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Abstract
Collections of probability distributions arise in
a variety of applications ranging from user ac-
tivity pattern analysis to brain connectomics. In
practice these distributions can be defined over
diverse domain types including finite intervals,
circles, cylinders, spheres, other manifolds, and
graphs. This paper introduces an approach for
detecting differences between two collections of
distributions over such general domains. To this
end, we propose the intrinsic slicing construction
that yields a novel class of Wasserstein distances
on manifolds and graphs. These distances are
Hilbert embeddable, allowing us to reduce the dis-
tribution collection comparison problem to a more
familiar mean testing problem in a Hilbert space.
We provide two testing procedures one based on
resampling and another on combining p-values
from coordinate-wise tests. Our experiments in
various synthetic and real data settings show that
the resulting tests are powerful and the p-values
are well-calibrated.

1. Introduction
Distributional data defined over general domains such as
manifolds and graphs arise in a variety of statistical applica-
tions. In this paper we consider the problem of comparing
two collections of distributions over such a general domain.
Our goal is to test for homogeneity—whether all of the
distributions come from the same meta-distribution—in an
interpretable manner. While conceptually similar to two-
sample testing, this is a higher order notion in the sense that
our units of analysis are distributions/histograms.

For instance, given collections of personal activity his-
tograms (over cylinder: time of day× intensity) for two sub-
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populations, one may be interested in determinining whether
there are statistically significant differences between activ-
ity patterns of these sub-populations. As another example,
consider normalized counts of events per geographic region
on a daily basis. Collected over a year, this gives a set of
365 daily probability distributions over the region adjacency
graph, and one may wish to compare the collection of dis-
tributions from weekdays to those from weekends. Testing
specific aspects of homogeneity is preferable: for example,
in regular two-sample testing, detecting that the means are
unequal provides interpretable insights, whereas a general
test that only says there are unspecified differences between
the distributions is less useful for interpretation.

Limited settings of this problem tackling distributions over
the interval/circle have been considered in the literature
(Dubey & Müller, 2019), yet the general case of distribu-
tions over graphs and manifolds is open. The requirement
to test for specific differences is non-trivial on general do-
mains: what is the equivalent of mean for a collection of
distributions? While Fréchet mean (Peyré & Cuturi, 2019)
may seem like the natural choice, there are a number of
problems with testing Fréchet mean equality. First, the exis-
tence and uniqueness of the Fréchet mean is not guaranteed,
and it can be sensitive to small changes. Second, computing
the Fréchet mean is expensive and can become prohibitive
when resampling is used to compute the null distribution.
Finally, resampling poses conceptual problems: using per-
mutation null will detect differences beyond the equality of
Fréchet means (same problem exists in regular two-sample
testing, see e.g. Huang et al. (2006)), and using bootstrap
requires designing the null case, which is highly non-trivial.

We attack this problem using insights from recent devel-
opments that utilize Hilbert embeddings for simplifying
distributional data problems (Solomon et al., 2014; Petersen
& Müller, 2016). The simplification comes as a result of
linearity of Hilbert spaces, which allows adapting exist-
ing statistical approaches to distributional data. A crucial
requirement on the embedding is that the distance in the em-
bedding space should give a meaningful distance between
measures; it is this property that renders quantities com-
puted in the embedding space such as means and variances
meaningful. While transportation based distances are effi-
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Figure 1. Schematic of the proposed intrinsic slicing construction.
Given two probability measures on the sphere (here the darkest
blue corresponds to zero mass), different aspects of their dissimi-
larities become apparent after pushforward to the real line using
the eigenfunctions of the Laplace-Beltrami operator, {ϕi}, in this
case spherical harmonics. As a particular example of our general
construction, the (squared) intrinsic sliced 2-Wasserstein distance
ISW2

2 (·, ·) is the weighted sum of the dissimilarities of the cor-
responding pushforwards of µ and ν as measured by squared
2-Wasserstein distance W2

2 (·, ·) on the real line.

cient at capturing many aspects of distributional data such
as horizontal variation (Panaretos & Zemel, 2019; Peyré &
Cuturi, 2019; Bigot, 2020), yet the transportation theoretic
approaches hit a roadblock beyond the real line case due to
their Hilbert non-embeddability (Peyré & Cuturi, 2019).

We overcome these difficulties by introducing a new slicing
construction on manifolds and graphs (Figure 1) inspired by
the sliced 2-Wasserstein (W2) distances in high dimensional
spaces (Kolouri et al., 2019b;a). Our construction leverages
eigenvalues and eigenfunctions/eigenvectors of the Laplace-
Beltrami operator on manifolds and Laplacian matrix on
graphs to capture the intrinsic geometry and connectivity of
the data domain. We apply this slicing construction to obtain
a novel class of intrinsic sliced 2-Wasserstein distances on
manifolds and graphs. The resulting distances are Hilbert
embeddable, have a number of desirable properties, and can
be truncated to obtain finite-dimensional embeddings.

Using the corresponding embedding allows us to reduce the
distribution collection comparison problem to the compari-
son of means in a high-dimensional Euclidean space. At the
theoretical level our test checks equality of Fréchet means
along slicings (see discussion after Example 1 in Section
3.2). These means are transparently tied to the input data,
whereby rejections lead to interpretable insights. We pro-
vide two approaches for hypothesis testing and verify via
extensive experiments that these tests are powerful, and the
p-values are well-calibrated.

2. Related Work
Our framework is not simply a higher order version of a
two-sample kernel test (Gretton et al., 2012) since we test

for equality of a specific aspect of meta-distributions. This
renders our null hypothesis different from Gretton et al.
(2012), and we need a different set of techniques both for
proofs and computations. For example, testing in Gretton
et al. (2012) can use the permutation null which is valid
due to the stronger null hypothesis of equal distributions.
In contrast, with our null hypothesis we cannot use the
permutation null and have to resort to a bootstrap procedure.
Other approaches such as the general Hilbert embedding
framework of Petersen & Müller (2016) is not tied to a
distance between probability distributions and so can be
problematic for capturing the location and variability aspects
of distribution collections. In addition, Petersen & Müller
(2016) has difficulties in higher dimensions and does not
provide constructions suitable for manifolds or graphs.

Sliced Distances The Sliced Wasserstein (SW) distance
and its generalized variant (Kolouri et al., 2019a, GSW) sets
up the idea of approximating Wasserstein distances using
multiple nonlinear projections, it is presented in extrinsic
terms (i.e. Euclidean space) and can suffer from the curse
of dimensionality when a low dimensional data manifold
lives in a high-dimensional space. Our choice of eigenfunc-
tions for projection is very different from the one-parameter
function families in GSW and allows us to rigorously prove
a number of general and testing-specific properties.

Moreover, the GSW construction does not directly apply
to graphs. While the tree-sliced variant of GSW (Le et al.,
2019) can be applied in an intrinsic manner (the cluster-
ing variant), it relies on a different type of distance, in the
limit related to the euclidean/geodesic distance. This can
be seen by comparing our lower bound to theirs: our lower
bound for ISW is in terms of the MMD using the spectral
distance (Proposition 4.4). The recently-proposed Sobolev
transport (Le et al., 2022) does consider measures supported
on graphs, but in absence of a slicing construction it is
limited to testing for unspecific differences and requires
extensive compute due to much slower permutation based
calibration (see Section 6). Deshpande et al. (2019) pro-
posed Max Sliced Wasserstein (MSW) distance—taking
maximum over projectedW2 distances vs the averageW2

distances of SW—in the context of generative models.

Finally, the robust sliced Wasserstein distance of Lai &
Zhao (2017) does make use of the geometric properties of
the underlying manifold. However, their goal is to compute
a correspondence between two manifolds by mapping them
into Rd using eigenmaps and treating the mapped mani-
folds as measures in Rd and minimizing some version of
Euclidean slicing. None of the aforementioned works con-
sider the problem of comparing collections of distributions,
provide ways for obtaining calibrated p-values, or prove
properties of the distances that make them desirable for
hypothesis testing.

2



Intrinsic Sliced Wasserstein Distances on Manifolds and Graphs

3. Preliminaries
3.1. Problem Setup

Given a compact metric space X , let P(X ) denote the
set of Borel probability measures on X . Our main in-
terest is in the case where X is a graph or a manifold
with the shortest/geodesic distance as the metric, and thus
the compactness restriction. The 2-Wasserstein distance
can be defined on P(X ) using the metric of X as the
ground distance (Peyré & Cuturi, 2019; Panaretos & Zemel,
2019), giving WX

2 : P(X ) × P(X ) → R≥0. Due to
the repeated use of the real line case we use the short-
hand W2 when X = R, i.e. W2 := WR

2 . Central to our
study are distributions on the space of probability measures
P(P(X )) = (P(X ),B(P(X ))), where B(P(X)) is the
Borel σ-algebra generated by the topology induced byWX

2

(Bigot, 2020). To avoid confusion, we will refer to the
elements of P(P(X )) as meta-distributions.

Let P,Q ∈ P(P(X )), and assume that we are given two
collections of probability measures {µi}N1

i=1 and {νi}N2
i=1

that are drawn from P and Q: µi ∼ P and νi ∼ Q in
an independent-and-identically-distributed (hereafter i.i.d.)
manner. Our goal is to use this sample to test the null hy-
pothesis of whether P = Q. While this is conceptually
a two-sample test, note that our data points are distribu-
tions; in practice, the distributions µi or νi are given by
histograms.

Remark 3.1. Let us compare this with the usual two-sample
testing. Consider P ∈ P(P(X )) constructed as follows.
Let µ∗ ∈ P(X ) be a fixed probability measure. Let
x1, x2, ...xA ∼ µ∗ and construct the histogram summariz-
ing this sample: 1

A

∑A
a=1 δxa . Now, 1

A

∑A
a=1 δxa ∈ P(X )

is one sample drawn from P . Suppose one gets the collec-
tion {µi}N1

i=1, where each histogram is obtained as above:
µi ∼ P . Similarly, consider Q ∈ P(P(X )) of the same
type based on some other fixed ν∗ ∈ P(X ), and let {νi}N2

i=1

the corresponding collection of histograms. Testing whether
P = Q in the limit boils down to µ∗ = ν∗. When com-
pared to the usual two-sample testing this may seem rather
inefficient, requiring A times more samples (resp. N1A and
N2A samples from µ∗ and ν∗). However, in our general
setup it is not assumed that the histograms in the collec-
tions come from meta-distributions of the above simple type
(i.e. all µi are generated by drawing from the same un-
derlying distribution µ∗). In fact, the target use-case for
our approach is when these histograms are collected by ob-
serving different individuals who have their person-specific
behaviors/distributions.

Remark 3.2. To gain further insight into our problem setup,
consider it through the lens of statistical manifold theory
(Murray & Rice, 1993, SMT). Assume that we observe two
collections of parametric distributions: µi = F (x, βi), βi ∼
G(β) for i = 1, ..., N1, and νi = F (x, γi), γi ∼ H(γ) for

i = 1, ..., N2. Thus, each collection is generated from a
distribution of its parameters, resp. G(·) and H(·). The
goal of our test is to find out whether G and H are the same
solely by observing the collections {µi}N1

i=1 and {νi}N2
i=1.

While SMT and the Fisher information metric provides a
powerful framework for studying parametric families of
probability distributions, we focus on more general spaces
of probability measures and the Fisher metric may not be
easily extended to such nonparametric spaces of measures.

3.2. Hilbert Embeddings

Let D(·, ·) : P(X )× P(X )→ R≥0 be a distance between
probability distributions. D(·, ·) is called Hilbertian (this
is just a naming convention; no implication that the map is
a Hilbert map) if there exist a Hilbert space H and a map
η : P(X ) → H such that D(µ, ν) = ∥η(µ) − η(ν)∥H.
For example, it is well-known that 2-Wasserstein distance
on X = R is Hilbertian (Peyré & Cuturi, 2019) (also see
Section 4.2) and Maximum Mean Discrepancy (MMD) on
any X is Hilbertian (Gretton et al., 2012); however, the
2-Wasserstein distanceWX

2 on general X is not Hilbertian
(Peyré & Cuturi, 2019).

Since the map η takes every measure on X to a point in
H, we see that a meta-distribution P ∈ P(P(X )) gives
a rise to a measure on H given by pushforward operation,
η#P = P ◦ η−1 ∈ P(H). In addition, if a finite dimen-
sional approximation ηD : P(X ) → RD of η is available,
then ηD#P is a measure on RD. This observation is enor-
mously useful: problems about the elements of the rather
abstract space P(P(X )) are reduced to problems about fa-
miliar measures onH or even RD. For example, the usual
notions of mean and variance can be applied to the measure
η#P to gain insights about the meta-distribution P . The
validity of these insights hinges on the η-map coming from a
Hilbertian distance, as distances are central to the statistical
quantities of interest.

Testing for η#P = η#Q can serve as a proxy for our origi-
nal testing problem of P = Q. As typical with two-sample
tests, various aspects of the equality η#P = η#Q can be
tested, such as the mean or variance equality; unspecific
tests of equality can be applied as well. We will concen-
trate on testing certain aspects of the equality so that one
can easily drill down on the results. This is similar to the
regular two-sample testing where checking for equality of,
say, means is often preferable as it gives immediately in-
terpretable insights, whereas a general test that only says
there are unspecified differences between the distributions
is less useful for interpretation. To obtain succint and inter-
pretable tests we concentrate on the mean of the resulting
pushforward measure inH.

Definition 3.3. For a meta-distribution P ∈ P(P(X )),
define its Hilbert centroid with respect to the Hilbertian
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distance D as Cη#P := Eµ∼P [η(µ)] ∈ H, assuming it
exists.

Our testing procedure is based on checking the equal-
ity Cη#P = Cη#Q, or more explicitly: Eµ∼P [η(µ)] =
Eν∼Q[η(ν)]. Intuitively, each “dimension” of the map η
probes some aspect of the two involved meta-distributions
and makes sure that they are in agreement in expectation.
One of our testing approaches will use the statistic

T(P,Q) := ∥Cη#P − Cη#Q∥2H. (1)

to capture the deviations from equality; this quantity can be
written directly in terms of pairwise distances.

Proposition 3.4. For P,Q ∈ P(P(X )), the following
holds:

T(P,Q) = Eµ∼P,ν∼Q[D2(µ, ν)]−
1

2
Eµ,µ′∼P [D2(µ, µ′)]− 1

2
Eν,ν′∼Q[D2(ν, ν′)].

Next we give an example of what Hilbert centroid equality
implies in an important special case.

Example 1. Let X = [0, T ] ⊂ R with D being the 2-
Wasserstein distance W2. Given a probability measure
µ ∈ P([0, T ]), let Fµ be its cumulative distribution func-
tion: Fµ(x) = µ([0, x]) =

∫ x

0
dµ. The generalized inverse

of cumulative distribution function (CDF) is defined by
F−1
µ (s) := inf{x ∈ [0, T ] : Fµ(x) > s}. The squared

2-Wasserstein distance has a rather simple expression in
terms of the inverse CDF (Peyré & Cuturi, 2019):

W2
2 (µ, ν) =

∫ 1

0

(F−1
µ (s)− F−1

ν (s))2ds. (2)

This formula immediately establishes the Hilbertianity of
W2 through the map η : P([0, T ]) → L2([0, T ]) defined
by η(µ) = F−1

µ . Note that η is invertible for increas-
ing normalized functions in the embedding space. Us-
ing this insight, we see that the corresponding “average
measure” of P ∈ P(P(X )) can be introduced via Pav =
η−1(Eµ∼P [η(µ)]). It is easy to prove that Pav satisfies
the following: Pav = argminρ∈P(X ) Eµ∼P [W2(µ, ρ)

2],
which is the definition of the Fréchet mean, see for example
(Peyré & Cuturi, 2019). In this setting,Cη#P = Cη#Q boils
down to having the same Fréchet means, Pav = Qav.

We will later see that the Hilbert embedding corresponding
to the intrinsic sliced 2-Wasserstein distance is assembled of
embeddings like in Example 1 applied after pushforwards
(see Figure 1 for an intuition). This means that the resulting
equality Cη#P = Cη#Q becomes more stringent, making
it a better proxy for detecting the deviations from P = Q
without losing the interpretability aspect.

4. Intrinsic Sliced 2-Wasserstein Distance
We introduce a Hilbertian version ofW2 on manifolds and
graphs via a construction we call intrinsic slicing due to
its use of the domain’s intrinsic geometric properties. To
focus our discussion we concentrate on the manifold case,
as the graph case is simpler and is obtained by replacing the
Laplace-Beltrami operator by the graph Laplacian.

Let λℓ, ϕℓ; ℓ = 0, 1, .... be the eigenvalues and eigenfunc-
tions of the Laplace-Beltrami operator on X with Neu-
mann boundary conditions. The eigenfunctions are sorted
by increasing eignevalue and assumed to be orthonormal
with respect to some fixed (e.g. uniform) measure on X ;
also ϕ0 = const and λ0 = 0. One can define the spec-
tral kernel k(x, y) =

∑
ℓ α(λℓ)ϕℓ(x)ϕℓ(y) and the cor-

responding spectral distance on the manifold d(x, y) =
k(x, x) + k(y, y)− 2k(x, y) =

∑
α(λℓ)(ϕℓ(x)− ϕℓ(y))2,

where α : R≥0 → R≥0 is a function that controls contri-
bution from each spectral band. By setting α(λ) = e−tλ

for some t > 0, we get the heat/diffusion kernel and the
corresponding diffusion distance (Coifman & Lafon, 2006).
Another important case is α(λ) = 1/λ2 if λ > 0 and
α(0) = 0, which gives the biharmonic kernel and distance
(Lipman et al., 2010). In both of these constructions α(·) is
a decreasing function, allowing the smoother low-frequency
(i.e. smaller λℓ) eigenfunctions to contribute more.

4.1. Definition and properties

A real-valued function ϕ : X → R can be used to map the
manifold X onto the real line. Any probability measure
µ ∈ P(X ) can likewise be projected onto the real line
using the pushforward of ϕ, which we denote by ϕ♯µ =
µ ◦ ϕ−1 ∈ P(R). While the pushforward notions used
here and in previous sections are conceptually the same, for
clarity we use ♯ for measures and # for meta-distributions.
We define intrinsic slicing as follows.

Definition 4.1. Given a function α : R≥0 → R≥0 and a
probability distance D(·, ·) on P(R), we define the intrinsic
sliced distance ISD(·, ·) on P(X ) by

ISD2(µ, ν) =
∑
ℓ

α(λℓ)D2(ϕℓ♯µ, ϕℓ♯ν).

The choice of the Laplacian eigenfunctions in the definition
can be justified by a number of their properties. Eigenfunc-
tions are intrinsic quantities of a manifold and are ordered
by smoothness. Thus, they allow capturing the intrinsic
connectivity of the underlying domain. Furthermore, due to
the orthogonality of eigenfunctions, their pushforwards can
capture complementary aspects of the distribution.

While the definition is general, our focus in this paper is on
the case when D =W2; we remind that we always useW2

to denote the 2-Wasserstein distance on P(R). We call the
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resulting distance Intrinsic Sliced 2-Wasserstein Distance,
and denote it by ISW2. First, we discuss the convergence
of the infinite sum in Definition 4.1.

Proposition 4.2. If X is a smooth compact n-dimensional
manifold and

∑
ℓ λ

(n−1)/2
ℓ α(λℓ) <∞, then ISW2 is well-

defined.

Next, we prove a number of properties of ISD.

Proposition 4.3. If D is a Hilbertian probability distance
such that ISD is well-defined, then (i) ISD is Hilber-
tian, and (ii) ISD satisfies the following metric proper-
ties: non-negativity, symmetry, the triangle inequality, and
ISD(µ, µ) = 0.

Proof. By Hilbertian property of D, there exists a Hilbert
space H0 and a map η0 : P(R) → H0 such that
D(ρ1, ρ2) = ∥η0(ρ1) − η0(ρ2)∥H′ for all ρ1, ρ2 ∈ P(R).
Plugging this into Definition 4.1 we have ISD(µ, ν) =
∥η(µ) − η(ν)∥H, where H = ⊕ℓH0 and the ℓ-th compo-
nent of η(µ) is

√
α(λℓ)η0(ϕℓ♯µ) ∈ H. The second part

of Proposition 4.3 directly follows from the Hilbert prop-
erty.

SinceW2 is Hilbertian on P(R), the application of Propo-
sition 4.3 yields that ISW2 is also Hilberitan, making it
possible to use ISW2 for our hypothesis tests in Section 5.

For a simple choice of distance D on P(R), namely the
absolute mean difference, the corresponding intrinsic sliced
distance is the well-known MMD (Gretton et al., 2012).

Proposition 4.4. Let D(ρ1, ρ2) = |Ex∼ρ1
[x] − Ey∼ρ2

[y]|
for ρ1, ρ2 ∈ P(R), then the corresponding ISD is equiva-
lent to the MMD with the spectral kernel k(·, ·).

When k(x, y) is the heat kernel, the sliced distance in Propo-
sition 4.4 is very much like the MMD with the Gaussian
kernel, with the parameter t in α(λ) = e−tλ controlling the
kernel width. Indeed, the two kernels coincide on Rd, and
on general manifolds Varadhan’s formula gives asymptotic
equivalence for small t (Berger, 2003).

An interesting insight derived from the above result is that
ISW2 is in a sense a “stronger” distance than MMD that
uses the corresponding spectral kernel. The ISW2 com-
pares the quantiles of the pushforward distributions (Eq.
(2)), whereas MMD compares their expectations only. We
formalize this notion in the next result, also providing a the-
oretical reason for preferring ISW2 for hypothesis testing.

Proposition 4.5. MMD(µ, ν) ≤ ISW2(µ, ν) when the
same α(·) is used in both constructions.

We are now in a position to prove that ISW2 is a true metric.

Theorem 4.6. If α(λ) > 0 for all λ > 0 , then ISW2 is a
metric on P(X ).

We remind that 2-Wasserstein distance can be defined di-
rectly on P(X ) using the geodesic distance as the ground
metric; we denote this distance asWX

2 . Lipschitz properties
of the eigenfunctions imply the following:
Proposition 4.7. There exists a constant c depending only
on X ⊆ Rn such that for all µ, ν ∈ P(X ) the inequality

ISW2(µ, ν) ≤ cWX
2 (µ, ν)

√∑
ℓ λ

(n+3)/2
ℓ α(λℓ) holds.

Our final result looks at the quantity T defined using ISW2

by Eq. (1). We will be using T computed on finite col-
lections of measures as a test statistic in the next section.
We show that it enjoys robustness with respect to small
perturbations of the measures in the collection.
Proposition 4.8. Let {µi}Ni=1 and {νi}Ni=1 be two col-
lections of probability measures on P(X ), such that
∀i,WX

2 (µi, νi) ≤ ϵ, then T({µi}Ni=1, {νi}Ni=1) ≤ C2ϵ2.

Here C = c

√∑
ℓ λ

(n+3)/2
ℓ α(λℓ) from previous proposi-

tion and is assumed to be finite.

This bound implies that if the distributions in a collection
undergo horizontal shifts that are small as measured by the
geodesic distanceWX

2 , then T is small as well.

4.2. Approximate Hilbert Embedding

An important aspect of ISW2 is that its Hilbert map η :
P(X ) → H can be approximated by a finite-dimensional
embedding ηD : P(X ) → RD such that ISW2(µ, ν) ≈
∥ηD(µ)− ηD(ν)∥RD . This is useful for practical computa-
tion and for one of our hypothesis testing approaches.

Using the formula for ISW2 on P(R) in terms of the
quantile function, Eq. (2), the Hilbert map is defined by
η0(µ) = F−1

µ . We haveW2(µ, ν) = ∥η0(µ)−η0(ν)∥L2(R),
where the norm involves integration. We can discretize
the integral using the Riemann sum for equidistant knots
sk = k−1

D′ , k = 1, ..., D′, define the approximate embed-
ding η0D′ : P(R)→ RD′

as:

η0D′ : µ→
1√
D′

[F−1
µ (s1), ..., F

−1
µ (sD′)]. (3)

Now,W2(µ, ν) ≈ ∥η0D′(µ)− η0D′(ν)∥RD′ with approxima-
tion quality depending on the embedding dimension D′.

To approximate the Hilbert map for ISW2 we truncate the
series defining ISW2 and use a finite number of eigenfunc-
tions for pushforward: ϕℓ, ℓ = 1, ..., L, where ϕ0 is dropped
since it is a constant. By inspecting the proof of Proposition
4.3 and using Eq. (3), we can define ηD : P(X ) → RD

with D = LD′ as the concatenation of L maps:

(ηD)ℓ : µ→
√
α(λℓ)

D′ [F−1
ϕℓ♯µ

(s1), ..., F
−1
ϕℓ♯µ

(sD′)].

Spectral decompositions of Laplace-Beltrami operators for
general manifolds (Coifman & Lafon, 2006; Reuter et al.,
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2009) or graph Laplacians can be computed numerically.
For applications involving simple manifolds, eigenvalues
and eigenfunctions can be computed analytically (see Ap-
pendix A.3).

The hyperparameters L and D′ capture distinct aspects of
the complexity of the distribution. A larger L allows access
to higher order eigenfunctions that possess greater spatial
oscillations, linking to the finer details of the geometry
and topology of the underlying domain and distribution
collection. On the other hand, D′ captures how well the
pushforward distribution is represented, which is determined
by the number of quantiles. Both hyperparameters can have
a significant impact on the success of the testing process.

5. Hypothesis Testing
Let {µi}N1

i=1 and {νi}N2
i=1 be two i.i.d. collections of mea-

sures drawn from P,Q ∈ P(P(X )) respectively. Our
goal is to use these samples to test the null hypothesis
H0 : Cη#P = Cη#Q, where η is the Hilbert embedding of
the sliced distance ISW2 on P(X ).

5.1. Resampling Based Test

We use the quantity T(·, ·) from Eq. (1) as the test statistic.
Its sample version is computed by replacing the expectations
by the empirical means, and excluding the diagonal terms
to achieve unbiasedness

T̂ ≡
∑

i,j:i ̸=j

ISW2
2 (µi, µj)

2N1(N1 − 1)
+
∑

i,j:i ̸=j

ISW2
2 (νi, νj)

2N2(N2 − 1)
(4)

−
∑
i,j

ISW2
2 (µi, νj)

N1N2
.

Note that ET̂ = T(P,Q). In practice, the ISW2

values are computed from the approximate embedding:
ISW2(ρ1, ρ2) ≈ ∥ηD(ρ1) − ηD(ρ2)∥RD . We denote the
resulting statistic by T̃L,D′ .

The difference between T̃L,D′ and the population version
(i.e. T − T̃L,D′) can be decomposed as (T − T̂) + (T̂ −
T̂L) + (T̂L − T̃L,D′), where the summands inside the
terms T̂L and T̃L,D′ correspond to partial sums that ap-
proximate ISW2

2 (·, ·) by
∑L

l=1 α(λl)W2
2 (ϕl♯·, ϕl♯·), and

W2
2 (ϕl♯·, ϕl♯·) by ∥ηD′(ϕl♯·) − ηD′(ϕl♯·)∥2, respectively.

We show in Appendix A.4 that a) summands in the second
and third terms in the sum can be made infinitesmally small
by choosing large enough L and D′, respectively; b) an
asymptotic result for the first difference can be obtained
by extending the tools from Gretton et al. (2012); Serfling
(2009). These results are based on several assumptions de-
tailed in Appendix A.4. Combining the two results, we
establish asymptotic distributions of T̃L,D′ :

Theorem 5.1. Assume relevant conditions (see Ap-
pendix A.4) hold. Define N = N1 +N2, and suppose that
as N1, N2 → ∞, we have N1/N → ρ1, N2/N → ρ2 =
1−ρ1, for some fixed 0 < ρ1 < 1.With L ≥ LN , D

′ ≥ DN

chosen in an appropriate way (see Appendix A.4), under
H0 : Cη#P = Cη#Q we have

N T̃L,D′ ;
∞∑

m=1

γm(A2
m − 1),

where Am ∼ N(0, 1) for m = 1, 2, . . ., and γm are the
eigenvalues of a certain operator that depends on P and Q.
Further, under H1 : Cη#P ̸= Cη#Q ,

√
N
(
T̃L,D′ − T

)
is

asymptotically Gaussian with mean 0 and finite variance.

We evaluate the power performance of the testing procedure
based on T̃L,D′ for the sequence of contiguous alternatives
H1N = {(P,Q) : Cµ#P = Cµ#Q + δN , l = 1, 2, . . .},
where the deviation from null is quantified collectively by
pushforward differences δℓN ∈ H, δN = ⊕ℓ(

√
αℓδℓN ) that

are made to approach 0 as N →∞. The following theorem
establishes consistency of our testing procedure against a
family of such local alternatives.

Theorem 5.2. Assume the same conditions and choice of
L,D′ as Theorem 5.1. Then for the sequence of contiguous
alternatives H1N such that N∥δN∥2H∗ →∞, the test based
on T̃L,D′ is consistent for any α ∈ (0, 1), that is asN →∞
the asymptotic power approaches 1.

Testing Procedure In practice, to obtain the p-value for
the T̃L,D′ -statistic we use a bootstrap procedure. Remember
that T̃L,D′ is computed via the approximate embedding ηD
with D = LD′. The collection {µi}N1

i=1 is mapped to the
collection {Xi = ηD(µi)}N1

i=1 of vectors in RD drawn in an
i.i.d. manner from ηD#P = P ◦ η−1

D ∈ P(RD). Similarly,
for the other collection we have a sample {Yi = ηD(νi)}N2

i=1

drawn from ηD#Q. Now, the null H0 : Cη#P = Cη#Q im-
plies that the means of the distributions ηD#P and ηD#Q
coincide in RD.

The bootstrap null distribution for T̃L,D′ can be obtained
as follows. Let X̄ and Ȳ be the sample means; construct
the combined sample {Xi − X̄ + X̄+Ȳ

2 }
N1
i=1

⋃
{Yi − Ȳ +

X̄+Ȳ
2 }

N2
i=1. This centers both samples at X̄+Ȳ

2 . Now,
from the combined sample we select with replacement N1

(resp. N2) samples to make bootstrap sample {Xb
i }

N1
i=1

(resp. {Y b
i }

N2
i=1). Repeat this process B times (we take

B = 1000 in our experiments), and collect the null test
statistic values T̃b

L,D′ = T̃L,D′({Xb
i }

N1
i=1, {Y b

i }
N2
i=1) for

b = 1, ..., B. The approximate p-value is then given by:
p = 1

B+1

(
|{b : T̃b

L,D′ ≥ T̃L,D′}|+ 1
)

.

Remark 5.3. Permutation testing cannot be applied here
as it would detect differences beyond the mean inequality.
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Such differences help reject the stronger null hypothesis
H0 : P = Q which can be the intent in some situations.
However, such a rejection will not allow pinpointing the
aspect responsible for the difference; see (Huang et al.,
2006).

5.2. Testing via p-value Combination

The bootstrap test above incurs a high computational cost
and the granularity of the p-values is determined by the
number of resamples, which can be too coarse in massive
multiple comparison settings often seen in industrial applica-
tions. Thus, we propose an approach that avoids resampling.

As explained above, testing H0 : Cη#P = Cη#Q can be
interpreted as testing whether the means of the distributions
ηD#P and ηD#Q coincide in RD. To this end, we adopt
the approach proposed by Rustamov & Klosowski (2020)
in a spatial statistics context.

First, we apply the Behrens-Fisher-Welch t-test (without
assuming equality of variances) to each coordinate of the
samples {Xi = ηD(µi)}N1

i=1 and {Yi = ηD(νi)}N2
i=1 to ob-

tain the p-values pk, k = 1, 2, ..., D. Second, an overall
p-value is computed via the harmonic mean p-value com-
bination method which is robust to dependencies (Good,
1958; Wilson, 2019):

pH = H

(
D/(

1

p1
+

1

p2
+ · · ·+ 1

pD
)

)
,

where the function H has a known form described in (Wil-
son, 2019).

Another approach for combining p-values is the Cauchy
combination test (Liu & Xie, 2020), but in our numerical ex-
periments we found that the Cauchy combination approach
encounters problems when any of the p-values is very close
to 1, which can happen in our setting due to the form of
the embedding ηD. Therefore, in contrast to Rustamov &
Klosowski (2020), for us the harmonic combination is the
only appropriate choice.

To guarantee size control, we establish a version of Theorem
1 from Liu & Xie (2020) for the harmonic mean p-value.
Assume that a test statistic Z ∈ RD has null distribution
with zero mean and every pair of coordinates of Z follows
bivariate Gaussian distribution. Compute the coordinate-
wise two-sided p-values pk = 2(1 − Φ(|Zk|)) where Φ is
the standard Gaussian CDF.
Theorem 5.4. Let pk, k = 1, ..., D be the null p-values as
above and pH computed via harmonic mean approach, then
limα→0 Prob{pH ≤ α}/α = 1.

The proposed procedure asymptotically controls the size of
the test for small α (Appendix A.5). Our experimental re-
sults show that the control is already achieved for moderate
sample sizes and the commonly used α = 0.05.

Fb

L2b

Fmaxb

ISW comb

ISW boot

0 2 4 6
log10(Time)

M
et

ho
d

Frechet

DISCO

ISW comb

ISW boot

0 2 4 6
log10(Time)

M
et

ho
d

(a) (b)

Figure 2. Running times for (a) real line and (b) circle experiments.

6. Experiments
We compare the performance of our tests with several ex-
isting methods, across synthetic and real data, and settings
of the embedding parameters L,D′. For evaluation, we
use empirical power at different degrees of departure from
the null hypothesis (Captured by δ in the plots in Fig. 3),
calculated by averaging the proportion of rejections at level
α = 0.05 over 1000 independent datasets, with samples
divided into two groups of sizes n1 = 60, n2 = 40. To
ensure the tests are well-calibrated, we calculate nominal
sizes assuming the two sample groups are drawn from the
same meta-distribution. Details on the experiment settings
and computational complexity are in Appendix B.1.

Finite intervals We use embedding dimensions L =
3, D′ = 10 to compare our method against 11 functional
ANOVA tests—we report results for 3 of them in Figure 3a
(see Appendix B for complete results). All methods main-
tain nominal size for δ = 0 (Figure 3a). While the combina-
tion test (ISD comb) based on our proposal outperformed
all the other tests across all values of δ, the bootstrap test
that uses the overall T statistic (ISD T boot) performs better
than Fmaxb but worse than others. In terms of computation
time, ISD comb takes the least amount of time (Fig. 2a).

We also compare the p-value combination test based on
an unsliced 24-dimensional inverse CDF embedding with
sliced ISW2-based tests (Figure 3b). We use multiple pairs
of (L,D′) values, all of them giving overall embeddings
of dimension D = LD′ = 24. The performance of an
ISW2-based test that uses slicing over only the first eigen-
function is almost as good as the unsliced version. With
more eigenfunctions, the powers first improve considerably,
then become similar to the unsliced version again.

Manifold domains We consider data from distributions
on circles and cylinders. For circular data, we take von
Mises distributions with randomly chosen parameters as
our samples. For an angle x (measured in radians), the von
Mises probability density function is given by f(x|µ, κ) =
exp[κ cos(x − µ)](2πI0(κ))−1, where I0(κ) is the modi-
fied Bessel function of order 0. We fix κ = 2, and use
µ ≡ µi ∼ N(0, 0.12), µ ≡ νi ∼ N(δ, 0.12) for samples

7
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Figure 3. Performances on synthetic data. Dotted lines indicates nominal size of all tests (α = 0.05). (a) comparison with existing
methods on finite interval—a test based on basis function representation (Gorecki & Smaga, 2015, FP), a sum-type ℓ2 norm-based test
(L2b) (Zhang, 2013), and a max-type test (Zhang et al., 2019) that uses the maximum of coordinate-wise F statistic (Fmaxb), (b) unsliced
vs. different settings of (L,D′) on finite interval. (c) Circular data, comparing with Fréchet ANOVA (Dubey & Müller, 2019), and the
DISCO nonparametric test (Rizzo & Székely, 2010); (d) harmonic combination tests on cylindrical data for L = 4. .

from group 1 and 2 respectively—with δ ∈ [0, 15]× π/180
(i.e. 0 to 15 degrees converted to radians). As each ob-
servation vector, we take 100 random draws from each
sample-specific distribution. For our embeddings, we use
L = 10, D′ = 20. Since the competing methods cannot
handle circular geometry directly, to implement them we
cut the circle into an interval. Figure 3c shows that all
methods maintain nominal size, but both our tests maintain
considerably higher power than existing methods for all
δ. Computationally, ISD comb has comparable order of
magnitude as the other two methods (Fig. 2b).

To generate cylindrical data, we use the distribution pro-
posed by Mardia & Sutton (1978). Samples from each dis-
tribution have the form of a bivariate random vector (Θ, X),
where the first (circular) marginal Θ has a von Mises dis-
tribution, and X is a Gaussian conditional on Θ = θ. We
draw the mean parameters for each coordinate-wise distribu-
tion from Unif(0, 1) and Unif(δ, δ + 1) for sample groups
1 and 2 respectively, with δ ∈ [0, 30] × π/180. We then
use 500 random draws from each sample distribution to
obtain histograms. To evaluate the effects of choosing L,D′

we calculate our embeddings for L ∈ {2, 3, 4, 5}, D′ ∈
{6, 8, 12, 24, 48}. The choice of L has small effect on per-
formance, so we report results for L = 4 in Figure 3d.
Higher values of D′ result in some increase in power.

Comparison to existing slicing methods As an exam-
ple showcasing the importance of using intrinsic distances,
consider the following graph setup: points A and B are
adjacent on a planar regular 200-gon, with the edge AB
removed. The intrinsic distance between A and B is large
and the (extrinsic) Euclidean distance is small. No matter
what Euclidean projection we use, the SW cost of moving
probability mass from A to B would be small, leading to
testing power loss when we compare two distribution sets
that concentrate one around A and the other around B. To
numerically analyze this case we generate distributions on

this graph by putting Unif(0,1) weights at each of the ver-
tices, and added an additional weight of 10 to the bin at
point A to obtain the first set of distributions with a mode at
A. For the second set we put the weight of 10 at B instead
to obtain a set of distributions with mode at B.

Method Power Size Time (sec)

ISW2 1.00 0.029 630.67
SW 0.128 0.029 579.3

GSW-circle 0.128 0.029 564.82
GSW-poly3 0.025 0.025 779.69
GSW-poly5 0.044 0.035 1009.85

MSW 1.00 0.63 61764.22
ST 1.00 0.048 21474.88

Table 1. Comparison of multiple slicing techniques.

Table 1 shows comparison of ISW2 with Sliced Wasserstein
(SW) in two dimensions, GSW with 3 choices of defining
functions (circular, homogeneous polynomial of degree 3,
and degree 5), MSW, and Sobolev transport (ST). We use
L = 10, D′ = 8 to produce all embeddings, and implement
the sliced version of ST by aggregating ST distances origi-
nating from 10 random vertices. ISW2 achieves the highest
possible power, maintains nominal type-I error, and has
computational time comparable to SW/GSW. ST and MSW
achieve the same power as ISW2, but take much longer.
This is because unlike slicing-based methods, they need to
rely on permutation testing in absence of embeddings. For
MSW, the high power comes at the price of a size that is
much higher than the acceptable threshold of 0.05.

7. Real Data Examples
NHANES This dataset (NHANES, 2008) contains phys-
ical activity pattern readings for 6839 individuals, corre-
sponding to activity monitor intensity values for 24× 60 =
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Age Groups 6–15 16–25 26–35 36–45 46–55 56–65 66–75 76–85

6–15 0.394 0.098 0.555 0.882 0.985 0.919 0.997
16–25 1.2e-13 0.575 0.967 0.126 0.921 0.911 0.977
26–35 3.1e-21 2.7e-04 0.459 0.197 0.996 0.919 0.565
36–45 6.1e-22 7.9e-08 0.042 0.864 0.637 0.849 0.991
46–55 8.2e-22 4.7e-05 0.011 0.343 0.841 0.165 0.554
56–65 1.3e-25 0.001 0.001 5.6e-05 0.003 0.991 0.962
66–75 3.6e-35 7.8e-12 1.5e-11 4.6e-15 1.8e-13 0.001 0.989
76–85 3.8e-46 1.4e-26 1.7e-30 8.4e-37 2.1e-35 1.3e-17 6.5e-09

Table 2. Activity intensity comparison across age groups in the NHANES data. Below
diagonal: p-values for the actual data comparisons. Above diagonal: null p-values
obtained by combining and randomly splitting the two groups. Bold entries correspond to
rejected hypotheses with the BH procedure at FDR level 0.1.

Crime Type Tue vs Thu Tue vs Sat

Theft 0.428 4.2e-06
Deceptive Pract. 0.313 0.001
Battery 0.430 0.001
Robbery 0.119 0.003
Narcotics 0.854 0.004
Criminal Dam. 0.855 0.02
Other Offense 0.931 0.052
Burglary 0.142 0.261
Assault 0.997 0.38
Motor Veh. Theft 0.858 0.416

Table 3. Chicago Crime analysis p-values.
Bold entries correspond to rejected hypothe-
ses with the BH procedure at FDR level 0.1.

1440 minutes throughout the day, over 7 days. We cap-
ture this activity pattern into a cylindrical histogram with
time and intensity dimensions, having 96 and 100 bins
respectively. Since the time dimension is periodic, nor-
malized counts of this histogram can be considered as
person-specific probability distributions over the cylinder
S1(T1) × [0, T2), with T1 = 96, T2 = 100. To check if
activity patterns vary across different groups of individuals,
we first split individuals into age-specific groups: 6–15, 16–
25, ...,76–85, then sample 100 males and 100 females from
each split. For our analysis, we consider L = 3 indices
along the two directions, i.e. ℓ1, ℓ2 = 1, 2, 3 and D′ = 5.
We summarize the p-value combination test results in Table
6, below the diagonal. We control false discovery rate at 0.1
by running the resulting p-values through the procedure of
Benjamini & Hochberg (1995). ISW2 detects statistically
significant differences between all pairs of groups, except
the 36–45 and 46–55 groups. As expected, the control p-
values—obtained by mixing male and female samples in
each age group and splitting arbitrarily—do not concentrate
near zero. More details are given in Appendix B.2.

Chicago Crime We use this dataset (City of Chicago,
2022) to show a practical usage of our method on histograms
over graphs. Each beat (geographic area subdivision used
by police) corresponds to a vertex, and two vertices are
connected by an edge if the corresponding beats share a
geographic boundary. For each crime type and day, the nor-
malized counts of that crime type for each beat gives a daily
probability distribution over the graph. Our goal is to com-
pare the collection of distributions of, say, theft occurring
on Tuesday to those of Thursday and Saturday. The Tuesday
versus Thursday comparison is intended as a null case, as
we do not expect to see any differences between them (Rus-
tamov & Klosowski, 2020). Table 7 results ISW2 outcomes
using 100-dimensional embeddings (L = 20, D′ = 5).We
detect statistically significant differences between Tuesday

and Saturday patterns for six categories of crime, and as
expected, no differences between Tuesday and Thursday pat-
terns. For more details and another graph-based application,
see Appendices B.3 and B.4, respectively.

8. Conclusion
In this paper we have introduced a novel class of sliced
Wasserstein distances on manifolds and graphs, and applied
the resulting ISW2 distance in the context of hypothesis
tests for meta-distributions on general domains, due to the
high relevance of this setup in real data situations. It is
worth pointing out that the assumption-lean nature of ISW2

can enable its adoption by many other statistical and ML
methods.

The ISW2 embeddings can be used to do other hypothesis
tests, such as tests for equality of covariances by extending
the notion of Wasserstein covariances from (Petersen &
Müller, 2019) to general domains. The embeddings can also
be used as input features for supervised learning problems
over distributions. In another direction, ISW2 is directly
applicable as a loss function for generative modeling. For
example, if one is generating distributions over a graph or
manifold, ISW2 can serve as a loss function similarly to
how other sliced distances are used in this context over
Euclidean domains.

The proposed framework has a few limitations. There is
scope of exploration for choosing the parameters L and D′

in a principled manner. Empirical computation of eigenfunc-
tions for general manifolds will introduce approximation
errors that need to be tackled by expanding our theoreti-
cal results. In terms of potential societal impacts of our
proposal, any difference between data distributions from dif-
ferent demographic groups found using our method should
be evaluated in light of potential biases in the data collection
stage.
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Appendix
For the appendix to be self-contained, we restate results (theory and experiments) in the main paper when necessary.
Appendix A contains proofs of theoretical results and some implementation details. Details and results of experiments
performed are in Appendix B. Code and data behind these experiments are at https://github.com/shubhobm/isw.

A. Proofs and additional results
A.1. Proofs and Notes for Section 3

Proposition 3.4. For P,Q ∈ P(P(X )), the following equality holds:

T(P,Q) = Eµ∼P,ν∼Q[D2(µ, ν)]− 1

2
Eµ,µ′∼P [D2(µ, µ′)]− 1

2
Eν,ν′∼Q[D2(ν, ν′)], (5)

where to avoid notational clutter we use D2(·, ·) as a shorthand for (D(·, ·))2.

Proof. This is a straightforward application of the “kernel trick”: using the Hilbert property of the distance we can rewrite,

Eµ∼P,ν∼Q[∥η(µ)− η(ν)∥2H]− 1

2
Eµ,µ′∼P [∥η(µ)− η(µ′)∥2H]− 1

2
Eν,ν′∼Q[∥η(ν)− η(ν′)∥2H]

=Eµ∼P [∥η(µ)∥2H] + Eν∼Q[∥η(ν)∥2H]− 2⟨Eµ∼P [η(µ)],Eν∼Q[η(ν)]⟩H
−Eµ∼P [∥η(µ)∥2H]− Eν∼Q[∥η(ν)∥2H]

+⟨Eµ∼P [η(µ)],Eµ∼P [η(µ)]⟩H + ⟨Eν∼Q[η(ν)],Eν∼Q[η(ν)]⟩H
=∥Eµ∼P [η(µ)]− Eν∼Q[η(ν)]∥2H = T(P,Q).

Which gives the sought equivalence.

A.2. Proofs and Notes for Section 4.1

Proposition 4.2. If X is a smooth compact n-dimensional manifold and
∑

ℓ λ
(n−1)/2
ℓ α(λℓ) < ∞, then ISW2 is well-

defined.

Proof. We use Hörmander’s bound on the supremum norm of the eigenfunctions:

∥ϕℓ∥∞ ≤ cλ(n−1)/4
ℓ ∥ϕℓ∥2,

for some constant c that depends on the manifold. By orthonormality of the eigenfunctions we have ∀ℓ, ∥ϕℓ∥2 = 1. Next,
note thatW2(ϕℓ♯µ, ϕℓ♯ν) ≤ 2∥ϕℓ∥∞ as the maximum distance that the mass would be transported in any transportation
plan involving pushforwards via ϕℓ is upper bounded by 2∥ϕℓ∥∞. As a result, every term in the series defining ISW2 can
be upper-bounded by the terms of the following series:∑

ℓ

4∥ϕℓ∥2∞α(λℓ) ≤
∑
ℓ

4c2λ
(n−1)/2
ℓ α(λℓ) ∝

∑
ℓ

λ
(n−1)/2
ℓ α(λℓ),

which proves the claim by the direct comparison test for convergence of series.

Remark A.1. When Weyl law applies, we have that λℓ = Θ(ℓ2/n), which allows us to replace the above condition by∑
ℓ ℓ

(n−1)/nα(λℓ) <∞. For the diffusion kernel/distance choice of α(λ) = e−tλ the series always converges independently
of the manifold dimension. For biharmonic choice of α(λ) = 1/λ2, the sufficient condition is the convergence of∑

ℓ ℓ
(n−1)/n/λ2ℓ ∼

∑
ℓ ℓ

(n−1)/n/(ℓ2/n)2 =
∑

ℓ ℓ
(n−5)/n, where we applied Weyl’s asymptotic again. As a result, the

biharmonic choice of α is guaranteed to provide a well-defined ISW2 for 1 and 2-dimensional manifolds. Notice, however,
that the Hörmander’s bound used in the proof of the above proposition can be rather lax in some of the settings that are
practically relevant, such as the product spaces of lines and circles (where all of the eigenfunctions are bounded by a constant
as can be seen from Table 4), and, thus, convergence for the biharmonic choice holds more widely.
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Proposition 4.3. If D is a Hilbertian probability distance such that ISD is well-defined, then

(i) ISD is Hilbertian, and

(ii) ISD satisfies the following metric properties: non-negativity, symmetry, the triangle inequality, and ISD(µ, µ) = 0.

Proof. By Hilbertian property of D, there exists a Hilbert space H0 and a map η0 : P(R) → H0 such that D(ρ1, ρ2) =
∥η0(ρ1)−η0(ρ2)∥H0 for all ρ1, ρ2 ∈ P(R). Plugging this into the definition of ISD we have ISD(µ, ν) = ∥η(µ)−η(ν)∥H,
whereH = ⊕ℓH0 and the ℓ-th component of η(µ) is

√
α(λℓ)η0(ϕℓ♯µ) ∈ H0. The second part of Proposition A.2 directly

follows from the Hilbert property.

Proposition A.1. When µ = δx(·), ν = δy(·) for two points x, y ∈ X , we have ISW2(µ, ν) = d(x, y), where d(·, ·) is the
spectral distance corresponding to the choice of α(·).

Proof. We have ϕℓ♯δx = δϕℓ(x) and similarly for y. NowW2
2 (ϕℓ♯µ, ϕℓ♯ν) =W2

2 (δϕℓ(x), δϕℓ(y)) = (ϕℓ(x)−ϕℓ(y))2. This
last equality follows from the fact that the 2-Wasserstein on real line between delta measures is equal to the distance between
the two points. Then scaling and adding up gives exactly the kernel distance d(x, y) between the two points.

Proposition 4.4. Let D(ρ1, ρ2) = |Ex∼ρ1
[x] − Ey∼ρ2

[y]| for ρ1, ρ2 ∈ P(R), then the corresponding intrinsic sliced
distance is equivalent to the MMD with the spectral kernel k(·, ·).

Proof. We can rewrite the definition as follows:

ISD2(µ, ν) =
∑
ℓ

α(λℓ)(Ex∼ϕℓ♯µ[x]− Ey∼ϕℓ♯ν [y])
2 =

∑
ℓ

α(λℓ)(Ex∼µ[ϕℓ(x)]− Ey∼ν [ϕℓ(y)])
2

=
∑
ℓ

α(λℓ)(Ex,x′∼µ[ϕℓ(x)ϕℓ(x
′)] + Ey,y′∼ν [ϕℓ(y)ϕℓ(y

′)]− 2Ex∼µ,y∼ν [ϕℓ(x)ϕℓ(y)])

=Ex,x′∼µ[
∑
ℓ

α(λℓ)ϕℓ(x)ϕℓ(x
′)] + Ey,y′∼ν [

∑
ℓ

α(λℓ)ϕℓ(y)ϕℓ(y
′)]

− 2Ex∼µ,y∼ν [
∑
ℓ

α(λℓ)ϕℓ(x)ϕℓ(y)]

=Ex,x′∼µ[k(x, x
′)] + Ey,y′∼ν [k(y, y

′)]− 2Ex∼µ,y∼ν [k(x, y)],

where we used the spectral kernel k(x, y) =
∑

ℓ α(λℓ)ϕℓ(x)ϕℓ(y). The last expression coincides with the MMD based on
kernel k(·, ·); see Lemma 6 in (Gretton et al., 2012).

Proposition 4.5. MMD(µ, ν) ≤ ISW2(µ, ν) when the same α(·) is used in both constructions.

Proof. This follows directly from the fact that for ρ1, ρ2 ∈ P(R) the inequality |Ex∼ρ1
[x]− Ey∼ρ2

[y]| ≤ W1(ρ1, ρ2) ≤
W2(ρ1, ρ2) holds. Here the first inequality follows from the centroid bound (Rubner et al., 2000), and the second inequality
is the well-known ordering property of Wasserstein distances (Villani, 2003).

Theorem 4.6. If α(λ) > 0 for all λ > 0, then ISW2 is a metric on P(X ).

Proof. In the light of the Proposition A.2 it remains only to prove that ISW2(µ, ν) = 0 implies µ = ν. According to
Proposition A.2, ISW2(µ, ν) = 0 yields MMD(µ, ν) = 0. The assumption that α(λ) > 0 for all λ > 0 implies that the
spectral kernel k(·, ·) corresponding to α(·) is universal (Micchelli et al., 2006). Universality implies the characteristic
property (Gretton et al., 2012), which in turn means that MMD(µ, ν) = 0 is equivalent to µ = ν, proving the claim.

Proposition 4.7. There exists a constant c depending only on X such that for all µ, ν ∈ P(X ) the inequality ISW2(µ, ν) ≤
cWX

2 (µ, ν)

√∑
ℓ λ

(n+3)/2
ℓ α(λℓ) holds; here, n is the dimension of X .

Proof. We remindWX
2 is the 2-Wasserstein distance defined directly P(X ) using the geodesic distance as the ground metric.

The Neumann eigenfunctions on compact manifolds satisfy the inequality ∥∇ϕℓ∥∞ ≤ c1λℓ∥ϕℓ∥∞, see (Hu et al., 2015).
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Applying the bound used in the proof of convergence, ∥ϕℓ∥∞ ≤ c2λ(n−1)/4
ℓ , we get that ϕℓ is Lipschitz with respect to the

geodesic distance on X with the Lipschitz constant bounded by cλℓλ
(n−1)/4
ℓ = cλ

(n+3)/4
ℓ .

Consider the optimal coupling between µ and ν whose cost equals toWX
2 (µ, ν). Note that this coupling straightforwardly

provides a coupling between the pushforwards ϕℓ♯µ and ϕℓ♯ν. Using the Lipschitz property of eigenfunctions, we see that
the cost of the pushforward coupling is smaller than cλ(n+3)/4

ℓ WX
2 (µ, ν). Since any such coupling provides an upper bound

onW2(ϕℓ♯µ, ϕℓ♯ν), we haveW2(ϕℓ♯µ, ϕℓ♯ν) ≤ cλ(n+3)/4
ℓ WX

2 (µ, ν). Plugging this into the formula for ISW2 we get the
claimed bound.

Proposition 4.8. Let {µi}Ni=1 and {νi}Ni=1 be two collections of probability measures on P(X ), such that ∀i,WX
2 (µi, νi) ≤

ϵ, then T({µi}Ni=1, {νi}Ni=1) ≤ C2ϵ2. Here C = c

√∑
ℓ λ

(n+3)/2
ℓ α(λℓ) from previous proposition and is assumed to be

finite.

Proof. We have

T({µi}Ni=1, {νi}Ni=1) =

∥∥∥∥∥ 1

N

N∑
i=1

η(µi)−
1

N

N∑
i=1

η(νi)

∥∥∥∥∥
2

H

=

∥∥∥∥∥ 1

N

N∑
i=1

(η(µi)− η(νi))

∥∥∥∥∥
2

H

≤ 1

N

N∑
i=1

∥η(µi)− η(νi)∥2H =
1

N

N∑
i=1

ISW2
2 (µi, νi) ≤

1

N

N∑
i=1

(CWX
2 (µi, νi))

2

≤ 1

N
N(Cϵ)2 = C2ϵ2.

A.3. Computational Details for Section 4.2

The case of finite intervals is the building block for the general case, so let us first consider the case of X = [0, T ]. We
represent a histogram over this interval by a discrete measure of the form µ =

∑
waδxa

with the histogram bin centers
xa ∈ [0, T ] and weights wa satisfying

∑
wa = 1, where a = 1, 2, ..., A. Note that it is not required for the histograms

in the collections to be supported at the same bin locations. For a given histogram, let {x(a), w(a)}Aa=1 be the locations
sorted from smallest to largest and their corresponding weights; since the bin locations are unique there will not be any
ties. The quantile function is computed via F−1

µ (s) := min{x(a) :
∑

b≤a w(b) > s}. The approximate map η0D′ now can be
computed using the sk-th quantile value F −1

µ (sk) for each value of sk, k = 1, ..., D′.

For a general domain X , the histogram representation is the same as above:
∑
waδxa with the histogram bin centers

xa ∈ X and weights wa satisfying
∑
wa = 1, where a = 1, 2, ..., A. The pushforward ϕℓ♯µ gives a histogram on the

real line defined by
∑
waδϕℓ(xa). Note that while xa are distinct, their images under ϕℓ do not have to be distinct, so one

re-aggregates the weights to obtain
∑

a∈S w
′
aδϕℓ(xa), where S is a subset of 1, 2, ..., A and w′

a are the new weights. It is
now straightforward to compute the quantile function as before and build the approximate map (ηD)ℓ. Doing so for the
different values of ℓ and concatenating the resulting vectors gives ηD.

In practice, these computations can be carried out on a variety of domains—analytic manifolds, manifolds discretized as
point clouds or meshes, and graphs. In most cases the spectral decomposition of the Laplace-Beltrami operator or graph
Laplacian has to be computed numerically (Coifman & Lafon, 2006; Reuter et al., 2009). For applications that involve simple
manifolds, the eigenvalues and eigenfunctions can be computed analytically. For completeness we list them in Table 4. Note
that we benefit from the fact that the eigen-decomposition for product spaces can be derived from the eigen-decompositions
of the components.

The choice of the function α(·) determining the contributions of each spectral band is problem specific. When working
on manifolds of low dimension, the choice of α(·) that corresponds to the biharmonic distance is convenient. While the
diffusion distance provides a general choice that works on manifolds of any dimension, the biharmonic distance does not
have any parameters to tune and was shown to provide an excellent alternative to the geodesic distance in low-dimensional
settings (Lipman et al., 2010). When in doubt, inspecting the behavior of the distance on the underlying domain will allow
assessing whether the distance is appropriate for the given problem.The importance of relying on a well-behaved spectral
distance was highlighted in Proposition A.1.
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X Eigenvalues Eigenfunctions

[0, T ] (πℓT )2
√

2
T cos πℓx

T

S1(T ) = [0, T ] mod T ( 2πℓT )2
√

2
T [cos / sin]

2πℓx
T

[0, T1]× [0, T2] (πℓ1T1
)2+(πℓ2T2

)2
√

4
T1T2

cos πℓ1x
T1

cos πℓ2x
T2

S1(T1)× [0, T2] ( 2πℓ1T1
)2 + (πℓ2T2

)2
√

4
T1T2

[cos / sin] 2πℓ1xT1
cos πℓ2x

T2

S1(T1)× S1(T2) ( 2πℓ1T1
)2 + ( 2πℓ2T2

)2
√

4
T1T2

[cos / sin] 2πℓ1xT1
[cos / sin]πℓ2xT2

S2 Spherical harmonics (Borden & Luscombe, 2017)
Graphs/Data Clouds/Meshes Eigen-decomposition of the Laplacian matrix

Table 4. Eigenvalues and eigenfunctions of the Laplace-Beltrami operator with Neumann boundary conditions for simple manifolds. We
exclude zero eigenvalue and the corresponding constant eigenvector; thus, all indices ℓ, ℓ1, ℓ2 run over positive integers. The notation
[cos / sin] means picking either the cosine or sine function—all choices must be used, giving multiple eigenfunctions.

A.4. Proofs and Notes for Section 5.1

We remind that we will be using the following test statistic for the results that are discussed below:

T̂ ≡
∑
i,j

ISW2
2 (µi, νj)

N1N2
−
∑

i,j:i̸=j

ISW2
2 (µi, µj)

2N1(N1 − 1)
−
∑

i,j:i ̸=j

ISW2
2 (νi, νj)

2N2(N2 − 1)
. (6)

Proposition A.2. Assume conditions (i)-(iii) hold. Define N = N1 + N2, and assume that as N1, N2 → ∞, we have
N1/N → ρ1, N2/N → ρ2 = 1 − ρ1, for some fixed 0 < ρ1 < 1. Define a new measure R as a scaled mixture of the
centered pushforward measures

R =

(
1

ρ1
+

1

ρ2

)−1 [
1

ρ1
(η#P − Cη#P ) +

1

ρ2
(η#Q− Cη#Q)

]
= ρ2 (η#P − Cη#P ) + ρ1 (η#Q− Cη#Q) .

Suppose γm,m = 1, 2, . . . are the eigenvalues of

1

ρ1ρ2

∫
H
⟨x, x′⟩Hψm(x′)dR(x′) = γmψm(x).

Then under H0 : Cη#P = Cη#Q we have

N T̂ ;
∞∑

m=1

γm(A2
m − 1), (7)

where Am are i.i.d. N (0, 1) random variables. Under H1 : Cη#P ̸= Cη#Q we have
√
N(T̂− T) ; N(0, σ2

1), where

σ2
1 = 4

[
1

ρ1
Vµ∼PEµ′∼P ⟨η(µ), η(µ′)⟩H +

1

ρ2
Vν∼QEν′∼Q⟨η(ν), η(ν′)⟩H+

1

ρ1
Vµ∼PEν∼Q⟨η(µ), η(ν)⟩H +

1

ρ2
Vν∼QEµ∼P ⟨η(µ), η(ν)⟩H

]
. (8)

Proof. Using the Hilbertianity of ISD (Proposition A.2), we have

ISD2(µi, µj) =∥η(µi)− η(µj)∥2H
=∥η(µi)∥2H + ∥η(µj)∥2H − 2⟨η(µi), η(µj)⟩H

,

Consequently ∑
i,j:i ̸=j

ISD2(µi, µj) = 2(N1 − 1)

N1∑
i=1

∥η(µi)∥2H − 2
∑

i,j:i ̸=j

⟨η(µi), η(µj)⟩H.
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Similarly,

∑
i,j:i ̸=j

ISD2(νi, νj) = 2(N2 − 1)

N2∑
i=1

∥η(νi)∥2H − 2
∑

i,j:i ̸=j

⟨η(νi), η(νj)⟩H,

∑
i,j

ISD2(µi, νj) = N2

N1∑
i=1

∥η(µi)∥2H +N1

N2∑
j=1

∥η(νj)∥2H − 2
∑

i,j:i ̸=j

⟨η(µi), η(νj)⟩H.

Putting these back into Eq. (6) after simplifying and cancelling out the norm-square terms we have

T̂ =
1

N1(N1 − 1)

∑
i,j:i ̸=j

⟨η(µi), η(µj)⟩H +
1

N2(N2 − 1)

∑
i,j:i ̸=j

⟨η(νi), η(νj)⟩H

− 2

N1N2

∑
i,j

⟨η(µi), η(νj)⟩H. (9)

At this point, we replace the maps η by their centered versions η̃(µ) = η(µ)−Cη#P , η̃(ν) = η(ν)−Cη#Q; remember that
the center of mass of η#P is denoted by Cη#P . Accumulating the sample-level partial sums above the centering terms
cancel out under H0 : Cη#P = Cη#Q, so that each η can be replaced by η̃ in (9) above.

Denote xi ≡ η̃(µi), yi ≡ η̃(νi) as the Hilbert-embedded samples of X ∼ η̃#P, Y ∼ η̃#Q, respectively. We remind
now that R is a mixture of the centered pushforward measures: R = ρ2(η̃#P ) + ρ1(η̃#Q). Let L2(H, R) be the space
of real-valued functions on H that are square integrable with respect to R. Now we can define the following operator
S : L2(H, R)→ H,

(Sf)(x) :=

∫
H
⟨x, x′⟩Hf(x′)dR(x′).

Following condition (ii), ⟨·, ·⟩H is square-integrable under R. The above operator is thus Hilbert-Schmidt, hence compact
(Reed & Simon, 1080, Theorem VI.23). Consequently, it permits an eigenfunction decomposition with respect to measure
R, ⟨x, x′⟩H =

∑∞
m=1 γmψm(x)ψm(x′), for x, x′ ∈ H. Note that here ψm : H → R and∫

H
⟨x, x′⟩ψm(x′)dR(x′) = γmψm(x),

∫
H
ψm(x)ψn(x)dR(x) = δmn.

Due to the centering of η we also have when γm ̸= 0,

γmEX [ψm(x)] =

∫
H
EX [⟨x, x′⟩H]ψn(x

′)dR(x′) = 0 ⇒ EX [ψm(x)] = 0.

Similarly, EY [ψm(y)] = 0. The V-statistic from the overall sample can now be written as an infinite sum (Serfling, 2009,
Section 5.5):

∥Ĉη#P − Ĉη#Q∥2H =

∞∑
m=1

γm

(
1

N1

N1∑
i=1

ψm(xi)−
1

N2

N2∑
i=1

ψm(yi)

)2

:=

∞∑
m=1

γma
2
m.

Our goal is to show that (a) am ; N (0, (Nρ1ρ2)
−1), for ∀m, and (b) am and an are independent when m ̸= n.

First note that

E(am) = E

(
1

N1

N1∑
i=1

ψm(xi)−
1

N2

N2∑
i=1

ψm(yi)

)
= 0.
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In addition we have,

Cov(am, an) = E(aman)− E(am).E(an)
= E(aman)

= E

(
1

N1

N1∑
i=1

ψm(xi)−
1

N2

N2∑
i=1

ψm(yi)

)(
1

N1

N1∑
i=1

ψn(xi)−
1

N2

N2∑
i=1

ψn(yi)

)

= EX

(
1

N2
1

N1∑
i=1

ψm(xi)ψn(xi)

)
+ EY

(
1

N2
2

N2∑
i=1

ψm(yi)ψn(yi)

)

=
1

ρ1N
EX

(
1

N1

N1∑
i=1

ψm(xi)ψn(xi)

)
+

1

ρ2N
EY

(
1

N2

N2∑
i=1

ψm(yi)ψn(yi)

)

=
1

N

[
1

ρ1

∫
H
ψm(x)ψn(x)d(η̃#P )(x) +

1

ρ2

∫
H
ψm(y)ψn(y)d(η̃#Q)(y)

]
=

1

Nρ1ρ2

∫
H
ψm(z)ψn(z)dR(z)

=
1

Nρ1ρ2
δmn.

An application of CLT follows that (a) holds. This together with vanishing covariance proves (b). Consequently, we can apply
the CLT for degenerate V-statistics (Serfling, 2009, Section 5.5.2) to obtain the limiting distribution, with Am ∼ N (0, 1),

N∥Ĉη#P − Ĉη#Q∥2H ;
∞∑

m=1

γm
ρ1ρ2

A2
m.

Let us now look at the difference between this V-statistic and our U-statistic, i.e. T̂ in (9). We see that

∥Ĉη#P − Ĉη#Q∥2H − T̂ =
1

N2
1

∑
i,j

⟨xi, xj⟩H +
1

N2
2

∑
i,j

⟨yi, yj⟩H −
2

N1N2

∑
i,j

⟨xi, yj⟩H

− 1

N1(N1 − 1)

∑
i,j;i ̸=j

⟨xi, xj⟩H +
1

N2(N2 − 1)

∑
i,j;i ̸=j

⟨yi, yj⟩H +
2

N1N2

∑
i,j

⟨xi, yj⟩H

= −
[

1

N1(N1 − 1)
− 1

N2
1

] ∑
i,j;i ̸=j

⟨xi, xj⟩H −
[

1

N2(N2 − 1)
− 1

N2
2

] ∑
i,j;i ̸=j

⟨yi, yj⟩H

+

(
1

N2
1

N1∑
i=1

∥xi∥2H +
1

N2
2

N2∑
i=1

∥yi∥2H

)
= −Kx −Ky +B.

We claim that Kx = Op(N
−2
1 ),Ky = Op(N

−2
2 ), and NB P→

∑∞
m=1 γm(ρ1ρ2)

−1. As a result,

N
[
∥Ĉη#P − Ĉη#Q∥2H − T̂

]
= −NOp(N

−2
1 )−NOp(N

−2
2 ) +

∞∑
m=1

γm
ρ1ρ2

+ op(1)

=

∞∑
m=1

γm
ρ1ρ2

+ op(1),

so that N T̂ ;
∑∞

m=1 γm(ρ1ρ2)
−1(A2

m − 1), and we conclude the proof by reassigning γm ← γm(ρ1ρ2)
−1 to obtain (7).
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Proof of Claim. For the K-terms we have

Kx =

[
1

N1(N1 − 1)
− 1

N2
1

] ∑
i,j;i ̸=j

⟨xi, xj⟩H

=
1

N2
1 (N1 − 1)

∑
i,j;i ̸=j

⟨xi, xj⟩H

=

∞∑
m=1

γm
1

N1

1

N1(N1 − 1)

∑
i,j;i̸=j

ψm(xi)ψm(xj)

=

∞∑
m=1

γmK
x
m,

where Kx
m is defined as the inner sum. Since EXψm(x) = 0, we have EX(Kx

m) = 1
N1

[EXψm(x)]2 = 0, and

V arX(Kx
m) = EX [(Kx

m)2]

=
1

N2
1

EX

 1

N2
1 (N1 − 1)2

∑
i ̸=j

∑
l ̸=k

ψm(xi)ψm(xj)ψm(xl)ψm(xk)

 (10)

=
1

N2
1

EX

 1

N2
1 (N1 − 1)2

∑
i ̸=j

ψ2
m(xi)ψ

2
m(xj)

 (11)

=
1

N2
1

.
1

N1(N1 − 1)

(
EX [ψ2

m(x)]
)2
.

The cross terms—terms involving l ̸= i or k ̸= j—vanish due to the sample being iid and eigenfunctions having
zero expectations. The expectation in the last line is finite by assumption (ii), so that V arX(Kx

m) = O(N−4
1 ), giving

Kx
m = Op(N

−2
1 ). Note that the assumption (ii) moreover implies the convergence of the big-oh coefficients, leading to

Kx =
∑∞

m=1 γmK
x
m = Op(N

−2
1 ). Similarly we get Ky = Op(N

−2
2 ).

For the term B, we have

B =
1

N2
1

N1∑
i=1

∥xi∥2H ++
1

N2
2

N2∑
i=1

∥yi∥2H =

∞∑
m=1

γm

[
1

N2
1

N1∑
i=1

ψ2
m(xi) +

1

N2
2

N2∑
i=1

ψ2
m(yi)

]
:=

∞∑
m=1

γmCm.

Taking expectation,

EX,Y (Cm) =
1

ρ1N

∫
H
ψ2
m(x)d(η̃#P )(x) +

1

ρ2N

∫
H
ψ2
m(y)d(η̃#Q)(y)

=
1

Nρ1ρ2

∫
H
ψ2
m(z)dR(z)

=
1

Nρ1ρ2
.

Thus EX,Y (NB) =
∑

m γm(ρ1ρ2)
−1. Finally,

NB =

∞∑
m=1

γm

[
1

ρ1N1

N1∑
i=1

ψ2
m(xi) +

1

ρ2N2

N2∑
i=1

ψ2
m(yi)

]
P→

∞∑
m=1

γm

[
1

ρ1
EXψ

2
m(x) +

1

ρ2
EY ψ

2
m(y)

]
= EX,Y (NB)

by the weak law of large numbers. This proves the claim for B.

Alternative Distribution. For the the limiting distribution under H1, notice that the first two terms in (6) are the one-sample
U-statistic calculated on the samples {µi}N1

i=1 and {νi}N2
i=1, respectively. Using the CLT for non-degenerate U-statistics
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(Serfling, 2009, Section 5.5.1, Theorem A), we have

√
N1

[∑
i,j:i ̸=j⟨η(µi), η(µj)⟩H

N1(N1 − 1)
− Eµ,µ′∼P ⟨η(µ), η(µ′)⟩H

]
; N (0, 4Vµ∼P [Eµ′∼P ⟨η(µ), η(µ′)⟩H]) ,

√
N2

[∑
i,j:i ̸=j⟨η(νi), η(νj)⟩H

N2(N2 − 1)
− Eν,ν′∼Q⟨η(ν), η(ν′)⟩H

]
; N (0, 4Vν∼Q [Eν′∼Q⟨η(ν), η(ν′)⟩H]) .

For the third summand, using an equivalent CLT for two-sample U-statistic (Dehling & Fried, 2012, Theorem 2.1),

√
N

[∑
i,j⟨η(µi), η(νj)⟩H

N1N2
− Eµ∼P,ν∼Q⟨η(µ), η(ν)⟩H

]
;

N

(
0,

1

ρ1
Vµ∈P [Eν∼Q⟨η(µ), η(ν)⟩H] +

1

ρ2
Vν∈Q [Eµ∼P ⟨η(µ), η(ν)⟩H]

)
.

We obtain (8) by combining the above three results.

The following result now ensures that approximations of T̂ using the top few eigenfunctions and a finite number of CDF
embeddings can be constructed with small approximation errors, provided the manifold eigenvalues are declining suitably
fast and the finite dimensional ηD(·) is suitably smooth.

Proposition A.3. Suppose that (i), (ii) and (iii) hold. Then we have
√
N(T̂− T̂LN

) = op(1) and
√
N(T̂LN

− T̃LN ,DN
) =

op(1) for the following choices of LN , DN :

LN ≥ min
L′

{
L′ :

∞∑
ℓ=L′+1

αℓλ
(n+3)/2
ℓ ≤ 1

N1+δ

}
, DN ≥ kc2N1+δ

LN∑
l=1

αℓλ
(n−1)/2
ℓ ,

where δ, k > 0 are constants depending only on X .

As we mention in the discussion after condition (i), for the heat kernel with tuning parameter t: α(λ) = exp(−tλ),
the assumption (i) that

∑∞
ℓ=1 αlλ

(n+3)/2
ℓ < ∞ holds. The bound on DN is a consequence of classical bounds on

Riemann sum approximation errors in terms of ∥η′∥∞. Absolute continuity of µ ∼ P, ν ∼ Q ensures the existence of
(F−1

ϕℓ♯µ
)′(s), (F−1

ϕℓ♯ν
)′(s) (where prime denotes the derivative) for Lebesgue-almost every s ∈ [0, 1] (Gavish et al., 2019,

Lemma 2.3).

Proof. Notice that given LN , summands in the expression T̂− T̂LN
are the tail sums

∑∞
ℓ=LN+1 αlW2

2 (ϕℓ♯·, ϕℓ♯·) starting at
the LN +1th term. Using a similar approach as the proof of Proposition A.2, this is bounded above by a scalar multiple of the

geodesic distance, specifically cWX
2 (·, ·)

√∑∞
ℓ=LN+1 αℓλ

(n+3)/2
ℓ . By assumption

∑∞
ℓ=1 αℓλ

(n+3)/2
ℓ <∞, so that given

ϵ > 0 we can always choose a starting point to make the tail sum < ϵ. The choice of LN follows by taking ϵ = N−(1+δ).

To obtain the choice of DN , we first use a similar approach to the proof of Proposition A.2 to simplify T̃L,D′ for any L,D′:

T̃L,D′ =

L∑
ℓ=1

 1

N1(N1 − 1)

∑
i,j:i ̸=j

ηD′(ϕℓ♯µi)
T ηD′(ϕℓ♯µj) +

1

N2(N2 − 1)

∑
i,j:i ̸=j

ηD′(ϕℓ♯νi)
T ηD′(ϕℓ♯νj)

− 2

N1N2

∑
i,j

ηD′(ϕℓ♯µi)
T ηD′(ϕℓ♯νj)

 . (12)

Recall that the inverse CDF transformation induced by η0(ϕℓ♯µ) ≡ F−1
ϕℓ♯µ

maps [0, 1] to a bounded interval that is the range

of ϕℓ, and ∥ϕℓ∥∞ ≤ cλ
(n−1)/4
ℓ using Hörmander’s bound on the supremum norm of the eigenfunctions. Using classical

results on Riemann sum approximation errors (Bakhvalov, 2015; Brown & Steinerberger, 2020) we thus have for any ℓ:

∣∣αℓ⟨η0(ϕℓ♯µ), η0(ϕℓ♯ν)⟩H − ηD′(ϕℓ♯µ)
T ηD′(ϕℓ♯ν)

∣∣ ≤ k

D′αℓ

∥∥∥(F−1
ϕℓ♯µ

F−1
ϕℓ♯ν

)′
∥∥∥
∞
≤ 2kc2

D′ αℓλ
(n−1)/2
ℓ .
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Given L = LN , we simply choose D′ = DN large enough to make the right hand side above smaller than N−(1+δ). While
it is possible to make the upper bound tighter using recent results (such as (Brown & Steinerberger, 2020)), the above coarser
bound suffices for our purpose.

We now state a version of Theorem 5.1, with specifications for γm, σ2
1 , LN , DN now available through the above two results.

Theorem A.4. Assume conditions (i)-(iii) hold. Define N = N1 + N2, and suppose that as N1, N2 → ∞, we have
N1/N → ρ1, N2/N → ρ2 = 1 − ρ1, for some fixed 0 < ρ1 < 1.With L ≥ LN , D

′ ≥ DN chosen per Proposition A.3,
under H0 : Cη#P = Cη#Q we have

N T̃L,D′ ;
∞∑

m=1

γm(A2
m − 1),

where Am, γm are defined as in Proposition A.2. Further, under H1 : Cη#P ̸= Cη#Q we have
√
N
(
T̃L,D′ − T

)
;

N(0, σ2
1).

Proof. This a combination of Propositions A.2 and A.3, and Slutsky’s theorem.

We conclude with a proof of a specified version of Theorem 5.2, which gives power guarantee of the test based on T̃L,D′ for
contiguous alternatives.

Theorem A.5. Assume conditions (i)-(iii) hold, and let L,D′ be chosen as in Theorem A.4. Then for the sequence of
contiguous alternatives H1N such that N∥δN∥2H →∞, the test based on T̃L,D′ is consistent for any α ∈ (0, 1), that is as
N →∞ the asymptotic power approaches 1.

Proof. It is enough the prove consistency using T̂, as the difference between T̂ and T̃L,D′ is negligible by choice of L,D′.
To do so we utilize proof techniques similar to Theorem 13 in Gretton et al. (2012). Define cN := N1/2∥δN∥H, and expand
the simplified centered version of the test statistic in (9) but under H1 so that the centering terms do not cancel out:

T̂c =
1

N1(N1 − 1)

∑
i,j:i ̸=j

⟨η(µi)− Cη#P , η(µj)− Cη#P ⟩H

+
1

N2(N2 − 1)

∑
i,j:i ̸=j

⟨η(νi)− Cη#Q, η(νj)− Cη#Q⟩H (13)

− 2

N1N2

∑
i,j

⟨η(µi)− Cη#P , η(νj)− Cη#Q⟩H

 .
The centered pushforwards have the same Hilbert centroids, thus as N →∞ by Proposition A.2,

N T̂c ;
∞∑

m=1

γm(A2
m − 1) := S.

Subtracting T̂c from T̂ and its expansion in Eq. (6) on the left and right hand respectively, then simplifying we have

N(T̂− T̂c) = N

[
− 1

N1

N1∑
i=1

⟨δN , η(µi)− Cη#P ⟩H +
1

N2

N2∑
i=1

⟨δN , η(νi)− Cη#Q⟩H +
⟨δN , δN ⟩H

2

]

= N

[
∥δN∥H
N1

N1∑
i=1

〈
δN
∥δN∥H

, η(µi)− Cη#P

〉
H

−∥δN∥H
N2

N2∑
i=1

〈
δN
∥δN∥H

, η(νi)− Cη#Q

〉
H
+
∥δN∥2H

2

]
. (14)
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Given N the inner products ⟨δN/∥δN∥H, η(µi)− Cη#P ⟩H are i.i.d. random variables with mean 0, so by CLT then using
∥δN∥H = cNN

−1/2 we get

1√
N1

N1∑
i=1

〈
δN
∥δN∥H

, η(µi)− Cη#P

〉
H

; U ⇒ N∥δN∥H
N1

N2∑
i=1

〈
δN
∥δN∥H

, η(νi)− Cη#Q

〉
H

;
cN√
ρ1
U,

where U is the zero mean Gaussian random variable that is the limiting distribution of the above inner product sum. Similarly
we have

N∥δN∥H
N2

N2∑
i=1

〈
δN
∥δN∥H

, η(νi)− Cη#Q

〉
H

;
cN√
ρ2
V,

where V is also Gaussian, zero mean, and independent of U . Putting everything together in the right hand side of (14), and
using ∥δN∥H = cNN

−1/2, given the threshold tα for a level-α test

PHN

(
N T̂ > tα

)
→ P

[
S + cN

(
U
√
ρ1
− V
√
ρ2

)
+
c2N
2
> tα

]
.

By assumption c2N →∞, so the asymptotic power approaches 1 as N →∞.

A.5. Proofs and Notes for Section 5.2

To guarantee size control when using the the harmonic mean p-value we establish a version of Theorem 1 from Liu & Xie
(2020). Assume that a test statistic Z ∈ RD has null distribution with zero mean and every pair of coordinates of Z follows
bivariate Gaussian distribution. Compute the coordinate-wise two-sided p-values pk = 2(1 − Φ(|Zk|)) where Φ is the
standard Gaussian CDF.

Theorem 5.4. Let pk, k = 1, ..., D be the null p-values as above and pH computed via harmonic mean approach, then

lim
α→0

Prob{pH ≤ α}
α

= 1.

Proof. The proof of Theorem 1 from (Liu & Xie, 2020) hinges on Lemma 3 in their supplemental material. We show that
Lemma 3 holds for the harmonic mean combination method. Note that the multiplication by π present in Lemma 3 cancels
out when inverse cotangent with a multiplier of 1/π is applied later on; so it is not relevant to the flow of the proof.

To this end, consider the functions p(x) = 2(1 − Φ(|x|)) and h(x) = 1/p(x). We need to prove the following three
statements:

(1) for any |x| > Φ−1(3/4),
cos[p(x)π]

p(x)
≤ h(x) ≤ 1

p(x)

(2) For any constant 0 < |a| < 1, we have

lim
x→+∞

h(x)

x2h(ax)
> ca > 0,

where ca is some constant only dependent on a.

(3) Suppose that X0 has standard normal distribution, then we have

P{h(X0) ≥ t} =
1

t
+O(1/t3).

Statement (1) is trivial, as h(x) = 1/p(x) by definition and the cosine function is upper bounded by one. Statement (2)
holds by the same argument as in the supplement of (Liu & Xie, 2020). Statement (3) follows from the fact that when X0 is
standard normal, then p(x) is a null p-value, and so

P{h(X0) ≥ t} = P{p(X0) ≤ 1/t} = 1

t
.
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Note that there is no O(1/t3) term at all, but we kept the form of the statement the same as in (Liu & Xie, 2020).

Now, the proof of Theorem 1 from (Liu & Xie, 2020) with weights ωk = 1/D, k = 1, 2, ..., D goes through to give

P

{
1

D

∑ 1

pk
≥ t
}

=
1

t
+ o(1/t).

Note that pH = H
(
D/( 1

p1
+ 1

p2
+ · · ·+ 1

pD
)
)

, where the function H has a known form described in (Wilson, 2019) and
satisfies H(x)/x→ 1 as x→ 0. Thus, as α→ 0, we have

P
{
pH ≤ α

}
≍ P

{
1

D

∑ 1

pk
≥ 1/α

}
≍ 1

1/α
+ o(

1

1/α
) ≍ α.

B. Details of numerical experiments
B.1. Synthetic data

We compare the performance of our tests on data from a number of domains with several existing methods, and settings
of the embedding parameters L,D′. For evaluation, we use empirical power at different degrees of departure from the
null hypothesis, calculated by averaging the proportion of rejections at level α = 0.05 over 1000 independent datasets
with samples divided into two groups of sizes n1 = 60, n2 = 40. To ensure the tests are well-calibrated, we also calculate
nominal sizes assuming the two sample groups are drawn from the same random meta-distribution. We calculate eigenvalues
and eigenfunctions using analytical expressions provided in Table 4. We fix α(λ) = e−λ (i.e. heat kernel with t = 1) for all
experiments, in order to avoid unfair advantage from tuning this parameter when comparing to baselines. Also, when using
the p-value combination test each t-test scales the mean difference by standard deviation, so the weight functions cancel out
anyway. In general, when t is small, the T̂ statistic is more democratic between low and high frequency eigenfunctions,
allowing to capture finer details of the underlying domain (assuming large enough L). When t is large, T̂ focuses on low
frequency eigenfunctions so more global differences dominate the computation of T̂.

Finite intervals To obtain our base measures µi, νi, we generate bin probabilities as (shifted and normalized) values of
the function f(tj) = µ(tj) + α(tj) at m = 30 fixed design points tj = j/(m+ 1), j = {1, 2, . . . ,m}, and

µ(tj) = 1.2 + 2.3 cos(2πtj) + 4.2 sin(2πtj),

α(tj) = ϵ0 +
√
2ϵ1 cos(2πtj) +

√
3ϵ2 sin(2πtj),

where ϵ0,ϵ1, ϵ2 ∼ N(0, 1) clipped between [−3, 3]. Group 1 and 2 samples are obtained as µi(·) ≡ f(·) and νi(·) ≡ f(·)+δ
respectively, where δ ∈ [0, 4] is a constant. To make the sample functions non-negative, we shift all functions by
M = 3(1 +

√
2 +
√
3). Finally, as the m-length vector of bin counts for a sample, we generate a random vector from the

Multinomial distribution with 1000 trials, m outcomes and the outcome probabilities proportional to the shifted functional
observations corresponding to that sample.

We use embedding dimensions L = 3, D′ = 10 to compare our method against 11 functional ANOVA tests—for brevity we
report results for 3 of them which use different methodological approaches (see Appendix for complete results). All methods
maintain nominal size for δ = 0 (Figure 3 a). While the combination test (ISD comb) based on our proposal outperformed
all the other tests across all values of δ, the bootstrap test that uses the overall T statistic (ISD T boot) performs better than
Fmaxb but worse than others. Table 5 shows the outputs for the other 8 competing methods from the R package fdANOVA
for the finite intervals synthetic data setting1.

We also compare the p-value combination test based on an unsliced 24-dimensional inverse CDF embedding with sliced
ISW2-based tests (Figure 3 b). We use multiple pairs of (L,D′) values, all of them giving overall embeddings of dimension
D = LD′ = 24. The performance of an ISW2-based test that uses slicing over only the first eigenfunction is almost as
good as the unsliced version. With more eigenfunctions, the powers first improve considerably, then become similar to the
unsliced version again.

1See https://www.rdocumentation.org/packages/fdANOVA/versions/0.1.2/topics/fanova.tests for
full names of all methods.
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Figure 4. Performance on synthetic finite interval and manifold data. Finite interval: (a) comparison with existing methods—a test based
on basis function representation (FP) (Gorecki & Smaga, 2015), a sum-type ℓ2 norm-based test (L2b) (Zhang, 2013), and a max-type
test (Zhang et al., 2019) that uses the maximum of coordinate-wise F statistic (Fmaxb); (b) unsliced vs. different settings of (L,D′).
Manifold data: (c) circular data, comparing with Fréchet ANOVA (Dubey & Müller, 2019), and the DISCO nonparametric test (Rizzo &
Székely, 2010); (d) harmonic combination tests on cylindrical data for L = 4. Dotted lines indicates nominal size of all tests (α = 0.05).

δ CH CS L2N L2b FN FB Fb GPF

0 0.031 0.03 0.033 0.024 0.031 0.028 0.033 0.026
0.1 0.025 0.024 0.03 0.044 0.027 0.03 0.041 0.021
0.2 0.026 0.029 0.037 0.06 0.033 0.034 0.058 0.025
0.3 0.036 0.041 0.044 0.067 0.041 0.04 0.067 0.033
0.4 0.034 0.035 0.036 0.057 0.034 0.035 0.056 0.032
0.5 0.051 0.052 0.058 0.091 0.056 0.057 0.088 0.044
0.6 0.056 0.066 0.066 0.089 0.061 0.066 0.088 0.051
0.7 0.07 0.083 0.083 0.121 0.084 0.081 0.119 0.064
0.8 0.085 0.097 0.095 0.151 0.093 0.094 0.144 0.081
0.9 0.118 0.142 0.14 0.2 0.144 0.137 0.194 0.118
1 0.158 0.182 0.176 0.232 0.183 0.173 0.228 0.154

1.1 0.215 0.247 0.246 0.303 0.251 0.242 0.301 0.212
1.2 0.27 0.31 0.303 0.375 0.311 0.3 0.368 0.27
1.3 0.328 0.363 0.357 0.438 0.37 0.353 0.43 0.324
1.4 0.395 0.432 0.432 0.504 0.436 0.423 0.499 0.394
1.5 0.488 0.52 0.514 0.592 0.521 0.511 0.586 0.483
1.6 0.534 0.595 0.576 0.652 0.593 0.566 0.647 0.544
1.7 0.628 0.677 0.669 0.723 0.678 0.661 0.719 0.631
1.8 0.704 0.737 0.727 0.789 0.748 0.725 0.785 0.707
1.9 0.785 0.823 0.812 0.869 0.827 0.806 0.867 0.793
2 0.83 0.849 0.844 0.88 0.85 0.841 0.875 0.832

2.1 0.865 0.888 0.881 0.916 0.887 0.878 0.915 0.872
2.2 0.903 0.922 0.916 0.946 0.928 0.912 0.946 0.907
2.3 0.938 0.95 0.944 0.964 0.951 0.944 0.963 0.944
2.4 0.958 0.973 0.967 0.977 0.972 0.966 0.976 0.964
2.5 0.974 0.98 0.976 0.985 0.981 0.975 0.985 0.974
2.6 0.977 0.981 0.979 0.987 0.981 0.978 0.986 0.977
2.7 0.989 0.996 0.992 0.997 0.996 0.992 0.997 0.991
2.8 0.997 0.998 0.997 0.998 0.998 0.997 0.998 0.996
2.9 0.996 0.997 0.996 0.999 0.997 0.996 0.999 0.997
3 0.998 1 0.999 1 1 0.999 1 0.999

Table 5. Outputs for other methods in the functional curves synthetic data setting.

Manifold domains We consider data from distributions on circles and cylinders. For circular data, we take von Mises
distributions with randomly chosen parameters as our samples. For an angle x (measured in radians), the von Mises
probability density function is given by f(x|µ, κ) = exp[κ cos(x− µ)](2πI0(κ))−1, where I0(κ) is the modified Bessel
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function of order 0. We fix κ = 2, and use µ ≡ µi ∼ N(0, 0.12), µ ≡ νi ∼ N(δ, 0.12) for samples from group 1 and 2
respectively—with δ ∈ [0, 15] × π/180 (i.e. 0 to 15 degrees converted to radians). As each observation vector, we take
100 random draws from each sample-specific distribution. For our embeddings, we use L = 10, D′ = 20, and so our final
embedding dimension is 10× 20× 2 = 400. Since the competing methods cannot handle circular geometry directly, to
implement them we cut the circle into an interval. Figure 3 (c) shows that all methods maintain nominal size, but both our
tests maintain considerably higher power than existing methods for all δ.

We generate cylindrical data in the form of samples of a bivariate random vector (Θ, X), using the cylindrical density
function proposed by (Mardia & Sutton, 1978):

f(θ, x) =
eκ cos(θ−µ)

2πI0(κ)

1√
2πσc

e
− (x−µc)

2

2σ2
c ,

clipping values of the X-coordinate between the bounded interval [0, 2π]. This distribution has the parameters µ ∈
[−π, π], µ0 ∈ R, κ ≥ 0, ρ1 ∈ [0, 1), ρ2 ∈ [0, 1), σ > 0, where µ, κ denote parameters for the (circular) marginal along the
Θ-coordinate. and given Θ = θ, X is sampled from N(µc, σ

2
c ), with

µc = µ+
√
κσ {ρ1(cos θ − cosµ) + ρ2(sin θ − sinµ)} ,

σc = σ2(1− ρ2), ρ = (ρ21 + ρ22)
1/2.

In our experiments, we fix ρ1 = ρ2 = 0.5, σ = 1, κ = 2 across both populations. As random samples of distributions, we
draw µ, µ0 ∼ Unif(0, 1) and µ, µ0 ∼ Unif(δ, δ + 1) for samples of group 1 and 2 respectively, with n1 = 60, n2 = 40.
We repeat the above for δ ∈ [0, 30] degrees converted to radians, and obtain bivariate histograms corresponding to each
sample distribution from 500 random draws from that distribution. To evaluate the effects of choosing L,D′ we calculate
our embeddings for L ∈ {2, 3, 4, 5}, D′ ∈ {6, 8, 12, 24, 48}. The choice of L has small effect on performance, so we report
results for L = 4 in Figure 3 (d). Higher values of D′ result in some increase in power.

Discussion Our ISW2-based method is able to exploit the non-euclidean nature of the problems and and their generality
beyond mean comparison more effectively than competing methods, which are based on mean comparison on functional
data/densities (frechet ANOVA, all functional ANOVA methods), and/or L2 distance-based comparisons (all functional
ANOVA methods, DISCO). Regarding the optimal choice of embedding dimensions, while proving theorem 5.1 we show
that (Proposition 10 therein) choosing both L and D above certain thresholds ensures close approximation to the population
test statistic. For the combination test, adding more dimensions to the embedding can have a two-fold effect: a) probing
more dimensions can help with finding differences, but b) every dimension adds another test and so potentially leads to loss
of power. Thus, for the combination test, there must be an optimal data dependent choice of the embedding dimension,
which can potentially be found via split testing procedures. We leave this to future work.

Computational Complexity Assume an underlying graph G = (V,E), and we use L slices, D′ quantiles to calculate
ISW2. Each distribution consists of V atoms (distribution lives on graph vertices). Then, computation of our embeddings
includes the following steps:

1. The computation of eigenvectors/values of symmetric sparse matrices is a well-studied problem with stable and efficient
algorithms available, e.g. ARPACK providing an implementation of the Arnoldi method in MATLAB, Python, or R.
These methods incur linear time complexity in the size of graph: O(L(|V |+ |E|). This computation is done only once
per domain, and the overhead is negligible (<< 1 second) for our graph experiments.

2. Hilbert embedding computations require computing L pushforwards and D′ quantiles, which need sorting. This
complexity is O(L(|V | log |V |+ |D′|).

3. Testing using p-value combination requires computing t-test p-values for LD′ dimensions, with overall complexity of
O(LD′N) where N is total sample size.

In contrast, Sobolev Transport (ST) requires computing the Sliced ST Distance, based on computing shortest paths from
randomly selected nodes in a graph. This has complexity O(k(|V | log |V | + |E|) (Le et al., 2022, pg. 4) Implementing
permutation tests means repeating the above computation P times, with P = 1000 being a typical choice.
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Figure 5. Activity histograms for three individuals from NHANES dataset. There are 100 bins in the intensity and 96 in the time dimension;
we show hour of day on the time axis. The time dimension is periodic where 00:00 is identified with 24:00, giving rise to a cylindrical
histogram domain.
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Figure 6. Three eigenfunctions for the NHANES histogram domain normalized by the maximum absolute value. Note that the eigenfunc-
tions are periodic in the time direction (i.e. match when glued over the side cut) but not in the intensity direction, reflecting the cylindrical
geometry of the underlying domain.

B.2. NHANES data on physical activity monitoring

As our first real data application, we analyze the Physical Activity Monitor (PAM) data from the 2005-2006 National Health
and Nutrition Examination Survey (NHANES)2. This contains physical activity pattern readings for a large number of
people collected over 1 week period on a per-minute granularity. After basic pre-processing steps to ensure no missing
entries, as well as data reliability and well-calibrated activity monitors, we use data from 6839 individuals. The data for each
individual corresponds to device intensity value from the PAM for 24× 60 = 1440 minutes throughout the day, for 7 days.

For each individual we can capture their activity patterns into a cylindrical histogram with time and intensity dimensions.
For each observation, its time during the day is discretized into 15-minute intervals giving 96 bins for the time dimension;
its intensity value (capped at 1,000) is discretized into a 100 equidistant bins. Since the time dimension is periodic, we
obtain a histogram over the cylinder S1(T1)× [0, T2), with T1 = 96, T2 = 100. Normalized counts can thus be considered
as person-specific probability distributions; several examples are shown in Figure 5. Note that flattening the domain by
cutting the cylinder will arbitrarily split activity patterns (see especially Figure 5, Female 37) and will lead to inefficiencies
due to horizontal variability.

We apply the proposed methodology to check if the activity patterns vary across different groups of individuals obtained as
follows. We first split the overall dataset based on the individual’s age using the following inclusive ranges: 6–15, 16–25,
...,76–85; this covers all the ages in the dataset. From each split we sample 100 males and 100 females to avoid gender
imbalance driving the results. Thus, we end up with 8 age groups with 200 individuals per group. Our goal is to compare

2https://wwwn.cdc.gov/Nchs/Nhanes/2005-2006/PAXRAW_D.htm
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Age Groups 6–15 16–25 26–35 36–45 46–55 56–65 66–75 76–85

6–15 0.979 0.31 0.383 0.297 0.905 0.921 0.326
16–25 3.7e-11 0.998 0.963 0.443 0.872 0.442 0.529
26–35 4.6e-20 1.0e-05 0.987 0.818 0.93 0.731 0.992
36–45 3.2e-26 3.5e-11 0.01 0.945 0.984 0.974 0.327
46–55 6.6e-27 8.4e-16 0.002 0.377 0.832 0.618 0.844
56–65 2.4e-32 7.5e-20 3.1e-04 0.042 0.977 0.509 0.98
66–75 5.4e-45 1.6e-16 7.7e-06 1.6e-04 0.001 0.011 0.557
76–85 3.4e-52 1.4e-23 1.4e-15 2.7e-12 9.7e-16 1.4e-09 2.1e-06

Table 6. Comparing the activity intensity of different age groups based on the NHANES dataset. Below diagonal: p-values corresponding
to the actual data comparisons. Above diagonal: null p-values obtained by combining and randomly splitting the two involved groups.
The entries in boldface correspond to the rejected hypotheses with the BH procedure at the FDR level of 0.1.

these 8 groups’ activity patterns by conducting pair-wise tests.

To perform our analysis we compute the eigenvalues and eigenfunctions as per the 4th row of Table 4 using ℓ1 = 1, 2, 3 and
ℓ2 = 1, 2, 3, giving a total of L = 2× 3× 3 = 18 eigenfunctions; three of the resulting eigenfunctions are shown in Figure
6. We consider a D′ = 5 dimensional embedding for the inverse CDF transformation, hence the final embedding dimension
after the slicing construction is D = LD′ = 18× 5 = 90.

We summarize the results in Table 6, below the diagonal. The p-values are obtained via the harmonic mean combination
approach. We run the Benjamini-Hochberg (Benjamini & Hochberg, 1995) procedure on the resulting p-values at the false
discovery rate of 0.1, and the rejected hypotheses are indicated by the p-values in bold. Our method detects statistically
significant differences between all pairs of groups, except 46–55 versus 36–45 and 56-65 groups. As a control experiment,
we provide our method with null cases and display the p-values in Table 6, above the diagonal. The null cases are obtained
by combining the individuals from the two comparison groups and splitting it arbitrarily (i.e. mixing the two age groups).
As expected, the p-values of the control comparisons do not concentrate near zero.

Curiously, our method can be used “off-label” to conduct functional data analyses over different dimensions of the NHANES
dataset. For example, one can concentrate on a single day of activity intensity data which gives a curve over the 24-hour
circle. Since activity intensity is a non-negative number, these curves can be normalized so as to obtain probability
distributions. Now we can use our methodology to detect pair-wise differences across groups. While this has the benefit of
accounting for underlying geometry of data, it loses the absolute magnitude information due to the normalization. Clearly
the appropriateness of such an analysis would depend on the goal of the exercise and the particular research question
attached to that goal; our proposal provides a framework that is flexible enough to handle data of different modalities.

B.3. Chicago Crime

We demonstrate the use of our methodology on histograms over graphs. In this experiment, we use the Chicago Crimes
2018 dataset3 which captures incidents of crime in the City of Chicago. We base our analysis on the type of crime, the
beat (geographic area subdivision used by police, see Figure 7) where the incident took place, and the date of the incident.
To capture the spatial aspect of the data we build a graph with one vertex per beat; two vertices are connected by an edge
if the corresponding beats share a geographic boundary. For each crime type and day, we capture the total count of that
crime type for each beat; after normalizing this gives a daily probability distribution over the graph. Our goal is to compare
the collection of distributions of, say, theft occurring on Tuesday to those of Thursday and Saturday. The Tuesday versus
Thursday comparison is intended as a null case, as we do not expect to see any differences between them (Rustamov &
Klosowski, 2020).

We build the un-normalized Laplacian of the beat adjacency graph, and compute its lowest frequency L = 20 eigenvalues
and eigenvectors. The first three eigenvectors are plotted in Figure 7. The number of inverse CDF values used in the
embedding is D′ = 5, which gives rise to D = 100 dimensional embedding. The results of comparisons are shown in
the last two columns of Table 7; the p-values are obtained via the harmonic mean combination approach. We run the
Benjamini-Hochberg (Benjamini & Hochberg, 1995) procedure on the 20 resulting p-values at the false discovery rate of
0.1, and the rejected hypotheses are indicated by the p-values in bold. As expected, no differences were detected between

3data.cityofchicago.org
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(a) ϕ1(·) (b) ϕ2(·) (c) ϕ3(·)

Figure 7. First three eigenvectors of the Laplacian are shown for the beat adjacency graph, mapped back to the geographic locations. All
of the eigenvectors are normalized by the maximum absolute value. The spatial smoothness of the eigenvectors—somewhat masked here
due to the discrete colormap—is crucial to efficiently capturing horizontal variability of the data (i.e. distribution shifts over the graph).
The boundaries of beats are shown based on the shape file from Chicago Data portal.

Crime Type Tuesday Thursday Saturday Tue vs Thu Tue vs Sat

N count N count N count p-value p-value

Theft 52 178.7 52 182.9 52 180.2 0.452 4.7e-06
Deceptive Practice 51 55.8 52 54.9 52 44.4 0.255 4.2e-04
Battery 52 125.8 52 123.0 52 154.9 0.374 0.001
Robbery 50 25.2 50 25.1 52 28.1 0.130 0.002
Narcotics 51 36.0 51 34.6 50 36.9 0.890 0.008
Criminal Damage 52 70.0 52 73.7 52 83.0 0.901 0.03
Other Offense 52 49.5 52 48.4 52 44.1 0.670 0.037
Burglary 52 34.0 52 33.1 52 29.1 0.157 0.183
Motor Vehicle Theft 52 27.9 52 26.2 51 28.1 0.923 0.365
Assault 52 57.2 52 59.3 52 52.4 0.996 0.617

Table 7. Results on Chicago Crime 2018 dataset. The entries in bold correspond to the rejected hypotheses with the BH procedure at the
FDR level of 0.1. The N column captures the number of days passing the filtering criteria, and the count column shows the average
per-day crime count.

Tuesday and Thursday patterns. On the other hand, we see that there are statistically significant differences between Tuesday
and Saturday patterns in the following categories of crime: theft, deceptive practice, battery, robbery, narcotics, and criminal
damage.

B.4. Brain Connectomics

In this example, we consider two publicly available brain connectomics datasets (Aine et al., 2017; Arroyo Relión et al.,
2019) distributed as a part of the R package graphclass4. Both are based on resting state functional magnetic resonance
imaging (fMRI): COBRE has data on 54 schizophrenics and 70 controls, and UMich with 39 schizophrenics and 40 controls.
The datasets capture the pairwise correlations between 264 regions of interest (ROI) of Power parcellation (Power et al.,
2011) and can be considered as a 264 node graph (263 nodes for COBRE as ROI 75 is missing) with positive and negative
edge weights.

We define three probability measures supported on the nodes of the graph. For each ROI we take the sum of absolute values
of all its correlations with the remaining ROIs. Now we have a positive number assigned to each node capturing its overall
connectivity to the rest of the graph and we normalize to obtain a measure; this construction will be referred to as “all
correlations”. Note that each scanned subject gives rise to a separate “all correlations” probability measure on the same

4http://github.com/jesusdaniel/graphclass
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Dataset All correlations Positive correlations Negative correlations

COBRE 0.0084 0.00019 0.0019
UMich 0.609 0.116 0.022

Table 8. Comparison results between the schizophrenic and control groups for brain connectomics datasets.

underlying node set. The “positive correlations” and “negative correlations” constructions are based on keeping respectively
only positive or only negative correlations and aggregating as above.

We also need a fixed base graph for the computation of the Laplacian eigen-decomposition; this graph should capture
the spatial connectivity of the ROIs which is relevant due to the smooth nature of the blood oxygenation level dependent
(BOLD) signal that is used for computing the correlations. To this end, we obtain the coordinates for the centers of the 264
ROIs5 and build the base graph by connecting each ROI to its nearest 8 ROIs.We compute the lowest frequency L = 20
eigenvalues and eigenvectors of the corresponding un-normalized Laplacian. The number of inverse CDF values used in the
embedding is D′ = 5, which gives rise to D = 100 dimensional embedding.

Table 8 shows the result of comparing the schizophrenic group to the control group for both of the datasets; the p-values
are obtained via the harmonic mean combination approach. We can see that our approach detects statistically significant
differences between the two groups in COBRE dataset in all of the three types of measures on graphs. In contrast, for UMich
dataset, the difference is detected only in the negative correlations and loses significance when corrected for multiple testing.
This is potentially caused by the higher inhomogeneity of the UMich dataset that was pooled across five different experiments
spanning seven years (Arroyo Relión et al., 2019). An interesting aspect of our analysis is that due to normalization (to
obtain probability measures) the total sum of connectivity is factored out by the proposed method. As a result, the detected
differences are not related to the well-known change in the overall connectivities between the two groups, but rather to
distributional changes in marginal connectivity strengths.

5www.jonathanpower.net/2011-neuron-bigbrain.html
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