
Neural networks trained with SGD learn distributions of increasing complexity

Maria Refinetti 1 2 Alessandro Ingrosso 3 Sebastian Goldt 4

Abstract
The uncanny ability of over-parameterised neural
networks to generalise well has been explained
using various “simplicity biases”. These theories
postulate that neural networks avoid overfitting by
first fitting simple, linear classifiers before learn-
ing more complex, non-linear functions. Mean-
while, data structure is also recognised as a key
ingredient for good generalisation, yet its role in
simplicity biases is not yet understood. Here, we
show that neural networks trained using stochastic
gradient descent initially classify their inputs us-
ing lower-order input statistics, like mean and co-
variance, and exploit higher-order statistics only
later during training. We first demonstrate this
distributional simplicity bias (DSB) in a solvable
model of a single neuron trained on synthetic data.
We then demonstrate DSB empirically in a range
of deep convolutional networks and visual trans-
formers trained on CIFAR10, and show that it
even holds in networks pre-trained on ImageNet.
We discuss the relation of DSB to other simpli-
city biases and consider its implications for the
principle of Gaussian universality in learning.

1. Introduction
The success of neural networks on supervised classification
tasks, and in particular their ability to simultaneously fit
their training data and generalise well, have been explained
using various “simplicity biases” (Saad & Solla, 1995; Far-
nia et al., 2018; Pérez et al., 2019; Kalimeris et al., 2019;
Rahaman et al., 2019). These theories postulate that neural

1Laboratoire de Physique de l’Ecole Normale Supérieure,
Université PSL, CNRS, Sorbonne Université, Université Paris-
Diderot, Sorbonne Paris Cité, Paris, France 2IdePHICS laboratory,
École Fédérale Polytechnique de Lausanne (EPFL), Switzerland
3The Abdus Salam International Centre for Theoretical Physics
(ICTP), Trieste, Italy 4International School of Advanced Stud-
ies (SISSA), Trieste, Italy. Correspondence to: Sebastian Goldt
<sgoldt@sissa.it>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

networks trained with stochastic gradient descent (SGD)
learn “simple” functions first, and increase their complex-
ity only as far as this is required to fit the data. This bias
towards simple functions would prevent the network from
overfitting, which is all the more remarkable given that the
training loss of modern neural networks has global minima
with high generalisation error (Liu et al., 2020).

Simplicity biases take various forms. Linear neural net-
works with small initial weights learn the most relevant
directions of their target function first (Le Cun et al., 1991;
Krogh & Hertz, 1992; Saxe et al., 2014; 2019; Advani et al.,
2020). Non-linear neural networks learn increasingly com-
plex functions during training, going from simple linear
functions to more complex, non-linear functions. This beha-
viour has been demonstrated theoretically in two-layer net-
works (Schwarze & Hertz, 1992; Saad & Solla, 1995; Engel
& Van den Broeck, 2001; Mei et al., 2018) and was con-
firmed experimentally in convolutional networks trained on
CIFAR10 by Kalimeris et al. (2019). There is also evidence
for a spectral simplicity bias, whereby lower frequencies
of a target function, or the top eigenfunctions of the neural
tangent kernel, are learnt first during training (Xu, 2018;
Farnia et al., 2018; Rahaman et al., 2019; Jin & Montúfar,
2020; Bowman & Montúfar, 2022; Yang et al., 2022).

Meanwhile, data structure – for example the low intrinsic
dimension of images (Pope et al., 2021) – has been recog-
nised as a key factor enabling good generalisation in neural
networks both empirically and theoretically (Mossel, 2016;
Bach, 2017; Goldt et al., 2020; Spigler et al., 2020; Ghorb-
ani et al., 2020; Pope et al., 2021). However, its role in
simplicity biases is not yet understood.

Here, we propose a distributional simplicity bias that shifts
the focus from characterising the function that the network
learns, to identifying the features of the training data that
influence the network. We conjecture that any parametric
model, trained on a classification task using SGD, is initially
biased towards exploiting lower-order input statistics to
classify its inputs. As training progresses, the network then
takes increasingly higher-order statistics of the inputs into
account.

We illustrate this idea in Figure 1, where we show the test
accuracy of a ResNet18 (He et al., 2016) during training
on CIFAR10 (dark blue line; details in Section 3). To un-

1



Neural networks trained with SGD learn distributions of increasing complexity

Figure 1. Distributional simplicity bias in neural networks. Test accuracy of a ResNet18 evaluated on CIFAR10 during training with
SGD on four different training data sets: the standard CIFAR10 training set (dark blue), and three different “clones” of the training set.
The images of the clones were drawn from a Gaussian mixture fitted to CIFAR10, a mixture of Wasserstein GAN (WGAN) (Arjovsky
et al., 2017) fitted to CIFAR10, and the cifar5m data set of Nakkiran et al. (2021). The clones form a hierarchy of approximations to
CIFAR10: while the Gaussian mixture captures only the first two moments of the inputs of each class correctly, the images in the WGAN
and cifar5m data sets yield increasingly realistic images by capturing higher-order statistics. The ResNet18 trained on the Gaussian
mixture has the same test accuracy on CIFAR10 as the baseline model, trained directly on CIFAR10, for the first 50 steps of SGD; the
ResNet18 trained on cifar5m has the same error as the baseline model for about 2000 steps. This result suggests that the network trained
on CIFAR10 discriminates the images using increasingly higher-order statistics during training (experimental details in Section 3).

derstand which features of the data influence the ResNet,
we trained the same network, starting from the same initial
conditions, on a training set that was sampled from a mix-
ture of Gaussians. Each Gaussian was fitted to one class of
CIFAR10 and thus accurately captured the mean and covari-
ance of the images in that class, but all the higher-order stat-
istical information was lost. We show two example “images”
sampled from the Gaussian mixture in Figure 1. We found
that the test accuracy of the ResNet trained on the Gaus-
sian mixture and evaluated on CIFAR10, (GM/CIFAR10
for short, green line) was the same as the accuracy of the
ResNet trained directly on CIFAR10 for the first ≈ 50 steps
of SGD. In other words, the generalisation dynamics of the
ResNet is governed by an effective distribution over the
training data, which is well-approximated by a Gaussian
mixture during the first 50 steps of SGD.

We also trained the same ResNet on two other approxima-
tions, or “clones”, of the CIFAR10 training set. The images
in the WGAN clone were sampled from a mixture of ten
Wasserstein GAN (Arjovsky et al., 2017), one for each class,
while the images of the cifar5m clone provided by Nakkiran
et al. (2021) were sampled from a large diffusion model
and labelled using a pre-trained classifier (details in Sec-
tion 3). The three clones – GM, WGAN, and cifar5m – con-
stitute a hierarchy of increasingly accurate approximations
of CIFAR10: while the Gaussians only capture the mean
and covariance of each input class, the WGAN and cifar5m
clones also capture higher-order statistics. CIFAR5M is a
more accurate approximation than WGAN, as can be seen

from the sharper example images in Figure 1 and from the
final CIFAR10 accuracy of the ResNet trained on the two
data sets, which is higher for cifar5m than for WGAN.

The key result of this experiment is that the CIFAR10 test
accuracies of the ResNets during training on the different
clones collapse: GM/CIFAR10 and CIFAR10/CIFAR10,
the base model, achieve the same test accuracy for about
50 steps of SGD; WGAN/CIFAR10 matches the test ac-
curacy of the base model for about 1000 steps, and
cifar5m/CIFAR10 matches the base model for about 2000
steps. The effective training data distribution that governs
the ResNet’s generalisation dynamics is therefore well-
approximated by the GM, WGAN, and cifar5m datasets,
for increasing amounts of time. We capture the essence of
this experiment in the following conjecture:

Conjecture 1 (Distributional simplicity bias (DSB)).
A parametric model trained on a classification task us-
ing SGD discriminates its inputs using increasingly higher-
order input statistics as training progresses.

In the remainder of this paper, we first demonstrate DSB in
a solvable model of a single neuron trained on a synthetic
data set (Section 2). We then demonstrate DSB in a variety
of deep neural networks trained on CIFAR10, either from
scratch or after pre-training on ImageNet (Section 3) Finally,
we place DSB in the context of other simplicity biases,
and highlight its implications for the principle of Gaussian
universality in learning (Section 4).

2



Neural networks trained with SGD learn distributions of increasing complexity

1.1. Further related work

More simplicity biases in neural networks Arpit et al.
(2017) found empirically that two-layer MLP tend to fit
the same patterns during the first epoch of training, and
conjectured that such “easy examples” are learnt first by
the network. Mangalam & Prabhu (2019) later found that
deep networks trained on CIFAR10/100 first learn examples
that can also be correctly classified by shallow models, and
only then start to fit “harder” examples. Pérez et al. (2019)
showed that the large majority of neural networks imple-
menting Boolean functions with random weights have low
descriptional complexity. Achille et al. (2019) highlighted
the importance of the initial period of learning in models
of biological and artificial learning by showing that certain
deficits in the stimuli early during training, especially those
that concern “low-level statistics”, cannot be reversed later
during learning. Doimo et al. (2020) analysed ResNet152
trained on ImageNet and found that the distribution of neural
representations across the layers clusters in a hierarchical
fashion that mirrors the semantic hierarchy of the concepts,
first separating broader – and hence, easier? – classes, be-
fore separating inputs between more fine-grained classes.
However, neither Pérez et al. (2019) nor Doimo et al. (2020)
considered the learning dynamics.

Complementary to simplicity biases, the implicit bias of
SGD (Neyshabur et al., 2015) describes the mechanism by
which a neural network trained using SGD “selects” one of
the potentially many global minima in its loss landscape.
In linear neural networks / matrix factorisation, this bias
amounts to minimisation of a certain norm of the weights
at the end of training (Brutzkus et al., 2018; Soudry et al.,
2018; Gunasekar et al., 2017; 2018; Li et al., 2018; Ji &
Telgarsky, 2019; Arora et al., 2019). These ideas have since
been extended to non-linear two-layer neural networks (Lyu
& Li, 2020; Ji & Telgarsky, 2020; Jin & Montúfar, 2020),
see Vardi (2022) for a recent review. Here, we focus on the
parts of the data that impact learning throughout training,
rather than on the final weights.

Code availability Code to reproduce our experiments
and to include CIFAR10 clones in your experiments can be
found on GitHub https://github.com/sgoldt/dist_inc_comp.

2. A toy model
We begin with an analysis of the simplest setup in which
a classifier learns distributions of increasing complexity: a
perceptron trained on a binary classification task.

Data set We consider a simple “rectangular data set”
where inputs x = (xi)i≤D are split in two equally prob-
able classes, labelled y = ±1. The first two components x1

and x2 are drawn uniformly from one of the two rectangles
shown in Figure 2A depending on their class. All other

components are drawn i.i.d. from the standard normal distri-
bution. This data set is linearly separable with an optimal
decision boundary parallel to the x1 axis, which we call the
“oracle”.

Notation We follow the convention of McCullagh (2018)
and use the letter κ for both moments and cumulants of the
inputs. In particular, we denote the moments of the full
input distribution p(x) as κi = Exi, κij = Exixj , while
we denote class-wise averages will as κi

± = E±x
i, and so

on. We set κi = 0. For cumulants, we separate indices by
commas: for example, κi,j

+ = κij
+ −κi

+κ
j
+ is the covariance

of the inputs in the class y = +1. The number of index
partition gives the order of the cumulant, e.g. κi,j,k is the
third-order cumulant of the inputs. We summarise some
useful facts on moments and cumulants in Appendix A.1.

Network We learn this task using a single neuron, or
perceptron, whose output is given by

ŷ = σ (λ) , λ ≡ wix
i/
√
D, (1)

with weight vector w = (wi) ∈ RD and activation function
σ : R → R. For concreteness, we consider the sigmoidal
activation function in this section, although our argument
is easily extended to other activations. We use superscript
indices for inputs and lowerscript indices for weights, and
imply a summation over any index repeated once as a su-
perscript and once as a subscript. We use the square loss
ℓ(λ, y) = (σ(λ)− y)

2 for training.

2.1. The stages of learning in the perceptron

We trained the perceptron on the rectangular data set with
online learning, where we draw a new sample from the data
distribution at each step of SGD, starting from Gaussian ini-
tial weights wi with variance 1. We show the test accuracy
of the perceptron in Figure 2B. For the three points in time
indicated by the coloured triangles, we plot the decision
boundary of the perceptron at that time in Figure 2A (the de-
cision boundary is the line at which the sign the perceptron
output changes). Lighter colours correspond to earlier times,
so a perceptron starting from random initial weights ap-
proaches the oracle from the left. In this section, we show
that this series of classifiers takes increasingly higher-order
statistics of the data set into account as training progresses.

We can gain analytical insight into the perceptron’s dynam-
ics by studying the gradient flow1

ẇi = ηE (σ(λ)− y)σ′(λ)xi, (2)

1The index notation highlights the fact that gradient flow, and
hence SGD, are geometrically inconsistent: they equate a “covari-
ant” tensor (the weight) with a “contravariant” tensor (the gradient).
This issue can be remedied using second-order methods such as
natural gradient descent (Amari, 1998). Here, we focus on standard
SGD due to its practical relevance.

3

https://github.com/sgoldt/dist_inc_comp


Neural networks trained with SGD learn distributions of increasing complexity

Figure 2. The decision boundary learnt by a perceptron takes increasingly higher-order statistics of the data into account during
training A: Inputs x = (xi) are split into two classes (yellow vs red) which correspond to two rectangles in the x1 − x2 plane; input
components xi>2 are sampled from a standard normal distribution. The coloured lines indicate the decision boundaries of a perceptron (1)
trained on this task at different points during training, which are indicated with triangles in B. The black lines are given by the naïve
classifier (Equation (4), dotted); the linear discriminant (Equation (8), dashed), and the oracle, which achieves perfect generalisation
(dot-dashed). B: Test error of the perceptron (1) during training on the rectangular data set. C: Alignment of the weight vector of the
perceptron (1) during training with the naïve classifier, the linear discriminant, and the non-Gaussian correction Equation (12). Smaller
values indicate smaller angles θ between the weight vector and the respective classifier, and hence larger alignment.

where E indicates an average over the data distribution and
we fix the learning rate η > 0. Upon expansion of the
activation function around λ = 0 as σ(λ) =

∑∞
k=0 βkλ

k,
this becomes

τẇi =

∞∑
k=0

Eλkxi(γk − β̃k+1y), (3)

where τ = 1/η, while β̃k and γk are constants related to the
Taylor expansion of σ(λ) (see Appendix A.2). The gradient
flow updates of the weight have thus two contributions: the
first, proportional to γ, depends only on the inputs, while
the second, proportional to β̃, depends on the product of
inputs and their label. The interplay of this unsupervised
and supervised terms is crucial during learning.

2.1.1. THE FIRST TWO MOMENTS OF THE INPUTS
DETERMINE THE INITIAL LEARNING DYNAMICS

We start by considering gradient flow at zeroth order in
the weights by truncating the sum in Equation (3) after a
single term, which yields the anti-Hebbian updates τẇ(0)

i =

−β̃1E yxi (recall that Exi = 0). These dynamics show the
typical run-away behaviour of Hebbian learning, where the
norm of the weight vector grows indefinitely, but the weight
converges in direction as

w
(0)
i ∝ mi ≡ κi

+ − κi
−, (4)

which is the difference between the means of each class,
κi
± = E±x

i. The decision boundary of the “naïve” clas-
sifier mi is drawn with a dashed black line in Figure 2A.
Indeed, the full perceptron trained using online SGD initially
converges in the direction of this naïve classifier, as can be
seen from the overlap plot in Figure 2C, which peaks at the
beginning of training (smaller values in the plot indicate
smaller angles, and hence larger alignment).

At first order, the steady state of gradient flow is given by

γ1κ
ijw

(1)
i = β̃1m

i. (5)

At first sight, it is not clear how the global second moment
of the inputs, κij , where we average over both classes sim-
ultaneously, can help the classifier separate the two classes.
However, we can make progress by rewriting the second
moment as (Bishop, 2006, sec. 4.1),

κij = κi,j
w /2 + κi,j

b /4, (6)

with the between-class second moment κi,j
b = mimj and

the within-class second moment

κi,j
w ≡ E

+
(xi−κi

+)(x
j−κj

+)+E−(x
i−κi

−)(x
j−κj

−). (7)

Substituting these expressions into Equation (5) and noticing
that κi,j

b wj ∝ mi, we find that at first order,

w
(1)
i ∝ (κw)i,jm

j (8)

is a solution of the gradient flow, where (κw)i,j is the matrix

inverse of κw. The classifier w
(1)
i is known as Fisher’s

linear discriminant (Bishop, 2006, sec 4.1.). It is obtained
by rotating the naïve classifier mi with the inverse of the
within-class covariance. Its decision boundary is shown by
the dashed black line in Figure 2A. The linear discriminant
achieves a higher accuracy by exploiting the anisotropy of
the covariances of each class. The decision boundary of the
perceptron at time ≈ 8000 is shown in the same plot with the
green line; the overlap plot in Figure 2C also confirms that
the perceptron weight moves towards the linear discriminant
after initially aligning with the naïve classifier.

4



Neural networks trained with SGD learn distributions of increasing complexity

Figure 3. A perceptron learns distributions of increasing complexity A: Gaussian mixture approximations of the rectangular data
set, using only the correct mean (isotropic Gaussian, left) or the correct mean and covariance (right). B: Test accuracy on the rectangular
data set of a perceptron trained on the rectangular data set (black), as well as the isotropic (yellow) and full Gaussian mixture (green).
Horizontal lines indicate the test accuracy of the naïve classifier, Equation (4) and the linear discriminant, Equation (8). C: Test
error evaluated on the rectangular data set of a perceptron trained on the rectangular data set (black) and as predicted by the dynamical
equations of Refinetti et al. (2021) using the Gaussian equivalence theorem (dashed orange line). The Gaussian theory correctly captures
the dynamics of a perceptron trained and evaluated on the Gaussian mixture (orange crosses). Parameters as in Figure 2.

2.1.2. HIGHER-ORDER CORRELATIONS BIAS THE
PERCEPTRON TOWARDS THE ORACLE

The linear discriminant takes the first two moments of the
inputs in each class into account, but it does not yield the
optimal solution. How do higher orders of gradient flow
drive the perceptron in the direction of the oracle? We show
in Appendix A.2.3 that the second-order term does not add
statistical information to the gradient flow. To compute the
first non-Gaussian correction to the classifier, we analyse
the GF up to third order in the weights, which includes
the fourth-order moment of the inputs, κijkl. To understand
the impact of κijkl on the learnt classifier, we again de-
compose κijkl into a between-class fourth moment and a
within-class fourth moment,

κijkl
w ≡ E

+
(xi−κi

+) · · · (xl−κl
+)+E

−
(xi−κi

−) · · · (xl−κl
−).

(9)
We isolate the effect of the higher-order input statistics bey-
ond the second moment by rewriting the within-class fourth
moment as a within-class fourth cumulant κi,j,k,l

w and con-
tributions from the mean and the second moment (green):

κijkl
w = κi,j,k,l

w +2κijκkl[3]−1

2
mimjκkl[6]+

6

16
mimjmkml.

(10)
where we use the bracket notation like [3] to denote the
number of possible permutations of the indices. We can
now rewrite the steady-state of the third-order GF as

c1m
i = c2wjκ

ij
w + c3wjwkwlκ

i,j,k,l
w (11)

where we separated the terms that capture the first or second
moment of the inputs (green) from the term that captures
higher-order input statistics (orange). If the data set was
a mixture of Gaussians, κi,j,k,l

w would be zero. If we as-
sume instead that the inputs in each class are weakly non-
Gaussian, we can solve Equation (11) perturbatively by

using c3 as a small parameter. To zeroth order in c3, Equa-
tion (11) has the same structure as the first-order GF in
Equation (5) and we recover the linear discriminant, Equa-
tion (8). The first-order correction is given by

w∗
i ∝ −(κw)ijκ

j,k,l,m
w w

(1)
k w

(1)
l w(1)

m (12)

and we plot the resulting classifier in violet in Figure 2A.
The plot shows that the non-Gaussian correction pushes the
weight in the direction of the oracle, improving performance.
Note that if instead we computed the first-order correction
with the vanilla fourth moment kijkl, the within-class fourth
moment kijklw , or the vanilla fourth cumulant κi,j,k,l, we
do not obtain a correction that points in the right direction
(dashed lines in Figure A.2).

2.2. A distribution-centric viewpoint

The perceptron did not learn an increasingly complex func-
tion during training – its decision boundary remains a
straight line throughout training. Instead, we found that the
direction of the weight vector, and hence its decision bound-
ary, first only depends on the means of each class, Equa-
tion (4), then on their mean and covariance, Equation (8),
and finally also on higher-order cumulants, Equation (12),
yielding increasingly accurate predictors.

The decision boundary of the perceptron hence evolves as
if the network was trained on increasingly accurate approx-
imations of the rectangular data set like the ones shown in
Figure 3A, which accurately capture the mean (isoGM, left),
or the mean and covariance (GM, right) of each class, resp.
To illustrate this point, in Figure 3D we show the test accur-
acy of a perceptron evaluated on the rectangular data set,
but trained on the Gaussian clones of Figure 3A. Initially,
all three perceptrons have the same test error, which means
that they use only the information in the mean to classify
samples. After the perceptron trained on isoGM converges

5



Neural networks trained with SGD learn distributions of increasing complexity

to the naïve classifier, the perceptrons trained on GM and
the rectangular data set have the same test error for a bit
longer. The perceptron trained on the GM finally converges
to the linear discriminant, while the perceptron trained on
the rectangular data set converges to zero test error. Hence
even a simple perceptron learns distributions of increasing
complexity from its data, in the sense that it learns the op-
timal classifiers for increasingly accurate approximations of
the true data distribution.

2.3. The limits of Gaussian equivalence

The preceding analysis shows that even a simple perceptron
goes beyond a Gaussian mixture approximation of its data,
provided that higher-order cumulants of the inputs are task-
relevant and improve the classifier. In other words, the
perceptron breaks the Gaussian equivalence principle, or
Gaussian universality, that stipulates that quantities like the
test error of a neural network trained on realistic inputs
can be exactly captured asymptotically by an appropriately
chosen Gaussian model for the data. This idea allows to
characterise the performance of random features and kernel
regression (Liao & Couillet, 2018; Seddik et al., 2019; Bor-
delon et al., 2020; Mei & Montanari, 2021), and has also
been used to analyse two-layer neural networks (Goldt et al.,
2020; Hu & Lu, 2022; Loureiro et al., 2021a; Goldt et al.,
2022; Gerace et al., 2022) and autoencoders (Refinetti &
Goldt, 2022) trained on realistic synthetic data.

Conjecture 1 suggests that Gaussian equivalence can always
be applied to the early period of training a neural network
before the higher-order cumulants affect the generalisation
dynamics. We illustrate this phenomenon in Figure 3C,
where we show the test error of a perceptron trained on the
rectangular data set as predicted by Gaussian equivalence
and the dynamical equations of Refinetti et al. (2021) (or-
ange crosses). The theory accurately predicts the test error
of a perceptron trained and evaluated on the Gaussian mix-
ture (orange dashed line). At the beginning of training, the
theory also matches the test accuracy of a perceptron trained
and evaluated on the rectangular data (black line), but the
agreement breaks down at time t ≈ 10. Ingrosso & Goldt
(2022) recently made a similar observation for two-layer
networks trained on a simple model of images.

3. Learning increasingly complex distributions
on CIFAR10

The gradient flow analysis of the perceptron from Section 2
cannot be readily generalised even to two-layer networks.
However, the distribution-centric point of view of Sec-
tion 2.2 offers a way to test Conjecture 1 in more complex
neural networks by constructing a hierarchy of approxim-
ations to a given data distribution, similar to the Gaussian
approximations of Figure 3.

A hierarchy of approximations to CIFAR10 Our goal
is to construct a series of approximations to CIFAR10 which
capture increasingly higher moments. To have inputs with
the correct mean per class, we sampled a mixture with one
isotropic Gaussian for each class (isoGP). Inputs sampled
from a mixture of ten Gaussians (GM), each one fitted to
one class of CIFAR10, have the correct mean and covariance
per class, but leave all higher-order cumulants zero. Ideally,
we’d like to extend this scheme to distributions where the
first m cumulants are specified, while cumulants of order
greater than m are zero. Unfortunately, there are no such
distributions; on a technical level, the cumulant generating
function of a distribution, Equation (A.4), has either one
term, two terms, corresponding to a Gaussian, or infinitely
many terms (Lukacs, 1970, thm. 7.3.5). We therefore turned
to generative neural networks for approximations beyond
the Gaussian mixture. For the WGAN data set, we sampled
images from a mixture of ten deep convolutional GAN (Rad-
ford et al., 2016), each one trained on one class of CIFAR10.
We ensured that samples from each WGAN have the same
mean and covariance as CIFAR10 images; as we detail in
Appendix B.1, the key to obtaining “consistent” GANs was
using the improved Wasserstein GAN algorithm (Arjovsky
et al., 2017; Gulrajani et al., 2017). We finally also used
the cifar5m data set provided by Nakkiran et al. (2021),
who sampled images from the denoising diffusion probab-
ilistic model of Ho et al. (2020) and labelled them using a
Big-Transfer model (Kolesnikov et al., 2020). We show one
example image for each class in Figure B.1.

Methods We trained neural networks with different ar-
chitectures on both CIFAR10 and CIFAR10 clones like
the Gaussian mixture, which we describe in detail below.
Networks were trained three times starting from the same
standard initial conditions given by pytorch (Paszke et al.,
2019), varying only the random data augmentations and the
order in which samples were shown to the network. Un-
less otherwise noted, we trained all models using vanilla
SGD with learning rate 0.005, cosine learning rate sched-
ule (Loshchilov & Hutter, 2017), weight decay 5e−4, mo-
mentum 0.9, mini-batch size 128, for 200 epochs (see Ap-
pendix B.2 for details).

Results We show the test loss and test accuracy of all
the models evaluated on CIFAR10 during training on the
different clones in Figure 4. We found that both a fully-
connected two-layer network and the convolutional LeNet
of LeCun et al. (1998), learnt distributions of increasing
complexity. Interestingly, a two-layer network trained on
GM performs better on CIFAR10 in the long run than the
same network trained on WGAN. This suggests that for a
simple fully-connected network, having precise first and
second moments is more important than the higher-order cu-
mulants generated by the convolutions of the WGAN. The
trend is already reversed in LeNet, which has two convolu-

6



Neural networks trained with SGD learn distributions of increasing complexity

1

2

te
st

 lo
ss

Two layers

1

2

LeNet

1

2

Visual Tranformer

1

2

DenseNet

1

2

Resnet18

102 105

steps

0.1

0.3

0.5

te
st

 a
cc

ur
ac

y

102 105

steps
0.1

0.5

0.9

102 105

steps

0.1

0.5

0.9

102 105

steps

0.1

0.5

0.9

102 105

steps

0.1

0.5

0.9

isoGM GM WGAN CIFAR5M CIFAR10

Figure 4. Neural networks trained on CIFAR10 learn distributions of increasingly complexity Test loss (top) and classification
accuracy (bottom) of different neural networks evaluated on CIFAR10 during training on the various approximations of the CIFAR10
distribution described in Section 3. We show the mean (solid line) over three runs, starting from the same initial condition each time. The
shaded areas indicate one standard deviation over the three runs. See Appendix B.2 for details on the architectures and training recipes.

tional layers. We also found a distributional simplicity bias
in DenseNet121 (Huang et al., 2017) and ResNet18 (He
et al., 2016), which are deep convolutional networks with
residual connections, batch-norm, etc. We also tested a
visual transformer (ViT) (Dosovitskiy et al., 2021), which
is an interesting alternative architecture since it does not use
convolutions, but instead treats the image as a sequence of
patches which are processed using self-attention (Vaswani
et al., 2017). Despite these differences, we found that the
ViT also learns distributions of increasing complexity on
CIFAR10.

3.1. Pre-trained neural networks learn distributions of
increasing complexity, too

One might argue that drawing the initial weights of the
networks i.i.d. from the uniform distribution biases the net-
work towards lower-order input statistics early during train-
ing due to the effect of the central limit theorem in fully-
connected layers. We investigated this by repeating the
experiment with a ResNet18 that was pre-trained on Im-
ageNet, as provided by the timm library (Wightman, 2019).
We re-trained the entire network end-to-end, following the
same protocol as above. While we found that pre-training
improved the final accuracy of the model and significantly
improved the training speed, the pre-trained ResNet also
learnt distributions of increasing complexity, cf. Figure 5A,
even though its initial weights were now large and strongly
correlated.

This observation begs the question of what the network trans-
ferred from ImageNet to CIFAR10, since the generalisation
dynamics of the pre-trained and the randomly initialised
ResNet18 follow the same trend, albeit at different speeds.
While we leave a more detailed analysis of transfer learning
using clones to future work, we note that several papers have

suggested that some of the benefits of pre-training could
be ascribed to finding a good initialisation, rather than the
transfer of “concepts”, both in computer vision (Maennel
et al., 2020; Kataoka et al., 2020) and in natural language
processing (Krishna et al., 2021).

4. Discussion
The distributional simplicity bias is related to the idea of
learning functions of increasing complexity, but one
doesn’t imply the other directly. Any parametric model
f(x; θ) that admits a Taylor-expansion around its initial
parameters θ0 is linear in its parameters θ at the begin-
ning of training, then quadratic, etc. We saw explicitly for
the perceptron how this increasing degree of the effective
model that is being optimised makes the model first suscept-
ible to class-wise means, then class-wise covariances, etc.
However, this expansion of f(x; θ) breaks down early dur-
ing training for neural networks in the feature learning re-
gime (Chizat et al., 2019). Yet we see that the performance
of cifar5m/CIFAR10 and CIFAR10/CIFAR10 agree for al-
most the entire training.

A second important distinction between DSB and the Taylor-
expansion point of view is the way in which networks are
influenced by higher-order cumulants. Once the effective
model that is being optimised has degree three or higher,
it should behave differently on two data sets that have dif-
ferent third-order cumulants. While we ensured that the
class-wise covariances were close to each other across the
different data sets, it is reasonable to assume that already
the third- or fourth-order cumulants of WGAN or cifar5m
images are not exactly equal to each other or correspond-
ing CIFAR10 cumulants. If the generalisation dynamics of
the neural network depended on the full third-order cumu-
lants of each class, the test accuracy of WGAN/CIFAR10

7



Neural networks trained with SGD learn distributions of increasing complexity

Figure 5. A: Pre-trained networks learn distributions of increasing complexity, too. Test accuracy of a ResNet18 under the same
protocol as in Figure 4, but this time starting from weights that were pre-trained on ImageNet. B: Distributional simplicity bias on finite
data sets Early-stopping test-accuracy of a perceptron trained using SGD on a finite number of n samples, drawn from the rectangular
data set of Figure 2A (blue) and matching Gaussian mixtures with isotropic and anisotropic covariance (yellow and green, resp.). The
dotted and dashed horizontal line indicate the performance of the naïve and linear classifier, resp. C: How many Gaussians do you need?
Test accuracy of LeNet evaluated on a coarse-grained CIFAR10 task with two classes during training on three different input distributions:
the CIFAR10 training images, a mixture of two Gaussians, one for all the images in each class with the right mean and covariance, and a
mixture of ten Gaussians, one per class with the right mean and covariance.

and cifar5m/CIFAR10 should diverge quickly after they
separate from the test accuracy of GM/CIFAR10. Instead,
the curves stay together for much longer, suggesting that
only a part of the cumulant, for example its low-rank de-
composition (Kolda & Bader, 2009), is relevant for the
generalisation dynamics at that stage. Investigating in more
detail how higher-order cumulants affect the generalisation
dynamics of neural networks is an important direction for
further work.

Learning increasingly complex distributions from finite
data sets Varying the data set size offers a complement-
ary view on the distributional simplicity bias. We explored
this by training a perceptron (1) on a fixed data set with n
samples drawn from the rectangular data set of Section 2 us-
ing online SGD. The early-stopping test accuracy plotted in
Figure 5B shows that the perceptron also learns distributions
of increasing complexity as a function of sample complexity
– for a small number of samples, the perceptron will achieve
the same test error on the rectangular data set after training
on the rectangular data (violet) or on the Gaussian mixture
approximation (green). We also note that the power-law
exponent of the test accuracy as a function of sample com-
plexity changes roughly when the Gaussian approximation
breaks down. A theoretical treatment of this effect would
requires advanced tools such as dynamical mean-field the-
ory (Mignacco et al., 2020a;b), which leave as an intriguing
avenue for further work.

How many distributions do you need in your mixture?
We modelled inputs using mixtures with one distribution
per class, following the structure of the gradient flow equa-
tions. We could obtain a more detailed model of the inputs
by modelling each class using a mixture of distributions.
We compared the two approaches for the two-layer network
and the LeNet, which both achieve good performance on

GM/CIFAR10. We trained the networks on a coarse-grained
version of CIFAR10 (CIFAR10c): (cat, deer, dog, frog,
horse) vs. (plane, car, bird, ship, truck)2. We also trained
the same network on two different clones of CIFAR10c:
a mixture of two Gaussians, one for each superclass, and
a mixture of ten Gaussians, one for each input class of
CIFAR10, with binary labels according to CIFAR10c. We
trained a LeNet on CIFAR10c and the two clones and found
that LeNets trained on either clone had the same test accur-
acy on CIFAR10c as the network trained on CIFAR10c for
the same number of SGD steps, cf. Figure 5C. This sug-
gests that the network trained on CIFAR10 started to look
at higher-order cumulants at that point, rather than at a mix-
ture with more distributions. However, asymptotically, the
more detailed input distribution with ten Gaussians yields
better results. This observation is in line with the results of
Loureiro et al. (2021b), who compared two-Gaussian to ten-
Gaussian approximations for a binary classification task on
MNIST and FashionMNIST and found that the ten-Gaussian
approximation gave a more precise prediction of the asymp-
totic error of batch gradient descent on a perceptron (cf.
their fig. 10).

5. Concluding perspectives
We have found a distributional simplicity bias in an analytic-
ally solvable toy model of a neural network, and in a range
of deep networks trained on CIFAR10. Our focus was on
evaluating their test accuracy, which is their most important
characteristic in practice. To gain a better understanding
of DSB, it will be key to analyse the networks using more

2There are six classes with living vs. four classes with inanim-
ate objects in CIFAR10, so we put birds and ships together because
images in both classes typically have a blue background.

8



Neural networks trained with SGD learn distributions of increasing complexity

fine-grained measures of generalisation, for example dis-
tributional generalisation (Nakkiran & Bansal, 2020), and
to look at the information processing along the layers of
the network. Different parts of the networks are influenced
by different statistics of their inputs; this point was made
recently by Fischer et al. (2022), who used field-theoretic
methods to show that Gaussian correlations dominate the
information processing of internal layers, while the input
layers are also sensitive to higher-order correlations. This
finding motivates studying the structure of the internal rep-
resentations of inputs across layers for networks trained on
the different clones (Alain & Bengio, 2017; Bau et al., 2017;
Raghu et al., 2017; Ansuini et al., 2019; Doimo et al., 2020).

The key challenge for future work is to clarify the range
of validity of Conjecture 1 by testing it on other data sets,
like ImageNet (Deng et al., 2009) with its rich semantic
structure of hierarchical classes. These experiments require
training generative models for each of the 1000 classes of
ImageNet, so we leave this to future work. While we have
focused on correlations at the level of pixels in each image,
one could also explore different statistical “clones” based
on correlations between patches of pixels, or correlations
in a different feature space. Likewise, it would be interest-
ing to consider different data modalities, such as natural
language. In the meantime, we hope that the hierarchy of
approximations to CIFAR10 will be a useful tool for further
investigations on the role of data structure in learning with
neural networks.

Acknowledgements
We thank Diego Doimo, Kirsten Fischer, Moritz Helias,
Javed Lindner, Antoine Maillard, Claudia Merger, Marc
Mézard and Sandra Nestler for valuable discussions on vari-
ous parts of this work. SG acknowledges co-funding from
Next Generation EU, in the context of the National Recov-
ery and Resilience Plan, Investment PE1 – Project FAIR
“Future Artificial Intelligence Research”. This resource
was co-financed by the Next Generation EU [DM 1555 del
11.10.22].

References
Achille, A., Rovere, M., and Soatto, S. Critical learning peri-

ods in deep networks. In Proc. of ICLR. OpenReview.net,
2019. 3

Advani, M., Saxe, A., and Sompolinsky, H. High-
dimensional dynamics of generalization error in neural
networks. Neural Networks, 132:428 – 446, 2020. 1

Alain, G. and Bengio, Y. Understanding intermediate layers
using linear classifier probes. In International Conference
on Learning Representations, 2017. 9

Amari, S.-I. Natural gradient works efficiently in learning.
Neural computation, 10(2):251–276, 1998. 3

Ansuini, A., Laio, A., Macke, J. H., and Zoccolan, D. In-
trinsic dimension of data representations in deep neural
networks. In Wallach, H. M., Larochelle, H., Beygelzi-
mer, A., d’Alché-Buc, F., Fox, E. B., and Garnett, R.
(eds.), Advances in Neural Information Processing Sys-
tems 32: Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurIPS 2019, December 8-14,
2019, Vancouver, BC, Canada, pp. 6109–6119, 2019. 9

Arjovsky, M., Chintala, S., and Bottou, L. Wasserstein
generative adversarial networks. In Precup, D. and Teh,
Y. W. (eds.), Proc. of ICML, volume 70 of Proceedings of
Machine Learning Research, pp. 214–223. PMLR, 2017.
2, 6, 18, 19

Arora, S., Cohen, N., Hu, W., and Luo, Y. Implicit regular-
ization in deep matrix factorization. In Wallach, H. M.,
Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox,
E. B., and Garnett, R. (eds.), Advances in Neural In-
formation Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada, pp.
7411–7422, 2019. 3

Arpit, D., Jastrzebski, S., Ballas, N., Krueger, D., Bengio,
E., Kanwal, M. S., Maharaj, T., Fischer, A., Courville,
A. C., Bengio, Y., and Lacoste-Julien, S. A closer look at
memorization in deep networks. In Precup, D. and Teh,
Y. W. (eds.), Proc. of ICML, volume 70 of Proceedings of
Machine Learning Research, pp. 233–242. PMLR, 2017.
3

Bach, F. Breaking the curse of dimensionality with con-
vex neural networks. The Journal of Machine Learning
Research, 18(1):629–681, 2017. 1

Bau, D., Zhou, B., Khosla, A., Oliva, A., and Torralba,
A. Network dissection: Quantifying interpretability of
deep visual representations. In 2017 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2017,
Honolulu, HI, USA, July 21-26, 2017, pp. 3319–3327.
IEEE Computer Society, 2017. doi: 10.1109/CVPR.2017.
354. 9

Bishop, C. Pattern recognition and machine learning.
Springer, New York, 2006. 4, 15

Bordelon, B., Canatar, A., and Pehlevan, C. Spectrum de-
pendent learning curves in kernel regression and wide
neural networks. In Proc. of ICML, volume 119 of Pro-
ceedings of Machine Learning Research, pp. 1024–1034.
PMLR, 2020. 6

9



Neural networks trained with SGD learn distributions of increasing complexity

Bowman, B. and Montúfar, G. Implicit bias of MSE gradient
optimization in underparameterized neural networks. In
Proc. of ICLR. OpenReview.net, 2022. 1

Brutzkus, A., Globerson, A., Malach, E., and Shalev-
Shwartz, S. SGD learns over-parameterized networks
that provably generalize on linearly separable data. In
Proc. of ICLR. OpenReview.net, 2018. 3

Chizat, L., Oyallon, E., and Bach, F. R. On lazy train-
ing in differentiable programming. In Wallach, H. M.,
Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox,
E. B., and Garnett, R. (eds.), Advances in Neural In-
formation Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada, pp.
2933–2943, 2019. 7

Cho, J. and Suh, C. Wasserstein gan can perform pca. In
2019 57th Annual Allerton Conference on Communica-
tion, Control, and Computing (Allerton), pp. 895–901.
IEEE, 2019. 19

Deng, J., Dong, W., Socher, R., Li, L., Li, K., and Li, F.
Imagenet: A large-scale hierarchical image database. In
2009 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR 2009), 20-25 June
2009, Miami, Florida, USA, pp. 248–255. IEEE Com-
puter Society, 2009. doi: 10.1109/CVPR.2009.5206848.
9

Doimo, D., Glielmo, A., Ansuini, A., and Laio, A. Hierarch-
ical nucleation in deep neural networks. In Larochelle, H.,
Ranzato, M., Hadsell, R., Balcan, M., and Lin, H. (eds.),
Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020, vir-
tual, 2020. 3, 9

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N.
An image is worth 16x16 words: Transformers for image
recognition at scale. In Proc. of ICLR. OpenReview.net,
2021. 7

Engel, A. and Van den Broeck, C. Statistical Mechanics of
Learning. Cambridge University Press, 2001. 1

Farnia, F., Zhang, J., and Tse, D. A spectral approach to
generalization and optimization in neural networks. In
ICLR, 2018. 1

Fischer, K., René, A., Keup, C., Layer, M., Dahmen, D., and
Helias, M. Decomposing neural networks as mappings
of correlation functions. Physical Review Research, 4(4):
043143, 2022. 9

Gerace, F., Krzakala, F., Loureiro, B., Stephan, L., and
Zdeborová, L. Gaussian universality of linear classifiers
with random labels in high-dimension. 2022. 6

Ghorbani, B., Mei, S., Misiakiewicz, T., and Montanari,
A. When do neural networks outperform kernel meth-
ods? In Larochelle, H., Ranzato, M., Hadsell, R., Balcan,
M., and Lin, H. (eds.), Advances in Neural Information
Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual, 2020. 1

Goldt, S., Mézard, M., Krzakala, F., and Zdeborová, L.
Modeling the influence of data structure on learning in
neural networks: The hidden manifold model. Phys. Rev.
X, 10(4):041044, 2020. 1, 6

Goldt, S., Loureiro, B., Reeves, G., Krzakala, F., Mezard,
M., and Zdeborová, L. The gaussian equivalence of gen-
erative models for learning with shallow neural networks.
In Bruna, J., Hesthaven, J., and Zdeborová, L. (eds.), Pro-
ceedings of the 2nd Mathematical and Scientific Machine
Learning Conference, volume 145 of Proceedings of Ma-
chine Learning Research, pp. 426–471. PMLR, 2022. 6

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A. C., and Ben-
gio, Y. Generative adversarial nets. In Ghahramani, Z.,
Welling, M., Cortes, C., Lawrence, N. D., and Weinberger,
K. Q. (eds.), Advances in Neural Information Processing
Systems 27: Annual Conference on Neural Information
Processing Systems 2014, December 8-13 2014, Montreal,
Quebec, Canada, pp. 2672–2680, 2014. 19

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and
Courville, A. C. Improved training of wasserstein gans. In
Guyon, I., von Luxburg, U., Bengio, S., Wallach, H. M.,
Fergus, R., Vishwanathan, S. V. N., and Garnett, R. (eds.),
Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing
Systems 2017, December 4-9, 2017, Long Beach, CA,
USA, pp. 5767–5777, 2017. 6, 18, 19

Gunasekar, S., Woodworth, B. E., Bhojanapalli, S., Neysh-
abur, B., and Srebro, N. Implicit regularization in matrix
factorization. In Guyon, I., von Luxburg, U., Bengio,
S., Wallach, H. M., Fergus, R., Vishwanathan, S. V. N.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems 30: Annual Conference on Neural In-
formation Processing Systems 2017, December 4-9, 2017,
Long Beach, CA, USA, pp. 6151–6159, 2017. 3

Gunasekar, S., Lee, J. D., Soudry, D., and Srebro, N. Im-
plicit bias of gradient descent on linear convolutional
networks. In Bengio, S., Wallach, H. M., Larochelle, H.,
Grauman, K., Cesa-Bianchi, N., and Garnett, R. (eds.),
Advances in Neural Information Processing Systems 31:

10



Neural networks trained with SGD learn distributions of increasing complexity

Annual Conference on Neural Information Processing
Systems 2018, NeurIPS 2018, December 3-8, 2018, Mon-
tréal, Canada, pp. 9482–9491, 2018. 3

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2016,
Las Vegas, NV, USA, June 27-30, 2016, pp. 770–778.
IEEE Computer Society, 2016. doi: 10.1109/CVPR.2016.
90. 1, 7, 19

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion probab-
ilistic models. In Larochelle, H., Ranzato, M., Hadsell,
R., Balcan, M., and Lin, H. (eds.), Advances in Neural In-
formation Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual, 2020. 6, 18, 19

Hu, H. and Lu, Y. M. Universality laws for high-dimensional
learning with random features. IEEE Transactions on
Information Theory, 2022. 6

Huang, G., Liu, Z., van der Maaten, L., and Weinberger,
K. Q. Densely connected convolutional networks. In
2017 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26,
2017, pp. 2261–2269. IEEE Computer Society, 2017. doi:
10.1109/CVPR.2017.243. 7

Ingrosso, A. and Goldt, S. Data-driven emergence of con-
volutional structure in neural networks. Proceedings of
the National Academy of Sciences, 119(40):e2201854119,
2022. doi: 10.1073/pnas.2201854119. 6

Ji, Z. and Telgarsky, M. The implicit bias of gradient des-
cent on nonseparable data. In Beygelzimer, A. and Hsu,
D. (eds.), Conference on Learning Theory, COLT 2019,
25-28 June 2019, Phoenix, AZ, USA, volume 99 of Pro-
ceedings of Machine Learning Research, pp. 1772–1798.
PMLR, 2019. 3

Ji, Z. and Telgarsky, M. Directional convergence and align-
ment in deep learning. In Larochelle, H., Ranzato, M.,
Hadsell, R., Balcan, M., and Lin, H. (eds.), Advances
in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.
3

Jin, H. and Montúfar, G. Implicit bias of gradient descent for
mean squared error regression with wide neural networks.
2020. 1, 3

Kalimeris, D., Kaplun, G., Nakkiran, P., Edelman, B. L.,
Yang, T., Barak, B., and Zhang, H. SGD on neural net-
works learns functions of increasing complexity. In Wal-
lach, H. M., Larochelle, H., Beygelzimer, A., d’Alché-
Buc, F., Fox, E. B., and Garnett, R. (eds.), Advances

in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems
2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pp. 3491–3501, 2019. 1

Kataoka, H., Okayasu, K., Matsumoto, A., Yamagata, E.,
Yamada, R., Inoue, N., Nakamura, A., and Satoh, Y. Pre-
training without natural images. In Proceedings of the
Asian Conference on Computer Vision (ACCV), 2020. 7

Kolda, T. G. and Bader, B. W. Tensor decompositions and
applications. SIAM review, 51(3):455–500, 2009. 8

Kolesnikov, A., Beyer, L., Zhai, X., Puigcerver, J., Yung,
J., Gelly, S., and Houlsby, N. Big transfer (bit): General
visual representation learning. In European conference
on computer vision, pp. 491–507. Springer, 2020. 6, 18,
19

Krishna, K., Bigham, J., and Lipton, Z. C. Does pretraining
for summarization require knowledge transfer? In Find-
ings of the Association for Computational Linguistics:
EMNLP 2021, pp. 3178–3189, Punta Cana, Dominican
Republic, 2021. Association for Computational Linguist-
ics. doi: 10.18653/v1/2021.findings-emnlp.273. 7

Krizhevsky, A., Hinton, G., et al. Learning mul-
tiple layers of features from tiny images. ht-
tps://www.cs.toronto.edu/ kriz/learning-features-2009-
TR.pdf, 2009. 18, 20

Krogh, A. and Hertz, J. A. Generalization in a linear per-
ceptron in the presence of noise. Journal of Physics A:
Mathematical and General, 25(5):1135, 1992. 1

Le Cun, Y., Kanter, I., and Solla, S. A. Eigenvalues of cov-
ariance matrices: Application to neural-network learning.
Physical Review Letters, 66(18):2396, 1991. 1

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Pro-
ceedings of the IEEE, 86(11):2278–2324, 1998. doi:
10.1109/5.726791. 6, 20

Li, Y., Ma, T., and Zhang, H. Algorithmic regularization in
over-parameterized matrix sensing and neural networks
with quadratic activations. In Bubeck, S., Perchet, V.,
and Rigollet, P. (eds.), Conference On Learning The-
ory, COLT 2018, Stockholm, Sweden, 6-9 July 2018,
volume 75 of Proceedings of Machine Learning Research,
pp. 2–47. PMLR, 2018. 3

Liao, Z. and Couillet, R. On the spectrum of random fea-
tures maps of high dimensional data. In Dy, J. G. and
Krause, A. (eds.), Proc. of ICML, volume 80 of Pro-
ceedings of Machine Learning Research, pp. 3069–3077.
PMLR, 2018. 6

11



Neural networks trained with SGD learn distributions of increasing complexity

Liu, S., Papailiopoulos, D. S., and Achlioptas, D. Bad global
minima exist and SGD can reach them. In Larochelle, H.,
Ranzato, M., Hadsell, R., Balcan, M., and Lin, H. (eds.),
Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020, vir-
tual, 2020. 1

Loshchilov, I. and Hutter, F. SGDR: stochastic gradient
descent with warm restarts. In Proc. of ICLR. OpenRe-
view.net, 2017. 6, 20

Loureiro, B., Gerbelot, C., Cui, H., Goldt, S., Krzakala,
F., Mézard, M., and Zdeborová, L. Learning curves of
generic features maps for realistic datasets with a teacher-
student model. In Ranzato, M., Beygelzimer, A., Dauphin,
Y. N., Liang, P., and Vaughan, J. W. (eds.), Advances
in Neural Information Processing Systems 34: Annual
Conference on Neural Information Processing Systems
2021, NeurIPS 2021, December 6-14, 2021, virtual, pp.
18137–18151, 2021a. 6

Loureiro, B., Sicuro, G., Gerbelot, C., Pacco, A., Krzakala,
F., and Zdeborová, L. Learning gaussian mixtures with
generalized linear models: Precise asymptotics in high-
dimensions. In Ranzato, M., Beygelzimer, A., Dauphin,
Y. N., Liang, P., and Vaughan, J. W. (eds.), Advances
in Neural Information Processing Systems 34: Annual
Conference on Neural Information Processing Systems
2021, NeurIPS 2021, December 6-14, 2021, virtual, pp.
10144–10157, 2021b. 8

Lukacs, E. Characteristic Functions. Griffin, London,
second edition, 1970. 6

Lyu, K. and Li, J. Gradient descent maximizes the mar-
gin of homogeneous neural networks. In Proc. of ICLR.
OpenReview.net, 2020. 3

Maennel, H., Alabdulmohsin, I. M., Tolstikhin, I. O., Bal-
dock, R. J. N., Bousquet, O., Gelly, S., and Keysers, D.
What do neural networks learn when trained with ran-
dom labels? In Larochelle, H., Ranzato, M., Hadsell, R.,
Balcan, M., and Lin, H. (eds.), Advances in Neural In-
formation Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual, 2020. 7

Mangalam, K. and Prabhu, V. U. Do deep neural networks
learn shallow learnable examples first? In ICML 2019
Workshop on Identifying and Understanding Deep Learn-
ing Phenomena, 2019. 3

McCullagh, P. Tensor methods in statistics. Chapman and
Hall/CRC, 2018. 3, 14

Mei, S. and Montanari, A. The generalization error of
random features regression: Precise asymptotics and the
double descent curve. Communications on Pure and
Applied Mathematics, 2021. doi: https://doi.org/10.1002/
cpa.22008. 6

Mei, S., Montanari, A., and Nguyen, P. A mean field view of
the landscape of two-layer neural networks. Proceedings
of the National Academy of Sciences, 115(33):E7665–
E7671, 2018. 1

Mignacco, F., Krzakala, F., Lu, Y., Urbani, P., and Zde-
borová, L. The role of regularization in classification of
high-dimensional noisy gaussian mixture. In Proc. of
ICML, volume 119 of Proceedings of Machine Learning
Research, pp. 6874–6883. PMLR, 2020a. 8

Mignacco, F., Krzakala, F., Urbani, P., and Zdeborová, L.
Dynamical mean-field theory for stochastic gradient des-
cent in gaussian mixture classification. In Larochelle, H.,
Ranzato, M., Hadsell, R., Balcan, M., and Lin, H. (eds.),
Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020, vir-
tual, 2020b. 8

Mossel, E. Deep learning and hierarchical generative mod-
els. 2016. 1

Nakkiran, P. and Bansal, Y. Distributional generalization:
A new kind of generalization. 2020. 9

Nakkiran, P., Neyshabur, B., and Sedghi, H. The bootstrap
framework: Generalization through the lens of online
optimization. In International Conference on Learning
Representations, 2021. 2, 6, 18, 19

Neyshabur, B., Tomioka, R., and Srebro, N. In search of the
real inductive bias: On the role of implicit regularization
in deep learning. In ICLR, 2015. 3

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., An-
tiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B.,
Fang, L., Bai, J., and Chintala, S. Pytorch: An imperative
style, high-performance deep learning library. In Wallach,
H. M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F.,
Fox, E. B., and Garnett, R. (eds.), Advances in Neural In-
formation Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada, pp.
8024–8035, 2019. 6

Pérez, G. V., Camargo, C. Q., and Louis, A. A. Deep
learning generalizes because the parameter-function map
is biased towards simple functions. In Proc. of ICLR.
OpenReview.net, 2019. 1, 3

12



Neural networks trained with SGD learn distributions of increasing complexity

Pope, P., Zhu, C., Abdelkader, A., Goldblum, M., and Gold-
stein, T. The intrinsic dimension of images and its impact
on learning. In Proc. of ICLR. OpenReview.net, 2021. 1

Radford, A., Metz, L., and Chintala, S. Unsupervised rep-
resentation learning with deep convolutional generative
adversarial networks. In Bengio, Y. and LeCun, Y. (eds.),
Proc. of ICLR, 2016. 6, 19

Raghu, M., Gilmer, J., Yosinski, J., and Sohl-Dickstein,
J. SVCCA: singular vector canonical correlation ana-
lysis for deep learning dynamics and interpretability. In
Guyon, I., von Luxburg, U., Bengio, S., Wallach, H. M.,
Fergus, R., Vishwanathan, S. V. N., and Garnett, R. (eds.),
Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing
Systems 2017, December 4-9, 2017, Long Beach, CA,
USA, pp. 6076–6085, 2017. 9

Rahaman, N., Baratin, A., Arpit, D., Draxler, F., Lin, M.,
Hamprecht, F. A., Bengio, Y., and Courville, A. C. On
the spectral bias of neural networks. In Chaudhuri, K.
and Salakhutdinov, R. (eds.), Proc. of ICML, volume 97
of Proceedings of Machine Learning Research, pp. 5301–
5310. PMLR, 2019. 1

Refinetti, M. and Goldt, S. The dynamics of represent-
ation learning in shallow, non-linear autoencoders. In
Chaudhuri, K., Jegelka, S., Song, L., Szepesvári, C., Niu,
G., and Sabato, S. (eds.), International Conference on
Machine Learning, ICML 2022, 17-23 July 2022, Bal-
timore, Maryland, USA, volume 162 of Proceedings of
Machine Learning Research, pp. 18499–18519. PMLR,
2022. 6

Refinetti, M., Goldt, S., Krzakala, F., and Zdeborová, L.
Classifying high-dimensional gaussian mixtures: Where
kernel methods fail and neural networks succeed. In
Meila, M. and Zhang, T. (eds.), Proc. of ICML, volume
139 of Proceedings of Machine Learning Research, pp.
8936–8947. PMLR, 2021. 5, 6

Saad, D. and Solla, S. Exact Solution for On-Line Learning
in Multilayer Neural Networks. Phys. Rev. Lett., 74(21):
4337–4340, 1995. 1

Saxe, A., McClelland, J., and Ganguli, S. A mathematical
theory of semantic development in deep neural networks.
Proceedings of the National Academy of Sciences, 116
(23):11537–11546, 2019. 1

Saxe, A. M., McClelland, J. L., and Ganguli, S. Exact
solutions to the nonlinear dynamics of learning in deep
linear neural networks. In Bengio, Y. and LeCun, Y.
(eds.), Proc. of ICLR, 2014. 1

Schwarze, H. and Hertz, J. Generalization in a large com-
mittee machine. EPL (Europhysics Letters), 20(4):375,
1992. 1

Seddik, M. E. A., Tamaazousti, M., and Couillet, R. Ker-
nel random matrices of large concentrated data: the ex-
ample of gan-generated images. In IEEE International
Conference on Acoustics, Speech and Signal Processing,
ICASSP 2019, Brighton, United Kingdom, May 12-17,
2019, pp. 7480–7484. IEEE, 2019. doi: 10.1109/ICASSP.
2019.8683333. 6

Soudry, D., Hoffer, E., Nacson, M. S., and Srebro, N. The
implicit bias of gradient descent on separable data. In
Proc. of ICLR. OpenReview.net, 2018. 3

Spigler, S., Geiger, M., and Wyart, M. Asymptotic learning
curves of kernel methods: empirical data versus teacher–
student paradigm. Journal of Statistical Mechanics: The-
ory and Experiment, 2020(12):124001, 2020. 1

van Amersfoort, J. Minimal CIFAR10. https:
//github.com/y0ast/pytorch-snippets/
tree/main/minimal_cifar, 2021. 19

Vardi, G. On the implicit bias in deep-learning algorithms.
ArXiv preprint, abs/2208.12591, 2022. 3

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is all you need. In Guyon, I., von Luxburg, U., Bengio,
S., Wallach, H. M., Fergus, R., Vishwanathan, S. V. N.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pp. 5998–6008, 2017. 7

Wightman, R. Pytorch image models. https://github.
com/rwightman/pytorch-image-models,
2019. 7, 20

Xu, Z. J. Understanding training and generalization
in deep learning by fourier analysis. ArXiv preprint,
abs/1808.04295, 2018. 1

Yang, G., Ajay, A., and Agrawal, P. Overcoming the spectral
bias of neural value approximation. In Proc. of ICLR.
OpenReview.net, 2022. 1

13

https://github.com/y0ast/pytorch-snippets/tree/main/minimal_cifar
https://github.com/y0ast/pytorch-snippets/tree/main/minimal_cifar
https://github.com/y0ast/pytorch-snippets/tree/main/minimal_cifar
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models


Neural networks trained with SGD learn distributions of increasing complexity

A. Details on the theoretical analysis
In this section, we summarise some useful facts and identities about moments and cumulants in high dimensions, before
giving a detailed derivation of the theoretical results on the perceptron discussed in Section 2.1.

A.1. Moments and cumulants in high dimensions

This section summarises some basic results and identities on moments and cumulants of high-dimensional random variables,
using the notation of McCullagh (2018). We consider D-dimensional random variables x with components x1, x2, . . . , xD.
We will use the superscript notation exclusively to denote the components of x, which will allow us to make heavy use of
index notation and in particular, of the Einstein summation convention. Hence we will write quadratic or cubic forms as

aijx
ixj =

p∑
i,j=1

aijx
ixj , aijkx

ixjxk =

p∑
i,j,k=1

aijkx
ixjxk, (A.1)

where aij are arrays of constants. For the sake of simplicity, and without loss of generality, we take all multiply-indexed
arrays to be symmetric under index permutation3

We can write the moments of x as

κi = Exi, κij = Exixj , κijk = Exixjxk, etc. (A.2)

These moments are also defined implicitly by the moment-generating function

MX(ξ) = E exp
(
ξix

i
)
= 1 + ξiκ

i + ξiξjκ
ij/2! + ξiξjξkκ

ijk/3! + . . . (A.3)

as the partial derivatives of MX(ξ) evaluated at ξ = 0. The cumulants are most easily defined via the cumulant generating
function

Kx(ξ) ≡ logMx(ξ) (A.4)

which can similarly be expanded to yield the cumulants:

Kx(ξ) = ξiκ
i + ξiξjκ

i,j/2! + ξiξjξkκ
i,j,k/3! + . . . (A.5)

Note that we use the same letter κ to denote both cumulants and moments, the difference being the commas, which are
considered as separators for the cumulant indices.

We can relate cumulants and moments by expanding the log of the definition of Kx(ξ) (A.4) and comparing terms to the
expansion Equation (A.5). Moments can be written in terms of cumulants as

κij = κi,j + κiκj ,

κijk = κi,j,k + (κiκj,k + κjκi,k + κkκi,j) + κiκjκk

= κi,j,k + κiκj,k[3] + κiκjκk,

(A.6)

where we introduced the bracket notation [3] to denote all the partitions of the indices i, j, k into two groups: (i, jk), (j, ik)
and (k, ij).

Similarly, we can derive expressions for the cumulants in terms of the moments by inverting the equations above. We find
that

κi,j = κij − κiκj ,

κi,j,k = κijk − κiκjk[3] + 2κiκjκk.
(A.7)

A.2. Detailed calculations for the perceptron

We start again from the gradient flow equation, Equation (2). Expanding the activation function as σ(λ) =
∑∞

k=0 βkλ
k

yields σ′(λ) =
∑∞

k=0 β̃k+1λ
k for the derivative with β̃k = kβk = k σ(k)(λ)|λ=0. The gradient flow Equation (2) up to

3For quadratic forms aijX
iXj for example, we can rewrite the coefficients aij into a symmetric and an asymmetric part, 2a =

(a+ a⊤) + (a− a⊤), with only the symmetric part contributing.

14



Neural networks trained with SGD learn distributions of increasing complexity

order K then becomes

τẇi =

K∑
k=0

Eλkxi(γk − β̃k+1y), (A.8)

where τ = 1/η, and σ(k) denotes the kth derivative, while γk is a linear combination of βk: γ0 = β0β1, γ1 = β2
1 + 2β0β2,

etc.

A.2.1. ZEROTH ORDER: THE NAÏVE CLASSIFIER

For K = 0, we have τẇ
(0)
i = xiγ0 − β̃1yxi. Under expectation, the first term goes to zero, and we are left with the

anti-Hebbian updates τẇ(0)
i = −β̃1E yxi, which show the typical run-away behaviour of Hebbian learning, while the weight

converges in direction to

w
(0)
i ∝ mi ≡ κi

+ − κi
i, (A.9)

which is the difference between the mean of each class.

A.2.2. FIRST ORDER: THE LINEAR DISCRIMINANT

For K ≤ 1, we find that after averaging

τẇi =− β̃1(κ
i
+ − κi

−)

+ wj(γ1κ
ij − β̃2(κ

ij
+ − κij

−))
(A.10)

where κij is the second moment of the inputs, while κij
± are the second moments for each class (cf. Section 2). Note that in

the rectangular data set, both classes have the same the same covariance matrix, κi,j
+ − κi,j

− = 0, which makes the β̃2 term
vanish. A pattern emerges in the updates: while the unsupervised terms ∝ γ contain moments of the inputs averaged over
the whole distribution p(x), the supervised terms (∝ β) depend on the class-wise differences between moments.

In the steady state, we find that

γ1κ
ijwj = β̃1m

i (A.11)

At first sight, it is not clear how the global second-moment of the inputs κij , which averages over both classes, can help
with discriminating the two classes. However, we can make progress by rewriting the total second moment of the inputs as

κij = κi,j = κi,j
w /2 + κi,j

b /4, (A.12)

where we introduced the between-class covariance (Bishop, 2006, sec. 4.1),

κij
b ≡ (κi

+ − κi
−)(κ

j
+ − κj

−) = mimj , (A.13)

and the within-class covariance,

κi,j
w ≡ E

+
(xi − κi

+)(x
j − κj

+) + E−(x
i − κi

−)(x
j − κj

−)

= κij
+ − 2κi

+κ
j
+

(A.14)

Substituting these expressions into Equation (A.11) and noticing that κi,j
b wj ∝ mi, we find that the linear discriminant

w
(1)
i ∝ (κw)ijm

j (A.15)

is a solution to the steady-state of gradient flow up to first order. This classifier performs better than the naïve classifier wi ∝
mi, since rotating the naïve classifier with the inverse of the within-class covariance brings the classifier closer to the oracle
(cf. Figure 2).

15



Neural networks trained with SGD learn distributions of increasing complexity

Figure A.1. Evolution of truncated gradient flow. Left: Rectangular data set together with the weight vectors obtained from integrating
the truncated gradient flow; colours correspond to the orders indicated in the legend of the right plot. Right: Evolution of the test accuracy
of the perceptron when the weight follows the truncated gradient flow at the given order. Horizontal lines indicate the test accuracy of the
naïve classifier, Equation (4), and of the linear discriminant, Equation (8). Setup and parameters like in Figure 2.

A.2.3. THE SECOND ORDER DOES NOT YIELD NEW STATISTICAL INFORMATION

For K ≤ 2, the steady state of the gradient flow is

β̃1(κ
i
+ − κi

−) = wj

(
γ1κ

ij − β̃2(κ
ij
+ − κij

−)
)
+ wjwk

(
γ2κ

ijk − β̃3(κ
ijk
+ − κijk

− )
)

(A.16)

While the third-order moment κijk = 0 due to symmetry, the difference between class-wise third-order moments κijk
+ −κijk

−
is not. We can however express this difference in terms of global quantities, i.e. those pertaining to the full input distribution
p(x), by using the identities

κi
± = ±mi/2 and κij

± = κij . (A.17)

The latter follows from the fact that by construction, the two cumulants κi,j
± are equal to each other. We find that

κijk
+ − κijk

− = miκjk[3]− 1

2
mimjmk, (A.18)

where we use the bracket notation miκjk[3] to denote all the permutations of the indices, cf. Equation (A.6). The steady
state hence becomes

β̃1m
i = γ1wjκ

ij + β̃3wjwk

(
miκjk[3]− 1

2
mimjmk

)
. (A.19)

Upon contracting the terms proportional to β̃3, we see that these terms are all proportional either to mi or to wjκ
ij . We

showed above that the linear discriminant is a solution to this equation, so going to second order does not bring any additional
statistical information that would change, or even improve, the classifier.

A.2.4. THIRD ORDER: THE FIRST NON-GAUSSIAN CORRECTION TO THE LINEAR DISCRIMINANT

At third order in the weights however, the non-Gaussian statistics start to impact the dynamics. The steady state is given by

β̃1m
i = γ1wjκ

ij + β̃3wjwk

(
miκjk[3]− 1

2
mimjmk

)
+ γ3wjwkwlκ

ijkl (A.20)

since the local terms cancel out, κijkl
+ − κijkl

− = 0. Our goal is now to understand how the fourth-order moment κijkl

changes the weight vector in the steady state. Following the logic of the analysis that led us to the linear discriminant,
we first decompose the fourth-order moment into a within-class fourth-order moment κijkl

w , and contributions from lower
orders:

κijkl =
1

2
κijkl
w +

1

8
κij
wm

kml[6] +
1

16
mimjmkml, (A.21)

where
κijkl
w ≡ E

+
(xi − κi

+)(x
j − κj

+)(x
k − κk

+)(x
l − κl

+) + E
−
(xi − κi

−) · · · (xl − κl
−). (A.22)

16



Neural networks trained with SGD learn distributions of increasing complexity

1 0 1
x1

2

1

0

1

2

x 2

naïve
linear disc.
correction

Figure A.2. Non-Gaussian correction to the linear discriminant drives the perceptron towards the oracle. Rectangular data set
together with the naïve classifier, Equation (A.9), and the linear discriminant, Equation (8). The latter only takes the Gaussian statistics
of each class into account and does not yield the optimal classifier, which would be parallel to the x1-axis. We show that the first
non-Gaussian correction, Equation (A.28), which we compute perturbatively in Appendix A.2.4, drives the classifier towards this oracle.
The dashed violet lines show “corrections” that are computed with the wrong fourth-order tensor, as discussed after Equation (12).

After contraction with the weights, the second and third term in Equation (A.21) also appear in the equation that yields the
linear classifier, so they do not change the direction of the final classifier. Instead, we need to focus on the within-class
fourth moment. If the data set was a mixture of Gaussians, instead of a mixture of rectangles, the perceptron would converge
to the linear discriminant at any order of gradient flow. So while κijkl

w would be non-zero for the mixture of Gaussians, it
would not change the direction of the classifier. We have hence to split κijkl

w into a Gaussian and a non-Gaussian part,

κijkl
w = κi,j,k,l

w + κijkl
w,G, (A.23)

where κijkl
w,G is defined as

κijkl
w,G ≡ E

+,G
(xi − κi

+) · · · (xl − κl
+) + E

−,G
(xi − κi

−) · · · (xl − κl
−) (A.24)

= 2κijκkl[3]− 1

2
mimjκkl[6] +

6

16
mimjmkml (A.25)

and E
±,G

denotes the average over a Gaussian distribution with the same mean and covariance as the rectangular distribution

corresponding to y = ±1.

Inserting these expressions into the steady-state gradient flow equation Equation (A.20), we find

c1(w)m
i = c2(w)wjκ

ij
w + c3(w)wjwkwlκ

i,j,k,l
w , (A.26)

where the constants c1, c2, c3 depend on the weight through the contractions. For a fixed c1, c2, c3, we can solve the equation.
To determine the direction of the weight, this is enough; for an exact solution, one would need to substitute the solution
for w with fixed constants back into Equation (A.26) and find a self-consistent equation for the constants.

Here, we are only interested in understanding the direction of the weight vector, so we simply fix the constants. We further
assume that the data are only weakly non-Gaussian, making c3 a small parameter that allows us to solve the cubic equation

17



Neural networks trained with SGD learn distributions of increasing complexity

CI
FA

R1
0 AirplaneAutomobile Bird Cat Deer Dog Frog Horse Ship Truck

GP
IS

O
GP

W
GA

N
CI

FA
R5

M

Figure B.1. Approximations of CIFAR10 of increasing complexity We show a randomly drawn example image of each of the 10
classes of CIFAR10 (Krizhevsky et al., 2009) in the top row. Below, we show an image drawn at random from each class of four different
approximations of CIFAR10: a mixture of one isotropic Gaussian per class (“isoGM”), a mixture of one Gaussians per class with the
correct mean and covariance (“GM”), a mixture of one improved Wasserstein GAN (Arjovsky et al., 2017; Gulrajani et al., 2017) per
class. We also used the cifar5m data set of Nakkiran et al. (2021), who sampled images from a denoising diffusion model (Ho et al., 2020)
and labelled it with a BigTransfer model (Kolesnikov et al., 2020).

Equation (A.26) perturbatively. By expanding the weight as

wi = w
(1)
i + c3w

(2)
i +O(c23), (A.27)

we have that w(1) ∝ (κw)ijm
j is the linear discriminant by construction. The first-order correction is then given by

w
(2)
i ∝ −(κw)ijκ

j,k,l,m
w w

(1)
k w

(1)
l w(1)

m , (A.28)

which we plot in Figure A.2 together with the naïve classifier and the linear discriminant, w(1). From the plot, it becomes
clear that this first non-Gaussian correction to the classifier pushes the weight in the direction of the oracle.

Note that if we instead compute the first-order correction with the full fourth moment κijkl or even the within-class fourth
moment κijkl

w , we obtain corrections that point roughly in the opposite direction of the linear discriminant (dashed lines
in Figure A.2). If instead we use the global fourth-order cumulant κi,j,k,l to compute the correction, we obtain the linear
discriminant.

B. Details on the CIFAR10 experiments
B.1. Synthetic data sets

We constructed several approximations to the original CIFAR10 data set (Krizhevsky et al., 2009) for the experiments
described in Section 3. Here, we give details on how we sampled these data sets. The code for sampling them can be found
on the GitHub repository accompanying the paper.

Gaussian mixtures We constructed two Gaussian mixtures to approximate CIFAR10. For each colour channel, we
sampled from a mixture of 10 Gaussians, with one Gaussian for each class. The Gaussians had the correct mean per class.

18



Neural networks trained with SGD learn distributions of increasing complexity

Figure B.2. Evolution of the mean and covariance of GAN-generated images during training. We plot the mean-squared difference
between in the mean κi and covariance κi,j between CIFAR10 images and samples from a GAN trained on images from that class, κ̂i,
throughout training of the GAN. The top and bottom two rows show results for the Wasserstein and vanilla GAN, respectively. We only
show the first five classes, results for the other five classes were similar. Different colours correspond to the three different colour channels.

For the isotropic Gaussian (“isoGM”), the covariance for each class was the identity matrix times the class-wise standard
deviation of the inputs. For the correct second-order approximation (“GM”), we sampled from a mixture of one Gaussian
per class with the correct mean and covariance. We constrained the values of the Gaussian samples to be in the range [0, 255]
by setting all negative values to 0 and all values larger than 255 to 255.

WGAN We sampled images from a mixture of deep convolutional GANs, using the architecture of Radford et al. (2016).
Each GAN was trained on a single class of the CIFAR10 training set. Interestingly, we found that GANs trained with the
“vanilla” algorithm (Goodfellow et al., 2014) yield statistically inconsistent images: while visually appealing, the images do
not have the right covariance, and sometimes not even the right mean. We therefore resorted to training the GANs using
the improved Wasserstein GAN algorithm (Arjovsky et al., 2017; Gulrajani et al., 2017). We show how the mean and
the covariance of the samples drawn from GANs trained in this way do converge towards the mean and covariance of the
CIFAR10 images, see Figure B.2. These results are in line with an earlier theoretical study by Cho & Suh (2019) who
showed that a linear Wasserstein GAN will learn the principal components of its data. We validated the data set using a
Resnet18 (He et al., 2016) that we trained to 94% test accuracy on CIFAR10 following the recipe of van Amersfoort (2021).
This Resnet18 classified the WGAN data set with an accuracy of 80%.

cifar5m The cifar5m data set was provided by Nakkiran et al. (2021). Images were sampled from the denoising diffusion
probabilistic model of Ho et al. (2020), which was trained on the CIFAR10 training set. Labels were obtained from a
Big-Transfer model (Kolesnikov et al., 2020), specifically a BiT-M-R152x2 that was pre-trained on ImageNet and fine-
tuned on to CIFAR10. Nakkiran et al. (2021) reported that a ResNet18 that achieved 95% accuracy on CIFAR10/CIFAR10
achieves 89% on cifar5m/CIFAR10, making cifar5m a more accurate approximation to CIFAR10 than the WGAN data set
by this measure.

19



Neural networks trained with SGD learn distributions of increasing complexity

B.2. Architectures and training procedures

For our experiments on CIFAR10 (Section 3), we used the following architectures.

Two-layer network Two fully-connected layers acting on greyscale images; ReLU activation function, 512 neurons on
CIFAR10, 2048 hidden neurons on CIFAR100. Parameters: Trained with SGD with learning rate 0.005, weight decay
5e−4, no momentum, mini-batch size 64.

LeNet LeNet5 architecture of LeCun et al. (1998) with five layers; the final layer before the linear classifier had 84 neurons
for CIFAR10 and 120 neurons for CIFAR100.

DenseNet121, ViT, Resnet18 We used the implementation of these models and the pre-trained weights available in
the timm library (Wightman, 2019). For Densenet121 and Resnet18, we made a slight modification to the first
convolutional layer, choosing a smaller kernel width, 3 instead of 7, at padding=1, stride=1. We also removed the first
pooling layer before the first residual block. The idea behind this change is to avoid the strong downsampling of these
architectures in the first layer. The downsampling is fine (or even necessary) for the large images of ImageNet, for
which these networks were designed, but it removes too much information from the smaller CIFAR images and thus
seriously degrades performance. We did not apply this modification for the pre-trained networks of Section 3.1, since
they were pretrained on ImageNet.

We trained all networks except the two-layer network using with SGD with learning rate 0.005, cosine learning rate
schedule (Loshchilov & Hutter, 2017), weight decay 5e−4, momentum 0.9, mini-batch size 128, for 200 epochs. During
training, images were randomly cropped with a padding of 4 pixels, and randomly flipped along the horizontal.

Comment on the accuracy improvement of ResNet18 after pre-training The original ResNet18 architecture achieves
88% test accuracy on CIFAR10 after pre-training on ImageNet (cf. Figure 5A). This performance should not be compared
to the ≈ 92% test accuracy of the ResNet18 achieved in our experiments of Section 3, since we modified the first layer of
that ResNet to adjust for the image size of CIFAR10 (see above). The performance of the original ResNet18 architecture
trained from scratch without this modification when is 85%.

C. Experiments on CIFAR100
We repeated the experiment on distributions of increasing complexity on CIFAR100, which has the same image format as
CIFAR10, but contains 100 classes with 500 training and 100 test samples each (Krizhevsky et al., 2009). We repeated the
experimental protocol of the CIFAR10 experiments from Section 3 with the same architectures; the results are shown in
Figure C.1 and discussed in Section 4.

As we discuss in the main text, our computational facilities didn’t allow to train a separate GAN for all 100 clases of CIFAR10.
We therefore only repeated the experiments with a Gaussian clone of CIFAR100. While we see that GM/CIFAR100 yields
the same test error as CIFAR100/CIFAR100 in the beginning of training for the two-layer network and LeNet, for deeper
architectures the discrepancy appears very early during training. We leave it to further work to obtain more accurate
approximations of CIFAR100 to verify Conjecture 1 on this data set, too.

20



Neural networks trained with SGD learn distributions of increasing complexity

2

4

te
st

 lo
ss

Two layers

2

4

LeNet

2

4

DenseNet

2

4

Resnet18

102 105

steps
0.0

0.1

te
st

 a
cc

ur
ac

y

102 105

steps
0.0

0.2

101 103

steps
0.0

0.2

0.4

101 103

steps
0.00

0.25

0.50

Figure C.1. Test loss and accuracy of neural networks evaluated on CIFAR100 We repeat the experiment of Figure 4 for CIFAR100:
we show the test loss and accuracy (top and bottom row, respectively) of various neural networks evaluated on CIFAR100 during training
on CIFAR100 and a Gaussian clone of CIFAR100 with 100 Gaussians. We show the mean (solid line) over three runs, starting from
the same initial condition each time. The shaded areas indicate minimum and maximum values over the three runs. Full details on the
architectures and training recipes are given in Appendix C.

21


