
Geometric Clifford Algebra Networks

David Ruhe 1 Jayesh K. Gupta 2 Steven de Keninck 3 Max Welling 4 Johannes Brandstetter 4

Abstract

We propose Geometric Clifford Algebra Net-
works (GCANs) for modeling dynamical systems.
GCANs are based on symmetry group transforma-
tions using geometric (Clifford) algebras. We first
review the quintessence of modern (plane-based)
geometric algebra, which builds on isometries en-
coded as elements of the Pin(p, q, r) group. We
then propose the concept of group action layers,
which linearly combine object transformations us-
ing pre-specified group actions. Together with a
new activation and normalization scheme, these
layers serve as adjustable geometric templates that
can be refined via gradient descent. Theoretical
advantages are strongly reflected in the modeling
of three-dimensional rigid body transformations
as well as large-scale fluid dynamics simulations,
showing significantly improved performance over
traditional methods.

1. Introduction
Equipping neural networks with geometric priors has led
to many recent successes. For instance, in group equivari-
ant deep learning (Cohen & Welling, 2016; Weiler et al.,
2018; Bronstein et al., 2021; Weiler et al., 2021), neural
networks are constructed to be equivariant or invariant to
group actions applied to the input data.

In this work, we focus on tasks where we expect that the
target function is a geometric transformation of the input
data. Such functions arise ubiquitously in the science of
dynamical systems, which is the core experimental domain
of this work. Neural surrogates for solving these schemes
have been proposed in fluid dynamics (Li et al., 2020b;
Kochkov et al., 2021; Lu et al., 2021; Rasp & Thuerey,

1Work done during internship at Microsoft Research.
2Microsoft Autonomous Systems and Robotics Research
3University of Amsterdam 4Microsoft Research AI4Science. Cor-
respondence to: David Ruhe<david.ruhe@gmail.com>, Johannes
Brandstetter <johannesb@microsoft.com>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Figure 1. GCANs: Geometric algebra allows us to express data as
objects which can simultaneously be interpreted as group elements
(top). GCANs parameterize linear combinations of learnable group
actions, ensuring that even randomly initialized models form a com-
position of geometric transformations. GCANs are thus adjustable
geometric templates. Bottom: geometric transformations can be
constructed from compositions of reflections. Two reflections in
intersecting planes yield a rotation (left), and two reflections in
parallel planes yield a translation (right).

2021; Pathak et al., 2022; Bi et al., 2022; Lam et al., 2022;
Nguyen et al., 2023), molecular dynamics (Mardt et al.,
2018; Zhong et al., 2019; Greydanus et al., 2019; Mattheakis
et al., 2019; Li et al., 2020a), or astrophysics (Tamayo et al.,
2016; Cranmer et al., 2021). Typically, the objective is to
predict with high precision how a system will evolve based
on various initial conditions. This is a challenging task,
given that the underlying dynamics can be highly unstable
or chaotic.

We introduce Geometric Clifford Algebra Networks
(GCANs) as a new approach to incorporate geometry-guided
transformations into neural networks using geometric alge-
bra. Geometric algebra (Clifford, 1871; Hestenes, 1966;
Dorst & Mann, 2002; Mann & Dorst, 2002; Dorst et al.,
2009; Artin, 2016) is an algebraic framework based on real
Clifford algebras that is particularly well suited to handle
and model computational geometry. It has several intrigu-
ing properties and advantages over other frameworks, such
as classical linear algebra. For example, it naturally and
efficiently encodes the transformations and the invariant

1

GCANs

elements of classic geometries. Additionally, in geometric
algebra, objects transform covariantly with transformations
of space. This means that a single function can transform
multiple types of objects, including vectors, points, lines,
and planes. Finally, geometric algebra generalizes over di-
mensions in the sense that transformations and objects are
constructed consistently regardless of the dimensionality of
the space.

GCANs are built around the concept of group action layers,
which linearly combine pre-specified group actions to form
neural representations. This process can be efficiently imple-
mented using geometric algebra, which encodes both objects
and transformations elegantly. By exploiting knowledge of
the transformation group actions that govern the underlying
dynamics, our approach provides a geometric prior com-
plementary to the symmetry and scale separation principles
discussed in Bronstein et al. (2021). In order to ensure the
preservation of the vector space of the input representations,
we further introduce a specific type of nonlinearity and a
new form of normalization. The resulting network can be
seen as a composition of geometric transformations, with an
uninitialized network serving as a geometric template that
can be refined through gradient descent learning.

Recently, Clifford neural layers (Brandstetter et al., 2022a),
which can encode spatial primitives such as scalars and
vectors into single entities, were proposed. Most notably,
Clifford neural networks can already be seen as geometric
templates by allowing Fourier transforms on multivectors
and geometric products beyond complex numbers or quater-
nions. However, most Clifford neural layers lack certain
geometric guarantees. For example, vector-valued input fea-
tures might result in multivector-valued quantities that are
difficult to interpret geometrically. We will see that specific
layers, such as the rotational Clifford convolution layers,
are already close to a specific instance of GCAN layers pro-
posed in this work. In fact, the compelling performance of
these layers served as motivation for this work.

The theoretical advantages of GCANs are reflected in vari-
ous dynamical systems modeling tasks. The strong induc-
tive bias of GCANs enhances generalization in low-data
regimes and allows for more efficient optimization when
there is plenty of data and, therefore, outperforms baselines
in both these regimes. We demonstrate these advantages
on a rigid body transformation task, where we simulate the
motion of Tetris objects in free space. Next, we show excel-
lent performance on two large-scale PDE modeling tasks of
fluid dynamic problems, i.e., weather prediction based on
the shallow water equations and fluid systems described by
incompressible Navier-Stokes equations.

2. Geometric algebra
This section presents a formalization of Euclidean geometry
from a geometric algebra perspective, primarily based on
Roelfs & De Keninck (2021) and De Keninck & Roelfs
(2022). We derive how the Pin(n) group can model isome-
tries (distance-preserving transformations of metric spaces)
and how to use it to obtain geometric templates.

The Pin(n) group. We start the formalization by con-
structing symmetries (isometries) using reflections as our
foundation. A reflection is a map from a Euclidean space to
itself with a hyperplane as a set of fixed points in which the
space gets mirrored. The mathematician Hamilton observed
that the composition of two reflections through intersecting
planes results in a rotation. This idea is presented in Figure 1
(bottom) and can be generalized to the following theorem.
Theorem 2.1. Cartan-Dieudonné. Every orthogonal trans-
formation of an n-dimensional space can be decomposed
into, at most, n reflections in hyperplanes.

It is worth noting that isometries composed of an odd num-
ber of reflections change the chirality (handedness) of the
space, which is often an unwanted property. We refer to such
isometries as improper. In an n-dimensional space, compo-
sitions of reflections construct the Pin(n) group. A group
(G, ◦) is a non-empty set G equipped with a binary compo-
sition operator ◦ : G × G → G (written here with juxtapo-
sition) that satisfies (i) closure, i.e., for u, v ∈ G : uv ∈ G,
(ii) associativity, i.e., for u, v, w ∈ G : (uv)w = u(vw),
(iii) identity, i.e., there is an element 1 ∈ G, such that for
u ∈ G : 1u = u = u1, and (iv) inverse, i.e., for u ∈ G there
is an inverse element u−1 ∈ G such that uu−1 = 1 = u−1u.
Since compositions of reflections (like the ones shown in
Figure 1) satisfy all these conditions, they form a group.
That is, any element u ∈ Pin(n) can be written as composi-
tion of k linearly independent reflections: u = u1 . . . uk.

Group action: conjugation. A group action on a space
is a group homomorphism of the group into the group of
transformations of that space. A group can act on itself by
the conjugation rule, which is a specific map G × G → G.
For u, v ∈ Pin(n), we let u act on v via

u[v] 7→ uvu−1 , (1)

where the group composition is used twice and
uvu−1 ∈ Pin(n). This sandwich product tells us how
we let a group element act on another (e.g., reflecting a
reflection). Intuitively, it mimics what we would do when
asked, for example, to write our name upside down: we
first rotate the page, write, and rotate the page back. In the
following sections, we will see that geometric algebra forms
a framework where the objects (e.g., vectors) we want to
act on can be interpreted as group elements and vice versa.
This allows us to also apply the conjugation rule not only to
group elements but also to geometric primitives.

2

GCANs

Geometric algebra. Equipped with an understanding of
how compositions of reflections yield higher-order orthog-
onal transformations and how we can let group elements
act, we can construct an algebraic implementation of these
ideas (Roelfs & De Keninck, 2021) using geometric algebra.
Geometric algebra is an emerging tool to model computa-
tional geometry (Dorst et al., 2009) based on real Clifford
algebras. The geometric product of the algebra allows for
intuitive expressions of geometric transformations, making
this a natural choice. In an n-dimensional geometric al-
gebra1 Gpqr

2 of n = p + q + r, we choose p positive, q
negative, and r null basis vectors ei with

eiei ∈ {+1,−1, 0} , eiej = −ejei (i 6= j) , (2)

where the juxtaposition eiej denotes the algebra’s bilinear
product. For example, the simplest three-dimensional alge-
bra is G3,0,0, with p = 3, q = 0, and r = 0. A product of k
basis vectors is a basis k-blade where the grade of the blade
is the dimension of the subspace it represents. In this way,
vectors with basis components ei are 1-blades. 2-blades are
of the form eiej , and so on. In general, an n-dimensional
vector space yields 2n basis blades. The highest grade ba-
sis blade I := e1 . . . en is also known as the pseudoscalar.
We speak of k-vectors by homogeneously combining basis
blades of grade k. Vectors, like in linear algebra, are linear
combinations of 1-blades. Bivectors are formed from 2-
blades, etc. A multivector x ∈ Gp,q,r is a sum of k-vectors,
i.e., x = [x]0 +[x]1 +[x]2 + . . .+[x]n, where [x]k denotes
the k-vector part of x. As an example, G3,0,0 has 23 = 8
basis blades, where a multivector x is represented via

x = x01︸︷︷︸
Scalar

+x1e1 + x2e2 + x3e3︸ ︷︷ ︸
Vector

+ x12e12 + x13e13 + x23e23︸ ︷︷ ︸
Bivector

+x123e123︸ ︷︷ ︸
Trivector

.
(3)

Here, we used eij := eiej . It is worth mentioning that the
set of basis blades is closed under multiplication with its
elements using Equation (2). The specific choices of algebra
(determined by p, q, and r) allows for efficient modeling of
many types of geometry.

Geometric product. Multiplication in the algebra is
realized via the geometric product: a bilinear operation
between multivectors. For arbitrary multivectors x, y,
z ∈ Gpqr, and scalar λ, the geometric product has the
following properties: (i) closure, i.e., xy ∈ Gpqr, (ii) as-
sociativity, i.e., (xy)z = x(yz), (iii) commutative scalar

1Technically, there are no differences between geometric and
(real) Clifford algebra. In fact, Clifford himself chose “geometric
algebra”. However, it is common practice to use Clifford algebra
when primarily interested in mathematical concerns and geometric
algebra when interested in geometry.

2Gpqr corresponds to Clp,q,r(R) when using the notation
of Brandstetter et al. (2022a).

Figure 2. Left, a plane through the origin identified by a normal
vector n =

[
a b c

]T , or equivalently a linear equation p :
ax+ by+ cz = 0. Right, a general plane represented by a normal
vector n and distance δ, or equivalently by the linear equation
p : ax+ by + cz + δ = 0.

multiplication, i.e., λx = xλ, (iv) distributivity over ad-
dition, i.e., x(y + z) = xy + xz, and (v) Vectors square
to scalars given by a metric norm. The geometric product
is in general non-commutative: xy 6= yx. It can also be
applied to (combinations of) lower-grade elements. For ex-
ample, as shown in Appendix B, for vectors (1-vectors) it
exactly results in an inner product part and an antisymmetric
part associated with a bivector. In this case, the geometric
product directly measures their similarities as well as their
differences.

Representing elements of Pin(p, q, r). We can use the ge-
ometric algebra Gpqr to represent elements of Pin(p, q, r),
where p+ q+ r = n for an n-dimensional space with p pos-
itive, q negative, and r zero dimensions 3. We saw that the
fundamental isometry (from which we build Pin(p, q, r)) is
a reflection. To identify reflections, we use the fact that a
hyperplane through the origin p : ax+ by + cz + . . . = 0
can be mapped onto grade 1 elements of Gpqr via

ax+ by + cz + . . . = 0↔ u := ae1 + be2 + ce3 +
(4)

The grade 1 elements form a vector perpendicular to the
surface, i.e., n := [a, b, c]> and [u]1 = n. Note that u ∈
Gpqr, but the (k 6= 1)-blades are simply left zero. This
identification is illustrated for the three-dimensional case in
Figure 2. Note that, using Equation (4), two unit normals
lead to the same geometric plane: one being the negation of
the other (also displayed in Figure 2). As such, normalized
vectors map 2-to-1 to planes through the origin. Now that
we have an algebraic implementation of a hyperplane, it can
be shown (Appendix B) that a reflection through that plane
amounts to (using geometric products)

v 7→ −uvu−1 , (5)

where u,v ∈ Gp,q,r are vectors (1-vectors in the algebra)
and u−1 is the multiplicative inverse such that uu−1 = 1.

3For further theory on representing groups in the geometric
algebra, consider drcite

3

GCANs

Figure 3. All elements of the Euclidean group can be represented as compositions of reflections in planes. The orange k-blades are
compositions of orthogonal planes, and represent simultaneously the points, lines, planes as well as the reflections in these elements. In
green: compositions of reflections in arbitrary planes make up all isometric transformations.

The minus sign of Equation (5) comes from the fact that
we use two 1-vectors, as explained below. We next use the
fact that any Pin(p, q, r) group element can be written as a
composition of k linearly independent reflections. Compo-
sition is now rather straightforward: we take Equation (5)
and apply the sandwich structure again using geometric
products:

v 7→ u2u1 vu−11 u−12 = (u2u1)v (u2u1)
−1

, (6)

creating a bireflection. We see how we can use the associa-
tivity of the geometric product to compose reflections.

As such, we henceforth treat elements of Pin(p, q, r) as
compositions of 1-vectors in the algebra, as opposed to
abstract compositions of reflections. In general, for two
group elements u := u1u2 . . .uk ∈ Pin(p, q, r) and v :=
v1v2 . . .vl ∈ Pin(p, q, r), where u is a k-reflection and v
is an l-reflection, the group action of u on v is:

v 7→ u[v] := (−1)kluvu−1 , (7)

obtaining a similar conjugation rule to Equation (1). The
prefactor ensures that we obtain the correct orientation
of space. For example, when u is a reflection (k = 1),
u[u] = −u, meaning that reflecting u in itself reverses its
orientation. Taking the geometric product u1u2 of two vec-
tors (each parameterizing a reflection) with u1,u2 ∈ Gp,q,r

yields bivector components. Considering Hamilton’s obser-
vation, bivectors thus parameterize rotations. Composing
more reflections yields higher-order blades, parameterizing
higher-order isometries.

Note that u and −u parameterize the same isometry since
the sign gets canceled in the sandwich structure of Equa-
tion (7). This is visualized in Figure 2, where two vectors
parameterize the same plane used to reflect in. We therefore
have a 2-to-1 map to any orthogonal transformation, which
makes Pin(n) the double cover of O(n). I.e., each group
element in O(n) identifies with two elements in Pin(n).
By excluding improper isometries, we obtain the Spin(n)
group, the double cover of the special orthogonal group
SO(n), which is the group of n-dimensional orthogonal
transformations excluding reflections.

Projective geometric algebra. We now take a closer look
at an instantiation of Pin(p, q, r): the projective geometric
algebra G3,0,1, which is well-suited to model transforma-
tions in three-dimensional space. Note that the dimensional-
ity of the algebra is higher than that of the physical space.
This is a recurring theme in geometric algebra: higher-
dimensional algebras are used to model the underlying space.
For example, e20 = {−1, 0, 1} leads to hyperbolic, projec-
tive, and Euclidean geometry, respectively, where we call
the fourth ‘special’ basis vector e0. The inclusion of the zero
element e20 = 0 in the algebra allows us to obtain planes
that do not pass through the origin of the physical space,
which resembles the extra dimension that we are acquainted
to when using homogeneous coordinate systems:

ax+ by + cz + δ = 0↔ u = ae1 + be2 + ce3 + δe0 (8)

This identification is in Figure 2. Consequently, we are
free to construct two parallel planes, which, as depicted in
Figure 1, can be used to translate. Two intersecting planes
still create rotations, but now around a line not necessarily
through the origin. Three reflections are improper rotations
and reflections, and four reflections lead to screw motions.
By including translations, Pin(3, 0, 1) is the double cover of
the three-dimensional Euclidean group E(3) = O(3) oR3,
which is the semi-direct product of O(3) and the translation
group R3. E(3) contains all the transformations of three-
dimensional Euclidean space that preserve the Euclidean
distance between any two points, i.e., translations, rotations,
and reflections. As such, we can work with all the rigid
motions of Euclidean space by composing reflections (Fig-
ure 3). Similarly, Spin(3, 0, 1), which excludes improper
isometries, i.e., those composed of an odd number of reflec-
tions, is the double cover of the special Euclidean group
SE(3) = SO(3) oR3, the group of three-dimensional Eu-
clidean isometries excluding reflections.

Representing data as elements of Pin(p, q, r). We dis-
cussed how composing reflections allows us to construct
group actions of, e.g., E(3). However, instead of acting on
group elements, we are in practice interested in acting on
objects such as vectors, planes, lines, or points. We can
naturally construct these by identifying the invariant sub-

4

GCANs

Reflections Group element [O(3)] Invariant subspace† Algebra element [G3,0,0]

0 Identity Volume Scalar
1 Reflection Plane Vector
2 Rotation Line Bivector
3 Rotoreflection Point Trivector

†These subspaces all pass through the origin.

Reflections Group element [E(3)] Invariant subspace Algebra element [G3,0,1]

0 Identity Volume Scalar
1 Reflection Plane Vector
2 Rotation/translation Line Bivector
3 Roto/transflection Point Trivector
4 Screw Origin Quadvector

Table 1. Overview of elements of Pin(3, 0, 0) (top), and Pin(3, 0, 1) (bottom). This table relates their group elements, i.e., composition
of reflections, to O(3) and E(3) group elements, spatial primitives (identified with invariant subspaces of the transformations), and how
they are encoded in geometric algebra. Note that G3,0,1 allows us to encode translations.

spaces (symmetry elements) of the group elements. This
was already shown for reflections: they were constructed
from planes, which used the 1-vector components of the
algebra. Thus, we can relate 1-vectors, planes, and reflec-
tions with each other and, most notably, as elements of
Pin(p, q, r). Similarly, a bireflection (Equation (6)) com-
putes a rotation, which preserves a line (see, e.g., Figure 3).
Computing the element u1u2 ∈ Pin(3, 0, 1) using the geo-
metric product yields a bivector. Bivectors (2-vectors) thus
parameterize lines, i.e., if our data represents a line, we can
use the bivector components of the respective algebra to
represent it, and transform it using Equation (7). In this
way, we can determine the transformation of any spatial
object using conjugation. The group action is now not on
G, but rather on X . That is, we consider mappings of the
form G ×X → X instead of G × G → G, where X is the
space we are interested in. Summarizing, the relationship
between Pin(p, q, r) group elements, spatial primitives, and
algebraic elements is shown in Table 1. Specifically, we can
identify each row’s elements with each other.

3. Geometric algebra neural networks
In the following, we describe the building blocks of GCANs.
Crucially, we want to ensure two properties: (i) inputs al-
ways map back to their source vector space, and (ii) inputs
are transformed by linear combinations of group actions. We
call such neural networks geometric templates. For CGANs
specifically, (i) means the input grades are unchanged or, in
other words, k-vectors map to k-vectors, and (ii) means that
we use linear combinations of Pin(p, q, r) actions.

Group action layers. We start by introducing the general
concept of a group action layer. Let G be a group,X a vector
space, α : G ×X → X a group action, and c a number of

input channels. A group action layer then in general form
amounts to

x 7→ Tg,w(x) :=

c∑
i=1

wi · α(gi, xi) , (9)

where we put g := (gi)i=1,...,c with gi ∈ G, x :=
(xi)i=1,...,c with xi ∈ X , and w := (wi)i=1,...,c with
wi ∈ R. The scalar parametersw determine how the actions
are linearly combined (“·” denotes scalar multiplication).
This linear combination of group actions ensures that the
source object transforms in a geometrically consistent way,
regardless of whether it is a point, line, vector, sphere, etc.
Both linear and convolutional neural network layers can be
constructed from this general notion. As an example, let
X := R and G := Aff(1) be the one-dimensional affine
group of scaling and addition. Then gi = (ai, bi) ∈ G and
α(gi, xi) = aixi + bi. In this case, we recover the standard
linear layers, where

Tg,w(x) =

c∑
i=1

wi · (aixi + bi) =

c∑
i=1

w′ixi + b′ , (10)

with w′i := wiai and b′ :=
∑c

i=1 wibi.

GCA linear layers. Using geometric algebra, we can now
easily encode group transformations and objects into group
action layers. In this case,

Tg,w(x) =

c∑
i=1

wi · aixia
−1
i , (11)

where now xi ∈ X := Gp,q,r, and ai ∈ G := Spin(p, q, r).
The sandwich operation, determined by ai, represents the
group action and can be parameterized. For example, to
encode rotations, we parameterize bivector components and

5

GCANs

t = 0 t = 2 t = 4
Pr

ed
ic

te
d

Ta
rg

et

Figure 4. Tetris trajectories. Exemplary predicted (top) and ground-
truth (bottom) states. Predictions are obtained by the GCA-GNN
model when using 16384 training trajectories.

optimize them using techniques like stochastic gradient de-
scent. This can be viewed as an extension of Clifford neural
layers (Brandstetter et al., 2022a) where the geometric prod-
uct is replaced with the sandwich product, and the trans-
formations are linearly mixed via the scalar parameters w.
Equation (11) ensures that when xi is a sum of k-vectors,
each k-vector transforms as a k-vector, i.e., object types
are preserved (see Theorem B.1). For example, when xi

are 1-vectors, Tg,w(x) will be a 1-vector. Clifford (Pearson,
2003), complex (Trabelsi et al., 2017), or quaternion (Par-
collet et al., 2020) networks generally do not exhibit this
property, meaning that a k-vector would transform into an
unstructured multivector4. The flexibility of geometric alge-
bra allows the practitioner to determine which group actions
to parameterize and how to efficiently represent the data.
Furthermore, due to the sparsity of the sandwich product,
GCA layers scale better with the algebra dimension than
Clifford layers.

Note that Equation (11) computes a “single-channel” trans-
formation, similar to how Equation (10) computes a single-
channel value (typically referred to as a neuron). In practice,
we extend this to a specified number of output channels by
applying the linear transformations in parallel using differ-
ent weights and transformations.

GCA nonlinearity and normalization. We are interested
in nonlinearities that support the idea of geometric templates.
Therefore, we propose the following Multivector Sigmoid
Linear Unit that gates (Ramachandran et al., 2017; Weiler
et al., 2018; Sabour et al., 2017) a k-vector by applying

[x]k 7→ MSiLUk (x) := σ (fk(x)) · [x]k , (12)

where fk(x) : Gp,q,r → R and σ is the logistic function.
We choose this definition to ensure the geometric template:
by only scaling, a k-vector remains a k-vector. In this work,
we restrict fk to be a linear combination of the multivector

4The complex and Hamilton (quaternion) product both are
instances of Clifford’s geometric product.

components, i.e., fk(x) :=
∑2n

i=1 βk,i ·xi, where xi denotes
the i-th blade component of x. Also, βk,i are either free
scalar parameters or fixed to βk,i := 1 or βk,i := 1/m,
resulting in summation or averaging, respectively. Similarly,
we normalize a k-vector by applying a modified version of
group normalization (Wu & He, 2018), where

[x]k 7→ sk
[x]k − E[[x]k]

E[‖[x]k‖]
. (13)

The empirical average of [x]k is computed over the number
of channels specified by the group size hyperparameter,
and rescaled using a learnable scalar sk through [x]k 7→
sk · [x]k , which again only scales the k-vector.

4. Experiments
4.1. Tetris

This experiment shows the ability of GCANs to model com-
plex object trajectories. We subject Tetris objects (Thomas
et al., 2018), which are initially located at the origin, to
random translations and rotations around their respective
centers of mass. The rotations and translations are sampled
conditionally, introducing a correlation between the objects.
We further apply conditional Gaussian noise to the individ-
ual parts of each object. The objects move outward from the
origin in an exploding fashion, continuously rotating around
their own centers of mass. Given four input time steps, the
model’s objective is to accurately predict the following four
time steps. To do so, it has to infer the positions, veloci-
ties, rotation axes, and angular velocities and apply them to
future time steps, see Figure 4).

We use G3,0,1, as it is particularly well-suited to model
Euclidean rigid motions. The highest-order isometry in this
algebra is a screw motion (a simultaneous combination of
translation and rotation) constructed using four reflections.
Crucially, we do not have to parameterize and compute
four reflections explicitly. Instead, we use the fact that four
reflections lead to a scalar, six bivectors, and a quadvector
component. As such, we parameterize these components
and refine them via gradient descent. The points of the
Tetris objects are implemented as trivectors, representing
intersections of three planes in a point. That is, a point
x, y, z is implemented in G3,0,1 as xe023 + ye013 + ze012.

GCA-MLPs. Figure 5 summarizes various results of the
Tetris experiment, showing test mean squared errors (MSE)
summed over the number of predicted time-steps as a func-
tion of the number of training trajectories. The baseline
MLP networks receive unstructured data in the form of a
3× 4× 4× 8 = 384-dimensional vector, representing three
coordinates per point, four points per object, and eight ob-
jects over four input time steps. The MotorMLP also takes
data in an unstructured manner but regresses directly on a ro-
tation matrix and a translation offset, thereby also enforcing

6

GCANs

103 104

10 3

10 2

10 1

100

M
SE

 (
)

Position inputs, MLPs

MLP
MotorMLP
SO(3) MLP

O(3) MLP
GCA-MLP (Ours)

103 104

Number of training trajectories

Position inputs, GNNs

EdgeConv
GNN (S)
GNN (S, +d)

GNN (L)
GNN (L, +d)
GCA-GNN (Ours)

103 104

Position + velocity inputs, GNNs

MLP
GNN

GCA-GNN (Ours)
GCA-MLP (Ours)

Figure 5. Test MSE results of the Tetris experiment as a function of the number of training trajectories. Left: comparison of different MLP
models, center: comparison of different GNN models, right: comparison of the best MLP and GNN models when velocities are included.

a geometric transformation. However, this transformation is
indirect, and the learned representations remain entirely un-
structured. We also consider two equivariant baselines, both
EMLP models as presented in Finzi et al. (2021). Indeed,
the task has global equivariance properties; the frame of ref-
erence does not affect the trajectory’s unfolding. However,
local motions are what makes the task challenging. As such,
we see that the O(3) and SO(3) equivariant models only
marginally outperform the baseline MLPs. In contrast, our
GCA-MLP significantly outperforms the baseline MLPs.

GCA-GNNs. Next, we test message-passing graph net-
works (GNN) (Gilmer et al., 2017; Battaglia et al., 2018)
where we encode the position coordinates as nodes and thus
provide a strong spatial prior to the learned function. We
consider small (S) and large (L) versions, where the small
ones have the same number of parameters as the baseline
MLPs. We incorporate versions that include the relative
distances (+d) between the coordinates in the messages. We
further include the dynamic graph convolutional network
EdgeConv (Wang et al., 2019) in the baselines. Finally,
we introduce GCA-GNNs, which apply the same message-
passing algorithm as the baseline GNNs, but replace mes-
sage and node update networks with GCA-MLPs, i.e.,

mij := φe(h
l
i,h

l
j) , hl+1

i := φh(m̄i,h
l
i) , (14)

where hl
i ∈ Gc

3,0,1 are the node features at node i, mij ∈
Gc

3,0,1 are messages between node i and node j, and m̄i ∈
Gc

3,0,1 is the message aggregation for each node. We put
h0
i := xi, where xi are the point coordinates embedded in

the algebra G3,0,1. The combination of graph structure and
geometric transformations (GCA-GNNs) outperforms all
the baselines, sometimes by a large margin.

Next, we show how we naturally combine objects in GCANs
without sacrificing expressiveness. We do so by including
the discretized velocities of the points at all time steps as
model inputs, predicting future coordinates and future ve-
locities. In GCANs, we can include the velocities directly

as vector components e1, e2, and e3 alongside the trivector
components that encode the object positions, and use the
exact same neural network architecture to transform them.
Effectively, having more components increases the num-
ber of numerical operations used to compute Equation (11).
However, the number of parameters stays the same, and
weights are now shared between multivector components.
Consequently, both attributes then are simultaneously sub-
jected to Euclidean rigid motions throughout the network. In
contrast, the baseline models must account for the additional
input and output of velocity data, requiring a reduction in
the size of the hidden layers to maintain the same number
of parameters.

4.2. Fluid mechanics

In the following experiments, we aim to learn large-scale
partial differential equation (PDE) surrogates on data ob-
tained from numerical solvers. To be more precise, we
aim to learn the mapping from some fields, e.g., velocity
or pressure fields, to later points in time. In this work, we
investigate PDEs of fluid mechanics problems. Specifically,
we focus on the 2 + 1-dimensional shallow water (Vreug-
denhil, 1994) and the 2 + 1-dimensional incompressible
Navier-Stokes equations (Temam, 2001).

Shallow water equations. The shallow water equations de-
scribe a thin layer of fluid of constant density in hydrostatic
balance, bounded from below by the bottom topography
and from above by a free surface. As such, the shallow
water equations consist of three coupled PDEs, modeling
the temporal propagation of the fluid velocity in x- and
y-direction, and the vertical displacement of the free sur-
face, which is used to derive a scalar pressure field. For
example, the deep water propagation of a tsunami can be de-
scribed by the shallow water equations, and so can a simple
weather model. We consider a modified implementation of
the SpeedyWeather.jl (Klöwer et al., 2022) package,
obtaining data on a 192× 96 periodic grid (∆x = 1.875◦,

7

GCANs

103 104

10 3

10 2

10 1

M
SE

 (
)

Shallow water
 equations, ResNets

ResNet
CResNet

CResNetrot

GCA-ResNet (Ours)

103 104

Number of training trajectories

10 4

10 3

Shallow water
 equations, UNets

UNet
CUNet

CUNetrot

GCA-UNet (Ours)

1024 2048 4096

10 3

2 × 10 3

3 × 10 3
Navier-Stokes
 equations, UNets

UNet GCA-UNet (Ours)

Figure 6. MSE results of the large-scale fluid mechanics experiments as a function of the number of training trajectories. We compare
ResNet (left) and UNet (center) models on the shallow water equations. Right: UNet comparison on the Navier-Stokes equations.

∆y = 3.75◦) with temporal resolution of ∆t = 6 h. The
task is to predict velocity and pressure patterns 6 hours into
the future given four input time steps. Example input and
target fields are shown in Figure 7.

GCA-CNNs. When building GCA-CNNs, we use the fact
that scalar pressure and vector velocity field are strongly
coupled in the underlying shallow water equations. We, thus,
consider them as a single entity in a (higher-dimensional 3D)
vector space and assume that it transforms under scaling and
rotation. We embed data in G3,0,0 as vectors, constructing
2D convolutional GCA layers of the form

x 7→
c×k×k∑
i=1

wi · aixia
−1
i , (15)

where k denotes a pre-specified kernel size, and c is the
number of input channels. The group action weights ai
are equipped with nonzero scalar and bivector components,
yielding rotations. In Appendix E.4 we show that in this
case, Equation (15) resembles the rotational Clifford layer
introduced in Brandstetter et al. (2022a). We compare
our methods against residual networks (ResNet) (He et al.,
2016), and modern UNet architectures (Ronneberger et al.,
2015; Ho et al., 2020), which are considered to be the best-
performing models for the task at hand (Gupta & Brand-
stetter, 2022). We replace their linear layers with layers of
the form of Equation (15). Next, we directly replace nor-
malization and nonlinearities with our proposed versions.
Altogether, this leads to GCA-ResNet and GCA-UNet archi-
tectures. Further, we include the Clifford algebra versions of
both models as presented in Brandstetter et al. (2022a). All
models are optimized using similar numbers of parameters,
i.e., 3 and 58 million parameters for ResNet and UNet archi-
tectures, respectively. Hyperparameter choices and further
details are summarized in Appendix E.4. The results are
shown in Figure 6, reporting the mean-squared error (MSE)
loss at a target time step summed over fields.

In
iti

al

Pressure Eastward wind speed Northward wind speed

Ta
rg

et
Pr

ed
ic

tio
n

Figure 7. Example input, target, and predicted fields for the shallow
water equations. Predictions are obtained by the GCA-UNet model
when using 16384 training trajectories.

For ResNets (Figure 6 left), we observe a similar over-
all picture as reported in Brandstetter et al. (2022a). Our
GCA-ResNet and the conceptually similar rotational Clif-
ford ResNet perform best where the overall performance is
weak compared to UNet models. The reason is that ResNets
as backbone architectures struggle to resolve the local and
global processes of PDEs at scale.

For UNets (Figure 6 center), we observe substantial perfor-
mance gains of our GCA-UNets over baseline architectures,
which for larger numbers of training samples is more than
a factor of 5. We attribute those performance gains to the
strong inductive bias introduced via the geometric template
idea. More concretely, for larger backbone architectures
such as UNets, which have different resolution, normaliza-
tion, and residual schemes, it seems crucial that the map
from k-vectors to k-vectors through layers and residual
blocks is preserved. We thus show that GCA ideas scale
to large architectures. An exemplary qualitative result is
shown in Figure 7.

Navier-Stokes equations. Finally, we test the scalability
of our models on a Navier-Stokes large-scale PDE experi-

8

GCANs

ment with a scalar (smoke density) field and a velocity field.
The scalar smoke field is advected by the vector field, i.e.,
as the vector field changes, the scalar quantity is transported
with it. The equations and simulations are implemented us-
ing the ΦFlow (Holl et al., 2020a) package. The grid size
for the simulation is 128× 128, and the temporal resolution
is 1.5s. Similar to the shallow water equations experiment,
we embed the scalar and vector components as a single en-
tity in the algebra G3,0,0 that transforms under rotation and
scaling. We employ a convolutional layer similar to Equa-
tion (15). The results are shown in Figure 6, reporting the
mean-squared error (MSE) loss at a target timestep summed
over fields. We include the UNet baseline and the respective
GCA version. In contrast to the shallow water equations,
the coupling between the fields is less pronounced in this
experiment. Therefore, our geometric interpretation has a
weaker grounding. However, as in the previous experiments,
the geometric templates of GCA-UNets prove beneficial.

5. Conclusion
We proposed Geometric Clifford Algebra Networks
(GCANs) for representing and manipulating geometric trans-
formations. Based on modern plane-based geometric alge-
bra, GCANs introduce group action layers and the con-
cept of refineable geometric templates. We showed that
GCANs excel at modeling rigid body transformations, and
that GCANs scale well when applying them to large-scale
fluid dynamics simulations.

Limitations and future work. The main limitation of
GCANs is that, as observed in Hoffmann et al. (2020)
and Brandstetter et al. (2022a), the compute density of
(Clifford) algebra operations might lead to slower runtimes
and higher memory requirements for gradient computations.
Although higher compute density is, in principle, advanta-
geous for hardware accelerators like GPUs, obtaining such
benefits can require custom GPU kernels or better modern
compiler-based kernel fusion techniques (Tillet et al., 2019;
Ansel, 2022). But even without writing custom GPU ker-
nels, we have already managed to reduce training times for
convolutional G3,0,0 layers by an order of magnitude to a
factor of roughly 1.2 relative to comparable non-GCAN
layers using available PyTorch operations. Possible future
work comprises extending geometric templates to geometric
object templates, i.e., transforming whole objects, such as
molecules, according to group actions. Further, the covari-
ant transformation of objects in geometric algebra might
be exploited to build equivariant architectures (Ruhe et al.,
2023). Finally, we aim to leverage the fact that geometric al-
gebra gives us better primitives to deal with object geometry
(mesh) transformations and corresponding fluid dynamics
around those objects, as seen in, e.g., airfoil computational
fluid dynamics (Bonnet et al., 2022).

Acknowledgements
We would like to sincerely thank Leo Dorst for providing
feedback on the final version of the paper. His work on
geometric algebra has been instrumental in shaping our
understanding of geometric algebra.

We also thank Patrick Forré for helpful conversations on the
formalization of Clifford algebras, and Markus Holzleitner
for proofreading the manuscript.

References
Ansel, J. TorchDynamo, 1 2022. URL https://
github.com/pytorch/torchdynamo.

Artin, E. Geometric algebra. Courier Dover Publications,
2016.

Batatia, I., Kovács, D. P., Simm, G. N., Ortner, C., and
Csányi, G. Mace: Higher order equivariant message
passing neural networks for fast and accurate force fields.
arXiv preprint arXiv:2206.07697, 2022.

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-
Gonzalez, A., Zambaldi, V., Malinowski, M., Tacchetti,
A., Raposo, D., Santoro, A., Faulkner, R., et al. Rela-
tional inductive biases, deep learning, and graph networks.
arXiv preprint arXiv:1806.01261, 2018.

Batzner, S., Musaelian, A., Sun, L., Geiger, M., Mailoa,
J. P., Kornbluth, M., Molinari, N., Smidt, T. E., and
Kozinsky, B. E (3)-equivariant graph neural networks for
data-efficient and accurate interatomic potentials. Nature
communications, 13(1):1–11, 2022.

Bayro-Corrochano, E. and Buchholz, S. Geometric neu-
ral networks. In International Workshop on Algebraic
Frames for the Perception-Action Cycle, pp. 379–394.
Springer, 1997.

Bayro-Corrochano, E. J. Geometric neural computing. IEEE
Transactions on Neural Networks, 12(5):968–986, 2001.

Behl, A., Paschalidou, D., Donné, S., and Geiger, A. Point-
flownet: Learning representations for rigid motion estima-
tion from point clouds. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 7962–7971, 2019.

Berg, J. and Nyström, K. A unified deep artificial neural net-
work approach to partial differential equations in complex
geometries. Neurocomputing, 317:28–41, 2018.

Berg, R. v. d., Hasenclever, L., Tomczak, J. M., and Welling,
M. Sylvester normalizing flows for variational inference.
arXiv preprint arXiv:1803.05649, 2018.

9

https://github.com/pytorch/torchdynamo
https://github.com/pytorch/torchdynamo

GCANs

Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., and Tian,
Q. Pangu-weather: A 3d high-resolution model for fast
and accurate global weather forecast. arXiv preprint
arXiv:2211.02556, 2022.

Bivector.net. Bivector.net, 2023. URL https://
bivector.net/.

Boelrijk, J., Pirok, B., Ensing, B., and Forré, P. Bayesian
optimization of comprehensive two-dimensional liquid
chromatography separations. Journal of Chromatography
A, 1659:462628, 2021.

Bonnet, F., Mazari, J. A., Cinnella, P., and Gallinari,
P. AirfRANS: High fidelity computational fluid dy-
namics dataset for approximating reynolds-averaged
navier–stokes solutions. In Thirty-sixth Conference
on Neural Information Processing Systems Datasets
and Benchmarks Track, 2022. URL https://
openreview.net/forum?id=Zp8YmiQ_bDC.

Brandstetter, J., Berg, R. v. d., Welling, M., and Gupta, J. K.
Clifford neural layers for PDE modeling. arXiv preprint
arXiv:2209.04934, 2022a.

Brandstetter, J., Welling, M., and Worrall, D. E. Lie point
symmetry data augmentation for neural pde solvers. arXiv
preprint arXiv:2202.07643, 2022b.

Brandstetter, J., Worrall, D., and Welling, M. Message pass-
ing neural pde solvers. arXiv preprint arXiv:2202.03376,
2022c.

Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., and Van-
dergheynst, P. Geometric deep learning: going beyond
euclidean data. IEEE Signal Processing Magazine, 34(4):
18–42, 2017.

Bronstein, M. M., Bruna, J., Cohen, T., and Veličković,
P. Geometric deep learning: Grids, groups, graphs,
geodesics, and gauges. arXiv preprint arXiv:2104.13478,
2021.

Buchholz, S. and Sommer, G. On clifford neurons and
clifford multi-layer perceptrons. Neural Networks, 21(7):
925–935, 2008.

Byravan, A. and Fox, D. Se3-nets: Learning rigid body
motion using deep neural networks. In IEEE Interna-
tional Conference on Robotics and Automation (ICRA),
pp. 173–180. IEEE, 2017.

Cao, H., Lu, Y., Lu, C., Pang, B., Liu, G., and Yuille, A.
Asap-net: Attention and structure aware point cloud se-
quence segmentation. arXiv preprint arXiv:2008.05149,
2020.

Chakraborty, R., Bouza, J., Manton, J. H., and Vemuri, B. C.
Manifoldnet: A deep neural network for manifold-valued
data with applications. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 44(2):799–810, 2020.

Clifford. Preliminary sketch of biquaternions. Proceedings
of the London Mathematical Society, s1-4(1):381–395,
1871. doi: https://doi.org/10.1112/plms/s1-4.1.381.

Cohen, T. and Welling, M. Group equivariant convolutional
networks. In International conference on machine learn-
ing, pp. 2990–2999. PMLR, 2016.

Cranmer, M., Tamayo, D., Rein, H., Battaglia, P., Hadden,
S., Armitage, P. J., Ho, S., and Spergel, D. N. A bayesian
neural network predicts the dissolution of compact plan-
etary systems. Proceedings of the National Academy of
Sciences, 118(40):e2026053118, 2021.

De Keninck, S. SIGGRAPH2019 - geometric algebra, 2019.
URL https://youtu.be/tX4H_ctggYo.

De Keninck, S. GAME2020 - dual quaternions demystified,
2020. URL https://youtu.be/ichOiuBoBoQ.

De Keninck, S. and Roelfs, M. Normalization, square roots,
and the exponential and logarithmic maps in geometric
algebras of less than 6d. 2022.

Doran, C., Gull, S. R., Lasenby, A., Lasenby, J., and Fitzger-
ald, W. Geometric algebra for physicists. Cambridge
University Press, 2003.

Dorst, L. CGI2020 - pga: Plane-based geometric algebra,
2020. URL https://youtu.be/T7xVTBpHMjA.

Dorst, L. and Mann, S. Geometric algebra: a computational
framework for geometrical applications. IEEE Computer
Graphics and Applications, 22(3):24–31, 2002.

Dorst, L., Fontijne, D., and Mann, S. Geometric Algebra for
Computer Science (Revised Edition): An Object-Oriented
Approach to Geometry. Morgan Kaufmann, 2009.

Feng, Y., Feng, Y., You, H., Zhao, X., and Gao, Y. Meshnet:
Mesh neural network for 3d shape representation. In Pro-
ceedings of the AAAI conference on artificial intelligence,
volume 33, pp. 8279–8286, 2019.

Fey, M. and Lenssen, J. E. Fast graph representation learning
with pytorch geometric. arXiv preprint arXiv:1903.02428,
2019.

Finzi, M., Welling, M., and Wilson, A. G. A practical
method for constructing equivariant multilayer percep-
trons for arbitrary matrix groups. In International Con-
ference on Machine Learning, pp. 3318–3328. PMLR,
2021.

10

https://bivector.net/
https://bivector.net/
https://openreview.net/forum?id=Zp8YmiQ_bDC
https://openreview.net/forum?id=Zp8YmiQ_bDC
https://youtu.be/tX4H_ctggYo
https://youtu.be/ichOiuBoBoQ
https://youtu.be/T7xVTBpHMjA

GCANs

Gao, H., Sun, L., and Wang, J.-X. PhyGeoNet: Physics-
informed geometry-adaptive convolutional neural net-
works for solving parameterized steady-state pdes on
irregular domain. Journal of Computational Physics, 428:
110079, 2021.

Geiger, M. and Smidt, T. e3nn: Euclidean neural networks.
arXiv preprint arXiv:2207.09453, 2022.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In International conference on machine learning,
pp. 1263–1272. PMLR, 2017.

Glorot, X. and Bengio, Y. Understanding the difficulty
of training deep feedforward neural networks. In Pro-
ceedings of the thirteenth international conference on
artificial intelligence and statistics, pp. 249–256. JMLR
Workshop and Conference Proceedings, 2010.

Greydanus, S., Dzamba, M., and Yosinski, J. Hamiltonian
neural networks. Advances in neural information process-
ing systems, 32, 2019.

Gupta, J. K. and Brandstetter, J. Towards multi-
spatiotemporal-scale generalized PDE modeling. arXiv
preprint arXiv:2209.15616, 2022.

Hadfield, H., Wieser, E., Arsenovic, A., Kern, R., and The
Pygae Team. pygae/clifford, 2022. URL https://
doi.org/10.5281/zenodo.1453978.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep
into rectifiers: Surpassing human-level performance on
imagenet classification. In Proceedings of the IEEE inter-
national conference on computer vision, pp. 1026–1034,
2015.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Hendrycks, D. and Gimpel, K. Gaussian error linear units
(gelus). arXiv preprint arXiv:1606.08415, 2016.

Hestenes, D. Spacetime Algebra. Birkhäuser Cham, 1966.

Hestenes, D. New foundations for classical mechanics.
Springer, 1999.

Hestenes, D. and Sobczyk, G. Clifford algebra to geometric
calculus: a unified language for mathematics and physics,
volume 5. Springer Science & Business Media, 2012.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. Advances in Neural Information Process-
ing Systems, 33:6840–6851, 2020.

Hoffmann, J., Schmitt, S., Osindero, S., Simonyan, K., and
Elsen, E. Algebranets. arXiv preprint arXiv:2006.07360,
2020.

Holl, P., Koltun, V., and Thuerey, N. Learning to con-
trol PDEs with differentiable physics. arXiv preprint
arXiv:2001.07457, 2020a.

Holl, P., Koltun, V., Um, K., and Thuerey, N. phiflow: A
differentiable pde solving framework for deep learning
via physical simulations. In NeurIPS Workshop, volume 2,
2020b.

Hoogeboom, E., Garcia Satorras, V., Tomczak, J., and
Welling, M. The convolution exponential and general-
ized sylvester flows. Advances in Neural Information
Processing Systems, 33:18249–18260, 2020.

Hoogeboom, E., Satorras, V. G., Vignac, C., and Welling,
M. Equivariant diffusion for molecule generation in 3d.
In International Conference on Machine Learning, pp.
8867–8887. PMLR, 2022.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M.,
Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žı́dek,
A., Potapenko, A., et al. Highly accurate protein structure
prediction with alphafold. Nature, 596(7873):583–589,
2021.

Kahlow, R. JAX geometric algebra, 2023a. URL https:
//github.com/RobinKa/jaxga.

Kahlow, R. TensorFlow geometric algebra, 2023b.
URL https://doi.org/10.5281/zenodo.
3902404.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Klöwer, M., Kimpson, T., White, A., and Giordano, M. mi-
lankl/speedyweather.jl: v0.2.1, July 2022. URL https:
//doi.org/10.5281/zenodo.6788067.

Kochkov, D., Smith, J. A., Alieva, A., Wang, Q., Brenner,
M. P., and Hoyer, S. Machine learning–accelerated com-
putational fluid dynamics. Proceedings of the National
Academy of Sciences, 118(21):e2101784118, 2021.

Kofinas, M., Nagaraja, N., and Gavves, E. Roto-translated
local coordinate frames for interacting dynamical systems.
Advances in Neural Information Processing Systems, 34:
6417–6429, 2021.

Koval, I., Schiratti, J.-B., Routier, A., Bacci, M., Colliot,
O., Allassonnière, S., Durrleman, S., and Initiative, A.
D. N. Statistical learning of spatiotemporal patterns from
longitudinal manifold-valued networks. In Medical Image
Computing and Computer Assisted Intervention- MICCAI

11

https://doi.org/10.5281/zenodo.1453978
https://doi.org/10.5281/zenodo.1453978
https://github.com/RobinKa/jaxga
https://github.com/RobinKa/jaxga
https://doi.org/10.5281/zenodo.3902404
https://doi.org/10.5281/zenodo.3902404
https://doi.org/10.5281/zenodo.6788067
https://doi.org/10.5281/zenodo.6788067

GCANs

2017: 20th International Conference, Quebec City, QC,
Canada, September 11-13, 2017, Proceedings, Part I 20,
pp. 451–459. Springer, 2017.

Kucharski, F., Molteni, F., King, M. P., Farneti, R., Kang,
I.-S., and Feudale, L. On the need of intermediate
complexity general circulation models: A “SPEEDY”
example. Bulletin of the American Meteorological
Society, 94(1):25–30, January 2013. doi: 10.1175/
bams-d-11-00238.1. URL https://doi.org/10.
1175/bams-d-11-00238.1.

Kuroe, Y. Models of Clifford recurrent neural networks
and their dynamics. In International Joint Conference on
Neural Networks, pp. 1035–1041. IEEE, 2011.

Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger,
P., Fortunato, M., Pritzel, A., Ravuri, S., Ewalds, T., Alet,
F., Eaton-Rosen, Z., et al. GraphCast: Learning skillful
medium-range global weather forecasting. arXiv preprint
arXiv:2212.12794, 2022.

Li, S.-H., Dong, C.-X., Zhang, L., and Wang, L. Neural
canonical transformation with symplectic flows. Physical
Review X, 10(2):021020, 2020a.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Fourier
neural operator for parametric partial differential equa-
tions. arXiv preprint arXiv:2010.08895, 2020b.

Li, Z., Huang, D. Z., Liu, B., and Anandkumar, A. Fourier
neural operator with learned deformations for pdes on
general geometries. arXiv preprint arXiv:2207.05209,
2022.

Lippert, F., Kranstauber, B., Forré, P. D., and van Loon, E. E.
Learning to predict spatiotemporal movement dynamics
from weather radar networks. Methods in Ecology and
Evolution, 2022.

Liu, X., Qi, C. R., and Guibas, L. J. Flownet3d: Learning
scene flow in 3d point clouds. In IEEE/CVF conference
on computer vision and pattern recognition, pp. 529–537,
2019a.

Liu, X., Yan, M., and Bohg, J. Meteornet: Deep learning on
dynamic 3d point cloud sequences. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pp. 9246–9255, 2019b.

Lopes, W. ICACGA2022 - clifford convolutional neural net-
works for lymphoblast image classification, 2022. URL
https://youtu.be/DR45pK-t8dk.

Loshchilov, I. and Hutter, F. Sgdr: Stochastic gra-
dient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016.

Lu, L., Jin, P., Pang, G., Zhang, Z., and Karniadakis, G. E.
Learning nonlinear operators via deeponet based on the
universal approximation theorem of operators. Nature
Machine Intelligence, 3(3):218–229, 2021.

Macdonald, A. Linear and Geometric Algebra. CreateSpace
Independent Publishing Platform (Lexington), 2012.

Mann, S. and Dorst, L. Geometric algebra: A computational
framework for geometrical applications. 2. IEEE Com-
puter Graphics and Applications, 22(4):58–67, 2002.

Mardt, A., Pasquali, L., Wu, H., and Noé, F. Vampnets for
deep learning of molecular kinetics. Nature communica-
tions, 9(1):1–11, 2018.

Mattheakis, M., Protopapas, P., Sondak, D., Di Giovanni,
M., and Kaxiras, E. Physical symmetries embedded in
neural networks. arXiv preprint arXiv:1904.08991, 2019.

Mayr, A., Lehner, S., Mayrhofer, A., Kloss, C., Hochreiter,
S., and Brandstetter, J. Boundary graph neural networks
for 3d simulations. arXiv preprint arXiv:2106.11299,
2021.

Mhammedi, Z., Hellicar, A., Rahman, A., and Bailey, J.
Efficient orthogonal parametrisation of recurrent neu-
ral networks using householder reflections. In Interna-
tional Conference on Machine Learning, pp. 2401–2409.
PMLR, 2017.

Milano, F., Loquercio, A., Rosinol, A., Scaramuzza, D.,
and Carlone, L. Primal-dual mesh convolutional neural
networks. Advances in Neural Information Processing
Systems, 33:952–963, 2020.

Miller, B. K., Geiger, M., Smidt, T. E., and Noé,
F. Relevance of rotationally equivariant convolutions
for predicting molecular properties. arXiv preprint
arXiv:2008.08461, 2020.

Miller, B. K., Cole, A., Forré, P., Louppe, G., and Weniger,
C. Truncated marginal neural ratio estimation. Advances
in Neural Information Processing Systems, 34:129–143,
2021.

Molteni, F. Atmospheric simulations using a gcm with sim-
plified physical parametrizations. i: Model climatology
and variability in multi-decadal experiments. Climate
Dynamics, 20(2):175–191, 2003.

Nguyen, T., Brandstetter, J., Kapoor, A., Gupta, J. K., and
Grover, A. Climax: A foundation model for weather and
climate. arXiv preprint arXiv:2301.10343, 2023.

Nozick, V. GAME2020 - geometric neurons, 2020. URL
https://youtu.be/KC3c_Mdj1dk.

12

https://doi.org/10.1175/bams-d-11-00238.1
https://doi.org/10.1175/bams-d-11-00238.1
https://youtu.be/DR45pK-t8dk
https://youtu.be/KC3c_Mdj1dk

GCANs

Pandeva, T. and Forré, P. Multi-view independent compo-
nent analysis with shared and individual sources. arXiv
preprint arXiv:2210.02083, 2022.

Parcollet, T., Morchid, M., and Linarès, G. A survey of
quaternion neural networks. Artificial Intelligence Review,
53(4):2957–2982, 2020.

Pathak, J., Subramanian, S., Harrington, P., Raja, S.,
Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D.,
Li, Z., Azizzadenesheli, K., et al. Fourcastnet: A
global data-driven high-resolution weather model us-
ing adaptive fourier neural operators. arXiv preprint
arXiv:2202.11214, 2022.

Pearson, J. Clifford networks. In Complex-Valued Neural
Networks: Theories and Applications, pp. 81–106. World
Scientific, 2003.

Pearson, J. and Bisset, D. Neural networks in the clifford
domain. In IEEE International Conference on Neural
Networks (ICNN), volume 3, pp. 1465–1469. IEEE, 1994.

Qi, C. R., Su, H., Mo, K., and Guibas, L. J. Pointnet: Deep
learning on point sets for 3d classification and segmenta-
tion. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 652–660, 2017.

Ramachandran, P., Zoph, B., and Le, Q. V. Searching for
activation functions. arXiv preprint arXiv:1710.05941,
2017.

Rasp, S. and Thuerey, N. Data-driven medium-range
weather prediction with a resnet pretrained on climate
simulations: A new model for weatherbench. Jour-
nal of Advances in Modeling Earth Systems, 13(2):
e2020MS002405, 2021.

Roelfs, M. and De Keninck, S. Graded symmetry groups:
Plane and simple. arXiv preprint arXiv:2107.03771,
2021.

Ronneberger, O., Fischer, P., and Brox, T. U-net: Convolu-
tional networks for biomedical image segmentation. In In-
ternational Conference on Medical image computing and
computer-assisted intervention, pp. 234–241. Springer,
2015.

Ruhe, D. and Forré, P. Self-supervised inference in state-
space models. arXiv preprint arXiv:2107.13349, 2021.

Ruhe, D., Kuiack, M., Rowlinson, A., Wijers, R., and Forré,
P. Detecting dispersed radio transients in real time using
convolutional neural networks. Astronomy and Comput-
ing, 38:100512, 2022a.

Ruhe, D., Wong, K., Cranmer, M., and Forré, P. Nor-
malizing flows for hierarchical bayesian analysis: A

gravitational wave population study. arXiv preprint
arXiv:2211.09008, 2022b.

Ruhe, D., Brandstetter, J., and Forré, P. Clifford group equiv-
ariant neural networks. arXiv preprint arXiv:2305.11141,
2023.

Sabour, S., Frosst, N., and Hinton, G. E. Dynamic routing
between capsules. In Advances in Neural Information
Processing Systems, volume 30, 2017.

Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton,
E., Ghasemipour, S. K. S., Ayan, B. K., Mahdavi, S. S.,
Lopes, R. G., et al. Photorealistic text-to-image diffusion
models with deep language understanding. arXiv preprint
arXiv:2205.11487, 2022.

Sanchez-Gonzalez, A., Godwin, J., Pfaff, T., Ying, R.,
Leskovec, J., and Battaglia, P. Learning to simulate com-
plex physics with graph networks. In International Con-
ference on Machine Learning, pp. 8459–8468. PMLR,
2020.

Satorras, V. G., Hoogeboom, E., and Welling, M. E(n)
equivariant graph neural networks. In International Con-
ference on Machine Learning (ICML), pp. 9323–9332.
PMLR, 2021.

Smidt, T. E. Euclidean symmetry and equivariance in ma-
chine learning. Trends in Chemistry, 3(2):82–85, 2021.

Smidt, T. E., Geiger, M., and Miller, B. K. Finding symme-
try breaking order parameters with euclidean neural net-
works. Physical Review Research, 3(1):L012002, 2021.

Spellings, M. Geometric algebra attention networks for
small point clouds. arXiv preprint arXiv:2110.02393,
2021.

sugylacmoe. sudgylacmoe, 2023. URL https://www.
youtube.com/@sudgylacmoe.

Tamayo, D., Silburt, A., Valencia, D., Menou, K., Ali-Dib,
M., Petrovich, C., Huang, C. X., Rein, H., Van Laer-
hoven, C., Paradise, A., et al. A machine learns to predict
the stability of tightly packed planetary systems. The
Astrophysical Journal Letters, 832(2):L22, 2016.

Temam, R. Navier-Stokes equations: theory and numeri-
cal analysis, volume 343. American Mathematical Soc.,
2001.

Thomas, N., Smidt, T., Kearnes, S., Yang, L., Li, L.,
Kohlhoff, K., and Riley, P. Tensor field networks:
Rotation-and translation-equivariant neural networks for
3d point clouds. arXiv preprint arXiv:1802.08219, 2018.

13

https://www.youtube.com/@sudgylacmoe
https://www.youtube.com/@sudgylacmoe

GCANs

Tillet, P., Kung, H.-T., and Cox, D. Triton: an intermediate
language and compiler for tiled neural network compu-
tations. In ACM SIGPLAN International Workshop on
Machine Learning and Programming Languages, pp. 10–
19, 2019.

Trabelsi, C., Bilaniuk, O., Serdyuk, D., Subramanian, S.,
Santos, J. F. S., Mehri, S., Rostamzadeh, N., Bengio, Y.,
and Pal, C. J. Deep complex networks. In International
Conference on Learning Representations (ICLR), 2017.

Trindade, M. A., Rocha, V. N., and Floquet, S. Clifford
algebras, quantum neural networks and generalized quan-
tum Fourier transform. arXiv preprint arXiv:2206.01808,
2022.

Unke, O., Bogojeski, M., Gastegger, M., Geiger, M., Smidt,
T., and Müller, K.-R. Se (3)-equivariant prediction of
molecular wavefunctions and electronic densities. Ad-
vances in Neural Information Processing Systems, 34:
14434–14447, 2021.

Vallejo, J. R. and Bayro-Corrochano, E. Clifford hopfield
neural networks. In IEEE International Joint Conference
on Neural Networks (IEEE world congress on computa-
tional intelligence), pp. 3609–3612. IEEE, 2008.

Vreugdenhil, C. B. Numerical methods for shallow-water
flow, volume 13. Springer Science & Business Media,
1994.

Wang, J., Chen, Y., Chakraborty, R., and Yu, S. X. Or-
thogonal convolutional neural networks. In IEEE/CVF
conference on Computer Vision and Pattern Recognition,
pp. 11505–11515, 2020.

Wang, Y., Sun, Y., Liu, Z., Sarma, S. E., Bronstein, M. M.,
and Solomon, J. M. Dynamic graph CNN for learning on
point clouds. ACM Transactions On Graphics (tog), 38
(5):1–12, 2019.

Wei, Y., Liu, H., Xie, T., Ke, Q., and Guo, Y. Spatial-
temporal transformer for 3d point cloud sequences. In
Proceedings of the IEEE/CVF Winter Conference on Ap-
plications of Computer Vision, pp. 1171–1180, 2022.

Weiler, M., Geiger, M., Welling, M., Boomsma, W., and
Cohen, T. S. 3d steerable cnns: Learning rotationally
equivariant features in volumetric data. Advances in Neu-
ral Information Processing Systems, 31, 2018.

Weiler, M., Forré, P., Verlinde, E., and Welling, M. Coordi-
nate independent convolutional networks–isometry and
gauge equivariant convolutions on riemannian manifolds.
arXiv preprint arXiv:2106.06020, 2021.

Wu, Y. and He, K. Group normalization. In Proceedings of
the European conference on computer vision (ECCV), pp.
3–19, 2018.

Xu, B., Wang, N., Chen, T., and Li, M. Empirical evaluation
of rectified activations in convolutional network. arXiv
preprint arXiv:1505.00853, 2015.

Zang, D., Chen, X., Lei, J., Wang, Z., Zhang, J., Cheng, J.,
and Tang, K. A multi-channel geometric algebra resid-
ual network for traffic data prediction. IET Intelligent
Transport Systems, 2022.

Zhong, Y. D., Dey, B., and Chakraborty, A. Symplectic
ode-net: Learning hamiltonian dynamics with control.
arXiv preprint arXiv:1909.12077, 2019.

14

GCANs

A. Glossary
In Table 2, we provide an overview of notations that are commonly used throughout the paper.

Notation Meaning

G Group
Gp,q,r A geometric algebra with p positive dimensions, q negative dimensions and r zero dimensions. q

and r are left out of the notation when they equal 0.
Pin(p, q, r) Pin group with p positive dimensions, q negative dimensions and r zero dimensions.
u, v, w Abstract Pin(p, q, r) group elements.
u1u2 . . . uk A k-reflection (composition of k reflections) Abstract element of Pin(p, q, r).
uvu−1 Group conjugation of the form G×G→ G. The group acts on itself.
x A multivector of Gp,q,r.
[x]k Selects the k-vector part of x. For example, [x]0 selects the scalar part, [x]1 the vector part and [x]2

the bivector part.
xy Geometric product between x and y.
λx Scalar product of scalar λ with multivector x.
u,v Pin(p, q, r) elements expressed in G3,0,1.
u1,u2, . . .uk A k-reflection (composition of k reflections using geometric products) expressed in G3,0,1.
(−1)kl · uvu−1 Pin(p, q, r) group action expressed in elements of G3,0,1.
u−1 Multiplicative inverse (using the geometric product) of u. That is, uu−1 = 1.
ai Pin(p, q, r) group element used as group action in our geometric algebra neural layers.
ei A basis vector of Gp,q,r.
eiej A basis bivector of Gp,q,r.
eiejek A basis trivector of Gp,q,r.
e0 Fourth (special) basis vector of a geometric algebra modeling three-dimensional space. e20 =

{−1, 0, 1} leads to hyperbolic, projective and Euclidean geometry, respectively.
I The pseudoscalar of a geometric algebra.
x, y, z Axes of a (Euclidean) coordinate system.
Spin(n) Special Pin(n) group, excluding improper isometries.
O(n), n-dimensional orthogonal group.
SO(n) n-dimensional special orthogonal group.
E(n) n-dimensional Euclidean group.
SE(n) n-dimensional special Euclidean group.
X Vector space.
α(·, ·) Group action of our group action linear layers.
gi Group element.
xi Vector space element.
wi Scalar neural network weight.

Table 2. Overview of notations commonly used in the paper.

15

GCANs

B. Geometric Algebra
Technically, there are no differences between geometric and (real) Clifford algebra 5. However, it is common practice to
use Clifford algebra when interested in mathematical concerns (e.g., beyond using real numbers), and geometric algebra
when interested in geometry. A Clifford algebra is constructed by equipping a vector space with a quadratic form (see
Appendix F). The number of positive (p), negative (q), or zero (r) eigenvalues (usually representing dimensions) of the
metric of the quadratic form determines the signature of the algebra. Specifically, for an n-dimensional real vector space Rn

(n = p+ q + r) we can choose a basis with

e2i = +1 1 ≤ i ≤ p,
e2i = −1 p < i ≤ p+ q,

e2i = 0 p+ q < i ≤ n,
eiej = −ejei i 6= j .

(16)

These identies originate from the fact that the geometric product of two vectors yields a quadratic form and an anti-symmetric
wedge product (Appendix F). For two parallel vectors, the wedge product is zero, meaning we only get the scalar quadratic
form. For two orthogonal vectors, the scalar part is zero and we only obtain the anti-symmetric part. The metric is
usually diagonal with elements in {+1,−1, 0}, and we can similarly use unit basis vectors to produce all the identities of
Equation (16).

After picking a basis for the underlying vector space Rn, multiplying its components yields higher-order basis elements,
called basis blades. Through this construction, the algebraic basis of the algebraic vector space has 2n elements. For
example, when n = 3, the space is spanned by {1, e1, e2, e3, e12, e13, e23, e123}, where eij is shorthand for eiej . Note that
this set is closed under multiplication with elements from itself using the relations Equation (16). The grade6 of a blade is
the dimensionality of the subspace it represents. For example, the grades of {1, e1, e12, e123} are 0 (scalar), 1 (vector), 2
(bivector) and 3 (trivector), respectively. The highest grade basis blade I := e1 . . . en is also known as the pseudoscalar.
A vector is written as x1e1 + x2e2 + x3e3, a bivector as x12e12 + x13e13 + x23e23, and so on. Similarly to how vectors
can be interpreted as oriented line segments, bivectors can be interpreted as oriented plane segments and trivectors as
oriented cube segments. We can construct k-vectors (k ≤ n) by homogeneously combining basis blades of grade k. A
multivector x ∈ Gp,q,r is a sum of k-vectors, such that x = [x]0 + [x]1 + · · ·+ [x]n, where [x]k denotes the k-vector part
of x. Combining k-vectors leads to the most general element of the algebra: a multivector. In a three-dimensional algebra,
this takes the form

x = x01︸︷︷︸
Scalar

+x1e1 + x2e2 + x3e3︸ ︷︷ ︸
Vector

+x12e12 + x13e13 + x23e23︸ ︷︷ ︸
Bivector

+x123e123︸ ︷︷ ︸
Trivector

. (17)

We usually write Gp,q,r (or Clp,q,r) to indicate what algebra we are using, where we suppress from G(Rp,q,r) the underlying
generating vector space argument. Sometimes, the q and r components are left out when equal to zero. The specific choice
of algebra (determined by p, q and r) allows for efficient modeling many types of geometry.

Clifford multiplication: the geometric product. Multiplying two elements of the algebra yields the geometric product.
It is associative,

(xy)z = x(yz) , (18)

left and right distributive,

x(y + z) = xy + xz (19)
(x + y)z = xz + yz , (20)

closed under multiplication,

xy ∈ Gp,q,r , (21)

5In fact, Clifford himself chose “geometric algebra”.
6Technically, a Clifford algebra is not a graded algebra.

16

GCANs

Figure 8. This figure shows the symmetric duality structure of geometric algebras. Up to seven dimensions, we show the number of
k-blades up to the pseudoscalar (n-vector) for n = 0 . . . 7. For each grade, we see that we have an equal number

(
n
k

)
=

(
n

n−k

)
of dual

blades.

communicative with scalars,

λx = xλ . (22)

Using the associativity and distributivity laws of the algebra, we get for two multivectors with 1-vector components only,
i.e., commonly known “vectors”, u = u1e1 + u2e2 and v = v1e1 + v2e2 ,

uv = (u1e1 + u2e2)(v1e1 + v2e2) (23)
= 〈u,v〉+ u1v2e12 + u2v1e21 (24)
= 〈u,v〉+ (u1v2 − u2v1)e12 (25)
= 〈u,v〉+ u ∧ v , (26)

where 〈·, ·〉 and · ∧ · are the quadratic form and wedge product by construction (Appendix F).

Let gij := 〈ei, ej〉. In general, we can compute the geometric product using its associativity and distributivity laws for two
multivectors like

xy = (x0y0 + g11x1y1 + g22x2y2 − g11g22x12y12) 1

+ (x0y1 + x1y0 − g22x2y12 + g22x12y2) e1

+ (x0y2 + g11x1y12 + x2y0 − g11x12y1) e2

+ (x0y12 + x1y2 − x2y1 + x12y0) e12 ,

(27)

where now x = x01 + x1e1 + x2e2 + x12e12 and y = y01 + y1e1 + y2e2 + y12e12. This is the primary operation of
Brandstetter et al. (2022a).

Duality. We can divide a geometric algebra into the vector subspaces that are spanned by each k-vector. As such, we get

Gn = G0
n ⊕G1

n ⊕ · · · ⊕Gn
n . (28)

The dimensionality (number of basis blades) of Gk
n is given by

(
n
k

)
. Note that

(
n
k

)
=
(
n−k
k

)
. This symmetry shows the

duality of the algebra (depicted in Figure 8). Multiplying a multivector x with the pseudoscalar I yields its dual xI . That is,
scalars map to pseudoscalars, vectors to (n− 1)-vectors, and so forth.

Grade reversion and normalization. Let u ∈ Gp,q,r be a k-reflection, i.e., u := u1 . . .uk where ui are reflections
(implemented as 1-vectors). We define the grade reversion operator as

u† := uk . . .u1 , (29)

which is an involution Gp,q,r → Gp,q,r. In practice, this can be efficiently computed by noting that

[u†]k = (−1)k(k−1)/2[u]k , (30)

17

GCANs

where [u]k selects the k-vector part of u. For example, [u]2 selects the bivector components of u. Effectively, this simply
flips the sign of the components that have k = 2 mod 4 or k = 3 mod 4. In geometric algebras of dimension n ≤ 3, u†u
is a scalar quantity. We can therefore define a norm

‖u‖ :=
√
|u†u| . (31)

For normalized u, we have

u†u = u−1u = 1 . (32)

For example, using G2,0,0 we have for u = 1√
2

+ 1√
2
e12, ,u† = 1√

2
− 1√

2
e12, g11 = 1, and g22 = 1 we get

uu† =

(
1√
2

+
1√
2
e12

)(
1√
2
− 1√

2
e12

)
(33)

=
1

2
− 1

2
e12 +

1

2
e12 −

1

2
e12e12 (34)

=
1

2
+

1

2
e21e

2
2 (35)

= 1 . (36)

Reflections. Using vector algebra, a reflection of v ∈ Rn in the hyperplane with normal u is given by

v 7→ v − 2
〈u, v〉
〈u, u〉

u , (37)

which, intuitively, subtracts from v the projection of v onto u twice. Using the geometric product and embedding the vectors
as 1-vectors, we can rewrite this as

v − 2
〈u,v〉
〈u,u〉

u = v − (vu + uv)u−1 (38)

= −uvu−1 , (39)

where we used u−1 := u
〈u,u〉 since

uu−1 =
u2

〈u,u〉
= 1 , (40)

and we used the fundamental Clifford identity 〈u,v〉 = 1
2 (uv + vu) (for two vectors, Appendix F).

The Cartan-Dieudonné theorem tells us that all higher-order orthogonal transformations of an n-dimensional space can be
constructed from at most n reflections. As such, we can apply

v 7→ (−1)ku1 . . .uk v (u1 . . .uk)−1 = u1 . . .uk vu−1k . . .u−11 (41)

to compute a k-reflection. We used the fact that for normalized vectors ui, (u1 . . .uk)−1 = (u1 . . .uk)†, which can simply
be computed using Equation (30).

Outermorphism. A linear map F : Gn → Gn is called an outermorphism if

1. F (1) = 1

2. F (Gm
n) ⊆ Gm

n

3. F (xy) = F (x)F (y).

Property 2 means that such a map is grade-preserving. Further,

18

GCANs

Theorem B.1. For every linear map f : Rn → Rn there exists a unique outermorphism F : Gn → Gn such that for
x ∈ Rn, F (x) = f(x).

It can be shown (e.g., Macdonald (2012); Hestenes & Sobczyk (2012)) that reflections implemented using geometric
products directly extend to outermorphisms. As such, by induction, we get that their compositions are outermorphisms,
hence Theorem 2.1 applies and we get grade-preserving isometries operating independently on the geometric algebra
subspaces.

Even subalgebras. We can construct even subalgebras by considering only the basis blades that have k = 0 mod 2.
In certain cases, we can use subalgebras to model higher-dimensional transformations. For example, G0,1 is isomorphic
to the complex numbers C, but so are the even grades of G2. We let the scalar part of G2 identify with the real part
of a complex number, and the bivector (pseudoscalar) part with the imaginary part. The bivector also squares to −1:
e12e12 = −e21e22 = −1. Similarly, G0,2 is isomorphic to the quaternions H, which are often used to model three-
dimensional rotations, but so are the even grade elements of G3, i.e., the scalar and the three bivectors. This can easily be
seen, since bivectors square to −1 in G3, and so do vectors in G0,2. We usually say that bivectors parameterize rotations.

Advantages of geometric algebra over vector algebra. We discuss some advantages of geometric algebra over classical
(vector) linear algebra. First and foremost, geometric algebra is an extension (completion) of vector algebra. For example,
cross-products, norms, determinants, matrix multiplications, geometric primitives, projections, areas, and derivatives can all
be computed in geometric algebra in a (sometimes more) interpretable way. Second, in vector algebra, we need several
different approaches to represent basic geometric objects. When done naively, this can lead to ambiguities. For example,
one uses vectors for both directions and points. In geometric algebra, one can naturally represent these objects as invariant
subspaces. Third, in vector algebra, we also need to implement transformations differently depending on the object. In
contrast, in geometric algebra, we parameterize transformations of space, and the objects transform covariantly, regardless
of what they are. Fourth, matrices are dense and hard to interpret. That is, it is not straightforward to quickly see whether a
certain matrix is, e.g., a rotation or reflection. In geometric algebra, by just observing what components are parameterized,
we can directly see what transformation a certain multivector parameterizes. Finally, geometric algebra generalizes across
dimensions. That is, a computational geometry computer script that works for, e.g., two dimensions also works for three
and higher dimensions. In other words, we do not need to call different functions depending on the dimensionality of the
problem. This is not usually the case for classical approaches.

C. References
In this section, we first discuss related scientific work and then provide further references to other matters involving
(incorporating machine learning in) geometric algebra.

C.1. Related Work

We discuss work related to incorporating geometric priors in neural networks for dynamical systems, using orthogonal
transformations or isometries in neural networks, Clifford or geometric algebras in deep learning.

Geometric priors in dynamical systems. The use of machine learning, especially deep learning, has proven to be highly
effective in tackling complex scientific problems (Li et al., 2020b; Lam et al., 2022; Jumper et al., 2021; Sanchez-Gonzalez
et al., 2020; Mayr et al., 2021; Thomas et al., 2018; Miller et al., 2021; Lippert et al., 2022; Boelrijk et al., 2021; Pandeva &
Forré, 2022; Hoogeboom et al., 2022; Brandstetter et al., 2022c;b; Ruhe et al., 2022a;b; Smidt, 2021; Smidt et al., 2021;
Batzner et al., 2022). Many of these settings involve the dynamical evolution of a system. These systems play out in
spaces equipped with geometries, making geometry an essential aspect of modeling. Geometric deep learning focusing on
equivariance (Bronstein et al., 2017; 2021; Cohen & Welling, 2016; Weiler et al., 2018; Finzi et al., 2021; Geiger & Smidt,
2022) or learning on manifolds (Feng et al., 2019; Chakraborty et al., 2020; Milano et al., 2020; Koval et al., 2017) forms
a rich subfield enabling in which models can be parameterized such that they are either invariant of equivariant to group
actions applied to the input features. Methods arising from this philosophy have successfully been applied to scientific
settings (Batatia et al., 2022; Miller et al., 2020; Unke et al., 2021; Satorras et al., 2021). For example, the celebrated
AlphaFold protein folding architecture (Jumper et al., 2021) uses an E(3)-equivariant attention mechanism. There has been
less focus on incorporating geometric priors in a similar sense to the current work: biasing a model towards (Euclidean)
rigid motions, often found in dynamical systems. Examples of inductive biases in dynamical systems are given by Ruhe &
Forré (2021), who bias a particle’s trajectory to transformations given by underlying prior physics knowledge of the system,

19

GCANs

and Kofinas et al. (2021), who provide local coordinate frames per particle in Euclidean space to induce roto-translation
invariance to the geometric graph of the dynamical system.

Regarding geometric priors in dynamical systems, we discuss works related to point clouds and neural partial differential
equation surrogates. Current leading work is provided by Liu et al. (2019b), who build on Qi et al. (2017). The work
constructs spatiotemporal neighborhoods for each point in a point cloud. Local features are thereby grouped and aggregated
to capture the dynamics of the whole sequence. Cao et al. (2020) similarly propose a spatiotemporal grouping called
Spatio-Temporal Correlation. Further, Byravan & Fox (2017); Behl et al. (2019) are seminal works for modeling point cloud
sequences. There are several critical differences between the current work an the above-mentioned. First, our approach is
general in the sense that we can apply actions from several groups (e.g., O(n), SO(n) for all n, E(3), SE(3)), depending on
the application. Second, we can naturally operate on objects of different vector spaces: (standard) vectors, points, lines,
planes, and so on. And, most notably, we can operate on grouped versions of these, transforming them in a coupled manner.
Third, we provide network layers that preserves the vector space of these objects. Fourth, geometric algebra provides a
flexible framework that can be extended to different kinds of geometry, such as conformal geometry. Finally, some of these
do not explicitly provide a geometric prior, or their application setting is quite different (e.g., estimating Euclidean motion
from images). Works like Liu et al. (2019a) and its extension (that includes a geometric prior in the form of a “geometric loss
function”) operate on voxalized grids, whereas we operate in this work directly on the objects. Wei et al. (2022) introduce a
spatiotemporal transformer that can enhance the resolution of the sequences.

Relatively less work has been published on incorporating geometry in neural PDE surrogates. Berg & Nyström (2018)
propose to include partial derivatives with respect to space variables in the backpropagation algorithm. Gao et al. (2021)
propose PhyGeoNet, a convolutional network architecture supported by coordinate transformations between a regular
domain and the irregular physical domain. Li et al. (2022) similarly uses a coordinate transformation from irregular domains
to a regular latent domain, which is now fully learned. All of the above methods differ from the current approach by not
incorporating geometric templates, the main contribution of the current work. Brandstetter et al. (2022a) propose a weaker
version of geometric templates, which was discussed in detail throughout the current work.

Orthogonality in neural networks. Next, we discuss more generally where orthogonal transformations or isometries have
been used in deep learning. For time series, Mhammedi et al. (2017); Wang et al. (2020) propose orthogonal recurrent neural
networks through Householder reflections and Cayley transforms, respectively. The main contribution of orthogonality is
a solution to exploding or vanishing gradients, and not necessarily incorporating geometry. Wang et al. (2020) propose
orthogonal filters for convolutional neural networks, also to enable training stability.

Further, orthogonality enables easy invertibility and cheap Jacobian determinants for normalizing flows (Berg et al., 2018;
Hoogeboom et al., 2020).

Clifford and geometric algebras in neural networks. Incorporating Clifford algebras in neural networks is a rich subfield
that started already with Pearson & Bisset (1994); Pearson (2003). Most of such approaches incorporate “Clifford neurons”
(Vallejo & Bayro-Corrochano, 2008; Buchholz & Sommer, 2008) as an extension of real-valued neural networks. For
an overview of many of these works, consider Brandstetter et al. (2022a). More recent applications of Clifford algebras
in neural networks are Kuroe (2011); Zang et al. (2022); Trindade et al. (2022). Most works that incorporate geometric
algebra in neural networks are actually (in this sense) Clifford neural networks (Bayro-Corrochano & Buchholz, 1997;
Bayro-Corrochano, 2001). In the current work, we are more rigorous in building geometry into the models. In particular,
Bayro-Corrochano (2001) (to our knowledge) were the first to propose taking linear combinations of geometric products
with learnable scalar weights. This contrasts similarly to previously mentioned works in the sense that the multivector grades
completely get mixed. Finally, Spellings (2021) also use geometric algebra in a more principled way but use it to construct
equivariant neural networks that can operate on geometric primitives other than scalars.

C.2. Resources

Excellent introductory books to geometric algebra for computer science or physics include Hestenes (1999); Doran et al.
(2003); Dorst et al. (2009); Macdonald (2012).

De Keninck (2019; 2020); Dorst (2020) provide outstanding introductory lectures to plane-based geometry and (projective
and conformal) geometric algebra. Further, Nozick (2020) give a talk about geometric neurons, and Lopes (2022) discuss
Clifford CNNs for lymphoblast image classification.

To get started with Clifford or geometric algebra in Python, Hadfield et al. (2022) is the go-to package. Further, Kahlow

20

GCANs

(2023b) provides an implementation of many of these concepts in TensorFlow. Kahlow (2023a) is its followup, where
the same procedures are implemented in JAX.

Other great references include Bivector.net (2023) and sugylacmoe (2023).

D. Implementation Details
In this section we discuss how we practically implemented our models and some practicalities like weight initialization. To
be complete, we repeat the definition of the group action linear layer using geometric algebra:

Tg,w(x) =

c∑
i=1

wi · aixia
−1
i , (42)

with now xi ∈ X := Gp,q,r, and ai ∈ G := Pin(p, q, r).

D.1. Initialization

As shown in Equation (10), group action layers generalize scalar neural layers. Therefore, we can get similar variance-
preserving properties by using initialization schemes for w = (w1, . . . , wc) from He et al. (2015); Glorot & Bengio (2010),
especially when considering that the group actions considered in this work are isometries. Indeed, upon initialization, ai are
normalized, such that they preserve distances. However, by freely optimizing them, we can get transformations that do scale
the input by a small amount (to be precise, the squared norm of ai). In a sense, we thus get an overparameterization of the
scaling since wi also accounts for that. However, we empirically observe that having free scalars explicitly parameterizing
the linear combination of Equation (11) can yield stabler learning. Further experimentation is needed to determine exactly
why and when this is the case.

D.2. GCA-MLPs

GCA linear layers. To parameterize a GCA-MLP, we first specify in which algebra Gp,q,r we work and which blade
components of the action ai ∈ Gp,q,r we want to parameterize. Further, similar to regular MLPs, we specify the number of
input and output channels per layer. The geometric algebra linear layer Equation (11) then first embeds data in the algebra.
For example, a vector in Rn gets embedded as 1-vector components in Gp,q,r, leaving the rest of the blades to zero. The
sandwich aixia

−1
i consists of two geometric products, which can efficiently be implemented as matrix multiplications.

After this, we take a linear combination with the scalar weights wi, which is straightforward to implement.

MSiLU. In this work we use linear combinations of basis blades (fk(x)) in our nonlinearity

[x]k 7→ MSiLUk (x) := σ (fk(x)) · [x]k , (43)

where fk(x) : Gp,q,r → R and σ is the logistic function. This can be efficiently implemented as a linear layer in all modern
deep learning frameworks.

Normalization. Finally, our normalization layer

[x]k 7→
[x]k − E[[x]k]

E[‖[x]k‖]
. (44)

can be computed in a straightforward manner by computing an empirical average, and dividing by the average norm which
is computed as described in Appendix B.

Architectures. For both the baseline MLP and GCA-MLP we use two hidden layers.

21

GCANs

D.3. GCA-GNNs

We use the message propagation rules of Gilmer et al. (2017); Battaglia et al. (2018). Using multivectors, this amounts to

mij = φe(h
l
i,h

l
j)

m̄i =
∑

j∈N (i)

mij (45)

hl+1
i = φh(hl

i,mi) ,

where hl
i ∈ Gc

p,q,r are the node features at node i, mij ∈ Gc
p,q,r are messages between node i and node j, and m̄i ∈ Gc

p,q,r

is the message aggregation for each node. φc and φh are GCA-MLPs. Therefore, the whole GCA-GNN is a geometric
template. For the Tetris experiment, we use a fully connected graph since all the nodes are correlated. Further, we use
PyTorch Geometric (Fey & Lenssen, 2019) to implement the message passing algorithm.

Architectures. The baseline GNNs use the message passing updates as proposed by Gilmer et al. (2017); Battaglia
et al. (2018). We use four message passing layers, where the message and update networks φe, φh (the non-GCA version)
are implemented with scalar linear layers and LeakyReLU (Xu et al., 2015) activation functions. The graphs are fully
connected over 32 nodes (8 objects, each consisting of four point coordinates). That allows for 12 input features (four input
time-steps with 3 position values) for each node. We further have embedding MLPs and output MLPs that map from the 12
input features to a number of hidden features and back.

The GCA-GNNs replace all the baseline modules with there GCA counterparts. By coupling the x, y, z coordinates in
single multivector entities, we now only have 4 input features. Again, to account for the additional parameters that the group
actions introduce, we reduce the number of hidden channels.

D.4. GCA-ResNets

Let y ∈ Y ⊂ Z2 be a two-dimensional spatial coordinate in the domain Y. A convolution operation7 convolves x(y) : Y→
Rk×k×c, with a filter map where we extract a k × k “patch” around the coordinate y with c channels:

x 7→
c×k×k∑
i=1

wi · xi , (46)

where we suppress the y arguments. We repeat this procedure using different weights depending on the specific output
channel.

Now, we discuss the geometric algebra analog of the above. Let x(y) : Y→ Gk×k×c
p,q,r be a multivector-valued feature map

where we extract a k × k patch around the coordinate y with c channels. A group action convolution is then computed by

x 7→
c×k×k∑
i=1

wi · aixia
−1
i , (47)

where we suppressed the spatial argument y. It is important to note that in Equation (47), the weights wi ∈ R, but the
weights ai ∈ Gp,q,r. That is the geometric transformations given by the sandwich product aixia

−1
i are linearly mixed by

wi afterwards.

Architectures. We use the same ResNet implementations as Brandstetter et al. (2022a). That is, we have 8 residual blocks,
each consisting of two convolutional layers with 3× 3 kernels (unit strides), shortcut connections, group normalization,
and GELU activation functions (Hendrycks & Gimpel, 2016). Further, there are two embedding and two output layers.
The input time steps and fields are all encoded as input channels. For example, for 4 input time steps and 3 input feature
fields, we get 12 input channels. Since the output space is the same as the input space, we do not need downsampling layers.
The CGA-ResNets directly replace each convolutional layer with a CGA layer, each GELU activation with MSiLU, and
normalization with our normalization layer. To keep the weights similar, we have to reduce the number of feature channels
(see Appendix E.2).

7In deep learning, a convolution operation in the forward pass is implemented as cross-correlation.

22

GCANs

D.5. GCA-UNets

Gupta & Brandstetter (2022) show excellent performance of modern UNets on large-scale PDE surrogate tasks. We use
similar architectures. Specifically, we encode the time steps and input feature fields as input channels to the model. We use
convolutional embedding and projection layers to upsample (downsample) the input (output) channels. Throughout the
network, we use 3× 3 convolutions unit strides. We then use a channel multiplier structure of (1, 2, 2, 2) which, similar to,
e.g., Saharia et al. (2022), shifts the parameters from the high-resolution blocks to the low-resolution blocks, increasing
model capacity without encountering egregious memory and computation costs. At each resolution, we have a residual
block and up- or downsampling layer. A residual block consists of two convolutions, activations (GELU), normalizations
(Group Normalization), and a skip connection. The bottleneck layer has two such residual layers.

For GCA-UNets, Clifford UNets, and rotational Clifford UNets, we, identically to the ResNet case, directly replace the
layers, activations, and normalizations by the ones proposed in this paper and in Brandstetter et al. (2022a).

E. Experiments
E.1. Computational Resources

For the Tetris experiments, we used 1× 40 GB NVIDIA A100 machines. The average training time for these experiments
was 4 hours. The GCA-GNN took roughly 24 hours. However, as indicated before, several quick wins can be found to
significantly reduce this. For the fluid dynamics experiments, we used 2× 4× 16 GB NVIDIA V100 machines. The average
training time was 24 hours. The GCANs, in this case, did not perform significantly worse than the baselines. On the other
hand, the Clifford neural networks, due to their expensive normalization procedure, took significantly longer to optimize.

E.2. Tetris Experiment

Data generation. We take the shapes as provided by Thomas et al. (2018) and center them at the origin. For every Tetris
shape, we randomly sample a rotation axis with a maximum angle of 0.05 · 2π and translation directions with a maximum
offset of 0.5. This leads to a rotation matrix P and translation vector t. The position at time step t (t = 0 . . . 8) can then be
computed by applying Pt and t · t to an initial coordinate. The discretized velocities are calculated by taking differences
between the consecutive time steps. We further add slight deformations to the structures by adding small Gaussian noise.

Objective and loss function. After constructing a dataset of Ntrain such trajectories, we predict, given four input time steps,
the next four input timesteps and compare them against the ground-truth trajectories for all objects. We define a loss function

LMSE :=
1

Nlocations

Nt∑
t=1

Nlocations∑
y=1

Np∑
p=1

(xtyp − x̂typ)
2 (48)

that expresses for all train datapoints and for all time steps the discrepancy between the predicted three-dimensional locations
and the ground-truth ones. When we predict positions, Np = 3. When we also predict the velocities, we include those as
well (i.e., then p sums to 6). In our experiments we have Nt = 4 predicted output time steps and Nlocations = 32. We average
this loss over 1024 validation and test trajectories.

GCAN implementation. In this experiment, we consider the geometric algebra G3,0,1. The highest-order proper
isometry is a screw motion (a simultaneous rotation and translation), which is implemented using the components a :=
a01 + a01e01 + a02e02 + a03e03 + a12e12 + a13e13 + a23e23 + a0123e0123, where the coefficients are free parameters
to be optimized. Since points in geometric algebra are defined by intersection of three planes. As such, we encode the
x, y, z-coordinates of a point as x := xe012 + ye013 + ze023 and transform them using group actions a. The e123 (the dual
of e0) parameterizes a distance from the origin, as such we get x := xe012 + ye013 + ze023 + δe123, where we leave δ in
each layer as a free parameter. The full input representation to the GCA-MLP has Nlocations ·Nt channels. In contrast: a
naive MLP has Nlocations ·Nt ·Np input channels. The GCA-MLP then transforms this input using geometric algebra linear
layers.

The GCA-GNN additionally encodes the positions as graph nodes and therefore only has Nt input channels. Each message
and each node update network of the message passing layers is implemented as a GCA-MLP as described above.

When we include the velocities then x := vxe1 + vye2 + vze3 + xe0123 + ye013 + ze023. Importantly, we can use the same
weights a to transform this multivector. However, to incorporate the knowledge of the additional velocities into the neural

23

GCANs

network weights, retraining is required.

Model selection and optimization. We trained for 217 = 131072 steps of gradient descent for all data regimes as reported
in the main paper. We did not run hyperparameter searches for these models and set them up using reasonable default
architectures and settings. Specifically, for the MLP baseline we use 2 layers of 384 hidden features resulting in 444K
parameters. We implement the O(3) and SO(3) baseline following Finzi et al. (2021), where input and output representation
are 8 × 4 × 4T1 (T1 is the vector representation). The O(3), SO(3) and MotorMLP baselines have 256 channels each
to obtain equal parameters. The GCA-MLP has 128 channels to equal the parameter count. The GNN baselines use
four layers of message passing with 136 (small models, resulting in 444K parameters) or 192 (large models, resulting in
893K parameters) hidden features. The EdgeConv baseline uses 256 hidden features, resulting in 795K parameters. The
GCA-GNN equals the parameters of the small GNNs, using four hidden layers of 64 hidden features.

For the velocity experiment, the MLP baseline uses 2 hidden layers with 248 features to obtain the same parameter count as
the large GNN baseline, i.e., 893K. The GNN baseline has four message passing layers with 192 hidden features, resulting
in 900K parameters. The GCA-MLP and GCA-GNN use the same number of hidden features as in the positions experiment,
i.e., 444K.

For all models we use the Adam (Kingma & Ba, 2014) optimizer with the default parameter settings (i.e., a learning rate of
10−3). We did no further extensive hyperparameter or architecture searches for these models and kept them to reasonable
default settings.

E.3. Extended results

In Table 3 we present numerically the results on the Tetris experiment for MLP-style models (also presented in Figure 5).

Training trajectories 256 1024 4096 16384

MLP 4.5061 1.2180 0.2184 0.1596
Motor-MLP 3.5732 0.8655 0.4249 0.4020
SO(3)-MLP 1.5153 0.9504 0.2172 0.1176
O(3)-MLP 1.4232 0.7224 0.1584 0.0876
GCA-MLP (Ours) 0.9852 0.0420 0.00732 0.0061

Table 3. Mean squared error of MLP-style models on the tetris experiment.

In Table 4 we present numerically the results on the Tetris experiment for GNN-style models (also presented in Figure 5).

Training trajectories 256 1024 4096 16384

EdgeConv 1.572 0.2406 0.0240 0.0123
GNN (S) 0.3012 0.0432 0.0032 0.0020
GNN (S, +d) 0.2887 0.0408 0.0040 0.0019
GNN (L) 0.2879 0.0504 0.0043 0.0017
GNN (L, +d) 0.2793 0.0516 0.0030 0.0016
GCA-GNN (Ours) 0.2403 0.0012 6.1 · 10−4 5.4 · 10−4

Table 4. Mean squared error of GNN-style models on the tetris experiment.

In Table 5 we present numerically the results on the Tetris experiment where we include input and output velocities (also
presented in Figure 5).

24

GCANs

Training trajectories 256 1024 4096 16384

MLP 3.2403 0.5040 0.1560 0.0912
GCA-MLP 1.6560 0.0984 0.0418 0.0432
GNN 0.0504 0.0086 0.0015 8.8 · 10−4

GCA-GNN (Ours) 0.0122 0.0022 4.1 · 10−4 2.6 · 10−4

Table 5. Mean squared error of GNN-style models on the tetris experiment when including velocity inputs and outputs.

E.4. Speedyweather

Shallow water equations. The shallow water equations describe a thin layer of fluid of constant density in hydrostatic
balance, bounded from below by the bottom topography and from above by a free surface. For example, the deep water
propagation of a tsunami can be described by the shallow water equations, and so can a simple weather model. The shallow
water equations read:

∂vx
∂t

+ vx
∂vx
∂x

+ vy
∂vx
∂y

+ g
∂η

∂x
= 0 ,

∂vy
∂t

+ vx
∂vy
∂x

+ vy
∂vy
∂y

+ g
∂η

∂y
= 0 ,

∂η

∂t
+

∂

∂x

[
(η + h)vx

]
+

∂

∂y

[
(η + h)vy

]
= 0 , (49)

where vx is the velocity in the x-direction, or zonal velocity, vy is the velocity in the y-direction, or meridional velocity, g is
the acceleration due to gravity, η(x, y) is the vertical displacement of free surface, which subsequently is used to derive
pressure fields; h(x, y) is the topography of the earth’s surface.

Simulation. We consider a modified implementation of the SpeedyWeather.jl8(Klöwer et al., 2022) package,
obtaining data on a 192× 96 periodic grid (∆x = 1.875◦, ∆y = 3.75◦). This package uses the shallow water equations
(Vreugdenhil, 1994), a specific instance of a Navier-Stokes fluid dynamics system, to model global weather patterns. The
temporal resolution is ∆t = 6 h, meaning we predict these patterns six hours into the future. SpeedyWeather internally
uses a leapfrog time scheme with a Robert and William’s filter to dampen the computational modes and achieve 3rd oder
accuracy. SpeedyWeather.jl is based on the atmospheric general circulation model SPEEDY in Fortran (Molteni,
2003; Kucharski et al., 2013).

Objective. Given four input time steps, we predict the next time step and optimize the loss function

LMSE :=
1

Ny

Nt∑
t=1

Nfields∑
n=1

∑
y∈Y

(xtny − x̂tny)2, (50)

where Y ⊂ Z2 is the (discretized) spatial domain of the PDE, Nt is the number of prediction time steps, and Nfields is the
number of field components. For the shallow water equations we have two velocity components and one scalar component.
Here, x̂n,t,y is the predicted value at output time step t for field component n and at spatial coordinate y. xn,t,y is its
ground-truth counterpart. We consider only one-step ahead loss, where Nt = 1, as empirically it has been found that this
naturally generalizes to better rollout trajectories (Brandstetter et al., 2022a; Gupta & Brandstetter, 2022).

GCAN implementation. It can be shown that the G3,0,0 geometric algebra linear layer Tg,w(x) =
∑c

i=1 wi · aixia
−1
i

reduces to Tg,w(x) =
∑c

i=1 wi ·Rixi.

ax = (a0 + a12e12 + a13e13 + a23e23)(x1e1 + x2e2 + x3e3)

= a0x1e1 + a0x2e2 + a0x3e3

− a12x1e2 + a12x2e1 + a12x3e123

− a13x1e3 − a13x2e123 + a13x3e1

+ a23x1e123 − a23x2e3 + a23x3e2,

(51)

8https://github.com/milankl/SpeedyWeather.jl

25

https://github.com/milankl/SpeedyWeather.jl

GCANs

which reduces to
ax = (a0x1 + a12x2 + a13x3)e1

+ (a0x2 − a12x1 + a23x3)e2

+ (a0x3 − a13x1 − a23x2)e3

+ (a12x3 − a13x2 + a23x1)e123

(52)

Using grade reversion (Appendix B), we get a−1 = a0 − a12e12 − a13e13 − a23e23. Then,

axa−1 = (a20x1 + a0a12x2 + a0a13x3)e1

+ (a20x2 − a0a12x1 + a0a23x3)e2

+ (a20x3 − a0a13x1 − a0a23x2)e3

+ (a0a12x3 − a0a13x2 + a0a23x1)e123

+ (−a12a0x1 − a212x2 − a12a13x3)e2

+ (a12a0x2 − a212x1 + a12a23x3)e1

+ (−a12a0x3 + a12a13x1 + a12a23x2)e123

+ (a212x3 − a12a13x2 + a12a23x1)e3

+ (−a13a0x1 − a13a12x2 − a213x3)e3

+ (a13a0x2 − a13a12x1 + a13a23x3)e123

+ (a13a0x3 − a213x1 − a13a23x2)e1

+ (−a13a12x3 + a213x2 − a13a23x1)e2

+ (−a23a0x1 − a23a12x2 − a23a13x3)e123

+ (−a23a0x2 + a23a12x1 − a223x3)e3

+ (a23a0x3 − a23a13x1 − a223x2)e2

+ (a23a12x3 − a23a13x2 + a223x1)e1,

(53)

which again reduces to

axa−1 = (a20x1 + 2a0a12x2 + 2a0a13x3 − a212x1 + 2a12a23x3 − a213x1 − 2a23a13x2 + a223x1)e1

+ (a20x2 − 2a0a12x1 + 2a0a23x3 − a212x2 − 2a12a13x3 + a213x2 − 2a13a23x1 − a223x2)e2

+ (a20x3 − 2a0a13x1 − 2a0a23x2 + a212x3 − 2a12a13x2 + 2a12a23x1 − a213 − a223x3)e3

(54)

where we see that the trivector components cancel! Collecting the terms, we can define

R :=

a20 − a212 − a213 + a223 2a0a12 − 2a23a13 2a0a13 + 2a12a23
−2a0a12 − 2a13a23 a20 − a212 + a213 − a223 2a0a23 − 2a12a13
−2a0a13 + 2a12a23 −2a0a23 − 2a12a13 a212 + a20 − a213 − a223

 (55)

Here, Ri is a rotation matrix that acts on the vector components of xi. This is a much more efficient implementation than
the sandwich operation, and resembles the rotational layer of Brandstetter et al. (2022a) but does not implement a scalar part
(which would go against the concept of a group action layer).

Model selection and optimization. For ResNet architectures we consider 128 and 144 feature channels, the latter matching
the number of parameters of the GCA-ResNets. Out of these two, the best performing model was reported in the paper.
These channels are kept constant (apart from embedding and decoding layers) throughout the network. The Clifford ResNets
and GCA ResNet consider 64 channels. These architectures then have roughly 3M parameters. The UNet models consider
64 and 70 base channels, the latter matching the parameters of the GCA-UNet (58M). The Clifford and GCA counterparts
have 32 channels. At 448 training trajectories, we tested all models accross two learning rates (2 · 10−4 and 5 · 10−4), and
different normalization schemes. Normalization turned out to be beneficial at all times. We further closely followed the
hyperparameter settings as reported in Gupta & Brandstetter (2022)9. Further, we tested for the GCA models whether a

9https://microsoft.github.io/pdearena/

26

https://microsoft.github.io/pdearena/

GCANs

learned linear combination, a simple summation, or averaging in the MSiLU layers works best. Summation and a learned
linear combination turned out to be the most promising.

We used the Adam optimizer with the best performing learning rate, and use cosine annealing (Loshchilov & Hutter, 2016)
with linear warmup. We trained at all data-regimes for 50 epochs.

Extended results.

In Table 6 we present the mean squared error values for ResNet style models that are also presented in Figure 6.

Training trajectories 112 224 448 892

ResNet 0.0248 0.01310 0.0076 0.0055
CResNet 0.0457 0.01685 0.0076 0.0041
CResNetrot 0.0269 0.01040 0.0045 0.0031
GCA-ResNet (Ours) 0.0204 0.00920 0.0050 0.0036

Table 6. Mean squared error of ResNet-style models on the shallow water equations experiment.

In Table 7 we present the mean squared error values for UNet-style models that are also presented in Figure 6.

Training trajectories 112 224 448 892

CUNet 0.0056 0.0013 1.59 · 10−4 1.28 · 10−4

CUNetrot 0.0036 9.83 · 10−4 2.05 · 10−4 1.31 · 10−4

UNet 9.69 · 10−4 3.73 · 10−4 1.76 · 10−4 8.10 · 10−5

GCA-UNet (Ours) 8.01 · 10−4 2.17 · 10−4 6.85 · 10−5 3.95 · 10−5

Table 7. Mean squared error of UNet-style models on the shallow water equations experiment.

Finally, we show an examplary predicted and ground-truth trajectory for our GCA-UNet in Figure 9 and for the baseline
UNet in Figure 10.

Runtimes.

F (s/it) B (s/it) F + B (s/it) Parameters (M) Compute

ResNet 0.10 0.17 0.27 3 2× 4 NVIDIA V100
CResNet 0.63 0.95 1.59 3 2× 4 NVIDIA V100
CResNetrot 0.62 0.94 1.56 3 2× 4 NVIDIA V100
GCA-ResNet 0.13 0.19 0.33 3 2× 4 NVIDIA V100
UNet 0.25 0.40 0.65 58 2× 4 NVIDIA V100
CUNet 0.64 0.97 1.61 58 2× 4 NVIDIA V100
CUNetrot 0.63 0.95 1.59 58 2× 4 NVIDIA V100
GCA-UNet 0.42 0.61 1.03 58 2× 4 NVIDIA V100

Table 8. Overview of the estimated forward and backward runtimes of the implemented models.

E.5. Navier-Stokes

The incompressible Navier-Stokes equations are built upon momentum and mass conservation of fluids. For the velocity
flow field v, the incompressible Navier-Stokes equations read

∂v

∂t
= −v · ∇v + µ∇2v −∇p+ f , (56)

∇ · v = 0 , (57)

where v · ∇v is the convection of the fluid, µ∇2v the diffusion controlled via the viscosity parameter ν of the fluid, ∇p
the internal pressure, and f an external buoyancy force. Convection is the rate of change of a vector field along a vector

27

GCANs
G

ro
un

d
tr

ut
h

Pr
ed

ic
tio

n
E

rr
or

0.025

0.050

0.075

2

0

2

4

(a) Pressure

G
ro

un
d

tr
ut

h

Pr
ed

ic
tio

n
E

rr
or

0.0

0.1

0.2

10

0

10

(b) Eastward wind speed

G
ro

un
d

tr
ut

h

Pr
ed

ic
tio

n
E

rr
or

0.1

0.2

10

0

10

(c) Northward wind speed

Figure 9. Example rollout from GCA-UNet on the 6 hour shallow water equations.

28

GCANs
G

ro
un

d
tr

ut
h

Pr
ed

ic
tio

n
E

rr
or

0.05

0.10

2

0

2

4

(a) Pressure

G
ro

un
d

tr
ut

h

Pr
ed

ic
tio

n
E

rr
or

0.1

0.2

0.3

10

0

10

(b) Eastward wind speed

G
ro

un
d

tr
ut

h

Pr
ed

ic
tio

n
E

rr
or

0.2

0.4

10

0

10

(c) Northward wind speed

Figure 10. Example rollout from UNet on the 6 hour shallow water equations. Note that the bottom left corner of the pressure field visibly
differs from our GCA-UNet rollout in Figure 9.

29

GCANs

field (in this case along itself), and diffusion is the net movement form higher valued regions to lower concentration
regions. Additional to the velocity field v(x), we introduce a scalar field s(x) representing a scalar quantity, such as particle
concentration or smoke density in our case, that is being advected, i.e., transported along the velocity field.

We implement the 2D Navier-Stokes equation using ΦFlow10 (Holl et al., 2020b). Solutions are obtained by solving for the
pressure field, and subsequently subtracting the gradients of the pressure field.

We obtain data on a closed domain with Dirichlet boundary conditions (v = 0) for the vector (velocity), and Neumann
boundaries ∂s

∂x = 0 for the scalar field. The grid has a spatial resolution of 128 × 128 (∆x = 0.25, ∆y = 0.25), and
temporal resolution of ∆t = 1.5s. The viscosity is set to ν = 0.01. The scalar field is initialized with random Gaussian noise
fluctuations, and the velocity field is initialized to 0. We run the simulation for 21.0s and sample every 1.5s. Trajectories
contain scalar smoke density, and vector velocity fields at 14 different time points.

GCAN implementation. We use the algebra G3,0,0 and therefore use the same implementation as for the shallow water
experiment.

Objective. Similar to the shallow water equations, we have

LMSE :=
1

Ny

Nt∑
t=1

Nfields∑
n=1

∑
y∈Y

(xtny − x̂tny)2. (58)

Model selection and optimization. We used the best-performing models in the shallow water equations: the GCA-UNet
and UNet and compare them at different number of training trajectories: 832, 2080, and 5200. For the UNet, we tested a
version with 64 input channels and 72 input channels, which matches the parameter of the GCA counterpart (58M). We
searched across learning rates of 2 · 10−4 and 5 · 10−4, or all architectures including the baseline UNets. For the GCA-UNet,
we further tested normalization schemes and activation schemes, obtaining similar results to the shallow water experiment.

We used the Adam optimizer with best performing learning rate, and cosine annealing (Loshchilov & Hutter, 2016) with
linear warmup. We trained at all data-regimes for 50 epochs.

Extended results. We present in Table 9 the numerical results of our Navier-Stokes experiment also presented in the main
paper.

Training trajectories 832 2080 5200

UNet 0.00290 0.001040 9.71 · 10−4

GCA-UNet (Ours) 0.00194 9.48 · 10−4 9.21 · 10−4

Table 9. Mean squared error of UNet models on the Navier-Stokes experiment.

F. Clifford Algebra
This section provides a pedagogical insight into how a Clifford algebra and its multiplication rules are constructed in a
basis-independent way. Consider a vector space V whose characteristic is not 2. A Clifford algebra over V has an distributive
and associative bilinear product with the construction

v2 − 〈v, v〉1 = 0, (59)

for v ∈ V . Here, 〈·, ·〉 denotes a symmetric quadratic form, and 1 is the multiplicative identity. In other words, multiplication
of a vector with itself identifies with the quadratic form. This yields the identity

(u+ v)2 = 〈u+ v, u+ v〉, (60)

from which the fundamental Clifford identity (geometric product) arises:

uv = 2〈u, v〉 − vu. (61)

10https://github.com/tum-pbs/PhiFlow

30

https://github.com/tum-pbs/PhiFlow

GCANs

As such, we see that

1

2
(uv + vu) = 〈u, v〉. (62)

Further, we can construct an antisymmetric part

u ∧ v :=
1

2
(uv − vu), (63)

with

u ∧ v = −v ∧ u. (64)

This is commonly referred to as wedge product. As such, we see that we get the identity

uv = 〈u, v〉+ u ∧ v, (65)

which is referred to as the geometric product and directly follows from the fundamental Clifford identity. In Appendix B we
show how the geometric product is computed in practice after choosing a basis.

G. Pseudocode

Algorithm 1 Pseudocode for obtaining Clifford kernels to compute geometric products. Here, a ∈ Gcout×cin
p,q,r , where cin is the

number of input and cout the number of output channels of the layer. A Cayley table M ∈ {−1, 0, 1}n×n×n (n = p+ q+ r)
is provided by the algebra and its signature to effectively compute geometric products.
Function GetCliffordKernel(M : Cayley Table, a: Action):

K left
jvkw ←

∑
iMijkavwi

K right
jviw ←

∑
kMijkavwk

return K left, K right

Algorithm 2 Pseudocode for the geometric algebra conjugate linear layer.
Function ConjugateLinear(x: Input, a: Actions, w: Weights, A: GeometricAlgebra):

M ← CayleyTable(A)
a−1 ← Reverse(a)
x← Embed(A, x)
K left, ← GetCliffordKernel(M,a)
,K right ← GetCliffordKernel(M,a−1)
x← GroupActionLinear(w,K left,K right,x)
x← Retrieve(A,x)
return x

31

GCANs

Algorithm 3 Pseudocode for the multivector sigmoid linear units.
Function MSiLU(x: Input, w: Weights, A: GeometricAlgebra, Agg: Aggregation):

x← Embed(A, x)
for [x]k in x do

if Agg = “linear” then
[x]k ← σ (Linear(x, wk)) · [x]k

end
if Agg = “sum” then

[x]k ← σ (Sum(x)) · [x]k
end

if Agg = “mean” then
[x]k ← σ (Mean(x)) · [x]k

end

end
x← Retrieve(A,x)
return x

Algorithm 4 Pseudocode for the geometric algebra normalization layer.
Function GCANormalize(x: Input, s: Rescaling, A: GeometricAlgebra):

x← Embed(A, x)
for [x]k in x do

[x]k ← sk · ([x]k − ChannelsAverage([x]k])) /ChannelsAverage(‖[x]k‖)
end
x← Retrieve(A,x)
return x

Algorithm 5 Pseudocode for the G3,0,0 conjugate linear layer.

Function ConjugateLinear(x: Input, a: Actions, w: Weights, A: GeometricAlgebra):
x← Embed(A, x)
R← GetRotationalKernel(a)
x← RotationalConvolution(w,R,x)
x← Retrieve(A,x)
return x

32

