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Abstract
We address multi-agent best arm identification
with privacy guarantees. In this setting, agents
collaborate by communicating to find the opti-
mal arm. To avoid leaking sensitive data through
messages, we consider two notions of privacy
withholding different kinds of information: dif-
ferential privacy and (ϵ, η)-privacy. For each pri-
vacy definition, we propose an algorithm based
on a two-level successive elimination scheme.
We provide theoretical guarantees for the privacy
level, accuracy and sample complexity of our algo-
rithms. Experiments on various settings support
our theoretical findings.

1. Introduction
The process of gathering data to identify the best option in a
stochastic multi-armed bandit is known as pure exploration
or best arm identification (BAI). The goal for the learner is
to suggest the most valuable option given the data collected
through sequential interaction with the system. In the spe-
cific fixed-confidence setting, we seek to achieve this goal
using as few interactions as possible, while guaranteeing that
the actual best option is returned with fixed, high probability.
Motivating examples include automatic parameter tuning
of telecommunication antennas and pharmaceutical drug
selection. Antenna performance depends on a large number
of parameters, making it difficult and time-consuming for
engineers to manually explore the space of configurations
and find the one that will optimize the user experience. Se-
lecting the best drug among multiple candidates is also a
complex and costly process. Re-framing these problems as
best arm identification in multi-armed bandits and relying
on automatic strategies can be very effective.

Such problems usually involve multiple agents that share
and interact with the same environment, generating as many
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data streams. Clinical trials involve many participants to
select the most appropriate drug for the majority of the pop-
ulation. Antennas are generally distributed over networks
spanning a specific region. Moreover, in many situations,
data is distributed by nature, and cannot be consolidated
and processed on a single server. It is therefore interesting
for the companies to model such problems as multi-agent
systems and try to exploit the data collected by each agent
(i.e., locally) to learn the optimal decision at the system
level (i.e., globally). We therefore refer to this problem as
multi-agent best arm identification. Collaboration among
agents is made effective as each agent broadcasts messages,
reflecting the feedback they receive from the system, to a
central coordinator involved in the decision process.

Large amounts of data can be handled during such learn-
ing processes, and some of them are potentially sensitive
(e.g., personal data or highly valued industrial information).
Hence, it is critical to design multi-agent BAI methods that
ensure the privacy of the data identified as sensitive. In many
applications, one may want to protect the rewards used as
inputs of the learning algorithm, especially since they re-
flect the preferences of the agents. For instance, confidential
medical data may be at risk during a drug selection study.
In this situation, the well-known differential privacy (DP)
(Dwork, 2006) framework ensures good guarantees against
privacy leakage. Some other cases may require protecting
the algorithm’s output, that is the global optimal action. In
our motivating examples, both the optimal antenna configu-
ration and the best candidate drug are indeed of great value,
as the product of the expertise of the engineers. Protecting
it from competing firms is therefore of high importance.
These concerns call for another notion of privacy, like the
lesser known (ϵ, η)-privacy from Féraud et al. (2019).

However, if it may be possible to protect the data held
by the different participants (the central coordinator and
the agents), the communications may still be easily inter-
cepted by an adversary. Moreover, they cannot always be
encrypted, especially in the multi-agent setting where the
computational overhead would increase significantly and
where the exchange of keys is not obvious. Consequently,
whereas communications from agents are a crucial build-
ing block of multi-agent algorithms, they are often a weak
link in terms of privacy. Indeed, if these messages carry
enough information, they can leak sensitive data. Designing
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multi-agent solutions that protect sensitive information from
adversaries observing the communications is thus crucial.

We refer to this problem as multi-agent best arm identifica-
tion with private communications. In this paper, we inves-
tigate solutions to this problem, considering two scenarios
based on the type of information that we want to protect: 1)
the rewards, i.e. the input data, and 2) the estimated best
arm, i.e., the output data. This leads us to question the most
appropriate privacy notion to use in each scenario. In the
first scenario, we propose DP-MASE, a multi-agent ver-
sion of DP Successive Elimination (Sajed & Sheffet (2019)).
DP-MASE is the first attempt to protect the input data in
the multi-agent setting with sensitive communications, us-
ing differential privacy. To address the second scenario, we
rely on the notion of (ϵ, η)-privacy, introduced in Féraud
et al. (2019), and propose CORRUPTED ELIMINATION that
improves over their method by decoupling privacy and local
BAI accuracy, leading to better sample complexity and pro-
viding flexibility to adjust these two essential aspects of the
problem. We provide a theoretical analysis for the privacy
and performance of both algorithms. In particular, we show
that multi-agent collaboration leads to greater accuracy than
independent agents, and derive associated sample complex-
ity bounds. Experiments on toy environments support this
theoretical findings.

Structure of the paper After presenting related works
(Sect. 2), we state the setting for multi-agent BAI with
private communications (Sect. 3). Then, we design al-
gorithms based on successive elimination at both local
and global levels. In the first scenario where we want to
protect the reward, we use differential privacy and pro-
pose DP-MASE (Sect. 4). In the second scenario, to
protect the output, we rely on (ϵ, η)-privacy and propose
CORRUPTED ELIMINATION (Sect. 5). Experiments are pro-
vided in (Sect. 6) to support our theoretical claims.

2. Related Work
In multi-armed bandits (MAB), the reference theoreti-
cal framework for sequential decision-making (Thompson
(1933), Robbins (1952)), the problem of identifying the op-
tion (called arm) with the highest mean is known as Pure
Exploration or Best Arm Identification (BAI). Unlike the
problem of regret minimization, BAI assumes that we incur
no cost in exploring suboptimal options and are just inter-
ested in returning the best arm for further exploitation: we
thus do not face the well-known exploration-exploitation
trade-off. BAI has been thoroughly studied in two differ-
ent settings: fixed-budget (Audibert & Bubeck (2010)) and
fixed-confidence (Even-Dar et al. (2006)). In the former,
we aim at returning the best arm in a given amount of time
while minimizing the probability of failure, whereas in the

latter we want to output the best arm as quickly as possible
with a fixed probability of failure. In this paper, we focus
on the fixed confidence setting, for which Even-Dar et al.
(2006) formulate and analyze two standard BAI algorithms:
Successive Elimination and Median Elimination. The theo-
retical analysis is conducted in the Probably Approximately
Correct (PAC) framework, where we accept to only find
an ϵ-optimal arm with high probability. More advanced
analysis and algorithms have been discussed, for instance in
Jamieson & Nowak (2014).

Recently, much attention has been paid to multi-agent multi-
armed bandits, where multiple agents collaborate to solve
the same MAB instance. First, this approach can allow to
take advantage of multiple computing nodes to speed up
the learning process (Hillel et al. (2013), Szörényi et al.
(2013)). More importantly, it accurately models real-world
problems where multiple agents combine their efforts to
solve a given learning task. A traditional example is the
device cloud, where a possibly wide range of remote smart
devices, each producing and owning their data, are solicited
for the learning of a common model. However, Madhushani
& Leonard (2020) point out the limits of natural extensions
of traditional bandit algorithms like UCB to the multi-agent
setting. A significant part of the research has been directed
toward networked agents. Sankararaman et al. (2019) ad-
dress the regret minimization problem by initially sharing
arms among the agents and propagating the best arm us-
ing gossip protocols, much like Chawla et al. (2020) and
Agarwal et al. (2021). Kumar Kolla et al. (2018) design
UCB-like algorithms where statistics are aggregated over
graph neighborhoods; a work recently extended to BAI by
Jha et al. (2022). Other works consider a slightly different
setting, named multi-bandit, where the agents have access
to different bandit instances, with different arms (Gabillon
et al. (2011), Scarlett et al. (2019)) or different preferences
(Shi et al. (2021), Réda et al. (2022)).

In the multi-agent setting, privacy is more than ever a con-
cern, as sensitive user data may be leaked through the mes-
sages sent by the participants. Building private algorithms is
therefore a major issue. While the very definition of privacy
may vary according to the context, there are two main fam-
ilies of techniques to design such algorithms in the MAB
framework: cryptography ((Ciucanu et al., 2022; Garcelon
et al., 2022)), and differential privacy (DP) ((Dubey & Pent-
land, 2020; Li & Song, 2022)). Encrypting the data usually
has the advantage of being less harmful to the accuracy of
the algorithm at the cost of additional computations, while
differential privacy, consisting of adding noise in the data,
requires little computation but may reduce accuracy. Differ-
ential privacy is more widely used in multi-agent settings.
Tossou & Dimitrakakis (2016) and Ren et al. (2020) dis-
cuss the practical design of differentially-private MAB algo-
rithms for the regret minimization problem, using additional
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Laplace noise. They also provide theoretical regret bounds
that exhibit the cost of this mechanism compared to equiva-
lent non-private algorithms. Dubey & Pentland (2020) and
Li & Song (2022) use DP mechanisms to address privacy
preservation in the specific multi-agent setting, where com-
munications between agents add an additional layer of risk.
Privacy guarantees for pure exploration have been less in-
vestigated. Sajed & Sheffet (2019), for instance, propose a
differentially private version of Successive Elimination, first
described in Dwork et al. (2009), to eliminate suboptimal
arms while guaranteeing privacy. (Féraud et al., 2019), on
their part, address privacy in multi-agent best arm identifi-
cation with a different approach. In contrast to differential
privacy, the goal is no longer to protect the reward informa-
tion that serves as input to the learning algorithm, but rather
to protect its output, i.e., the identified optimal arm. Arms
are eliminated both locally and globally with a voting sys-
tem while having weak (not accurate) local agents ensures
that an adversary cannot infer individual agent preferences
by simply observing communications.

3. Multi-Agent BAI with Private
Communications

3.1. Multi-Agent Bandits

We model our problem using the stochastic multi-armed
bandit framework, stated in Definition 3.1.

Definition 3.1. (Stochastic Multi-Armed Bandit) A stochas-
tic multi-armed bandit (MAB) with K arms, or K-
armed bandit, is a set of K stochastic real distributions
(R1, ..., RK), bounded in [0, 1], with means E[Rk] = µk.
When a user interacts with the MAB, the user pulls arm
k ∈ K = {1, ...,K} and receives a reward r ∼ Rk.

We consider a multi-agent setting where a set N =
{1, ..., N} of N agents collaborates to identify the best
arm in a common K-armed bandit instance. When an agent
n ∈ N interacts with the system at time t ∈ N∗ and pulls an
arm k ∈ K, it receives a stochastic reward rnk (t) drawn from
some unknown distribution Rk with mean µk. Without loss
of generality, we assume µ1 ≥ ... ≥ µK . The objective for
the system is to return an ϵ-optimal arm, i.e., an arm k⋆ such
that µk⋆ ≥ µ1 − ϵ with high probability.

Assumption 3.2. (Active agent) At any round t, only one
agent nt ∈ N , the active agent, can interact with the system.

Assumption 3.3. (Fixed agent distribution) The active agent
at time t is sampled from a fixed distribution PN on the
agents N , given by the environment.

Once active, an agent pulls every arm in his local active set
(that is, the set of arms that the agent still considers to be
potentially optimal). Over the course of the algorithm, arm
k’s mean is estimated through the following quantity:

µ̂n
k (t) =

1
tn

∑t
τ=1 r

n
k (τ)1 [nτ = n] ,

where tn is the number of rounds agent n has been active
up to time t, such that tn := tn(t) =

∑t
τ=1 1 [nτ = n].

Note that Assumption 3.2 simply models asynchronous in-
teractions with the system, which corresponds to several
real-world applications (e.g., telecommunication networks).

We consider a centralized setting so that agents collaborate
by sending messages to a central coordinator. This is equiv-
alent to considering a decentralized setting where agents are
connected with a complete graph. The messages contain the
indices of the arms they have eliminated locally. The mes-
sages sent by agent n up to time t can be summarized as a
vector (λn

k (t))k∈[K] where λn
k (t) = 1 if agent n has already

eliminated arm k at time t, and λn
k (t) = 0 otherwise.

Assumption 3.4. (Communication between agents) Each
time the active agent nt eliminates an arm locally, he sends
its index k to the central coordinator.

Notation Let Mn(t) = (λn
k (t))k∈[K] denote the mes-

sages sent by agent n ∈ N up to time t, and M(t) =
(M1(t), ...,MN (t)). Let also Mn denote the set of all
messages sent by agent n ∈ N and M = (M1, ...,MN ).

3.2. Multi-Agent BAI with Private Communications

In the context of multi-agent BAI, we are concerned with
withholding two types of data one may want to protect : 1)
the input data, namely the rewards, and 2) the output of the
BAI algorithm, namely the identity of the optimal option.
Moreover, we assume that the privacy of these data may
be compromised through the messages sent by the agents.
We thus propose privacy notions that aim at protecting the
privacy of either the inputs or the output of multi-agent BAI
algorithms from adversaries observing the communications.

3.2.1. PROTECTING THE INPUT WITH DIFFERENTIAL
PRIVACY

The first situation is typically handled using differential pri-
vacy. Given two input datasets that only differ from one
data point — referred to as neighboring datasets, differen-
tial privacy ensures that the distribution of the output of the
learning algorithm (often called a mechanism, i.e., a ran-
domized function of the data) does not change significantly.
Definition 3.5 formalizes this notion in the general case.

Definition 3.5. (ϵ-differential privacy) For any ϵ > 0, the
mechanism Q is ϵ-differentially private if for any pair of
neighboring datasets(D,D′) and any event S in Q’s range:

P (Q(D) ∈ S) ≤ eϵP (Q(D′) ∈ S) .

To obtain a ϵ-DP mechanism from a query (i.e., a function of
the data), we usually add an ad hoc noise with a well-tuned
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scale. The scale usually depends on the global sensitivity
of the query, which is the maximum amount by which the
query value can change between evaluations on two neigh-
boring datasets. For instance, given a real-valued query f of
sensitivity S(f), we obtain a ϵ-DP mechanism Q by adding
a centered Laplace r.v. with scale S(f)

ϵ to f . This procedure
is called the Laplace mechanism.

A BAI algorithm learns the best arm based on the sequence
of rewards collected through interactions with the system:
these rewards may reveal sensitive information as they re-
flect the preferences of the agents. Since we consider that
an adversary may observe the communicated messages (and
not the best arm itself), we seek differential privacy with
respect to the mechanism that outputs the set of messages
sent by one agent. We then guarantee that the presence of
one particular reward in the input dataset does not affect the
message distribution significantly.

We give in Definition 3.6 a statement of DP adapted to our
particular setting. Let D1:t be the set of all the rewards
received by the N agents up to time t. D1:t and D′

1:t are
considered neighbors if they only differ by one reward. We
consider the mechanism Qn that takes as input a dataset
D1:t and outputs Mn.

Definition 3.6. (ϵ-differential privacy for communications)
For any ϵ > 0 and any agent n ∈ N , the mechanism Qn is
ϵ-differentially private if for any time t, any set of messages
Mn(t) ∈ {0, 1}[K], and any pair of neighboring datasets
D1:t, D′

1:t, the following holds:

P (Qn(D1:t) = Mn(t)) ≤ eϵP (Qn(D
′
1:t) = Mn(t)) .

3.2.2. PROTECTING THE OUTPUT WITH (ϵ, η)-PRIVACY

Some applications may require protecting the algorithm’s
output, i.e., the global optimal action. This information
can indeed be of high value, for instance when it is the
product of the engineers’ expertise in industrial applications.
Protecting it from competing firms is therefore of critical
importance. However, in multi-agent systems, it is diffi-
cult to prevent adversaries from observing the messages
sent by the different participants. If those messages carry
enough information about the optimal action, their identity
can leak—even if it is well protected at the system level.

We are interested in designing methods intended to protect
against this eventuality, which is formalized through the no-
tion of (ϵ, η)-privacy, first introduced in Féraud et al. (2019).
(ϵ, η)-privacy, stated in Definition 3.7, ensures that an adver-
sary observing the messages sent by one agent cannot infer
an ϵ-best arm with high confidence. Limiting the awareness
of the adversary to the messages from a single agent is re-
alistic in many applications, as we can imagine installing a
bug on one particular device. However, this could be easily
extended to the setting where the adversary may watch up

to c agents, given a loss in the privacy guarantees.

Definition 3.7. ((ϵ, η)-privacy) An algorithm A is consid-
ered (ϵ, η)-private for finding an ϵ-optimal arm if, for any
agent n ∈ N , an adversary that knows A and has access to
the set of messages Mn cannot infer what arm is ϵ-optimal
for agent n with probability higher than 1− η.

In particular, if 1 − η ≤ 1/K, the adversary cannot make
better than a random guess.

3.3. Successive Elimination in Multi-Agent MAB

In multi-agent algorithms, messages are signals that reflect
the feedback an agent receives through his interactions with
the environment. Sharing the signals with the other agents
enables collaboration and allows better decision-making
at the global level, compared to the situation where each
agent learns independently. In multi-agent bandits, one
could imagine a variety of such signals. However, in many
applications, the amount of information contained in the
messages is constrained by the capacity of the communica-
tion channels. In this work, we consider simple messages
with integer values, fitting situations where communication
is heavily constrained.

BAI algorithms based on successive arm elimination are
particularly suited to this setting. These methods work by
maintaining an active set of arms that is progressively re-
duced as the agent eliminates suboptimal arms. An arm is
eliminated when it is estimated suboptimal with enough con-
fidence, based on the rewards collected during interactions
with the system. The algorithm stops when the active set is
reduced to a single arm, which is the estimated best arm. As
an important example, SUCCESSIVE ELIMINATION from
Even-Dar et al. (2006) guarantees to output an ϵ-optimal
arm with confidence 1− δ in approximately K

ϵ2 log
1
δ steps.

It is quite straightforward to use successive elimination
schemes within multi-agent systems and enable collabora-
tion through integer-valued messages and a voting process.
At a high level, each agent n independently runs a local BAI
algorithm, managing his own local set of arms Kn, while a
central coordinator separately maintains a global set of arms
K. Every time an agent eliminates an arm locally, he sends
its index to the central coordinator, hence “voting against”
this arm. If the number of votes λk against a specific arm
exceeds some predefined threshold M , it is removed from
the global active set as well as from all local active sets. This
multi-agent successive elimination (MASE) scheme at both
local and global levels is described in Algorithm 1. In the
following, we propose methods based on this multi-agent
successive elimination scheme that ensures differential pri-
vacy and (ϵ, η)-privacy.
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Algorithm 1 Multi-Agent Successive Elimination(MASE)
1: Input: ϵ > 0, δ ∈ [0, 1], voting threshold M ∈ [[1, N ]]
2: Output: Estimated best arm in K
3: Active sets K=Kn=[K]; global votes (λk = 0)k∈[K];

local epochs en=0; local round rn=0
4: while |K| > 1 do
5: Active agent n is sampled: n ∼ PN (t)

6: n interacts with system and updates mean estimates
7: tn := tn + 1
8: if condition for local elimination is met by k then
9: Remove k from local active set: Kn := Kn \ {k}

10: λk := λk + 1
11: en := en + 1
12: if λk > M then
13: Remove k from global active set: K := K\{k}
14: Remove k from all local active sets: Kn :=

Kn \ {k} for all n ∈ N

Sample Complexity of MASE. We expect the sample
complexity, computed as the total number of overall inter-
actions with the system, to scale up with number of agents.
Indeed, in the asynchronous case (Assumption 3.2), more
agents means more timesteps before a given agent has inter-
acted enough with the system to output the best arm with
high confidence. 1

For a lower bound, we consider the extreme, non-private
case, where agents share all their raw reward samples with
the central coordinator (the set of messages that can be sent
is then larger than what is described in Section 3.1). Up
to negligible communication delays, the problem becomes
equivalent to the single-agent setting. It is then relevant
to compare our algorithms with single-agent SUCCESSIVE
ELIMINATION, for which lower bounds exist (see, for in-
stance, Even-Dar et al. (2002)), although such approach
does not offer any privacy.

4. Multi-Agent Successive Elimination with
Differentially Private Communications

In this section, we introduce DP-MASE, for Differentially
Private Multi-Agent Successive Elimination. While learning
the best option in the multi-armed bandit, DP-MASE guar-
antees that the communications are differentially private
with respect to the rewards. In essence, DP-MASE follows
the multi-agent successive elimination scheme described
in Algorithm 1, and uses DP Successive Elimination from

1Formally, the per-agent counts (t1, ..., tN ) follow a multino-
mial with parameters (t, (p1, ..., pN )), where pi = PN (i). More-
over, the algorithm stops at step t if maxM

(
t1, ..., tN

)
> T (η),

where maxM denotes the M-th largest value. For a given T ,
the probability P (maxM (T1, ..., TN ) > T (η)) decreases with
N , which necessarily links the sample complexity to N .

Sajed & Sheffet (2019) as a local BAI routine.

4.1. Differentially Private Successive Elimination

In Successive Elimination (Even-Dar et al. (2006)), we con-
sider the uncertainty over the value of each arm using a
confidence interval of decreasing radius around the empiri-
cal mean. More specifically, at step t, we want the true mean
of arm k to lie within the following confidence interval, for
a well-chosen α(t) ∈ R, with high probability:

µk ∈ [µ̂k(t)− α(t); µ̂k(t) + α(t)] .

If we set α(t) =
√

log(cKt2/β)
t for some c > 0, we know

this holds with high probability 1− 2β
cKt2 due to Hoeffding’s

inequality. An arm k is eliminated as soon as its upper
bound is less than the lower bound of the current best arm
estimate, i.e.:

max
l∈K

µ̂l(t)− µ̂k(t) > 2α(t) . (1)

From then on, we refer to (1) as suboptimality evaluation.
This procedure returns an ϵ-optimal best arm with probabil-
ity at least 1− β, in at most O

(
K
ϵ2 log

1
β

)
steps.

Making Successive Elimination differentially private is not
straightforward. Naively, one could simply release noisy
values for the means instead of raw values (for instance
using the Laplace mechanism). However, this approach
raises practical challenges. Indeed, a reward sample from
arm k is involved in every subsequent empirical mean µ̂k,
making the privacy cost scale linearly with T , the total
number of steps. To circumvent this, Sajed & Sheffet (2019)
only perform suboptimality evaluation after a given number
of steps (i.e. an epoch). Empirical means are then reset and
samples are discarded. Therefore, each reward sample is
only consumed in a single mean estimation. This approach
also allows controlling global sensitivity of the queries and
the scale of the Laplace noise appropriately.

Thanks to parallel composition, Sajed & Sheffet (2019)
prove that DP Successive Elimination is ϵ-differentially pri-
vate. It also effectively returns the best arm as the epoch
length R(e) grows properly over time, each time allowing
for more accurate mean estimates. Indeed, R(e) is such
that every arm with a suboptimality gap greater than 2−e is
eliminated at epoch e with high probability.

4.2. A DP Algorithm for Multi-Agent BAI

Our objective is now to propose a multi-agent version of DP
Successive Elimination, based on the MASE scheme. We
obtain DP-MASE, a new algorithm for multi-agent BAI
with private communications, depicted in Algorithm 2.
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Algorithm 2 DP-MASE

1: Input: ϵ, δ, β, M = ⌈ log δ
log β ⌉

2: Output: Estimated best arm in K
3: Active agents N (t) = N ; global and local active sets

K = Kn = [K]; global votes (λk = 0)k∈[K]; local
epochs en=0; local round rn=0; global time t = 0

4: while |K| > 1 do
5: Active agent n is sampled: n ∼ PN (t)

6: Sample all arms in Kn and update mean estimates
7: rn := rn + 1
8: if rn = R(en) then
9: k̄(en) = LocalElimination (ϵ, en, (µ̂n

k (e
n))k, β)

10: Kn = Kn \ k̄(en)
11: λk := λk + 1 for any k ∈ k̄(en)
12: if |Kn| = 1 then
13: N (t) := N (t) \ {n} {Remove agent if done}
14: else
15: en := en + 1
16: Reset (µ̂n

k (e
n) = 0)k, rn = 0

17: Compute next epoch length R(en)
18: Kn := Kn

⋂
K {Remove the latest globally

eliminated arms from local active set}
19: for k ∈ k̄(en) do
20: K := K \ {k} if λk > M
21: t := t + 1

In DP-MASE, each agent independently runs a DP Succes-
sive Elimination instance on the shared multi-armed ban-
dits. To deal with the asynchronous interactions, every
agent keeps track of his current epoch en and current round
rn ∈ [[0, R(en)]] within this epoch. At the end of his epoch,
an agent performs local elimination as in Sajed & Sheffet
(2019), returning a set k̄(en) of eliminated arms. If it is not
empty, arms in k̄(en) are immediately removed from the
local active set Kn, and their global voting counts λk’s are
updated (lines 9-11). Empirical means are then reset for the
next epoch whose length is also computed using the same
formula as in Sajed & Sheffet (2019):

max

(
32 log

(
8|Kn|en2/β

)
2−2en

;
8 log

(
4|Kn|en2/β

)
ϵ2−en

)
.

Moreover, Kn is synchronized with global active set K,
meaning that arms that have been globally eliminated during
epoch en are now also removed from Kn (lines 15-18).
Eventually, if votes against arms in k̄(en) have reached the
voting threshold, they are removed from global active set K
(lines 19-20).

We show that DP-MASE is ϵ-differentially private for com-
munications, in the sense of Definition 3.6, and also derive
guarantees over its accuracy for finding an optimal arm.
Detailed proofs are provided in the appendix.

Proposition 4.1. Algorithm 2, DP-MASE, is ϵ-
differentially private for communications.

Proposition 4.2. (Failure Probability of DP-MASE) With
voting threshold M = ⌈ log δ

log β ⌉, DP-MASE fails to return
the best arm with probability at most δ.

Eventually, we derive a problem-dependent sample complex-
ity bound for DP-MASE that holds with high probability.
Proposition 4.3. (Sample Complexity
of DP-MASE) With probability at least
(1− δ) (1− I1−p⋆ (T − T (β), 1 + T (β)))

M , DP-MASE
has sample complexity:

O
(

1
p⋆T (β) +

1
4p⋆2 log

1
δ

)
,

with:

T (β) = log(K/β) + log log(1/∆2)
(

1
∆2

2
+ 1

ϵ∆2

)
.

Above, Ip (a, b) is the regularized incomplete beta function
evaluated at p with parameters (a, b), and p⋆ is the proba-
bility of the M -th most likely agent.

In Proposition 4.3, T (β) is the local sample complexity, that
is the number of steps a single-agent running DP Successive
Elimination must execute to output the best arm with confi-
dence 1− β. T (β) naturally increases with the confidence
and the strength of the privacy guarantees. It also depends
negatively on the smallest suboptimality gap ∆2, which
quantifies the hardness of the BAI problem. The global
sample complexity of DP-MASE obviously scales with the
local sample complexity. However, it also depends on the
agent distribution PN , and particularly on the inverse prob-
ability of the M -th most likely player: through the global
elimination process, the algorithm roughly “waits” for the
M -th most frequent player to output his best arm estimate.

DP-MASE is of practical interest when rewards may carry
sensitive information and when it is impossible to com-
pletely secure the communication channels. However, we
could be concerned about withholding other information,
such as the optimal option. In this situation, we consider
that DP is not the most adapted notion. In the next section,
we therefore propose another method based on multi-agent
successive elimination that better fits this objective.

5. Best Arm Privacy in Multi-Agent BAI
Here, we are no longer concerned with preserving the input
data, but rather want to protect the learned optimal option.
We believe that the most suitable privacy notion for this
problem is (ϵ, η)-privacy, first introduced in Féraud et al.
(2019). In this section, we first discuss existing solutions
and later introduce a new, more efficient multi-agent BAI
algorithm that guarantees (ϵ, η)-privacy.
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5.1. Multi-Agent Successive Elimination with
(ϵ, η)-Private Communications

To address this setting, Féraud et al. (2019) propose a (ϵ, η)-
private algorithm based on multi-agent successive elimi-
nation. To reach (ϵ, η)-privacy, each local arm selection
subroutine is run with precision ϵ and confidence 1 − η.
Such low local confidence implies that observing a single
agent does not bring any useful information, making the
algorithm (ϵ, η)-private, while the consensus required to
eliminate an arm globally ensures a low failure probability.
More precisely, setting the global elimination threshold as
M = ⌈ log δ

log η ⌉ ensures that an ϵ-best arm is returned with a
probability higher than 1− δ.

Moreover, upper bounds on the sample complexity are de-
rived that directly depend on the local subroutine complexity
and the agent probability distribution PN . In particular, for
any (1− η)-confident BAI subroutine with sample complex-
ity T (η), the global sample complexity scales with 1

p⋆T (η),
where p⋆ is the probability of the M -th most likely agent,
similarly to DP-MASE.

5.2. Improved Privacy with Message Corruption

The privacy mechanism in Féraud et al. (2019) inherently
links the local confidence level with the privacy level. In-
deed, the algorithm is private in the sense of Definition 3.7
only because each independent participant is inaccurate in
his best arm identification, returning an ϵ-optimal arm with
confidence as low as 1− η.

This is likely to harm sample complexity: to guarantee
high global accuracy, the voting threshold M must be high
to compensate for the low local BAI confidence. In this
section, we provide a method that decouples global privacy
and local accuracy, providing more flexibility to adjust these
two essential aspects of the problem and leading to better
sample complexity.

Our method to guarantee a high privacy level without sac-
rificing local BAI confidence comes from the observation
that the adversary is only able to derive critical information
from sent messages and has no access to the internal state of
the observed agent. Thus, instead of guaranteeing privacy
by having poor local best arm identification, we limit the
information that could be extracted from the sent messages
by corrupting them with a random binary noise. More for-
mally, instead of sending Mn, agent n sends the corrupted
messages Mξ

n = (λn
1 × νn1 , ..., λ

n
k × νnK) , where ξ > 0 is

the corruption probability and (νnk )k∈[K] is the corruption
mask such that νnk ∼ B(1− ξ) for any k. We can then apply
Successive Elimination. Algorithm 3 describes the whole
procedure. We now establish the privacy guarantees and
the failure probability of Algorithm 3. Complete proofs are
provided in appendix.

Algorithm 3 CORRUPTED ELIMINATION

1: Input: η, δ, ξ, M = ⌈ log δ
log η ⌉

2: Output: Estimated best arm in K
3: Active agents N (t) = N ; global and local active sets

K = Kn = [K]; local failure probability ηξ = 1 −
1−η′

(1−ξ)K−1 , Kn := K for all n ∈ N ; global votes (λk =

0)k∈[K], global time t = 0
4: while |K| > 1 do
5: Active agent n is sampled: n ∼ PN (t)

6: Sample all arms in Kn and update mean estimates
7: k̄, , k̄G = LocalElimination (n, ξ) {Identify arms to

eliminate locally}
8: Kn = Kn \ k̄ {Remove eliminated arms from local

active set}
9: λk := λk + 1 for any k ∈ k̄G(e

n) {Vote for global
elimination of eliminated arms if corresponding mes-
sage not corrupted}

10: if |Kn| = 1 then
11: N (t) := N (t) \ {n}
12: Kn := Kn

⋂
K {Remove the latest globally elimi-

nated arms from local active set}
13: for k ∈ k̄ do
14: K := K \ {k} if λk > M
15: t := t+ 1

Proposition 5.1. (Privacy of CORRUPTED ELIMINATION)
Running local BAI subroutines with confidence 1− η′, an
adversary knowing A and observing Mξ

n cannot infer the
best arm of agent n with probability higher than (1− η′)×
(1−ξ)K−1. Therefore, to maintain an apparent privacy level
η, we need to set the confidence level of the BAI subroutine
as:

ηξ = max

(
0, 1− 1− η

(1− ξ)K−1

)
≤ η .

Proposition 5.2. (Failure probability of
CORRUPTED ELIMINATION) The failure probability
of CORRUPTED ELIMINATION is at most:

min
α∈N

(1− Iξ (α+ 1,M))× δα , where δα = δ × ηξ
α .

Proposition 5.1 tells us that we can run the local subroutines
with better accuracy than Féraud et al. (2019) while keeping
the same privacy guarantees. With Proposition 5.2, failure
probability is less than without communication noise. In-
deed, since some messages are corrupted, more independent
agents need to vote against the best arm to remove it glob-
ally. In Proposition 5.3, we propose an approximation of
the sample complexity of CORRUPTED ELIMINATION.

Proposition 5.3. (Sample complexity of
CORRUPTED ELIMINATION) If the agent distribution
PN is uniform, then with probability α, the number of
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rounds needed by CORRUPTED ELIMINATION to output an
ϵ-optimal arm is approximately:

T = N ×Q−1
(
T (ηξ), 1− α1/M

)
,

where Q−1 is the inverse of the regularized gamma function,
and T (ηξ) is the number of local samples needed for the BAI
subroutine to find the optimal arm with confidence 1− ηξ.

As we observe in our experiments (see, e.g., appendix and
figures therein), there is a positive correlation between the
global sample complexity and the local failure probability
ηξ (corresponding exactly to the privacy level when ξ = 0),
even with uniform sampling. Proposition 5.3 provides a first
theoretical justification for these empirical findings. Indeed,
this observation was not reflected in the initial bound from
Féraud et al. (2019), as increasing BAI confidence 1− ηξ
means more local samples T (ηξ) are needed (see for in-
stance the bound for Successive Elimination). In contrast, if
the approximation provided in Proposition 5.3 is not enough
to conclude that the sample complexity increases with ηξ
(because of the first parameter in Q−1), it shows at least
an ambiguity. Indeed, a smaller ηξ means a smaller voting
threshold M = ⌈ log δ

log ηξ
⌉, which is likely to decrease T via

the second argument in Q−1. An extended discussion is
provided in the appendix.

6. Experiments
We assess the performance of our methods on different
stochastic environments suggested in Féraud et al. (2019).
In these problems, there are K = 10 arms with means
µ1 ≥ . . . ≥ µ10. We display our results on Problem
1, where rewards are drawn from Bernoulli distributions,
with µ1 = 0.7, µ2 = 0.5, µ3 = 0.3, and µk = 0.1 for
k = 4, . . . , 10. Agent distribution PN is uniform. Further
experiments, including other problems and agent distribu-
tions, are discussed in the appendix. We run experiments
with N ranging from 64 to 1024 agents to evaluate how
performance is affected by the scale of the problem. For
both methods, we fix the global failure probability δ to 5%.
Each data point is an average value over 10 runs, and 95%
confidence intervals are shown for every plot.

Evaluation and Baselines. We evaluate the perfor-
mance of our algorithms for different values of the
privacy parameters (ϵ for DP-MASE, η and ξ for
CORRUPTED ELIMINATION). In addition, we compare
them with two baselines, corresponding to the extreme cases
with full and no communication.

• CENTRAL: the agents send all their raw reward sam-
ples with the central coordinator at each round, which
is equivalent (up to negligible communication delays)

to a single-agent SUCCESSIVE ELIMINATION. This
approach does not offer any privacy since data is fully
shared;

• INDEPENDENT: every agent runs an independent SUC-
CESSIVE ELIMINATION algorithm, without sharing
any information with the central coordinator. This ap-
proach is fully private as there is no communication.

They allow to illustrate both the gain in performance
achieved through multi-agent collaboration and the chal-
lenges of distributing data across multiple nodes. To mea-
sure performance, we report the sample complexity, which
is the total number of rounds (corresponding to a single
iteration of the while loop in Algorithms 1, 2 and 3) needed
to output the best arm with confidence 1− δ.

6.1. Impact of Multi-Agent Collaboration

Figure 1 shows the performance of our methods against the
CENTRAL and INDEPENDENT baselines. We observe that
the BAI problem is solved much faster if agents can freely
communicate their raw reward samples, which amounts to
the single-agent case. This is expected, as the problem
is inevitably harder when the data is distributed to multi-
ple locations. In particular, the sample complexity must
scale with the number of agents, as already discussed in
Section 3.3. We indeed observe a growth in sample com-
plexity with the number of agents for both DP-MASE and
CORRUPTED ELIMINATION. However, they scale better
than the naive INDEPENDENT baseline, which shows that
the communication between agents and the collaborative
elimination procedure help to be more efficient and attenu-
ate the growth in sample complexity. Figure 4 in appendix
shows the same results without the baselines for a better
distinction between the different curves.

6.2. Multi-Agent Successive Elimination with
Differentially Private Communications

Our experiments exhibit the influence of the privacy level ϵ
on the performance of DP-MASE (Figure 1, left). Unsur-
prisingly, for a fixed global confidence 1 − δ, the sample
complexity gets worse with stronger privacy guarantees, i.e.,
smaller ϵ’s. Longer epochs and larger gap thresholds for
local elimination are indeed needed to compensate for the
noisier mean estimates. We notice a significant increase
in sample complexity for small values of ϵ (less than 0.1),
while it is relatively stable for larger values.

6.3. Multi-Agent Successive Elimination with
(ϵ, η)-Private Communications

We compare the sample complexity of
CORRUPTED ELIMINATION against the method pro-
posed by Féraud et al. (2019) (corresponding to ξ = 0).
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Figure 1. Sample complexity of DP-MASE (left) for ϵ = 0.05, 0.1, 0.25 and CORRUPTED ELIMINATION (right) for ξ = 0, 0.05, 0.1 on
Problem 1.

The apparent privacy level η is set to 0.9. In accordance
with Proposition 5.1, for each value of ξ, we compute
ηξ = 1 − 1−η

(1−ξ)K−1 , and then run local BAI subroutines
with confidence 1−ηξ , which guarantees the same apparent
privacy level and hence a fair comparison.

We observe that corrupting messages actually decreases
the sample complexity of CORRUPTED ELIMINATION, and
that it tends to further decrease with higher corruption prob-
ability ξ (Figure 1, right). In particular, we improve over
the method proposed by Féraud et al. (2019). Our intuition
is that a smaller ηξ is likely to speed up the global elimi-
nation process, and hence the algorithm, by decreasing the
voting threshold M . This was already suggested by our
theoretical analysis in Proposition 5.3. We refer to this as
the threshold effect, and empirical evidence therefore points
toward its prevalence over the increase in the number of
local samples. Similarly to DP-MASE, we also find that
the sample complexity increases as the apparent privacy
level η grows, as shown in the appendix. We interpret it as
a direct consequence of the threshold effect.

7. Discussion
In this work, we have proposed two methods to address
multi-agent best arm identification, where multiple partic-
ipants work together to identify with fixed confidence the
best option in a common multi-armed bandit. Based on the
same successive elimination scheme, each method guaran-
tees the privacy of a type of data against adversaries ob-
serving the communications. DP-MASE ensures that the
communications are differentially private with respect to the
rewards, while CORRUPTED ELIMINATION prevents the ad-
versaries from inferring the best arm. We provide theoretical
analysis on privacy, sample complexity, and failure proba-
bility, and experiments on toy problems give insights into
the behavior of our methods. In particular, they show that

CORRUPTED ELIMINATION is faster than a similar method
without message corruption, for comparable privacy levels.

Direct comparison between our two methods is impossible,
as they rely on distinct privacy definitions. However, they
are suitable to address complementary privacy concerns in
multi-agent best arm identification. Also, since our primary
goal was to investigate and address different privacy needs
within the relatively new setting of collaborative BAI, our
methods could be refined to achieve better stopping time.
Designing more efficient approaches thus is a natural direc-
tion for future work. Relaxing the assumption regarding
the nature of communications, and allowing agents to send
more informative messages (like continuous signals), is also
worth investigating and certainly more challenging in terms
of privacy. From a broader perspective, we believe our ap-
proach can be applied to the BAI with a fixed budget setting,
to linear bandits, or to more advanced multi-agent scenarios,
e.g., considering agents with heterogeneous arm sets.
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A. Proofs
A.1. Multi-Agent Successive Elimination with Differentially Private Communications

Proposition 4.1. Algorithm 2, DP-MASE, is ϵ-differentially private for communications.

Proof. Let D(n, en) be the sequence of all rewards collected by agent n at epoch en. Fix global step t, and denote T n the
set of agent n’s local epochs occurring up to time t. Therefore D1:t =

⋃
n∈N ,en∈T n D(n, en).

Let also Q̃en be the mechanism that outputs the indices of the arms eliminated by agent n at epoch en. Note that an agent n
has knowledge of the latest globally eliminated arms only at the end of his current epoch, so that the reward samples in
D(n, en) has no effect on the local elimination process for any other agent m. Thus, Q̃en operates only on D(n, en). In
other words, each reward sample only plays a role for a single agent, at a single epoch.

At epoch en, for every arm k in the active set Kn, the empirical mean µ̂k(e
n) is computed using R(en) samples. The

sensitivity of µ̂k(e
n) is therefore 1/R(en). Moreover, each noisy mean is computed only once before suboptimality

evaluations. Therefore, the local elimination mechanism which uses Laplace noise with scale 1
ϵR(en) is ϵ-DP. Q̃en is thus

ϵ-DP.

Consider the composed mechanism Q̃ defined as:

Q̃(D1:t) =
(
Q̃en(D(n, en))

)
n∈N ,en∈T n

.

Thanks to the parallel composition theorem (see Theorem 4 in McSherry (2009)), Q̃ is ϵ-DP. However, Qn can be seen as a

deterministic function of
(
Q̃en

)
n,en

, i.e. Qn = g

((
Q̃en

)
n,en

)
. So Qn is also ϵ-DP by the post-processing property (see

Proposition 2.1 in Dwork & Roth (2014)).

Proposition 4.2. (Failure Probability of DP-MASE) With voting threshold M = ⌈ log δ
log β ⌉, DP-MASE fails to return the

best arm with probability at most δ.

Proof. Sajed & Sheffet (2019) show that using DP Successive Elimination, the optimal arm k⋆ is never eliminated with
probability at least 1− β. The probability of eliminating k⋆ is therefore at most β.

To eliminate k⋆ globally, M = ⌈ log δ
log β ⌉ independent agents need to eliminate k⋆. Since the agents interact independently

with the system, k⋆ is then globally eliminated with probability at most βM . But, βM = β⌈ log δ
log β ⌉ ≤ β

log δ
log β = δ.

Proposition 4.3. (Sample Complexity of DP-MASE) With probability at least
(1− δ) (1− I1−p⋆ (T − T (β), 1 + T (β)))

M , DP-MASE has sample complexity:

O
(

1
p⋆T (β) +

1
4p⋆2 log

1
δ

)
,

with:

T (β) = log(K/β) + log log(1/∆2)
(

1
∆2

2
+ 1

ϵ∆2

)
.

Above, Ip (a, b) is the regularized incomplete beta function evaluated at p with parameters (a, b), and p⋆ is the probability
of the M -th most likely agent.

To prove Proposition 4.3, we first prove the following lemma, which is an updated version of the sample complexity bound
from Féraud et al. (2019).

Lemma A.1. (Sample complexity of Féraud et al. (2019)) Using any BAI subroutine, with probability at least
(1− δ) (1− I1−p⋆ (T − T (η), 1 + T (η)))

M , the multi-agent BAI algorithm proposed in Féraud et al. (2019) has sample
complexity

O
(

1
p⋆T (η) +

1
4p⋆2 log

1
δ

)
,

12
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where Ip (a, b) is the regularized incomplete beta function evaluated at p with parameters (a, b), p⋆ is the probability of the
M -th most likely agent, and T (η) is the number of local samples needed for the BAI subroutine to find the optimal arm with
confidence 1− η.

Proof. We follow a similar line of reasoning to Féraud et al. (2019), for the derivation of the sample complexity bound.

Let T denote the number of rounds before the algorithm stops (i.e. its sample complexity) and Tn denote the number of
rounds agent n has been active. PN is the probability distribution over agents, so that PN (x = n) is the probability that the
active player x is n at any time. We have Tn ∼ B (T, PN (x = n)), and thus EPN [Tn] = PN (x = n)T .

Let Bδ,η be the set of agents with the M := ⌈ log δ
log η ⌉ highest Tn. The algorithm does not stop if the following event occurs:

E1 = {∃n ∈ Bδ,η, Tn < T (η)}.

Applying Hoeffding’s inequality, we have:

P (Tn − PN (x = n)T ≤ −ϵ) ≤ exp
(
−2ϵ2/T

)
. (2)

When ¬E1 occurs, all agents in Bδ,η have enough samples to output the optimal arm with confidence 1− η, i.e. ∀n ∈ Bδ,η ,
Tn ≥ T (η). Thus, with probability at most δ:

T (η)− PN (x = n)T ≤ Tn − PN (x = n)T ≤ −
√

T

2
log

1

δ
. (3)

This holds for every agent n ∈ Bδ,η, and in particular for n such that PN (x = n′) = minn∈Bδ,η
PN (x = n) := pδ,η.

Therefore, the total number of samples T is such that:

pδ,ηT −
√

1

2
log

1

δ

√
T − T (η) ≥ 0 , (4)

which is a second order polynomial equation in
√
T . Solving this equation in T , we have with probability at least 1− δ:

T ≥ 1

4p2δ,η

(√
1

2
log

1

δ
+

√
1

2
log

1

δ
+ 4pδ,ηT (η)

)2

. (5)

Developing and re-ordering the terms, we have:

T ≥ 1

pδ,η
T (η) +

1

4p2δ,η

(
log

1

δ
+

√
log2

1

δ
+ 8 log

1

δ
pδ,ηT (η)

)
. (6)

In particular:

T ≥ 1

pδ,η

(
T (η) +

1

4pδ,η
log

1

δ

)
. (7)

Therefore, when E1 does not occur, that is when all M most frequent agents have enough samples to output best arm with
confidence η, with probability at least 1− δ:

T ≤ 1

pδ,η

(
T (η) +

1

4pδ,η
log

1

δ

)
. (8)

Let now NM be the set of the M most likely agents and define n⋆ = argminn∈NM
PN (x = n) and p⋆ =

argminn∈NM
PN (x = n) as the index and the probability of the M -th most likely agent, respectively.

We now consider the following event: E2 = {n⋆ ̸∈ Bδ,η}. Under ¬E1, by definition of Bδ,η, E2 is equivalent to the event
{Tn⋆ < T (η)}.

13
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But:
P (E2) = I1−p⋆ (T − T (η), 1 + T (η)) . (9)

In order to have exactly pδ,η = p⋆, an equivalent formulation of ¬E2 should hold for all agents whose sampling probability
PN (x = n) is greater than p⋆. This is why pδ,η = p⋆ with probability (1− I1−p⋆ (T − T (η), 1 + T (η)))

M .

Now, we prove Proposition 4.3 using Lemma A.1.

Proof. From Sajed & Sheffet (2019) (Lemma 4.2), the sample complexity of DP Successive Elimination is:

T (β) = log(K/β) + log log(1/∆2)

(
1

∆2
2

+
1

ϵ∆2

)
.

Using the same global elimination mechanism, we can see DP-MASE as the multi-agent algorithm from Féraud et al. (2019)
with DP Successive Elimination as a BAI subroutine. We can therefore apply Lemma A.1 with local sample complexity
T (β) and conclude that the sample complexity of DP-MASE is:

O
(

1

p⋆
T (β) +

1

4p⋆2
log

1

δ

)
with probability at least (1− δ) (1− I1−p⋆ (T − T (β), 1 + T (β)))

M .

A.2. Multi-Agent Successive Elimination with (ϵ, η)-Private Communications

Proposition 5.1. (Privacy of CORRUPTED ELIMINATION) Running local BAI subroutines with confidence 1 − η′, an
adversary knowing A and observing Mξ

n cannot infer the best arm of agent n with probability higher than (1− η′)× (1−
ξ)K−1. Therefore, to maintain an apparent privacy level η, we need to set the confidence level of the BAI subroutine as:

ηξ = max

(
0, 1− 1− η

(1− ξ)K−1

)
≤ η .

Proof. Let us recall the definition of Mξ
n:

Mn = (λn
1 , ..., λ

n
K) , (10)

Mξ
n = (λn

1 × νn1 , ..., λ
n
k × νnK) , (11)

where, for any arm k, νnk is the corruption mask and is a random variable with distribution B(1− ξ).

An adversary can guess the global optimal arm from messages Mn if these two events hold:

• Event A: the arm selection subroutine of agent n actually finds the optimal arm;

• Conditionally to A, event B: no message associated to sub-optimal arms is corrupted.

By assumption, P(A) ≥ 1− ηξ. Moreover, B holds when all νnk are ones for k = 2, ...,K. Since νnk ∼ B(1− ξ), we have
P(B) = (1− ξ)K−1. Therefore, observing messages Mn, an external observer can only infer the best arm with probability
(1− ηξ)× (1− ξ)K−1.

To maintain an apparent privacy level η, we then need to set ηξ > 0 such as:

1− η = (1− ηξ)× (1− ξ)K−1 . (12)

14



Multi-Agent Best Arm Identification with Private Communications

That is:

ηξ = max

(
0, 1− 1− η

(1− ξ)K−1

)
≤ η . (13)

Proposition 5.2. (Failure probability of CORRUPTED ELIMINATION) The failure probability of
CORRUPTED ELIMINATION is at most:

min
α∈N

(1− Iξ (α+ 1,M))× δα , where δα = δ × ηξ
α .

Proof. Assuming it terminates, CORRUPTED ELIMINATION fails, i.e. eliminates the best arm, if there are at least M =
⌈ log δ
log η ⌉ votes against it. Let Ne and Nv denote respectively the number of local independent eliminations of the best arm

and the number of votes actually sent against the best arm. Nv follows a binomial distribution with Ne trials:

Nv ∼ B (Ne, 1− ξ) . (14)

Given Ne independent eliminations, the probability that Nv exceeds the voting threshold M is:

P (Nv ≥ M) =

Ne∑
m=M

(
Ne

m

)
(1− ξ)mξNe−m . (15)

In order to overcome the randomness of Ne, we want α ∈ N such that if Ne ≥ M + α, Nv ≥ M with high probability.
As Ne ≥ M + α, obviously, the probability of a random variable X following B (M + α, 1− ξ) being greater than M is
lower than if it followed B (Ne, 1− ξ). Thus:

P (Nv ≥ M) ≥
M+α∑
m=M

(
M + α

m

)
(1− ξ)mξM+α−m (16)

= 1−
M−1∑
m=0

(
M + α

m

)
(1− ξ)mξM+α−m (17)

= 1− Iξ (α+ 1,M) , (18)

where Ip (a, b) is the regularized incomplete beta function evaluated at p with parameters (a, b).

Now since the local BAI routines are run with confidence ηξ , the probability that at least M+α independent agents eliminate
the best arm is at most ηM+α

ξ .

Eventually, for α ∈ N, CORRUPTED ELIMINATION eliminates the best arm if the two following events happen:

• M + α independent agents eliminate the best arm locally, which happens with probability at most ηM+α
ξ ;

• These M + α local eliminations imply at least M votes, which happens with probability 1− Iξ (α+ 1,M).

By independence of the corruption mechanism, the failure probability of the algorithm is at most:

min
α∈N

(1− Iξ (α+ 1,M))× ηM+α
ξ . (19)

Noticing that:

ηM+α
ξ = η

⌈ log δ
log η ⌉+α

ξ ≤ δ × ηαξ = η
log δ
log η+α

ξ , (20)

and setting δα = δ × ηξ
α concludes the proof.
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Proposition 5.3. (Sample complexity of CORRUPTED ELIMINATION) If the agent distribution PN is uniform, then with
probability α, the number of rounds needed by CORRUPTED ELIMINATION to output an ϵ-optimal arm is approximately:

T = N ×Q−1
(
T (ηξ), 1− α1/M

)
,

where Q−1 is the inverse of the regularized gamma function, and T (ηξ) is the number of local samples needed for the BAI
subroutine to find the optimal arm with confidence 1− ηξ.

Proof. For all n ∈ N , let Tn denote the number of rounds agent n has been active, and T denote the total number of rounds
before the algorithm stops. Then (T1, ..., TN ) follows a multinomial distribution:

(T1, ..., TN ) ∼ Mult(T, {p1, ..., pN}) , (21)

where pn = PN (x = n). For simplicity, we consider a uniform distribution, i.e. pn = 1/N for any n ∈ N , in the sequel of
this proof.

Assuming the local BAI subroutines accurately return the best arm, the algorithm terminates when the M largest T1, ..., TN

exceed threshold T (ηξ). We thus look for a bound on the probability of this event.

We can make the components of the vector (T1, ..., TN ) independent by ”poissonizing” the multinomial, using the following
theorem (DasGupta, 2011):

Theorem A.2. Let N ∼ P(λ) and suppose (X1, ..., Xk) ∼ Multi(p1, ..., pk). Then, marginally, X1, ..., XK are independent
Poisson random variables, with Xi ∼ Xi ∼ P(piλ).

Instead of considering T , the number of trials of the multinomial, as fixed, we assume that it follows a Poisson distribution,
i.e., T ∼ P(T ) for some T ∈ N. Thus, we can now think of T1, ..., TN as mutually independent random variables such that
Tn ∼ P

(
T/N

)
for all n ∈ N .

The probability that one count Tn is greater than T (ηξ) can then be expressed in terms of the cumulative distribution function
of the Poisson distribution:

P(Tn ≥ T (ηξ)) = 1−Q
(
T (ηξ), T/N

)
, (22)

where Q(s, x) is the regularized gamma function evaluated in (s, x).

Consequently, by independence of the T1, ..., TN , the probability that M different agents have more samples than T (ηξ) at
time t is, for some α ∈ [0, 1]:

(1−Q
(
T (ηξ), T/N

)M
= α .

Now, to estimate the sample complexity T , we may just compute T given α, M and T (ηξ). To do this, we notice that:

Q(T (ηξ), T/N) = 1− α1/M .

There is no close form for the inverse of Q that would lead to a close form for T . However, we can numerically compute the
inverse of Q in its second argument. Thus, the total number of samples would be given by:

T ≈ N ×Q−1
(
T (ηξ), 1− α1/M

)
.

Confusing T with its expectation T , we get an approximation of the sample complexity of CORRUPTED ELIMINATION.

We can analyze this approximation in the following way. When ηξ increases, M = ⌈ log δ
log ηξ

⌉ increases, and therefore α1/M

increases (as 0 < α < 1). Empirically, we also observe that Q−1 is a decreasing function in its second argument. Therefore,
although the final effect is unclear due to the presence of T (ηξ) as a first argument, the sample complexity possibly increases
with ηξ via its second argument.
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B. Algorithms
In this section, for self-completeness, we recall the main algorithms of the paper and introduce the elimination subroutines
that have been omitted because of space constraints.

B.1. Multi-Agent Successive Elimination with Differentially Private Communications

We recall the algorithm for DP-MASE and introduce in Algorithm 4 the elimination subroutine used at line 7 of Algorithm
2.

Algorithm 2 DP-MASE

1: Input: ϵ, δ, β, M = ⌈ log δ
log β ⌉

2: Output: Estimated best arm in K
3: Active agents N (t) = N ; global and local active sets K=Kn=[K]; global votes (λk = 0)k∈[K]; local epochs en=0;

local round rn=0; global time t = 0
4: while |K| > 1 do
5: Active agent n is sampled: n ∼ PN (t)

6: Sample all arms in Kn and update mean estimates
7: rn := rn + 1
8: if rn = R(en) then
9: k̄(en) = LocalElimination (ϵ, en, (µ̂n

k (e
n))k, β) {Identify arms to eliminate locally}

10: Kn = Kn \ k̄(en) {Remove eliminated arms from local active set}
11: λk := λk + 1 for any k ∈ k̄(en) {Vote against eliminated arms for global elimination}
12: if |Kn| = 1 then
13: N (t) := N (t) \ {n} {Remove agent if done}
14: else
15: en := en + 1
16: Reset (µ̂n

k (e
n) = 0)k, rn = 0

17: Compute next epoch length R(en)
18: Synchronize Kn := Kn

⋂
K {Remove the latest globally eliminated arms from local active set}

19: for k ∈ k̄(en) do
20: K := K \ {k} if λk > M {Remove arms from global active set if the voting threshold is met}
21: t := t + 1

Algorithm 4 DP-MASE Local Elimination
1: Input: Privacy level ϵ, current local epoch en, estimated means (µ̂n

k (e
n))Kn , local accuracy β

2: Output: A set of arms k̄(en) to eliminate locally at agent n.
3: k̄(en) = {}
4: Set h(en) =

√
log(8|Kn(en)|en2/β)

2R(en)

5: Set c(en) =
log(4|Kn(en)|en2/β)

ϵR(en)

6: Perturb means: µ̃n
k = µ̂n

k (e
n) + Lap (1/ϵR(en))

7: for all k ∈ Kn do
8: if maxl∈Kn µ̃n

l − µ̃n
k > 2 (h(en) + c(en)) then

9: k̄(en) := k̄(en) ∪ {k} {Add k to the set of arms to eliminate if elimination condition is met}

B.2. Multi-Agent Successive Elimination with (ϵ, η)-Private Communications

We recall the algorithm for CORRUPTED ELIMINATION.
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Algorithm 3 CORRUPTED ELIMINATION

1: Input: η, δ, ξ, M = ⌈ log δ
log η ⌉

2: Output: Estimated best arm in K
3: Active agents N (t) = N ; global and local active sets K=Kn = [K]; local failure probability ηξ = 1 − 1−η′

(1−ξ)K−1 ,
Kn := K for all n ∈ N ; global votes (λk = 0)k∈[K], global time t = 0

4: while |K| > 1 do
5: Active agent n is sampled: n ∼ PN (t)

6: Sample all arms in Kn and update mean estimates
7: k̄, , k̄G = LocalElimination (n, ξ) {Identify arms to eliminate locally}
8: Kn = Kn \ k̄ {Remove eliminated arms from local active set}
9: λk := λk +1 for any k ∈ k̄G(e

n) {Vote for global elim. of eliminated arms if corresponding message not corrupted}
10: if |Kn| = 1 then
11: N (t) := N (t) \ {n}
12: Synchronize Kn := Kn

⋂
K {Remove the latest globally eliminated arms from local active set}

13: for k ∈ k̄ do
14: K := K \ {k} if λk > M {Remove arms from global active set if the voting threshold is met}
15: t := t+ 1

We also introduce in Algorithm 4 the elimination subroutine, Local Elimination, used at line 5 of Algorithm 3. Local
Elimination returns two arm sets: k̄, containing the arms to eliminate locally, and k̄G, containing the arms to vote against for
global elimination, i.e., those whose corresponding messages have not been corrupted.

Algorithm 4 CORRUPTED ELIMINATION Local Elimination
1: Input: Active agent n, corruption probability ξ
2: Output: A set of arms k̄ to eliminate locally, and a set of arms k̄G to vote against for global elimination
3: k̄ = {}, k̄G = {}
4: for all k ∈ Kn do
5: if maxl∈Kn µ̂n

l (t)− µ̂n
k (t) ≥ 2

√
log(Ktn2/ηξ)

tn then
6: k̄ := k̄

⋃
{k} {Add k to the set of arms to eliminate if elimination condition is met}

7: Draw νnk ∼ B(1− ξ)
8: if νnk = 1 then
9: k̄G := k̄G ∪ {k} {If message is not corrupted, add k to the set of arms to vote against for global elim.}
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C. Additional Experiments
In this section, we provide additional experimental results.

C.1. Experimental Setting

We consider the following stochastic environments suggested in related work (Féraud et al., 2019):

• Problem 1: K = 10 arms with Bernoulli distributions and means µ1 = 0.7, µ2 = 0.5, µ3 = 0.3 and µk = 0.1 for
k = 4, ..., 10:

• Problem 2: K = 10 arms with Gaussian distributions and means µ1 = 11, µ2 = 10.8, µk = 10.4 for k = 3, ..., 10.

C.2. Sample Complexity and Privacy Level

Figure 2. Sample complexity of Féraud et al. (2019) (ξ = 0) on Problem 1 and Problem 2 as a function of η

For CORRUPTED ELIMINATION, Figure 2 shows a positive correlation between the sample complexity and η, which is both
the local BAI failure probability and the privacy level when ξ = 0. While this behavior is not reflected in the initial sample
complexity bound stated in Féraud et al. (2019), Proposition 5.3 provides a first theoretical justification.

Figure 3. Sample complexity of DP-MASE (left) for ϵ = 0.05, 0.1, 0.25 and CORRUPTED ELIMINATION (right) for ξ = 0, 0.05, 0.1 on
Problem 2.

Experimental results on Problem 2, shown in Figure 3, lead to the same conclusions as results on Problem 1. Figure 4
shows the same results as in Figures 1 and 3 but without the baselines to distinguish the different curves more clearly.
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Figure 4. Sample complexity of DP-MASE (left) for ϵ = 0.05, 0.1, 0.25 and CORRUPTED ELIMINATION (right) for ξ = 0, 0.05, 0.1 on
Problem 1 (top) and Problem 2 (without baselines).

C.3. Sample Complexity and Local Accuracy

In the figures above, we displayed experimental sample complexity for DP-MASE for a fixed local accuracy (β = 0.5). We
found it also interesting to compare sample complexity over different local accuracy levels.

In Figure 5, we plot the sample complexity of DP-MASE for β = 0.3, 0.5, 0.8, for a fixed privacy level ϵ = 0.5. We
observe that the sample complexity increases with local accuracy. This is in contradiction with what we observe for
CORRUPTED ELIMINATION. Indeed, in the case ξ = 0 (corresponding to the algorithm from Féraud et al. (2019)), we
already noticed that the sample complexity increases with η, which is both the local probability of failure and the global
privacy level. In the case ξ > 0, ξ is positively correlated with the local accuracy 1− ηξ for a given apparent privacy level η.
Higher corruption probability means we can run more confident local BAI without compromising the global privacy of the
best arm. But sample complexity decreases with ξ, as shown empirically in Figure 1. Therefore, the sample complexity of
CORRUPTED ELIMINATION decreases with local accuracy 1− ηξ.

To explain these two opposite behaviors, we once again stress the implications of a higher local accuracy in terms of sample
complexity. More confident local agents means that 1) more local samples are needed to estimate the best arm and 2) less
independent eliminations are needed to reach a given global accuracy, hence a smaller voting threshold M . The former
effect will tend to increase the sample complexity, while the latter (which we have called the threshold effect) will tend
to decrease the sample complexity. In Section 5, based on experiments in Figure 1, we already argued that the threshold
effect is predominant in the case of CORRUPTED ELIMINATION. Why would the local sample complexity matter more for
DP-MASE? DP-MASE works in epochs, and with uniform agent sampling, it is likely that all agents will reach the end of
a given epoch and proceed to an elimination at about the same time. In CORRUPTED ELIMINATION, each agent may vote
for the global elimination of an arm at any time — not only at the end of an epoch, so that it is more likely to gather M
votes against an arm early in the process. In terms of speeding up the elimination of suboptimal arms, the global voting
process will thus be more important in CORRUPTED ELIMINATION than in DP-MASE.
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Figure 5. Sample complexity of DP-MASE for β = 0.3, 0.5, 0.8 on Problem 1 (left) and Problem 2 (right).

Figure 6. Sample complexity of DP-MASE (left) and CORRUPTED ELIMINATION (right) on Problem 1 for uniform and non-uniform
agent distributions.

C.4. Sample Complexity and Agent Distribution

In previous experiments, we assumed PN was uniform. However, Proposition 4.3 suggests that PN affects the sample
complexity in the Multi-Agent Successive Elimination scheme. Indeed, through the global elimination process, the algorithm
roughly waits for the M -th most frequent player to output his best arm estimate. Therefore, we expect DP-MASE and
CORRUPTED ELIMINATION to be faster for unbalanced distributions, without losing accuracy, and indeed observe this
behavior empirically.

To simulate an unbalanced agent distribution, we choose the following:

P γ
N (n) ∝ (n+ α)−γ ,

for some α ≥ 0 and γ ∈ (0, 1). Thus, the probability of sampling agent n decreases with n.

We illustrate the impact of PN on the sample complexity for both DP-MASE and CORRUPTED ELIMINATION, comparing
the uniform distribution to P γ

N with γ = 0.8. We choose ϵ = 0.1 and β = 0.5 for DP-MASE, and set ξ = 0.05 for
CORRUPTED ELIMINATION. As expected, both methods are much faster when the agent distribution is unbalanced.
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