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Abstract
Model fairness is an essential element for Trust-
worthy AI. While many techniques for model
fairness have been proposed, most of them as-
sume that the training and deployment data dis-
tributions are identical, which is often not true
in practice. In particular, when the bias between
labels and sensitive groups changes, the fairness
of the trained model is directly influenced and
can worsen. We make two contributions for solv-
ing this problem. First, we analytically show that
existing in-processing fair algorithms have fun-
damental limits in accuracy and group fairness.
We utilize the notion of correlation shifts between
labels and groups, which can explicitly capture
the change of the above bias. Second, we propose
a novel pre-processing step that samples the input
data to reduce correlation shifts and thus enables
the in-processing approaches to overcome their
limitations. We formulate an optimization prob-
lem for adjusting the data ratio among labels and
sensitive groups to reflect the shifted correlation.
A key benefit of our approach lies in decoupling
the roles of pre- and in-processing approaches:
correlation adjustment via pre-processing and un-
fairness mitigation on the processed data via in-
processing. Experiments show that our frame-
work effectively improves existing in-processing
fair algorithms w.r.t. accuracy and fairness, both
on synthetic and real datasets.

1. Introduction
Model fairness is becoming indispensable in many artifi-
cial intelligence (AI) applications to prevent discrimination
against specific groups such as gender, race, or age (Feld-
man et al., 2015; Hardt et al., 2016) or individuals (Dwork
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et al., 2012a). In this work, we focus on group fairness, and
there are three prominent group fairness approaches: pre-
processing, where training data is debiased; in-processing,
where model training is tailored for fairness; and post-
processing, where the trained model’s output is modified to
satisfy fairness – see more related works discussed in Sec. 2.

While fairness in-processing approaches are commonly used
to mitigate unfairness, most of them make the limiting as-
sumption that the training and deployment data distributions
are the same (Zafar et al., 2017a; Zhang et al., 2018; Roh
et al., 2021). However, the two distributions are usually dif-
ferent, especially in terms of data biases (Wick et al., 2019;
Maity et al., 2021). For example, a recent work shows that
the bias amounts likely differ between previously collected
data and recently collected data (Ding et al., 2021). More-
over, when the data bias changes, the fairness and accuracy
of the trained model are now unpredictable at deployment,
as the above assumption is broken.

In this work, we utilize the notion of correlation shifts be-
tween the label y and group attribute z in the data (i.e., (y, z)-
correlation shifts) to systematically address the data bias
changes. Although several works have been recently pro-
posed to investigate fair training on different types of distri-
bution shifts, including covariate and concept shifts (Singh
et al., 2021; Mishler & Dalmasso, 2022), they usually do
not explicitly consider bias changes between y and z. In
comparison, our (y, z)-correlation shift enables us to theoret-
ically analyze how exactly bias changes affect fair training
– see how correlation shift compares with other types of
distribution shifts in Sec. 2.

For fair training under (y, z)-correlation shifts, we first 1)
analyze the fundamental accuracy and fairness limits of in-
processing approaches with the fixed distribution assump-
tion using the notion of (y, z)-correlation in the data and
then 2) design a novel pre-processing step to boost the
performances of in-processing approaches under the (y, z)-
correlation shifts. We show that existing in-processing fair
algorithms are indeed limited by the training distribution
and may perform poorly on the deployment distribution. In
particular, a high (y, z)-correlation results in a poor accuracy-
fairness tradeoff for any fair training. Therefore, as most
in-processing fair algorithms assume identical training and
deployment distributions, there is no guarantee their perfor-
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Figure 1. A high-level workflow under (y, z)-correlation shifts.
The central axis represents the correlation between the label y
and sensitive group attribute z. The correlation of training data is
usually higher than that of deployment data. In Sec. 4, we show
that the correlation determines the achievable performance of fair
training. Thus, we first run our pre-processing framework and then
apply existing fair algorithms on the processed data to address the
correlation shift and improve the performances of fair training.

mances on the training data carry over to the deployment
data. Based on the theoretical analysis, we propose a pre-
processing step for reducing the shifted correlation by taking
samples of (y, z)-classes. In a streaming setup, one can es-
timate a possible range of shifted correlations. Using this
range, we solve an optimization problem that finds the new
data ratio among (y, z)-classes to adjust the correlation for
the shift. The new sampled data is then used as the input of
any in-processing, giving it a better chance to perform well.

A key advantage of our framework is the decoupling of
pre-processing and in-processing for unfairness mitigation
where the pre-processing adjusts the correlation while the in-
processing performs the rest of the unfairness mitigation, as
described in Figure 1. We note that our pre-processing aims
to boost the performances of in-processing approaches based
on our theoretical analysis, whereas existing pre-processing
approaches for fairness simply remove the bias in the data
and are not designed to explicitly benefit the in-processing
approaches – see Sec. 6.1 for details. Our framework thus
takes the best of both worlds of pre- and in-processings
where (1) pre-processing solves the data problems, and (2)
in-processing performs its best on the improved data.

In our experiments, we verify our theoretical results and
demonstrate how our framework outperforms state-of-the-
art pre-processing and in-processing baselines. Experi-
ments on both synthetic and real-world datasets show that
our framework effectively improves the accuracy and fair-
ness performances of the state-of-the-art in-processing ap-
proaches (Zafar et al., 2017a; Zhang et al., 2018; Roh et al.,
2021) under correlation shifts. Also, our framework per-
forms better than two-step baselines that first run an existing
pre-processing approach (Kamiran & Calders, 2011) and
then an in-processing approach. We also show how to rea-
sonably estimate correlation shifts and that our framework
is robust against incorrect estimates.

Summary of Contributions (1) We formalize the notion
of (y, z)-correlation shifts, which is key to improving fair

training against data bias changes. (2) Using the notion
of (y, z)-correlation, we theoretically show that existing
in-processing fair algorithms are limited by the training
distribution and may perform poorly on the deployment
distribution. (3) Based on the theoretical analysis, we pro-
pose a novel pre-processing step to boost the performances
of fair in-processing approaches. (4) We demonstrate that
our framework effectively improves the performances of
the state-of-the-art fair algorithms under (y, z)-correlation
shifts, even if the correlation estimates are inaccurate.

Notation & Fairness Metrics Let θ be the model weights,
x ∈ X be the input feature to the model, y ∈ Y be the true
label, and ŷ ∈ Y be the predicted label where ŷ is a function
of (x, θ). Let z ∈ Z be a sensitive group attribute, e.g., gen-
der or race. We assume a binary setting (Y = Z = {0, 1}).
We focus on the prominent group fairness metrics, demo-
graphic parity (DP) (Feldman et al., 2015) and equalized
odds (EO) (Hardt et al., 2016), where DP is achieved when
the positive prediction rates are the same for the groups (i.e.,
Pr(ŷ=1|z=1)=Pr(ŷ=1|z=0)) and EO is achieved when
the label-wise accuracies are the same for the groups (i.e.,
Pr(ŷ=y|y=y, z=1)=Pr(ŷ=y|y=y, z=0),∀y ∈ {0, 1}).

2. Related Work
As model fairness becomes essential for Trustworthy AI,
various fairness techniques have been proposed to improve
group fairness that do not discriminate specific demograph-
ics (Barocas et al., 2019). The fairness techniques can be
categorized into three prominent approaches: pre-, in-, and
post-processings – see their representative works in Sec. C.1.
Among the three categories, in-processing approaches are
widely used for fair training due to their high fairness and
accuracy performances, but most of them assume that the
training and deployment distributions are the same.

Table 1. Different distribution shifts.
Category Type of Shifts

General
distribution

shifts

covariate shift Pr(x)
label shift Pr(y)

concept shift Pr(y|x)
Fairness
specific
shifts

demographic shift Pr(z)
subpopulation shift Pr(y, z)
corr. shift (ours) Pr(z|y)

Recently, there is an
emerging focus on fair-
ness under data distri-
bution shifts. In Table
1, we summarize vari-
ous types of shifts into
the two categories:

1. General distribution shifts (Singh et al., 2021; Rezaei
et al., 2021; Chen et al., 2022; Mishler & Dalmasso, 2022)
focus on shifts involving the input feature (x) and label (y),
which are widely studied in the traditional machine learning
literature. Here the bias changes between label (y) and
group (z) are not explicitly considered.

2. Fairness-specific shifts (Maity et al., 2021; An et al.,
2022; Giguere et al., 2022; Schrouff et al., 2022; Dai &
Brown, 2020) handle group (z) changes, as z is especially
correlated with fair training. Our work also falls into this
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category. A recent study (Maity et al., 2021) theoretically
analyzes the behavior of fair training under a change in
bias called subpopulation shifts, where a specific group has
fewer positively-labeled examples during training time com-
pared to deployment time. Another study (Giguere et al.,
2022) designs a new test method to serve a fair model un-
der another distribution change called demographic shifts,
where the subgroup distribution may change – see an em-
pirical comparison with our work in Sec. B.16. A recent
work (An et al., 2022) proposes a self-training-based trans-
fer algorithm that requires specific model architecture (e.g.,
adversary network) to support data changes. Also, there
is another work to model label bias shifts (Dai & Brown,
2020), but this work does not provide theoretical analyses
and fairness algorithms. In comparison, our contribution
lies in 1) formalizing the notion of (y, z)-correlation shifts,
which is important for explaining with theoretical evidence
the connection between the data bias changes and behav-
iors of fair training, 2) analyzing the fundamental limits
of in-processing approaches under correlation shifts, and
3) proposing a pre-processing step based on the theoretical
analysis for assisting the existing fairness approaches. In
addition, our framework is general and can support any
model architecture and training procedure. We leave more
detailed comparisons with these works in Sec. C.2.

Also, compared to the traditional domain adaptation tech-
niques that use reweighting strategies (Li et al., 2016; Gu
et al., 2021; Rezaei et al., 2021), our framework is special-
ized to handle shifted (y, z)-correlations, which directly af-
fect the performance limits of the fairness algorithms, as we
will show in our theoretical analyses. In addition, although
our approach can also be implemented as a reweighting strat-
egy, we believe the decoupling of pre- and in-processing is
especially useful from a practical standpoint where our pre-
processing can be combined with any existing in-processing
fairness algorithm as is and boost its performance.

Another line of research is supporting robustness in fair
training, including handling noisy groups (Celis et al., 2021;
Wang et al., 2020) or poisoning attacks (Mehrabi et al.,
2021; Solans et al., 2020). Although this direction is not our
immediate focus, we do perform preliminary experiments
in Secs. B.17 and B.18 to show some potential to support
noisy group attributes or poisoning attack scenarios.

In addition to group fairness, we discuss other noteworthy
fairness definitions including causality-based fairness (Kil-
bertus et al., 2017) in Secs. C.1 and C.3.

3. Limitations of Prior Work & Problem Setup

Most fair in-processing approaches assume that the training
and deployment distributions are the same, which means
that they assume the same level of bias as well. However,
data bias may shift over time as confirmed by recent stud-

ies (Wick et al., 2019; Maity et al., 2021; Ding et al., 2021),
which means that the deployment data may actually have a
different bias than the training data.

A bias change in the deployment data may have an adverse
effect on a trained model’s performance. For example, sup-
pose we train a perfectly fair model on the training data
while sacrificing accuracy. Here, if the bias between the
label and group changes in the deployment distribution,
the trained model’s fairness can worsen while the accuracy
still remains imperfect. The underlying problem is that the
model was trained with a different bias in mind – see a de-
tailed toy example to show this limitation in Sec. A.1. Thus,
we aim to overcome this issue under the following setup.

Problem Setup Let Dtrain and Ddeploy be the training and
deployment data, respectively. We assume access to the (x,
y, z) values in Dtrain and m samples of the (y, z) values in
Ddeploy. Accessing some of the new data is a common and
practical scenario for detecting drifts (Lu et al., 2018) in a
data stream. Here, we can detect whether there exists a bias
change (shift) by comparing the (y, z) values in Dtrain and a
small number of (y, z) values in Ddeploy. Our goal is to have
high fairness and accuracy even when the bias shifts.

To this end, we first 1) theoretically analyze why the bias
change affects the performances of fair training by utilizing
the notion of (y, z)-correlation (Sec. 4) and then 2) design a
pre-processing step to address such bias changes and boost
the performances of any fair in-processing approaches under
the above problem setup (Sec. 5).

4. Fair Training under Correlation Shifts
To systematically study the effects of data bias changes, we
first analyze the achievable performances of fair training via
a correlation between y and z that can be used to explicitly
measure data bias regarding sensitive groups (Sec. 4.1) and
discuss the limitations of fair in-processings when this cor-
relation shifts (Sec. 4.2). We define correlation as follows:

(y, z)-correlation Data bias can be represented via the
correlation between the label y and the sensitive group
attribute z, where the correlation represents a statistical
relationship between two random variables. We thus
define (y, z)-correlation using Pearson’s correlation
coefficient (Rodgers & Nicewander, 1988) ρyz =

Cov(y,z)
σ(y)σ(z) ,

which is known to effectively capture biases in real-world
scenarios. Here, Cov(·) is the covariance, and σ(·) is
the standard deviation. As we assume y and z are bi-
nary, we can express ρyz as follows (Cohen & Cohen, 1975):

ρyz =
Pr(y = 1, z = 1)Pr(y = 0, z = 0)− Pr(y = 1, z = 0)Pr(y = 0, z = 1)√

Pr(y = 1)Pr(y = 0)Pr(z = 1)Pr(z = 0)
.

This notion of (y, z)-correlation plays a key role in both ana-
lyzing the achievable performances of fair training (Sec. 4)
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and improving fair training against data bias changes
(Sec. 5). In the rest of the paper, the term correlation always
indicates the correlation between labels (y) and groups (z).

4.1. Achievable Performance Analysis via Correlation

We identify the fundamental accuracy and fairness limits
of fair training based on the (y, z)-correlation of the data.
We first analyze the most common case of improving the
fairness w.r.t. a single fairness metric. We then extend our
analysis to the more complicated case of improving the fair-
ness w.r.t. multiple metrics, which is important for capturing
various social contexts, but has been seldom studied in the
literature. In both cases, we show that the (y, z)-correlation
determines the achievable performance of fair training.

CASE 1 – Fair Training w.r.t. a Single Metric When
improving group fairness, fair training is known to face an
accuracy-fairness tradeoff, where the accuracy is sacrificed
to make the model fairer. Recently, Menon & Williamson
(2018) investigate that the accuracy-fairness tradeoff w.r.t.
demographic parity is affected by how much y and z are
aligned in the data. For example, if the y and z values
are identical for all examples, achieving high fairness may
require low accuracy. In contrast, if y and z are randomly
set, fairness and accuracy can be achieved together. The
following proposition shows this previous work’s result.

Proposition 1 (From Menon & Williamson (2018)). (Infor-
mal) When a model is trained w.r.t. demographic parity, a
high alignment between y and z leads to a worse accuracy-
fairness tradeoff.

For our purposes, we infer a similar relationship using (y, z)-
correlation based on Proposition 1. The following lemma
makes a connection between the (y, z)-correlation and the
conditional probabilities of y given z under some conditions.
Lemma 2. If the marginal probabilities of y and z (i.e.,
Pr(y = y) and Pr(z = z)) remain the same, the (y, z)-
correlation ρyz is proportional to the difference between
the conditional probabilities of y given different z values
(i.e., Pr(y = 1|z = 1)− Pr(y = 1|z = 0)).

The proof for Lemma 2 can be found in Sec. A.2. By
applying Lemma 2 to Proposition 1, we can infer that
the (y, z)-correlation also determines the accuracy-fairness
tradeoff under certain conditions. According to the previous
work (Menon & Williamson, 2018), alignment is defined
as how many examples in each group have a specific la-
bel. We can thus measure alignment as Pr(y = y|z = 1) +
Pr(y = y′|z = 0) where y ̸= y′ and y, y′ ∈ {0, 1}. Then,
we can convert this term into the difference between the
conditional probabilities of y given different z values, which
is used in Lemma 2 – see details in Sec. A.3. As a re-
sult, we derive the following corollary, which shows that
the (y, z)-correlation determines the achievable accuracy-
fairness tradeoff.

Figure 2. Simulation results of accuracy-unfairness (left: DP and
right: DP & EO) performances of various classifiers on two syn-
thetic datasets that have low and high (y, z)-correlations. Each
blue dot (red cross) indicates a single classifier’s performance on
the low (high) correlation data. The lower the unfairness value, the
better. For each dataset, we generate enough classifiers to show
the full range of possible performances. As a result, low correla-
tion enables classifiers to attain better accuracy-fairness tradeoffs
(i.e., close to the bottom right), regardless of supporting single or
multiple fairness metrics. Also, the optimal classifiers trained on
high correlation data (black stars) have suboptimal performances
on the low correlation data (black squares).

Corollary 3. When a model is trained w.r.t. demographic
parity, and the marginal probabilities of y and z remain
the same, the achievable accuracy-fairness tradeoff of the
model is determined by the (y, z)-correlation. The higher
the correlation, the worse the accuracy-fairness tradeoff.

Remark 4. We can relax the assumption that marginal
probabilities are fixed in Corollary 3. When the marginal
probabilities of y and z change up to γy and γz, re-
spectively, Corollary 3 can be generalized as follows:
the achievable accuracy-fairness tradeoff is determined
by ρy,z · η, where ρy,z is the (y, z)-correlation and η ∈
[
√

Pr(y=1)−γy−(Pr(y=1)+γy)
2

Pr(z=1)+γz−(Pr(z=1)−γz)2
,
√

Pr(y=1)+γy−(Pr(y=1)−γy)
2

Pr(z=1)−γz−(Pr(z=1)+γz)2
].

Thus, the higher the ρy,z · η, the worse the tradeoff. In our
framework, we actually allow the marginal probabilities of
y and z to change up to γy and γz – see details in Sec. 5.1.

Simulation We now confirm our theoretical analysis via a
simulation – see details on the setting in Sec. B.1. The left
plot in Figure 2 shows the accuracy-unfairness performances
of classifiers on two synthetic datasets with low and high
correlations when using DP for measuring fairness (the plot
on the right will be explained later). We measure unfairness
where a lower value indicates better fairness (i.e., perfectly
fair when 0) – see the exact metrics in Sec. 6. We generate
various synthetic classifiers on the two datasets to show the
full range of possible model performances. The blue dots
(red crosses) are the classifiers on the dataset with low (high)
correlation. As a result, low correlation results in better
accuracy-fairness tradeoffs (i.e., close to the bottom right).
We will discuss the black stars and squares in Sec. 4.2.

Remark 5. We note that Corollary 3 does not necessarily
apply for equalized odds (EO), which is achieved when the
accuracies conditioned on the true label are the same for
the groups. In theory, a perfect classifier can achieve perfect
fairness w.r.t. EO, so the (y, z)-correlation does not deter-
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mine the limits of the accuracy-fairness tradeoff w.r.t. EO
– see the detailed explanation in Sec. B.2. However, classi-
fiers are not perfect in practice, and we empirically observe
that higher (y, z)-correlation leads to a worse accuracy-
fairness tradeoff w.r.t. EO as well – see the empirical results
in Sec. B.3.

CASE 2 – Fair Training w.r.t. Multiple Metrics Beyond
the single metric case, we now extend our analysis to sup-
port multiple fairness metrics together. Although supporting
multiple metrics is necessary to address fairness under vari-
ous social contexts, most fairness works do not address this
problem. A major challenge is that group fairness metrics
are known to be mutually exclusive, which means that the
metrics cannot be perfectly satisfied together, unless the
data is completely unbiased (Barocas et al., 2019; Kleinberg
et al., 2017). Interestingly, our (y, z)-correlation provides an
opportunity to support multiple metrics as much as possible
in a principled fashion. We focus on supporting two metrics
and leave the support of more metrics as future work.

We first analyze when a model can improve both DP and EO
to get hints on the relationship between the (y, z)-correlation
and improving fairness w.r.t. two metrics. Here, we focus on
the ε-fairness of both metrics, which is a relaxed version of
perfect fairness (Barocas et al., 2019), where ε indicates the
unfairness level of the model. For example, we can define
ε-DP as |Pr(ŷ=1|z=1)−Pr(ŷ=1|z=0)| ≤ ε and ε-EO as
|Pr(ŷ=y|y=y, z=1)−Pr(ŷ=y|y=y, z=0)| ≤ ε. Here, ε ∈
[0, 1] and a lower ε means higher fairness. The next propo-
sition shows when a model can achieve both ε-DP and ε-EO.

Proposition 6 (ε-DP & ε-EO). Let a model achieve
both ε-DP and ε-EO. Then, the following inequal-
ity holds: {|Pr(y = y|z = z) − Pr(y = y|z = z′)| ·
|Pr(ŷ = y|y = y, z = z) − Pr(ŷ = y|y = y′, z = z)|} ≤
2ε, y ̸= y′, z ̸= z′, y, y′, z, z′ ∈ {0, 1}.

The proof for Proposition 6 can be found in Sec. A.4.
Here, the achievable fairness level ε is affected by the
data bias, which is represented by the difference be-
tween the conditional probabilities of y given z (i.e.,
|Pr(y = y|z = z) − Pr(y = y|z = z′)|). For example, if
the data is highly biased, a model cannot achieve high fair-
ness (i.e., low ε) unless the second term on the left side
(i.e., |Pr(ŷ = y|y = y′, z = z)−Pr(ŷ = y|y = y, z = z)|)
decreases. However, the second term is related to the accu-
racy, where lowering it to zero causes the model to make ran-
dom predictions or predictions that are all the same. Thus,
Lemma 2 and Proposition 6 give the following corollary.

Corollary 7. When a model is trained w.r.t. both DP and
EO, and the marginal probabilities of y and z do not change,
the achievable fairness of the model is determined by the
(y, z)-correlation if the accuracy does not change. The
higher the correlation, the lower the achievable fairness.

Similar to the single-metric case, we confirm the theoret-
ical result of supporting multiple metrics via the simula-
tion in the right plot in Figure 2. Again, we observe that
low correlation enables classifiers to attain better accuracy-
fairness tradeoffs. We also leave discussions for improving
fairness w.r.t. another prominent metric called predictive
parity (PP) (Berk et al., 2021) together with DP and EO in
Secs. A.5 (ε-PP and ε-DP) and A.6 (ε-EO and ε-PP).

4.2. Effects of Correlation Shifts

As the performance ranges of fair training are different ac-
cording to the data correlation, a fair classifier learned on
some training data does not necessarily have optimal per-
formance on deployment data with a different correlation.
We say there is a correlation shift between two data dis-
tributions D1 and D2 when |ρD1

yz − ρD2
yz | ̸= 0, where ρDi

yz
indicates the (y, z)-correlation of Di. Here, the correlation
shift reflects the bias change between data distributions.

We revisit our previous simulation in Figure 2 that helps
to understand how the correlation shifts affect fair training.
We consider a correlation shift from a training distribution
with high correlation to a deployment distribution with low
correlation. We start from a few optimal classifiers trained
on the high-correlated data, which are denoted as black
stars. These classifiers unfortunately have suboptimal per-
formances on the low-correlation deployment data (black
squares). Hence, in-processing approaches that assume the
same training and deployment data distributions lose the
chance of achieving better fairness and accuracy in the de-
ployment distribution under correlation shifts.

Based on our theoretical and simulation results, we design
a pre-processing approach using (y, z)-correlation as a tun-
ing knob to give existing in-processing approaches a better
opportunity to achieve maximum accuracy and fairness per-
formances in the following section.

5. Framework
To improve the performance of fair training in the presence
of (y, z)-correlation shifts, we propose a novel fair training
framework that consists of 1) applying a pre-processing step
for reflecting the shifted (y, z)-correlation and 2) utilizing
any existing in-processing algorithms for fair training on
top of the improved data. In Sec. 5.1, we explain the pre-
processing step, which estimates the correlation range and
solves an optimization problem for finding a new data distri-
bution that follows the shifted correlation by adjusting the
(y, z)-class ratios. In Sec. 5.2, we explain our overall train-
ing process and extensions to support similar distributions.

5.1. Pre-processing for Correlation Shifts

Conditions We design an optimization that finds the best
(y, z)-class ratios given a (y, z)-correlation ρyz by using
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Lemma 2, which shows that ρyz is proportional to the con-
ditional probability difference under some assumptions.
Note that the conditional probability can be written us-
ing the class weights. Let the original data ratio of each
(y=y, z=z)-class be wy=y,z=y. Let the new data ratio be
w′

y=y,z=y, which is required to satisfy the shifted correla-
tion of the deployment data. Note that

∑
∀y,zw

′
y=y,z=z=1.

Also, let c be the correlation constant that is the differ-
ence between the conditional probabilities of y given z
(i.e., Pr(y=1|z=1)−Pr(y=1|z=0)) in the deployment data.
Let [α, β] be the range of the correlation constant c (i.e.,
c ∈ [α, β]). We use a relaxed version of the assumption in
Lemma 2 where the marginal probabilities of y and z can
change by up to γy and γz, as discussed in Remark 4.

Part 1: Estimating Correlation Range We first find a
shift range [α, β], which can be estimated or given in ad-
vance. When the estimation is needed, we consider the
scenario where accessing some of the new data is possible,
which is necessary for detecting data drifts (Lu et al., 2018).
As stated in Sec. 3, we assume we have the (y, z) values
of m samples in the deployment data. We can estimate the
new correlation constant c by calculating the empirical prob-
ability P̂r(y|z) using the given m samples. Here, we can
use the maximum likelihood estimator, i.e., P̂r(y=y|z=z)=
(num. samples in (y, z))/(num. samples in z). We can also
compute a confidence interval of the estimated c using stan-
dard concentration inequalities (e.g., Hoeffding’s inequality)
– see a formal estimation guarantee and proof in Sec. A.7.

Some key questions are 1) whether the correlation can be
estimated for small amounts of new data and 2) whether our
framework works well even when the estimation is incorrect.
We answer them via empirical results in Secs. 6.3 and 6.4.

Part 2: Optimization With the above conditions and esti-
mated correlation, we set a problem whose goal is to mini-
mize the squared difference between the original and new
data ratios to reduce the information loss, similar to other
preprocessings (Zemel et al., 2013; Quadrianto et al., 2019):

min
w′

∑
∀y,z(wy=y,z=z − w′

y=y,z=z)
2

s.t. α ≤
w′

y=1,z=1

w′
y=1,z=1 + w′

y=0,z=1

−
w′

y=1,z=0

w′
y=1,z=0 + w′

y=0,z=0

≤ β,

|(w′
y=1,z=1 + w′

y=1,z=0)− Prtrain(y = 1)| ≤ γy,

|(w′
y=1,z=1 + w′

y=0,z=1)− Prtrain(z = 1)| ≤ γz,∑
∀y,z w

′
y=y,z=z=1, 0 ≤ w′

y=y,z=z ≤ 1, ∀y ∈ {0, 1}, z ∈ {0, 1}

where Prtrain(y=1)=wy=1,z=1+wy=1,z=0 and Prtrain(z=1)
=wy=1,z=1+wy=0,z=1. Note that if we know the exact
shifted correlation value (i.e., α=β=c), the first constraint
becomes an equality constraint.

The above optimization is a nonconvex quadratically
constrained quadratic problem (QCQP), as the objective is

quadratic, and the first constraint is nonconvex quadratic.
However, the nonconvex QCQP is known to be hard to
solve (d’Aspremont & Boyd, 2003). Thus, we apply the
semidefinite (SDP) relaxation, which is one of the convex
relaxations known to give a reasonable lower bound of the
optimal value of the original problem (Park & Boyd, 2017):

min
X,x

Tr(XP0) + qT0 x

s.t. Tr(XPα) ≥ 0, Tr(XPβ) ≤ 0,

|qT2 x− Prtrain(y = 1)| ≤ γy, |qT3 x− Prtrain(z = 1)| ≤ γz,

qT4 x = 1, 0 ≤ xi ≤ 1 ∀i,
[
X x
xT 1

]
⪰ 0

where Tr(·) is the trace, X = xxT , x =
[
x1 x2 x3 x4

]T
=
[
w′

1,1 w′
1,0 w′

0,1 w′
0,0

]T
, q0 = −2

[
w1,1 w1,0 w0,1 w0,0

]T
,

q2=
[
1 0 1 0

]T
, q3=

[
1 1 0 0

]T
, q4=

[
1 1 1 1

]T
, P0=diag(1) ,

and Pγ =

[
0 −γ/2 0 (1−γ)/2

−γ/2 0 (−1−γ)/2 0
0 (−1−γ)/2 0 −γ/2

(1−γ)/2 0 −γ/2 0

]
where γ ∈ {α, β}.

Conversion details are in Sec. A.9. As this relaxed problem
is now convex, we can solve it using convex optimization
solvers (e.g., CVXPY (Diamond & Boyd, 2016)).

Remark 8. In distribution shift studies, it is common to
assume that the training and deployment distributions differ
only in specific aspects (e.g., only label dist. is changed).
Without such an assumption, the training and deployment
distributions can be arbitrarily far apart, and there is no way
to infer the new distribution via the training samples (Huang
et al., 2006). In our framework, we focus on the distribution
changes of y and z and do not explicitly model the change
of the input feature x distribution. Our framework thus
works best when the x distribution does not change, but
does not strictly require this condition unlike other previous
works on fairness under different types of shifts (Maity et al.,
2021; Giguere et al., 2022). We empirically show that our
framework indeed performs well in a real-world scenario
where the x distribution does shift – see Sec. 6.3.

5.2. Overall Training

Algorithm 1 Fair Training under Correlation Shifts
Input: training data D, original ratio wy,z, m samples of (ydeploy,

zdeploy), confidence level of estimation 1− δ, thresholds γy
and γz, in-processing algorithm f

α, β = MLE(ydeploy, zdeploy, 1− δ) or given in advance
w′

y,z = SDPsolver(wy,z, α, β, γy, γz)
dj ← w′

y=y,z=z/wy=y,z=z, ∀j ∈ I(y,z), ∀(y, z) ∈ Y× Z
d = {di}i=1,...,n

(Optional) d = MinDistChange(D,wy,z, w
′
y,z)

Draw new data D′ from D via weighted sampling w.r.t. d
θ← initial model parameters
for each epoch do: Update θ based on f on D′

Output :θ

We present the overall process for fair training under cor-
relation shifts in Algorithm 1. The algorithm includes
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pre-processing for reflecting the shifted correlation and in-
processing for fair training on top of the improved data.
During the pre-processing, we first obtain the shift range
[α, β], which can be given in advance or inferred using m
samples and the target confidence level of estimation 1− δ
with a maximum likelihood estimator (MLE) – see a detailed
algorithm in Sec. A.8. We then find the new (y, z)-class
ratio w′

y,z based on the SDP relaxation of our optimiza-
tion, which can be solved using convex optimization solvers
(e.g., CVXPY). During the in-processing, we calculate the
sample-wise weights to ensure that the sample weight sum
in each (y, z)-class is wy=y,z=z ·n, where n is the total num-
ber of samples in the original training data. Within each (y,
z)-class, all samples have the same weight. We then draw
new data D′ from the original data via weighted sampling
according to the sample-wise weights. Finally, we train a
model using an in-processing fair algorithm f on D′.

In addition, using an optional step (MinDistChange), we
can address the scenario where the pre-processing should
minimally change the original training data, which is some-
times preferred in other applications (Kamiran & Calders,
2011). Details on this extension are in Sec. A.10.

6. Experiments
We perform experiments to evaluate our framework. We use
logistic regression in most experiments and utilize multi-
layer neural networks in Sec. B.11. We evaluate the models
on separate test datasets and repeat all experiments with
five different random seeds. We use CVXPY as a convex
optimization solver – see detailed settings in Sec. B.4.

Fairness metrics We focus on two prominent group
fairness metrics: demographic parity (DP) (Feldman
et al., 2015) and equalized odds (EO) (Hardt et al.,
2016). We measure the fairness disparities (i.e., unfair-
ness) among sensitive groups as follows: DP disparity =
maxz∈Z |Pr(ŷ = 1|z = z)−Pr(ŷ = 1)| and EO disparity =
maxz∈Z,y∈Y |Pr(ŷ = y|z = z, y = y)−Pr(ŷ = y|y = y)|.
When measuring the unfairness w.r.t. both DP and EO, we
take the maximum of both disparities (i.e., max(DP disp.,
EO disp.)). Note that lower disparity means better fairness.

Datasets We use a total of three datasets for training: one
synthetic dataset and two real-world benchmark datasets.
We generate the synthetic dataset using a method similar
to Zafar et al. (2017a). The synthetic training dataset has
2,000 samples and consists of two non-sensitive attributes
(x1, x2), one sensitive attribute z, and one label attribute y
– see details in Sec. B.4. We also utilize two real datasets:
ProPublica COMPAS (Angwin et al., 2016) consists of
5,278 samples, and its labels indicate recidivism; Adult-
Census (Kohavi, 1996) has 43,131 samples, and its labels
indicate a person’s annual income. We use gender as z.

To construct test data representing the deployment distribu-
tion with shifted correlation (ctest), we use three methods:
(1) re-sampling data within each (y, z)-class in the original
test data, (2) modifying the z values while fixing the x and y
distributions in the original test data (see details in Sec. B.4),
and (3) utilizing a newly-collected data, where we train on
AdultCensus (Kohavi, 1996), but test on a recent version of
this dataset called ACSIncome (Ding et al., 2021).

Baselines We compare our framework with three types
of baselines: (1) vanilla (non-fair) training using logistic
regression, (2) in-processing-only training, and (3) two-step
training that first runs an existing pre-processing algorithm
and then an in-processing algorithm. For in-processing-only
training, we use the following three approaches: Fairness
Constraints (FC) (Zafar et al., 2017a;b), which adds an
unfairness penalty term to the loss function; Adversarial
Debiasing (AD) (Zhang et al., 2018), which adversarially
trains a classifier with a fairness discriminator; and Fair-
Batch (FB) (Roh et al., 2021), which adaptively adjusts
batch ratios among groups to improve fairness. When we
run in-processing approaches for multiple fairness metrics,
we naturally extend each approach by combining the fair-
ness constraints for different metrics – see details in Sec. B.4.
For two-step training, we use a pre-processing algorithm
called Reweighing (RW) (Kamiran & Calders, 2011) to de-
bias the data before running the above in-processings, where
RW balances the data amounts across groups. We thus run
the in-processing algorithms on the less-biased data by RW.

Hyperparameters We consider four scenarios of knowing
the range of the correlation constant c in the test data. (1)
In Secs. 6.1 & 6.2, we assume that the exact ctest value is
given in advance (i.e., α=β=ctest). (2) In Secs. 6.3 & B.13,
we use an estimated c range that is calculated using some of
the new data. (3) In Sec. B.14, we evaluate with arbitrary c
ranges (i.e., ctest± x%). (4) In Secs. 6.4 & B.15, we assume
that the correlation itself is incorrect. We set both γy and
γz to 0.1, which is a larger value than the actual marginal
probability changes in the test data. We also test for the
values of 0.2 and 0.3, and the overall trends remain the
same. The in-processings’ hyperparameters are in Sec. B.4.

6.1. Accuracy and Fairness

We first compare the accuracy and fairness performances of
our framework with baselines on the synthetic and COM-
PAS datasets in Tables 2 and 3 – see many more results
in Appendix B, including the AdultCensus experiments
(Sec. B.6), which show similar results. The test data has
lower correlation than the training data. LR shows vanilla
training without any fairness technique. Other baselines
are clustered based on three in-processing approaches: FC,
AD, and FB. For each in-processing approach X, applying
our pre-processing (denoted as Ours+X) generally shows
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Table 2. Performances on the synthetic test dataset w.r.t. a single
metric (DP) and multiple metrics (DP & EO) – see the perfor-
mances w.r.t. a single metric EO in Sec. B.5. The test datasets are
constructed via re-sampling from the original distribution. The
correlation constant c of the test data is 50% of that of the training
data. We compare our framework with three types of baselines:
(1) non-fair training: LR; (2) in-processing-only training: FC, AD,
and FB; (3) two-step training: RW (Kamiran & Calders, 2011) +
in-processings. In the last row, we also show the performances of
an in-processing algorithm (FB) trained on the test distribution,
which can be considered as the upper bounds.

Single (DP) Multiple (DP & EO)

Method Acc. Unfair. Acc. Unfair.

LR .865±.000 .173±.000 .865±.000 .173±.000

FC (Zafar et al., 2017a;b) .778±.011 .038±.013 .853±.001 .075±.002

RW+FC .848±.004 .079±.003 .848±.004 .082±.002

Ours+FC .849±.002 .034±.004 .851±.005 .060±.003

AD (Zhang et al., 2018) .762±.016 .032±.011 .821±.004 .068±.003

RW+AD .845±.002 .087±.006 .847±.003 .084±.005

Ours+AD .814±.011 .017±.006 .842±.009 .054±.008

FB (Roh et al., 2021) .821±.000 .048±.000 .849±.001 .091±.005

RW+FB .859±.002 .055±.003 .855±.001 .071±.008

Ours+FB .836±.001 .003±.001 .852±.004 .058±.001

FB on test dist. (upper bound) .838±.002 .003±.002 .859±.002 .058±.004

Table 3. Performances on the COMPAS test dataset. Other settings
are identical to those in Table 2.

Single (DP) Multiple (DP & EO)

Method Acc. Unfair. Acc. Unfair.

LR .660±.000 .129±.000 .660±.000 .225±.000

FC (Zafar et al., 2017a;b) .656±.004 .050±.021 .654±.007 .137±.034

RW+FC .654±.004 .068±.039 .651±.010 .124±.031

Ours+FC .657±.008 .037±.021 .652±.020 .106±.038

AD (Zhang et al., 2018) .655±.003 .054±.015 .661±.005 .111±.035

RW+AD .657±.005 .092±.022 .655±.007 .145±.056

Ours+AD .650±.003 .045±.008 .664±.006 .117±.039

FB (Roh et al., 2021) .647±.001 .038±.013 .650±.002 .187±.019

RW+FB .653±.003 .094±.016 .652±.003 .197±.020

Ours+FB .648±.004 .027±.001 .657±.004 .130±.014

FB on test dist. (upper bound) .659±.001 .012±.008 .664±.001 .095±.014

better fairness while achieving comparable or even better
accuracies, either when supporting only DP or both DP and
EO. The in-processing-only baselines mostly show worse
fairness and accuracy compared to applying our approach,
as the in-processing-only baselines are trained with different
biases from test data distribution in mind. The baselines of
applying RW before in-processing generally do not achieve
high fairness compared to ours. The reason is that existing
pre-processing approaches like RW simply mitigate data
bias as much as possible, which is not always beneficial
for the in-processing. In comparison, our approach takes a
more principled approach by adjusting the bias according
to the correlation shift with the purpose of improving the
in-processing performance. As a result, ours enables the in-
processing approaches to be closer to optimal performances
(last row). In Sec. B.7, we show that the pre-processed data

by our algorithm is indeed more aligned with the true test
distribution than the original training data.

We observe similar results when using the two other test
settings explained above. One is to modify the z values
while fixing the x and y distributions using the synthetic
dataset (Sec. B.8). The other is to use two real-world in-
come datasets collected in the 1990s and 2010s for training
and testing, respectively, where they have different (y, z)-
correlation values and also shifted x distribution (Sec. 6.3).

In addition, we enrich the empirical results by 1) presenting
accuracy-fairness tradeoff curves of the methods (Sec. B.9)
and 2) showing the effects of the optional step in Algorithm 1
(Sec. B.10), which finds possibly-different sample weights
within each (y, z)-class to minimize the overall distribution
change between the original and pre-processed data.

6.2. Varying the Correlation of the Test Data

We compare the algorithm performances when varying the
correlation of the test data. Figure 3 shows the accuracy
and fairness performances of FB and Ours+FB when the
test data’s correlation constant c varies from 10% to 70% of
the training data’s c. Interestingly, when the correlation of
the test data differs significantly from the training data (i.e.,
close to 10%), the in-processing-only baseline (FB) shows
worse fairness. We suspect that the baseline is mitigating
a different type of bias than that of the test data. On the
other hand, our pre-processing successfully enables the in-
processing algorithm to achieve high accuracy and fairness
(e.g., for a 10% test corr., the unfairness decreases from
0.108 to 0.003). In addition, we vary the correlation from
110% to 150% in Sec. B.12 where we show how our pre-
processing enables in-processing to achieve high fairness.

Figure 3. Performances of FB and Ours+FB on the synthetic data
while varying the correlation of the test data.

6.3. Estimating Correlations and Handling x Dist. Shifts

We evaluate our method when 1) the shifted correlation is es-
timated from only a small amount of deployment data and 2)
when the x distribution changes. We use the two real-world
income datasets collected in the 1990s (i.e., AdultCensus)
and 2010s (i.e., ACSIncome) for training and testing, re-
spectively. As the two datasets have a large time gap, they
naturally have different (y, z)-correlations as well as input
feature x distributions (see Sec. B.13 for an analysis). Here,
we assume access to only 1,000 samples (≃ 0.07%) of the
2010s data to measure the shifted correlation constant c –
see the estimation performances when varying the number
of samples in Sec. B.13. We compute the new c value via a
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maximum likelihood estimator, as described in Sec. 5.1. As
a result, the estimated c is 0.140, where the true c computed
on the entire new data is 0.147. Here, we can find an error
range of the estimated c with a specific probability, as shown
in Sec. A.7. We note that we can use the error range as [α, β].
When running our pre-processing with this estimation, our
framework still outperforms the in-processing baselines (Ta-
ble 10). There are two takeaways:1) one can reasonably
estimate the correlation shift via a practical amount of new
data, and 2) our method performs well even when x shifts.

6.4. Robustness Against Unknown Correlations

Finally, we evaluate our approach when the exact shifted
correlation is unknown with two scenarios: 1) misspecify-
ing the correlation in the algorithm and 2) giving a range
of correlation shifts to the algorithm. [Scenario 1] We first
consider when the shifted correlation is incorrectly specified.
We set α=β=cspecified, where cspecified ̸=ctest. Figure 4 shows
the performances of FB and Ours+FB when the true correla-
tion of the test data is 60% of the training data’s correlation.
Ours improves the in-processing-only baseline’s accuracy
for the entire range of considered correlations and improves
fairness when the specified correlation is higher than 30%.
Hence, our approach is still beneficial when the estimation
error is within 10%. [Scenario 2] In Sec. B.14, we also run
our approach with a range of correlation shifts. Here we set
the arbitrary [α, β] range to be [ctest−x%, ctest+x%] with
various x values to see the robustness of our method. As a
result, there are two takeaways: 1) our framework success-
fully boosts the in-processing-only baseline performances
when the [α, β] range is reasonable, and 2) even if we do
not have any information about the shift, our framework
performs at least as well as the in-processing-only baselines.
We observe similar results on real-world data in Sec. B.15.

True corr. = 60% True corr. = 60%

Figure 4. Performances of FB and Ours+FB on the synthetic data
while varying the specified correlation in our algorithm to have
10% to 70% where the true correlation of the test data is 60%.

7. Conclusion
We addressed the problem of model fairness in the presence
of bias changes in the data. We first formalized the no-
tion of (y, z)-correlation for capturing bias and analyzed the
performance limits of in-processing approaches in the pres-
ence of correlation shifts. We then proposed a decoupling
framework where pre-processing is used to adjust the corre-
lation, and in-processing is used for unfairness mitigation.
Experiments showed how our pre-processing enables exist-
ing in-processing approaches to achieve high fairness and
accuracy under correlation shifts and outperform baselines.
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A. Appendix – Theory
A.1. Toy Example

In fair training, the data bias reflects the relationship between a label y and group attribute z. For example, if all positive
labels are in the same group, the data can be considered highly biased. Conversely, if the labels are randomly assigned to all
groups, the data can be considered unbiased.

A bias change in the deployment data may have an adverse affect on a trained model’s performance. Figure 5 shows a toy
example that illustrates how a fair classifier’s performance is affected by a bias change during deployment. Here, the bias
can be expressed via correlation, and we discuss their relationship in Sec. 4. The training distribution is biased, where Group
2 has more positive labels than Group 1. On the other hand, in the deployment distribution, the bias decreases as the labels
are equally distributed for each group. Suppose we train a fair classifier on the training data as shown on the left side where
the DP fairness is perfect (i.e., Pr(ŷ=1) are the same for the groups), but the accuracy is not as a result. On the deployment
data, the DP worsens while the accuracy still remains imperfect. The underlying problem is that the classifier was trained
with a different bias in mind.

A fair classifier w.r.t. DP 
from the training data

Training Deployment

The same classifier is now unfair

Bias decreases

Group 1
Group 2

Figure 5. A toy example for illustrating the impact of bias changes. The blue and red colors indicate positive and negative examples,
respectively. On the left, there is a fair classifier that achieves DP on the training distribution. On the right, the deployment data has a
lower bias, making the trained classifier both unfair and inaccurate.

A.2. Proof for Lemma 2

Continuing from Sec. 4.1, we provide a proof for Lemma 2.

Proof. We denote the Pearson’s correlation coefficient between y and z as ρyz. By definition, ρyz =
Cov(y,z)
σ(y)σ(z) . For binary y

and z, we can rewrite ρyz as follows (Cohen & Cohen, 1975):

ρyz =
Cov(y, z)
σ(y)σ(z)

=
Pr(y = 1, z = 1)Pr(y = 0, z = 0)− Pr(y = 1, z = 0)Pr(y = 0, z = 1)√

Pr(y = 1)Pr(y = 0)Pr(z = 1)Pr(z = 0)

If the marginal probabilities of y and z (i.e., Pr(y = y) and Pr(z = z)) remain the same,

ρyz ∝ Pr(y = 1, z = 1)Pr(y = 0, z = 0)− Pr(y = 1, z = 0)Pr(y = 0, z = 1)

∝ Pr(y = 1, z = 1)

Pr(z = 1)

Pr(y = 0, z = 0)

Pr(z = 0)
− Pr(y = 1, z = 0)

Pr(z = 0)

Pr(y = 0, z = 1)

Pr(z = 1)

= Pr(y = 1|z = 1)Pr(y = 0|z = 0)− Pr(y = 1|z = 0)Pr(y = 0|z = 1)

= Pr(y = 1|z = 1)(1− Pr(y = 1|z = 0))− Pr(y = 1|z = 0)(1− Pr(y = 1|z = 1))

= Pr(y = 1|z = 1)− Pr(y = 1|z = 0)− Pr(y = 1|z = 1)Pr(y = 1|z = 0) + Pr(y = 1|z = 0)Pr(y = 1|z = 1)

= Pr(y = 1|z = 1)− Pr(y = 1|z = 0).

Therefore, if the marginal probabilities of y and z remain the same, the (y, z)-correlation ρyz is proportional to
Pr(y = 1|z = 1)− Pr(y = 1|z = 0), which is the difference between the conditional probabilities of y given different z
values.
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A.3. The Accuracy-Fairness Tradeoff When Improving Fairness w.r.t. a Single Metric

Continuing from Sec. 4.1, we show that the (y, z)-correlation determines the accuracy-fairness tradeoff under certain
conditions by applying Lemma 2 to Proposition 1.

The previous work (Menon & Williamson, 2018) shows that a higher alignment between y and z leads to a worse accuracy-
fairness tradeoff w.r.t. demographic parity – more details are described in Proposition 8 in Menon & Williamson (2018).
According to the previous work, alignment is defined as how many examples in each group have a specific label. We can
thus measure the alignment as Pr(y = 1|z = 1) + Pr(y = 0|z = 0). Then, we can rewrite the equation as follows:

alignment = Pr(y = 1|z = 1) + Pr(y = 0|z = 0)

= Pr(y = 1|z = 1) + (1− Pr(y = 1|z = 0))

= 1 + Pr(y = 1|z = 1)− Pr(y = 1|z = 0).

By applying Lemma 2 to the above result, we observe that the alignment between y and z is proportional to ((y, z)-correlation
+1) when the marginal distributions of y and z remain the same. Therefore, when a model is trained w.r.t. demographic
parity and the marginal probabilities of y and z do not change, a higher (y, z)-correlation results in a worse accuracy-fairness
tradeoff.

A.4. ε-DP & ε-EO

Continuing from Sec. 4.1, we provide a proof for Proposition 6.

Proof. A model achieves both ε-DP and ε-EO when the two inequalities |Pr(ŷ = y|z = z)− Pr(ŷ = y|z = z′)| ≤ ε (i.e.,
ε-DP) and |Pr(ŷ = y|y = y, z = z)− Pr(ŷ = y|y = y, z = z′)| ≤ ε (i.e., ε-EO) are satisfied, where y ̸= y′, y, y′ ∈ {0, 1}
and z ̸= z′, z, z′ ∈ {0, 1}.
By combining the law of total probability and ε-DP, we can get the following inequality:

−ε ≤ Pr(ŷ = y|z = z, y = y′) Pr(y = y′|z = z) + Pr(ŷ = y|z = z, y = y) Pr(y = y|z = z)

−Pr(ŷ = y|z = z′, y = y′) Pr(y = y′|z = z′)− Pr(ŷ = y|z = z′, y = y) Pr(y = y|z = z′) ≤ ε. (1)

Also, ε-EO can be rewritten as follows:

−ε+ Pr(ŷ = y|z = z′, y = y) ≤ Pr(ŷ = y|z = z, y = y) ≤ ε+ Pr(ŷ = y|z = z′, y = y). (2)

By substituting Eq. 2 to Eq. 1, we can get the following inequality:

(−ε+ Pr(ŷ = y|z = z′, y = y′)) Pr(y = y′|z = z) + (−ε+ Pr(ŷ = y|z = z′, y = y)) Pr(y = y|z = z)

− Pr(ŷ = y|z = z′, y = y′) Pr(y = y′|z = z′)− Pr(ŷ = y|z = z′, y = y) Pr(y = y|z = z′)

≤ Pr(ŷ = y|z = z, y = y′) Pr(y = y′|z = z) + Pr(ŷ = y|z = z, y = y) Pr(y = y|z = z) (3)
− Pr(ŷ = y|z = z′, y = y′) Pr(y = y′|z = z′)− Pr(ŷ = y|z = z′, y = y) Pr(y = y|z = z′)

≤ (ε+ Pr(ŷ = y|z = z′, y = y′)) Pr(y = y′|z = z) + (ε+ Pr(ŷ = y|z = z′, y = y)) Pr(y = y|z = z)

− Pr(ŷ = y|z = z′, y = y′) Pr(y = y′|z = z′)− Pr(ŷ = y|z = z′, y = y) Pr(y = y|z = z′).

By subtracting Eq. 2 from Eq. 3,

− ε+ (−ε+ Pr(ŷ = y|z = z′, y = y′)) Pr(y = y′|z = z) + (−ε+ Pr(ŷ = y|z = z′, y = y)) Pr(y = y|z = z)

− Pr(ŷ = y|z = z′, y = y′) Pr(y = y′|z = z′)− Pr(ŷ = y|z = z′, y = y) Pr(y = y|z = z′)

≤ 0

≤ ε+ (ε+ Pr(ŷ = y|z = z′, y = y′)) Pr(y = y′|z = z) + (ε+ Pr(ŷ = y|z = z′, y = y)) Pr(y = y|z = z)

− Pr(ŷ = y|z = z′, y = y′) Pr(y = y′|z = z′)− Pr(ŷ = y|z = z′, y = y) Pr(y = y|z = z′).
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By rearranging the terms, we get the followings:

−2ε ≤ (Pr(ŷ = y|z = z′, y = y′)− Pr(ŷ = y|z = z′, y = y))(Pr(y = y′|z = z)− Pr(y = y′|z = z′)) ≤ 2ε

⇒ −2ε ≤ (Pr(ŷ = y|z = z′, y = y′)− Pr(ŷ = y|z = z′, y = y))(1− Pr(y = y|z = z)− 1 + Pr(y = y|z = z′)) ≤ 2ε.

Thus, we get the following inequality, which is in Proposition 6:

|Pr(y = y|z = z)− Pr(y = y|z = z′)| |Pr(ŷ = y|y = y, z = z)− Pr(ŷ = y|y = y′, z = z)| ≤ 2ε.

A.5. ε-PP & ε-DP

Continuing from Sec. 4.1, we consider fair training w.r.t. both predictive parity (PP) and demographic parity (DP). We can
define ε-PP & ε-DP as follows:

−ε ≤ Pr(y = y|ŷ = y, z = 0)− Pr(y = y|ŷ = y, z = 1) ≤ ε (i.e., ε-PP)
−ε ≤ Pr(ŷ = y|z = 0)− Pr(ŷ = y|z = 1) ≤ ε (i.e., ε-DP)

Based on these definitions, we give a proposition for ε-PP and ε-DP:
Proposition 9 (ε-PP & ε-DP). Let a model achieve both ε-PP and ε-DP. Then, the following inequality holds:

|Pr(y = y, ŷ = y|z = z)− Pr(y = y, ŷ = y|z = z′)|
2Pr(y = y|ŷ = y, z = z) + Pr(ŷ = y|z = z) + Pr(y = y|ŷ = y, z = z′)

≤ ε, z ̸= z′, z, z′ ∈ Z, y ∈ Y.

Proof. From ε-DP, we get

−ε+ Pr(ŷ = y|z = 1) ≤ Pr(ŷ = y|z = 0) ≤ ε+ Pr(ŷ = y|z = 1). (4)

From ε-PP, we get

−ε ≤ Pr(ŷ=y|z=0)
Pr(z=0)

Pr(ŷ=y, z=0)

Pr(y=y, ŷ=y, z=0)

Pr(ŷ=y, z=0)
− Pr(ŷ=y|z=1)

Pr(z=1)

Pr(ŷ=y, z=1)

Pr(y=y, ŷ=y, z=1)

Pr(ŷ=y, z=1)
≤ ε. (5)

By substituting Eq. 4 to Eq. 5, we can get the following inequality:

{−ε+ Pr(ŷ = y|z = 1)} Pr(z = 0)

Pr(ŷ = y, z = 0)

Pr(y = y, ŷ = y, z = 0)

Pr(ŷ = y, z = 0)
− Pr(ŷ = y|z = 1)

Pr(z = 1)

Pr(ŷ = y, z = 1)

Pr(y = y, ŷ = y, z = 1)

Pr(ŷ = y, z = 1)

≤ Pr(ŷ = y|z = 0)
Pr(z = 0)

Pr(ŷ = y, z = 0)

Pr(y = y, ŷ = y, z = 0)

Pr(ŷ = y, z = 0)
− Pr(ŷ = y|z = 1)

Pr(z = 1)

Pr(ŷ = y, z = 1)

Pr(y = y, ŷ = y, z = 1)

Pr(ŷ = y, z = 1)
(6)

≤ {ε+ Pr(ŷ = y|z = 1)} Pr(z = 0)

Pr(ŷ = y, z = 0)

Pr(y = y, ŷ = y, z = 0)

Pr(ŷ = y, z = 0)
− Pr(ŷ = y|z = 1)

Pr(z = 1)

Pr(ŷ = y, z = 1)

Pr(y = y, ŷ = y, z = 1)

Pr(ŷ = y, z = 1)
.

By subtracting Eq. 5 from Eq. 6,

− ε+ {−ε+ Pr(ŷ=y|z=1)} Pr(z = 0)

Pr(ŷ = y, z = 0)

Pr(y = y, ŷ = y, z = 0)

Pr(ŷ = y, z = 0)
− Pr(ŷ=y|z=1)

Pr(z = 1)

Pr(ŷ = y, z = 1)

Pr(y = y, ŷ = y, z = 1)

Pr(ŷ = y, z = 1)

≤ 0

≤ ε+ {ε+ Pr(ŷ=y|z=1)} Pr(z = 0)

Pr(ŷ = y, z = 0)

Pr(y = y, ŷ = y, z = 0)

Pr(ŷ = y, z = 0)
− Pr(ŷ=y|z=1)

Pr(z = 1)

Pr(ŷ = y, z = 1)

Pr(y = y, ŷ = y, z = 1)

Pr(ŷ = y, z = 1)
.

By rearranging the terms, we get the following inequality:

− ε · Pr(z = 0)Pr(y = y, ŷ = y, z = 0)

(Pr(ŷ = y, z = 0))2
− ε

≤ Pr(ŷ = y|z = 1){Pr(z = 1)Pr(y = y, ŷ = y, z = 1)

(Pr(ŷ = y, z = 1))2
− Pr(z = 0)Pr(y = y, ŷ = y, z = 0)

(Pr(ŷ = y, z = 0))2
}

≤ ε · Pr(z = 0)Pr(y = y, ŷ = y, z = 0)

(Pr(ŷ = y, z = 0))2
+ ε
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which is rewritten as follows:

− ε · Pr(y = y|ŷ = y, z = 0) + Pr(ŷ = y|z = 0)

Pr(ŷ = y|z = 0)

≤ Pr(ŷ = y|z = 1){Pr(y = y|ŷ = y, z = 1)

Pr(ŷ = y|z = 1)
− Pr(y = y|ŷ = y, z = 0)

Pr(ŷ = y|z = 0)
}

≤ ε · Pr(y = y|ŷ = y, z = 0) + Pr(ŷ = y|z = 0)

Pr(ŷ = y|z = 0)
.

By multiplying Pr(ŷ=y|z=0)
Pr(y=y|ŷ=y,z=0)+Pr(ŷ=y|z=0) for all terms in the above inequality, we can get

−ε ≤ Pr(ŷ = y|z = 0)Pr(y = y|ŷ = y, z = 1)− Pr(ŷ = y|z = 1)Pr(y = y|ŷ = y, z = 0)

Pr(y = y|ŷ = y, z = 0) + Pr(ŷ = y|z = 0)
≤ ε. (7)

Let A = Pr(y = y|ŷ = y, z = 0) + Pr(ŷ = y|z = 0). Since −ε ≤ Pr(ŷ = y|z = 0) − Pr(ŷ = y|z = 1) ≤ ε (i.e., ε-DP),
we can make another inequality from Eq. 7:

(−ε+ Pr(ŷ = y|z = 1))Pr(y = y|ŷ = y, z = 1)− (ε+ Pr(ŷ = y|z = 0))Pr(y = y|ŷ = y, z = 0)

A

≤ Pr(ŷ = y|z = 0)Pr(y = y|ŷ = y, z = 1)− Pr(ŷ = y|z = 1)Pr(y = y|ŷ = y, z = 0)

A
(8)

≤ (ε+ Pr(ŷ = y|z = 1))Pr(y = y|ŷ = y, z = 1)− (−ε+ Pr(ŷ = y|z = 0))Pr(y = y|ŷ = y, z = 0)

A
.

By subtracting Eq. 7 and Eq. 8,

− ε+
(−ε+ Pr(ŷ = y|z = 1))Pr(y = y|ŷ = y, z = 1)− (ε+ Pr(ŷ = y|z = 0))Pr(y = y|ŷ = y, z = 0)

A
≤ 0

≤ ε+
(ε+ Pr(ŷ = y|z = 1))Pr(y = y|ŷ = y, z = 1)− (−ε+ Pr(ŷ = y|z = 0))Pr(y = y|ŷ = y, z = 0)

A
.

Since Pr(ŷ = y|z = z) Pr(y = y|ŷ = y, z = z) = Pr(y = y, ŷ = y|z = z), we can rewritten the above inequality as fol-
lows:

− ε+
−ε{Pr(y = y|ŷ = y, z = 1) + Pr(y = y|ŷ = y, z = 0)}+ Pr(y = y, ŷ = y|z = 1)− Pr(y = y, ŷ = y|z = 0)

A
≤ 0

≤ ε+
ε{Pr(y = y|ŷ = y, z = 1) + Pr(y = y|ŷ = y, z = 0)}+ Pr(y = y, ŷ = y|z = 1)− Pr(y = y, ŷ = y|z = 0)

A
.

Now, let B=Pr(y = y|ŷ = y, z = 1)+Pr(y = y|ŷ = y, z = 0) and C=Pr(y = y, ŷ = y|z = 1)−Pr(y = y, ŷ = y|z = 0).
Then,

−ε+ 1

A
(−ε ·B + C) ≤ 0 ≤ ε+

1

A
(ε ·B + C).

By arranging the terms,

−ε · (1 + B

A
) +

C

A
≤ 0 ≤ ε · (1 + B

A
) +

C

A

=⇒ −ε ≤ −C
A+B

≤ ε.
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Therefore, we can conclude

|Pr(y = y, ŷ = y|z = 0)− Pr(y = y, ŷ = y|z = 1)|
2Pr(y = y|ŷ = y, z = 0) + Pr(ŷ = y|z = 0) + Pr(y = y|ŷ = y, z = 1)

≤ ε.

If we reverse the z values in the derivation, we get the same formula with only the z value changed in the above expression.
As a result, we get the following inequality, which is in Proposition 9:

|Pr(y = y, ŷ = y|z = z)− Pr(y = y, ŷ = y|z = z′)|
2Pr(y = y|ŷ = y, z = z) + Pr(ŷ = y|z = z) + Pr(y = y|ŷ = y, z = z′)

≤ ε, z ̸= z′, z, z′ ∈ Z, y ∈ Y.

Therefore, to make ε = 0, the numerator term |Pr(y = y, ŷ = y|z = z)− Pr(y = y, ŷ = y|z = z′)| should be zero. When
|Pr(y = y, ŷ = y|z = z)− Pr(y = y, ŷ = y|z = z′)| = 0, the following is satisfied: (y, ŷ) ⊥ z, which implies y ⊥ z and
ŷ ⊥ z. Here, y ⊥ z indicates that |Pr(y = y|z = z)−Pr(y = y|z = z′)| is zero. As a result, perfectly satisfying PP and DP
requires the data to be fully unbiased. We thus suspect that the achievable model fairness w.r.t. both PP and DP is affected
by the (y, z)-correlation.

A.6. ε-EO & ε-PP

Continuing from Sec. 4.1, we consider fair training w.r.t. both equalized odds (EO) and predictive parity (PP). We can define
ε-EO & ε-PP as follows:

−ε ≤ Pr(ŷ = y|y = y, z = 0)− Pr(ŷ = y|y = y, z = 1) ≤ ε (i.e., ε-EO)
−ε ≤ Pr(y = y|ŷ = y, z = 0)− Pr(y = y|ŷ = y, z = 1) ≤ ε (i.e., ε-PP)

Based on these definitions, we give a proposition for ε-EO and ε-PP:
Proposition 10 (ε-EO & ε-PP). Let a model achieve both ε-EO and ε-PP. Then, the following inequality holds:

Pr(ŷ=y|y=y, z=z′)

Pr(ŷ=y, z=z) + Pr(y=y, z=z)
· |Pr(y=y)− Pr(y=y|z=z′) · Pr(ŷ=y)

Pr(ŷ=y|z=z′)
| ≤ ε, z ̸= z′, z, z′ ∈ Z, y ∈ Y.

Proof. From ε-EO, we get

−ε+ Pr(ŷ = y|y = y, z = 1) ≤ Pr(ŷ = y|y = y, z = 0) ≤ ε+ Pr(ŷ = y|y = y, z = 1). (9)

From ε-PP, we get

−ε ≤ Pr(ŷ = y|y = y, z = 0)
Pr(y = y, z = 0)

Pr(ŷ = y, z = 0)
− Pr(ŷ = y|y = y, z = 1)

Pr(y = y, z = 1)

Pr(ŷ = y, z = 1)
≤ ε. (10)

By substituting Eq. 9 to Eq. 10, we can get the following inequality:

(−ε+ Pr(ŷ = y|y = y, z = 1))
Pr(y = y, z = 0)

Pr(ŷ = y, z = 0)
− Pr(ŷ = y|y = y, z = 1)

Pr(y = y, z = 1)

Pr(ŷ = y, z = 1)

≤ Pr(ŷ = y|y = y, z = 0)
Pr(y = y, z = 0)

Pr(ŷ = y, z = 0)
− Pr(ŷ = y|y = y, z = 1)

Pr(y = y, z = 1)

Pr(ŷ = y, z = 1)
(11)

≤ (ε+ Pr(ŷ = y|y = y, z = 1))
Pr(y = y, z = 0)

Pr(ŷ = y, z = 0)
− Pr(ŷ = y|y = y, z = 1)

Pr(y = y, z = 1)

Pr(ŷ = y, z = 1)
.

By subtracting Eq. 10 from Eq. 11,

− ε+ (−ε+ Pr(ŷ = y|y = y, z = 1))
Pr(y = y, z = 0)

Pr(ŷ = y, z = 0)
− Pr(ŷ = y|y = y, z = 1)

Pr(y = y, z = 1)

Pr(ŷ = y, z = 1)

≤ 0

≤ ε+ (ε+ Pr(ŷ = y|y = y, z = 1))
Pr(y = y, z = 0)

Pr(ŷ = y, z = 0)
− Pr(ŷ = y|y = y, z = 1)

Pr(y = y, z = 1)

Pr(ŷ = y, z = 1)
.
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By rearranging the terms, we get the following inequality:

− ε · Pr(ŷ = y, z = 0) + Pr(y = y, z = 0)

Pr(ŷ = y, z = 0)

≤ Pr(ŷ = y|y = y, z = 1){Pr(y = y, z = 0)

Pr(ŷ = y, z = 0)
− Pr(y = y, z = 1)

Pr(ŷ = y, z = 1)
}

≤ ε · Pr(ŷ = y, z = 0) + Pr(y = y, z = 0)

Pr(ŷ = y, z = 0)
.

By multiplying Pr(ŷ=y,z=0)
Pr(ŷ=y,z=0)+Pr(y=y,z=0) for all terms in the inequality, we can get

−ε ≤ Pr(ŷ = y, z = 0)Pr(ŷ = y|y = y, z = 1)

Pr(ŷ = y, z = 0) + Pr(y = y, z = 0)
{Pr(y = y, z = 0)

Pr(ŷ = y, z = 0)
− Pr(y = y, z = 1)

Pr(ŷ = y, z = 1)
} ≤ ε

which is rewritten as follows:

−ε ≤ Pr(ŷ = y|y = y, z = 1)

Pr(ŷ = y, z = 0) + Pr(y = y, z = 0)
{Pr(y = y, z = 0)− Pr(ŷ = y, z = 0)

Pr(ŷ = y, z = 1)
· Pr(y = y, z = 1)} ≤ ε.

Since Pr(y = y, z = 0) = Pr(y = y)− Pr(y = y, z = 1) by the total probability law,

−ε ≤ Pr(ŷ=y|y=y, z=1)

Pr(ŷ=y, z=0) + Pr(y=y, z=0)
{Pr(y=y)− Pr(y=y, z=1)− Pr(ŷ=y, z=0)

Pr(ŷ=y, z=1)
· Pr(y=y, z=1)} ≤ ε.

By arranging the terms,

−ε ≤ Pr(ŷ = y|y = y, z = 1)

Pr(ŷ = y, z = 0) + Pr(y = y, z = 0)
{Pr(y = y)− Pr(y = y, z = 1) · (1 + Pr(ŷ = y, z = 0)

Pr(ŷ = y, z = 1)
)} ≤ ε

⇒ −ε ≤ Pr(ŷ = y|y = y, z = 1)

Pr(ŷ = y, z = 0) + Pr(y = y, z = 0)
{Pr(y = y)− Pr(y = y, z = 1) · Pr(ŷ = y)

Pr(ŷ = y, z = 1)
} ≤ ε.

Therefore, we can conclude

Pr(ŷ = y|y = y, z = 1)

Pr(ŷ = y, z = 0) + Pr(y = y, z = 0)
· |Pr(y = y)− Pr(y = y, z = 1) · Pr(ŷ = y)

Pr(ŷ = y, z = 1)
| ≤ ε.

If we reverse the z values in the derivation, we get the same formula with only the z value changed in the above expression.
As a result, we get the following inequality, which is in Proposition 10:

Pr(ŷ=y|y=y, z=z′)

Pr(ŷ=y, z=z) + Pr(y=y, z=z)
· |Pr(y=y)− Pr(y=y|z=z′) · Pr(ŷ=y)

Pr(ŷ=y|z=z′)
| ≤ ε, z ̸= z′, z, z′ ∈ Z, y ∈ Y.

Therefore, ε = 0 when Pr(y = y) = Pr(y = y|z = z′) and Pr(ŷ = y) = Pr(ŷ = y|z = z′) (i.e., y ⊥ z and ŷ ⊥ z). Here,
satisfying both y ⊥ z and ŷ ⊥ z is the sufficient condition of perfectly satisfying EO and PP. Note that y ⊥ z implies
that the data is unbiased. We thus suspect that the achievable model fairness w.r.t. both EO and PP is affected by the
(y, z)-correlation.
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A.7. Estimating Shifted Correlation Range Using Samples

Continuing from Sec. 5.1, we discuss using samples in the deployment data to estimate the shifted correlation value c and its
range [α, β]. To this end, we show the relationship between the number of samples and the confidence of the estimation
through the following theorem.

Theorem 11. Let n1, n0, n11, and n01 be the number of samples with (z = 1), (z = 0), (z = 1, y = 1), and (z = 0, y = 1),

respectively. Let ĉ =
n11

n1
− n01

n0
. If n1 ≥

2 ln(4/δ)

ϵ2
and n0 ≥

2 ln(4/δ)

ϵ2
, then |ĉ− c| ≤ ϵ with probability 1− δ.

Proof. By Hoeffding’s inequality (Hoeffding, 1963), we can write the following inequality w.r.t. n11

n1
:

Pr

(∣∣∣∣n11

n1
− Pr(y = 1|z = 1)

∣∣∣∣ ≥ ϵ

2

)
≤ 2 exp

(
−n1ϵ

2

2

)
. (12)

Using the condition w.r.t. n1 in Theorem 11 (i.e., n1 ≥ 2 ln(4/δ)
ϵ2 ), we can rewrite the Hoeffding’s inequality as follows:

Pr

(∣∣∣∣n11

n1
− Pr(y = 1|z = 1)

∣∣∣∣ ≥ ϵ

2

)
≤ 2 exp

(
−n1ϵ

2

2

)
(13)

≤ 2 exp

(
−2 ln(4/δ)

ϵ2
ϵ2

2

)
(14)

= 2 exp(ln(δ/4)) (15)

=
δ

2
. (16)

Similarly, the inequality w.r.t. n01

n0
can be written as follows:

Pr

(∣∣∣∣n01

n0
− Pr(y = 1|z = 0)

∣∣∣∣ ≥ ϵ

2

)
≤ 2 exp

(
−n0ϵ

2

2

)
≤ δ

2
. (17)

These inequalities show that if n1 ≥
2 ln(4/δ)

ϵ2
and n0 ≥

2 ln(4/δ)

ϵ2
, then |n11

n1
− Pr(y=1|z=1)| ≤ ϵ/2 and |n01

n0
−

Pr(y=1|z=0)| ≤ ϵ/2 each with probability at least 1− δ/2.

Therefore, if n1 ≥
2 ln(4/δ)

ϵ2
and n0 ≥

2 ln(4/δ)

ϵ2
, then |ĉ − c| = |(n11

n1
− n01

n0
) − (Pr(y=1|z=1) − Pr(y=1|z=0))| ≤

ϵ/2 + ϵ/2 ≤ ϵ with probability at least 1− δ.

By using Theorem 11, we can calculate how many samples are required to achieve a specific error range with a specific
probability. For example, if we aim to have an error range c− 0.1 ≤ ĉ ≤ c+ 0.1 with 0.95 probability (i.e., ϵ = 0.1 and

δ = 0.05), we need n1 ≥ 876 and n0 ≥ 876 samples to satisfy the condition n ≥ 2 ln(4/δ)

ϵ2
. Also, when we measure ĉ

using m (= n1 + n0) samples, we can construct the shift range [α, β] with a specific probability 1− δ – see details in the
following section (Sec. A.8).

A.8. Maximum Likelihood Estimation in Our Scenario

Continuing from Sec. 5.1, we explain the details of the maximum likelihood estimation (MLE) in Algorithm 1. During the
estimation, we use Theorem 11 in Sec. A.7, which explains how to get the confidence interval of the estimation using m
samples with a specific probability (1− δ). Note that the confidence level (1− δ) is a hyperparameter (e.g., (1− δ) = 0.9).

Algorithm 2 shows the overall steps in the estimation. We first calculate the estimated correlation constant c (i.e., ĉ). Then,

we find the error bound ϵ by using the conditions in Theorem 11 (i.e., ϵ =
√

2
n ln

(
4
δ

)
). As a result, we can construct the

shift range [α, β] = [ĉ− ϵ, ĉ+ ϵ] with a probability 1− δ.
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Algorithm 2 MLE
Input: m samples of (ydeploy, zdeploy), confidence level of estimation 1− δ

P̂r(y = y|z = z) =
(num. of samples with (y = y, y = z))

(num. of samples with (y = z))

ĉ =
P̂r(y = 1|z = 1)

P̂r(z = 1)
− P̂r(y = 1|z = 0)

P̂r(z = 0)
n1 = num. of samples with (z = 1)
n0 = num. of samples with (z = 0)
n = min(n1, n0)

ϵ =

√
2

n
ln

(
4

δ

)
α = ĉ− ϵ
β = ĉ+ ϵ
Output :α, β

A.9. Semidefinite Relaxation

Continuing from Sec. 5.1, we provide details of the semidefinite relaxation in our optimization.

Recall our original optimization as follows:

min
w′

∑
∀y,z

(wy=y,z=z − w′
y=y,z=z)

2

s.t. α ≤
w′

y=1,z=1

w′
y=1,z=1 + w′

y=0,z=1

−
w′

y=1,z=0

w′
y=1,z=0 + w′

y=0,z=0

≤ β,

|(w′
y=1,z=1 + w′

y=1,z=0)− Prtrain(y = 1)| ≤ γy,

|(w′
y=1,z=1 + w′

y=0,z=1)− Prtrain(z = 1)| ≤ γz,∑
∀y,z

w′
y=y,z=z = 1, 0 ≤ w′

y=y,z=z ≤ 1, ∀y ∈ {0, 1}, z ∈ {0, 1}

where Prtrain(y = 1)=wy=1,z=1+wy=1,z=0 and Prtrain(z = 1) = wy=1,z=1+wy=0,z=1.

As the above optimization is a non-convex quadratically constrained quadratic problem (non-convex QCQP), we now apply
the semidefinite relaxation (SDP relaxation) (Park & Boyd, 2017). We first rewrite the above optimization using matrices:

min
x

xTP0x+ qT0 x

s.t. xTPαx ≥ 0, xTPβx ≤ 0,

|qT2 x− Prtrain(y = 1)| ≤ γy,

|qT3 x− Prtrain(z = 1)| ≤ γz

qT4 x = 1, 0 ≤ xi ≤ 1 ∀i

where x =
[
x1 x2 x3 x4

]T
=

[
w′

1,1 w′
1,0 w′

0,1 w′
0,0

]T
, q0 = −2

[
w1,1 w1,0 w0,1 w0,0

]T
,

q2 =
[
1 0 1 0

]T
, q3 =

[
1 1 0 0

]T
, q4 =

[
1 1 1 1

]T
, P0 = diag(1) ,

Pα =

[
0 −α/2 0 (1−α)/2

−α/2 0 (−1−α)/2 0
0 (−1−α)/2 0 −α/2

(1−α)/2 0 −α/2 0

]
, and Pβ =

[
0 −β/2 0 (1−β)/2

−β/2 0 (−1−β)/2 0
0 (−1−β)/2 0 −β/2

(1−β)/2 0 −β/2 0

]
.
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As xTPx = Tr(P (xxT )), we can get the following optimization:

min
X,x

Tr(XP0) + qT0 x

s.t. Tr(XPα) ≥ 0, Tr(XPβ) ≤ 0

|qT2 x− Prtrain(y = 1)| ≤ γy,

|qT3 x− Prtrain(z = 1)| ≤ γz

qT4 x = 1, 0 ≤ xi ≤ 1 ∀i,
X = xxT

where Tr(·) is the trace and X = xxT .

In the above optimization, the last constraint is non-convex. Thus, we relax the non-convex constraint X = xxT into
X − xxT ⪰ 0, which is convex, and then use a Schur complement (Zhang, 2006) to get the final SDP form:

min
X,x

Tr(XP0) + qT0 x

s.t. Tr(XPα) ≥ 0, Tr(XPβ) ≤ 0

|qT2 x− Prtrain(y = 1)| ≤ γy,

|qT3 x− Prtrain(z = 1)| ≤ γz

qT4 x = 1, 0 ≤ xi ≤ 1 ∀i,[
X x
xT 1

]
⪰ 0.

When we solve the above SDP relaxation problem using convex optimization solvers, we set the 5×5-matrix A as the

variable so as to indicate
[
X x
xT 1

]
. Then, we get the solution x =

[
x1 x2 x3 x4

]T
by taking the first four elements of

the last vector in the resulting matrix A.

A.10. Optional Step for Minimizing Overall Distribution Change

Continuing from Sec. 5.2, we explain the details on the optional step in Algorithm 1. We can use the optional step
(MinDistChange) to find non-uniform data sample weights within each (y, z)-class that minimizes the overall distribution
change in terms of the Wasserstein distance (Givens & Shortt, 1984), rather than using identical weights. In the optional
step, we first divide the examples in each (y=y, z=z)-class into two sets {y=y, z=z, t=0} and {y=y, z=z, t=1} with equal
numbers, where t is a specific feature that can be a criterion for dividing the examples. For example, we can find a median
of a non-sensitive attribute x1 and set t = 0 for an example if the x1 value of the example is lower than the median of x1.
We set t = 1 otherwise. We then make a candidate set of partial weights w′

y=y,z=z,t=t on each (y=y, z=z, t=t)-class, where∑
w′

y=y,z=z,t=t = w′
y=y,z=z . Note that we can extend t beyond the binary setting to find more detailed partial weights. For

each partial weight candidate, we calculate the candidate sample-wise weights (dtmp) to ensure that the sample weight sum
in each (y=y, z=z, t=t)-class is wy=y,z=z,t=t · n, where n is the total number of samples in the original training data. Then,
we draw new data D̃ from the original training data D via weighted sampling according to dtmp. Then, we calculate the
Wasserstein distance between D̃ and D via an optimal transport technique (Peyré & Cuturi, 2019). As a result, the algorithm
returns the final sample-wise weights (dmin) that result in the closest distribution from the original data.
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Algorithm 3 MinDistChange
Input: train data D, original ratio wy,z, new ratio w′

y,z

In each (y=y, z=z)-class, divide the examples into two sets {y=y, z=z, t=0} and {y=y, z=z, t=1} with equal numbers
partials = [0, 1/m, 2/m, ..., 1]

Wy=y,z=z ← [], ∀(y, z) ∈ Y× Z
for each (y=y, z=z)-class do

for p in partials do
w′

y=y,z=z,t=0 = w′
y=y,z=z · p

w′
y=y,z=z,t=1 = w′

y=y,z=z · (1− p)

Append [w′
y=y,z=z,t=0, w

′
y=y,z=z,t=1] to Wy=y,z=z

candidates←Wy=1,z=1 ×Wy=1,z=0 ×Wy=0,z=1 ×Wy=0,z=0

minD← an initial large value
for partial-weight in candidates do

dj ← w′
y=y,z=z,t=t/(wy=y,z=z · 0.5),∀j ∈ I(y,z,t),∀(y, z, t) ∈ Y× Z× {0, 1}

dtmp = {di}i=1,...,n

Draw data D̃ from D via weighted sampling w.r.t. dtmp

wassD← Calculate the Wasserstein distance between D̃ and D via optimal transport
if wassD < minD then

dmin = dtmp

minD = wassD
Output :dmin

B. Appendix – Experiments
B.1. Simulation Settings

Continuing from Sec. 4.1, we explain the details of the simulation. The goal of the simulation is to confirm our theoretical
observations by generating various synthetic classifiers that show the full range of possible model performances. To this end,
we generate 1000 data samples, where each sample has y and z features. We first set y and z to have a specific correlation.
We then generate various synthetic classifiers to have different predicted labels ŷ by varying the probability Pr(ŷ = 1) in
each (y, z)-class, regardless of the other input features. Note that we do not train actual models (e.g., logistic regression,
SVM). For each synthetic classifier, we measure the accuracy and fairness performances based on y, z, and the classifier’s
ŷ. We repeat the above procedures while varying y and z to have different correlations. As a result, we get the simulation
results in Figure 2 by plotting all the classifier accuracy and fairness performances within each (y, z)-correlation.

B.2. Theoretical Limits for Equalized Odds

Continuing from Sec. 4.1, we explain why the (y, z)-correlation does not determine the limits of the accuracy-fairness
tradeoff w.r.t. equalized odds (EO). Here, we consider an ideal case in terms of accuracy, where a perfectly-accurate classifier
can be obtained for the given data. Under this setting, let there be a perfectly accurate classifier A (i.e., Pr(ŷ = y) = 1).
Since classifier A predicts all samples correctly, Pr(ŷ = y|y = r, z = z) is also 1 for all y and z, which indicates perfect
EO (i.e., Pr(ŷ = y|y = r, z = 0) = Pr(ŷ = y|y = r, z = 1) for all y). In other words, achieving both perfect accuracy and
perfect fairness w.r.t. EO is always possible, which means that the limit of the accuracy-fairness tradeoff w.r.t. EO is always
the same, regardless of the data distribution, including the (y, z)-correlation. Thus, the (y, z)-correlation does not determine
the limits of the accuracy-fairness tradeoff w.r.t. EO.

However, classifiers are not perfect in practice, and we empirically observe that higher (y, z)-correlation leads to a worse
accuracy-fairness tradeoff w.r.t. EO in the following section.
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B.3. Empirical Observations for Equalized Odds

Continuing from Sec. 4.1, we perform an experiment to observe that higher (y, z)-correlation leads to a worse accuracy-
fairness tradeoff w.r.t. equalized odds (EO) in practice. Figure 6 shows the accuracy-unfairness performances of the logistic
regression model trained using FairBatch (Roh et al., 2021) to improve EO on two synthetic datasets with low and high (y,
z)-correlations. As a result, low correlation enables classifiers to attain better accuracy-fairness tradeoffs (i.e., close to the
bottom right) w.r.t. EO. This experiment shows that the (y, z)-correlation indeed affects the accuracy-fairness tradeoff w.r.t.
EO in practice.
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Figure 6. Accuracy-unfairness performances of fair training with FairBatch (Roh et al., 2021) on two synthetic data with different
(y, z)-correlations. We measure fairness w.r.t. equalized odds (EO).

B.4. Other Experimental Settings

Continuing from Sec. 6, we provide more details on the experimental settings. The batch sizes of the synthetic, COMPAS,
and AdultCensus datasets are 100, 200, and 2,000, respectively. For the synthetic dataset, we use 2,000 samples for the
training dataset and 1,000 samples for the test dataset. For the real datasets, we split the entire data into 4:1 for the training
and test datasets. We set the learning rate to 0.0005. Our experiments are performed using PyTorch on a Linux server with
Intel Xeon Silver 4210R CPUs and NVIDIA Quadro RTX 8000 GPUs.

We generate the synthetic training dataset with 2,000 samples and consists of two non-sensitive attributes (x1, x2), one
sensitive attribute z, and one label attribute y. Each sample (x1, x2, y) is drawn from the following Gaussian distributions:
(x1, x2)|y = 0 ∼ N ([−2;−2], [10, 1; 1, 3]) and (x1, x2)|y = 1 ∼ N ([2; 2], [5, 1; 1, 5]). For the sensitive attribute z,
we generate a biased distribution: Pr(z = 1) = Pr((x′1, x′

2)|y = 1)/[Pr((x′1, x′
2)|y = 0) + Pr((x′1, x′2)|y = 1)] where

(x′1, x′2) = (x1 cos(π/4)− x2 sin(π/4), x1 sin(π/4) + x2 cos(π/4)).

When we construct the synthetic test dataset by modifying the z values while fixing the x and y distributions in the original
test data, we change the k value in (x′

1, x′2) = (x1 cos(π/k)− x2 sin(π/k), x1 sin(π/k) + x2 cos(π/k)).

For all in-processing algorithms, we start from a candidate set and use cross-validation on the (pre-processed) training data
to choose the hyperparameters that result in the best fairness while having an accuracy that best aligns with other results.

To support multiple fairness metrics, we naturally extend each in-processing approach by combining the fairness constraints
for different metrics via a tuning knob that adjusts the importance between each metric. Here, the fairness constraints are
implemented differently in each algorithm. Fairness Constraints (FC) (Zafar et al., 2017a) adds each unfairness penalty term
to the loss function. Thus, we extend FC by adding multiple penalty terms and adjust the importance between each penalty
term by a tuning knob. Adversarial Debiasing (AD) (Zhang et al., 2018) utilizes a discriminator of each fairness metric for
the adversarial training. Thus, we extend AD by adding multiple fairness discriminators and adjust the importance between
each discriminator by adding a tuning knob in the classifier’s loss function. FairBatch (FB) (Roh et al., 2021) solves a bilevel
optimization that has an objective for minimizing a fairness disparity according to each fairness metric. Thus, we extend FB
by minimizing the maximum of fairness disparities (e.g., max(DPdisp., EOdisp.)) and adjust the importance between
each disparity using a tuning knob.
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B.5. Accuracy and Fairness – EO only

Continuing from Sec. 6.1, we show additional results on the synthetic dataset. Here, we train the fairness algorithms w.r.t. a
single fairness metric EO. As a result, Table 4 shows consistent results to those in Table 2, where our approach improves the
fairness performances of the in-processing-only baselines.

Table 4. Performances on the synthetic test dataset w.r.t. a single metric EO. Other experimental settings are identical to those in Table 2.

Single (EO)

Method Acc. Unfair.

LR .866 ± .001 .101 ± .001

FC .865 ± .003 .062 ± .001
Ours+FC .856 ± .004 .039 ± .005

AD .854 ± .003 .043 ± .002
Ours+AD .849 ± .004 .032 ± .007

FB .854 ± .001 .043 ± .000
Ours+FB .851 ± .009 .039 ± .017

B.6. Accuracy and Fairness – AdultCensus

Continuing from Sec. 6.1, we show the results on the AdultCensus dataset. Table 5 shows the accuracy and fairness
performances of the algorithms on the AdultCensus test dataset w.r.t. a single metric (DP) and multiple metrics (DP & EO).
Other setting are identical to Table 2. We observe consistent results where our framework improves accuracy and fairness of
the in-processing-only baselines and also shows better fairness than the two-step baselines using RW.

Table 5. Performances on the AdultCensus test dataset. Other experimental settings are identical to those in Table 2.

Single (DP) Multiple (DP & EO)

Method Acc. Unfair. Acc. Unfair.

LR .824 ± .001 .074 ± .002 .824 ± .001 .074 ± .002

FC .805 ± .013 .021 ± .004 .807 ± .013 .078 ± .017
RW+FC .810 ± .004 .020 ± .006 .810 ± .008 .048 ± .013
Ours+FC .820 ± .003 .005 ± .002 .805 ± .014 .033 ± .013

AD .777 ± .022 .007 ± .004 .806 ± .011 .052 ± .004
RW+AD .808 ± .010 .025 ± .007 .800 ± .015 .035 ± .003
Ours+AD .803 ± .009 .007 ± .003 .805 ± .009 .033 ± .003

FB .825 ± .002 .017 ± .001 .826 ± .001 .049 ± .001
RW+FB .818 ± .008 .020 ± .005 .817 ± .008 .071 ± .010
Ours+FB .824 ± .001 .008 ± .003 .826 ± .003 .037 ± .012

B.7. How the Pre-processed Data Aligns with the True Test Data

Continuing from Sec. 6.1, we also show that the pre-processed data distribution (Dpre) by our algorithm is more aligned
with the true test distribution (Dtest) compared to the original training distribution (Dtrain), in terms of (y, z)-correlation
and Wasserstein distance. We calculate the second-order Wasserstein distance via an optimal transport technique (Peyré &
Cuturi, 2019) on the synthetic data. We experiment on three degrees on shifts and make two observations in Table 6: 1) the
correlations of Dpre and Dtest are indeed more similar relative to Dtrain and 2) the Wasserstein distance between Dpre and
Dtest is lower than between Dtrain and Dtest. Both observations confirm that the reweighed data aligns well with the test data.

As our method improves the alignment between Dpre and Dtest, the in-processing algorithms trained on Dpre (i.e., ours +
in-processing algorithms) show high accuracy and fairness performances on Dtest, as shown in Sec. 6.
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Table 6. Alignment between data distributions. We use the synthetic data.

Level of correlation shift in ctest

Severe Normal No shift

ctrain (correlation in Dtrain) 0.3591 0.3591 0.3591
cpre (correlation in Dpre) 0.0359 0.1796 0.3590
ctest (correlation in Dtest) 0.0360 0.1800 0.3591

Wass. dist. between Dtrain and Dtest 0.7966 0.6807 0.4399
Wass. dist. between Dpre and Dtest 0.6257 0.6022 0.4399

B.8. Accuracy and Fairness – Other Test Data Construction: Synthetic Data

Continuing from Sec. 6.1, we compare the algorithm performances when using a different method to construct the test
dataset of the synthetic-data experiment. Table 7 shows the accuracy and fairness performances on the synthetic dataset
when constructing the test dataset by modifying z directly.

We again generate the synthetic dataset using a method similar to Zafar et al. (2017a). The synthetic dataset consists of two
non-sensitive attributes (x1, x2), one sensitive attribute z, and one label attribute y. Each sample (x1, x2, y) is drawn from the
following Gaussian distributions: (x1, x2)|y = 0 ∼ N ([−2;−2], [10, 1; 1, 3]) and (x1, x2)|y = 1 ∼ N ([2; 2], [5, 1; 1, 5]).
For the sensitive attribute z, we generate a biased distribution: Pr(z = 1) = Pr((x′1, x′

2)|y = 1)/[Pr((x′1, x′
2)|y = 0) +

Pr((x′
1, x′2)|y = 1)] where (x′

1, x′2) = (x1 cos(π/k) − x2 sin(π/k), x1 sin(π/k) + x2 cos(π/k)). For the training dataset,
we set k to 4. We then change the k value to generate the test dataset with 50% of the training data correlation.

As a result, we observe consistent results where our framework improves the accuracy and fairness performances of the
in-processing-only baselines and generally shows better fairness than the two-step baselines using RW.

Table 7. Performances on the synthetic test dataset. The test dataset is constructed via modifying the z values of the original distribution.
Other settings are identical to those in Table 2.

Single (DP) Multiple (DP & EO)

Method Acc. Unfair. Acc. Unfair.

LR .871 ± .000 .138 ± .000 .871 ± .000 .138 ± .000

FC .805 ± .006 .040 ± .005 .830 ± .001 .119 ± .003
RW+FC .847 ± .005 .047 ± .007 .852 ± .005 .053 ± .004
Ours+FC .831 ± .003 .005 ± .004 .854 ± .004 .052 ± .002

AD .792 ± .012 .048 ± .009 .815 ± .008 .133 ± .006
RW+AD .836 ± .010 .042 ± .008 .849 ± .004 .054 ± .004
Ours+AD .820 ± .006 .005 ± .003 .847 ± .002 .057 ± .007

FB .804 ± .001 .051 ± .002 .831 ± .001 .128 ± .002
RW+FB .844 ± .004 .036 ± .003 .853 ± .005 .057 ± .011
Ours+FB .824 ± .002 .015 ± .002 .854 ± .003 .054 ± .003

B.9. Accuracy and Fairness – Tradeoff Curves

Continuing from Sec. 6.1, we provide the accuracy-fairness disparity (DP) trade-off curves of FairBatch (FB) and Ours+FB
on the the synthetic data in Figure 7. Our framework shows a better accuracy-fairness tradeoff compared to the in-processing
approach (FB). FB shows an “inversed” curve, as it is trained with wrong biases in mind.

B.10. Using the Optional Step

Continuing from Sec. 6.1, we show the results of when using the optional step using MinDistChange in Algorithm 1.
This step finds possibly-different data sample weights within each (y, z)-class to minimize the overall distribution change
between the training and pre-processed data. Figure 8 shows the Wasserstein distances between the original training data and
pre-processed data when our algorithm uses either the basic or optional step, and the correlation constant c ranges from 10%
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Figure 7. Accuracy-fairness disparity trade-off curves of FB and Ours+FB on the synthetic data.

to 70% of the training data’s correlation. As a result, the optional step generally reduces the Wasserstein distance between
the training and pre-processed data distributions, especially for smaller c values. In addition, Table 8 shows the performances
on the synthetic test dataset when our algorithm uses either the basic step (Ours) or the optional step (Ours+Optional). As
a result, when using the new data from the optional step as an input of the in-processing approaches, the final classifier’s
accuracy and fairness are not sacrificed much compared to using data from the basic step, while minimally changing the
data distribution.
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Figure 8. Wasserstein distances between the original training data and pre-processed data when our algorithm uses either the basic step or
the optional step, while varying the target correlation to have 10% to 70% correlation of the training data.

Table 8. Performances on the synthetic test dataset. Other settings are identical to those in Table 2.

Single (DP)

Method Acc. Unfair.

Ours+FC .849 ± .002 .034 ± .004
Ours+Optional+FC .830 ± .003 .027 ± .005

Ours+AD .814 ± .011 .017 ± .006
Ours+Optional+AD .808 ± .007 .014 ± .006

Ours+FB .836 ± .001 .003 ± .001
Ours+Optional+FB .842 ± .002 .010 ± .004

B.11. Accuracy and Fairness – Neural Networks

Continuing from Sec. 6, we show the results on the synthetic dataset when using a multi-layer neural network for all
algorithms. Here, the neural network consists of three linear layers connected by the rectified linear unit (ReLU) activation
function. In Table 9, we observe consistent results to those in Table 2, where our pre-processing is indeed effective in
improving the performances of in-processing-only baselines. This result supports that our approach can work for any ML
model, including the multi-layer neural network and logistic regression.

B.12. Varying the Correlation of the Test Data: More Biases

Continuing from Sec. 6.2, we vary the correlation of the test data to have more biases than the training data. Figure 9
shows the accuracy and fairness performances of FB and Ours+FB, while varying the correlation constant c of the test
data up to 150%. When the correlation increases more than 100% of that of the training data, the in-processing-only
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Table 9. Performances on the synthetic test dataset w.r.t. a single metric (DP). We use a multi-layer neural network (NN) for all algorithms.
Other experimental settings are identical to those in Table 2.

Single (DP)

Method Acc. Unfair.

FC .865 ± .003 .101 ± .012
Ours+FC .855 ± .003 .070 ± .006

AD .866 ± .001 .100 ± .009
Ours+AD .860 ± .003 .080 ± .010

FB .795 ± .025 .065 ± .036
Ours+FB .835 ± .006 .016 ± .017

baseline (FB) cannot improve fairness because the training data does not capture the bias level in the test data. Hence, the
in-processing-only baseline cannot be used in applications that require high fairness. On the other hand, our pre-processing
enables the in-processing approach to achieve the high fairness that it may need, with some accuracy degradation.

Figure 9. Performances of FB and Ours+FB on the synthetic data while varying the correlation of the test data to have 10% to 150%
correlation of the training data.

B.13. Accuracy and Fairness – Other Test Data Construction: Real Data

Continuing from Sec. 6.3, we compare the algorithm performances when using a different method to construct the test
dataset of the real-data experiment. Table 10 shows the accuracy and fairness performances when using the two income
datasets collected in the 1990s (Kohavi, 1996) (i.e., AdultCensus dataset used in Sec. B.6) and 2010s (Ding et al., 2021)
(i.e., ACSIncome dataset) for training and testing, respectively. Here, the 1990s and 2010s datasets have the different (y,
z)-correlation values. In addition, the input feature x distribution also slightly shifted, as shown in Figure 10.

In this real-world scenario, we first estimate the shifted correlation constant c and range [α, β] by accessing some of the
2010s (deployment) data. Here, we show how the number of samples affects the shift range [α, β] using Theorem 11.
Figure 11 shows the estimated correlation values when varying the number of samples used in the estimation. The blue dots
indicate the estimated correlation constant c values that are inferred by the maximum likelihood estimation (MLE). The bars
show the error ranges of each estimation with 90% probability, which can be calculated using Theorem 11 – see details in
Sec. A.7. As discussed in Theorem 11, a larger number of samples yields a smaller range. In addition, although the range is
large when the number of samples decreases (e.g., m=100), the point estimate value for c is close to the true value.

We then run our pre-processing by setting [α, β] with the error range of the estimation. We choose the values when the
number of samples is 1,000 (≃ 0.07%), as it has a reasonable error range with a suitable number of samples. As a result,
we observe consistent results in Table 10 where our framework improves the accuracy and fairness performances of the
in-processing-only baselines.

B.14. Setting the Correlation Range to ctest ± x%

Continuing from Sec. 6.4, we evaluate our approach when [α, β] = [ctest − x%, ctest + x%]. Figure 12 shows the accuracy
and fairness performances of FB and Ours+FB, while varying the correlation constant c of the test data. Here, we set the
specified correlation range in our algorithm to [α, β] = [ctest − x%, ctest + x%], where x ∈ {10, 50, 100}. When x = 10%,
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Figure 10. Principal component analysis (PCA) results on the input feature x of the two US income datasets: AdultCensus (Kohavi, 1996)
and ACSIncome (Ding et al., 2021). Here, the distributions of the principal components on input feature x are different in the two datasets.
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Figure 11. Estimating the correlation of the ACSIncome (deployment) data when varying the number of samples used in the estimation.
The blue dots indicate the estimated correlation constant c values that are inferred by the maximum likelihood estimation (MLE). The bars
indicate the error ranges of each estimation with 90% probability, which can be calculated using Theorem 11. The error ranges can be
used as [α, β] in our pre-processing step. Here, the true c of ACSIncome is 0.147.

Table 10. Model performances on the ACSIncome test data (Ding et al., 2021) collected in the 2010s. The models are trained on the
AdultCensus data (Kohavi, 1996) collected in the 1990s. Both datasets have labels that indicate each person’s annual income. In our
pre-processing, we use the estimated correlation range [α, β] that is inferred by using 1,000 (≃ 0.07%) samples of the ACSIncome data.

Single (DP)

Method Acc. Unfair.

FC .646 ± .013 .104 ± .015
Ours+FC .665 ± .010 .079 ± .011

AD .637 ± .031 .137 ± .037
Ours+AD .638 ± .023 .051 ± .048

FB .643 ± .007 .128 ± .021
Ours+FB .694 ± .002 .068 ± .006

FB on test dist. (upper bound) .704 ± .007 .044 ± .035

we observe similar trends as in Figure 3, where our framework improves the accuracy and fairness performances of the
in-processing-only baselines. When x = 100% (i.e., the worst-case setting of [α, β]), the accuracy and fairness performances
of our framework converge to the in-processing-only baselines. When x = 50%, the performances of our framework are
in between those of when x = 10% and x = 100%. There are two takeaways: 1) our framework successfully boosts the
in-processing-only baseline performances when the [α, β] range is reasonable, and 2) even if we do not have any information
about the correlation shift, our framework performs at least as well as the in-processing-only baselines.
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Figure 12. Performances of FB and Ours+FB on the synthetic data while varying the correlation of the test data ctest to have 10% to
70% correlation of the training data. We set the specified correlation range in our algorithm to [α, β] = [ctest − x%, ctest + x%], where
x ∈ {10, 50, 100}.

B.15. Robust Against Misspecified Correlations: Real Data

Continuing from Sec. 6.4, we evaluate our approach when misspecifying the correlation in our algorithm on the real-world
COMPAS dataset (Angwin et al., 2016). Same with Sec. 6.4, we set α = β = cspecified, where cspecified ̸= ctest. Figure 13
shows the accuracy and fairness performances of FB and Ours+FB when the true correlation of the test data is 60% of the
training data’s correlation. While achieving similar or higher accuracies compared to the in-processing-only baseline for the
entire range of considered correlations, our framework improves the fairness of the in-processing-only baseline (FB) when
the specified correlation is higher than 30%. This result shows that our approach is still beneficial when the estimation error
is reasonable (say ±10%). We also note that when the specified correlation is far from the true value, our framework may
not improve the performances of the baseline.

True corr. 
= 60%

True corr. 
= 60%

Figure 13. Performances of FB and Ours+FB on the COMPAS data while varying the specified correlation in our algorithm to have 10%
to 70% where the true correlation of the test data is 60%.

B.16. Empirical Comparison with Giguere et al. (2022)

Continuing from Sec. 2, we add a new baseline called Shifty (Giguere et al., 2022), which focuses on the distribution shift
most relevant to ours. Shifty first trains candidate models on the training data and selects only the models showing high
fairness in the shifted deployment data. To give a favorable condition to Shifty, we assume that Shifty knows the exact test
distribution. Table 11 shows the accuracy and fairness performances of the in-processing-only baseline FairBatch, Shifty,
and our framework w.r.t. a single metric (DP) and multiple metrics (DP & EO) in the synthetic and COMPAS datasets
used in Tables 2 and 3. As a result, both ours and Shifty improve the fairness of the in-processing-only baseline, but ours
shows better fairness than Shifty while achieving similar or higher accuracy. The reason is that Shifty is selecting the final
model among the candidates that were already trained on the original training data, whereas ours trains a new model on the
improved (pre-processed) data.

B.17. Supporting Noisy Group Attributes

Continuing from Sec. 2, we evaluate the performance of our method on increasingly noisy data and observe that our method
can potentially be extended to the noisy group scenario.

We perform a new experiment, where 10–50% of the group information in the training data is randomly flipped. Table 12
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Table 11. Performances on the synthetic and COMPAS test datasets. We compare in-processing-only baseline FairBatch (Roh et al., 2021),
Shifty (Giguere et al., 2022), and our framework. Other settings are identical to those in Table 2.

Synthetic COMPAS

Single (DP) Multiple (DP & EO) Single (DP) Multiple (DP & EO)

Method Acc. Unfair. Acc. Unfair. Acc. Unfair. Acc. Unfair.

FB (Roh et al., 2021) .821 ± .000 .048 ± .000 .849 ± .001 .091 ± .005 .647 ± .001 .038 ± .013 .650 ± .002 .187 ± .019
FB + Shifty .838 ± .001 .024 ± .008 .844 ± .003 .063 ± .008 .647 ± .001 .029 ± .001 .649 ± .002 .162 ± .025
Ours+FB .836 ± .001 .003 ± .001 .852 ± .004 .058 ± .001 .648 ± .004 .027 ± .001 .657 ± .004 .130 ± .014

shows the accuracy and fairness performances of the in-processing-only baseline FairBatch (FB) and our framework
(Ours+FB) w.r.t. demographic parity (DP). Here, FB cannot achieve high fairness performance (i.e., low DP disp.), as the
group distribution in the training data is different from that in the test data. In comparison, our framework enables FB to
achieve relatively high fairness at the expense of some accuracy degradation.

We note that these results are preliminary and only show that our method has some potential to support noisy group attributes,
and we believe there is plenty of room for improvement. In particular, we believe our method can be further extended with
other robust training methods like (Shen & Sanghavi, 2019).

Table 12. Performances on the synthetic test dataset when the group information in the training data is randomly flipped. We train the
algorithms w.r.t. demographic parity (DP).

10% flipping 30% flipping 50% flipping

Method Acc.
Unfair.
(DP) Acc.

Unfair.
(DP) Acc.

Unfair.
(DP)

FB 0.818 0.087 0.864 0.165 0.883 0.250
Ours + FB 0.808 0.069 0.823 0.101 0.838 0.142

B.18. Supporting Poisoning Attack Scenario

Continuing from Sec. 2, we evaluate the performance of our method on poisoned data and observe that our method can
potentially be extended to the poisoning attack scenario.

We perform a new experiment using one of the poisoning attack methods for fair training (Roh et al., 2020), where 10% of
the training labels of a specific group are flipped so as to maximize the accuracy degradation. Table 13 shows the accuracy
and fairness performances of the in-processing-only baseline FairBatch (FB) and our framework w.r.t. demographic parity
(DP) on the poisoned data; we also report FB’s performance on the clean data, which can be considered as the upper-bound
performance. Here, when achieving similar fairness, our framework improves the accuracy of FB on the poisoned data. We
suspect that, while our pre-processing reduces the correlation shift between training and deployment data, the effect of the
poisoning attack is also mitigated.

We note that these results are preliminary and only show that our method has some potential to support the poisoning attack
scenario, and we believe there is plenty of room for improvement.

Table 13. Performances on the synthetic test dataset when 10% of the training labels are poisoned (Roh et al., 2020). We train the
algorithms w.r.t. demographic parity (DP).

Method Acc. Unfair. (DP)

FB 0.699 0.026
Ours + FB 0.721 0.024

FB on the clean data (upper bound) 0.773 0.023
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C. Appendix – More Related Work

C.1. Traditional Model Fairness

As model fairness becomes essential for Trustworthy AI, various fairness definitions have been proposed to reflect legal and
social requirements (Narayanan, 2018). Among the definitions, we focus on group fairness, which aims to not discriminate
specific groups. There are three prominent group fairness metrics: demographic parity (Feldman et al., 2015), equalized
odds (Hardt et al., 2016), and predictive parity (Berk et al., 2021). To support the fairness metrics, various fairness techniques
have been proposed, which can be categorized into three prominent approaches: (1) pre-processing approaches (Kamiran &
Calders, 2011; Zemel et al., 2013; Feldman et al., 2015; du Pin Calmon et al., 2017; Choi et al., 2020; Jiang & Nachum,
2020), which debias, reweight, or generate training data, (2) in-processing approaches (Zafar et al., 2017a;b; Agarwal
et al., 2018; Zhang et al., 2018; Cotter et al., 2019; Roh et al., 2020; 2021), which modify model training itself for fairness,
and (3) post-processing approaches (Kamiran et al., 2012; Hardt et al., 2016; Pleiss et al., 2017; Chzhen et al., 2019),
which manipulate only the model outputs without changing the training inside. Among the three categories, in-processing
approaches are widely used for unfairness mitigation, but most of them assume that the training and deployment data
distributions are the same.

Another line of research is to support multiple fairness metrics (Thomas et al., 2019; Zhao et al., 2020). Thomas et al. (2019)
proposes a fairness testing framework that can support multiple metrics. Zhao et al. (2020) shows that EO can be achieved
while preserving the original DP. In comparison, we analyze when a model can achieve both ε-DP and ε-EO.

Beyond group fairness, there are other noteworthy fairness definitions including individual fairness (Dwork et al., 2012b),
which aims to give similar predictions to similar individuals, and causality-based fairness (Kilbertus et al., 2017; Kusner
et al., 2017; Zhang & Bareinboim, 2018), which aims to improve fairness by understanding the causal relationship between
attributes. Extending our analysis and framework to these definitions is an interesting future work.

C.2. Fairness under Data Distribution Shifts

Continuing from Sec. 2, we further compare our work with the previous studies on data distribution shifts. The following
paragraphs contain detailed discussions of the two categories of distribution shifts: general distribution shifts and fairness-
specific shifts.

Among the general distribution shifts (i.e., covariate, label, and concept shifts in Table 1), the concept shift is the most
relevant definition to the correlation shift. As shown in Table 1 of Sec. 2, the correlation and concept shifts focus on Pr(z|y)
and Pr(y|x), respectively. As the concept shifts consider the distribution changes of the label (y) and input feature (x), this
type of shift can implicitly describe the correlation shifts when the input feature contains the group attribute (z). However, a
unique characteristic of the correlation shifts is to explicitly capture the bias changes between y and z, where z is especially
relevant to fair training. Thus, the notion of correlation shifts enables us to analyze the behavior of fair training when the
bias changes.

In addition, the key difference between the correlation shift and the other fairness-specific shifts (subpopulation and
demographic shifts) is that the other shifts are defined under specific assumptions on the data distribution, which are not
required in our correlation shift definition. Here are the assumptions in the subpopulation and demographic shifts:

• The subpopulation shift (Maity et al., 2021) assumes that the loss expectations w.r.t. input feature X and label Y of training
and deployment distributions are the same (i.e., Etrain[(h(x), y)|z = z] = Etest[(h(x), y)|z = z], where E indicates the
expectation). Thus, as discussed in the related work section, a major example of subpopulation shifts is when a specific
group has fewer positively-labeled examples during training time compared to deployment time, while the distributions of
the x and y attributes remain the same.

• Similarly, the demographic shift (Giguere et al., 2022) assumes that the joint probabilities of x and y on the training and
deployment distributions are identical (i.e., Prtrain(x = x, y = y|z = z) = Prtest(x = x, y = y|z = z)). This assumption
is similar to the assumption of the subpopulation shift, but the difference is whether the loss values of the model are
explicitly considered or not.

The above assumptions are used in the theoretical analyses of the previous works (Maity et al., 2021; Giguere et al., 2022).
In comparison, our theoretical analyses in Sec. 4 of using correlation shifts are not limited by any additional assumptions,
and we show that the achievable performances of fair training are determined by the (y, z)-correlation.
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C.3. Connection to Causality-based Fairness

Continuing from Sec. 2, we discuss how our work can be connected with causality-based fairness. To this end, we give a
concrete example to show the correlation shifts when the sensitive group attribute itself is a confounder, one of the important
roles of attributes in causality-based fairness.

We consider a car insurance example, where the goal is to predict future accident rates from the past driving record: suppose
that input feature x is the past driving record, label y is the future accident rate, and sensitive attribute z is the race.

Then, the structural causality graph between them would look like: z → (x, y) and x → y, i.e., z being a confounder
(Figure 14). The arrows from z to x and y could be due to (a) different socialization and driving behavior formation process
that partially depends on racial identity and (b) another unobserved mediator such as where they live in, etc. In this example
where z is a confounder, it is clear that z and y are correlated.

We expect this confounding effect to change over time. This will make the sensitive attribute z either a stronger or weaker
confounding factor, which impacts the correlation between y and z.

x y

z

Past 
driving record

Future 
accident rate

Race

Figure 14. A causality graph for the car insurance example in Sec. C.3.
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