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Abstract
Certified Watermarks is the first to provide a wa-
termark certificate against l2-norm watermark
removal attacks, by leveraging the randomized
smoothing techniques for certified robustness to
adversarial attacks. However, the randomized
smoothing techniques suffer from hardness of
certified robustness in high-dimensional space
against lp-norm attacks for large p (p > 2). The
certified watermark method based on the random-
ized smoothing is no exception, i.e., fails to pro-
vide meaningful certificates in high-dimensional
space against the lp-norm watermark removal at-
tacks (p > 2). By leveraging mollifier theory,
this paper proposes a mollifier smoothing method
with dimension-independent certified radius of
our proposed smooth classifier, for conducting
the certified watermark problem against the lp-
norm watermark removal attacks (1 ≤ p ≤ ∞)
for high parameter dimension d. Based on partial
differential equation (PDE) theory, an approxima-
tion of mollifier smoothing is developed to alle-
viate the inefficiency of sampling and prediction
in the randomized smoothing as well as numeri-
cal integration in the mollifier smoothing, while
maintaining the certified watermark against the lp-
norm watermark removal attacks (1 ≤ p ≤ ∞).

1. Introduction
Watermarking neural networks has become the tendency
in protecting intellectual property of deep neural networks
(DNNs) by embedding watermarks into the DNNs to enable
the ownership verification of deep learning models (Zhang
et al., 2018; Adi et al., 2018; Rouhani et al., 2019). De-
spite achieving remarkable performance, recent studies have
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shown that many watermarking mechanisms are highly vul-
nerable to watermark removal attacks (Aiken et al., 2021;
Shafieinejad et al., 2021). The watermark removal attacks
aim to make the victim model forget the embedded wa-
termarks but preserve accuracy on main task through fine-
tuning the model with source training data or/and proxy
data (Uchida et al., 2017; Wang & Kerschbaum, 2019; Yang
et al., 2019; Liu et al., 2020; Chen et al., 2021b; Guo et al.,
2021; Zhong et al., 2022; Yan et al., 2022).

Many encouraging empirical defense progresses have been
made towards improving watermarking robustness against
watermark removal attacks (Tartaglione et al., 2020; Sun
et al., 2021; Uchida et al., 2017; Zhang et al., 2018; Adi
et al., 2018; Rouhani et al., 2019; Namba & Sakuma, 2019;
Wang & Kerschbaum, 2021; Yang et al., 2021; Wang et al.,
2021; Liu et al., 2022b; Wu, 2022; Pagnotta et al., 2022;
Anonymous, 2023). However, it is typically observed that
empirically robust watermarking models are defeated by
strong attacks (Carlini & Wagner, 2017; Athalye et al., 2018;
Uesato et al., 2018; Tramèr et al., 2020). The watermarks
can be detected and removed without compromising predic-
tion accuracy of stolen model, by adding regularization, fine-
tuning and pruning (Aiken et al., 2021; Shafieinejad et al.,
2021), or leveraging both labeled and unlabeled data (Wang
& Kerschbaum, 2019). Even if the watermarks appear em-
pirically robust to currently known attacks, stronger attacks
may eventually come along, prompting better watermark
methods (Bansal et al., 2022).

Certified defense techniques guarantee the watermarks to
be unremovable under the watermark removal attacks. In
backdoor-based watermarking, the owner employs a trigger
set of specially chosen images that has disjoint distribution
compared to original dataset. A sufficiently high accuracy
on this trigger set implies the model ownership with high
probability. In other words, the model has a low accuracy
on the trigger set if the watermark is removed. Goldberger
et al. proposed to find the minimal modification required
to remove a watermark in a neural network (Goldberger
et al., 2020). But they did not propose new methods to
embed a watermark that would be more robust. In addi-
tion, their approach is based on solving mixed integer lin-
ear programs and thus does not scale well to larger DNNs.
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Certified Watermarks (Bansal et al., 2022) is the first to
provide a watermark certificate against l2-norm watermark
removal attacks, by leveraging the randomized smooth-
ing techniques (Cohen et al., 2019; Chiang et al., 2020)
for certified robustness to adversarial attacks. The Certi-
fied Watermarks method takes a base trigger set accuracy
function as input, outputs a smooth one by adding random-
ized noise to model parameters, and bounds the worst-case
decrease of the smooth trigger set accuracy function in its
trigger set accuracy, when the adversary is allowed to move
the model parameters within a certain l2-norm ball.

In the field of certified robustness to adversarial attacks,
several recent studies have identified the inapplicability of
randomized smoothing to the certified robustness in high-
dimensional space against lp-norm attacks (p > 2) (Kumar
et al., 2020; Blum et al., 2020; Yang et al., 2020; Mohapa-
tra et al., 2020). Concretely, the largest certified radius rp
by randomized smoothing against lp-norm attacks is pro-
portional to O(1/d

1
2−

1
p ), where d is the input dimension.

It is observed that rp decreases with d when p > 2 and
a special case of p = 2 does not suffer from such depen-
dency on d. We have witnessed many promising random-
ized smoothing methods for certifying l0 (Lee et al., 2019;
Levine & Feizi, 2020), l1 (Lécuyer et al., 2019; Li et al.,
2019; Teng et al., 2019), and l2 robustness (Li et al., 2018;
Cohen et al., 2019; Salman et al., 2019; Zhai et al., 2020;
Levine et al., 2020). However, the randomized smoothing is
incapable of producing large certified radius against lp-norm
attacks for high d and p > 2. In particular, when p → ∞,
O(1/d

1
2−

1
p ) → O(1/

√
d). This results in the failure of

certified robustness against lp adversarial attacks (p > 2)
in high-dimensional space. In the context of certified wa-
termark, the input of randomized smoothing is millions or
billions of model parameters, which has huge dimension d.
Thus, Certified Watermarks (Bansal et al., 2022) based on
the randomized smoothing techniques (Cohen et al., 2019;
Chiang et al., 2020) fails to provide meaningful watermark
certificates in high-dimensional parameter space against the
lp-norm watermark removal attacks (p > 2).

To our best knowledge, this work is the first to leverage
mollifier theory and partial differential equation theory
for conducting the certified watermark problem in high-
dimensional parameter space against the lp-norm watermark
removal attacks (1 ≤ p ≤ ∞) with better applicability.

Based on the mollifier theory, we propose a mollifier smooth-
ing method to solve the certified watermark problem in
high-dimensional parameter space against lp-norm water-
mark removal attacks (1 ≤ p ≤ ∞). It aims to solve an
integral transform problem with the convolution of a base
classifier f(w) with the embedded watermarks and a smooth
mollifier, where w is the model parameter. We theoretically
derive that the Lipschitz constant and certified radius of our

smooth classifier g(w) are independent of the parameter
dimension d and thus g(w) can maintain the high classifica-
tion accuracy on the trigger set (i.e. watermark maintenance)
and provide certified watermark guarantees against lp-norm
adversarial attacks for high d and any p (1 ≤ p ≤ ∞).

In order to retain high-confidence certificates, certifying
the watermarks with the randomized smoothing or mollifier
smoothing method requires to sample massive noise points.
For example, certifying the robustness with 1− α = 99.9%
confidence would require 105 samples in all experiments in
the randomized smoothing paper (Cohen et al., 2019). In
addition, the cost of sampling and prediction over a large
number of points of the input within its neighborhood is
non-trivial. In order to further improve the efficiency of
the certified watermark, based on the partial differential
equation (PDE) theory, we develop an approximation of
our smooth classifier g(w) to avoid time-consuming noise
sampling and integral calculation, while maintaining the
certified watermark unremovable against the lp-norm water-
mark removal attacks (1 ≤ p ≤ ∞).

Empirical evaluation on real datasets demonstrates the su-
perior performance of our mollifier smoothing appproach
against several state-of-the-art empirical and certified de-
fense methods on image classification. In addition, more
experiments, implementation details, and hyperparameter
selection and setting are presented in Appendices A.2-A.4.

2. Background and Problem Statement
2.1. Randomized Smoothing for Certified Robustness

& Certified Watermarks
Randomized smoothing for certified robustness aims to
build a smooth classifier g from a base classifier f that
maps inputs x ∈ Rd to classes c ∈ C.

g(x) = argmax
c∈Y

P
ε∼D

(f(x+ ε) = c) (1)

where D = N
(
0, σ2I

)
is a Gaussian probability distribu-

tion in Rd. g returns whichever class f is most likely to
return when x is perturbed by noise ε.

Let pc(x) be the output probability of f over class c, i.e.,
pc(x) = P

ε∼D
(f(x + ε) = c). Without loss of general-

ity, we assume that pA(x) and pB(x) are the probabili-
ties on the most probable class cA and the runner-up class
cB respectively. If P (f(x+ ε) = cA) ≥ pA ≥ pB ≥
maxc6=cA P(f(x+ ε) = c), where pA(x) is a lower bound
of pA(x) and pB(x) is an upper bound of pB(x), then
g(x + δ) = cA for ∀δ ∈ Rd, ‖δ‖p ≤ rp. In this case,
the smooth classifier g can always output the correct pre-
diction as long as the perturbation δ is within a certified
lp-norm radius of rp for p > 0.
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Theorem 1. Let f : Rd → Y be any deterministic or ran-
dom function, and let ε ∼ N

(
0, σ2I

)
. Let g be defined as

in (1). Suppose cA ∈ Y and pA, pB ∈ [0, 1] satisfy (Cohen
et al., 2019):

P (f(x+ ε) = cA) ≥ pA ≥ pB ≥ max
c6=cA

P(f(x+ ε) = c)

(2)

Then g(x+ δ) = cA for all ‖δ‖2 < R, where

R =
σ

2

(
Φ−1

(
pA
)
− Φ−1 (pB)

)
(3)

where Φ−1 is the inverse of the standard Gaussian CDF.

Several recent studirs report that the largest certified radius
rp by the randomized smoothing against lp-norm threat
model is proportional to O(1/d

1
2−

1
p ), where d is the input

dimension (Kumar et al., 2020; Blum et al., 2020; Yang
et al., 2020; Mohapatra et al., 2020). An explicit upper
bound of rp for a Gaussian distribution with variance σ2 is
given as follows (Kumar et al., 2020).

rp =
σ

2d
1
2
− 1
p

(
Φ−1(pA(x)

)
− Φ−1(pB(x)

))
(4)

where noise σ also serves as a hyperparameter to balance
robustness and accuracy achieved by g.

It is observed that the upper bound of rp decreases with d
when p > 2. This makes the largest radius rp that can be
certified tiny for high d, and thus results in the failure of the
certified robustness against the lp-norm adversarial attacks
(p > 2) in high-dimensional space.

In the context of certified watermark, given a base classifier
f(x,w), where x is the trigger set andw is the model param-
eters with the embedded watermark, x remains constant and
the adversary can change w for watermark removal attacks.
For ease of presentation, we rewrite f(x,w) as f(w) since x
is constant. Randomized smoothing aims to build a smooth
classifier g(w) from f(w) that outputs the probabilities of
data samples on the trigger set x over classes.

Similar to the randomized smoothing for the certified robust-
ness, we have g(w + δ) = g(w) for ∀δ, ‖δ‖p ≤ rp for any
p (1 ≤ p ≤ ∞), where δ denotes the watermark removal
attack. Thus, g(w) can maintain the high accuracy on the
trigger set x against the lp-norm watermark removal attacks
(1 ≤ p ≤ ∞) within a certified radius of rp, guaranteeing
the watermarks to be unremovable under the watermark
removal attacks. However, the hardness of the certified
watermark in high-dimensional space against the lp-norm
watermark removal attacks (p > 2) still remains unsolved.

2.2. Mollifier Theory
In mathematics, mollifiers (also known as approximations
to the identity) are smooth functions with special properties,
which are used to create a sequence of smooth functions
approximating non-smooth (generalized) functions via con-
volution (Friederichs, 1944). More specifically, given a
rather irregular function, by convolving it with a smooth
mollifier, we obtain a smooth function which is close to the
original non-smooth one, such that the sharp features of the
original function are smoothed.
Definition 1. [Vector Space of Differentiable Function]
Let C∞(Rn) denote the set of all infinitely differentiable
functions π : Rn → Rn, then C∞(Rn) is a vector space,
using the usual notions of addition and scalar multiplication
for functions.
Definition 2. [Mollifier] A function ψ(w) ∈ C∞(Rn) for
w ∈ Rn is a mollifier if it satisfies the three conditions:

• ψ(w) is compactly supported;
•
∫
Rn ψ(w)dw = 1;

• lim
σ→0

ψσ(w) = τ(w).

where ψσ(w) = σ−nψ(w/σ) and τ(w) is the Dirac delta
function and the limit must be understood in the space of
Schwartz distributions.

When ψ(w) = µ(|w|) for some infinitely differentiable func-
tion µ : R+ → R, then ψ(w) becomes a radially symmetric
mollifier, i.e., ψ(w1) = ψ(w2) when |w1| = |w2|.
Definition 3. [Mollification] Given a smooth mollifier
ψ(w) ∈ C∞(Rn), a mollification g(w) of a locally inte-
grable function f(w) is defined as the convolution of f(w)
and ψ(w).

g(w) = f(w) ∗ ψσ(w) =

∫
f(u)ψσ(w − u)du (5)

g(w) contains the following three properties:

• g(w) is smooth on C∞(Rn);
• g(w) converges to f(w) when σ → 0, i.e.,

lim
σ→0

g(w) = lim
σ→0

f(w) ∗ ψσ(w) = f(w);

• If f(w) is continuous, then g(w)→ f(w) uniformly
in any compact set when σ → 0.

The mollification is essentially a smoothening operation
from f(w) to g(w): g(w) ∈ C∞(Rn).

The certified watermark problem with mollifier smoothing
is defined as producing a dimension-independent certified
radius by convolving the base classifier with a smooth mol-
lifier, such that the smooth classifier is close to the base one,
for conducting the certified watermark problem against the
lp-norm watermark removal attacks (1 ≤ p ≤ ∞) for high
parameter dimension d.
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3. Mollifier Smoothing for Certified
Watermarks

In order to deal with the dilemma of certified watermarks
in high-dimensional space against the lp-norm watermark
removal attacks (p > 2) by randomized smoothing, the
idea of this paper is to utilize a well-designed mollifier
ψ(w) to get the smooth classifier g(w), i.e., the mollification
of the base classifier f(w), make the Lipschitz constant
of g independent of d, and thus produce the dimension-
independent rp by g. Thus, our mollifier smoothing method
is able to conduct the certified watermark problem against
the lp-norm watermark removal attacks (1 ≤ p ≤ ∞) for
high parameter dimension d.

For the lp-norm watermark removal attacks (1 ≤ p ≤ ∞),
the mollifier ψ(w) for the model parameter w ∈ Rd is
defined below.

ψ(w) = Ke−‖w‖p (6)

where K = 1∫
Rd e
−‖w‖pdw

is a chosen constant such that∫
Rd ψ(w)dw = 1, i.e., the second condition in Definition 2.

We have ψσ(w) = σ−dψ(w/σ) too.

Accordingly, a smooth classifier g(w) is given as follows.

g(w) = f(w) ∗ ψσ(w) (7)

where σ is a hyperparameter to balance certified watermark
robustness and accuracy achieved by our g. When σ →
0, ψσ(w) converges to the Dirac Delta function τ(w) and
thus g(w)→ f(w). According to Theorem 5, the certified
radius rp by g increases with σ, i.e., the certified watermark
robustness increases with σ.

The following theoretical analyses quantify the correctness
and applicability of our mollifier smoothing method for cer-
tified watermark robustness. Definitions 4, 5, and Lemma 1
are the preparation of the theoretical proofs. Lemma 2 and
Theorem 2 validate that lp-norm (1 ≤ p < ∞) is Fréchet
differentiable and derive the upper bound of its Fréchet
derivative. Theorem 3 verifies that lp-norm (p =∞) is one-
sided Gateaux differentiable. Based on the differentiable
properties of lp-norm, Theorem 4 derives the dimension-
independent Lipschitz constant of our smooth classifier g.
Theorem 5 deduces the dimension-independent certified
radius rp by g, according to the Lipschitz constant.
Definition 4. [Fréchet Derivative] Let W and U be two
Banach spaces and F (w) is a function from W to U . F (w)
is Fréchet differentiable at w ∈W if there exists a bounded
linear operator DF : W → U such that

lim
‖h‖W→0

‖F (w + h)− F (w)−DF (w)h‖U
‖h‖W

= 0 (8)

DF (w) is also called the Fréchet derivative of F (w).

Definition 5. [Gateaux Derivative] Let W and U be two
Banach spaces and F (w) is a function from W to U . The
Gateaux derivative DF (w;h) of F (w) at w ∈ W in the
direction h ∈W is defined as

DF (w;h) =
d

dt
F (w + th) = lim

t→0

F (w + th)− F (w)

t
(9)

If the limit exists for all h ∈ W , then F (w) is Gateaux
differentiable at w ∈W .
Lemma 1. If F : W → U is Fréchet differentiable at w,
then F (w) is also Gateaux differentiable at w (Lang, 1995).
In addition,

DF (w;h) = DF (w)h (10)

The Fréchet derivative is used to generalize the derivative
from real-valued functions of a single real variable to func-
tions on Banach spaces. The Gateaux derivative is a gener-
alization of the directional derivative in differential calculus.
Lemma 1 assesses the relationship between the Fréchet
derivative and the Gateaux derivative (Lang, 1995).

For ease of presentation, we use a functionNp(w) to replace
the norm ‖w‖p for model parameter w ∈ Rd, i.e., Np(w) =
‖w‖p (1 ≤ p ≤ ∞).
Lemma 2. The functionNp(w) is Fréchet differentiable for
1 ≤ p <∞ (Bonic & Frampton, 1966). More specifically,

• Np(w) is infinitely many times Fréchet differentiable
when p is even;

• Np(w) is (p− 1)-times Fréchet differentiable when
p is odd.

Theorem 2. ‖DNp(w)‖op ≤ 1 for a function Np(w) with
w ∈ Rd and norm p (1 ≤ p < ∞), where ‖ · ‖op is the
operator norm.
Theorem 3. Let w = (w1, w2, · · · , wd) ∈ Rd with wi > 0
for ∀i, 1 ≤ i ≤ d and w∗ = N∞(w).

• If w∗ = wj (1 ≤ j ≤ d) and w∗ > wi for ∀i, i 6= j,
then

∂N∞(w)

∂wi
=

{
1, if i = j,

0, if i 6= j.
. (11)

Namely, Np(w) is Gateaux differentiable.
• If there exists j 6= k such that w∗ = wj = wk, then

∂N∞(w)

∂wi
= 0 if w∗ 6= wi, (12)

∂N∞(w)

∂w+
i

= 1,
∂N∞(w)

∂w−i
= 0 if w∗ = wi. (13)

where ∂N∞(w)

∂w+
i

and ∂N∞(w)

∂w−i
are the left and right

partial derivatives of N∞(w) at wi respectively. In
this case, Np(w) is one-sided Gateaux differentiable.
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Theorems 2 and 3 verify the differentiability of lp-norm.
Given an arbitrary base classifier f , the following theorem
derives the Lipschitz constant of our smooth classifier g with
mollifier smoothing and demonstrates that the Lipschitz
constant is independent of the parameter dimension d.
Theorem 4. Given a base classifier f with watermark-
embedded model parameter w ∈ Rd and |f(w)| ≤ M ,
the Lipschitz constant of the smooth classifier g for ∀p, 1 ≤
p ≤ ∞ is Mσ−1, i.e.,

|g(w + δ)− g(w)| ≤Mσ−1‖δ‖p (14)

Notice that f(w) outputs the probabilities of samples on the
trigger set over classes. Therefore, there must exist a upper
bound M ≤ 1 such that |f(w)| ≤M ≤ 1.

According to the conclusion of Theorem 4, the following
theorem derives the certified radius rp by our proposed
smooth classifier g and shows that rp is irrelevant to the
parameter dimension d.
Theorem 5. Given a base classifier f with watermark-
embedded model parameter w ∈ Rd, ‖f(w)‖∞ ≤ M ,
and our smooth classifier g with mollifier smoothing, let
pA(w) and pB(w) be the probabilities on the most probable
class cA and the runner-up class cB predicted by f respec-
tively, then g(w + δ) = g(w) for ∀δ, ‖δ‖p ≤ rp for any p
(1 ≤ p ≤ ∞), where

rp =
pA(w)− pB(w)

2
σ (15)

Please refer to Appendix A.1 for detailed proof of Theorems
2-5.

In this case, the smooth classifier g can always output the
correct prediction on the trigger set as long as the perturba-
tion δ (i.e., watermark removal attacks) is within a certified
lp-norm radius of rp for p > 0. Compared with the largest
certified radius rp by the randomized smoothing in Eq.(24),
the largest certified radius rp by our randomized smooth-
ing in Eq.(15) is independent of the parameter dimension d.
This demonstrates that our method provides strong certified
watermark guarantees against lp-norm attacks (1 ≤ p ≤ ∞),
even with large d, when using the same σ to balance robust-
ness and accuracy by the smoothed classifiers.

4. Efficient Approximation of Mollifier
Smoothing

The randomized smoothing method needs to sample and
predict massive points for certifying large radius with high
standard confidence. The cost of a large number of sam-
pling and prediction operations is non-trivial. Our mollifier
smoothing method consists of many integral calculations.
Solving high-dimensional numerical integration has been
notoriously difficult due to the curse of dimensionality (Bell-
man, 1957; Bakhvalov, 1959). In order to further improve

the efficiency of the certified watermark, based on the partial
differential equation (PDE) theory, this paper introduces a
practical algorithm for approximating the mollifier smooth-
ing process in high-dimension space.

The following lemmas and theorem offer the theoretical
foundation of the approximation of our smooth classifier
g. The Green’s second identity captures the relationship
between multiple integrals and line integrals (Strauss, 2007).
We utilize it to translate the computation of difficult multiple
integrals in high-dimensional space into the calculation of
straightforward line integrals. Theorem 6 makes use of
the following two lemmas to eliminate time-consuming
numerical integration and derive the approximation of the
mollifier smoothing.

In mathematics, the Green’s second identity is an identity
in vector calculus relating the bulk with the boundary of a
region on which differential operators act (Strauss, 2007).
Lemma 3. [Green’s second identity] If a and b are both
twice continuously differentiable functions on W ⊂ Rd,
then ∫

U

(a∆b− b∆a)dx =

∮
∂U

(
a
∂b

∂n
− b ∂a

∂n

)
dS (16)

where ∆a = ∂2a
∂x2

1
+ ∂2a

∂x2
2

+ · · · + ∂2a
∂x2
d

is the Laplacian

operator and ∂a
∂n is the directional derivative of a in the

direction of the outward pointing normal n to the surface
element dS (Strauss, 2007).
Definition 6. [Harmonic Function] A function q(w) : Q ⊂
Rd → R is a harmonic function if q(w) is twice continu-
ously differentiable and satisfies Laplace’s equation ∆q = 0.
Namely,

∂2q

∂w2
1

+
∂2q

∂w2
2

+ · · ·+ ∂2q

∂w2
d

= 0 (17)

everywhere on Q (Axler et al., 2001).

Lemma 4. [Mean Value Property of Harmonic Functions]
Let B(w, σ) be a ball centering at x with radius σ in Rd. If
q ∈ C2(Q) and B(w, σ) ⊂ Q, then it holds that

q(w) =
1

ωdσd

∫
B(w,σ)

q(u)du =
1

dωdσd−1

∮
∂B(w,σ)

q(u)dS

(18)

where ωd is the volume of the unit ball in Rd and u is the
(d− 1)-dimensional surface measure (Axler et al., 2001).
By the mean value property of harmonic function, one can
see that, if a function f is harmonic, then f ∗ ψ = f for any
radially symmetric mollifier ψ. In fact∫
f(w − u)ψ(u)du =

∫ ∞
0

∫
∂B(0,r)

f(w − u)ψ(u)dSdr

=

∫ r

0

f(w)ψ(|r|)dr = f(w)

∫ r

0

ψ(|r|)dr = f(w)

(19)
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Table 1: Certified accuracy (%) of embedded content watermark on CIFAR-10 under l2-norm attacks
Noise Level Method/Radius 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

σ = 1.00
Certified Watermarks 80 55 34 19 3 0 0 0

Randomized Smoothing 100 96 35 2 0 0 0 0
Mollifier Smoothing 100 100 100 100 100 54 0 0

σ = 1.25
Certified Watermarks 100 100 100 100 100 54 0 0

Randomized Smoothing 100 100 100 100 100 100 98 80
Mollifier Smoothing 100 100 100 100 100 100 100 100

σ = 1.50
Certified Watermarks 100 100 100 100 98 97 94 89

Randomized Smoothing 100 100 100 100 100 100 100 100
Mollifier Smoothing 100 100 100 100 100 100 100 100

σ = 1.75
Certified Watermarks 100 100 100 100 100 100 100 100

Randomized Smoothing 100 100 100 100 100 100 100 100
Mollifier Smoothing 100 100 100 100 100 100 100 100

Table 2: Certified accuracy (%) of embedded content watermark on CIFAR-10 under l∞-norm attacks

Noise Level Method/Radius 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

σ = 1.00
Certified Watermarks 80 0 0 0 0 0 0 0

Randomized Smoothing 100 0 0 0 0 0 0 0
Mollifier Smoothing 100 100 100 0 0 0 0 0

σ = 1.25
Certified Watermarks 100 0 0 0 0 0 0 0

Randomized Smoothing 100 0 0 0 0 0 0 0
Mollifier Smoothing 100 100 100 100 0 0 0 0

σ = 1.50
Certified Watermarks 100 0 0 0 0 0 0 0

Randomized Smoothing 100 0 0 0 0 0 0 0
Mollifier Smoothing 100 100 100 100 100 9 0 0

σ = 1.75
Certified Watermarks 100 0 0 0 0 0 0 0

Randomized Smoothing 100 0 0 0 0 0 0 0
Mollifier Smoothing 100 100 100 100 100 100 56 0

Eq.(19) implies that if a base classifier f is harmonic, then
the smooth one g is itself. Therefore, it is naturally certified-
watermark robust. We leverage this observation regarding
the mean value property of harmonic function to prove The-
orem 6 and generate a high-quality approximation of our
g.

In this section, we use the following symmetric mollifier
ψ(w) ∈ C∞(Rd) for the approximate mollification ĝ(w) of
a base classifier f(w).

ψ(w) =

{
Ke−1/(1−|w|2), if |w| < 1,

0, if |w| ≥ 1.
(20)

where K = 1∫
Rd ψ(w)dw

is a chosen constant such that∫
Rd ψ(w)dw = 1.

We also have ψσ(w) = σ−dψ(w/σ). For ease of represen-
tation, we use a function µ(|w|) to denote the symmetric
representation of ψσ(w), i.e., ψσ(w) = µ(|w|).
Theorem 6. Assuming that a base classifier f with
watermark-embedded model parameter w ∈ Rd is con-
tinuous everywhere, f(w) is C∞-smooth, and the second
derivatives of f(w) are all zero almost everywhere except
on a measure zero set Γ, where Γ consists of several planes,
then the mollification of f(w)

g(w) =

∫
B(w,σ)

f(u)ψσ(w − u)du (21)

can be approximated as

g(w) ≈ ĝ(w) = dωdσ
d−1ν′(σ)f(w)− ωdσd−1α∇f(w) (22)

where α is a hyperparameter vector that is used to balance
the accuracy of approximation. φσ(w) is the solution of
the Poisson equation ∆φσ(w) = ψσ(w) and ν(|w|) is the
symmetric representation of φσ(w), i.e., φσ(w) = ν(|w|).
Please refer to Appendix A.1 for detailed proof.

Since Eq.(84) and Theorem 6 give an explicit solution of
g(w), this helps avoid time-consuming numerical integra-
tion.

5. Experimental Evaluation
In this section, we have evaluated the empirical and certi-
fied defense of our Mollifier Smoothing model and other
comparison methods against l2, l3, and l∞-norm watermark
removal attacks over three standard image classification
datasets: MNIST (Deng, 2012), CIFAR-10 (Krizhevsky,
2009), and CIFAR-10 (Krizhevsky, 2009). The experiments
exactly follow the same settings described by the original
paper of Certified Watermarks (Bansal et al., 2022). We
train the classifiers on the training set and test them on the
test set for three datasets. We train a convolutional neural
network (CNN) on MNIST for handwritten digit recogni-
tion. We apply ResNet-20 and ResNet-18 over CIFAR-10
and CIFAR-100 for image classification respectively.
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Table 3: Empirical accuracy (%) on CIFAR-10 under
three attack methods

Method/Attack Finetuning Hard-Label Soft-Label
Distillation Distillation

Certified Watermarks 100 98 100
PTYNet 32 68 70

SAC 57 55 0
CosWM 33 55 78

RPV 73 67 100
Watermark Embedding 14 29 81

DeepMarks 71 80 99
NO-stealing-LTH 15 18 31

Mollifier Smoothing 100 100 100

Table 4: Certified accuracy (%) by Mollifier Smoothing variants on
CIFAR-10 under two lp-norm attacks

Watermark Norm Noise Level σ 1.00 1.25 1.50 1.75
Embedded

l2
Mollifier Smoothing-A 100 100 90 56

Content Mollifier Smoothing 100 100 100 100

Noise l2
Mollifier Smoothing-A 100 100 17 92

Mollifier Smoothing 100 100 100 100

Unrelated l2
Mollifier Smoothing-A 100 100 100 97

Mollifier Smoothing 100 100 100 100
Embedded

l∞
Mollifier Smoothing-A 100 99 98 64

Content Mollifier Smoothing 100 100 100 100

Noise l∞
Mollifier Smoothing-A 99 100 79 18

Mollifier Smoothing 100 100 100 100

Unrelated l∞
Mollifier Smoothing-A 100 100 100 96

Mollifier Smoothing 100 100 100 100

Baselines. We compare the Mollifier Smoothing model
with two representative certified defense and seven state-of-
the-art empirical defense models. Randomized Smooth-
ing is the original randomized smoothing method, which
certifies robustness against l2-norm adversarial attacks by
smoothing with the isotropic Gaussian distribution (Cohen
et al., 2019). We modified and applied it to the setting of
certified defense against watermark removal attacks. Certi-
fied Watermarks is the first to provide a certified defense
against l2-norm watermark removal attacks, by leveraging
the randomized smoothing techniques (Cohen et al., 2019;
Chiang et al., 2020) for certified robustness to adversarial
attacks (Bansal et al., 2022). PTYNet is a plug-and-play
watermarking scheme for DNN models by injecting an inde-
pendent proprietary model into the target model to serve the
watermark embedding and ownership verification. (Wang
et al., 2022). SAC is a model stealing detection method
based on SAmple Correlation, by considering the pairwise
relationship between samples (Guan et al., 2022). CosWM
is a watermarking technique named CosWM to achieve
outstanding model watermarking performance against en-
semble distillation by embedding a watermark as a cosine
signal within the output of a teacher model (Charette et al.,
2022). Reducing Parametric Vulnerability (RPV) is a
minimax formulation to find existing watermark-removed
models in the vicinity and recover their watermark behav-
iors (Anonymous, 2023). Watermark Embedding is a
watermark implanting approach to infuse watermark into
deep learning models, and designs a remote verification
mechanism to determine the model ownership (Zhang et al.,
2018). DeepMarks is the first end-to-end collusion-secure
fingerprinting framework that enables the owner to retrieve
model authorship information and identification of unique
users in the context of deep learning (Chen et al., 2019).
NO-stealing-LTH is a mask embedding method to embed
ownership signatures into lottery tickets’ typologies without
much affecting its performance. (Chen et al., 2021a). Ex-
isting efforts focus on certified watermarks against l2-norm
watermark removal attacks. To our best knowledge, this
work is the first to conduct the certified watermark prob-

lem in high-dimensional space against lp-norm watermark
removal attacks (1 ≤ p ≤ ∞).

Attack methods. By following the same options in the
paper of Certified Watermarks (Bansal et al., 2022), we
evaluate the performance of certified watermarks with three
representative watermark attack methods: hard-label distil-
lation, soft-label distillation, and finetuning. Three attack
methods have been shown to be very effective in (Shafieine-
jad et al., 2021; Aiken et al., 2021). In the distillation threat
model, the adversary initializes their watermarking model
with benign model, and then trains their model with dis-
tillation using unlabeled data that comes from the same
distribution. Soft-label distillation takes the probability dis-
tribution of the original model as labels, whereas hard-label
distillation takes only the label with maximum probability.
In the finetuning threat model, the adversary has its own
labeled dataset from the original data-generating distribu-
tion. This adversary is strictly stronger compared to the
distillation threat model.

Variants of Mollifier Smoothing model. We evaluate two
versions of Mollifier Smoothing to show the strengths of
different techniques. Mollifier Smoothing leverages the
mollifier theory and numerical integration for the certified
defense against lp-norm watermark removal attacks. Mol-
lifier Smoothing-A utilizes the PDE theory to generate an
approximation of Mollifier Smoothing with better efficiency.

Evaluation metrics. We use a popular measure in certified
watermark to verify the performance of different methods:
certified accuracy at radius rp (Bansal et al., 2022). It
is defined as the certified accuracy on the trigger set with
watermark removal attacks on the model. We also report
test accuracy (i.e., the accuracy on the test dataset) (Bansal
et al., 2022). A larger certified accuracy or test accuracy
indicates a better result.

Certified accuracy against l2 attacks Table 1 exhibits the
certified accuracy obtained by three certified watermark
methods with varying noise level σ and radius rp based
on the embedded content watermark on CIFAR-10. It is
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(a) Norm p (b) Approx. parameter α

Figure 1: Certified accuracy with varying parameters
observed that among three approaches, no matter how large
the radii are, the Mollifier Smoothing method achieves the
highest certified accuracy in most tests, showing the effec-
tiveness of Mollifier Smoothing to the certified watermark.
Compared to the highest certified accuracy by other certi-
fied watermark methods, Mollifier Smoothing, on average,
achieves at least 10.6% improvement of certified accuracy
on MNIST. In addition, the promising performance of Mol-
lifier Smoothing over MNIST, CIFAR-10, and CIFAR-100
datasets (Please see Appendix A.2 for the experiments on
other datasets) implies that Mollifier Smoothing has great
potential as a general certified watermark solution to other
image datasets, which is desirable in practice.

Certified accuracy against l∞ attacks. Table 2 show the
certified accuracy against l∞ attacks by varying rp and σ
respectively. We have observed Mollifier Smoothing sub-
stantially improves the certified accuracy, but the certified
accuracy of most baseline methods quickly drop to zero.
This demonstrates that the randomized smoothing methods
are hard to achieve very promising certified accuracy against
large-norm attacks. In addition, the certified accuracy by
our Mollifier Smoothing is less sensitive to the radius. This
shows that our mollifier smoothing method can certify the
watermark in both high and low-dimensional space against
large-norm attacks.

Empirical accuracy against watermark removal attacks.
Table 3 presents the empirical accuracy with two certified
defense and seven empirical defense approaches against
three watermark removal attacks of hard-label distillation,
soft-label distillation, and finetuning. It is obvious that
Mollifier Smoothing achieves the highest empirical accuracy
(100%), which is much better than the other eight methods
under all three attack methods in most tests. Especially, on
the CIFAR-100 dataset, our Mollifier Smoothing method
significantly outperforms Certified Watermarks on MNIST
in Table 32. This demonstrates the superior performance of
our Mollifier Smoothing method in both certified defense
and empirical defense.

Ablation study. Table 4 exhibits the certified accuracy
by two variants of the Mollifier Smoothing model with
varying noise level on CIFAR-10 against l2 and l∞ attacks.

Table 5: Runtime (seconds) of Certified Watermark

Method/Dataset MNIST CIFAR-10 CIFAR-100
Randomized Smoothing 208 2,200 2,503

Certified Watermark 294 347 443
Mollifier Smoothing 206 400 451

Mollifier Smoothing-A 45 150 343

We have observed the exact Mollifier Smoothing achieves
the highest certified accuracy (100%) for three watermark
schemes, while Mollifier Smoothing-A also obtains good
performance. This shows Mollifier Smoothing-A utilize the
partial differential equation theory to generate an approxi-
mation of Mollifier Smoothing with better efficiency while
maintaining the quality.

Impact of norm p and approximation parameter α. Fig-
ures 1 (a) and (b) measure the performance effect of p
and α in the certified accuracy of our Mollifier Smooth-
ing model. It is observed that when increasing p and α,
the certified accuracy of the Mollifier Smoothing model
keeps relatively stable. This demonstrates that our mollifier
smoothing method derives a dimension/norm-independent
certified watermark solution, such that it can certify the
watermarks against lp-norm watermark removal attacks for
large d and any p. α is used to balance the the accuracy
of approximation in the Mollifier Smoothing-A model. A
reasonable explanation is that α is associated with ∇f(w)
in the second term Eq.(22), instead of f(w) itself. However,
f(w) is often larger than ∇f(w) in most cases. This sub-
stantially decreases the impact of α towards the certified
robustness by Mollifier Smoothing-A.

Running time. Table 5 reports the running time achieved
by two comparison methods and two versions of our Mol-
lifier Smoothing over three datasets respectively. Molli-
fier Smoothing scales well with different image datasets
and shows good efficiency for certified watermarks. No-
tice that Mollifier Smoothing is comparable to the Certi-
fied Watermarks method but achieves significantly better
accuracy than the latter. In addition, Mollifier Smoothing-
A performs the best in all experiments. A reasonable ex-
planation is that Mollifier Smoothing-A is able to directly
generate a smooth classifier without time-consuming noise
sampling and integral calculation.

6. Related Work
Watermark Removal Attacks. Trustworthy ma-
chine learning has attracted active research in recent
years (Palanisamy et al., 2018; Zhou et al., 2020; Zhang
et al., 2020; Wu et al., 2021; Zhou et al., 2021; Zhao et al.,
2021; Ren et al., 2021; Zhang et al., 2021c;b;a; Liu et al.,
2022a; Zhou et al., 2022; Jin et al., 2022b; Zhang et al.,
2022; Jin et al., 2022a; Su et al., 2013; Zhou & Liu, 2013;
Su et al., 2015; Bao et al., 2015; Zhou et al., 2015; Zhou,
2017; Zhou et al., 2018b;a; Zhou & Liu, 2019). Water-
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marking techniques are proposed to protect the intellectual
property of machine learning models. Adversaries attempt
to subvert watermarking mechanisms by designing water-
mark removal attacks, which have attracted active research
in recent years. Two recent works show that by adding
regularization, fine-tuning and pruning, their watermarks
can be removed without compromising the prediction accu-
racy of the stolen model (Aiken et al., 2021; Shafieinejad
et al., 2021). A recent study show that the watermark signals
embedded by (Uchida et al., 2017) can be easily detected
and overwritten (Wang & Kerschbaum, 2019). Yang et al.
proposed a distillation attack technique to remove water-
mark embedded by existing algorithms (Yang et al., 2019).
WILD is a backdoor-based watermark removal framework
using only a small portion of training data (Liu et al., 2020).
REFIT is a unified watermark removal framework based
on fine-tuning, which is agnostic to watermark embedding
schemes (Chen et al., 2021b). Guo et al. designed a sim-
ple yet powerful transformation algorithm by combining
imperceptible pattern embedding and spatial-level trans-
formations, which can effectively and blindly destroy the
memorization of watermarked mod- els to the watermark
samples (Guo et al., 2021). Attention Distraction is a source
data-free watermark removal attack, to make the model se-
lectively forget the embedded watermarks by customizing
continual learning (Zhong et al., 2022). Yan et al. presentED
an effective removal attack which cracks almost all the exist-
ing white-box watermarking schemes with provably no per-
formance overhead and no required prior knowledge (Yan
et al., 2022).

Defense against Watermark Removal Attacks. Existing
techniques on robust watermarking can be broadly classified
into two categories below.

(1) Empirical Defenses. Empirical defense is gaining at-
tention in recent years (Tartaglione et al., 2020; Sun et al.,
2021). Several early works have been proposed for building
empirically robust watermarking models that are resistant
to watermark removal attacks, such as fine-tuning (Uchida
et al., 2017; Zhang et al., 2018; Adi et al., 2018; Rouhani
et al., 2019). Namba and Sakuma proposed a novel robust
watermark method for neural networks that resists against
both model modification and query modification (Namba &
Sakuma, 2019). RIGA is a white-box watermarking algo-
rithm whose watermark extracting function is also a DNN
and which is trained using an adversarial network (Wang
& Kerschbaum, 2021). Yang et al. proposed a bi-level
optimization framework that optimizes the robustness of
the embedded watermarks (Yang et al., 2021). Characteris-
tic Examples effectively fingerprint deep neural networks,
featuring high-robustness to the base model against model
pruning as well as low-transferability (Wang et al., 2021).
Watermark Vaccine is a novel defense mechanism by inject-
ing a watermark-agnostic perturbation on host images before

adding watermark just like vaccination in reality (Liu et al.,
2022b). PMI is a pooled membership inference technique
to modify the DNN parameters through an imperceptible
way, which increases the difficulty of locating and further re-
moving the watermark (Wu, 2022). TATTOOED is a robust
and efficient DNN watermarking technique based on spread-
spectrum channel coding against watermark removals (Pag-
notta et al., 2022). RPV is a minimax formulation to find
existing watermark-removed models in the vicinity and re-
cover their watermark behaviors (Anonymous, 2023).

(2) Certified Defenses. Certified defense techniques pro-
vide guarantees that the watermark is guaranteed to be unre-
movable under the watermark removal attacks. Goldberger
et al. proposed to find the minimal modification required to
remove watermark in a neural network (Goldberger et al.,
2020). They did not propose methods to embed a water-
mark that would be more resilient, rather they simply find
the minimal change required to remove a watermark. In
addition, their approach is based on solving mixed integer
linear programs and thus does not scale well to larger net-
works. Certified Watermarks (Bansal et al., 2022) is the first
to provide a certified defense against l2-norm watermark
removal attacks, by leveraging the randomized smoothing
techniques (Cohen et al., 2019; Chiang et al., 2020) for certi-
fied robustness to adversarial attacks. As shown in the above
analysis of randomized smoothing for certified robustness,
the randomized smoothing methods suffer from hardness
of certified robustness in high-dimensional space against
lp-norm attacks (p > 2), especially l∞-norm attacks. Thus,
Certified Watermarks based on the randomized smoothing
techniques fails to provide a meaningful certificate in high-
dimensional space against the lp-norm watermark removal
attacks (p > 2).

To our best knowledge, this work is the first to leverage
mollifier theory and partial differential equation theory
for conducting the certified watermark problem in high-
dimensional parameter space against the lp-norm watermark
removal attacks (1 ≤ p ≤ ∞) with better applicability.

7. Conclusions
In this work, we have studied the certified watermark prob-
lem against lp-norm watermark removal attacks (1 ≤ p ≤
∞) for high d. First, we proposed a mollifier smooth-
ing method to certify the watermarks against lp-norm at-
tacks, with the dimension-independent Lipschitz constant
of the proposed smooth classifier. Second, we developed
an approximation of mollifier smoothing for avoiding time-
consuming noise sampling and numerical integration. Fi-
nally, our mollifier smoothing model achieves superior cer-
tified watermark performance against several representative
algorithms, in terms of both effectiveness and efficiency.
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A. Appendix
A.1. Proof of Theorems

Theorem 1. Let f : Rd → Y be any deterministic or random function, and let ε ∼ N
(
0, σ2I

)
. Let g be defined as in (1).

Suppose cA ∈ Y and pA, pB ∈ [0, 1] satisfy:

P (f(x+ ε) = cA) ≥ pA ≥ pB ≥ max
c6=cA

P(f(x+ ε) = c) (23)

Then g(x+ δ) = cA for all ‖δ‖2 < R, where

R =
σ

2

(
Φ−1

(
pA
)
− Φ−1 (pB)

)
(24)

Proof. Please refer to the paper (Cohen et al., 2019) for detailed proof.

Lemma 1. If F : W → U is Fréchet differentiable at w, then F (w) is also Gateaux differentiable at w. In addition,
DF (w;h) = DF (w)h (25)

Proof. Please refer to the book (Lang, 1995) for detailed proof.

Lemma 2. The function Np(w) is Fréchet differentiable for 1 ≤ p <∞. More specifically,

• Np(w) is infinitely many times Fréchet differentiable when p is even;

• Np(w) is (p− 1)-times Fréchet differentiable when p is odd.

Proof. Please refer to the paper (Bonic & Frampton, 1966) for detailed proof.

Theorem 2. ‖DNp(w)‖op ≤ 1 for a function Np(w) with w ∈ Rd and norm p (1 ≤ p <∞), where ‖ · ‖op is the operator
norm.

Proof. According to the conclusion of Lemma 2, Np(w) is Fréchet differentiable for 1 ≤ p <∞. Based on the definition of
the Fréchet derivative, when ‖h‖p → 0, we have

|Np(w + h)−Np(w)−DNp(w)h|
‖h‖p

= 0 (26)

In terms of the reverse triangle inequality of lp norm, we get

|Np(w + h)−Np(w)| ≤ ‖h‖p (27)

Without loss of generality, we assume that h̄ is a direction such that ‖DNp(w)‖op achieves its operator norm, i.e.,

‖DNp(w)‖op = sup
h∈Rd

‖DNp(w)h‖p
‖h‖p

=
|DNp(w)h̄|
‖h̄‖p

(28)

Notice the linearity of DNp(w), we have

|DNp(w)h̄|
‖h̄‖p

=
|DNp(w)λh̄|
‖λh̄‖p

for any scalarλ > 0 (29)

Therefore, we can always select a small enough λ such that ‖λh̄‖p is arbitrarily small. We replace h in Eq.(26) with λh̄ and
use the reverse triangle inequality of lp norm to get

‖DNp(w)‖op =
|DNp(w)λh̄|
‖λh̄‖p

≤ |Np(w + λh̄)−Np(w)|
‖λh̄‖p

≤ 1 (30)

Thus, the proof is concluded.

Theorem 3. Let w = (w1, w2, · · · , wd) ∈ Rd with wi > 0 for ∀i, 1 ≤ i ≤ d and w∗ = N∞(w).
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• If w∗ = wj (1 ≤ j ≤ d) and w∗ > wi for ∀i, i 6= j, then

∂N∞(w)

∂wi
=

{
1, if i = j,

0, if i 6= j.
. (31)

Namely, Np(w) is Gateaux differentiable.
• If there exists j 6= k such that w∗ = wj = wk, then

∂N∞(w)

∂wi
= 0 if w∗ 6= wi, (32)

∂N∞(w)

∂w+
i

= 1,
∂N∞(w)

∂w−i
= 0 if w∗ = wi. (33)

where ∂N∞(w)

∂w+
i

and ∂N∞(w)

∂w−i
are the left and right partial derivatives of N∞(w) at wi respectively. In this case,

Np(w) is one-sided Gateaux differentiable.

Proof. The proof of this theorem can be divided into two cases.

• If w∗ = wj (1 ≤ j ≤ d) and w∗ > wi for ∀i, i 6= j, let {ej}dj=1 be the standard basis of Rd.

In terms of the definition of Gateaux Derivative in Eq.(9), we have
∂N∞(w)

∂wj
= lim
t→0

N∞(w + tej)− w∗

t
(34)

Since N∞(w) = w∗ = wj , N∞(w + tej) = w∗ + t for i = j and N∞(w + tei) = w∗ for i 6= j when |t| is sufficiently
small. This implies Eq.(31).

• If there exists j 6= k such that w∗ = wj = wk, when wi 6= w∗, we have

∂N∞(w)

∂wi
= 0 if w∗ 6= wi, (35)

by following the above same proof method.

When wi = w∗ = wj = wk, it is clear that N∞(w + tei) = w∗ + t for t > 0 and N∞(w + tei) = w∗ for t < 0. Then the
desired results is directly derived.

∂N∞(w)

∂w+
i

= 1,
∂N∞(w)

∂w−i
= 0 if w∗ = wi. (36)

Theorem 4. Given a base classifier f with watermark-embedded model parameter w ∈ Rd and |f(w)| ≤M , the Lipschitz
constant of the smooth classifier g for ∀p, 1 ≤ p ≤ ∞ is Mσ−1, i.e.,

|g(w + δ)− g(w)| ≤Mσ−1‖δ‖p (37)

Proof. The proof of this theorem can be divided into two cases: 1 ≤ p <∞ and p =∞.

• If 1 ≤ p <∞, then we have

|g(w + δ)− g(w)| ≤
∫
Rd
|f(u)||ψσ(w + δ − u)− ψσ(w − u)|du

≤‖f(w)‖∞
∫
Rd
|ψσ(w + δ − u)− ψσ(w − u)|du

≤‖f(w)‖∞
∫
Rd
|ψσ(δ − u)− ψσ(−u)|du

≤M
∫
Rd
|ψσ(δ − u)− ψσ(−u)|du

(38)
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Notice that

ψσ(δ − u)− ψσ(−u) =

∫ 1

0

d

dt
ψσ(tδ − u)dt (39)

Based on the Fubini’s theorem, we have

∫
Rd
|ψσ(δ − u)− ψσ(−u)|du =

∫
Rd

∣∣∣ ∫ 1

0

d

dt
ψσ(tδ − u)dt

∣∣∣du
≤
∫
Rd

∫ 1

0

∣∣ d
dt
ψσ(tδ − u)

∣∣dtdu
=

∫ 1

0

∫
Rd

∣∣ d
dt
ψσ(tδ − u)

∣∣dudt
(40)

In terms of Definition 5 and Lemma 1, we have
d

dt
Np(tδ − u) = DNp(−u)δ (41)

and

|DNp(tδ − u)δ| ≤ ‖DNp(tδ − u)‖‖δ‖p (42)

where DNp is the Fréchet derivative of Np.

Based on the conclusion of Theorem 2, we get ∣∣ d
dt
Np(tδ − u)

∣∣ ≤ ‖δ‖p (43)

Now, we compute

∫
Rd

∣∣ d
dt
ψσ(tδ − u)

∣∣du =σ−d−1K

∫
Rd
e−‖tδ−u‖p/σ

∣∣ d
dt
Np(tδ − u)

∣∣du
≤σ−d−1K‖δ‖p

∫
Rd
e−‖tδ−u‖p/σdu

=σ−d−1K‖δ‖p
∫
Rd
e−‖u‖p/σdu

(44)

According to the definition of Mollifier in Definition 2 and Eq.(6), we get

σ−dK

∫
Rd
e−‖u‖∞/σdu = 1 (45)

Thus, we have ∫
Rd

∣∣ d
dt
ψσ(tδ − u)

∣∣du ≤ σ−1‖δ‖p (46)

In conclusion, we get

|g(w + δ)− g(w)| ≤Mσ−1‖δ‖p (47)

• If p =∞, then the above proof method can not be directly applied.

According to the conclusion of Theorem 3, lp-norm (p =∞) not always Gateaux differentiable if there exists j 6= k such
that w∗ = wj = wk. However, the set contains all such points wj , wk, and so on is a measure zero set, on which the integral
is equal to zero.

Based on the above observation, we derive the conclusion of this case.

Concretely, let

A = {w = (w1, · · · , wd) : ∃i 6= j, w∗ = N∞(w) = wi = wj} (48)

and

17



Dimension-independent Certified Neural Network Watermarks via Mollifier Smoothing

B =
⋃

i,j∈Rd,i 6=j

{w = (w1, · · · , wd) : wi = wj} (49)

It is clear that

A ⊂ B (50)

It is obvious that the set {w = (w1, · · · , wd) : i 6= j, wi = wj} has dimension d− 1. Hence it is a measure zero set. Since
the union of finitely many measure zero sets is still a measure zero set, B is a measure zero set too. This implies A is also
measured zero. Thus, we divide the integral into the one on the measure zero set A and another one on Rd −A.

|g(w + δ)− g(w)| ≤M
∫
Rd
|ψσ(δ − u)− ψσ(−u)|du

=M

∫
Rd−A

|ψσ(δ − u)− ψσ(−u)|du+M

∫
A

|ψσ(δ − u)− ψσ(−u)|du

=I + II = I + 0 = I

(51)

Since A is a measure zero set, the integral on A is equal to zero, i.e., II = 0.

Again, we have

ψσ(δ − u)− ψσ(−u) =

∫ 1

0

d

dt
ψσ(tδ − u)dt (52)

It is obvious that for any u ∈ Rd −A, there exists at most finitely many values t ∈ [0, 1], such that tδ − u ∈ A, denote them
by 0 = t0 < t1 < t2 < · · · < tk ≤ tk+1 = 1, where k is an integer.

The above integral is improper since the integrand is not defined at t1, · · · , tk, and it is integrable in the standard improper
integral sense.

ψσ(δ − u)− ψσ(−u) =

k∑
i=0

ψσ(ti+1δ − u)− ψσ(tiδ − u)

=

k∑
i=0

∫ ti+1

ti

d

dt
ψσ(tδ − u)dt

(53)

where each improper integral in the summation is defined in the standard limiting sense.

Based on the conclusion of Theorem 3, we get∣∣ d
dt
N∞(tδ − u)

∣∣ ≤ ‖δ‖∞ for any tδ − u ∈ Rd −A (54)

Now, we compute

∫
Rd−A

|ψσ(δ − u)− ψσ(−u)|du =

∫
Rd−A

∣∣ k∑
i=0

∫ ti+1

ti

d

dt
ψσ(tδ − u)dt

∣∣du
≤σ−d−1K

∫
Rd−A

‖δ‖∞
k∑
i=0

∫ ti+1

ti

e−‖tδ−u‖∞/σdtdu

=σ−d−1K‖δ‖∞
∫
Rd−A

∫ 1

0

e−‖tδ−u‖∞/σdtdu

≤σ−d−1K‖δ‖∞
∫
Rd

∫ 1

0

e−‖tδ−u‖∞/σdtdu

=σ−d−1K‖δ‖∞
∫ 1

0

∫
Rd
e−‖u‖∞/σdudt

=σ−1‖δ‖∞

(55)

Therefore, the proof is concluded.
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Theorem 5. Given a base classifier f with watermark-embedded model parameter w ∈ Rd, ‖f(w)‖∞ ≤ M , and our
smooth classifier g with mollifier smoothing, let pA(w) and pB(w) be the probabilities on the most probable class cA and
the runner-up class cB predicted by f respectively, then g(w+ δ) = g(w) for ∀δ, ‖δ‖p ≤ rp for any p (1 ≤ p ≤ ∞), where

rp =
pA(x)− pB(x)

2
σ (56)

Proof. According to the conclusion of Theorem 4, we have |g(x+ δ)− g(x)| ≤Mσ−1‖δ‖p.

Notice that f(w) outputs the probabilities of samples on the trigger set over classes. Therefore, ‖f(x)‖∞ ≤M ≤ 1 and we
get

|g(x+ δ)− g(x)| ≤ σ−1‖δ‖p (57)

Thus, we have

pA(x+ δ) ≥ pA(x)− σ−1‖δ‖p (58)

and

pB(x+ δ) ≤ pB(x) + σ−1‖δ‖p (59)

where pA(x+ δ) and pB(x+ δ) represent the probabilities predicted by g(x+ δ) on cA and cB respectively.

If pA(x+δ) ≥ pA(x)−σ−1‖δ‖p ≥ pB(x)+σ−1‖δ‖p ≥ pB(x+δ), then g(x+δ) = cA for ∀δ ∈ Rd, ‖δ‖p ≤ pA(x)−pB(x)
2 σ.

Therefore,

rp =
pA(x)− pB(x)

2
σ (60)

Lemma 3. [Green’s second identity] If a and b are both twice continuously differentiable functions on W ⊂ Rd, then∫
U

(a∆b− b∆a)dx =

∮
∂U

(
a
∂b

∂n
− b ∂a

∂n

)
dS (61)

where ∆a = ∂2a
∂x2

1
+ ∂2a

∂x2
2

+ · · ·+ ∂2a
∂x2
d

is the Laplacian operator and ∂a
∂n is the directional derivative of a in the direction of

the outward pointing normal n to the surface element dS.

Proof. Please refer to the book (Strauss, 2007) for detailed proof.

Lemma 4. [Mean Value Property of Harmonic Functions] Let B(w, σ) be a ball centering at x with radius σ in Rd. If
q ∈ C2(Q) and B(w, σ) ⊂ Q, then it holds that

q(w) =
1

ωdσd

∫
B(w,σ)

q(u)du =
1

dωdσd−1

∮
∂B(w,σ)

q(u)dS (62)

where ωd is the volume of the unit ball in Rd and u is the (d− 1)-dimensional surface measure.

Proof. Please refer to the book (Axler et al., 2001) for detailed proof.

Theorem 6. Assuming that a base classifier f with watermark-embedded model parameterw ∈ Rd is continuous everywhere,
f(w) is C∞-smooth, and the second derivatives of f(w) are all zero almost everywhere except on a measure zero set Γ,
where Γ consists of several planes, then the mollification of f(w)

g(w) =

∫
B(w,σ)

f(u)ψσ(w − u)du (63)

can be approximated as

g(w) ≈ ĝ(w) = dωdσ
d−1ν′(σ)f(w)− ωdσd−1α∇f(w) (64)

where α is a hyperparameter vector that is used to balance the accuracy of approximation. φσ(w) is the solution of the
Poisson equation ∆φσ(w) = ψσ(w) and ν(|w|) is the symmetric representation of φσ(w), i.e., φσ(w) = ν(|w|).

Proof. Since φσ(w) is radially symmetric and φσ(w) = ν(|w|), ψσ(w) is also radially symmetric and ψσ(w) = µ(|w|) and
we have
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d− 1

r
ν′(r) + ν′′(r) = ψσ(|r|), for ν(r)→ 0 as r →∞ (65)

We use set Γ to divide B(w, σ) into multiple subsets:

B(w, σ) =
⋃
i

Ωi (66)

such that the second derivatives of f(w) are 0 in each Ωi.

We define another set Γw as follows.

Γw = Γ ∩B(w, σ) =
∑
j

Γjw (67)

We also define the following symbol
∮

Γj,+,−w

∂z
∂ndS as the summation of surface integrals (flux) of a function z in two normal

directions on Γjw. ∮
Γ
j,+,−
w

∂z

∂n
dS =

∮
Γ
j,+
w

∂z

∂n
dS +

∮
Γ
j,−
w

∂z

∂n
dS (68)

Then we let ∮
Γ
+,−
w

∂z

∂n
dS =

∑
j

∮
Γ
j,+,−
w

∂z

∂n
dS (69)

By using Green’s second identity, we compute

g(w) =

∫
B(w,σ)

f(u)ψσ(w − u)du

=
∑
i

∫
Ωi

f(u)∆φσ(w − u)du

=
∑
i

∫
Ωi

∆f(u)φσ(w − u)du+
∑
i

∮
∂Ωi

f(u)
∂φσ
∂n

(w − u)dS −
∑
i

∮
∂Ωi

φσ(w − u)
∂f

∂n
(u)dS

=
(∮

∂B(w,σ)

+

∮
Γ
+,−
w

)
f(u)

∂φσ
∂n

(w − u)dS −
(∮

∂B(w,σ)

+

∮
Γ
+,−
w

)
φσ(w − u)

∂f

∂n
(u)dS

=I + II + III + IV

(70)

Notice that
∑
i

∫
Ωi

∆f(u)φσ(w − u)du = 0 since the second derivatives of f(w) are all zero almost everywhere, i.e.,
∆f = 0 in Ωi.

Term II: Since f(w) is continuous everywhere, it is clear that

II =

∮
Γ
+,−
w

f(u)
∂φσ
∂n

(w − u)dS = 0 (71)

Term I: Since φσ(w) is radially symmetric and φσ(w) = ν(|w|), on the sphere ∂B(w, σ), we have

∂φσ
∂n

(u) = ∇φσ(u) · u|u| (72)

Since φσ(w) = V (|w|), we get

∇φσ(u) = ν′(|u|) u|u| (73)

Therefore, for u ∈ ∂B(w, σ), we have

∂φσ
∂n

(u) = ν′(σ) (74)

Hence, I is rewritten as follows.
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I =

∮
∂B(w,σ)

f(u)
∂φσ
∂n

(w − u)dS =ν′(σ)

∮
∂B(w,σ)

f(u)dS

=dωdσ
d−1ν′(σ)f(w) + ν′(σ)

∮
∂B(w,σ)

f(u)− f(w)dS

(75)

Notice that

f(u)− f(w) =

∫ 1

0

∇f(w + τ(u− w)) · (u− w)dτ (76)

By utilizing the Fubini’s theorem, we compute

∮
∂B(w,σ)

f(u)− f(w)dS =

∮
∂B(w,σ)

∫ 1

0

∇f(w + τ(u− w)) · (u− w)dτdS

=σ

∫ 1

0

∮
∂B(w,σ)

∂f(w + τ(u− w))

∂n
dSdτ

(77)

By employing the Divergence theorem, we have

∫ 1

0

∮
∂B(w,σ)

∂f(w + τ(u− w))

∂n
dSdτ

=

∫ 1

0

∫
B(w,σ)

∆f(w + τ(u− w))dudτ −
∫ 1

0

∫
Γ
+,−
w,τ

∂f(w + τ(u− w))

∂n
dSdτ

=−
∫ 1

0

∫
Γ
+,−
w,τ

∂f(w + τ(u− w))

∂n
dSdτ

(78)

where Γw,τ = Γ ∩B(w, τσ) and
∫

Γ+,−
w,τ

is defined similarly to
∫

Γ+,−
w

.

By combining the above all formulae together, we have

I = dωdσ
d−1ν′(σ)f(w)− σν′(σ)

∫ 1

0

∫
Γ
+,−
w,τ

∂f(w + τ(u− w))

∂n
dSdτ (79)

Term III: By using Divergence Theorem, we have

III =−
∮
∂B(w,σ)

φσ(w − u)
∂f

∂n
(u)dS

=− ν(σ)

∫
B(w,σ)

∆f(w − u)du+ ν(σ)

∫
Γ
+,−
w

∂f(u)

∂n
dS

=ν(σ)

∫
Γ
+,−
w

∂f(u)

∂n
dS

(80)

Term IV:

IV = −
∮

Γ
+,−
w

φσ(w − u)
∂f(u)

∂n
dS (81)

Common Term
∫

Γ+,−
w

∂f(u)
∂n dS in Eqs.(79)-(81): Since the second derivatives of f(w) are zero in each Ωi, ∇f(ua) is a

constant vector in each Ωi. In addition, as Γi is a plane, its normal vector is also a constant vector. Therefore,∮
Γ
i,+
w

∂f(u)

∂n
dS = Area(Γiw)∇f(ui,+) · ni,+ (82)
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where ui,+ is any point in on Γiw and ni,+ is the normal vector. Similar identity holds for integrals on Γi,−B .

To get a reasonable approximation, we use∇f(w) to approximate all ∇f(ui,+,−). Since Γiw has a scale ωdσd−1, we have

∮
Γ
+,−
w

∂f(u)

∂n
dS ≈ ωdσd−1∇f(w)β (83)

where β ∈ Rd is a constant.

Since the second term in I in Eq.(79), III in Eq.(80), and IV in Eq.(81) contain this common term
∫

Γ+,−
w

∂f(u)
∂n dS, we use

the same method in Eq.(83) to estimate it. In addition, as all other factors in the second term in I in Eq.(79), III in Eq.(80),
and IV are irrelevant to the corresponding integrals and thus can be treated as constants.

Therefore, we obtain the following approximation of g(w).

g(w) ≈ ĝ(w) = dωdσ
d−1ν′(σ)f(w)− ωdσd−1α∇f(w) (84)

where α is a parameter that aggregates β in Eq.(83) and all other factors in the second term in I in Eq.(79), III in Eq.(80),
and IV that are irrelevant to the integrals.

Therefore, the proof is concluded.

A.2. Additional Experiments

Watermark schemes. By following the same options in two representative watermark papers (Zhang et al., 2018; Bansal
et al., 2022), we use three watermark schemes to produce the trigger sets: images with embedded content (superimposed
text), images with random noise, or images from an unrelated dataset (CIFAR-10 for MNIST and vice versa). While we
generated certificates for all three schemes, we focus on embedded content watermark for empirical persistency evaluation.

Certified accuracy against l2, l3, and l∞ attacks. Tables 6-30 exhibit the certified accuracy of three watermark schemes
obtained by three certified watermark methods with varying noise level σ and radius rp on three datasets. Similar trends
are observed for the certified accuracy comparison in these tables: our Mollifier Smoothing method achieves the highest
certified accuracy values against l2, l3, and l∞ attacks on MNIST, CIFAR-10, and CIFAR-100, which are much better
than other baseline methods in most tests. Notice that especially the noise level σ is very high or the norm p > 2, such as
1.75 and p > 3 or p > ∞, our Mollifier Smoothing method can achieve sustainable certified accuracy improvement. It
demonstrates that Mollifier Smoothing is relatively robust to both l2, l3, and l∞ watermark removal attacks. This advantage
is very important for the usage of deep learning models in the scenarios of intellectual property protection.

Table 6: Certified accuracy (%) of noise watermark on CIFAR-10 under l2-norm attacks

Noise Level Method/Radius 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

σ = 1.00
Certified Watermarks 88 38 5 0 0 0 0 0

Randomized Smoothing 55 3 0 0 0 0 0 0
Mollifier Smoothing 100 100 100 100 100 2 0 0

σ = 1.25
Certified Watermarks 100 100 100 92 63 27 5 0

Randomized Smoothing 100 100 100 100 92 60 4 0
Mollifier Smoothing 100 100 100 100 100 100 100 45

σ = 1.50
Certified Watermarks 100 100 100 100 100 100 100 100

Randomized Smoothing 100 100 100 100 100 100 100 100
Mollifier Smoothing 100 100 100 100 100 100 100 100

σ = 1.75
Certified Watermarks 100 100 100 100 100 100 100 100

Randomized Smoothing 100 100 100 100 100 100 100 100
Mollifier Smoothing 100 100 100 100 100 100 100 100
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Table 7: Certified accuracy (%) of unrelated watermark on CIFAR-10 under l2-norm attacks

Noise Level Method/Radius 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

σ = 1.00
Certified Watermarks 31 13 2 0 0 0 0 0

Randomized Smoothing 16 0 0 0 0 0 0 0
Mollifier Smoothing 100 100 100 100 98 0 0 0

σ = 1.25
Certified Watermarks 100 97 77 59 23 11 2 0

Randomized Smoothing 100 100 100 100 99 69 22 1
Mollifier Smoothing 100 100 100 100 100 100 100 59

σ = 1.50
Certified Watermarks 100 100 100 100 100 100 100 100

Randomized Smoothing 100 100 100 100 100 100 100 100
Mollifier Smoothing 100 100 100 100 100 100 100 100

σ = 1.75
Certified Watermarks 100 100 100 100 100 100 100 100

Randomized Smoothing 100 100 100 100 100 100 100 100
Mollifier Smoothing 100 100 100 100 100 100 100 100

Table 8: Certified accuracy (%) of embedded content watermark on CIFAR-10 under l3-norm attacks

Noise Level Method/Radius 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

σ = 1.00
Certified Watermarks 80 0 0 0 0 0 0 0

Randomized Smoothing 100 0 0 0 0 0 0 0
Mollifier Smoothing 100 100 100 0 0 0 0 0

σ = 1.25
Certified Watermarks 100 0 0 0 0 0 0 0

Randomized Smoothing 100 0 0 0 0 0 0 0
Mollifier Smoothing 100 100 100 100 2 0 0 0

σ = 1.50
Certified Watermarks 100 2 0 0 0 0 0 0

Randomized Smoothing 100 0 0 0 0 0 0 0
Mollifier Smoothing 100 100 100 100 100 6 0 0

σ = 1.75
Certified Watermarks 100 100 0 0 0 0 0 0

Randomized Smoothing 100 96 0 0 0 0 0 0
Mollifier Smoothing 100 100 100 100 100 100 51 0

Table 9: Certified accuracy (%) of noise watermark on CIFAR-10 under l3-norm attacks

Noise Level Method/Radius 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

σ = 1.00
Certified Watermarks 88 0 0 0 0 0 0 0

Randomized Smoothing 55 0 0 0 0 0 0 0
Mollifier Smoothing 100 100 100 0 0 0 0 0

σ = 1.25
Certified Watermarks 100 0 0 0 0 0 0 0

Randomized Smoothing 100 0 0 0 0 0 0 0
Mollifier Smoothing 100 100 100 100 0 0 0 0

σ = 1.50
Certified Watermarks 100 0 0 0 0 0 0 0

Randomized Smoothing 100 0 0 0 0 0 0 0
Mollifier Smoothing 100 100 100 100 100 4 0 0

σ = 1.75
Certified Watermarks 100 100 0 0 0 0 0 0

Randomized Smoothing 100 100 0 0 0 0 0 0
Mollifier Smoothing 100 100 100 100 100 100 90 0
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Table 10: Certified accuracy (%) of unrelated watermark on CIFAR-10 under l3-norm attacks

Noise Level Method/Radius 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

σ = 1.00
Certified Watermarks 31 0 0 0 0 0 0 0

Randomized Smoothing 16 0 0 0 0 0 0 0
Mollifier Smoothing 100 100 100 0 0 0 0 0

σ = 1.25
Certified Watermarks 100 0 0 0 0 0 0 0

Randomized Smoothing 100 0 0 0 0 0 0 0
Mollifier Smoothing 100 100 100 100 0 0 0 0

σ = 1.50
Certified Watermarks 100 0 0 0 0 0 0 0

Randomized Smoothing 100 0 0 0 0 0 0 0
Mollifier Smoothing 100 100 100 100 100 4 0 0

σ = 1.75
Certified Watermarks 100 25 0 0 0 0 0 0

Randomized Smoothing 100 24 0 0 0 0 0 0
Mollifier Smoothing 100 100 100 100 100 100 0 0

Table 11: Certified accuracy (%) of noise watermark on CIFAR-10 under l∞-norm attacks

Noise Level Method/Radius 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

σ = 1.00
Certified Watermarks 88 0 0 0 0 0 0 0

Randomized Smoothing 55 0 0 0 0 0 0 0
Mollifier Smoothing 100 100 100 0 0 0 0 0

σ = 1.25
Certified Watermarks 100 0 0 0 0 0 0 0

Randomized Smoothing 100 0 0 0 0 0 0 0
Mollifier Smoothing 100 100 100 100 0 0 0 0

σ = 1.50
Certified Watermarks 100 0 0 0 0 0 0 0

Randomized Smoothing 100 0 0 0 0 0 0 0
Mollifier Smoothing 100 100 100 100 100 2 0 0

σ = 1.75
Certified Watermarks 100 0 0 0 0 0 0 0

Randomized Smoothing 100 0 0 0 0 0 0 0
Mollifier Smoothing 100 100 100 100 100 100 91 0

Table 12: Certified accuracy (%) of unrelated watermark on CIFAR-10 under l∞-norm attacks

Noise Level Method/Radius 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

σ = 1.00
Certified Watermarks 31 0 0 0 0 0 0 0

Randomized Smoothing 16 0 0 0 0 0 0 0
Mollifier Smoothing 100 100 100 0 0 0 0 0

σ = 1.25
Certified Watermarks 100 0 0 0 0 0 0 0

Randomized Smoothing 100 0 0 0 0 0 0 0
Mollifier Smoothing 100 100 100 0 0 0 0 0

σ = 1.50
Certified Watermarks 100 0 0 0 0 0 0 0

Randomized Smoothing 100 0 0 0 0 0 0 0
Mollifier Smoothing 100 100 100 100 100 2 0 0

σ = 1.75
Certified Watermarks 100 0 0 0 0 0 0 0

Randomized Smoothing 100 0 0 0 0 0 0 0
Mollifier Smoothing 100 100 100 100 100 100 10 0
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Table 13: Certified accuracy (%) of embedded content watermark on MNIST under l2-norm attacks

Noise Level Method/Radius 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

σ = 0.75
Certified Watermarks 100 100 100 100 100 100 100 100

Randomized Smoothing 100 100 100 100 100 100 100 100
Mollifier Smoothing 100 100 100 100 100 100 100 100

σ = 1.0
Certified Watermarks 100 100 100 100 100 100 100 100

Randomized Smoothing 100 100 100 100 100 100 100 100
Mollifier Smoothing 100 100 100 100 100 100 100 100

σ = 1.25
Certified Watermarks 100 100 100 100 100 100 100 100

Randomized Smoothing 100 100 100 100 100 100 100 100
Mollifier Smoothing 100 100 100 100 100 100 100 100

σ = 1.5
Certified Watermarks 100 100 100 100 100 100 100 100

Randomized Smoothing 100 100 100 100 100 100 100 100
Mollifier Smoothing 100 100 100 100 100 100 100 100

Table 14: Certified accuracy (%) of noise watermark on MNIST under l2-norm attacks

Noise Level Method/Radius 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

σ = 0.75
Certified Watermarks 100 100 100 100 100 100 100 100

Randomized Smoothing 100 100 100 100 100 100 100 100
Mollifier Smoothing 100 100 100 100 100 100 100 100

σ = 1.0
Certified Watermarks 100 100 100 100 100 100 100 100

Randomized Smoothing 100 100 100 100 100 100 100 100
Mollifier Smoothing 100 100 100 100 100 100 100 100

σ = 1.25
Certified Watermarks 100 100 100 100 100 100 100 100

Randomized Smoothing 100 100 100 100 100 100 100 100
Mollifier Smoothing 100 100 100 100 100 100 100 100

σ = 1.5
Certified Watermarks 100 100 100 100 100 100 100 100

Randomized Smoothing 100 100 100 100 100 100 100 100
Mollifier Smoothing 100 100 100 100 100 100 100 100

Table 15: Certified accuracy (%) of unrelated watermark on MNIST under l2-norm attacks

Noise Level Method/Radius 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

σ = 0.75
Certified Watermarks 100 100 100 100 100 100 100 100

Randomized Smoothing 100 100 100 100 100 100 100 100
Mollifier Smoothing 100 100 100 100 100 100 100 100

σ = 1.0
Certified Watermarks 100 100 100 100 100 100 100 100

Randomized Smoothing 100 100 100 100 100 100 100 100
Mollifier Smoothing 100 100 100 100 100 100 100 100

σ = 1.25
Certified Watermarks 100 100 100 100 100 100 100 100

Randomized Smoothing 100 100 100 100 100 100 100 100
Mollifier Smoothing 100 100 100 100 100 100 100 100

σ = 1.5
Certified Watermarks 100 100 100 100 100 100 100 100

Randomized Smoothing 100 100 100 100 100 100 100 100
Mollifier Smoothing 100 100 100 100 100 100 100 100
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Table 16: Certified accuracy (%) of embedded content watermark on MNIST under l3-norm attacks

Noise Level Method/Radius 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

σ = 0.75
Certified Watermarks 100 98 88 0 0 0 0 0

Randomized Smoothing 100 100 80 0 0 0 0 0
Mollifier Smoothing 100 100 100 100 0 0 0 0

σ = 1.0
Certified Watermarks 100 100 97 75 0 0 0 0

Randomized Smoothing 100 100 0 0 0 0 0 0
Mollifier Smoothing 100 100 100 100 100 0 0 0

σ = 1.25
Certified Watermarks 100 100 98 91 75 0 0 0

Randomized Smoothing 100 100 100 100 4 0 0 0
Mollifier Smoothing 100 100 100 100 100 100 0 0

σ = 1.5
Certified Watermarks 100 100 100 97 89 0 0 0

Randomized Smoothing 100 100 100 100 100 0 0 0
Mollifier Smoothing 100 100 100 100 100 100 100 0

Table 17: Certified accuracy (%) of noise watermark on MNIST under l3-norm attacks

Noise Level Method/Radius 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

σ = 0.75
Certified Watermarks 100 100 80 0 0 0 0 0

Randomized Smoothing 100 100 91 0 0 0 0 0
Mollifier Smoothing 100 100 100 100 0 0 0 0

σ = 1.0
Certified Watermarks 100 100 100 36 0 0 0 0

Randomized Smoothing 100 100 100 20 0 0 0 0
Mollifier Smoothing 100 100 100 100 100 0 0 0

σ = 1.25
Certified Watermarks 100 100 100 97 0 0 0 0

Randomized Smoothing 100 100 100 100 0 0 0 0
Mollifier Smoothing 100 100 100 100 100 100 0 0

σ = 1.0
Certified Watermarks 100 100 100 100 92 0 0 0

Randomized Smoothing 100 100 100 100 100 0 0 0
Mollifier Smoothing 100 100 100 100 100 100 100 0

Table 18: Certified accuracy (%) of unrelated watermark on MNIST under l3-norm attacks

Noise Level Method/Radius 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

σ = 0.75
Certified Watermarks 100 100 89 0 0 0 0 0

Randomized Smoothing 100 100 80 0 0 0 0 0
Mollifier Smoothing 100 100 100 100 0 0 0 0

σ = 1.0
Certified Watermarks 100 100 98 42 0 0 0 0

Randomized Smoothing 100 100 100 2 0 0 0 0
Mollifier Smoothing 100 100 100 100 100 0 0 0

σ = 1.25
Certified Watermarks 100 100 100 97 42 0 0 0

Randomized Smoothing 100 100 100 100 0 0 0 0
Mollifier Smoothing 100 100 100 100 100 100 0 0

σ = 1.5
Certified Watermarks 100 100 100 98 94 0 0 0

Randomized Smoothing 100 100 100 100 98 0 0 0
Mollifier Smoothing 100 100 100 100 100 100 100 0
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Table 19: Certified accuracy (%) of embedded content watermark on MNIST under l∞-norm attacks

Noise Level Method/Radius 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

σ = 0.75
Certified Watermarks 100 0 0 0 0 0 0 0

Randomized Smoothing 100 0 0 0 0 0 0 0
Mollifier Smoothing 100 100 100 100 0 0 0 0

σ = 1.0
Certified Watermarks 100 0 0 0 0 0 0 0

Randomized Smoothing 100 0 0 0 0 0 0 0
Mollifier Smoothing 100 100 100 100 100 0 0 0

σ = 1.25
Certified Watermarks 100 0 0 0 0 0 0 0

Randomized Smoothing 100 0 0 0 0 0 0 0
Mollifier Smoothing 100 100 100 100 100 100 0 0

σ = 1.5
Certified Watermarks 100 0 0 0 0 0 0 0

Randomized Smoothing 100 0 0 0 0 0 0 0
Mollifier Smoothing 100 100 100 100 100 100 100 0

Table 20: Certified accuracy (%) of noise watermark on MNIST under l∞-norm attacks

Noise Level Method/Radius 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

σ = 0.75
Certified Watermarks 100 0 0 0 0 0 0 0

Randomized Smoothing 100 0 0 0 0 0 0 0
Mollifier Smoothing 100 100 100 100 0 0 0 0

σ = 1.0
Certified Watermarks 100 0 0 0 0 0 0 0

Randomized Smoothing 100 0 0 0 0 0 0 0
Mollifier Smoothing 100 100 100 100 100 0 0 0

σ = 1.25
Certified Watermarks 100 0 0 0 0 0 0 0

Randomized Smoothing 100 0 0 0 0 0 0 0
Mollifier Smoothing 100 100 100 100 100 100 0 0

σ = 1.5
Certified Watermarks 100 0 0 0 0 0 0 0

Randomized Smoothing 100 0 0 0 0 0 0 0
Mollifier Smoothing 100 100 100 100 100 100 100 0

Table 21: Certified accuracy (%) of unrelated watermark on MNIST under l∞-norm attacks

Noise Level Method/Radius 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

σ = 0.75
Certified Watermarks 100 0 0 0 0 0 0 0

Randomized Smoothing 100 0 0 0 0 0 0 0
Mollifier Smoothing 100 100 100 100 0 0 0 0

σ = 1.0
Certified Watermarks 100 0 0 0 0 0 0 0

Randomized Smoothing 100 0 0 0 0 0 0 0
Mollifier Smoothing 100 100 100 100 100 0 0 0

σ = 1.25
Certified Watermarks 100 0 0 0 0 0 0 0

Randomized Smoothing 100 0 0 0 0 0 0 0
Mollifier Smoothing 100 100 100 100 100 100 0 0

σ = 1.5
Certified Watermarks 100 0 0 0 0 0 0 0

Randomized Smoothing 100 0 0 0 0 0 0 0
Mollifier Smoothing 100 100 100 100 100 100 100 0
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Table 22: Certified accuracy (%) of embedded content watermark on CIFAR-100 under l2-norm attacks

Noise Level Method/Radius 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

σ = 0.25
Certified Watermarks 0 0 0 0 0 0 0 0

Randomized Smoothing 0 0 0 0 0 0 0 0
Mollifier Smoothing 0 0 0 0 0 0 0 0

σ = 0.5
Certified Watermarks 0 0 0 0 0 0 0 0

Randomized Smoothing 0 0 0 0 0 0 0 0
Mollifier Smoothing 100 100 0 0 0 0 0 0

σ = 0.75
Certified Watermarks 100 100 100 100 100 100 98 93

Randomized Smoothing 100 100 100 100 100 100 100 100
Mollifier Smoothing 100 100 100 100 100 100 1 0

σ = 1.0
Certified Watermarks 100 100 100 100 100 100 100 100

Randomized Smoothing 100 100 100 100 100 100 100 100
Mollifier Smoothing 100 100 100 100 100 100 100 100

Table 23: Certified accuracy (%) of noise watermark on CIFAR-100 under l2-norm attacks

Noise Level Method/Radius 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

σ = 0.25
Certified Watermarks 0 0 0 0 0 0 0 0

Randomized Smoothing 0 0 0 0 0 0 0 0
Mollifier Smoothing 0 0 0 0 0 0 0 0

σ = 0.5
Certified Watermarks 0 0 0 0 0 0 0 0

Randomized Smoothing 0 0 0 0 0 0 0 0
Mollifier Smoothing 100 100 0 0 0 0 0 0

σ = 0.75
Certified Watermarks 100 100 100 100 100 100 100 100

Randomized Smoothing 100 100 100 100 100 100 100 100
Mollifier Smoothing 100 100 100 100 100 100 96 0

σ = 1.0
Certified Watermarks 100 100 100 100 100 100 100 100

Randomized Smoothing 100 100 100 100 100 100 100 100
Mollifier Smoothing 100 100 100 100 100 100 100 100

Table 24: Certified accuracy (%) of unrelated watermark on CIFAR-100 under l2-norm attacks

Noise Level Method/Radius 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

σ = 0.25
Certified Watermarks 0 0 0 0 0 0 0 0

Randomized Smoothing 0 0 0 0 0 0 0 0
Mollifier Smoothing 0 0 0 0 0 0 0 0

σ = 0.5
Certified Watermarks 0 0 0 0 0 0 0 0

Randomized Smoothing 0 0 0 0 0 0 0 0
Mollifier Smoothing 100 100 0 0 0 0 0 0

σ = 0.75
Certified Watermarks 100 100 100 100 100 100 100 100

Randomized Smoothing 100 100 100 100 100 100 100 100
Mollifier Smoothing 100 100 100 100 100 100 96 0

σ = 1.0
Certified Watermarks 100 100 100 100 100 100 100 100

Randomized Smoothing 100 100 100 100 100 100 100 100
Mollifier Smoothing 100 100 100 100 100 100 100 100

28



Dimension-independent Certified Neural Network Watermarks via Mollifier Smoothing

Table 25: Certified accuracy (%) of embedded content watermark on CIFAR-100 under l3-norm attacks

Noise Level Method/Radius 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

σ = 0.25
Certified Watermarks 0 0 0 0 0 0 0 0

Randomized Smoothing 0 0 0 0 0 0 0 0
Mollifier Smoothing 0 0 0 0 0 0 0 0

σ = 0.5
Certified Watermarks 0 0 0 0 0 0 0 0

Randomized Smoothing 0 0 0 0 0 0 0 0
Mollifier Smoothing 100 2 0 0 0 0 0 0

σ = 0.75
Certified Watermarks 100 0 0 0 0 0 0 0

Randomized Smoothing 100 0 0 0 0 0 0 0
Mollifier Smoothing 100 100 100 88 0 0 0 0

σ = 1.0
Certified Watermarks 100 0 0 0 0 0 0 0

Randomized Smoothing 100 0 0 0 0 0 0 0
Mollifier Smoothing 100 100 100 100 100 0 0 0

Table 26: Certified accuracy (%) of noise watermark on CIFAR-100 under l3-norm attacks

Noise Level Method/Radius 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

σ = 0.25
Certified Watermarks 0 0 0 0 0 0 0 0

Randomized Smoothing 0 0 0 0 0 0 0 0
Mollifier Smoothing 0 0 0 0 0 0 0 0

σ = 0.5
Certified Watermarks 0 0 0 0 0 0 0 0

Randomized Smoothing 0 0 0 0 0 0 0 0
Mollifier Smoothing 100 2 0 0 0 0 0 0

σ = 0.75
Certified Watermarks 100 0 0 0 0 0 0 0

Randomized Smoothing 100 0 0 0 0 0 0 0
Mollifier Smoothing 100 100 100 6 0 0 0 0

σ = 1.0
Certified Watermarks 100 0 0 0 0 0 0 0

Randomized Smoothing 100 0 0 0 0 0 0 0
Mollifier Smoothing 100 100 100 100 100 0 0 0

Table 27: Certified accuracy (%) of unrelated watermark on CIFAR-100 under l3-norm attacks

Noise Level Method/Radius 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

σ = 0.25
Certified Watermarks 0 0 0 0 0 0 0 0

Randomized Smoothing 0 0 0 0 0 0 0 0
Mollifier Smoothing 0 0 0 0 0 0 0 0

σ = 0.5
Certified Watermarks 0 0 0 0 0 0 0 0

Randomized Smoothing 0 0 0 0 0 0 0 0
Mollifier Smoothing 100 0 0 0 0 0 0 0

σ = 0.75
Certified Watermarks 100 3 0 0 0 0 0 0

Randomized Smoothing 100 0 0 0 0 0 0 0
Mollifier Smoothing 100 100 100 99 0 0 0 0

σ = 1.0
Certified Watermarks 100 100 0 0 0 0 0 0

Randomized Smoothing 100 0 0 0 0 0 0 0
Mollifier Smoothing 100 100 100 100 100 0 0 0
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Table 28: Certified accuracy (%) of embedded content watermark on CIFAR-100 under l∞-norm attacks

Noise Level Method/Radius 0 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7

σ = 0.25
Certified Watermarks 0 0 0 0 0 0 0 0 0

Randomized Smoothing 0 0 0 0 0 0 0 0 0
Mollifier Smoothing 0 0 0 0 0 0 0 0 0

σ = 0.5
Certified Watermarks 0 0 0 0 0 0 0 0 0

Randomized Smoothing 0 0 0 0 0 0 0 0 0
Mollifier Smoothing 100 100 0 0 0 0 0 0 0

σ = 0.75
Certified Watermarks 100 0 0 0 0 0 0 0 0

Randomized Smoothing 100 0 0 0 0 0 0 0 0
Mollifier Smoothing 100 100 100 100 91 0 0 0 0

σ = 1.0
Certified Watermarks 100 0 0 0 0 0 0 0 0

Randomized Smoothing 100 0 0 0 0 0 0 0 0
Mollifier Smoothing 100 100 100 100 100 100 0 0 0

Table 29: Certified accuracy (%) of noise watermark on CIFAR-100 under l∞-norm attacks

Noise Level Method/Radius 0 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7

σ = 0.25
Certified Watermarks 0 0 0 0 0 0 0 0 0

Randomized Smoothing 0 0 0 0 0 0 0 0 0
Mollifier Smoothing 0 0 0 0 0 0 0 0 0

σ = 0.5
Certified Watermarks 0 0 0 0 0 0 0 0 0

Randomized Smoothing 0 0 0 0 0 0 0 0 0
Mollifier Smoothing 100 100 0 0 0 0 0 0 0

σ = 0.75
Certified Watermarks 100 0 0 0 0 0 0 0 0

Randomized Smoothing 100 0 0 0 0 0 0 0 0
Mollifier Smoothing 100 100 100 100 2 0 0 0 0

σ = 1.0
Certified Watermarks 100 0 0 0 0 0 0 0 0

Randomized Smoothing 100 0 0 0 0 0 0 0 0
Mollifier Smoothing 100 100 100 100 100 100 0 0 0

Table 30: Certified accuracy (%) of unrelated watermark on CIFAR-100 under l∞-norm attacks

Noise Level Method/Radius 0 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7

σ = 0.25
Certified Watermarks 0 0 0 0 0 0 0 0 0

Randomized Smoothing 0 0 0 0 0 0 0 0 0
Mollifier Smoothing 0 0 0 0 0 0 0 0 0

σ = 0.5
Certified Watermarks 0 0 0 0 0 0 0 0 0

Randomized Smoothing 0 0 0 0 0 0 0 0 0
Mollifier Smoothing 100 100 0 0 0 0 0 0 0

σ = 0.75
Certified Watermarks 100 0 0 0 0 0 0 0 0

Randomized Smoothing 100 0 0 0 0 0 0 0 0
Mollifier Smoothing 100 100 100 100 98 0 0 0 0

σ = 1.0
Certified Watermarks 100 0 0 0 0 0 0 0 0

Randomized Smoothing 100 0 0 0 0 0 0 0 0
Mollifier Smoothing 99 99 99 99 99 99 0 0 0
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Table 31: Empirical accuracy (%) on MNIST under three attack methods

Method/Attack Finetuning Hard-Label Soft-Label
Distillation Distillation

Certified Watermarks 85 100 100
PTYNet 14 23 56

SAC 0 25 97
CosWM 55 66 77

RPV 24 46 99
Watermark Embedding 50 42 96

DeepMarks 99 99 99
NO-stealing-LTH 2 2 3

Mollifier Smoothing 100 100 100

Table 32: Empirical accuracy (%) on MNIST under three attack methods

Method/Attack Finetuning Hard-Label Soft-Label
Distillation Distillation

Certified Watermarkss 95 82 85
PTYNet 5 31 16

SAC 32 65 77
CosWM 100 67 33

RPV 96 93 99
Watermark Embedding 18 78 96

DeepMarks 98 99 99
NO-stealing-LTH 2 2 3

Mollifier Smoothing 100 100 100

A.3. Parameter Sensitivity

In this section, we conduct more experiments to validate the sensitivity of various parameters in our Mollifier Smoothing
method for the certified robustness task.

Influence of sample numbers of mollifier smoothing. Figure 2 presents the influence of sample numbers of mollifier
smoothing in the Mollifier Smoothing model with the number between 50 and 2,000. It is consistent with our earlier analysis
that certifying the watermarks with the mollifier smoothing method requires to sample massive noise points, in order to
retain high-confidence certificates. However, the cost of sampling and prediction over a large number of points of the input
within its neighborhood is non-trivial. We suggest choosing the sample numbers of mollifier smoothing between 500 and
1,500 for well balancing the effectiveness and efficiency.

Sensitivity of training epochs of base classifiers. Figure 3 exhibits the sensitivity of training epochs of base classifiers
in our Mollifier Smoothing model by varying them from 10 and 160. We have observed that the performance curves
continuously increase with increasing training epochs of base classifiers. This is consistent with the fact that more training
epochs makes the image classification models be resilient to watermark removal attacks. Later on, the performance curves
keep relatively stable when the training epochs continuously increases, which demonstrates a good convergence of base
classifier training.

Influence of learning rates. Figure 4 shows the influence of learning rate in our Mollifier Smoothing model by varying
it from 0.001 to 0.1. As we can see, the certified accuracy values keep increasing or stable when we iteratively increase
learning rate. The performance curves becomes relatively stable or even drop quickly when the learning rates go beyond a
certain threshold, say 0.01. A reasonable explanation is that a too large learning rate may miss the optimal solution with
large step size in the search process. Thus, it is important to determine the optimal learning rate for the certified watermark.
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Figure 2: Certified accuracy
with varying sample numbers
of mollifier smoothing

Figure 3: Certified accuracy
with varying training epochs of
base classifiers

Figure 4: Certified accuracy
with varying learning rates of
base classifiers

A.4. Experimental Details
Environment. The experiments were conducted on a compute server running on Red Hat Enterprise Linux 7.2 with 2 CPUs
of Intel Xeon E5-2650 v4 (at 2.66 GHz) and 8 GPUs of NVIDIA GeForce GTX 2080 Ti (with 11GB of GDDR6 on a 352-bit
memory bus and memory bandwidth in the neighborhood of 620GB/s), 256GB of RAM, and 1TB of HDD. Overall, the
experiments took about 5 days in a shared resource setting. We expect that a consumer-grade single-GPU machine (e.g.,
with a 2080 Ti GPU) could complete the full set of experiments in around 9-10 days, if its full resources were dedicated.
The codes were implemented in Python 3.7.3 and PyTorch 1.0.14. We also employ Numpy 1.16.4 and Scipy 1.3.0 in the
implementation. Since the datasets used are all public datasets and our methodologies and the hyperparameter settings are
explicitly described in Section 3, 4, 5, and A.4, our codes and experiments can be easily reproduced on top of a GPU server.
We promise to release our open-source codes on GitHub and maintain a project website with detailed documentation for
long-term access by other researchers and end-users after the paper is accepted.

Training. We study image classification networks on three standard image datasets: MNIST 1, CIFAR-10 2, and CIFAR-
100 3. The above three image datasets are both public datasets, which allow researchers to use for non-commercial research
and educational purposes. We train the base classifiers on the training sets of MNIST, CIFAR-10, and CIFAR-100 and
test it on the corresponding test sets. We train a convolutional neural network (CNN) on MNIST. We train ResNet-20
over CIFAR-10. We apply the ResNet-18 architecture on CIFAR-100.The neural networks are trained with Kaiming
initialization (He et al., 2015) using SGD for 160 epochs with an initial learning rate of 0.1 and batch size 100. The learning
rate is decayed by a factor of 0.1 at 1/2 and 3/4 of the total number of epochs. In addition, we run each experiment for 3
trials for obtaining more stable results.

Implementation. For two representative certified defense methods 4 and Certified Watermarks 5, we used the open-source
implementation and default parameter settings by the original authors for our experiments. For six state-of-the-art empirical
defense models of PTYNet 6, SAC 7, RPV 8, Watermark Embedding 9, DeepMarks 10, and NO-stealing-LTH 11, we utilized
the same model architecture as the official open-source implementation and default parameter settings provided by the
original authors for certified robustness in all experiments. To our best knowledge, there is no publicly available open-source
implementation for CosWM on the Internet. We tried our best to implement the approach in terms of the algorithm

1http://yann.lecun.com/exdb/mnist/
2https://www.cs.toronto.edu/∼kriz/cifar.html
3https://www.cs.toronto.edu/∼kriz/cifar.html
4https://github.com/locuslab/smoothing
5https://github.com/arpitbansal297/certified watermarks
6https://github.com/antigonerandy/ptynet
7https://github.com/guanjiyang/sac
8https://openreview.net/forum?id=wysXxmukfCA
9https://github.com/dnn-security/Watermark-Robustness-Toolbox

10https://github.com/dnn-security/Watermark-Robustness-Toolbox
11https://github.com/vita-group/no-stealing-lth
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description from the original paper. All hyperparameters are standard values from reference codes or prior works. The above
open-source codes from the GitHub are licensed under the MIT License, which only requires preservation of copyright and
license notices and includes the permissions of commercial use, modification, distribution, and private use.

For our Mollifier Smoothing model, we performed hyperparameter selection by performing a parameter sweep on sample
numbers ∈ {50, 100, 500, 1, 000, 1, 500, 2, 000} in the integral calculation, approximation parameter α ∈ {1, 2, 3, 4, 5}
in the Mollifier Smoothing-A model, training epochs of the base classifiers ∈ {50, 100, 150, 200, 250}, batch size for
training the base classifiers ∈ {48, 64, 128, 256, 512}, and learning rate ∈ {0.001, 0.005, 0.01, 0.05, 0.1}. We select the
best parameters over 50 epochs of training and evaluate the model at test time.

Hyperparameter settings.

Unless otherwise explicitly stated, we used the following default parameter settings in the experiments.

Table 33: Hyperparameter Settings

Parameter Value
Training data ratio on MNIST 60K/10K

Training data ratio on CIFAR-10 50K/10K
Training data ratio on CIFAR-100 50K/10K

Training epochs of the base classifiers 100
Noisy level σ 1.0

Approximation parameter α in the Mollifier Smoothing-A model 2
Sample numbers in the integral calculation 50
Batch size for training the base classifiers 64

Batch size for training the watermarks 256
Learning rate 0.05

A.5. Potential Negative Societal Impacts and Limitations

In this work, the three image datasets are all open-released datasets (Krizhevsky, 2009; Deng et al., 2009), which allow
researchers to use for non-commercial research and educational purposes. These three datasets are widely used in
training/evaluating the image classification. All baseline codes are open-accessed resources that are from the GitHub
and licensed under the MIT License, which only requires preservation of copyright and license notices and includes the
permissions of commercial use, modification, distribution, and private use.

To our best knowledge, this work is the first to leverage mollifier theory and partial differential equation theory for conducting
the certified watermark problem in high-dimensional space against the lp-norm watermark removal attacks (1 ≤ p ≤ ∞)
with better applicability. This paper proposes a mollifier smoothing method with dimension-independent Lipschitz constant
of our proposed smooth classifier, for conducting the certified watermark problem against the lp-norm watermark removal
attacks (1 ≤ p ≤ ∞) for high parameter dimension d. Our framework can play an important building block for a wide
variety of intellectual-property-critical applications that usually require near-zero tolerance of model collapse. This paper is
primarily of a theoretical nature. We expect our findings to produce positive impact on intellectual property protection, i.e,
significantly improve the ownership verification of real-world deep learning models with better applicability and efficiency.
To our best knowledge, we do not envision any immediate negative societal impacts of our results, such as security, privacy,
and fairness issues.

An important product of this paper is to develop an effective certified watermark method against large norm adversarial
attacks in high-dimensional space. The cost of integral calculation in our original mollifier smoothing method is non-trivial.
By leveraging the partial differential equation theory, an approximate model is developed for avoiding time-consuming
integral calculation, while maintaining the certified watermark. Our theoretical framework can inspire further improved
development and implementations on certified robustness with better applicability and efficiency from the academic
institutions and industrial research labs.

33


