur et al. (2020) (along with similar works
(Nagarajan & Kolter, 2019; Frankle et al., 2020)) pushed
the envelope of weight averaging techniques, and stated:

there is no performance barrier between two instances
of models trained from pre-trained weights, which sug-
gests that the pre-trained weights guide the optimization
to a flat basin of the loss landscape [. . . ] Moreover, in-
terpolating two random solutions from the same basin
could generally produce solutions closer to the center of
the basin, which potentially have better generalization
performance than the endpoints.

Two independent fine-tunings—pre-trained similarly but
differing in hyperparameter choices, data orders or other
stochastic factors—also satisfy the LMC! More formally,
Observation 2 (LMC with different runs (Neyshabur et al.,
2020)). The LMC holds between θa and θb fine-tuned on
the target task initialized from a shared pre-trained model.

See Figure 2a for an illustration of Observations 1 and 2. Ob-
servation 2 inspired model soups (Wortsman et al., 2022a)
and DiWA (Ramé et al., 2022)—the current state-of-the-
art approaches for OOD generalization—to average all the
weights obtained from a standard ERM hyperparameter
search. However, the shared initialization constraint lim-
its models diversity (Kuncheva & Whitaker, 2003; Aksela,
2003), especially when compared to methods that can com-
bine arbitrary networks, for example via prediction averag-
ing in deep ensembles (Lakshminarayanan et al., 2017).

Weight averaging over tasks. All the methods described so
far fine-tune only on the target task: could auxiliary datasets,
increasingly available online, be incorporated into the learn-
ing process to learn richer features? Such tasks could be an
opportunity to recruit specialized features (Li et al., 2021a)
that match our target task, ease optimization (Zhang et al.,
2022; Zhang & Bottou, 2022), or “offer some high-level
guidance to bridge the gaps between the pre-training and
fine-tuning phases” (Chang & Lu, 2021). Following these
ideas, inter-training (Phang et al., 2018; Pruksachatkun
et al., 2020; Choshen et al., 2022a) performs an intermedi-
ate fine-tuning of the pre-trained model on some auxiliary
task, before tackling the target task. However, the sequential
nature of inter-training leads to catastrophic forgetting (Re-
buffi et al., 2017) of useful knowledge contained in the
original pre-trained model. Moreover, the choice of the
auxiliary task plays a determinant role, since “when the
wrong task is chosen, inter-training hurts results” (Choshen
et al., 2022b). To address the shortcomings of inter-training,
recent works (Choshen et al., 2022b; Don-Yehiya et al.,
2022; Li et al., 2022a; Matena & Raffel, 2022; Ilharco et al.,
2023; 2022) proposed to recycle weights fine-tuned on vari-
ous auxiliary tasks. In particular, concurrent Choshen et al.
(2022b) operates fusing at initialization; they (i) fine-tune
one copy of the pre-trained model on each auxiliary task,
(ii) average the auxiliary fine-tuning weights, and (iii) use
such averaged model as the initialization for the target fine-
tuning. By interpolation in weights, fusing combines into
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Figure 2. Illustrations of (a) different linear mode connectivity (LMC) conditions, and (b) model ratatouille. In subplot (a), we illustrate
Observation 1, about LMC between two checkpoints along the same target fine-tuning; Observation 2, about LMC between two target
fine-tunings; Hypothesis 1, about LMC between two auxiliary fine-tunings; and Hypothesis 2, about LMC between two target fine-tunings
initialized from auxiliary weights satisfying Hypothesis 1. In subplot (b), we offer a diagram of our proposed recycling strategy, where we
(i) fine-tune a pre-trained model on auxiliary tasks, (ii) plug a linear probe on the pre-trained model and the auxiliary fine-tunings, (iii)
fine-tune on the target task from each auxiliary weights, and (iv) return their weight average as the final model.

one single initialization the knowledge from multiple aux-
iliary tasks; yet fusing empirically provides only marginal
gains in Section 4.1 for OOD generalization on DomainBed.

We posit that model fusing is performing weight averaging
prematurely, destroying most diversity from auxiliary tasks
even before the target task can benefit from it. To address
these issues, next we propose ratatouille, a new recycling
strategy that performs one target fine-tuning per auxiliary
weights, and averages weights only as the very last step.

3. Model Ratatouille
3.1. Recycling Diverse Initializations

Our model ratatouille is a proposal to recycle diverse auxil-
iary fine-tunings of the same pre-trained model; it is com-
pared against other fine-tuning strategies in Figure 1 and
outlined in detail in Figure 2b. Ratatouille recycles these
fine-tunings as diverse initializations to parallel fine-tunings
on the target task. Compared to fusing, we delay the weight
averaging, and in turn the destruction of diversity. Rata-
touille follows this five-step recipe.

1. Download a featurizer ϕpt pre-trained on task T0.

2. Fine-tune ϕpt on each auxiliary task Ti, obtaining

(waux
i , ϕaux

i ) for i = 0, . . . ,M − 1.

3. Replace each waux
i by wlp, obtained by linear probing

the original pre-trained model ϕpt on the target task T .

4. Fine-tune each (wlp, ϕaux
i ) on the target task T , obtain-

ing θi = (wi, ϕi) for i = 0, . . . ,M − 1.

5. Return as final model
∑M−1

i=0 λi · θi. To select the
interpolating coefficients, we use two strategies. The
first “uniform” averages all weights with λi =

1
M . The

second “greedy” sorts the θi by descending accuracy on
the in-distribution (ID) validation set, before greedily
constructing an uniform average containing θi if and
only if its addition lowers the ID validation accuracy.

If the weights from step 2 are made available online, rata-
touille is without any training overhead compared to a tra-
ditional hyperparameter search. When compared to inter-
training (Phang et al., 2018) and fusing (Choshen et al.,
2022b), model ratatouille avoids the difficult choice of
choosing one single initialization (Choshen et al., 2022a).
The shared linear probe classifier facilitates LMC by pre-
venting feature distortions (Kumar et al., 2022). Note that
we consider the pre-training task as the auxiliary task “num-
ber zero” T0; this resembles WiSE fine-tuning (Wortsman
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et al., 2022b) and aims at preserving the general-purpose
knowledge contained in the original pre-trained model. The
two selection strategies are those from model soups (Worts-
man et al., 2022a; Ramé et al., 2022).

Successful weight averaging requires three conditions
(Ramé et al., 2022). First, the weights must be individ-
ually accurate; by inter-training, ratatouille enriches the
features and thus increases individual accuracies when the
auxiliary tasks are well-chosen (Choshen et al., 2022a). Sec-
ond, the weights should be sufficiently diverse to reduce
variance. By removing the shared initialization constraint
from model soups, ratatouille benefits from the additional di-
versity brought by specialization on various auxiliary tasks.
In other words, ratatouille does not only rely on good simi-
lar auxiliary tasks; we also benefit from increased diversity,
which was shown to be positively correlated with strong gen-
eralization (Laakom et al., 2021; Nayman et al., 2022; Jain
et al., 2022; Zhang et al., 2022; Ramé et al., 2022). Third,
the weights should be averageable; thus, for ratatouille to
work, it requires a relaxation of the conditions under which
the LMC holds, that we detail below.

3.2. Novel Linear Mode Connectivity Hypotheses

First, we introduce Hypothesis 1 that posits LMC between
two models whose featurizers were fine-tuned on different
auxiliary tasks.

Hypothesis 1 (LMC with different tasks). The LMC holds
between (w, ϕaux

a ) and (w, ϕaux
b ) if ϕaux

a and ϕaux
b are fea-

turizers fine-tuned on two auxiliary tasks initialized from
the same pre-trained featurizer ϕpt. Here, w is the linear
probe of ϕpt on the target task.

Though this Hypothesis 1 was never formulated explicitly,
it underlies fusing (Choshen et al., 2022b) and other strate-
gies averaging auxiliary weights. Ratatouille relies on the
following Hypothesis 2, which adds on top of Hypothesis 1
independent fine-tuning steps on the target task.

Hypothesis 2 (LMC with different auxiliary initializations).
The LMC holds between θa and θb fine-tuned on the target
task starting from initializations (w, ϕaux

a ) and (w, ϕaux
b )

satisfying Hypothesis 1.

Hypothesis 2 is the first to posit the LMC between weights
trained from different initializations. It hints towards a more
general inheritance property: if two initializations satisfy
LMC, then the two final weights would too.

We expect Hypotheses 1 and 2 to hold as long as the pre-
training, auxiliary and target tasks are sufficiently similar,
and if hyperparameters remain in a mild range. If they hold,
we expect ratatouille to improve generalization abilities.
But this, we can only answer empirically through proper
experimentation.

4. Experiments
Our numerical experiments support three main claims,
sorted in decreased granularity. First, Section 4.1 show-
cases the state-of-the-art (SoTA) results of ratatouille in
DomainBed (Gulrajani & Lopez-Paz, 2021). Second, Sec-
tion 4.2 illustrates how such gains arise from increased
diversity across averaged models. Third, Section 4.3 empiri-
cally supports Hypotheses 1 and 2, the technical conditions
enabling weight averaging’s success. Finally, Section 4.4
discusses the impact of ratatouille for in-domain tasks. We
invite the curious reader to consult our supplementary ma-
terial. Among other experiments, we ablate in Appendix B
the different components of ratatouille’s procedure such as
the number of auxiliary tasks, and propose in Appendix E a
robust ratatouille to further improve performance. Our code
is released at https://github.com/facebookres
earch/ModelRatatouille.

4.1. SoTA Performance on DomainBed

Setup. Table 1 shows our main experiment comparing
the various fine-tuning strategies on DomainBed (Gulrajani
& Lopez-Paz, 2021), the reference benchmark evaluating
OOD generalization. DomainBed contains five real-world
datasets: PACS (Li et al., 2017), VLCS (Fang et al., 2013),
OfficeHome (Venkateswara et al., 2017), TerraIncognita
(Beery et al., 2018) and DomainNet (Peng et al., 2019).
Each contains multiple domains about the same classifi-
cation task: for example, the domains in OfficeHome are
“Art”, “ClipArt”, “Product” and “Photo”. Each domain is
successively considered as the test while others are for train-
ing; we report the 22 per-domain results in Appendix F.2 but
here analyze the averaged accuracy over the test domains.
Standard deviations are obtained on 3 different random data
splits. The network is a ResNet-50 (He et al., 2016) pre-
trained on ImageNet (Russakovsky et al., 2015). Following
DomainBed standards, each strategy leverages 20 runs with
hyperparameters sampled from Table 3.

Approaches. Model soups (Wortsman et al., 2022a; Ramé
et al., 2022) only differs from vanilla fine-tuning by the
selection strategy: rather than selecting the model with high-
est ID validation accuracy out of the 20 runs, model soups
either uniformly averages all weights or greedily selects
some—as described in Section 3. For strategies leveraging
auxiliary trainings, given a target dataset, we consider the
other DomainBed’s datasets as the auxiliary tasks. For ex-
ample when tackling OfficeHome, out of the 20 runs, 4 are
inter-trained on PACS, 4 on VLCS, 4 on TerraIncognita, 4
on DomainNet and 4 are directly transferred from ImageNet.
Then, model ratatouille is to inter-training as model soups
is to vanilla fine-tuning. In other words, while inter-training
selects the best run based on ID accuracy, ratatouille ap-
plies the uniform or the greedy selection. Thus ratatouille
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Table 1. Accuracies (%, ↑) on the DomainBed (Gulrajani & Lopez-Paz, 2021) benchmark evaluating OOD generalization. Ratatouille
sets a new SoTA by leveraging auxiliary tasks’ diversity. The selection column indicates the weight selection strategy. The symbol “∗”
indicates inference overhead in functional ensembling. The symbol “†” indicates the averaging of all weights across 3 data splits.

Algorithm Selection PACS VLCS OfficeHome TerraInc DomainNet Avg

Vanilla fine-tuning ID val 85.5± 0.2 77.5± 0.4 66.5± 0.3 46.1± 1.8 40.9± 0.1 63.3
CORAL (Sun et al., 2016) ID val 86.2± 0.3 78.8± 0.6 68.7± 0.3 47.6± 1.0 41.5± 0.1 64.6
SWAD (Cha et al., 2021) Loss-aware trajectory 88.1± 0.1 79.1 ± 0.1 70.6± 0.2 50.0± 0.3 46.5± 0.1 66.9
MA (Arpit et al., 2021) Uniform trajectory 87.5± 0.2 78.2± 0.2 70.6± 0.1 50.3± 0.5 46.0± 0.1 66.5
Deep ensembles∗ (Arpit et al., 2021) Uniform 87.6 78.5 70.8 49.2 47.7 66.8

D
iW

A
ru

ns

Vanilla fine-tuning ID val 85.9± 0.6 78.1± 0.5 69.4± 0.2 50.4± 1.8 44.3± 0.2 65.6
Ensemble∗ Uniform 88.1± 0.3 78.5± 0.1 71.7± 0.1 50.8± 0.5 47.0± 0.2 67.2
Model soups Uniform 88.7± 0.2 78.4± 0.2 72.1± 0.2 51.4± 0.6 47.4± 0.2 67.6
Model soups Greedy 88.0± 0.3 78.5± 0.1 71.5± 0.2 51.6± 0.9 47.7 ± 0.1 67.5
Model soups† Uniform† 89.0 78.6 72.8 51.9 47.7 68.0

O
ur

ru
ns

Inter-training (Phang et al., 2018) ID val 89.0± 0.0 77.7± 0.0 69.9± 0.6 46.7± 0.1 44.5± 0.1 65.6
Ensemble∗ of inter-training Uniform 89.2± 0.1 79.0± 0.2 72.7± 0.1 51.1± 0.3 47.2± 0.1 67.8
Fusing (Choshen et al., 2022b) ID val 88.0± 1.0 78.5± 0.8 71.5± 0.5 46.7± 1.8 44.4± 0.2 65.8
Model ratatouille Uniform 89.5± 0.1 78.5± 0.1 73.1± 0.1 51.8± 0.4 47.5± 0.1 68.1
Model ratatouille Greedy 90.5 ± 0.2 78.7± 0.2 73.4± 0.3 49.2± 0.9 47.7 ± 0.0 67.9
Model ratatouille† Uniform† 89.8 78.3 73.5 52.0 47.7 68.3

provides a single weight averaged network without any in-
ference overhead. For real-world applications, auxiliary
weights may be shared by the community; in that case, rata-
touille is without training overhead, except when marked
by the “†”. Indeed, “†” symbol marks methods averaging
60 = 20× 3 weights from 3 data splits, and thus benefiting
from larger training budget. We further discuss ratatouille’s
training cost in Appendix B, and show in Appendix B.3
that ratatouile already performs well with only 5 runs. En-
sembling strategies (marked by the symbol “∗”) average
predictions with large inference overhead. For example,
“ensemble∗ of inter-training” averages the predictions of
the M = 20 models ratatouille averages in weights; we
also report the scores from Arpit et al. (2021) for the deep
ensembles∗ (Lakshminarayanan et al., 2017) of M = 6
models with different classifier initializations. For fusing,
each run is initialized from

∑4
i=0 λiϕ

aux
i where the λi hy-

perparameters sum to 1 and ϕaux
i are inter-trained on one the

4 other DomainBed’s datasets or directly transferred from
ImageNet. Finally, CORAL (Sun et al., 2016) is the best in-
variance approach; SWAD (Cha et al., 2021) and MA (Arpit
et al., 2021) average weights along one training trajectory
but differ in their selection strategy. The experimental setup
and the approaches are further described in Appendix F.

Results. Table 1 shows that ratatouille achieves a new SoTA
on DomainBed: with uniform selection, it achieves 68.1
and improves model soups by 0.5 points after averaging
over all datasets. Precisely, model ratatouille beats model
soups by 0.8 and 1.0 points on PACS and OfficeHome with
uniform selection, and by 2.5 and 1.9 with greedy selec-
tion. On these two datasets, inter-training and fusing also

succeed, yet they fail on TerraIncognita (both reach 46.7%)
as all auxiliary tasks are distant from photos of animals in
the wild; in contrast on TerraIncognita, ratatouille (51.8%)
with uniform selection matches model soups (51.4%). This
highlights the key strength of our ratatouille w.r.t. other re-
cycling strategies such as fusing: namely, the robustness to
the choice of auxiliary tasks. On VLCS, ratatouille is also
generally beneficial (as visible in the per-domain results
from Appendix F.2), except on one domain where the LMC
breaks (as shown in Figure 13b from Appendix D). For Do-
mainNet, ratatouille is SoTA though the gains are small w.r.t.
model soups: we suspect this is because the initialization
strategy becomes less critical for larger datasets (Chang &
Lu, 2021) with more training epochs (see Figure 3b). In
conclusion, ratatouille consistently improves generalization
on DomainBed, and works best with appropriate auxiliary
tasks: we remove the need to select only the best initializa-
tion. This is similar to model soups, that works best with
appropriate hyperparameter ranges; they remove the need
to select only the best set of hyperparameters.

4.2. Increased Diversity by Recycling

In Figure 3, we investigate how the diversity across models
fine-tuned on the target task influences the OOD perfor-
mance of their weight average. Here, we measure diver-
sity with the prediction q-diversity (Kuncheva & Whitaker,
2003), which increases when models fail on different ex-
amples; this diversity measure is precisely defined in Ap-
pendix C.1, where we also arrive at similar conclusions
using another diversity measure (Aksela, 2003). Following
DiWA (Ramé et al., 2022), let the target task be OfficeHome,
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Figure 3. Explorations on q-diversity (Kuncheva & Whitaker, 2003) and its positive impact on accuracy for the OOD test domain “Art”
from OfficeHome. In (a), we compute the diversity between pairs of models either directly fine-tuned from ImageNet, either inter-trained
on DomainNet: having one model from each initialization increases diversity. In (b), we plot this diversity along the 5k training steps. In
(c), we observe that the more diverse the models, the higher the accuracy gain of their weight average compared to the average of their
individual accuracies. In (d), we average M models: a proportion (1− µ) start directly from ImageNet, the others µ are inter-trained on
DomainNet. The accuracy of the weight average is maximized when µ ≈ 0.5.

with “Art” as the test OOD domain; we thus train on the
“ClipArt”, “Product” and “Photo” domains. We consider
models either only pre-trained on ImageNet or also inter-
trained on DomainNet. These diversity experiments are
applied on other DomainBed’s datasets in Appendix C.2.

First, we verify that inter-training influences the diversity
across fine-tuned models. Specifically, Figure 3a confirms
that networks with different initializations are more diverse
than networks initialized similarly. Then, Figure 3b veri-
fies that this diversity gain comes from their initialization
and remains along fine-tuning on the target task. Moreover,
Figure 3c shows that diversity is positively linearly corre-
lated with OOD generalization: specifically, we observe that
having different initializations improves diversity and thus
the accuracy of their weight average. Finally, in Figure 3d,
we consider averaging M weights: a proportion (1 − µ)
start directly from ImageNet, the others µ were inter-trained
on DomainNet. In the simplest case M = 2, using one
model from each initialization leads to maximum accuracy;
best performances are obtained around µ ≈ 0.5, where
the final weight average has access to diverse initializa-
tions. In conclusion, each auxiliary task fosters the learning
of diverse features (Li et al., 2021a; Gontijo-Lopes et al.,
2022). Model ratatouille increases diversity and improves
performance by removing a key limitation of model soups
approaches (Wortsman et al., 2022a; Ramé et al., 2022); the
need for all fine-tunings to start from a shared initialization.

4.3. Why Ratatouille Works

In Figure 4, we conclude our experiments by validating
Hypotheses 1 and 2 when considering the five datasets from
DomainBed. For the sake of completeness, we also analyze
some successes and failure cases in “extreme” conditions

when considering two distant unrelated medical datasets;
RxRx (Taylor et al., 2019) and Camelyon (Koh et al., 2021)
from the WILDS (Koh et al., 2021) benchmark. For each
target task, we consider the first domain as the test OOD;
the other domains are used for training.

We validate Hypothesis 1 in Figures 4a to 4e. For each
dataset, we plot the test OOD accuracy for the weights(
wlp, (1− λ) · ϕaux

a + λ · ϕaux
b

)
, where the classifier wlp

is a linear probe of the ImageNet pre-trained featurizer ϕpt
IM,

and λ ∈ [0, 1] interpolates between ϕaux
a and ϕaux

b , obtained
by fine-tuning on two auxiliary tasks initialized from ϕpt

IM.
First, we observe that task similarity influences OOD gen-
eralization since the test accuracies in Figure 4c agree with
the fact that OfficeHome is most similar to DomainNet, not
as similar to TerraIncognita, and most dissimilar to the med-
ical dataset RxRx. Second, the accuracy of the interpolated
weights is above the interpolated accuracy: this validates
Hypothesis 1. The accuracy is even usually concave in λ.

Similarly, we empirically support Hypothesis 2 in Figures 4f
to 4j. For each dataset, we plot the test OOD accuracy ob-
tained with weights (1− λ) · θa + λ · θb, where the coeffi-
cient λ ∈ [0, 1] interpolates between θa and θb, fine-tuned
on the target task respectively starting from (wlp, ϕaux

a ) and
(wlp, ϕaux

b ). We observe that Hypothesis 2 usually holds:
for example, even recycling RxRx can help for OfficeHome
on Figure 4h. Yet, Hypothesis 2 breaks on TerraIncognita
and Camelyon in Figures 4i and 4j when RxRx is one of
the two auxiliary tasks. In light of these results, we argue
that Hypothesis 2 holds as long as either the auxiliary or
the target task is sufficiently similar to the pre-training task.
We speculate this prevents feature distortion (Kumar et al.,
2022) and escaping a shared loss valley. Better understand-
ing when LMC breaks is a promising research direction
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Figure 4. Figures 4a to 4e validate Hypothesis 1 by plotting λ → accte
((
wlp, (1− λ) · ϕaux

a + λ · ϕaux
b

))
, where wlp is the linear probe

of ϕpt
IM, and ϕaux

a and ϕaux
b are fine-tuned on the two auxiliary datasets in the legend “Dataseta to Datasetb”. Figures 4f to 4j support

Hypothesis 2 by plotting λ → accte((1− λ) · θa + λ · θb) where θa and θb are fine-tuned on the target task starting respectively from
(wlp, ϕaux

a ) and (wlp, ϕaux
b ). We encounter two exceptions to Hypothesis 2 (Figures 4i and 4j), due to the fact that neither the auxiliary

nor the target task bear enough similarity with the pre-training task.
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Figure 5. The models were trained on ID domains “Clipart”, “Product”, and “Photo” from OfficeHome, thus “Art” is the OOD domain.
First, in subplot (a), we validate Hypothesis 2 on the ID validation split. Then, we analyze the relations between diversity, ID and
OOD accuracies. In subplot (b), we report the mean results when averaging M = 8 weights: (1 − µ) are fine-tuned on OfficeHome
directly from ImageNet, the others µ are inter-trained on DomainNet. We observe a lack of correlation between ID and OOD accuracies.
We observe a similar trend in subplot (c), which mirrors the experiment from subplot (b) with the only difference that the proportion
(1− µ) are inter-trained on PACS (rather than just transferred from ImageNet). In subplot (d), we compute the diversity (Kuncheva &
Whitaker, 2003) between models either directly fine-tuned from ImageNet, either inter-trained on DomainNet. Though having different
initializations increases diversity both in ID and in OOD, the diversity in ID remains smaller.

(Juneja et al., 2023; Lubana et al., 2022a); among other fac-
tors, we speculate that larger pre-training corpus (as in Qin
et al. (2022)) or larger architectures (as in Li et al. (2022a))
may favor weight averaging strategies. In Appendix D,
we further analyze Hypotheses 1 and 2, notably in a more
complex setup where the intermediate tasks are successive
fine-tunings on several auxiliary datasets.

4.4. Ratatouille for ID Tasks

Like previous weight averaging strategies (Izmailov et al.,
2018; Wortsman et al., 2022a), model ratatouille also works
for ID tasks; in particular, we verify in Figure 5a and in
Appendix D.5 that the LMC holds in distribution. Yet, the
gains are smaller in ID than in OOD, as confirmed by the
lack of correlation between ID and OOD accuracies (Teney
et al., 2022) in Figures 5b and 5c. This is explained by the
fact that variance reduction (caused by weight averaging)
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is less beneficial in ID than in OOD. Theoretically, this
is because, variance is smaller without distribution shift,
as explained in Ramé et al. (2022). Empirically, this is
consistent with models’ diversity being smaller in ID, as
shown in Figure 5d. Overall, diversity procedures are less
useful in ID than in OOD. Ratatouille performs well OOD
thanks to the diversity brought by diverse inter-trainings; for
ID, we may sacrifice diversity and select one single optimal
initialization. This finding contrasts with Miller et al. (2021)
and goes against the prescription in Wenzel et al. (2022)
that, “to make the model more robust on OOD data, the
main focus should be to improve the ID classification error”.

In conclusion, when aiming at OOD with ensembling strate-
gies, our experiments suggest that there exists a trade-off
between diversity and ID accuracy. This is critical for end-
users as OOD is arguably more relevant than ID to ensure
applicability in real-world applications, where train and test
hardly ever follow the same distributions. This also explains
occasional failures of the greedy selection (notably for Ter-
raIncognita in Table 1): based on the ID validation accuracy,
only a few runs are selected and averaged, causing smaller
OOD accuracy than with the uniform selection.

5. Discussion: Towards Updatable Machine
Learning

In the grand scheme of things, we see model recycling
within the emerging updatable machine learning (Raffel,
2023) paradigm. The goal is to develop machine learning
systems that can be incrementally improved and recom-
bined, allowing for the collaborative creation of increasingly
sophisticated AI systems. The core idea is to consider net-
works as pieces of software (Karpathy, 2017) and mirror
the open-source development of software engineering via
version control. Could it be possible that, someday, we
could build decentralized open-source repositories, where
we can clone, commit and merge neural networks towards
an ever-improving AI system?

Recent works (Matena & Raffel, 2022; Li et al., 2022a; Don-
Yehiya et al., 2022; Choshen et al., 2022a) and the proposed
ratatouille give some primitives to learn neural networks in
collaboration. Here, (i) cloning is simply weights download-
ing, (ii) commits are fine-tunings performed by individual
contributors on their specific tasks, and (iii) branch merg-
ing is replaced by weight averaging. Advanced merging
operations (Matena & Raffel, 2022; Li et al., 2022b; Jin
et al., 2023) could help to better select the interpolating co-
efficients λi; neuron permutations strategies (Entezari et al.,
2022; Ainsworth et al., 2023; Jordan et al., 2023) could
remove the need for a shared pre-training, though (so far)
these permutations have not improved models’ accuracy.

In terms of privacy, such a federated learning setup (Li

et al., 2019) where datasets can be kept private does indeed
seem desirable. In terms of computation and sustainability,
minimal communication across servers enable embarrass-
ingly simple parallelization (Li et al., 2022a; Wortsman
et al., 2023) and could reduce costs and CO2 emissions
when training on multiple servers. This paradigm could
also leverage the utilization of volunteer computing with
single-GPU desktop machines, and complement approaches
like Learning@home (Ryabinin & Gusev, 2020) or Petals
(Borzunov et al., 2022). Finally, the contributors may poten-
tially be incentivized financially through a system similar to
blockchain technology (Sackfield, 2021).

If collaboration is the way forward, how can we ensure the
recyclability of the shared models? In software engineering,
practices such as unit tests greatly reduce the failure modes
of programs; how can we borrow these ideas to specify and
test neural networks? To measure models’ shortcomings, we
may leverage datasets as test certificates (Lopez-Paz et al.,
2022). The community would monitor statistics on these
datasets, e.g., accuracy, forgetting, and robustness against
spurious correlations. Then, the reported scores could guide
the choice of what models to clone, fine-tune, and merge.
However, bad actors could directly include these datasets in
their training data; then, should these external datasets be
watermarked (Li et al., 2021b), or otherwise kept secret by
some certifying authority?

These questions are all the more important as traditional
foundation models (Bommasani et al., 2021) come with
centralization and monetization, raise data privacy concerns,
and lack transparency and reproducibility (Bommasani &
Liang, 2021), which may hinder the democratization of AI.
The ability to collaboratively improve weights represents
a shift from proprietary network training to open-source
collaborative network building, and could lead to the devel-
opment of more responsible and reliable AI systems. We
see this as an exciting possibility for the future of AI.
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Model Ratatouille:
Recycling Diverse Models for Out-of-Distribution Generalization

Supplementary material

This supplementary material is organized as follows:

• Appendix A describes the different fine-tuning strategies as equations.

• Appendix B analyzes ratatouille’s components: Appendix B.1 ablates the number of auxiliary tasks, Appendix B.2
ablates the number of target fine-tuning steps and Appendix B.3 ablates the number of target fine-tuning runs.

• Appendix C enriches our diversity experiments.

• Appendix D further empirically analyzes the validity of Hypotheses 1 and 2 on additional setups.

• Appendix E introduces a new robust ratatouille strategy to (slightly) further improve performance.

• Appendix F describes and enriches our experiments on DomainBed (Gulrajani & Lopez-Paz, 2021).

A. Fine-Tuning Strategies as Equations
In Figure 1, we illustrated the different fine-tuning strategies. In Equation (2), we now provide an analytical formulation of
these strategies with equations, where θ represents the weights, Ti the auxiliary tasks and T the target task.

θ = Train
(
θpt, T

)
, [Vanilla fine-tuning (Oquab et al., 2014)]

θ = Train
(
θpt, T, collect ckpts = True

)
, [Moving average (Izmailov et al., 2018)]

θ = (1− λ) · Train
(
θpt, T

)
+ λ · θpt, [WiSE fine-tuning (Wortsman et al., 2022b)]

θ =
1

M

M−1∑
i=0

Train
(
θpt, T

)
, [Model soups (Wortsman et al., 2022a)/DiWA (Ramé et al., 2022)]

θ = Train
(
Train

(
θpt, Ti

)
, T
)
, [Inter-training (Phang et al., 2018)]

θ = Train

(∑
i

λi · Train
(
θpt, Ti

)
, T

)
, [Fusing (Choshen et al., 2022b)]

θ =
1

M

M−1∑
i=0

Train
(
Train

(
θpt, Ti

)
, T
)
. [Model ratatouille (ours)]

(2)

B. Ratatouille’s Components Analysis
In this section we try to refine our understanding of the importance of various components in ratatouille.

Remark 1. If auxiliary weights are shared by the community, recycling strategies cost no more than other fine-tuning
strategies: recycling simply benefits from weights that would otherwise ignore each other and be discarded.

B.1. Analysis of the Number of Auxiliary Tasks

In our Table 1, ratatouille leverages 5 auxiliary tasks for simplicity: ImageNet (which we consider as the auxiliary task “num-
ber zero”), and the 4 other datasets from DomainBed (out of the 5, as we leave out the target task to prevent any information
leakage). In following Figure 6, we report the scores obtained using 1 to 5 auxiliary tasks: we always average M = 20
weights, the only difference is how they were initialized. When we have 1 auxiliary task, they were all inter-trained on this
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auxiliary task: when we have 2 auxiliary tasks, 10 are inter-trained on the first auxiliary task, 10 on the second: and etc. This
validates that a greater number of auxiliary tasks leads to an increase in expected OOD accuracy. In the paper, we argue that
this improvement is a result of the diversity gained through different specializations on different auxiliary tasks. We expect
that further increasing the number of auxiliary datasets—beyond those from DomainBed—would further improve results.
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Figure 6. OOD accuracy (↑) for model ratatouille when increasing the number of auxiliary tasks and uniformly averaging all fine-tuned
weights. For each target task, we consider the first domain as the test OOD; the other domains are used for training.
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different training steps.

B.2. Analysis of the Number of Target Fine-Tuning Steps

One could argue that recycling auxiliary weights only benefit from longer training, part
of which is delegated to the community. To invalidate this hypothesis, we ablate the
number of training steps for model soups and ratatouille in Figure 7, on OfficeHome with
“Art” as the OOD domain. We observe that even with unlimited number of training steps,
model soups can not beat ratatouille. Therefore ratatouille’s gains are made possible by
fine-tuning on auxiliary datasets. We also observe that after a large number of epochs,
the initialization becomes less important (as previously suggested in Figures 3b and 9b)
and thus model ratatouille’s gain over model soups decreases. In short, using the standard
number of training steps (5000) provided by Domainbed is close to optimal.

B.3. Analysis of the Number of Target Fine-Tuning Runs

In our main experiment from Table 1, we train and average M = 20 independent weights, as 20 is the standard number of
hyperparameter trials in DomainBed (Gulrajani & Lopez-Paz, 2021). In Figure 8 we ablate this value. We observe that
a larger number of runs improves performance. If reducing the training budget is critical, one could already benefit from
significant gains over model soups (and vanilla fine-tuning) with only 5 runs on the target task.
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Figure 8. OOD accuracy (↑) for model ratatouille and model soups, when increasing the number of training runs and uniformly averaging
all fine-tuned weights. For each target task, we consider the first domain as the test OOD; the other domains are used for training.
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C. Diversity Experiments
C.1. Diversity Measures

As stated in “Measures of Diversity in Classifier Ensembles and Their Relationship with the Ensemble Accuracy” (Kuncheva
& Whitaker, 2003), “measuring diversity is not straightforward because there is no generally accepted formal definition”. In
Figure 3, we leverage the q-statistics Q, introduced in Yule (1900), brought up to date in Kuncheva & Whitaker (2003) and
also used in Ramé & Cord (2021). Specifically, it is defined by Q = N11N00−N01N10

N11N00+N01N10 , where N ij is the number of times
that the first classifier is (correct if i = 1 or wrong if i = 0) and the second classifier is (correct if j = 1 or wrong if j = 0).
For example, N10 is the number of times that the first classifier is correct but not the second. Overall, classifiers which
commit errors on different objects render Q small. To transform this similarity into a diversity measure that increases for
more diverse classifiers, we report 1 minus the q-statistics, i.e., the r-diversity is 1−Q.

In Figure 9, we leverage another diversity measure, the ratio-error (↑), introduced in Aksela (2003), brought up to date in
Kuncheva & Whitaker (2003) and also used in Ramé & Cord (2021). This ratio-error is N01+N10

N00 between the number of
asynchronous errors and of simultaneous errors. This r-diversity leads to similar conclusions as with the q-diversity.
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Figure 9. We reproduce Figure 3 leveraging the ratio-error (Aksela, 2003) r-diversity measure.

C.2. Additional Diversity Results

We now apply our diversity analysis on other DomainBed’s datasets, where we consider the first domain as the test OOD; the
other domains are used for training. Then, we compare the diversity—either measured with the q-statistics (in Figure 10) or
in ratio-error (in Figure 11)—between two networks, either both directly transferred from ImageNet, either both inter-trained
on DomainNet, either one directly transferred from ImageNet and the other inter-trained on DomainNet. Across all plots,
we consistently observe that having different initializatons increases diversity, with the most pronounced shift seen on the
OfficeHome and TerraIncognita datasets.
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Figure 10. Q-diversity in OOD.
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Figure 11. R-diversity in OOD.

D. Linear Mode Connectivity Experiments
D.1. Linear Mode Connectivity per Target Dataset and Domain

We further empirically analyze our Hypothesis 2. In particular, we observe that the LMC usually holds except in two cases:
(i) when the OOD test domain is the “LabelMe” domain from VLCS (in Figure 13b), and (ii) when both the target and the
auxiliary tasks are distant from the pre-trained task, for example when tackling TerraIncognita or Camelyon with RxRx as
an auxiliary task. We want to emphasize that we selected the “extreme” RxRx dataset precisely to test the empirical limits of
the Hypothesis 2, but that, in practice, milder auxiliary tasks selection already helps for OOD generalization (and notably
reaches SoTA performance in Section 4.1).
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Figure 12. Empirical analysis of Hypothesis 2 on PACS.
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Figure 13. Empirical analysis of Hypothesis 2 on VLCS.
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Figure 14. Empirical analysis of Hypothesis 2 on OfficeHome.
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Figure 15. Empirical analysis of Hypothesis 2 on TerraIncognita.
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Figure 16. Empirical analysis of Hypothesis 2 on Camelyon.
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D.2. Linear Mode Connectivity across Three Weights

In the practical settings from Section 4.1, model ratatouille averages more than two weight inter-trained on different auxiliary
tasks. For consistency, in Figure 17 we thus analyze LMC when interpolating across three fine-tuned weights. We observe
the same successes, but also the same occasional failures when the target and task datasets are both simultaneously distant
from the pre-training task, i.e., with RxRx as the auxiliary target and either TerraIncognita or Camelyon as the target task.
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(d) TerraIncognita.
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Figure 17. Empirical analysis of LMC when combining three weights. “Dataseta+Datasetb to Datasetc” means that the model for λ = 0
is the uniform weight average of θa and θb (fine-tuned on Dataseta and respectively on Datasetb before the target task) while the model
θc for λ = 1 was fine-tuned on Datasetc before the target task; 0 < λ < 1 interpolates between those three fine-tuned weights as
(1− λ)/2 · θa + (1− λ)/2 · θb + λ · θc. On each target task, we consider the first domain as the test OOD domain.

D.3. Recycling of Weights Fine-tuned Sequentially on Multiple Datasets

In Figure 18, we empirically analyze Hypothesis 2 when the intermediate tasks are themselves several successive trainings
on different auxiliary datasets. Thus the initialization for “TerraInc.VLCS” in Figure 18c was sequentially fine-tuned on
two auxiliary tasks (TerraIncognita and then on VLCS) before tackling the target task (OfficeHome). The concavity of the
curves validates the LMC in most setups. It hints towards a more general inheritance property of LMC: if two initializations
satisfy the LMC, then the two fine-tuned weights too. Yet, analysis of this inheritance property is best left for future work.
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(d) TerraIncognita.
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Figure 18. Empirical analysis of Hypothesis 2 when the intermediate tasks are themselves several successive fine-tunings on different
auxiliary datasets. “Dataseta.Datasetb to Datasetc.Datasetd” means that the model for λ = 0 was sequentially fine-tuned on Dataseta then
Datasetb before fine-tuning on the target task, while the model for λ = 1 was sequentially fine-tuned on Datasetc then Datasetd before
fine-tuning on the target task; 0 < λ < 1 interpolates between those two fine-tuned weights.

D.4. Ratatouille with VITs architecture

We previously have experimented with the ResNet-50 architecture, the standard for DomainBed on which the OOD
generalization community relies, enabling reproducibility and fair comparisons with concurrent papers. This exact same
ResNet-50 architecture was the one used in the seminal works on LMC (Neyshabur et al., 2020; Frankle et al., 2020). Yet,
the LMC is architecture agnostic. For the sake of completeness, we show in Figure 19 that the LMC holds with vision
transformers (Dosovitskiy et al., 2021), namely the ViT-B16 “vit base patch16 224 in21k” from timm (Wightman, 2019),
following the setup from Iwasawa & Matsuo (2021).
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Figure 19. Empirical validation of Hypothesis 2 with VITs.

D.5. LMC in ID

In this section, we validate the LMC on ID samples, without distribution shift between train and test. The LMC holds in ID,
except sometimes when RxRx is the auxiliary task, and with curves less concave than in OOD. These smaller gains when
interpolating are because variance reduction via weight averaging is less beneficial in ID than in OOD.
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Figure 20. Empirical analysis of Hypothesis 1 on the ID validation split. This mirrors the setup from Figures 4a to 4e.
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Figure 21. Empirical analysis of Hypothesis 2 on the ID validation split. This mirrors the setup from Figures 4f to 4j.

E. Robust Inter-Training
Recycled soups leverage weights fine-tuned on various auxiliary tasks; these starting points may sometimes may too
specialized, and less general than the initial pre-trained weights. To preserve the pre-trained general knowledge, in this
section we consider a robust inter-training strategy where the initializations are robustified via moving average (Szegedy
et al., 2016; Izmailov et al., 2018; Wortsman et al., 2022b) along the auxiliary fine-tuning. This follows recent evidence
that moving average can reduce catastrophic forgetting (Lubana et al., 2022b; Eeckt et al., 2022; Stojanovski et al., 2022;
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Langnickel et al., 2022). As in Equation (2), these new robust strategies can be written as:

θ = Train
(
Train

(
θpt, Ti, collect ckpts = True

)
, T
)
, [Robust inter-training]

θ =
1

M

M−1∑
i=0

Train
(
Train

(
θpt, Ti, collect ckpts = True

)
, T
)
. [Robust model ratatouille]

(3)

As we show in Table 2, moving average improves the initializations and thus the transfer abilities of inter-training, and as a
consequence also improves model ratatouille. Better understanding how to further improve auxiliary initializations is an
interesting research direction, already discussed in Choshen et al. (2022a).

Table 2. Accuracies (%, ↑) on the DomainBed (Gulrajani & Lopez-Paz, 2021) benchmark.
Algorithm Selection PACS VLCS OfficeHome TerraInc DomainNet Avg

Vanilla fine-tuning ID val 85.9± 0.6 78.1± 0.5 69.4± 0.2 50.4± 1.8 44.3± 0.2 65.6
Model soups Uniform 88.7± 0.2 78.4± 0.2 72.1± 0.2 51.4± 0.6 47.4± 0.2 67.6
Model soups Greedy 88.0± 0.3 78.5± 0.1 71.5± 0.2 51.6± 0.9 47.7± 0.1 67.5
Model soups† Uniform† 89.0 78.6 72.8 51.9 47.7 68.0

Inter-training (Phang et al., 2018) ID val 89.0± 0.0 77.7± 0.0 69.9± 0.6 46.7± 0.1 44.5± 0.1 65.6
Model ratatouille Uniform 89.5± 0.1 78.5± 0.1 73.1± 0.1 51.8± 0.4 47.5± 0.1 68.1
Model ratatouille Greedy 90.5± 0.2 78.7± 0.2 73.4± 0.3 49.2± 0.9 47.7± 0.0 67.9
Model ratatouille† Uniform† 89.8 78.3 73.5 52.0 47.7 68.3

Robust inter-training ID val 88.9± 0.5 77.8± 0.1 71.8± 0.6 47.3± 0.5 44.5± 0.2 66.1
Robust model ratatouille Uniform 89.7± 0.1 78.6± 0.2 73.0± 0.1 51.9± 0.2 47.4± 0.1 68.2
Robust model ratatouille Restricted 90.7 ± 0.1 78.8 ± 0.2 73.4± 0.2 50.6± 0.3 47.6± 0.1 68.2
Robust model ratatouille† Uniform† 89.8 78.6 73.4 52.1 47.8 68.3

F. DomainBed
F.1. Experimental Details

Datasets. We consider PACS (Li et al., 2017), VLCS (Fang et al., 2013), OfficeHome (Venkateswara et al., 2017),
TerraIncognita (Beery et al., 2018) and DomainNet (Peng et al., 2019). Domains are split into 80% (used as training and
evaluation) and 20% (used as validation). When considered as the target task, each domain is successively considered as the
test domain while others are for training. When considered as an auxiliary task, we train on all domains. Critically, the
procedure to obtain the pool of initializations is agnostic to the target task or the test domain, and thus is done only once.

Training protocol. In all cases, we follow the training protocol from DomainBed. For each dataset, we perform a
random search of 20 trials on the mild hyperparameter distributions described in Table 3. We use a ResNet-50 (He et al.,
2016) pre-trained on ImageNet, with a dropout layer before the newly added dense layer and fine-tuned with frozen
batch normalization layers. The optimizer is Adam (Kingma & Ba, 2015). The linear probe classifier are obtained
with default hyperparameters from Table 3 and features extracted from the ImageNet pre-trained featurizer. All runs
are trained for 5k steps, except on DomainNet for 15k steps as done in concurrent works (Arpit et al., 2021; Cha et al.,
2021; Ramé et al., 2022). When the featurizer was inter-trained on auxiliary datasets, it remains frozen during the first
200 steps to prevent feature distortion (Kumar et al., 2022). As in Ramé et al. (2022); Cha et al. (2021), validation
accuracy is calculated every 50 steps for VLCS, 500 steps for DomainNet and 100 steps for others. Our code is released at
https://github.com/facebookresearch/ModelRatatouille.

Table 3. Hyperparameters, their default values and distributions for random search.

Hyperparameter Default value Random distribution
(DomainBed) (Ours, DiWA and SWAD)

Learning rate 5 · 10−5 10U(−5,−3.5) [1, 3, 5] · 10−5

Batch size 32 2U(3,5.5) 32
ResNet dropout 0 [0, 0.1, 0.5] [0, 0.1, 0.5]
Weight decay 0 10U(−6,−2) [10−6, 10−4]
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Baselines. Vanilla fine-tuning was named Empirical Risk Minimization in previous papers; CORAL (Sun et al., 2016) is
the best invariance-based approach; their scores are taken from DomainBed (Gulrajani & Lopez-Paz, 2021). MA (Arpit
et al., 2021) and SWAD (Cha et al., 2021) average weights along the trajectory of a vanilla fine-tuning; their scores are
taken from their respective papers. Deep ensembles∗ averages the predictions of M = 6 models, each trained with different
classifier initializations on different data splits; the scores are taken from Arpit et al. (2021). Model soups (Wortsman et al.,
2022a) averages the weights obtained from different vanilla fine-tunings; for fair comparison, we report the scores achieved
in DiWA (Ramé et al., 2022) with linear probing. Fusing averages at initialization 5 auxiliary weights ϕaux

i ; for each of
the 20 runs and 0 ≤ i < 5, we sample κi ∼ Unif(0, 4) and choose λi =

eκi∑4
j=0 eκj , i.e., the featurizer is initialized from∑4

i=0
eκi∑4

j=0 eκj ϕ
aux
i .

Model and weight selection. We consider the training-domain validation set protocol. From each run, we thus take the
weights at the epoch with maximum accuracy on the ID validation dataset. The greedy weight selection is also based on
this ID validation set. This greedy strategy is not possible for † approaches, that average uniformly the M = 20× 3 = 60
weights from the 3 data splits: indeed, there is no shared ID validation dataset.

F.2. Results per Target Dataset and Domain

Tables below detail results per domain for the 5 datasets from DomainBed. The average scores were reported in Table 1.

Table 4. Accuracy (%, ↑) on PACS (best in bold and second underlined).
Algorithm Selection Art Cartoon Photo Sketch Avg

Vanilla fine-tuning ID val 84.7± 0.4 80.8± 0.6 97.2± 0.3 79.3± 1.0 85.5± 0.2
CORAL (Sun et al., 2016) ID val 88.3± 0.2 80.0± 0.5 97.5± 0.3 78.8± 1.3 86.2± 0.3
SWAD (Cha et al., 2021) Loss-aware trajectory 89.3± 0.5 83.4± 0.6 97.3± 0.3 82.5± 0.8 88.1± 0.1
MA (Arpit et al., 2021) Uniform trajectory 89.1± 0.1 82.6± 0.2 97.6± 0.0 80.5± 0.9 87.5± 0.2
Deep ensembles∗ (Arpit et al., 2021) Uniform 88.3 83.6 96.5 81.9 87.6

D
iW

A
ru

ns

Vanilla fine-tuning ID val 86.8± 0.8 80.6± 1.0 97.4± 0.4 78.7± 2.0 85.9± 0.6
Ensemble∗ Uniform 89.6± 0.2 81.6± 0.3 97.8± 0.2 83.5± 0.5 88.1± 0.3
Model soups Uniform 90.1± 0.2 82.8± 0.6 98.3± 0.1 83.3± 0.4 88.7± 0.2
Model soups Greedy 89.3± 0.2 82.8± 0.2 98.0± 0.1 82.0± 0.9 88.0± 0.3
Model soups† Uniform† 90.6 83.4 98.2 83.8 89.0

O
ur

ru
ns

Inter-training (Phang et al., 2018) ID val 89.2± 1.0 85.3± 0.7 97.5± 0.0 84.2± 0.2 89.0± 0.0
Ensemble∗ of inter-training Uniform 90.4± 0.2 83.7± 0.3 97.9± 0.2 84.9± 0.3 89.2± 0.1
Fusing (Choshen et al., 2022b) ID val 90.8± 0.1 79.1± 1.4 98.0± 0.4 84.1± 2.1 88.0± 1.0
Model ratatouille Uniform 90.3± 0.2 84.4± 0.1 98.7± 0.1 84.8± 0.1 89.5± 0.1
Model ratatouille Greedy 90.9 ± 0.1 86.5 ± 1.1 98.6± 0.0 85.9 ± 0.4 90.5 ± 0.2
Model ratatouille† Uniform† 90.6 84.7 98.8 85.0 89.8

Table 5. Accuracy (%, ↑) on VLCS (best in bold and second underlined).
Algorithm Selection Caltech LabelMe SUN VOC Avg

Vanilla fine-tuning ID val 97.7± 0.4 64.3± 0.9 73.4± 0.5 74.6± 1.3 77.5± 0.4
CORAL (Sun et al., 2016) ID val 98.3± 0.1 66.1 ± 1.2 73.4± 0.3 77.5± 1.2 78.8± 0.6
SWAD (Cha et al., 2021) Loss-aware trajectory 98.8± 0.1 63.3± 0.3 75.3 ± 0.5 79.2± 0.6 79.1 ± 0.1
MA (Arpit et al., 2021) Uniform trajectory 99.0± 0.2 63.0± 0.2 74.5± 0.3 76.4± 1.1 78.2± 0.2
Deep ensembles∗ (Arpit et al., 2021) Uniform 98.7 64.5 72.1 78.9 78.5

D
iW

A
ru

ns

Vanilla fine-tuning ID val 98.1± 0.3 64.4± 0.3 72.5± 0.5 77.7± 1.3 78.1± 0.5
Ensemble∗ Uniform 98.5± 0.1 64.9± 0.1 73.4± 0.4 77.2± 0.4 78.5± 0.1
Model soups Uniform 98.8± 0.1 62.8± 0.2 73.9± 0.3 78.3± 0.1 78.4± 0.2
Model soups Greedy 98.4± 0.0 64.1± 0.2 73.3± 0.4 78.1± 0.8 78.5± 0.1
Model soups† Uniform† 98.9 62.4 73.9 78.9 78.6

O
ur

ru
ns

Inter-training (Phang et al., 2018) ID val 98.2± 0.0 63.8± 0.5 72.3± 0.5 76.6± 0.2 77.7± 0.0
Ensemble∗ of inter-training Uniform 98.9± 0.1 64.7± 0.4 73.8± 0.5 78.6± 0.2 79.0± 0.2
Fusing (Choshen et al., 2022b) ID val 98.4± 0.4 64.8± 1.2 72.2± 0.9 78.5± 0.6 78.5± 0.8
Model ratatouille Uniform 99.3 ± 0.0 60.8± 0.3 74.3± 0.3 79.5 ± 0.3 78.5± 0.1
Model ratatouille Greedy 99.0± 0.0 62.4± 0.5 73.8± 0.3 79.5 ± 0.1 78.7± 0.2
Model ratatouille† Uniform† 99.3 60.4 73.9 79.5 78.3
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Table 6. Accuracy (%, ↑) on OfficeHome (best in bold and second underlined).
Algorithm Selection Art Clipart Product Photo Avg

Vanilla fine-tuning ID val 61.3± 0.7 52.4± 0.3 75.8± 0.1 76.6± 0.3 66.5± 0.3
CORAL (Sun et al., 2016) ID val 65.3± 0.4 54.4± 0.5 76.5± 0.1 78.4± 0.5 68.7± 0.3
SWAD (Cha et al., 2021) Loss-aware trajectory 66.1± 0.4 57.7± 0.4 78.4± 0.1 80.2± 0.2 70.6± 0.2
MA (Arpit et al., 2021) Uniform trajectory 66.7± 0.5 57.1± 0.1 78.6± 0.1 80.0± 0.0 70.6± 0.1
Deep ensembles∗ (Arpit et al., 2021) Uniform 65.6 58.5 78.7 80.5 70.8

D
iW

A
ru

ns

Vanilla fine-tuning ID val 63.9± 1.2 54.8± 0.6 78.7± 0.1 80.4± 0.2 69.4± 0.2
Ensemble∗ Uniform 67.0± 0.1 57.9± 0.4 80.0± 0.2 81.7± 0.3 71.7± 0.1
Model soups Uniform 68.4± 0.2 58.2± 0.5 80.0± 0.1 81.7± 0.3 72.1± 0.2
Model soups Greedy 67.8± 0.5 57.2± 0.5 79.6± 0.1 81.4± 0.4 71.5± 0.2
Model soups† Uniform† 69.2 59.0 80.6 82.2 72.8

O
ur

ru
ns

Inter-training (Phang et al., 2018) ID val 65.3± 0.3 55.8± 2.2 78.6± 0.1 80.1± 0.2 69.9± 0.6
Ensemble∗ of inter-training Uniform 67.8± 0.1 60.5± 0.1 80.5± 0.2 82.0± 0.2 72.7± 0.1
Fusing (Choshen et al., 2022b) ID val 66.4± 0.5 59.8± 1.2 78.8± 0.2 81.0± 0.3 71.5± 0.5
Model ratatouille Uniform 69.8± 0.1 60.3± 0.2 80.4± 0.1 81.8± 0.2 73.1± 0.1
Model ratatouille Greedy 70.0± 0.2 60.8 ± 1.0 80.6 ± 0.1 82.0± 0.2 73.4± 0.3
Model ratatouille† Uniform† 70.4 60.7 80.6 82.3 73.5

Table 7. Accuracy (%, ↑) on TerraIncognita (best in bold and second underlined).
Algorithm Selection L100 L38 L43 L46 Avg

Vanilla fine-tuning ID val 49.8± 4.4 42.1± 1.4 56.9± 1.8 35.7± 3.9 46.1± 1.8
CORAL (Sun et al., 2016) ID val 51.6± 2.4 42.2± 1.0 57.0± 1.0 39.8± 2.9 47.6± 1.0
SWAD (Cha et al., 2021) Loss-aware trajectory 55.4± 0.0 44.9± 1.1 59.7± 0.4 39.9± 0.2 50.0± 0.3
MA (Arpit et al., 2021) Uniform trajectory 54.9± 0.4 45.5± 0.6 60.1± 1.5 40.5± 0.4 50.3± 0.5
Deep ensembles∗ (Arpit et al., 2021) Uniform 53.0 42.6 60.5 40.8 49.2

D
iW

A
ru

ns

Vanilla fine-tuning ID val 59.9 ± 4.2 46.9± 0.9 54.6± 0.3 40.1± 2.2 50.4± 1.8
Ensemble∗ Uniform 55.6± 1.4 45.4± 0.4 61.0 ± 0.4 41.3 ± 0.3 50.8± 0.5
Model soups Uniform 56.3± 1.9 49.4± 0.7 59.9± 0.4 39.8± 0.5 51.4± 0.6
Model soups Greedy 58.5± 2.2 48.2± 0.3 58.5± 0.3 41.1± 1.2 51.6± 0.9
Model soups† Uniform† 57.2 50.1 60.3 39.8 51.9

O
ur

ru
ns

Inter-training (Phang et al., 2018) ID val 49.9± 1.7 44.3± 1.6 54.7± 0.4 37.9± 1.1 46.7± 0.1
Ensemble∗ of inter-training Uniform 58.1± 0.2 43.8± 0.4 61.0 ± 0.2 41.3 ± 0.4 51.1± 0.3
Fusing (Choshen et al., 2022b) ID val 52.8± 3.2 43.2± 2.3 55.2± 1.3 35.5± 0.3 46.7± 1.8
Model ratatouille Uniform 57.9± 0.2 50.1± 0.7 59.8± 0.1 38.9± 0.5 51.8± 0.4
Model ratatouille Greedy 54.0± 2.0 47.7± 0.8 57.3± 0.8 37.9± 1.2 49.2± 0.9
Model ratatouille† Uniform† 57.9 50.6 60.2 39.2 52.0

Table 8. Accuracy (%, ↑) on DomainNet (best in bold and second underlined).
Algorithm Selection Clipart Info Painting QuickDraw Photo Sketch Avg

Vanilla fine-tuning ID val 58.1± 0.3 18.8± 0.3 46.7± 0.3 12.2± 0.4 59.6± 0.1 49.8± 0.4 40.9± 0.1
CORAL (Sun et al., 2016) ID val 59.2± 0.1 19.7± 0.2 46.6± 0.3 13.4± 0.4 59.8± 0.2 50.1± 0.6 41.5± 0.1
SWAD (Cha et al., 2021) Loss-aware trajectory 66.0± 0.1 22.4± 0.3 53.5± 0.1 16.1± 0.2 65.8± 0.4 55.5± 0.3 46.5± 0.1
MA (Arpit et al., 2021) Uniform trajectory 64.4± 0.3 22.4± 0.2 53.4± 0.3 15.4± 0.1 64.7± 0.2 55.5± 0.1 46.0± 0.1
Deep ensembles∗ (Arpit et al., 2021) Uniform 68.3 23.1 54.5 16.3 66.9 57.0 47.7

D
iW

A
ru

ns

Vanilla fine-tuning ID val 63.4± 0.2 21.1± 0.4 50.7± 0.3 13.5± 0.4 64.8± 0.4 52.4± 0.1 44.3± 0.2
Ensemble∗ Uniform 66.7± 0.4 22.2± 0.1 54.1± 0.2 15.1± 0.2 68.4± 0.1 55.7± 0.2 47.0± 0.2
Model soups Uniform 65.9± 0.4 23.0± 0.2 55.0± 0.3 16.1± 0.2 68.4± 0.1 55.7± 0.4 47.4± 0.2
Model soups Greedy 66.7± 0.2 23.3 ± 0.2 55.3± 0.1 16.3± 0.2 68.2± 0.0 56.2± 0.1 47.7 ± 0.1
Model soups† Uniform† 66.2 23.3 55.4 16.5 68.7 56.0 47.7

O
ur

ru
ns

Inter-training (Phang et al., 2018) ID val 63.5± 0.1 21.1± 0.1 51.2± 0.2 14.2± 0.2 64.7± 0.3 52.1± 0.1 44.5± 0.1
Ensemble∗ of inter-training Uniform 66.8 ± 0.2 22.3± 0.0 54.2± 0.2 15.4± 0.2 68.3± 0.0 55.8± 0.2 47.2± 0.1
Fusing (Choshen et al., 2022b) ID val 63.6± 0.1 21.3± 0.1 51.4± 0.2 14.0± 0.2 64.1± 0.4 52.1± 0.3 44.4± 0.2
Model ratatouille Uniform 65.9± 0.2 23.0± 0.1 55.1± 0.0 16.5± 0.1 68.3± 0.0 55.8± 0.0 47.5± 0.1
Model ratatouille Greedy 66.5± 0.1 23.2± 0.1 55.3± 0.0 16.7 ± 0.1 68.0± 0.0 56.0± 0.0 47.7 ± 0.0
Model ratatouille† Uniform† 66.1 23.1 55.5 16.7 68.5 56.0 47.7
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F.3. Additional experiments

F.3.1. IMPROVED TERRAINCOGNITA

Ratatouille has significant gains over model soups on some datasets. Yet, the gains are indeed moderate on DomainNet
(47.4% to 47.5% with uniform selection) and TerraIncognita (51.4% to 51.8%). In particular for TerraIncognita, this small
gain is because other tasks from DomainBed are distant from photos of animals in the wild and even detrimental, explaining
the very low performances of inter-trainings (46.7% versus 50.4% for ERM); ratatouille manages to fill the gap by increased
diversity across fine-tunings. This is an evidence of ratatouille’s robustness to the choice of auxiliary tasks. To validate
that more similar auxiliary tasks can help on TerraIncognita, we run an additional experiment with iWildCam (Beery et al.,
2021) as a (similar) auxiliary task: as detailed in Table 9, we reach 52.9% averaged accuracy.

Table 9. Accuracies (%, ↑) on TerraIncongita with uniform selection.

Algorithm Auxiliary datasets L100 L38 L43 L46 Avg

Soups ✗ 56.3 49.4 59.9 39.8 51.4
Ratatouille DomainBed’s 57.9 50.1 59.8 38.9 51.8
Ratatouille iWildCam 59.8 50.3 60.0 41.4 52.9

F.3.2. CAMELYON

We conduct some experiments on the Camelyon (Koh et al., 2021) dataset from the WILDS (Koh et al., 2021) benchmark,
where the task is to classify “breast cancer metastases in whole-slide images of histological lymph node sections”, with each
hospital successively considered as the test while others are for training. The results in Table 10 show that model ratatouille
consistently beats model soups on Camelyon for histopathology. These results may facilitate the adoption of ratatouille in
the medical community (Maron et al., 2022).

Table 10. Accuracies (%, ↑) on Camelyon.

Selection Algorithm Hospital 1 Hospital 2 Hospital 3 Hospital 4 Hospital 5 Avg

Uniform Soups 96.4 94.3 96.1 94.2 90.4 94.3
Ratatouille 97.1 94.4 96.1 94.8 90.5 94.6

Greedy Soups 97.4 95.1 96.5 96.1 90.6 95.1
Ratatouille 97.5 95.3 96.7 96.6 90.8 95.4
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