
SpENCNN: Orchestrating Encoding and Sparsity for Fast Homomorphically
Encrypted Neural Network Inference

Ran Ran 1 Xinwei Luo 1 Wei Wang 2 Tao Liu 3 Gang Quan 4 Xiaolin Xu 5 Caiwen Ding 6 Wujie Wen 1

Abstract

Homomorphic Encryption (HE) is a promising
technology to protect clients’ data privacy for
Machine Learning as a Service (MLaaS) on pub-
lic clouds. However, HE operations can be or-
ders of magnitude slower than their counterparts
for plaintexts and thus result in prohibitively
high inference latency, seriously hindering the
practicality of HE. In this paper, we propose a
HE-based fast neural network (NN) inference
framework–SpENCNN built upon the co-design
of HE operation-aware model sparsity and the
single-instruction-multiple-data (SIMD)-friendly
data packing, to improve NN inference latency. In
particular, we first develop an encryption-aware
HE-group convolution technique that can parti-
tion channels among different groups based on
the data size and ciphertext size, and then encode
them into the same ciphertext by novel group-
interleaved encoding, so as to dramatically re-
duce the number of bottlenecked operations in
HE convolution. We further tailor a HE-friendly
sub-block weight pruning to reduce the costly
HE-based convolution operation. Our experi-
ments show that SpENCNN can achieve overall
speedups of 8.37×, 12.11×, 19.26×, and 1.87×
for LeNet, VGG-5, HEFNet, and ResNet-20 re-
spectively, with negligible accuracy loss. Our
code is publicly available at https://github.
com/ranran0523/SPECNN.

1Dept. of Electrical and Computer Engineering, Lehigh Uni-
versity 2Anonym, Inc. 3Dept. of Mathematics and Computer
Science, Lawrence Technological University 4Dept. of Electrical
and Computer Engineering, Florida International University 5Dept.
of Electrical and Computer Engineering, Northeastern University
6Dept. of Computer Science and Engineering, University of Con-
necticut. Correspondence to: Ran Ran <rar418@lehigh.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

1. Introduction
For the past decade, we have witnessed the tremendous
progress of machine learning and the great success achieved
in practical applications. Convolution Neural Network
(CNN) (Alex et al., 2014) models, for example, have been
widely used for many cognitive tasks such as medical imag-
ing, face and human action recognition. Meanwhile, there is
a growing interest in deploying machine learning on cloud as
a service (MLaaS) (Varghese & Buyya, 2018; Marston et al.,
2011). While cloud computing has been well recognized as
an attractive solution, especially for computation-intensive
scenarios such as the MLaaS, outsourcing sensitive data and
data processing to the cloud service provider can pose a
severe threat to the client’s privacy.

Homomorphic Encryption (HE) (Rivest et al., 1978) is a
promising technology for protecting clients’ privacy when
deploying MLaaS on the cloud. HE allows computations
to be performed on encrypted inputs. The decrypted out-
put matches the corresponding results computed from the
original inputs. Thus, a client can encrypt the sensitive data
locally and send the encrypted ciphertexts to the cloud. The
encrypted results sent from the cloud can be correctly de-
crypted using the secret key held by the client. While HE
helps maintain the confidentiality of the computation pro-
cess on the cloud effectively, one major problem is the exces-
sive computational cost associated with the HE operations
over the encrypted data (e.g. HE multiplication, addition,
rotation). In fact, HE operations can be several (i.e., three to
seven) orders of magnitude slower than the corresponding
operations on plaintexts (Jung et al., 2021), becoming the
bottleneck that hinders the popularity of MLaaS.

One of the most effective approaches (e.g. Gilad-Bachrach
et al. (2016); Brutzkus et al. (2019); Dathathri et al. (2019);
Kim et al. (2022); Lee et al. (2022a)) to reduce the HE com-
putational cost is to take advantage of the single-instruction-
multiple-data (SIMD) capability, supported by HE schemes,
e.g. Cheon-Kim-Kim-Song (CKKS) (Cheon et al., 2017)
and Brakerski/Fan-Vercauteren (BFV). Smart & Vercauteren
(2010) packs multiple data elements into different “slots” in
the same ciphertext and thus computations for data elements
at the same slot of two encoded messages can be performed
in parallel. The challenge is how to pack data based on the

1

https://github.com/ranran0523/SPECNN
https://github.com/ranran0523/SPECNN

SpENCNN: Orchestrating Encoding and Sparsity for Fast Homomorphically Encrypted Neural Network Inference

characteristics of the applications so that computation can
be conducted effectively in a SIMD manner. In particular,
the problem rises when the computation needs to be per-
formed on data elements at different slots of the messages.
To re-arrange the location of each individual data element
in an encrypted message is out of the question due to its
large overhead. A more reasonable solution is to employ
the HE-rotation1 operation that can move the data element
cyclically in the same message. However, HE-rotation has a
high latency cost due to the required permutation and key-
switching operation, compared with other HE-operations
such as the HE multiplication of a ciphertext with a plaintext
(HE-PMult) and HE addition of two ciphertexts (HE-Add),
as shown in Figure 1(a). Therefore, how to judiciously en-
code the inputs and perform the SIMD operations plays a
key role in reducing the HE computation complexity.

In this paper, we study the problem of how to improve
the HE-based inference latency when deploying a privacy-
preserving machine learning (PPML) platform based on
CNNs on the cloud. In particular, this work focuses on
reducing HE operations involved in convolution layers
based on the fact that such layers often dominate the compu-
tation workload in CNN inference. While there exist other
studies in this regard, e.g. optimizing the costly bootstrap-
ping operation (Lee et al., 2022a;b), this work is orthogonal
to these studies and represents another important aspect for
accelerating the HE-based inference.2

Assuming the client inputs (e.g., images) are encrypted as
the ciphertexts and associated CNN model parameters are
encoded as plaintext messages, the major HE computations
in CNN inference are therefore HE-PMult, HE-Add, and
HE-rotation operations. Traditional neural network opti-
mization techniques such as sparsification and pruning (Han
et al., 2015b; Wen et al., 2016; Frankle & Carbin; Liu et al.;
Li et al., 2019) help to reduce the computation and memory
overhead to speedup CNN inference in the plaintext domain.
However, this does not hold in the HE-based inference. In
fact, they achieve very limited or even no improvement com-
pared to dense models in their encrypted counterpart, as
we shall show in Section 2.3. Because simply extending
the design principles of existing sparsity solutions with-
out considering the special SIMD-friendly data packing
requirements for the encrypted inference, can reduce
neither the huge volume of expensive HE operations nor
the much-increased memory footprint for computing
activation ciphertexts in each layer. As an example, they
are unable to principally reduce the more expensive HE ro-
tation involved frequently in the multi-channel convolution
computation. Note that the computation overhead of an

1E.g., Rot(ct, k) transforms an encryption of (v0, ..., vN/2−1)
into an encryption of (vk, ..., vN/2−1, v0, ..., vk−1).

2We show the efficiency of our work to speedup PPML in the
presence of costly bootstrapping in Section 4.

HE rotation can be over 43× of that for a HE-Pmult or a
HE-Add operation, as shown in Figure 1(a),

To this end, we develop a HE-based CNN inference frame-
work, i.e., SpENCNN, with the goal of effectively exploiting
the SIMD feature of the HE scheme to improve the CNN
inference latency. In particular, we develop two techniques
to reduce the HE computational cost. First, we develop
HE-group convolution and associated group-interleaved en-
coding to optimize channel locations on ciphertexts based on
the number of convolutional groups and ciphertext size, thus
significantly reducing the number of costly HE-rotations.
Second, we further optimize the model architecture by prun-
ing and training the weights in the sub-blocks iteratively
with the goal to minimize HE-rotations and accuracy loss.
To comprehensively evaluate the efficiency of SpENCNN,
we have conducted experiments on the following two set-
tings using the state-of-the-art leveled HE–CKKS and the
MNIST and CIFAR-10 datasets: 1) CKKS-based PPML for
CNN models with no need of bootstrapping; 2) CKKS based
PPML for deeper models with the support of the-state-of-
the-art bootstrapping solution (Lee et al., 2022a). For the
former, SpENCNN can achieve overall speedups of 8.37×,
12.11× and 19.26×, for LeNet, VGG-5 and HEFNet, respec-
tively, with negligible accuracy loss. For the latter, while
bootstrapping contributes significantly to the overall infer-
ence latency in ResNet-20, SpENCNN still offers 1.87×
speedup while preserving the accuracy by reducing the HE
rotations. To our best knowledge, this is the first work that
builds an optimizing framework for CNN model architecture
from the aspect of co-design of structural sparsity and data
packing in HE to benefit HE-based PPML inference.

2. Preliminary
2.1. CKKS Homomorphic Encryption

Homomorphic Encryption (HE) allows computations to be
performed on encrypted data without decryption. Among
various HE schemes, the CKKS (Cheon et al., 2017) is
widely adopted in the encrypted neural network inference
because of supporting the fixed-point real number arithmetic
and potentially avoiding the prohibitively expensive boot-
strapping. The CKKS-based HE operations mainly consist
of ciphertext addition HE-Add (ct1 + ct2), ciphertext multi-
plication HE-Cmult (ct1 × ct2), scalar multiplication HE-
Pmult (pt1 × ct2), ciphertext roation HE-rotation Rot(ct, k),
etc. For MLaaS that only encrypts clients’ data, HE-Add,
HE-Pmult and HE-rotation often dominate the computations
of an encrypted inference. Among these three operations,
HE-rotation costs much longer latency than the other two,
e.g. ∼ 43× as our profiling result in Figure 1 (a) shows, due
to the complex automorphism operation and a key-switching
operation. The detailed calculation process of HE-rotation

2

SpENCNN: Orchestrating Encoding and Sparsity for Fast Homomorphically Encrypted Neural Network Inference

Ch1 Ch2

1.35

75%

0%Original

Non-Structural
Pruning

Sparsity

(c) Different Pruning Methods for Plaintext domain

50%

50%
Structural
Pruning
(Filter)

Structural
Pruning

(Channel)

A

B

D

Type

C

Latency(ms)

HE-Pmult

B C D

La
te

nc
y

(m
s)

HE-rotation
HE-Pmult & Add

(b)

48591

A

Baseline

Latency(ms)

HE-rotation

HE-Add

63
1.5

(a)

- - - -

- - -

- -

-

-

- -

- - -

- - - -

0 0 0

0 0 0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

Inner-rotations

Ch1 Ch2

Ch2 Ch1

Out1 Out2=

+
Outer-rotations

(d) Convolution in HE domain

Ch2 Ch1

Out1 Out2

Figure 1. (a) Comparison of different HE-operations’ latency. (b) Comparison of the HE convolution latency under different pruning
methods. (c) Illustration for different pruning methods for plaintext domain. (d) Multi-channel convolution process in HE domain.
Notation definitions refer to section 3.1. pt(ki) indicate the weight plaintext. The convolution layer used here has 64 input- and 64
output-channel, with a 3× 3 kernel. The input feature map size of the convolution layer is 32× 32.

can be described as:

Rot(ct, k) = (c(Xik), 0) + P−1(a(Xik) · evkkrot) (1)

where the evaluation key (evkkrot) is a public key with a
larger modulus PQ, and P is greater than Q. Assume
ct = (c(Xi), a(Xi)) represents a ciphertext before rota-
tion, then the automorphism (c(Xik) and a(Xik)) maps
each polynomial coefficient index i to output polynomial
coefficient index ik mod N , where N is the polynomial
degree. The second term on the right side of Equation 1
represents the key-switching operation to ensure the final
ciphertext can be still decrypted by the same secret key. It
is very expensive and could take over 90% of all operations
in practice (Samardzic et al., 2022).

2.2. Threat Model

We assume the cloud-based machine learning service, of
which a trained convolutional neural network (CNN) model
with plaintext weights, is hosted in a cloud server. A client
could upload one’s private and sensitive data to the public
cloud for obtaining an online inference result. The cloud
server is semi-honest (e.g., honest but curious). To en-
sure the confidentiality of clients’ data against such a cloud
server, the client utilizes HE to encrypt the data and then
send it to the cloud for performing encrypted inference with-
out decrypting the data or accessing the private key. Finally,
the client can decrypt the returned encrypted inference re-
sults from the cloud using a private key. In this work, we
focus on encrypting the client’s data, and others like model
parameters, are assumed as plaintext.

2.3. Motivation Example

To identify the computation bottleneck in HE inference,
we analyze the computation pattern of the convolutional
layer, which often dominates CNN inference’s memory and
computational overheads, in the encryption process. Here

the input and output activation feature maps are encrypted
as ciphertext, while the convolutional kernels are assumed
as plaintext. We also assume the state-of-the-art cipher-
text encoding–row-major (Dathathri et al., 2019; Kim et al.,
2022) is adopted here. This allows efficient multi-channel
ciphertext packing to take advantage of the CPU’s SIMD
architecture for fast HE inference. Figure 1 (d) shows the
typical HE convolution process of a convolution layer which
consists of 2-input/output channels with 3× 3 kernels. To
compute a ciphertext output feature map, two types of ci-
phertext rotations need to be performed sequentially. First,
inner-rotation rotates each input channel’s ciphertext fea-
ture map 8 times (or K2 − 1, here kernel size K = 3).
Each rotated version will need to be multiplied with its
corresponding weight plaintext, and then such results will
be summed up to obtain an intermediate ciphertext from
each input channel, which will further be concatenated as
a whole ciphertext (e.g. Ch1 and Ch2 as ct1). Second,
outer-rotation rotates the concatenated ciphertext multiple
times (in this simple example, 1 time because of packing
2 output channels as a ciphertext). Finally, all ciphertext
output feature maps can be obtained in parallel by the sum-
mation of these rotated copies. Apparently, compared to
non-encrypted convolution, HE convolution significantly
escalates the memory and computation overheads. More-
over, since the latency of HE-rotation can be much higher
than other operations due to complex automorphism and key
switching operations (see our profiling result in Figure 1(a)
63ms for HE-Rot v.s. 1.5ms for HE-Pmult, detailed setting
in Sec. 4.1), and the multi-channel convolutions in deep
CNNs would involve a huge volume of HE-rotation 3. As
a result, the long-latency HE-rotation quickly becomes a
bottleneck of the encrypted inference.

One straightforward solution to accelerating HE inference

3The matrix-vector multiplications in fully-connected layers
also require a substantial amount of HE-rotation.

3

SpENCNN: Orchestrating Encoding and Sparsity for Fast Homomorphically Encrypted Neural Network Inference

Initial CNN
model

Group
Convolution
Substitution

Identify all sub-
blocks

in the model

Prune the sub-
block with least
weights in rest

Retrain the
model to recover

the accuracy

Sub-block PruningHE-group Convolution

Tailored
CNN model

Repeat

Update rest valid
sub-blocks

Figure 2. An overview of SpENCNN for optimizing HE-based CNN inference, mainly consists of two orthogonal techniques to generate a
tailored model: (1) HE-group Convolution (outer-rotation optimization), and (2) Sub-block Pruning (inner-rotation optimization).

is to reduce the number of rotations by zeroing out (or
pruning) the plaintext weights. As Figure 1(c) shows, if
any weight plaintext–pt(ki) contains all zero values, then
the corresponding ciphertext rotation–Rot(ct1, k) and its
associated multiplication and summation can be safely elim-
inated. Since existing pruning techniques have been proven
to be effective in reducing the computation and memory
overhead to speedup the non-encrypted inference without ac-
curacy drop, we apply two representative pruning methods–
non-structured pruning (Han et al., 2015a) (zeros appear
randomly in a kernel, see Figure 1 (c)–B, 75% sparsity) and
structured pruning (Wen et al., 2016) (structured zeros in a
kernel, see filter pruning and channel pruning in Figure 1
(c)–C and D, 50% sparsity). For HE operations in an ex-
ample convolutional layer with 64 input/output channels,
feature map size 32× 32 and kernel size 3× 3, as Figure 1
(d) shows, the existing pruning achieves very marginal or
even no reduction of the HE-rotation latency which domi-
nates the convolution computation. In the worst case, it even
cannot remove any HE-rotation despite the high model spar-
sity, e.g. the non-structured pruning with 75% sparsity ratio.
The underlying reason is two-fold: 1) pruning is unable to
address the outer-rotation since computing an output cipher-
text by convolution needs to sum all channels’ feature maps
belonging to the same ciphertext if using the state-of-the-art
ciphertext encoding (see Figure 3 (a)); 2) existing prun-
ing techniques are designed for non-encrypted inference,
and the special channel-wise ciphertext operations involved
in HE convolution are ignored. This prompts the need to
jointly optimize ciphertext encoding and encryption-aware
model sparsity to accelerate HE inference.

3. The SpENCNN Framework
In this section, we present the technical details of the
SpENCNN framework. Figure 2 depicts an overview of
the SpENCNN framework, of which its input is an initial
CNN model and the output is a tailored CNN model suit-
able for fast HE inference. To achieve this, it requires two
processing stages: (1) HE-group Convolution, which is de-
signed to reduce the outer-rotations caused by multi-channel
encoded ciphertext (Kim et al., 2022; Lee et al., 2022a). In
particular, we design an adjustable method and determine a
theoretically optimal group number Gbase based on the size
of the ciphertext and data packed in the CKKS HE scheme,

to ensure that all outer-rotations can be eliminated while
keeping model accuracy. (2) Sub-block Pruning, which
is further proposed to reduce the number of inner-rotations.
However, this is non-trivial. We observe that to reduce as
many inner-rotations as possible, we must precisely identify
and completely prune selected sub-blocks. This, unfortu-
nately, results in a considerable accuracy drop. To address
the challenge, we develop a set of sub-steps which include
identifying sub-blocks, pruning sub-blocks, updating the
remaining sub-blocks, and retraining for accuracy recovery.

3.1. HE-Group Convolution

Two intuitions. Our proposed HE-group convolution is
based on two intuitions. We observe that the number of
required outer-rotations for a ciphertext is Rotouter =
N/2×(h×w)pad − 1, where N is the polynomial degree de-
fined in the cryptographic parameters. h and w are the
height and width of the input feature map. pad rounds a
number to the next power of two. Each ciphertext generated
by the outer-rotation further requires a set of inner-rotations.
The number of inner-rotations is Rotinner = K2−1, where
k is the convolutional kernel size. Apparently, increasing
the number of outer-rotation–Rotouter by just 1 can bring
an extra Rotinner = K2 − 1 inner-rotations. This gives us
the first intuition–reducing the number of outer-rotations
will fundamentally reduce the computational overhead.

The reason behind the outer-rotation is that multiple chan-
nels on the same ciphertext are involved in the same multi-
channel convolution. In our study, we find that convolution
(e.g., depthwise convolution (Howard et al., 2017)) can be
also performed individually within each single channel. We
also find that the group convolution technique (Krizhevsky
et al., 2012; Zhang et al., 2018; Ioannou et al., 2017) can
reduce the number of channels involved in each group. This
gives us the second intuition–reducing the number of chan-
nels in the same group can eliminate the outer-rotation.

Based on these intuitions, we propose the HE-group con-
volution. Given the group number G, the upper bound
of the number of channels in the same group can be
⌈(N/2·(h·w)pad) × 1/G⌉. Then the relationship between
Rotouter and G can be further expressed as Rotouter =
⌈(N/2·(h·w)pad)× 1/G⌉−1. Accordingly, we can go through
the power of 2 numbers of G from 1 to the optimal value
Gbase = N/2·(h·w)pad to cancel the Rotouter with negligible

4

SpENCNN: Orchestrating Encoding and Sparsity for Fast Homomorphically Encrypted Neural Network Inference

Ch2 Ch1

out1 out2 out3 out4

out1 out3

out2 out4

Ch1 Ch2

Ch3 Ch4

Ch2 Ch1

Ch4 Ch3

HE-rotation Ch1 Ch3

Ch2 Ch4

Ch1 Ch2

Ch3 Ch4

Group 1 Group 2

HE-group ConvolutionGeneral HE Convolution

Ch2 Ch4

Ch1 Ch3

Ch4 Ch3

Ch

Ch

Ch

Ch

Ch

Ch

Ch

Ch

Ch

G1 G2

M

GN

Group-Interleaved Format

(a) (b)

HE-rotation

Figure 3. (a) an example of HE convolution which generates 4 output channels from the 4 input channels with 3× 3 kernels. By HE-group
convolution, we only need 2 group-interleaved encoded cts to multiply with corresponding pts and sum up to get the output channels data.
(b) proposed HE-group convolution by a group-interleaved format.

model accuracy loss in our design. Theoretically, this opti-
mized value indicates zero outer-rotations when G reaches
the upper bound.

Group-interleaved encoding. However, we find that the
traditional ciphertext encoding format is not compatible
when we implement our grouping idea. This is because the
row-major format is mainly designed to perform convolu-
tion in the SIMD manner without considering the channel
positions on the ciphertext. To address this issue, we pro-
pose a group-interleaved encoding format–the channel
data from different groups are placed on the same ciphertext
in an interleaved manner. This new encoding facilitates fast
HE-group convolution without involving any outer-rotation.

Figure 3 shows an example of proposed HE-group convolu-
tion and group-interleaved encoding. We assume that two
ciphertexts contain 4 channels of data, and each ciphertext
cti contains 2 channels. As shown in Figure 3 (a)–left, in
general HE convolution, each cti has to perform 1 outer-
rotation to cover the 2 different channels, i.e., {ch1, ch2}
and {ch2, ch1} for ct1. Convolution will be performed indi-
vidually on each outer-rotated case for all ciphertexts. The
encrypted output channels {out1, out2}, {out3, out4} can
be generated after a summation.

For our HE group convolution, as Figure 3 (a)–right shows,
sibling channels {ch1, ch2} and {ch3, ch4} from the same
cti are in different convolution groups, which are encoded
by our group-interleaved format, i.e., {ch1, ch3} in ct1 and
{ch2, ch4} in ct2. Now, the outer rotation is eliminated
because each cti can perform 2 groups of convolution indi-
vidually without rotating the channels. The encrypted output
channels after summation, i.e., {out1, out3}, {out2, out4},
are naturally group-interleaved and can be immediately sent
to next HE-group convolution. Figure 3 (b) further shows
the generalized group-interleaved encoding, in which a ci-
phertext can encrypt M channels using the adjustable group
number G, with constraints G ≤ M and M |G = 0.

3.2. Sub-block Pruning

We design the sub-block pruning to further remove the
remaining inner-rotations after the HE-group convolution.
Our idea is to prune (zero out) a whole set of weights cor-
responding to specific inner-rotations, so that the compu-
tational overhead of these inner-rotations can be further
reduced. In HE-convolution, an inner-rotated ciphertext will
be multiplied with the weights at the same position, namely
“sub-block”, from all relevant kernels. Therefore, our design
tends to cut out the same sparse pattern on these sub-blocks
for all relevant kernels of the same ciphertext. As the ex-
ample in Figure 4 (a) shows, the 4 kernels of ct1 share the
same sparse pattern, thus eliminating 6 inner-rotations.

To obtain the desired sparse pattern, we propose sub-block
pruning. The more sub-blocks pi being pruned, the fewer
inner-rotations needed. On the other hand, pruning more
sub-blocks will lead to more accuracy drop. It is an opti-
mization problem, in which, we need to minimize the total
number of sub-blocks while maintaining the prediction ac-
curacy concurrently:

min{P =
∑
i

pi · Ii}

s.t. Acc(f(x; (W,P))) ≥ Acc(f(x;W))

where Ii =

{
0 pi is pruned
1 other

(2)

We aim to find the sub-blocks with the minimum weight
importance to the model at each iteration and prune, then,
retrain the model for a few epochs to recover the accuracy.
However, the sizes of sub-blocks are different. To measure
the weight importance of each sub-block in a fair way, we
define the weight importance metric as an average L2 norm
||wpi

||
dim(wpi

) . As described in the following Algorithm 1, at
each iteration, we prune the sub-blocks with the least weight
importance. The iterative algorithm would stop when the

5

SpENCNN: Orchestrating Encoding and Sparsity for Fast Homomorphically Encrypted Neural Network Inference

- - - -

- - - -

sub-block

sub-block

(a) Weight sparsity in convolutional layers (b) Weight sparsity in FC layers

Figure 4. (a) The weight sparse pattern in convolutional layers. For the same ct, their weight sparse patterns must be the same. For
different ct, the weight sparse pattern may change. (b) The weight sparse pattern in FC layers is in a diagonal-wise shape.

model accuracy is lower than the initial accuracy.

The proposed sub-block pruning can be also extended to the
FC layer. Given a N -element ct = {x1..N}, the weight ma-
trix of an FC layer can be reshaped as a M ×N ×N tensor
{W⃗} (zero padding if needed). To multiply an N ×N ma-
trix, we can multiply the diagonal N elements (as plaintext)
with each copy of ct for total N times (including N − 1
rotated copies and an original ct) according to the diagonal-
wise matrix multiplication with ct (Halevi & Shoup, 2014).
To illustrate this, we provide a toy example in Figure 4 (b).
Assuming we have ct = {b1..4} and a 4× 4 weight matrix.
Without sub-block pruning, the ciphertext ct needs to rotate
3 times to perform the weight matrix (plaintext)-ciphertext
multiplication. However, by applying sub-block pruning and
removing two diagonal sub-blocks (indicated by the white
blocks in the figure), we can save 2 rotations. The final
computation can be expressed as pt× ct+ pt1×Rot(ct, 1),
where pt represents the central diagonal weights, and pt1
represents the remaining weights.

Algorithm 1 Sub-blocks Iterative Pruning

1: Input: CNN model:f(x; (W,P)),
2: Remark: x-Data, W-Weights, P-HE blocks
3: Output: HE-friendly model:f(x; (W ′, P ′))
4: P ′ = P =

∑
i pi · Ii

5: While Accuracy loss ≤ 0 :

6: i← argmin
i

||wpi
||

dim(wpi
)

7: Ii = 0
8: prune weights in pi from current P
9: update P ′

10: retrain model with P ′ and update W ′

11: end While
12: Return f(x; (W ′, P ′))

4. Evaluation
4.1. Experiment Setup

Setup. We conduct our experiments on a workstation
equipped with an AMD Ryzen Threadripper 3975WX CPU,
an NVIDIA RTX 3090 GPU, and 256GB of RAM. To eval-
uate our proposed SpENCNN, we select four baseline CNN
models that are typically adopted in HE inference perfor-
mance evaluation and implement them using PyTorch on
GPU. This includes the LeNet-like for MNIST (2016), the

VGG-5 (Rathi et al., 2020), the HE-friendly Net (HEFNet),
and the ResNet-20 (Idelbayev) for CIFAR10. The first three
models and the fourth model are used for evaluating the
cases without and with bootstrapping, respectively. The
following Table 2 contains the detailed convolutional kernel
size, weight matrix size, and number of channels. These
three baseline models have different properties. The LeNet-
like model is a tiny model designed for simple classification
tasks so that the channel number and weight matrix size
are small and have the least number of layers. The VGG-5
model has much more weight in FC layers and the max
number of layers. The HEFNet contains the most convolu-
tional layers and the widest channel size. The ResNet-20
architecture is consistent with the published version (He
et al., 2016).

We adopt the Stochastic Gradient Descent (SGD) optimizer
with a mini-batch size of 64 on MNIST and 128 on CI-
FAR10, a momentum of 0.9, and weight decay of e−4 to
train each selected model for 100 epochs. The initial learn-
ing rate is set to 0.01 with a decay factor of 5e−4. For
average pooling or convolution with stride > 1, we use
the same implementation as CHET (Dathathri et al., 2019)
for the first three models and (Lee et al., 2022a) for the
ResNet-20. Since the non-linear activation function like
ReLU cannot be evaluated in HE, we replace ReLU with the
adaptive quadratic polynomial function f(x) = ax2+bx+c
following the recent work (Peng et al., 2022), where a, b, c
are trainable parameters to maintain the model accuracy.
Table 1 lists the specifications of these models and the cor-
responding accuracy. In particular, the test accuracies for
LeNet-like-MINST, VGG-5-CIFAR10, HEFNet-CIFAR10,

Table 1. The four baseline CNN models and corresponding En-
cryption Parameters. LeNet-like is for the MNIST dataset. VGG-5,
HEFNet and ResNet-20 are for CIFAR-10 dataset.

Model # Layers Groups Accuracy w/o Retraining
Conv FC Act (Gbase) (%) Accuracy (%)

LeNet-like 2 2 3 4 98.95 98.05
VGG-5 3 3 5 8 84.06 78.31
HEFNet 4 1 4 8 83.67 79.91

ResNet-20 19 1 19 8 91.52 85.23

Model Encryption Parameters Mult Security
N Q P q Level Level

LeNet-like 8192 264 24 24 10 104 bits
VGG-5 16384 529 31 33 16 104 bits
HEFNet 16384 436 31 33 13 128 bits

ResNet-20 65536 1501 46 51 58 153 bits

6

SpENCNN: Orchestrating Encoding and Sparsity for Fast Homomorphically Encrypted Neural Network Inference

Table 2. Convolutional layer and Fully-connected layer size in
three baseline models.

Network Layer # Input channel # Output channel Kernel size (Matrix size in FC)

LeNet-like

Conv1 1 32 5×5
Conv2 32 64 5×5
FC1 64 32 64×32
FC2 32 10 32×10

VGG-5

Conv1 3 64 3×3
Conv2 64 128 3×3
Conv3 128 128 3×3
FC1 8192 4096 8192×4096
FC2 4096 4096 4096×4096
FC3 4096 10 4096×10

HEFNet

Conv1 3 64 3×3
Conv2 64 128 3×3
Conv3 128 256 3×3
Conv4 256 256 3×3
FC1 1024 10 1024×10

ResNet-20

Conv1 3 16 3×3
Conv2 ×6 16 16 3×3

Conv3 16 32 3×3
Conv4 ×5 32 32 3×3

Conv5 32 64 3×3
Conv5 ×5 64 64 3×3

FC1 64 10 64×10

ResNet-20-CIFAR10, are 98.95%, 84.06%, 83.67%, and
91.52%, respectively. Besides, we find that without re-
training, the models would suffer from a considerable accu-
racy drop after pruning, while with retraining, the models
can reach accuracy comparable to their published versions.
Hence, we prune one block in each iteration and then per-
form 5 epochs of fine-tuning to recover model accuracy.

We use Microsoft SEAL library v3.4.5 (SEAL) to imple-
ment the RNS variant of CKKS (Cheon et al., 2019) based
HE inference for these networks. Table 1 also lists the key
parameters used in our RNS-CKKS encryption, including
the polynomial degree N , the total modulus in bit-length Q,
the scale factor in bit-length P and special modulus in bit-
length q to maintain the HE evaluation accuracy, and total
multiplication level. These parameters guarantee a security
level of 104 bits for LeNet-like and VGG-5, 128 bits for
HEFNet, and 153 bits for ResNet-20, which are sufficient
to tolerate the known attack proposed by (Albrecht et al.,
2015). For ResNet-20, the bootstrapping time is calibrated
by the data provided by (Lee et al., 2022a) under a simi-
lar execution environment. As we replace the ReLU with
degree-2 polynomials, the ResNet-20 model in this work
has a lower level consumption than the original one in (Lee
et al., 2022a), which reduces the latency of non-optimized
ResNet-20 from 2275s to 647s.

Methodology. We first perform an ablation study to evaluate
each individual technique’s effectiveness and then compare
the whole SpENCNN framework with the state-of-the-art
methods. We adopt the average inference latency (in sec-
onds) as the major metric. An image set containing 20 dif-
ferent samples is used to measure and report the latency for
these models. A lower latency indicates better performance.
In addition, we measure the left homomorphic operation
count (HOC, in %), sparsity (in %), and accuracy (in %)
of the tailored models. The lower HOC and lower sparsity

Table 3. Ablation study of HE-group convolution with the different
number of convolution groups.

Model Groups HOC Left (%) Accuracy (%) Latency (s) Speedup (×)Rot Others

LeNet-like

1-baseline - - 98.95 1.2658 -
2 51.52 52.91 98.95 0.6806 1.86
4 27.27 28.24 98.95 0.3807 3.32
8 27.27 16.47 98.67 0.3044 4.16

VGG-5

1-baseline - - 85.16 53.909 -
4 87.53 84.08 84.53 46.539 1.16
8 85.45 81.42 84.06 45.311 1.19

16 85.45 80.10 82.23 45.053 1.20

HEFNet

1-baseline - - 84.91 24.113 -
4 24.53 25.74 84.35 6.2491 3.86
8 11.95 13.36 83.67 3.2718 7.37

16 11.95 7.18 80.06 2.3627 10.21

ResNet-20

1-baseline - - 91.52 647 -
2 51.4 52.72 91.43 475 1.36
4 27.11 28.76 90.21 392 1.65
8 14.96 15.12 85.31 351 1.84

while offering higher accuracy are desired on all models.

4.2. Results

4.2.1. EVALUATION ON HE-GROUP CONVOLUTION

Table 3 lists our evaluation results for the HE-group con-
volution. We apply the HE group convolution alone (in
ablation) to each baseline model and evaluate its effective-
ness and scalability. In particular, we go through the number
of groups from its default value (i.e., 1-baseline) until it ex-
ceeds its Gbase according to our design in Section 3.1 (i.e.,
the highlighted 4, 8, and 8 for LeNet-like, VGG-5, and
HEFNet, respectively). The Gbase for ResNet-20 should be
16, but we could not set the group number to Gbase due to
prominent accuracy loss. Therefore, we select a moderate
group number for ResNet-20 with desirable accuracy for
comparison. For detailed analysis, we break down HOC
into “Rot” (HE-rotation) and “Others” (other operations
including HE-Pmult and HE-add).

Our HE-group convolution can be scaled to any convolu-
tional model. As the number of groups increases, it can
effectively reduce the number of HOC and maintain the
accuracy, thus reducing the latency of HE inference and im-
proving the performance. As listed in Table 3, the number
of HE-rotation is reduced from 100% to 27.27%, 85.45%,
11.95%, and 27.11% on LeNet-like, VGG-5, HEFNet, and
ResNet-20, respectively.

Once Gbase is reached, the number of HE-rotation does not
decrease further despite increasing the number of groups.
This is because the outer-rotation is completely eliminated
in HE-group convolution after the group number reaches
Gbase. We also find that HE group convolution can reduce
other HOC such as HE-Pmult and HE-add even after exceed-
ing Gbase. This also contributes to latency improvement.

For example, the HE-group convolution is particularly effec-
tive on our HEFNet (i.e., ∼ 88% and ∼ 86% reduction for

7

SpENCNN: Orchestrating Encoding and Sparsity for Fast Homomorphically Encrypted Neural Network Inference

Table 4. Ablation study of sub-block prune and comparison with
other pruning methods.

Network Groups HOC Left (%) Sparsity (%) Latency (s) Speedup (×)Rot Others

LeNet-like

Dense-Baseline - - 0.00 1.2658 -
NS-prune 96.12 96.23 91.00 1.2190 1.04

S-prune (channel) 88.03 92.82 53.77 1.1202 1.13
Sub-block prune 35.21 34.07 63.83 0.4644 2.62

VGG-5

Dense-Baseline - - 0.00 53.909 -
NS-prune 97.59 97.14 91.88 52.5280 1.03

S-prune (channel) 98.47 98.08 90.48 50.7178 1.06
Sub-block prune 15.89 16.11 89.87 8.7659 6.15

HEFNet

Dense-Baseline - - 0.00 24.113 -
NS-prune 85.60 88.97 72.95 21.1660 1.14

S-prune (channel) 94.69 95.24 51.91 22.9240 1.05
Sub-block prune 41.88 38.11 63.90 9.3709 2.57

ResNet-20

Dense-baseline - - 91.52 647 -
NS-prune 90.23 91.82 78.21 599 1.08

S-prune (channel) 96.21 96.84 53.12 628 1.03
Sub-block prune 52.31 50.12 56.40 475 1.36

HE-rotation and others, respectively). This is because it has
the largest volume of convolution layers among the selected
models. Such a dramatic reduction in HOC further shortens
the inference latency from 24.11s to 3.27s, which represents
a 7.37× speedup. In contrast, the HE group convolution is
the least effective in VGG-5, as it contains three large FC
layers (size of 8192×4096), which cannot be substantially
optimized using HE group convolution alone. There are
more than 85% of HE-rotations and 80% of other opera-
tions that cannot be eliminated. And this number saturates
as a lower bound after reaching the Gbase, resulting in a
limited speedup of 1.19×. For ResNet-20, the HE-group
convolution can also effectively reduce a large number of
HE operations because of the huge volume of convolutional
layers. However, due to its long bootstrapping time of 275s,
it only achieves a speedup of 1.65×.

We also observe that model accuracy slightly decreases as
the number of groups increases. This is due to the fact that
fewer channels are involved in the HE-group convolution
compared to the general convolution (see Figure 3). Fortu-
nately, our design is adjustable, allowing a trade-off between
accuracy and the optimized number of convolution groups.
For an optimized group number, the accuracy loss can be
marginal (i.e., 0%, 1.1%, 1.2%, and 1.31% on LeNet-like,
VGG-5, HEFNet, and ResNet-20, respectively).

4.2.2. EVALUATION ON SUB-BLOCK PRUNING

We also evaluate the sub-block pruning alone (in ablation)
and compare its effectiveness against the representative prun-
ing methods that are widely used in non-encrypted inference,
such as Non-structural prune (NS-prune) (Han et al., 2015a),
and Structural-prune (S-prune) (Wen et al., 2016). Table 4
reports the results. Here we do not report the accuracy but
the sparsity ratio and latency since all models maintain the
original accuracy after applying pruning methods.

Our sub-block pruning can effectively improve the HE infer-
ence performance on all baseline models (i.e., the speedup

Table 5. Comparison with Hunter on model HOC left, sparsity,
accuracy, latency, and speedup.

Network Method HOC Left (%) Sparsity Accuracy Latency Speedup
Rot Others (%) (%) (s) (×)

LeNet-like
Baseline - - 0 98.95 1.2658 -
Hunter 40.95 39.91 59.99 98.95 0.5353 2.36
Ours-4 8.54 9.88 62.62 98.95 0.1535 8.37

VGG-5
Baseline - - 0 85.16 53.909 -
Hunter 17.86 18.93 89.81 84.03 9.9916 5.40
Ours-8 7.86 7.72 91.97 84.07 4.3830 12.11

HEFNet
Baseline - - 0 84.91 24.113 -
Hunter 48.27 42.20 57.82 83.63 10.855 2.22
Ours-8 3.99 4.61 65.62 83.67 1.2520 19.26

ResNet-20
Baseline - - 0 91.52 647 -
Hunter 51.12 52.39 48.12 90.20 461 1.40
Ours-4 14.10 15.47 53.32 90.21 344 1.87

of 2.62×, 6.15×, 2.57×, and 1.36× on LeNet-like, VGG-
5, HEFNet, and ResNet-20, respectively), which signifi-
cantly outperforms other traditional pruning methods (i.e.,
marginal ∼ 1.1× speedup on most cases). The reason is that
our design is more HE-oriented and thus is effective in the
ciphertext domain while traditional prunings are designed
for achieving high sparsity ratio in the plaintext domain
without considering the special requirement of ciphertext
operations. For example, although NS-prune can prune
∼ 92% of the weights on VGG-5, it cannot eliminate the
HE overhead (i.e., ∼ 96% HOC) caused by the remaining
∼ 8% of the weights.

Our sub-block pruning method performs the best (i.e., ∼
16% HOC) on VGG-5 because it effectively eliminates the
inner-rotations caused by the large number of redundant
weights in the FC layers. Together with the previous results
(see Table 3), sub-block pruning can be a good complement
to the HE-group convolution that performs weakly on the
FC layers. We also note that our sub-block pruning method
on LeNet-like (i.e., 35.21% Rot left) slightly outperforms
HEFNet (i.e., 41.88% Rot left). This is because the larger
convolutional kernel (i.e., 5× 5) in LeNet-like offer more
space to optimize the inner-rotations using our method. For
ResNet-20, the speedup is limited due to the bootstrapping
overhead. However, the sub-block prune is still effective for
reducing HE operations because of the increased number of
convolutional layers.

4.2.3. COMPARE WITH SOTA SOLUTIONS

We compare our method with the state-of-the-art HE-prune
method–Hunter (Cai et al., 2022). The comparison results
are presented in Table 5. In this evaluation, we combine
the HE-group convolution and sub-block pruning and use
the proposed Gbase as the group number (i.e., highlighted
data). For a fair comparison, pruning is controlled to ensure
that our method and Hunter have the same level of accuracy
(i.e., error≤ ±0.04%) on all baseline models. We can see
from Table 5, our method outperforms the state-of-the-art
significantly in terms of HOC, sparsity, and latency, across
all baseline models. For example, our method eliminates

8

SpENCNN: Orchestrating Encoding and Sparsity for Fast Homomorphically Encrypted Neural Network Inference

96% HE-rotations on HEFNet, achieving a 19.26× speedup.
In contrast, the Hunter-optimized model still has 51% HE-
rotations left behind and achieves only 2.22× speedup com-
pared to the un-pruned baseline. This is because our method
is designed to eliminate both outer and inner HE-rotations
by synthetically applying the HE-group convolution and
sub-block pruning, while the state-of-the-art is solely built
upon the fixed structure pruning. Besides, we prune 608 out
of 921, 15431 out of 18139, 3412 out of 5083, and 3381
out of 6331 blocks for LeNet-like, VGG-5, HEFNet, and
ResNet-20 respectively, which exhibits a similar trend to
the reported sparsity ratio in Table 5. For illustration pur-
pose, we also plot some examples of encrypted inference-
friendly sparsity patterns of kernels of LeNet-like as shown
in Figure 5. The weights after optimization are presented
in a binary representation. In each convolutional group, it
contains 64 weight kernels with size 5 × 5. Here kernels
associated with the same ciphertext, though belonging to
different convolutional groups, exhibit the same sparse pat-
tern (x direction). On the other hand, for kernels within
the same convolutional group but across different cts, their
sparse patterns are different (y direction). When considering
deeper networks requiring bootstrapping, we further com-
pare our method with the SOTA (Lee et al., 2022a) under a
similar setting, the baseline latency is improved from 647s
to 475s, well demonstrating the effectiveness of our method
in accelerating deeper networks.

Group 1 Group 2

Figure 5. The sparse patterns for weight kernels in LeNet-like 2nd
Convolutional layer.

5. Related Work
CryptoNets (Gilad-Bachrach et al., 2016) is an initial at-
tempt to realize HE inference. After that, many subse-
quent works are proposed to improve the HE-inference
latency from different aspects. Faster-CryptoNets (Chou
et al., 2018) combines weight pruning and quantization to
obtain a sparse polynomial representation to speed up the
PMult operation, which achieves 6.38× latency reduction.
LoLa (Brutzkus et al., 2019) successfully demonstrates the
HE inference on a simple 3-layer model (1 convolutional
layer and 2 FC layers) and achieves a 2.2s inference latency
on the MNIST sample by leveraging data packing and ro-
tation techniques. Ghodsi et al. (2020); Jha et al. (2021);
Mishra et al. (2020); Lou et al. (2020) propose to reduce
the cost of non-linear operations in HE-inference since op-

erations like ReLU dominate the latency in the multi-party
computation (MPC) setting.

Dathathri et al. (2019); Kim et al. (2022); Lee et al. (2022a);
Ran et al. (2022) further refine the row-major coding format
to reduce inference latency by packing independent chan-
nels in one ciphertext and then performing multi-channel
convolution on such packed ciphertexts. However, in these
works, the packed channels associated with a ciphertext
are still from the same convolution group as that of tradi-
tional non-encrypted convolution. As a result, ciphertext
outer-rotations cannot be avoided because these channels
still need to be added together via outer-rotations to obtain
an output channel in encrypted convolution.

Lou & Jiang (2021) propose a neural architecture search
(NAS) based method to reduce the number of convolutional
layers and then save the encryption parameters to speed up
the HE-inference. Kim et al. (2022); Lee et al. (2022a) use a
multiplexed packing technique to exploit empty slots caused
by average pooling or strided convolution and reduce the
use of ciphertexts for acceleration. This work is orthogo-
nal to these methods and can be integrated with them to
further improve the latency. Hunter (Cai et al., 2022) at-
tempts to structurally prune the weights to accelerate the
HE-inference in the MPC setting. HE-PEx (Aharoni et al.,
2022) leverage tile tensor and prune weights by tile sparsity
in FC layers. It reduces memory overhead and latency by
60% on the tested autoencoder models in a non-client-aided
setting. Different from them, SpENCNN is the first to or-
chestrate the ciphertext encoding and model sparsity design
for HE inference acceleration in a non-client-aided setting,
significantly outperforming these works.

6. Acknowledgement
We thank all anonymous reviewers for their constructive
comments and suggestions on this work. This work is
partially supported by the National Science Foundation
(NSF) under Grants No. CNS-2153690, CNS-2247891,
CNS-2247892 and CNS-2247893.

7. Conclusion
In this paper, we propose a fast HE-based encrypted infer-
ence framework–SpENCNN, which builds upon two novel
encryption operation-aware techniques–HE-group convolu-
tion and sub-block weight pruning. Experimental results
show that our solution can speed up the privacy-preserving
inference by 8.37×, 12.11×, 19.26×, and 1.87× on LeNet-
like, VGG-5, HEFNet, and ResNet-20, respectively, greatly
outperforming the state-of-the-art solutions. In the future,
we would like to combine our method with a specific hard-
ware accelerator design to further reduce the total latency
and make this solution practical.

9

SpENCNN: Orchestrating Encoding and Sparsity for Fast Homomorphically Encrypted Neural Network Inference

References
2016, T. Lenet-like for convolutional mnist model example.
https://github.com/tensorflow/models/
blob/v1.9.0/tutorials/image/mnist/
convolutional.py.

Aharoni, E., Baruch, M., Bose, P., Buyuktosunoglu, A.,
Drucker, N., Pal, S., Pelleg, T., Sarpatwar, K., Shaul, H.,
Soceanu, O., et al. He-pex: Efficient machine learning
under homomorphic encryption using pruning, permuta-
tion and expansion. arXiv preprint arXiv:2207.03384,
2022.

Albrecht, M. R., Player, R., and Scott, S. On the concrete
hardness of learning with errors. Journal of Mathematical
Cryptology, 9(3):169–203, 2015.

Alex, K., Nair, V., and Hinton, G. The cifar-10 dataset,
2014.

Brutzkus, A., Gilad-Bachrach, R., and Elisha, O. Low
latency privacy preserving inference. In International
Conference on Machine Learning, pp. 812–821. PMLR,
2019.

Cai, Y., Zhang, Q., Ning, R., Xin, C., and Wu, H. Hunter:
He-friendly structured pruning for efficient privacy-
preserving deep learning. In Proceedings of the 2022
ACM on Asia Conference on Computer and Communica-
tions Security, pp. 931–945, 2022.

Cheon, J. H., Kim, A., Kim, M., and Song, Y. Homomor-
phic encryption for arithmetic of approximate numbers.
In International conference on the theory and applica-
tion of cryptology and information security, pp. 409–437.
Springer, 2017.

Cheon, J. H., Han, K., Kim, A., Kim, M., and Song, Y. A
full rns variant of approximate homomorphic encryption.
In Selected Areas in Cryptography–SAC 2018: 25th In-
ternational Conference, Calgary, AB, Canada, August
15–17, 2018, Revised Selected Papers 25, pp. 347–368.
Springer, 2019.

Chou, E., Beal, J., Levy, D., Yeung, S., Haque, A.,
and Fei-Fei, L. Faster cryptonets: Leveraging spar-
sity for real-world encrypted inference. arXiv preprint
arXiv:1811.09953, 2018.

Dathathri, R., Saarikivi, O., Chen, H., Laine, K., Lauter,
K., Maleki, S., Musuvathi, M., and Mytkowicz, T. Chet:
an optimizing compiler for fully-homomorphic neural-
network inferencing. In Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language Design
and Implementation, pp. 142–156, 2019.

Frankle, J. and Carbin, M. The lottery ticket hypothesis:
Finding sparse, trainable neural networks. In Interna-
tional Conference on Learning Representations.

Ghodsi, Z., Veldanda, A. K., Reagen, B., and Garg, S. Cryp-
tonas: Private inference on a relu budget. Advances
in Neural Information Processing Systems, 33:16961–
16971, 2020.

Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K.,
Naehrig, M., and Wernsing, J. Cryptonets: Applying
neural networks to encrypted data with high throughput
and accuracy. In International conference on machine
learning, pp. 201–210. PMLR, 2016.

Halevi, S. and Shoup, V. Algorithms in helib. In Annual
Cryptology Conference, pp. 554–571. Springer, 2014.

Han, S., Mao, H., and Dally, W. J. Deep compres-
sion: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015a.

Han, S., Pool, J., Tran, J., and Dally, W. Learning both
weights and connections for efficient neural network.
Advances in neural information processing systems, 28,
2015b.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang,
W., Weyand, T., Andreetto, M., and Adam, H. Mobilenets:
Efficient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861, 2017.

Idelbayev, Y. Proper ResNet implementation for CI-
FAR10/CIFAR100 in PyTorch. https://github.
com/akamaster/pytorch_resnet_cifar10.
Accessed: 20xx-xx-xx.

Ioannou, Y., Robertson, D., Cipolla, R., and Criminisi, A.
Deep roots: Improving cnn efficiency with hierarchical
filter groups. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 1231–1240,
2017.

Jha, N. K., Ghodsi, Z., Garg, S., and Reagen, B. Deepre-
duce: Relu reduction for fast private inference. In Interna-
tional Conference on Machine Learning, pp. 4839–4849.
PMLR, 2021.

Jung, W., Lee, E., Kim, S., Kim, J., Kim, N., Lee, K., Min,
C., Cheon, J. H., and Ahn, J. H. Accelerating fully homo-
morphic encryption through architecture-centric analysis
and optimization. IEEE Access, 9:98772–98789, 2021.

10

https://github.com/tensorflow/models/blob/v1.9.0/tutorials/image/mnist/convolutional.py
https://github.com/tensorflow/models/blob/v1.9.0/tutorials/image/mnist/convolutional.py
https://github.com/tensorflow/models/blob/v1.9.0/tutorials/image/mnist/convolutional.py
https://github.com/akamaster/pytorch_resnet_cifar10
https://github.com/akamaster/pytorch_resnet_cifar10

SpENCNN: Orchestrating Encoding and Sparsity for Fast Homomorphically Encrypted Neural Network Inference

Kim, M., Jiang, X., Lauter, K., Ismayilzada, E., and Shams,
S. Secure human action recognition by encrypted neural
network inference. Nature communications, 13(1):1–13,
2022.

Krizhevsky, A., Sutskever, I., and Hinton, G. Imagenet clas-
sification with deep convolutional neural networks. 2012
advances in neural information processing systems (nips).
Neural Information Processing Systems Foundation, La
Jolla, CA, 2012.

Lee, E., Lee, J.-W., Lee, J., Kim, Y.-S., Kim, Y., No, J.-S.,
and Choi, W. Low-complexity deep convolutional neural
networks on fully homomorphic encryption using multi-
plexed parallel convolutions. In International Conference
on Machine Learning, pp. 12403–12422. PMLR, 2022a.

Lee, J.-W., Kang, H., Lee, Y., Choi, W., Eom, J., Deryabin,
M., Lee, E., Lee, J., Yoo, D., Kim, Y.-S., et al. Privacy-
preserving machine learning with fully homomorphic
encryption for deep neural network. IEEE Access, 10:
30039–30054, 2022b.

Li, T., Wu, B., Yang, Y., Fan, Y., Zhang, Y., and Liu,
W. Compressing convolutional neural networks via
factorized convolutional filters. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pp. 3977–3986, 2019.

Liu, Z., Sun, M., Zhou, T., Huang, G., and Darrell, T. Re-
thinking the value of network pruning. In International
Conference on Learning Representations.

Lou, Q. and Jiang, L. Hemet: A homomorphic-encryption-
friendly privacy-preserving mobile neural network archi-
tecture. In International conference on machine learning,
pp. 7102–7110. PMLR, 2021.

Lou, Q., Bian, S., and Jiang, L. Autoprivacy: Automated
layer-wise parameter selection for secure neural network
inference. Advances in Neural Information Processing
Systems, 33:8638–8647, 2020.

Marston, S., Li, Z., Bandyopadhyay, S., Zhang, J., and
Ghalsasi, A. Cloud computing—the business perspective.
Decision support systems, 51(1):176–189, 2011.

Mishra, P., Lehmkuhl, R., Srinivasan, A., Zheng, W., and
Popa, R. A. Delphi: A cryptographic inference service for
neural networks. In 29th USENIX Security Symposium
(USENIX Security 20), pp. 2505–2522, 2020.

Peng, H., Zhou, S., Luo, Y., Duan, S., Xu, N., Ran, R.,
Huang, S., Wang, C., Geng, T., Li, A., et al. Polym-
pcnet: Towards relu-free neural architecture search in
two-party computation based private inference. arXiv
preprint arXiv:2209.09424, 2022.

Ran, R., Wang, W., Gang, Q., Yin, J., Xu, N., and Wen, W.
Cryptogcn: Fast and scalable homomorphically encrypted
graph convolutional network inference. Advances in Neu-
ral Information Processing Systems, 35:37676–37689,
2022.

Rathi, N., Srinivasan, G., Panda, P., and Roy, K. En-
abling deep spiking neural networks with hybrid con-
version and spike timing dependent backpropagation. In
International Conference on Learning Representations,
2020. URL https://openreview.net/forum?
id=B1xSperKvH.

Rivest, R. L., Adleman, L., Dertouzos, M. L., et al. On
data banks and privacy homomorphisms. Foundations of
secure computation, 4(11):169–180, 1978.

Samardzic, N., Feldmann, A., Krastev, A., Manohar, N.,
Genise, N., Devadas, S., Eldefrawy, K., Peikert, C., and
Sanchez, D. Craterlake: a hardware accelerator for effi-
cient unbounded computation on encrypted data. In ISCA,
pp. 173–187, 2022.

SEAL. Microsoft SEAL (release 3.4). https://github.
com/Microsoft/SEAL, October 2019. Microsoft Re-
search, Redmond, WA.

Smart, N. P. and Vercauteren, F. Fully homomorphic en-
cryption with relatively small key and ciphertext sizes. In
International Workshop on Public Key Cryptography, pp.
420–443. Springer, 2010.

Varghese, B. and Buyya, R. Next generation cloud comput-
ing: New trends and research directions. Future Genera-
tion Computer Systems, 79:849–861, 2018.

Wen, W., Wu, C., Wang, Y., Chen, Y., and Li, H. Learning
structured sparsity in deep neural networks. Advances in
neural information processing systems, 29, 2016.

Zhang, X., Zhou, X., Lin, M., and Sun, J. Shufflenet: An
extremely efficient convolutional neural network for mo-
bile devices. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 6848–6856,
2018.

11

https://openreview.net/forum?id=B1xSperKvH
https://openreview.net/forum?id=B1xSperKvH
https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL

