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Abstract
In this paper, we conduct an empirical study of
the feature learning process in deep classifiers.
Recent research has identified a training phe-
nomenon called Neural Collapse (NC), in which
the top-layer feature embeddings of samples from
the same class tend to concentrate around their
means, and the top layer’s weights align with
those features. Our study aims to investigate if
these properties extend to intermediate layers. We
empirically study the evolution of the covariance
and mean of representations across different lay-
ers and show that as we move deeper into a trained
neural network, the within-class covariance de-
creases relative to the between-class covariance.
Additionally, we find that in the top layers, where
the between-class covariance is dominant, the sub-
space spanned by the class means aligns with the
subspace spanned by the most significant singu-
lar vector components of the weight matrix in
the corresponding layer. Finally, we discuss the
relationship between NC and Associative Memo-
ries (Willshaw et al., 1969).

1. Introduction
Deep learning has emerged as a powerful technique for solv-
ing various problems in diverse domains such as computer
vision (He et al., 2016; Simonyan & Zisserman, 2014), natu-
ral language processing (Vaswani et al., 2017; Brown et al.,
2020), and decision making in novel environments (Silver
et al., 2016). Despite its successes, there remains a signifi-
cant gap between its empirical performance and our theo-
retical understanding, even for simple supervised learning
problems in classification or regression.

A major line of work (e.g., (Jacot et al., 2018; Du et al.,
2019; 2018; Arora et al., 2019; Yang, 2020; Yang & Lit-
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twin, 2021; Littwin et al., 2020)) aims to understand neural
networks at their infinite-width limit. In this framework, it
is shown that infinitely wide neural networks converge to
a solution of a kernel least squares problem with a kernel
associated with the network’s architecture, known as the
Neural Tangent Kernel (NTK). While this approach pro-
vides valuable insights into the solutions of optimization
problems in the “kernel regime”, it has limitations when it
comes to understanding the representations learned by finite
neural networks. For instance, Chen et al. (2020); Allen-
Zhu & Li (2019); Malach et al. (2021) identified classes
of functions that can be learned efficiently by deep archi-
tectures, but not with kernel methods. In (Allen-Zhu & Li,
2020), they characterized a “backward feature correction”
process in which features are learned hierarchically by SGD.
Additionally, Woodworth et al. (2020) studied how the scale
of initialization controls the transition between the “kernel”
and “feature learning” regimes.

In a recent study, Papyan et al. (2020) empirically observed
that when training overparameterized deep neural networks
for Cross-Entropy loss minimization on a given classifica-
tion task, several structural properties tend to emerge in the
last layer. These properties, known as Neural Collapse (NC)
list four conditions: (NC1) the features of examples within
the same class collapse to their mean, (NC2) class means of
the features spread out to form an equiangular tight frame,
(NC3) the weights of the classifier converge to the class
means of the features, and (NC4) the deep network becomes
a nearest class center classifier. These observations raise the
question of whether similar phenomena also occur in the
intermediate layers of the neural network.

Contributions. In this paper, we investigate whether
similar phenomena to Neural Collapse (NC) occur in
intermediate layers of deep classifiers. We study the process
of feature learning in terms of the first and second-order
statistics of representations at different layers. Our results
show that when deep networks exhibit NC at the last
layer, they also display signs of collapse in intermediate
layers. We identify layers where the within-class covariance
of representations is dominated by the between-class
covariance (NC1) and observe that in these layers, class
means to form a simplex ETF (NC2), the subspaces
spanned by class means are aligned with the input subspace
of linear transformations (NC3), and nearest class center
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Intermediate Neural CollapseIntermediate Neural Collapse

Figure 1. A cartoon illustration of intermediate neural collapse as data is fed through the layers of an overparameterized deep classifier.
The classifier first projects the data into a high dimensional space in which linear decision boundaries are found. Intermediate neural
collapse in the deeper layers indicates that the role of these layers is to reduce the within class covariance of the representations and
increase the between class covariance as a fraction of the total covariance. In this paper we provide definitions and evidence of intermediate
neural collapse.

classification using the layer’s representations align with
the decision of the deep network (NC4). This is the first
study to provide a comprehensive description of NC in
intermediate layers, and we also measure the rank of weight
matrices and covariances of representations to understand
how features are transformed in the NC regime. A cartoon
illustration of the representations learned by deep classifiers
in collapsed layers is given in Fig. 1. The code for running
our experiments is available at https://github.com/
mariuslindegaard/Intermediate_Neural_
Collapse/tree/ICML2023

2. Related Work
Neural collapse. The phenomenon of Neural Collapse
(NC) was first described in full in (Papyan et al., 2020),
although the observation of a certain geometric clustering
of features within the same class had been made in earlier
papers, such as Goldfeld et al. (2019). Since the initial
NC paper, which showed the phenomenon occurring with
the cross-entropy loss, there has been a surge of research
into theoretical and empirical descriptions of NC. Han et al.
(2022) demonstrated NC using the Mean Squared Error
(MSE) loss, while papers such as Xu et al. (2023); Ergen
& Pilanci (2020) have shown that different optimization
algorithms can lead to NC solutions when trained to zero
MSE loss. Rangamani & Banburski-Fahey (2022) show that
weight decay is necessary for the emergence of NC with
the MSE loss. The emergence of NC solutions using cross-
entropy was also shown in other papers (Wojtowytsch et al.,
2020; Fang et al., 2021; Lu & Steinerberger, 2020). Several
papers such as (Zhu et al., 2021; Zhou et al., 2022; Mixon
et al., 2020; Tirer & Bruna, 2022; Ji et al., 2021) have also
explored the Unconstrained Features Model (UFM), which
analyzes the last layer features and classifier as optimization
variables. The abstraction of the UFM has provided a simpli-
fied model for deriving the emergence of NC theoretically.

Feature learning in deep networks. Since deep networks
are organized as hierarchical layers, the structure of the
representations learned at intermediate layers has also been
an object of study in order to understand how deep net-
works work. In Recanatesi et al. (2019) and Ansuini et al.
(2019), the authors study how different measures of the di-
mension of intermediate representations progresses through
the network. Both papers show that the dimension of the
representations first blows up and later reduces as one goes
through deeper layers of the classifier. We later show that
networks that exhibit neural collapse also show this behavior.
Attempts to understand the evolution of deep network repre-
sentations through the lens of information theory were made
by Shwartz-Ziv & Tishby (2017). They described the repre-
sentations learned by intermediate layers through the mech-
anism of the information bottleneck. Their observations on
the dynamics of the representations and their connections to
generalization were later shown to be highly dependent on
the architectures and non-linearities used (Saxe et al., 2019),
as well as the type of binning (Goldfeld et al., 2019) used in
the estimation of mutual information.

Clustering properties of intermediate layers of deep net-
works. In the literature on feature learning, a particular
focus is placed on clustering properties that emerge in inter-
mediate layers of the network, as they indicate that samples
can be easily classified at early stages of the network. For in-
stance, in (Alain & Bengio, 2017), it was demonstrated that
linear probing of intermediate layers in a trained network
becomes more accurate as we move deeper into the network.
This finding was also supported in (Cohen et al., 2018),
where the authors demonstrated that a k-nearest neighbors
classifier using intermediate representations performed well,
particularly using the final layer of the deep network.

Following the work of Papyan et al. (2020), several pa-
pers (Ben-Shaul & Dekel, 2022; Galanti et al., 2022a; He
& Su, 2022) investigated the applicability of the nearest
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class center (NCC) classification rule (NC4) to intermediate
layers in neural networks. While these papers demonstrate
that the accuracy of the NCC classifier improves across
the layers, they do not explore the entire set of NC prop-
erties. While Tirer & Bruna (2022) explores a two-layer
unconstrained features model, they only present experimen-
tal evidence for NC1 and NC2 in the layer prior to the last
hidden layer. Their theoretical results show the emergence
of NC in the classifier and the features at the penultimate
layer in the case of ReLU non-linearities, but do not describe
the emergence of NC in intermediate layers.

Deep networks as associative memories. Associative
memories have been a popular topic in neural networks
for over half a century, starting with the work of Koho-
nen (1989) who proposed a mathematical model for a non-
hierarchical pattern storage system. This work inspired
many subsequent studies, including the Self-Organizing
Map algorithm by Kohonen (1989) and the Simple Recur-
rent Network by Anderson (1972). Hopfield (1982) later
proposed the Hopfield network, a recurrent neural network
that can store and recall multiple patterns. Kanerva (1992)
proposed the sparse distributed memory, which uses high-
dimensional binary vectors for efficient pattern storage. As-
sociative memories have also been used in signal processing
applications such as holography prior to their being studied
as neural networks (Willshaw et al., 1969).

The notion of associative memories can be used to interpret
and understand the layers of a deep neural network, and
in some cases, describe the entire network. This approach,
known as the dual form of neural networks (Irie et al., 2022;
Aizerman et al., 1964), allows for interesting practical ap-
plications such as editing generative models (Bau et al.,
2020) and classifier rules (Santurkar et al., 2021). Recent
research (Dai et al., 2021; Geva et al., 2020; Meng et al.,
2022) has also focused on exploring the connection between
associative memories and transformer architectures.

3. Problem Setup
We consider the problem of training deep neural networks to
solve multi-class classification problems between an input
space X ⊂ Rd and a label space YC with cardinality C. We
use a one-hot encoding for the label space. The deep neural
network classifiers fW : X → RC that we study consist
of compositions of parametric transformations and can be
defined as:

fW (x) = TL ◦ . . . ◦ T1(x),

where Tl : Rpl → Rpl+1 is a parametric transformation with
parameters Wℓ. For instance, Tℓ could be a fully-connected
layer with a nonlinearity, Tℓ(z) = σ(Wℓz), or a residual
block Tℓ(z) = σ(z + W 2

ℓ σ(W
1
ℓ z)) or a convolutional

layer. Here, σ : R → R is a non-linear function that is ap-

plied coordinate-wise, such as the ReLU activation function
σ(x) = max(0, x). We use W = {WL,WL−1, . . . ,W1}
to denote the parameters of each one of the layers. In
this paper, we will be interested in the characteristics
of the features computed by the deep network at each
layer. We define features at layer ℓ for the input xi,c as
hℓ(xi,c) = Tℓ ◦ . . . ◦ T1(xi,c)).

In this setting, we aim to learn the classifier from a bal-
anced training dataset S := {(xi,c, yi,c)}N,C

i=1,c=1 of CN
samples consisting of N independent and identically dis-
tributed (i.i.d.) samples drawn from each of the C classes.
To train the classifier, we typically minimize the regularized
empirical loss function

Lλ
S(fW ) :=

1

CN

C∑
c=1

N∑
i=1

L(fW (xi,c), yi,c) + λR(W )

where L : RC × YC → [0,∞) is a non-negative loss func-
tion (e.g., squared error or cross-entropy losses) and reg-
ularizer R(W ) (such as L2 regularization) controls the
complexity of the function fW and typically improves gen-
eralization.

4. Intermediate Neural Collapse
In a recent paper, Papyan et al. (2020) described four prop-
erties of the terminal phase of training (TPT) in deep net-
works using the cross-entropy loss function. TPT starts at
the point where the training error becomes zero and con-
tinues until training is stopped. During TPT, the training
error remains effectively zero while the training loss con-
tinues to decrease. Direct empirical measurements expose
an inductive bias they call Neural Collapse (NC), involving
four interconnected properties. In this paper, we extend the
characterization of Neural Collapse (NC) by examining its
presence in intermediate layers, in addition to its previously
studied presence at the last layer features and weights.

Before mathematically describing the conditions of Interme-
diate Neural Collapse, we first define the following first and
second-order statistics of features in deep networks. The
mean class features and the global mean features for layer ℓ
are computed as follows:

µℓ
c :=

1

N

N∑
i=1

hℓ
i,c µℓ

G :=
1

C

C∑
c=1

µℓ
c

The within-class, between-class, and total covariance matri-
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ces for layer ℓ are computed as:

Σℓ
W =

1

NC

C∑
c=1

N∑
i=1

(hℓ
i,c − µℓ

c)(h
ℓ
i,c − µℓ

c)
⊤

Σℓ
B =

1

C

C∑
c=1

(µℓ
c − µℓ

G)(µ
ℓ
c − µℓ

G)
⊤

Σℓ
T =

1

NC

C∑
c=1

N∑
i=1

(hℓ
i,c − µℓ

G)(h
ℓ
i,c − µℓ

G)
⊤

We note that the total covariance can be decomposed into
the within and between class covariances Σℓ

T = Σℓ
W +Σℓ

B .
We now characterize Intermediate Neural Collapse through
the following conditions:

(NC1) Feature variability suppression. Most of the total
covariance of the features in a layer is contained in the
between-class covariance. We compare the normalized
within-class variance Tr(Σℓ

W )/Tr(Σℓ
T ) and the normalized

between-class variance Tr(Σℓ
B)/Tr(Σ

ℓ
T ). An intermedi-

ate layer shows feature variability suppression if the nor-
malized within-class variance is smaller than a threshold,
Tr(Σℓ

W )/Tr(Σℓ
T ) < ϵ. From our experiments, we observe

that ϵ ≈ 0.2 is a reasonable choice. Since Σℓ
W +Σℓ

B = Σℓ
T ,

this means that most of the variability in the features comes
from the distance between the between-class covariance
and the within-class variability is suppressed. This is a
weaker definition than the original definition of NC1 in
the last layer, which claims that NC1 is achieved when
Tr(ΣL

W · (ΣL
B)

†) → 0.

(NC2) Simplex ETF structure. The class means at layer
ℓ show a simplex ETF structure if the following two con-
ditions are satisfied: 1)

∣∣∥µℓ
c − µℓ

G∥2 − ∥µℓ
c′ − µℓ

G∥2
∣∣ → 0,

or the centered class means of the layer features become
equinorm; and 2) if we define µ̃ℓ

c =
µℓ
c−µℓ

G

∥µℓ
c−µℓ

G∥2
, then we

have ⟨µ̃ℓ
c, µ̃

ℓ
c′⟩ = − 1

C−1 for c ̸= c′, or the centered class
means are also equiangular. This condition is the same as
the original simplex ETF definition for the last layer class
means.

(NC3) Alignment between features and weights. Let us
consider the matrix of centered class means at layer ℓ given
by Mℓ = [µℓ

c − µℓ
G]

C
c=1 ∈ Rpℓ×C and its alignment with

Wℓ ∈ Rpℓ+1×pℓ . At the last layer, these matrices have the
same dimension and hence we say the last layer features
and classifier are aligned when

∣∣∣∣∣∣ W⊤
L

∥WL∥F
− ML

∥ML∥F

∣∣∣∣∣∣ → 0,
since each row of the weight matrix corresponds to the
relevant class mean column in Mℓ.

At intermediate layers we find the Principal Angles Be-
tween Subspaces (PABS) (Jordan; Björck & Golub, 1973)
θ1, . . . , θC between the range space of Mℓ and the top
C rank input space of Wℓ. An intermediate layer shows
feature-weight alignment if 1

C

∑C
k=1 cos(θk) → 1, and the

top C singular values of Wℓ are equal to each other. At the
last layer, the alignment and distance-based definitions of
NC3 are equivalent.

(NC4) Behavioral equivalence to nearest center classifi-
cation. For a given layer, NC4 is satisfied if the decision of
the deep classifier and that of the nearest-class-center (NCC)
decision rule using the features at layer ℓ converge to each
other: argmaxc⟨W c

L,h
L(x)⟩ → argminc ∥hℓ(x)−µℓ

c∥2.

In the next section we will see that for deep networks which
show NC in the last layer, there exists a hidden layer in the
network beyond which all subsequent layers show the above
four conditions of intermediate NC.

5. Results
In this section, we will present and analyze the results of
our experiments that demonstrate the existence of intermedi-
ate Neural Collapse (NC). The experimental details can be
found in Appendix A. For the results, we used four datasets
- MNIST, FashionMNIST, CIFAR10, and SVHN - and three
architectures - Multilayer Perceptrons (MLPs), Convolu-
tional Neural Networks, and Residual Networks.

5.1. Intermediate Neural Collapse

We present a list of figures that support our claim that in-
termediate Neural Collapse (NC) occurs in deep networks.
These figures demonstrate results from the MNIST and CI-
FAR10 datasets on three different networks. Results from
additional datasets can be found in appendix C. Each figure
is divided into two rows, with the top row showing results
from the MNIST dataset and the bottom row showing results
from the CIFAR10 dataset. The two figures in each column
display results from the same type of network. A vertical
green line is used to indicate the layer at which intermediate
collapse begins in all figures.

In Fig. 2, we investigate the suppression of feature variability
through the layers of the network. In the top half of each sub-
figure, we plot the within-class covariance Tr(Σℓ

W ) (dotted),
between-class covariance Tr(Σℓ

B) (dashed), and total covari-
ance Tr(Σℓ

T ) (solid). In the bottom half, we plot the nor-
malized within-class covariance Tr(Σℓ

W )/Tr(Σℓ
T ) (dotted)

and normalized between-class covariance Tr(Σℓ
B)/Tr(Σ

ℓ
T ).

From the normalized plots, we can observe that at a certain
layer in the deep classifier, the between-class covariance
becomes much more significant than the within-class covari-
ance. In all subsequent layers, the within-class covariance
remains a small fraction of the total covariance. These layers
can be referred to as the “collapsed” layers. In Fig. 5, we see
that the accuracy of the nearest class center classifier (NCC)
matches the accuracy of the classifier in the collapsed layer.

In Fig. 3, we present results showing the convergence of
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class means to a simplex equiangular tight frame (ETF) in
collapsed layers. Specifically, we plot the average value of
cos(∠(µℓ

c − µℓ
G, µ

ℓ
c′ − µℓ

G)) +
1

C−1 , its normalized (by the
mean) standard deviation, and the normalized (by the mean)
standard deviation of ∥µℓ

c − µℓ
G∥2 in the top, middle, and

bottom panels of each subfigure. We can observe that the
class means approach a simplex ETF in the deepest layers,
while in earlier collapsed layers, there may still be some
variability, especially in the case of convolutional neural
networks.

In Fig. 4, we investigate the alignment between features and
weights across layers. We plot the average of the cosines
of the principal angles between the subspaces spanned by
the centered class means Mℓ and the input subspace of
the weight matrix Wℓ. We can observe that the alignment
between class means and weight matrices is strongest in
the collapsed layers, and that this alignment is much higher
than at initialization, where the features and weights are
essentially random. Moreover, in Fig. 6 we see that in the
collapsed layers, the top C singular values of the weights
are nearly equal. These two observations establish NC3. In
the case of residual neural networks, it is interesting to note
that the alignment is strongest at layers just before a residual
connection, and that the features within a residual block are
not as well aligned with their weights.

5.2. Stable Rank of intermediate features and weights

Having established the conditions of intermediate NC, we
further investigate the structure of the weights and features
that are learned in deep networks.

Low rank and near orthogonal weights. In the top row
of Fig. 6, we present the singular value spectrum of the
weight matrices/kernels through the layers. We observe
that in the collapsed layers of MLPs and resnets, the top C
singular values are significantly larger than the remaining
singular values, indicating that the weights have a low-rank
structure. Additionally, these top C singular values are
highly concentrated, indicating that the weights are nearly
orthogonal. This structure is less pronounced in the convnet,
but we can still see a concentration of the top singular values.
These observations align with the conclusions in (Papyan,
2020), which found that the feature class means at different
layers are also near orthogonal.

Stable rank of intermediate features. In the bottom row
of Fig. 6, we present the results of the stable rank analysis
of the matrix of within-class features centered around their
class means Hℓ

c = [hℓ
i,c−µℓ

c]
C
c=1. The stable rank, which is

a lower bound of the actual rank and can be computed with-
out storing the entire matrix, is defined as ∥Hℓ

c∥2F /∥Hℓ
c∥22.

We can see that the rank of the class features decreases in the
collapsed layers, which is consistent with our observation
that in those layers the within-class covariance becomes a

smaller fraction of the total covariance. This is also expected
with low-rank weight matrices in these layers, as we can see
in the top row of Fig. 6. In the layers below the top layer,
we can see that the rank of the features is very high. This
suggests that the deep network first projects the samples into
a high-dimensional space, where it is easier to find a classi-
fication boundary, and then extracts the most discriminative
features to classify the samples. This “hunchback” structure
in the dimensionality of the features was also observed in
previous studies such as (Recanatesi et al., 2019; Ansuini
et al., 2019), though both of these papers used a nonlinear
measure of dimension to establish this observation.

5.3. Fixing all Collapsed Layers with Simplex ETFs

One implication of neural collapse is that the last layer of
a deep network can be fixed to a simplex ETF, without
negatively impacting performance (Zhu et al., 2021). In
a similar fashion, we test whether one can fix all of the
collapsed layers to be simplex ETFs and still maintain good
performance. In this experiment, we train the bottom L
layers and fix the rest of the 10− L layers to be canonical
simplex ETFs (Fig. 7). Specifically, the last layer is set to
be a rank C− 1 simplex ETF (for a C class problem), while
the layers below are set to be rank H − 1 simplex ETFs
(where H is the width of the network). Namely, the rank K

canonical simplex ETF is
√

K
K−1

(
IK − 1

K1K1⊤
K

)
. At the

last layer we set W⊤
L =

√
C

C−1P
(
IC − 1

C1C1
⊤
C

)
where

P ∈ Rd×C contains the first C columns of a d× d identity
matrix, which lifts a C×C ETF to a d×K matrix (Zhu et al.,
2021). In Fig. 7 we present the results of this experiment
using MLPs on MNIST, FashionMNIST, and CIFAR10. We
observe that replacing the collapsed layers (layers 7-10 or
8-10 in the case of CIFAR10) with fixed simplex ETFs
does not negatively impact performance, but replacing non-
collapsed layers (layers 2-6 or 2-7 in the case of CIFAR10)
does. This observation suggests that the features learned in
the bottom half of the network are most crucial.

5.4. Solutions without Intermediate Neural Collapse

In the process of hyperparameter search, there were solu-
tions showing varying degrees of intermediate NC. Some
examples that displayed NC in the final hidden layer, as
described in (Papyan et al., 2020), did not display interme-
diate NC. We highlight this to encourage investigations into
the mechanics that produce intermediate NC, as well as the
effects of this intermediate collapse on performance. Ex-
amples of two convolutional networks trained of CIFAR10
and Fashion MNIST that do not demonstrate intermediate
NC, but do show NC in the final hidden layer, are given in
appendix B.
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Figure 2. (NC1) Feature variability suppression: There is a layer in a deep classifier (vertical green line) where Tr(Σℓ
W ) (dotted)

contributes a significantly smaller fraction to Tr(Σℓ
T ) (solid) than Tr(Σℓ

B) (dashed). In all subsequent layers this fraction generally
remains below this threshold, showing feature variability suppression.
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maximal equiangularity in the collapsed layers, though this is most clearly achieved in the layers closest to the output.
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Figure 4. (NC3) Feature-Weight Alignment: In collapsed layers we see feature weight alignment measured as the average of the cosines
of the principal angles between the subspaces. This is significantly above the alignment between random subspaces (at initialization).
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Figure 5. (NC4) Equivalence to Nearest Class Center (NCC) classification NCC classifier agrees with fW in the collapsed layers.
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Figure 6. Estimates of Ranks of Weights and (Within Class) Features We see a low rank structure in the weights in collapsed layers,
while previous layers are nearly full rank. This is also reflected in the stable rank of the features which first increases and then decreases
in the collapsed layers.
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Figure 7. Comparison of performance of fixing collapsed layers to be ETFs We compare the accuracy achieved by fixing a certain
number of layers to be simplex ETFs. We see that fixing uncollapsed layers (lower than layer 6 or 7 in this instance) to be ETFs results in
lower accuracy, while fixing collapsed layers (7 or 8 and above) does not hurt accuracy.
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6. Neural Collapse and Associative Memories
Associative memories (Kohonen, 1989; Anderson, 1972)
are systems that store associations between stimuli and re-
sponses. If we have a number of stimuli response pairs
{(xi,yi)}Ni=1, an associative memory A when probed with
a stimulus xi will return the response yi. If the stimuli
xi are orthogonal, or near orthogonal, we can construct
the associative memory from the data as A =

∑N
i=1 yix

⊤
i .

We have the following relationship between Associative
Memories and deep networks that exhibit NC:

Remark 6.1. An associative memory constructed from the
last layer features and one-hot labels of a deep network at
neural collapse (NC) is equivalent to the classifier weight
matrix. To see this, let us collect the centered last layer
features into a matrix HL ∈ Rp×NC and the one-hot labels
into Y ∈ RC×NC . If the condition of variability collapse
is achieved, we have HL = MLY , where ML ∈ Rp×C

is the matrix of centered class mean features at the last
layer. Then constructing an associative memory, we get
ŴL = Y H⊤

L = Y Y ⊤M⊤
L = N × ICM

⊤
L . This is

also the weight matrix predicted by NC3 at the last layer.
Moreover, since the ML is a simplex ETF the keys for
the associative memory are nearly orthogonal, which is a
desirable property for robust recall.

While this does not immediately translate to intermediate
layers due to the non-linearities involved, intermediate NC
suggests that intermediate layers in deep networks may also
be viewed as associative memories. This interpretation has
already led to interesting applications such as introducing
novel concepts to a generative model (Bau et al., 2020), and
editing the prediction rules of a classifier to include new
concepts (Santurkar et al., 2021). A thorough understanding
of NC could help make this connection more concrete.

7. Conclusion and Future Work
In this paper, we identified several extensions of neural
collapse for intermediate layers and empirically investigated
these conditions in various neural network architectures.
We empirically showed that several properties appear in
intermediate layers during training: 1) feature variability
suppression, 2) emergence of a simplex ETF in the layer
class means, 3) alignment between features and weights,
and 4) nearest class center classification with layer features.

As future work, it would be interesting to develop a the-
oretical foundation for intermediate NC in deep networks.
Specifically, it would be worthwhile to study the connections
between low-rank and orthogonal weight matrices, simplex
ETF features, and optimization algorithms like stochastic
gradient descent. The inductive bias towards simplex ETFs
may help accelerate optimization, and make systems more
efficient. Understanding intermediate NC may also help

us choose features that better transfer across tasks (Galanti
et al., 2022c;b;d). Whether intermediate NC is desirable for
better generalization is also an important question for future
work.
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A. Experimental details
In this section, we describe the details of the experiments in the main text.

Datasets. We consider the MNIST (LeCun et al., 1998), FashionMNIST (Xiao et al., 2017), CIFAR10 (Krizhevsky &
Hinton, 2009), and SVHN (Netzer et al., 2011) datasets. The images were preprocessed by centering and normalization
using the pixel-wise mean and standard deviation as per the method described in (Han et al., 2022). No data-augmentation
techniques were applied during training.

Network architectures. We conduct experiments with three deep network architectures. The first architecture is a
multilayer perceptron (MLP) consisting of L = 10 hidden layers, where each layer contains a linear layer of width
H = 1024, followed by batch normalization and ReLU. The last layer is linear. The second architecture is a deep
convolutional network. This network starts with a stack of a 2× 2 convolutional layer with stride 2, batch normalization, a
convolution of the same structure, batch normalization, and ReLU. Following that we have a set of L = 20 stacks of 3× 3
convolutional layers with H = 128 channels, stride 1 and padding 1, batch normalization, and ReLU. The last layer is linear.
The third architecture type is a Resnet (He et al., 2016). We use Resnet architectures of different sizes for different datasets.
We stick to the prescriptions of (Han et al., 2022) and use Resnet-18 for MNIST and FashionMNIST, Resnet-34 for SVHN,
and Resnet-50 for CIFAR10.

Training details. For each combination of network and dataset, we trained the network to minimize mean squared error
(MSE) loss using an SGD optimizer with momentum and weight decay. The hyperparameter settings were based on those
used by Han et al. (2022). This includes a logarithmic learning rate sweep between 0.0001 and 0.25 decayed twice by a
factor of 0.1,a momentum of 0.9, a weight decay of 5e-4, for 350 training epochs, and batch-size of 128. In the first epoch
we do "warmup": Linearly increasing the learning rate from 0 to the specified learning rate through the batches. For our new
models, the MLP and ConvNet, we used a learning rate decay of 0.2. We run our measurements on the model with the best
test accuracy in the final epoch. The specific hyperparameters used can be found in the config files accompanying our code.
All experiments were conducted on a cluster with NVIDIA Tesla V100, GeForce GTX 1080 TI, and A100 GPUs.

Intermediate neural collapse measurements. To make measurements, we compute the class means of the layer features
over the entire training dataset. To measure NC1 (Fig. 2), we only need the trace of the within and between class covariances
and do not need to store these matrices. For NC2 (Fig. 3), we measure the relative standard deviation of the norms of the
class feature means, and the mean and the relative standard deviation of the pairwise inner products. For NC4 we construct
an NCC classifier using the features of each layer (Fig. 5). For NC3, we perform Singular Value Decompositions on
Wℓ = UWSWV ⊤

W and Mℓ = UMSMV ⊤
M . We then measure the PABS between VW - the basis for the input subspace

of Wℓ - and UM - the basis for the range space of Mℓ. The cosines of the PABS can be obtained by computing the
singular values of V ⊤

WUM and their average is our NC3 measure ( Fig. 4). For convolutional layers that transform features
hℓ ∈ RCin×H×W through kernels that are of dimension Wℓ ∈ RCout×Cin×kH×kW , we compute the alignment between the
features and kernel along the Cin dimension and reshape the tensors accordingly.

B. Solutions without intermediate Neural Collapse
As noted in 5.4, we came across solutions that did not show NC during hyperparameter searches. We present two
convolutional networks in fig. 8 trained on CIFAR10 and Fashion MNIST that did not demonstrate NC. Further examination
is required to identify the conditions under which NC is achieved and to compare the capabilities of networks that exhibit
NC and those that do not. This data highlights that NC solutions are not the only outcome of deep network training.
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Figure 8. Deep Networks without intermediate Neural Collapse These convolutional networks trained on CIFAR10 (top row) and
FashionMNIST (bottom row) do not show intermediate NC. The within class covariance stays high until the last hidden layer, the class
means are not in a simplex ETF and the intermediate layers do not show NCC separability. This demonstrates that NC can happen in the
final hidden layer, as described in (Papyan et al., 2020), while not appearing in the intermediate layers.

C. Additional Figures establishing Intermediate Neural Collapse
In this section we display Figures 9, 10, 11, 12 showing intermediate NC for all architectures on the FashionMNIST and
SVHN datasets. The takeaways from these figures is largely the same as that from the figures for MNIST and CIFAR10 in
the main text. We provide these figures here for completeness. We also display the rank estimates for weights and within
class features across the layers of different deep networks for the remaining datasets. Figures 13, 14, 15 contain these plots.
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Figure 9. (NC1) Feature variability suppression: There is a layer in a deep classifier (vertical green line) where Tr(Σℓ
W ) (dotted)

contributes a smaller fraction to Tr(Σℓ
T ) (solid) than Tr(Σℓ

B) (dashed). In all subsequent layers this fraction remains below this threshold,
showing feature variability suppression
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Figure 10. (NC2) Convergence of class means to a Simplex ETF: We see that as training progresses {µℓ
c − µℓ

G} approach equinorm
and maximal equiangularity in the collapsed layers, though this is most clearly achieved in the layers closest to the output.
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Figure 11. (NC3) Feature-Weight Alignment: In collapsed layers we see feature weight alignment measured as the average of the cosines
of the principal angles between the subspaces. This is significantly above the alignment between random subspaces (at initialization).
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Figure 12. (NC4) Equivalence to Nearest Class Center (NCC) classification NCC classifier agrees with fW in the collapsed layers.
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Figure 13. Estimates of Ranks of Weights and (Within Class) Features We see a low rank structure in the weights in collapsed layers,
while previous layers are nearly full rank. This is also reflected in the stable rank of the features which first increases and then decreases
in the collapsed layers.
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Figure 14. Estimates of Ranks of Weights and (Within Class) Features We see a low rank structure in the weights in collapsed layers,
while previous layers are nearly full rank. This is also reflected in the feature stable rank of the features which first increases and then
decreases in the collapsed layers.
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Figure 15. Estimates of Ranks of Weights and (Within Class) Features We see a low rank structure in the weights in collapsed layers,
while previous layers are nearly full rank. This is also reflected in the stable rank of the features which first increases and then decreases
in the collapsed layers.

17


