
End-to-end Differentiable Clustering with Associative Memories

Bishwajit Saha 1 Dmitry Krotov 2 Mohammed J. Zaki 1 Parikshit Ram 2 3

Abstract
Clustering is a widely used unsupervised learn-
ing technique involving an intensive discrete opti-
mization problem. Associative Memory models
or AMs are differentiable neural networks defin-
ing a recursive dynamical system, which have
been integrated with various deep learning archi-
tectures. We uncover a novel connection between
the AM dynamics and the inherent discrete assign-
ment necessary in clustering to propose a novel
unconstrained continuous relaxation of the dis-
crete clustering problem, enabling end-to-end dif-
ferentiable clustering with AM, dubbed ClAM.
Leveraging the pattern completion ability of AMs,
we further develop a novel self-supervised clus-
tering loss. Our evaluations on varied datasets
demonstrate that ClAM benefits from the self-
supervision, and significantly improves upon both
the traditional Lloyd’s k-means algorithm, and
more recent continuous clustering relaxations (by
upto 60% in terms of the Silhouette Coefficient).

1. Introduction
Clustering is considered one of the most fundamental un-
supervised techniques to identify the structure of large vol-
umes of data. Based on the similarity characteristics, clus-
tering performs a structured division of data into groups (Xu
& Wunsch, 2005). This is often considered the very first
step in exploratory data analysis (Saxena et al., 2017; Biju-
raj, 2013). Various formulations and algorithms have been
studied to identify an efficient clustering of the data. Among
them k-means (MacQueen, 1967), Spectral Clustering (Do-
nath & Hoffman, 1973), Hierarchical Clustering (Johnson,
1967), Density-based Clustering (Ester et al., 1996), and Ex-
pectation Maximization (Dempster et al., 1977) have been
widely used. However, these formulations are computation-
ally expensive involving an intensive combinatorial task:

1CS Department, Rensselaer Polytechnic Institute, Troy, NY,
USA 2MIT-IBM Watson AI Lab, IBM Research, Cambridge, MA,
USA 3IBM Research, Yorktown Heights, NY, USA. Correspon-
dence to: Bishwajit Saha <sahab@rpi.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

for example, exact k-means is NP-hard (Dasgupta, 2008),
though approximations can be efficient. Spectral, hierarchi-
cal and density-based clustering are computationally very
expensive with a naive complexity between quadratic and
cubic in the number of data points. One challenge of these
formulations is the inability to leverage a differentiable al-
gorithm – they are inherently discrete.

There has been recent interest in clustering in an end-to-end
differentiable manner. Deep clustering techniques com-
bine representation learning and clustering and try to learn
in a differentiable manner by leveraging some continuous
relaxation of the discrete assignment necessary in cluster-
ing (Ren et al., 2022; Zhou et al., 2022). This relaxation
replaces the discrete assignment with partial cluster as-
signments, which violates a fundamental premise of clus-
tering – each point belongs to only one cluster. With this
in mind, the “sum-of-norms” form of the k-means objec-
tive allows differentiable clustering, but requires quadratic
time (in the number of points) to perform the final cluster
assignments (Panahi et al., 2017). Non-negative matrix fac-
torization with structured sparsity has also been considered
but requires the repeated alternating solution of two large
constrained least squares problems (Kim & Park, 2008). To
the best of our knowledge, there is no differentiable clus-
tering scheme that can seamlessly leverage the stochastic
gradient descent or SGD (Nemirovski et al., 2009) based
optimization frameworks (Duchi et al., 2011; Kingma & Ba,
2014) for unconstrained optimization and yet maintain the
inherent discrete nature of clustering. There is also a prob-
lem with multiple local minima, which lead to suboptimal
solutions with discrete algorithms. Beyond efficiency, SGD
is known to be capable of escaping local minima and can
lead to models with better generalization (Hardt et al., 2016),
and we believe that the problem of clustering can benefit
from utilizing SGD based solutions. To that end, we look
for ideas in a very distant field of associative memories.

Recently, traditional associative memory or AM mod-
els (Hopfield, 1982; 1984) have been reformulated to sig-
nificantly increase their memory storage capacity and in-
tegrated with modern deep learning techniques (Krotov &
Hopfield, 2016; Ramsauer et al., 2020; Krotov & Hopfield,
2021; Krotov, 2021). These novel models, called Dense
Associative Memories, are fully differentiable systems capa-
ble of storing a large number of multi-dimensional vectors,

1

End-to-end Differentiable Clustering with Associative Memories

(a) True (b) Lloyd’s (c) DEC (d) ClAM

Figure 1: Clustering with ClAM. Two clusters (figure 1a),
and solutions found by k-means (Lloyd, 1982) (figure 1b),
DEC relaxation (Xie et al., 2016) of k-means (figure 1c), and
our proposed end-to-end differentiable SGD-based ClAM
(figure 1d). The black dots indicate the learned prototypes.
ClAM discovers the ground-truth clusters while the base-
lines cannot. See experimental details in §4.

called patterns or “memories”, in their synaptic weights.
They can be trained in an end-to-end fully differentiable
setting using the backpropagation algorithm, typically with
a self-supervised loss.

We believe that this ability to learn synaptic weights of the
AM in an end-to-end differentiable manner together with
the discrete assignment (association) of each data point to
exactly one memory makes AM uniquely suited for the
task of differentiable clustering. We present a simple re-
sult in figure 1, where standard prototype-based clustering
schemes (discrete and differentiable) are unable to find the
right clusters, but our proposed AM based scheme is suc-
cessful. Specifically, we make the following contributions:

▶ We develop a flexible mathematical framework for
clustering with AM or ClAM, which is a novel contin-
uous unconstrained relaxation of the discrete optimiza-
tion problem of clustering that allows for clustering in an
end-to-end differentiable manner while maintaining
the discrete cluster assignment throughout the training,
with linear time cluster assignment.

▶ We leverage the pattern completion capabilities of AMs
to develop a differentiable self-supervised loss that
improves the clustering quality.

▶ We empirically demonstrate that ClAM is able to consis-
tently improve upon k-means by upto 60%, while being
competitive to spectral and agglomerative clustering, and
producing insightful interpretations.

2. Related work
Discrete clustering algorithms. Clustering is an inherently
hard combinatorial optimization problem. Prototype based
clustering formulations such as the k-means clustering is
NP-hard, even for k = 2 (Dasgupta, 2008). However, the
widely used Lloyd’s algorithm or Voronoi iteration (Lloyd,
1982) can quite efficiently find locally optimal solutions,
which can be improved upon via multiple restarts and care-
ful seeding (Vassilvitskii & Arthur, 2006). It is an intuitive
discrete algorithm, alternating between (i) assigning points

to clusters based on the Voronoi partition (Aurenhammer,
1991) induced by the current prototypes, and (ii) updating
prototypes based on the current cluster assignments. How-
ever, the discrete nature of this scheme makes it hard to
escape any local minimum. We believe that SGD-based
prototype clustering will improve the quality of the clusters
by being able to escape local minima, while also inheriting
the computational efficiency of SGD. The spectral cluster-
ing formulation (Donath & Hoffman, 1973; Von Luxburg,
2007) utilizes the eigen-spectrum of the pairwise similarity
or affinity of the points (represented as a graph Laplacian) to
partition the data into “connected components” but does not
explicitly extract prototypes for each cluster. This allows
spectral clustering to partition the data in ways disallowed
by Voronoi partitions. However, it naively requires quadratic
time (in the number of points) to generate the Laplacian, and
cubic time for the spectral decomposition. Hierarchical clus-
tering (Johnson, 1967) finds successive clusters based on
previously established clusters, dividing them in a top-down
fashion or combining in a bottom-up manner. These discrete
hierarchical algorithms naively scale cubically in the number
of points, although some forms of bottom-up agglomerative
schemes can be shown to scale in quadratic (Sibson, 1973)
or even sub-quadratic time (March et al., 2010) leveraging
dual-tree algorithms (Ram et al., 2009; Curtin et al., 2013;
2015).

Density-based clustering. Schemes, such as the popu-
lar DBSCAN (Ester et al., 1996) and SNN (Aguilar et al.,
2001), do not view clustering as a discrete optimization
problem but as the problem of finding the modes in the
data distribution, allowing for arbitrary shaped clusters with
robustness to noise and outliers (Sander et al., 1998). How-
ever, multi-dimensional density estimation is a challenging
task, especially with nonparametric methods (Silverman,
1986; Ram & Gray, 2011), leading to the use of parametric
models such as Gaussian Mixture Models (Reynolds, 2009)
(which can be estimated from the data with Expectation-
Maximization (Dempster et al., 1977)).

Differentiable & deep clustering. Differentiability is of
critical interest in deep clustering where we wish to simul-
taneously learn a latent representation of the points and
perform clustering in that latent space (Ren et al., 2022;
Zhou et al., 2022). Existing differentiable clustering formu-
lations such as the sum-of-norms (Panahi et al., 2017) or the
non-negative matrix factorization (Kim & Park, 2008) based
ones are essentially solving constrained optimization and do
not directly fit into an end-to-end differentiable deep learn-
ing pipeline. Hence, various schemes utilize some form of
soft clustering formulation such as fuzzy k-means (Bezdek
et al., 1984). Xie et al. (2016) proposed a novel probabilistic
k-means formulation inspired by t-SNE (Van der Maaten &
Hinton, 2008) to perform differentiable clustering (DEC) on
representations from a pretrained autoencoder (AE), while

2

End-to-end Differentiable Clustering with Associative Memories

Guo et al. (2017a) (IDEC) showed gains from jointly learn-
ing representations and clusters. For representation learning
in deep clustering of images, Song et al. (2013), Xie et al.
(2016), and Yang et al. (2017) used stacked autoencoders,
and Guo et al. (2017b) (DCEC) showed further improve-
ments with convolutional autoencoders (CAE). Chazan et al.
(2019) utilized multiple AEs, one per cluster, but the (soft)
cluster assignment was performed with fuzzy k-means. Cai
et al. (2022) added a “focal loss” to the DEC relaxation to
penalize non-discrete assignments, while also enhancing the
representation learning. Deep subspace clustering (Peng
et al., 2016; Ji et al., 2017; Zhang et al., 2019) relaxes the
combinatorial spectral clustering problem (again with partial
cluster assignments), and utilizes “self-expressive” layers
to simultaneously learn the necessary Laplacian (affinity
matrix) and the clusters in a differentiable manner. Thus,
deep clustering generally uses some probabilistic partial
assignment of points to multiple clusters, deviating from
the discrete nature of original k-means. Furthermore, these
schemes often leverage pretrained AEs and/or k-means via
Lloyd (1982) to initialize the network parameters. Our pro-
posed ClAM maintains the discrete assignment nature of
clustering, and works well without any special seeding.

Associative Memory (AM). This is a neural network that
can store a set of multidimensional vectors – memories
– as fixed point attractor states of a recurrent dynamical
system. It is designed to associate the initial state (pre-
sented to the system) to the final state at a fixed point (a
memory), thereby defining disjoint basins of attractions
or partitions of the data domain, and thus, can represent a
clustering. This network was mathematically formalized
as the classical Hopfield Network (Hopfield, 1982), but is
known to have limited memory capacity, being able to only
store ≈ 0.14d random memories in a d dimensional data
domain (Amit et al., 1985; McEliece et al., 1987). For cor-
related data, the capacity is even smaller, and often results
in one fixed point attracting the entire dataset into a single
basin. This behavior is problematic for clustering, since
the number of clusters – the number of stable fixed points –
should be decoupled from the data dimensionality. Krotov
& Hopfield (2016) proposed Modern Hopfield Network or
Dense AM by introducing rapidly growing non-linearities –
activation functions – into the dynamical system, allowing
for a denser arrangement of memories, and super-linear (in
d) memory capacity. For certain activation functions, Dense
AMs have power law or even exponential capacity (Krotov
& Hopfield, 2016; Demircigil et al., 2017; Ramsauer et al.,
2020; Lucibello & Mézard, 2023). Ramsauer et al. (2020)
demonstrated that the attention mechanism in transform-
ers (Vaswani et al., 2017) is a special limiting case of Dense
AMs with the softmax activation. Dense AMs have also
been used to describe the entire transformer block (Hoover
et al., 2023), as well as integrated in sophisticated energy-

based neural architectures (Hoover et al., 2022). See Krotov
(2023) for a review of these results. Dense AMs have also
been recently studied with setwise connections (Burns &
Fukai, 2023), as well as applied to hetero-associative set-
tings (Liang et al., 2022). In our work, we will show that
the recurrent dynamics and the large memory capacity of
Dense AMs make them uniquely suitable for clustering.

3. Associative Memories for Clustering
In this section, we present (i) the mathematical framework
for ClAM based on AMs, (ii) motivate its suitability for
clustering, and (iii) present a way of learning the memories
for good clustering. We put all this together in our novel
prototype-based clustering algorithm, ClAM.

3.1. Associative memories: Mathematical Framework

In a d-dimensional Euclidean space, consider M memories
ρµ ∈ Rd, µ ∈ [M] ≜ {1, . . . ,M} (we will discuss later
how the memories are learned). The critical aspects of this
mathematical framework are the energy function and the
attractor dynamics (Krotov & Hopfield, 2021; Millidge
et al., 2022). A suitable energy for clustering should be
a continuous function of a point (or a particle) v ∈ Rd.
Additionally, the energy should have M local minima, cor-
responding to each memory. Finally, as a particle progres-
sively approaches a memory, its energy should be primarily
determined by that single memory, while the contribution of
the remaining M − 1 memories should be small. An energy
function satisfying these requirements is given by

E(v) = − 1

β
log

(∑
µ∈[M]

exp(−β∥ρµ − v∥2)
)

(1)

with a scalar β > 0 interpreted as an inverse “temperature”.
As β grows, the exp(·) in equation 1 ensures that only
the leading term remains significant, while the remaining
M−1 terms are suppressed. Thus, the entire energy function
will be described by a parabola around the closest memory.
The space will be partitioned into M basins of attraction
around each memory, and the shape of the energy function
around each memory will be primarily defined by the closest
memory, with small corrections from other memories.

The attractor dynamics control how v moves in the space
over time, via dv/dt, while ensuring that energy decreases.
That is dE(v)/dt < 0, which ensures that a particle conver-
gences to a local minimum – a fixed point of the dynamics –
given the lower bounded energy. The particle dynamics is
described by gradient descent on the energy landscape:

τ
dv

dt
= −1

2
∇vE =

∑
µ∈[M]

(ρµ−v) σ(−β∥ρµ−v∥2) (2)

where τ > 0 is a characteristic time constant, describing
how quickly the particle moves on the energy landscape,

3

End-to-end Differentiable Clustering with Associative Memories

ρ1

ρ2

ρ3

v0 ← v

v1

(a) Attraction and update.

ρ1

ρ2

ρ3

v0 ← v

v1

vT

vt

AM rec.

(b) Recursion to a fixed point.

Figure 2: Attractor dynamics. Figure 2a visualizes the
attraction (direction & magnitude with solid colored arrows)
of a particle v0 toward each of the memories ρ1,ρ2,ρ3, and
the resulting update δ1 (black dotted arrow) from v0 → v1

(equation 4). Figure 2b visualizes the recursive application
(AM recursion) of equation 4 to the particle v0 → v1 →
· · · → vt → · · · till it converges to a memory vt=T ≈ ρ1.

and σ(·) is the softmax function over the scaled distances
to the memories, defined as σ(zµ) = exp(zµ)/

∑M
m=1 exp(zm)

for any µ ∈ [M]. This is visualized in figure 2a. This is
guaranteed to reduce the energy since

dE(v)

dt

(a)
= ∇vE(v) · dv

dt

(b)
= −2τ

∥∥∥dv
dt

∥∥∥2 (c)
≤ 0 (3)

where (a) is the chain rule, (b) follows from equation 2, and
the equality in (c) implying local stationarity. A valid update
δt+1 for the point v from state vt to vt+1 = vt + δt+1 at a
discrete time-step t+ 1 is via finite differences:

δt+1 =
dt

τ

∑
µ∈[M]

(ρµ − vt) σ(−β∥ρµ − vt∥2) (4)

Given a dataset of points S, for each point v ∈ S one can
corrupt it with some noise to produce a distorted point ṽ.
This serves as an initial state of the AM network v0 ← ṽ.
The AM dynamics is defined by the learnable weights
ρµ, µ = 1, . . . ,M , which also correspond to the fixed
points of the dynamics (memories). The network evolves in
time for T recursions according to equation 4, where T is
chosen to ensure sufficient convergence to a fixed point (see
example in figure 2b). The final state vT is compared with
the uncorrupted v to define the loss function

L =
∑

v∈S
∥v − vT ∥2, where v0 ← ṽ (5)

which is minimized with backpropagation through time
with respect to the AM parameters ρµ. In the context of
clustering, the AM model naturally induces a partition of
the data space into non-overlapping basins of attraction,
implicitly defines a hard cluster assignment as the fixed point
in each basin, and is achieved through the fully continuous
and differentiable dynamics of AM, allowing learning with
standard deep learning frameworks, as we discuss next.

3.2. AM as a differentiable discrete argmin solver

Consider the original k-means objective with a dataset S ⊂
Rd, where we learn k prototypes R ≜ {ρµ, µ ∈ [k]} with

[k] ≜ {1, . . . , k} by solving the following problem:

min
R

∑
x∈S

∥x− ρµ⋆
x
∥2, s.t. µ⋆

x = argmin
µ∈[k]

∥x− ρµ∥2 (6)

The discrete selection of µ⋆
x (for each x) makes equation 6

a combinatorial optimization problem that cannot directly
be solved via (stochastic) gradient descent. A common
continuous relaxation of this problem is as follows:

min
R

∑
x∈S

∑
µ∈[k]

wµ(x) ∥x− ρµ∥2 (7)

where (usually) wµ(x) ∈ [0, 1] and
∑

µ∈[k] wµ(x) =

1 ∀x ∈ S. Hence, these weights {wµ(x), µ ∈ [k]} de-
fine a probability over the k prototypes, and are designed
to put the most weight on the closest prototype ρµ⋆

x
, and as

small a weight as possible on the remaining prototypes. For
example, the softmax function σ(·) with distances to the
prototypes has been used as wµ(x) = σ(−γ∥x − ρµ∥2),
where γ > 0 is a hyperparameter, and as γ → ∞,∑

µ∈[k] wµ(x)∥ x−ρµ∥2 → ∥x−ρµ⋆
x
∥2. Other weighting

functions have been developed with similar properties (Xie
et al., 2016), and essentially utilize a weighted sum of dis-
tances to the learned prototypes, resulting in something
different in essence to the discrete assignment µ⋆

x in the
original problem (equation 6). Another subtle point is that
this soft weighted assignment of any x ∈ S across all pro-
totypes at training time does not match the hard cluster
assignment to the nearest prototype at inference, introduc-
ing an incongruity between training and inference.

We propose a novel alternative continuous relaxation to
the discrete k-means problem leveraging the AM dynamics
(§3.1) that preserves the discrete assignment in the k-means
objective. Given the prototypes (memories) R = {ρµ, µ ∈
[k]}, the dynamics (equation 2) and the updates (equation 4)
ensure that any example (particle) x ∈ Rd will converge to
exactly one of the prototypes ρµ̂x

corresponding to a single
basin of attraction – if we set x0 ← x and apply the update
in equation 4 on x0 for T time-steps, then xT ≈ ρµ̂x

.
Furthermore, for appropriate β, µ̂x matches the discrete
assignment µ⋆

x in the k-means objective (equation 6).

This implies that, for appropriately set β and T , xT ≈
ρµ⋆

x
, allowing us to replace the desired per-example loss

∥x − ρµ⋆
x
∥2 in the k-means objective (equation 6) with

∥x− xT ∥2, allowing us to rewrite k-means (equation 6) as
the following continuous optimization problem:

min
R

∑
x∈S

∥∥x− xT
R

∥∥2 , where x0 ← x (8)

where xT
R is obtained by applying update in equation 4 to

any x ∈ S through T recursion steps, and the subscript ‘·R’
highlights the dependence on the prototypes R.

By the above discussion, the objective in equation 8 pos-
sesses the desired discrete assignment to a single proto-
type of the original k-means objective (equation 6) since

4

End-to-end Differentiable Clustering with Associative Memories

ρ1 ρ2
x

(a) Case I

ρ1 ρ2 ρ3
x

(b) Case II

ρ1

ρ2

ρ3
x

(c) Case III

Figure 3: Collective attraction. Examples of prototype
configurations, with the attraction (direction & magnitude)
of x towards each prototype shown by colored arrows, and
the aggregate attraction shown by the black arrow. See §3.3.

xT
R converges to exactly one of the prototypes. This is a

significantly different relaxation of the k-means objective
compared to the existing “weighted-sum” approaches. The
tightness of this relaxation relies on the choices of β (inverse
temperature) and T (the recursion depth) – we treat them as
hyperparameters and select them in a data-dependent man-
ner. For any given β and T , we can minimize equation 8
with SGD (and variants) via backpropagation through time.

3.3. Understanding the partitions induced by AMs

An equivalent interpretation of the discrete assignment µ⋆
x

for each x ∈ S in the k-means objective (equation 6) is that
the prototypes R induce a Voronoi partition (Aurenhammer,
1991) of the whole input domain, and the examples x ∈ S
are assigned to the prototype whose partition they lie in.
Voronoi partitions have piecewise linear boundaries, with
all points in a partition having the same closest prototype.
Given prototypes R, the AM dynamics induces a partition
of the domain into non-overlapping basins of attraction.
For an appropriately set β and T , the basins of attraction
approximately match the Voronoi partition induced by the
prototypes. However, when β is not “large enough”, the
cluster assignment happens in a more “collective” manner.
We provide some intuitive examples here.

Consider two prototypes ρ1,ρ2, with a point x between
them as shown in figure 3a, with ρ1 closest to x. The at-
traction of x to ρ1 is inversely proportional to ∥x − ρ1∥2
(vice versa for ρ2). In this scenario, these will work against
each other and x will move toward the prototype with the
highest attraction (based on equation 4), which is the pro-
totype closest to x (in this case, ρ1). This further increases
the attraction of x to ρ1 in the next time-step (and decreases
the ρ2 attraction), resulting in x progressively converging
to ρ1 through the T time-steps, and thus being “assigned”
to the partition corresponding to ρ1, its closest prototype.

Consider an alternate Case-II with three prototypes in fig-
ure 3b, with ρ2 lying between ρ1 and ρ3, and x lying

(a) β = 0.001. (b) β = 10. (c) β = 100.

Figure 4: Basins of attraction vs Voronoi partition. Parti-
tions induced by AM basins of attraction with given mem-
ories (black dots) for different β are shown by the colored
regions (T=10). Dashed lines show the Voronoi partition.

between ρ1 and ρ2, though closer to ρ1. For a large enough
β, x will converge to ρ1 through the T recursions. How-
ever, if β is not large enough, the collective attraction of x
to ρ2 and ρ3 can overcome the largest single attraction of
x to ρ1, forcing x to move away from ρ1, and eventually
converge to ρ2 – while the dynamics guarantee convergence
to exactly one of the prototypes, the collective effort of ρ2

and ρ3 causes x to not converge to its closest prototype.

While figure 3b provides an example where prototypes can
combine their attractions, figure 3c presents Case-III with
three prototypes where prototypes cancel their attraction.
Here, prototypes ρ2 and ρ3 are closer to the example x
than ρ1. However, for some appropriate value of β, the
attraction of x to ρ2 and ρ3 will cancel each other, allowing
the attraction of x to ρ1 to move the example x towards and
finally converge to ρ1 (which is the farthest of the three).

These examples highlight that, for some values of β, the
partition is a collective operation (involving all prototypes)
leading to non-Voronoi partitions. We visualize the basins
of attraction for different β in figure 4 (also §B.5, figure 11),
contrasting them to the Voronoi partition. For a small β
(figure 4a), the basins do not match the Voronoi partition –
this mirrors the aforementioned behavior in Case-III (fig-
ure 3c). As β increases, the basins of attraction evolve to
match the Voronoi partition (figure 4c). Furthermore, while
the Voronoi partition boundaries are piecewise linear, the
AM basins of attraction can have nonlinear boundaries (see
green-orange and green-blue boundaries in figure 4b).

This behavior is an artifact of our novel continuous relax-
ation of discrete clustering. While we highlight this as a
difference (ultimately, we are relaxing a discrete problem
into a continuous one), this behavior requires specific values
of β relative to the specific geometric positioning of the pro-
totypes; this might not be as prevalent in multidimensional
data. Moreover, even if the basins do not match the Voronoi
partition, it will not affect the clustering objective unless
some x ∈ S lies in the space where the partitions differ.
Finally, as mentioned earlier, we treat β and T as hyperpa-
rameters, and select them in a data-dependent fashion, so
that the AM partition sufficiently matches the Voronoi one.

5

End-to-end Differentiable Clustering with Associative Memories

R = {ρ1,ρ2,ρ3}

ρ1

ρ2

ρ3

x0 ←m⊙ x

x1
R

xT
R

x2
R

xt
R

x

m

Self-supervised
lossL

∇RL

Updated
prototypes R

AM recursion

Figure 5: Algorithm 1. For x ∈ S, we first apply a mask
(in purple) m to x to get the initial iterate x0 for the AM
recursion. With T recursions, we have a completed version
xT
R. The prototypes R are updated with the gradient ∇RL

on the self-supervised loss L (equation 9).

3.4. ClAM: Clustering with AMs and self-supervision

The AM framework allows for a novel end-to-end differ-
entiable unconstrained continuous relaxation (equation 8)
of the discrete k-means problem (equation 6). Next, we
wish to leverage the aforementioned strong pattern com-
pletion abilities of AMs (§3.1). We use standard masking
from self-supervised learning – we apply a (random) mask
m ∈ {0, 1}d to a point x ∈ S ⊂ Rd and utilize the AM
recursion to complete the partial pattern x0 = m⊙ x and
utilize the distortion between the ground-truth masked value
and completed pattern as our loss as follows. Given a mask
distributionM and denoting m̄ as the complement of m:

L =
∑

x∈S
Em∼M∥m̄⊙(x−xT

R)∥2, x0 ←m⊙x, (9)

where xT
R evolves from x0 with T recursions of equation 4.

Prototypes R are learned by minimizing the self-supervised
pattern completion loss (equation 9) via SGD. The precise
learning algorithm is presented in the TrainClAM subroutine
of algorithm 1, and visualized in figure 5. After randomly
seeding the prototypes (line 2), we perform N epochs over
the data (line 3) – to each x in a data batch B (lines 4-6),
we apply a random mask (line 8), complete the pattern with
the AM recursion using the current prototypes (lines 9-12),
accumulate the batch loss as in equation 9 (line 13), and
update the prototypes with the batch gradient (line 14).

Proposition 3.1. The TrainClAM subroutine in algorithm 1
takes O(dkTN |S|) time, where |S| is the cardinality of S,
converging to a O(N−1/2)-stationary point.

The N−1/2 term comes from the convergence rate of
standard SGD for smooth non-convex problems (Nes-
terov, 2003) that can be improved to N−2/3 with momen-
tum (Fang et al., 2018), which is straightforward given the
end-to-end differentiability of our proposal. The InferClAM
subroutine of algorithm 1 assigns points x ∈ S to clusters
using the learned prototypes R with a single pass over S.
This is invoked once at the conclusion of the clustering.

Algorithm 1: ClAM: Learning k prototypes for cluster-
ing a d-dimensional dataset S ⊂ Rd into k clusters with
T time-steps for N epochs, with inverse temperature β,
learning rate ϵ, time step dt and time constant τ .

1 TrainClAM(S, k,N, T, β, dt, τ, ϵ)
2 Initialize prototypes R = {ρµ ∈ Rd, µ ∈ [k]} randomly
3 for epoch n = 1, . . . , N do
4 for batch B ∈ S do
5 Batch loss LB ← 0
6 for example x ∈ B do
7 Sample random mask m ∈ {0, 1}d

8 x0 ←m⊙ x
9 for t = 1, . . . , T do

10 ∆µ ← ρµ − xt−1
R ∀µ ∈ [k]

11 δt ← m̄⊙ dt
τ

k∑
µ=1

∆µσ
(
−β∥∆µ∥2

)
12 xt

R ← xt−1
R + δt

13 LB ← LB + ∥m̄⊙ (xT
R − x)∥2

14 ρµ ← ρµ − ϵ∇ρµLB ∀µ = 1, . . . , k

15 return Protoypes R = {ρµ, µ ∈ [k]}
16 InferClAM(S,R, T, β, dt, τ)
17 Cluster assignments C ← ∅
18 for x ∈ S do
19 x0 ← x
20 for t = 1, . . . , T do
21 ∆µ ← ρµ − xt−1

R ∀µ ∈ [k]

22 xt
R ← xt−1

R + dt
τ

k∑
µ=1

∆µσ
(
−β∥∆µ∥2

)
23 µ̂x ← argminµ ∥ρµ − xT

R∥2
24 C ← C ∪ {µ̂x}
25 return Per-point cluster assignments C

Proposition 3.2. The InferClAM subroutine in algorithm 1
takes O(dkT |S|) time, where |S| is the cardinality of S.

From Propositions 3.1 and 3.2, we can see, ClAM training
and inference is linear in the number of points |S| in the
data set S, the number of dimensions d, and the number
of clusters k. For N epochs over the data set S, ClAM
training takes O(dkTN |S|) where T is the AM recursion
depth, while k-means training (with Lloyd’s algorithm)
takes O(dkN |S|). Hence, both k-means and ClAM scale
linearly with the number of points, though ClAM runtime
has a multiplicative factor of T where T is usually less than
10. So k-means would intuitively be faster than ClAM. Note
that k-means and ClAM are significantly more efficient than
Spectral clustering and Agglomerative clustering which usu-
ally scale between quadratic and cubic in the number of
samples. Note that, for the same number of epochs, we
can establish convergence guarantees for our SGD based
ClAM (which can be improved with the use of Momentum
based SGD), while similar convergence guarantees are not
available for k-means.

6

End-to-end Differentiable Clustering with Associative Memories

3.5. Flexibility and Extensions

Here, we highlight how ClAM naturally incorporates modifi-
cations. Specifically, we demonstrate how it can be modified
to perform weighted clustering (different clusters have dif-
ferent “attractions”), and spherical clustering (using cosine
similarity), highlighting the change in the energy function
(equation 1) and the attractor dynamics (equation 4).

Weighted clustering. We allow different prototypes ρµ to
have different weights εµ > 0, implying different attraction
scaling, and the subsequent energy function is:

E(v) = − 1

β
log

∑
µ∈[k]

εµ exp
(
−β∥ρµ − v∥2

) (10)

with the finite difference update δt+1 at time-step t+ 1

δt+1 =
dt

τ

∑
µ∈[k]

(ρµ−vt)σ(−β∥ρµ−vt∥2+log εµ) (11)

This update step can be directly plugged into algorithm 1
(line 11). The weights εµ, µ ∈ [k] can be user-specified
based on domain knowledge, or learned via gradient descent,
and intuitively relate to the slopes of the basins of attraction,
allowing different attraction scaling for each basin.

Spherical clustering. We can change the energy function
to depend on the cosine similarity to get (without loss of
generality, assume ∥v∥ = 1 ∀v ∈ S in the following):

E(v) = − 1

β
log

(∑
µ∈[k]

exp (β ⟨ρ̃µ,v⟩)
)

(12)

with ρ̃µ = ρµ/∥ρµ∥, and the corresponding update step

δt+1 =
dt

τ

∑
µ∈[k]

ρ̃µσ
(
β
〈
ρ̃µ,v

t
〉)

ṽ = vt + δt+1

and vt+1 = ṽ/∥ṽ∥, plugged into algorithm 1 (line 11) gives
us an end-to-end differentiable spherical clustering.

4. Empirical evaluation
We evaluate ClAM on 10 datasets of varying sizes – 7-
16000 features, 101-60000 points. The number of clus-
ters for each dataset are selected based on its number of
underlying classes (the class information is not involved
in clustering or hyperparameter selection). See details in
Appendix A.1. First, we compare ClAM with established
schemes, k-means (Lloyd, 1982), spectral & agglomerative
clustering, and to DEC (Xie et al., 2016) and DCEC (Guo
et al., 2017b) (for 3 image sets since DCEC uses CAE (§2);
ClAM naively reshapes images into vectors). Then we ab-
late the effect of self-supervision in ClAM, and evaluate a
ClAM extension. Qualitatively, we visualize the memory
evolution through the learning.

For implementation, we use Tensorflow (Abadi et al., 2016)
for ClAM and scikit-learn (Pedregosa et al., 2011) for
the clustering baselines and quality metrics. DCEC/DEC
seed the optimization with the prototypes from the Lloyd’s
solution; we also consider a randomly seeded DECr. Fur-
ther details are in Appendix A.3. We perform an elabo-
rate hyperparameter search for all methods (see Appen-
dices B.1 and B.2), and utilize the configuration for each
method corresponding to the best Silhouette Coefficient
(SC) (Rousseeuw, 1987) on each dataset. The code is avail-
able at https://github.com/bsaha205/clam.

Q1: How does ClAM compare against baselines? We
present the best SC obtained by all schemes in Table 1.
ClAM consistently improves over k-means across all 10
datasets (up to 60%), and outperforms both versions of
DEC, highlighting the advantage of the novel relaxation.
Furthermore, Lloyd’s seeding is critical in DEC – DECr

does worse than base k-means (via Lloyd (1982)) in all
cases – while ClAM performs well with random seeding.
ClAM even improves upon DCEC, which uses rich image
representations from a CAE. Overall, ClAM performs best
on 5/10 datasets, showing significant improvements over
even spectral and agglomerative clustering (these are not
prototype-based, and hence can be more expressive). On the
remaining datasets, both spectral and agglomerative clus-
tering show improvements over ClAM. To understand this
better, we also compare the clusters generated by the differ-
ent methods to the ground-truth class structure in each of
the datasets.1 The Normalized Mutual Information (NMI)
scores (Vinh et al., 2009) are shown in Table 2. The results
indicate that the datasets on which spectral and agglomera-
tive clustering have a significantly higher SC than k-means
and ClAM (GCM, USPS, CTG, Segment), their correspond-
ing NMI scores are significantly lower (see underlined en-
tries in Table 2), indicating clusters that are misaligned with
the ground-truth labels. Upon further investigation, we see
that both spectral and agglomerative clustering end up with
a single large cluster, and many really small (even singleton)
ones, indicating that the clustering is overly influenced by
geometric outliers. 2 See further results in Appendix B.4.

Q2: How beneficial is self-supervision in ClAM? In al-
gorithm 1 (line 13), we use the pattern completion ability
of AMs, and optimize for the self-supervised loss (equa-
tion 9). Here, we ablate the effect of this choice – we utilize
a version of algorithm 1 that does not use any masking (re-

1Although the underlying geometry of the data does not neces-
sarily align with the ground-truth class structure, this is a post-hoc
way of evaluating how intuitive the discovered clusters are.

2For example, with CTG (2126 points), both spectral and ag-
glomerative clustering find 10 clusters, but 8 of them of size ≤ 8
each, and 1 with size over 2000. k-means finds 1 cluster of size
7, with 8 of the remaining 9 clusters of size ≥ 91. ClAM finds 2
clusters with size ≤ 4; all remaining have size ≥ 55.

7

https://github.com/bsaha205/clam

End-to-end Differentiable Clustering with Associative Memories

Table 1: Silhoutte Coefficient (SC) obtained by ClAM, its variants and baselines (higher is better). ▲(▼) show the
performance gain (drop) by ClAM, given by (a−b)/b× 100% where a is the SC for ClAM, and b is the SC for the baseline;
positive (negative) values indicate performance gain (drop). The best performance for a dataset is in boldface. W/L denote
Wins/Losses. Note ablations ClAM w/ (8) is ClAM without self-supervision, and ClAM w/ (11) is weighted ClAM.

Dataset k-means Spectral Agglo DCEC DEC DECr ClAM w/ (8) w/ (11)

Zoo 0.374▲10% 0.398▲3% 0.398▲3% — 0.374▲10% 0.367▲12% 0.412 0.382 0.412
Ecoli 0.262▲26% 0.381▼13% 0.404▼18% — 0.262▲26% 0.255▲30% 0.331 0.301 0.345
MovLib 0.252▲3% 0.247▲5% 0.247▲5% — 0.258▲1% 0.184▲41% 0.260 0.248 0.262
Yale 0.117▲10% 0.120▲8% 0.114▲13% 0.089▲45% 0.123▲5% 0.088▲47% 0.129 0.121 0.119
USPS 0.135▲1% 0.228▼40% 0.231▼41% 0.119▲14% 0.135▲1% 0.108▲26% 0.136 0.127 0.136
Segment 0.357▲35% 0.702▼31% 0.697▼31% — 0.357▲35% 0.287▲68% 0.483 0.357 0.410
FMNIST 0.126▲10% 0.075▲84% 0.096▲44% 0.121▲14% 0.129▲7% 0.070▲97% 0.138 0.131 0.118
GCM 0.118▲62% 0.205▼7% 0.288▼34% — 0.115▲66% 0.054▲254% 0.191 0.142 0.156
MicePE 0.128▲56% 0.156▲28% 0.193▲4% — 0.137▲46% 0.115▲74% 0.201 0.126 0.127
CTG 0.161▲53% 0.449▼45% 0.387▼36% — 0.164▲50% 0.130▲89% 0.246 0.147 0.158

ClAM W/L 10/0 5/5 5/5 3/0 10/0 10/0 — 10/0 6/2
ClAM w/ (8) W/L 5/3 3/7 3/7 3/0 5/4 10/0 0/10 — 2/8

Table 2: Normalized Mutual Information (NMI) between
ground-truth labels and clusters (higher is better). The
best performance for each dataset is in boldface. The
underlined entries for Spectral and Agglomerative mark
low NMI but high SC in Table 1 (note abbreviations k-
means→k-m, DCEC→DC, DEC→D, DECr→Dr).

Data k-m Spec Aggl DC D Dr ClAM

Zoo 0.83 0.89 0.84 N/A 0.83 0.80 0.94
Yale 0.60 0.57 0.67 0.54 0.55 0.51 0.64
GCM 0.44 0.17 0.19 N/A 0.42 0.39 0.45
Ecoli 0.63 0.66 0.71 N/A 0.63 0.57 0.66
MLib 0.60 0.61 0.61 N/A 0.60 0.51 0.62
MPE 0.24 0.01 0.26 N/A 0.29 0.30 0.31
USPS 0.54 0.08 0.02 0.69 0.54 0.45 0.56
CTG 0.36 0.04 0.04 N/A 0.35 0.36 0.32
Seg 0.58 0.01 0.01 N/A 0.59 0.61 0.55
FM 0.50 0.64 0.01 0.59 0.50 0.43 0.52

moving m and m̄ in lines 8 and 11 respectively) and learns
memories by minimizing the loss in equation 8 (replacing
line 13 with this loss). Table 1 (ClAM and ClAM w/ (8)
columns) show their SC for all datasets, highlighting the
positive effect of self-supervision, with around 10% gain in
all cases.

Q3: How do weighted and vanilla clustering with ClAM
compare against each other? We discussed the flexibil-
ity of the ClAM framework in §3.5. We evaluate one such
extension – weighted clustering where different memories
can have different relative attractions, inducing more im-
balanced clustering which may be desirable in certain ap-
plications. ClAM handles relative weights that are (i) user-
specified, or (ii) learned via SGD within algorithm 1 (with
an additional update step for εµ). We consider case (ii) here,
learning εµ via SGD, and compare to vanilla ClAM in Table
1 (ClAM and ClAM w/ (11) columns) on all datasets. The
results indicate that the benefits are dataset-dependent. Our

(a) n0 (b) n5 (c) n10 (d) n20 (e) n50 (f) n100

Figure 6: Evolution of ClAM prototypes. We visu-
alize the prototypes at the nth training epoch for n =
0, 5, 10, 20, 50, 100 (with T = 10). The images pixels are
colored as red for positive, white for zero and blue for nega-
tive values, with their intensity denoting magnitude.

intent here is to show that ClAM handles such problems if
needed, and can result in improvements (as in 2/10 cases).

Q4: How to interpret ClAM? An interesting aspect of AMs
is the prototype-based representation of memories (Kro-
tov & Hopfield, 2016). We study this for ClAM with the
Fashion-MNIST images. We use ClAM to partition the 60k
images of fashion items (shirts, trousers, shoes, bags) into
10 clusters, and visualize the evolution of the 10 memo-
ries in figure 6 over the course of algorithm 1. We reshape

8

End-to-end Differentiable Clustering with Associative Memories

Table 3: Clustering efficiency comparison between k-
means and ClAM.

Dataset Silhoutte Coefficient (SC) Time in second

k-means ClAM k-means ClAM

Zoo 0.374 0.412 2 18
Ecoli 0.262 0.331 4 47
MovLib 0.252 0.260 6 67
Yale 0.117 0.129 9 88
CIFAR-10 0.022 0.031 2995 3419
JV 0.109 0.118 1973 3933

the 28×28 images into vectors in R784, learn prototypes in
R784 and reshape them back to 28×28 solely for visualiza-
tion. Each sub-figure in figure 6 corresponds to a particu-
lar epoch during the training, and shows all 10 memories
stacked vertically. We can see that at epoch 0 (figure 6a)
the memories are initialized with random values. At epoch
5 (figure 6b), the memories start to become less random,
but only start showing some discernible patterns at epoch
10 (figure 6c) which get refined by epoch 20 (figure 6d)
and further sharpen by epoch 50 (figure 6e). By epoch 100
(figure 6f), the shapes have stabilized although some learn-
ing might still be happening. Some memories evolve into
individual forms (such as rows 3–pants, 4–shoes, 8–bags,
9–long-sleeve shirts and 10–boots), while others evolve
into mixtures of 2 forms (such as rows 1–pants and shoes,
6–pants and short-sleeve shirts, 7–shoes and long-sleeve
shirts). The remaining evolve into less distinguishable forms
though we can still visualize some shapes (like in rows 2–
long-sleeve shirts and 5–shoes).

Q5: How computationally expensive is ClAM compared
to k-means? While comparing the actual runtimes of k-
means and ClAM, we would like to note that we make use
of the standard k-means implementation from scikit-learn,
which utilizes numpy and scipy linear algebra packages un-
der the hood, while our ClAM implementation makes use of
the Tensorflow framework, leveraging their auto-grad capa-
bilities. Furthermore, Tensorflow is designed to seamlessly
utilize GPUs if available, while scikit-learn does not have
such capabilities out of the box. With these differences, the
actual runtimes are not directly comparable. This is the rea-
son why we give importance to runtime complexities instead
of actual runtimes. However, notwithstanding these caveats,
we present the precise runtimes of k-means and ClAM (the
Spectral and Agglomerative clustering baselines are signif-
icantly slower, and DEC has the same scaling as k-means
for the same number of epochs) for six datasets. In Table
3, we present the Silhouette Coefficient (SC) and Train-
ing time for k-means (with Lloyd’s algorithm) and ClAM
for all of these six datasets. In all cases, ClAM improves
over k-means in terms of the SC. For the smaller datasets,

we can see that k-means is almost an order of magnitude
faster than ClAM. However, a lot of it can be attributed
to the overhead of leveraging the Tensorflow framework
and SGD, instead of just performing small matrix multipli-
cations with Numpy. We also consider a relatively larger
dataset CIFAR-10 where the images are encoded into 1920-
dimensional vectors with a pre-trained DenseNet (Huang
et al., 2017) and a million row dataset, Japanese Vowels (JV),
from https://openml.org. In these larger datasets,
k-means is still faster than ClAM (as we had discussed ear-
lier based on the theoretical runtime complexities) but the
increase of ClAM ’s runtime is only between 1-2×.

5. Limitations and Future Work
In this paper, we present a novel continuous relaxation of
the discrete prototype-based clustering problem leveraging
the AM dynamical system that allows us to solve the clus-
tering problem with SGD based schemes. We show that this
relaxation better matches the essence of the discrete cluster-
ing problem, and empirical results show that our ClAM ap-
proach significantly improves over standard prototype-based
clustering schemes, and existing continuous relaxations. We
note that ClAM is still a prototype-based clustering scheme,
hence inherits the limitations of prototype-based clustering.

Given the end-to-end differentiable nature of ClAM, we will
extend it to clustering with kernel similarity functions and
Mahanalobis distances, and to deep clustering where we also
learn a latent space. We plan to explore new energy func-
tions and update dynamics that enable spectral clustering.
Finally, given ClAM’s flexibility, we want to automatically
estimate the number of clusters on a per-dataset basis, much
like Pelleg & Moore (2000) and Hamerly & Elkan (2003).

Acknowledgements
This work was supported by the Rensselaer-IBM AI Re-
search Collaboration (http://airc.rpi.edu), a part
of the IBM AI Horizons Network. The work was done
during Bishwajit Saha’s externship at MIT-IBM Watson AI
Lab, IBM Research.

References
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A.,

Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard,
M., et al. {TensorFlow}: a system for {Large-Scale}
machine learning. In 12th USENIX symposium on oper-
ating systems design and implementation (OSDI 16), pp.
265–283, 2016.

Aguilar, J. S., Ruiz, R., Riquelme, J. C., and Giráldez, R.
SNN: A supervised clustering algorithm. In International
Conference on Industrial, Engineering and Other Ap-

9

https://openml.org
http://airc.rpi.edu

End-to-end Differentiable Clustering with Associative Memories

plications of Applied Intelligent Systems, pp. 207–216.
Springer, 2001.

Amit, D. J., Gutfreund, H., and Sompolinsky, H. Storing in-
finite numbers of patterns in a spin-glass model of neural
networks. Physical Review Letters, 55(14):1530, 1985.

Aurenhammer, F. Voronoi diagrams – a survey of a funda-
mental geometric data structure. ACM Computing Surveys
(CSUR), 23(3):345–405, 1991.

Bezdek, J. C., Ehrlich, R., and Full, W. Fcm: The fuzzy
c-means clustering algorithm. Computers & geosciences,
10(2-3):191–203, 1984.

Bijuraj, L. Clustering and its applications. In Proceedings
of National Conference on New Horizons in IT-NCNHIT,
volume 169, pp. 172, 2013.

Burns, T. F. and Fukai, T. Simplicial hopfield networks.
In The Eleventh International Conference on Learning
Representations, 2023.

Cai, J., Wang, S., Xu, C., and Guo, W. Unsupervised deep
clustering via contractive feature representation and focal
loss. Pattern Recognition, 123:108386, 2022.

Chakraborty, S., Paul, D., and Das, S. Automated clustering
of high-dimensional data with a feature weighted mean
shift algorithm. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, pp. 6930–6938,
2021.

Chazan, S. E., Gannot, S., and Goldberger, J. Deep cluster-
ing based on a mixture of autoencoders. In 2019 IEEE
29th International Workshop on Machine Learning for
Signal Processing (MLSP), pp. 1–6. IEEE, 2019.

Curtin, R., March, W., Ram, P., Anderson, D., Gray, A.,
and Isbell, C. Tree-independent dual-tree algorithms.
In International Conference on Machine Learning, pp.
1435–1443. PMLR, 2013.

Curtin, R. R., Lee, D., March, W. B., and Ram, P. Plug-
and-play dual-tree algorithm runtime analysis. Journal
of Machine Learning Research, 16:3269–3297, 2015.

Dasgupta, S. The hardness of k-means clustering. Depart-
ment of Computer Science and Engineering, University
of California . . . , 2008.

Demircigil, M., Heusel, J., Löwe, M., Upgang, S., and
Vermet, F. On a model of associative memory with huge
storage capacity. Journal of Statistical Physics, 168(2):
288–299, 2017.

Dempster, A. P., Laird, N. M., and Rubin, D. B. Maxi-
mum likelihood from incomplete data via the em algo-
rithm. Journal of the Royal Statistical Society: Series B
(Methodological), 39(1):1–22, 1977.

Donath, W. E. and Hoffman, A. J. Lower bounds for the
partitioning of graphs. IBM Journal of Research and
Development, 17(5):420–425, 1973. doi: 10.1147/rd.175.
0420.

Dua, D., Graff, C., et al. Uci machine learning repository.
2017.

Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient
methods for online learning and stochastic optimization.
Journal of machine learning research, 12(7), 2011.

Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. A density-
based algorithm for discovering clusters in large spatial
databases with noise. In Proceedings of the Second Inter-
national Conference on Knowledge Discovery and Data
Mining, pp. 226–231, 1996.

Fang, C., Li, C. J., Lin, Z., and Zhang, T. Spider: Near-
optimal non-convex optimization via stochastic path-
integrated differential estimator. Advances in Neural
Information Processing Systems, 31, 2018.

Guo, X., Gao, L., Liu, X., and Yin, J. Improved deep
embedded clustering with local structure preservation. In
Ijcai, pp. 1753–1759, 2017a.

Guo, X., Liu, X., Zhu, E., and Yin, J. Deep clustering with
convolutional autoencoders. In International conference
on neural information processing, pp. 373–382. Springer,
2017b.

Hamerly, G. and Elkan, C. Learning the k in k-means.
Advances in neural information processing systems, 16,
2003.

Hardt, M., Recht, B., and Singer, Y. Train faster, generalize
better: Stability of stochastic gradient descent. In Inter-
national conference on machine learning, pp. 1225–1234.
PMLR, 2016.

Hoover, B., Chau, D. H., Strobelt, H., and Krotov, D. A uni-
versal abstraction for hierarchical hopfield networks. In
The Symbiosis of Deep Learning and Differential Equa-
tions II, 2022.

Hoover, B., Liang, Y., Pham, B., Panda, R., Strobelt, H.,
Chau, D. H., Zaki, M. J., and Krotov, D. Energy trans-
former. arXiv preprint arXiv:2302.07253, 2023.

Hopfield, J. J. Neural networks and physical systems with
emergent collective computational abilities. Proceedings
of the national academy of sciences, 79(8):2554–2558,
1982.

Hopfield, J. J. Neurons with graded response have collective
computational properties like those of two-state neurons.
Proceedings of the national academy of sciences, 81(10):
3088–3092, 1984.

10

End-to-end Differentiable Clustering with Associative Memories

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger,
K. Q. Densely connected convolutional networks. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 4700–4708, 2017.

Hubert, L. and Arabie, P. Comparing partitions. Journal of
classification, 2(1):193–218, 1985.

Hull, J. J. A database for handwritten text recognition
research. IEEE Transactions on pattern analysis and
machine intelligence, 16(5):550–554, 1994.

Ji, P., Zhang, T., Li, H., Salzmann, M., and Reid, I. Deep
subspace clustering networks. Advances in neural infor-
mation processing systems, 30, 2017.

Johnson, S. C. Hierarchical clustering schemes. Psychome-
trika, 32(3):241–254, 1967.

Kim, J. and Park, H. Sparse nonnegative matrix
factorization for clustering. Technical report,
Georgia Institute of Technology, 2008. URL
https://faculty.cc.gatech.edu/˜hpark/
papers/GT-CSE-08-01.pdf.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Krotov, D. Hierarchical associative memory. arXiv preprint
arXiv:2107.06446, 2021.

Krotov, D. A new frontier for hopfield networks. Nature
Reviews Physics, pp. 1–2, 2023.

Krotov, D. and Hopfield, J. J. Dense associative memory
for pattern recognition. Advances in neural information
processing systems, 29, 2016.

Krotov, D. and Hopfield, J. J. Large associative memory
problem in neurobiology and machine learning. In Inter-
national Conference on Learning Representations, 2021.

Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R. P.,
Tang, J., and Liu, H. Feature selection: A data perspective.
ACM computing surveys (CSUR), 50(6):1–45, 2017.

Liang, Y., Krotov, D., and Zaki, M. J. Modern hopfield
networks for graph embedding. Frontiers in big Data, 5,
2022.

Lloyd, S. Least squares quantization in pcm. IEEE transac-
tions on information theory, 28(2):129–137, 1982.

Lucibello, C. and Mézard, M. The exponential capac-
ity of dense associative memories. arXiv preprint
arXiv:2304.14964, 2023.

MacQueen, J. Classification and analysis of multivariate
observations. In 5th Berkeley Symp. Math. Statist. Proba-
bility, pp. 281–297, 1967.

March, W. B., Ram, P., and Gray, A. G. Fast euclidean mini-
mum spanning tree: algorithm, analysis, and applications.
In Proceedings of the 16th ACM SIGKDD international
conference on Knowledge discovery and data mining, pp.
603–612, 2010.

McEliece, R., Posner, E., Rodemich, E., and Venkatesh,
S. The capacity of the hopfield associative memory.
IEEE transactions on Information Theory, 33(4):461–
482, 1987.

Millidge, B., Salvatori, T., Song, Y., Lukasiewicz, T., and
Bogacz, R. Universal hopfield networks: A general frame-
work for single-shot associative memory models. arXiv
preprint arXiv:2202.04557, 2022.

Nemirovski, A., Juditsky, A., Lan, G., and Shapiro, A. Ro-
bust stochastic approximation approach to stochastic pro-
gramming. SIAM Journal on optimization, 19(4):1574–
1609, 2009.

Nesterov, Y. Introductory lectures on convex optimization:
A basic course, volume 87. Springer Science & Business
Media, 2003.

Panahi, A., Dubhashi, D., Johansson, F. D., and Bhat-
tacharyya, C. Clustering by sum of norms: Stochastic in-
cremental algorithm, convergence and cluster recovery. In
International conference on machine learning, pp. 2769–
2777. PMLR, 2017. URL http://proceedings.
mlr.press/v70/panahi17a/panahi17a.pdf.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., et al. Scikit-learn: Machine
learning in python. the Journal of machine Learning
research, 12:2825–2830, 2011.

Pelleg, D. and Moore, A. W. X-means: Extending k-means
with efficient estimation of the number of clusters. In
ICML, volume 1, pp. 727–734, 2000.

Peng, X., Xiao, S., Feng, J., Yau, W.-Y., and Yi, Z. Deep
subspace clustering with sparsity prior. In IJCAI, pp.
1925–1931, 2016.

Ram, P. and Gray, A. G. Density estimation trees. In
Proceedings of the 17th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pp.
627–635, 2011.

Ram, P., Lee, D., March, W., and Gray, A. Linear-time
algorithms for pairwise statistical problems. Advances in
Neural Information Processing Systems, 22, 2009.

Ramsauer, H., Schäfl, B., Lehner, J., Seidl, P., Widrich,
M., Adler, T., Gruber, L., Holzleitner, M., Pavlović, M.,
Sandve, G. K., et al. Hopfield networks is all you need.
arXiv preprint arXiv:2008.02217, 2020.

11

https://faculty.cc.gatech.edu/~hpark/papers/GT-CSE-08-01.pdf
https://faculty.cc.gatech.edu/~hpark/papers/GT-CSE-08-01.pdf
http://proceedings.mlr.press/v70/panahi17a/panahi17a.pdf
http://proceedings.mlr.press/v70/panahi17a/panahi17a.pdf

End-to-end Differentiable Clustering with Associative Memories

Ren, Y., Pu, J., Yang, Z., Xu, J., Li, G., Pu, X., Yu, P. S., and
He, L. Deep clustering: A comprehensive survey. arXiv
preprint arXiv:2210.04142, 2022.

Reynolds, D. A. Gaussian mixture models. Encyclopedia
of biometrics, 741(659-663), 2009.

Rousseeuw, P. J. Silhouettes: a graphical aid to the inter-
pretation and validation of cluster analysis. Journal of
computational and applied mathematics, 20:53–65, 1987.

Sander, J., Ester, M., Kriegel, H.-P., and Xu, X. Density-
based clustering in spatial databases: The algorithm gdb-
scan and its applications. Data mining and knowledge
discovery, 2(2):169–194, 1998.

Saxena, A., Prasad, M., Gupta, A., Bharill, N., Patel, O. P.,
Tiwari, A., Er, M. J., Ding, W., and Lin, C.-T. A review
of clustering techniques and developments. Neurocom-
puting, 267:664–681, 2017.

Sibson, R. Slink: an optimally efficient algorithm for the
single-link cluster method. The computer journal, 16(1):
30–34, 1973.

Silverman, B. W. Density estimation for statistics and data
analysis, volume 26. CRC press, 1986.

Song, C., Liu, F., Huang, Y., Wang, L., and Tan, T. Auto-
encoder based data clustering. In Iberoamerican congress
on pattern recognition, pp. 117–124. Springer, 2013.

Van der Maaten, L. and Hinton, G. Visualizing data using
t-sne. Journal of machine learning research, 9(11), 2008.

Vassilvitskii, S. and Arthur, D. k-means++: The advantages
of careful seeding. In Proceedings of the eighteenth
annual ACM-SIAM symposium on Discrete algorithms,
pp. 1027–1035, 2006.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Vinh, N. X., Epps, J., and Bailey, J. Information theoretic
measures for clusterings comparison: is a correction for
chance necessary? In Proceedings of the 26th annual
international conference on machine learning, pp. 1073–
1080, 2009.

Von Luxburg, U. A tutorial on spectral clustering. Statistics
and computing, 17(4):395–416, 2007.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a
novel image dataset for benchmarking machine learning
algorithms. arXiv preprint arXiv:1708.07747, 2017.

Xie, J., Girshick, R., and Farhadi, A. Unsupervised deep
embedding for clustering analysis. In International con-
ference on machine learning, pp. 478–487. PMLR, 2016.

Xu, R. and Wunsch, D. Survey of clustering algorithms.
IEEE Transactions on neural networks, 16(3):645–678,
2005.

Yang, B., Fu, X., Sidiropoulos, N. D., and Hong, M. To-
wards k-means-friendly spaces: Simultaneous deep learn-
ing and clustering. In international conference on ma-
chine learning, pp. 3861–3870. PMLR, 2017.

Zhang, J., Li, C.-G., You, C., Qi, X., Zhang, H., Guo, J., and
Lin, Z. Self-supervised convolutional subspace clustering
network. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 5473–5482,
2019.

Zhou, S., Xu, H., Zheng, Z., Chen, J., Bu, J., Wu, J., Wang,
X., Zhu, W., Ester, M., et al. A comprehensive survey
on deep clustering: Taxonomy, challenges, and future
directions. arXiv preprint arXiv:2206.07579, 2022.

12

End-to-end Differentiable Clustering with Associative Memories

A. Experimental Details
A.1. Dataset details

To evaluate ClAM, we conducted our experiments on ten standard benchmark data sets. The datasets are taken from
various sources such as Yale from ASU feature selection repository3 (Li et al., 2017), USPS from Kaggle4 (Hull, 1994),
Fashion-MNIST from Zalando5 (Xiao et al., 2017), GCM from Chakraborty et al. (2021) and the rest of the datasets from the
UCI machine learning repository6 (Dua et al., 2017). The statistics of datasets used in our experiment are given in Table 4.

Table 4: Descriptions of various benchmark datasets, used in our experiments.

Dataset Short name # Points # Features # Classes

Zoo Zoo 101 16 7
Yale Yale 165 1024 15
GCM GCM 190 16063 14
Ecoli Ecoli 336 7 8
Movement Libras MovLib 360 90 15
Mice Protien Expression MicePE 1080 77 8
USPS USPS 2007 256 10
CTG CTG 2126 21 10
Segment Segment 2310 19 7
Fashion MNIST FMNIST 60000 784 10

A.2. Metrics used

To evaluate the performance of ClAM, we use Silhouette Coefficient (SC) (Rousseeuw, 1987) as the unsupervised metric that
is used to measure the quality of clustering. The score is between −1 and 1; a value of 1 indicates perfect clustering while a
value of −1 indicates entirely incorrect clustering labels. A value of near 0 indicates that there exist overlapping clusters in
the partition. To observe which existing clustering scheme is ClAM most similar to, we use Normalized Mutual Information
(NMI) (Vinh et al., 2009) & Adjusted Rand Index (ARI) (Hubert & Arabie, 1985) between the obtained partition by ClAM
and obtained partition by baselines. For NMI, a value of 1 indicates perfect clustering while a value of 0 indicates completely
wrong class labels. ARI scores range between −1 and 1 and the interpretation is same as SC. We also use the NMI & ARI
scores between the ground truth and the obtained partition from ClAM and the baselines to measure how they are aligned to
true clustering labels.

A.3. Implementation Details

We use Tensorflow (Abadi et al., 2016) numerical machine learning library to implement and evaluate our model. We
train ClAM on a single node with 1 NVIDIA Geforce RTX 3090 (24GB RAM), and 8-core 3.5GHz Intel Core-i9 CPUs
(32GB RAM). We train on the original data with masking where we utilize the distortion between the ground-truth masked
value and completed pattern from ClAM as the loss function to find the best model. In the forward pass, in each step, the
feature vector is updated in such a way so that gradually it moves toward one of the stored memories. In the backward
path, the memories are learned to minimize the loss. Hyperparameters are tuned for each dataset to find the best result.
Full details of the hyperparameters used in our model are given in Table 5. For the baseline schemes of k-means, spectral,
and agglomerative, we use the implementation from scikit-learn (Pedregosa et al., 2011) library and tune different
hyperparameters to get the best results for each dataset. For DCEC (Guo et al., 2017b), as it is based on convolutional
autoencoders (CAE) and works with only image dataset, we evaluate on three image datasets to compare with ClAM (we
leverage their Tensorflow implementation7). For the soft-clustering part of DEC (Xie et al., 2016) (where they utilize KL

3http://featureselection.asu.edu/
4https://www.kaggle.com/datasets/bistaumanga/usps-dataset
5https://github.com/zalandoresearch/fashion-mnist
6https://archive.ics.uci.edu/ml/index.php
7https://github.com/XifengGuo/DCEC

13

End-to-end Differentiable Clustering with Associative Memories

divergence loss between predicted and target probability distribution), besides their k-means-initialized cluster centers, we
also employ random-initialized cluster centers (DECr) to study how randomization works in DEC soft clustering network.
The description of used hyperparameters and their roles in the baseline schemes are given in Table 7.

Table 5: Hyperparameters, their roles and range of values for ClAM.

Hyperparameter Used Values

Inverse temperature, β [10−5 - 5]
Number of layers, T = 1/α = τ/dt [2-20]

Batch size [8, 16, 32, 64, 128, 256]
Adam initial learning rate, ϵ [10−4, 10−3, 10−2, 10−1]
Reduce LR by factor 0.8
Reduce LR patience (epochs) 5
Minimum LR 10−5

Reduce LR loss threshold 10−3

Maximum Number of epochs 200
Number of restart 10

Mask probability [0.1, 0.12, 0.15, 0.2, 0.25, 0.3]
Mask value [‘mean’, ‘min’, ‘max’]

Table 6: Best hyperparameters for different datasets for ClAM.

Dataset Inverse temperature, β Layers, T Initial learning rate Batch size Mask probability Mask value

Zoo 2.4 10 0.1 8 0.2 ’mean’
Yale 0.06 10 0.1 8 0.15 ’mean’
GCM 0.0004 12 0.1 8 0.15 ’max’
Ecoli 0.095 12 0.1 16 0.15 ’mean’
MLib 0.7 7 0.01 8 0.15 ’mean’
MPE 0.1 5 0.2 8 0.15 ’mean’
USPS 0.1 5 0.001 16 0.15 ’min’
CTG 0.4 12 0.1 8 0.1 ’mean’
Segment 0.1 7 0.1 8 0.1 ’mean’
FMNIST 0.0005 5 0.01 256 0.1 ’max’

B. Additional Experimental Results
B.1. Hyperparameter Dependency for ClAM

To get the best result from ClAM, we tune the involved hyperparameters (Table 5) thoroughly. We use a range of [10−5 − 2]
for the inverse temperature β, which is the most critical hyperparameter for ClAM. Figure 7 shows the effect of β in
measuring Silhouette Coefficient (SC) (Rousseeuw, 1987) for six datasets where each different plot indicates different
number of steps (T) used in ClAM. While SC is greatly dependent on the inverse temperature β and steps T , we see that it is
persistently competitive to the baseline k-means (red plot) for all the different configurations. We use the Adam optimizer
and start with an initial learning rate, and we reduce the learning rate by a factor of 0.8 if the training loss does not ameliorate
for a specific number of epochs until it reaches to the minimum learning rate threshold (10−5). The effect of initial learning
rate on ClAM is shown in figure 8. We set the number of epochs to 200 for each hyperparameter configuration, with number
of restarts at 10 (with different random seeds), and keep track of the training loss at the end of each epoch. We pick the
set of hyperparameters and the related model for the inference step which produces the least training loss. For masking
the original data, we tune different mask probabilities [0.1− 0.3] for different datasets to obtain the best model with three
different mask values (’mean’, ’min’, ’max’) for each feature. Figure 9 and figure 10 depict the effect of mask probabilities
and mask values on ClAM, respectively. We can see that using ’mean’ value of each feature as the mask value gives the nest
results for almost all datasets. Table 6 shows the best hyperparameters values for different datasets used in ClAM.

14

End-to-end Differentiable Clustering with Associative Memories

(a) Zoo (b) Yale (c) GCM

(d) Ecoli (e) Movement Libras (f) Segment

Figure 7: Silhouette score vs inverse temperature (β) for six datasets and for different number of steps, T . Label km
refers to k-means.

(a) Zoo (b) Yale (c) GCM

(d) Ecoli (e) Movement Libras (f) Segment

Figure 8: Silhouette score vs initial learning rate for six datasets and for different number of steps, T . Label km refers
to k-means.

B.2. Hyperparameter Tuning for Baselines

We compare ClAM with three baseline clustering schemes (k-means, spectral, and agglomerative) from
scikit-learn (Pedregosa et al., 2011), DCEC (Guo et al., 2017b) & soft DEC (Xie et al., 2016). For k-means, spectral
and agglomerative, we perform a comprehensive search for tuning different hyperparameters available in scikit-learn
and pick the best results. For DCEC and soft DEC, we use their suggested hyper-parameters with different update intervals

15

End-to-end Differentiable Clustering with Associative Memories

(a) Zoo (b) Yale (c) Ecoli

Figure 9: Silhouette score vs mask probability for three datasets and for different number of steps, T . km means
k-means.

(a) Zoo (b) Yale (c) Ecoli

Figure 10: Silhouette score vs mask values for three datasets and for different number of steps, T . km is k-means.

(interval at which the predicted and target distributions get updated) to find the best results. Table 7 provides a brief
description of the hyperparameters and their roles in the baseline schemes.

Table 7: Hyperparameters (HPs), their roles and range of values for the baseline clustering schemes.

Baseline HP Role Used Values

k-means

n clusters Number of clusters to be formed True number of clusters
init Initialization method [‘k-means++’, ’random’]
n init Number of time the k-means algorithm will be run 1000

Spectral

n clusters Number of clusters to be formed True number of clusters
affinity The mechanism of constructing the affinity matrix ‘nearest neighbors’, ‘rbf’
gamma Kernel coefficient for ‘rbf’, ignored for ‘near-

est neighbors’
[0.001, 0.01, 0.05, 0.1, 0.5, 0.75, 1,
2, 5, 10]

assign labels Mechanism for assigning labels in the embedding space [‘k-means’, ‘discretize’]
n neighbors Number of neighbors to consider when constructing the

affinity matrix
[10, 15, 20, 50]

n init Number of time the k-means algorithm will be run 1000

Agglomerative
n clusters Number of clusters to be formed True number of clusters
affinity Metric used to compute the linkage [‘euclidean’, ‘l1’, ‘l2’, ‘manhattan’,

‘cosine’]
linkage Linkage criterion to use [‘single’, ‘average’, ‘complete’,

‘ward’]

DCEC/DEC/DECr
n clusters Number of clusters to be formed True number of clusters
batch size Size of each batch 256
maxiter Maximum number of iteration 2e4
gamma Degree of freedom of student’s t-distribution 1
update interval Interval at which the predicted and target distributions

are updated
[1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 75,
100, 125, 140, 150, 200]

tol Tolerance rate 0.001

16

End-to-end Differentiable Clustering with Associative Memories

B.3. Which clustering baseline is ClAM most similar to?

We compare the “overlap” – the normalized mutual information (Vinh et al., 2009) and adjusted rand index (Hubert &
Arabie, 1985) – between the clusterings produced by ClAM and the different baselines in Table 8. As is evident from the
results, the clusterings generated by ClAM are significantly more aligned with those generated by k-means than the other
baselines (with significant differences in 4/10 datasets). This is somewhat expected since both k-means and ClAM are
minimizing some form of the mean-squared-error (equivalently, the squared Euclidean distance), albeit in a different manner
(alternating combinatorial optimization in k-means versus gradient descent based optimization in ClAM).

Table 8: NMI and ARI score comparison between the clusters found by ClAM and the baseline clustering schemes.

Dataset Metric k-means Spectral Agglomerative

Zoo
NMI 0.8808 0.8315 0.8146
ARI 0.7736 0.6691 0.6953

Yale
NMI 0.8846 0.8568 0.8840
ARI 0.7870 0.7308 0.7621

GCM
NMI 0.4402 0.1400 0.1487
ARI 0.1832 -0.0223 -0.0314

Ecoli
NMI 0.7448 0.7378 0.7718
ARI 0.5868 0.7381 0.8049

Movement Libras
NMI 0.9158 0.7918 0.8426
ARI 0.8110 0.6212 0.7009

Mice Protien Exp
NMI 0.4671 0.0043 0.4278
ARI 0.3652 0.0003 0.2960

USPS
NMI 0.8150 0.1163 0.0227
ARI 0.7869 0.0136 0.0023

CTG
NMI 0.5335 0.0449 0.0514
ARI 0.3588 0.0106 0.0126

Segment
NMI 0.6359 0.0084 0.0.0070
ARI 0.5484 -0.0013 -0.0010

FMNIST
NMI 0.6391 0.5469 0.0023
ARI 0.5182 0.4251 0.0021

B.4. Complete comparison to baselines in terms of ground truth

Table 9 is a detailed version of Table 2, which shows the complete NMI and ARI score comparison between ClAM and the
baseline clustering schemes in terms of ground truth. From the table, we see that ClAM not only performs well in terms of
Silhouette Coefficient (SC), it performs equally well in terms of ground truth.

B.5. Comprehensive experiment on basins of attraction of ClAM vs Voronoi partition

Figure 11 (for three clusters) and Figure 12 (for five clusters) represent more comprehensive versions of experiments
described in figure 4 to understand the evolution of AM basins of attraction to voronoi tesselation from low β value (0.001)
to high β value (100) for step (T) 10. From the figures, we see that starting with a completely non-voronoi partition
(β = 0.001), the basins of attraction of ClAM follows the voronoi tesselation with some interesting non-linear characteristics
(β = 10−30), and then matches voronoi gradually (β = 50−100). The experiment strongly indicates that ClAM is equally
able to find non-linear boundaries between the data points to find more compact partitions.

B.6. Comprehensive experiment on elongated shaped clusters

Figure 13 represents the further experiment, similar to that figure 1, for three elongated shaped clusters. Here, we can see
ClAM is able to find all three clusters in nearly perfect way where the baseline algorithms struggle to find the right partitions.

17

End-to-end Differentiable Clustering with Associative Memories

Table 9: NMI and ARI score comparison among ClAM and the baseline clustering schemes in terms of ground truth.

Dataset Metric k-means Spectral Agglomerative DCEC DEC DECr ClAM

Zoo
NMI 0.8330 0.8891 0.8429 N/A 0.8330 0.7992 0.9429
ARI 0.7373 0.8664 0.9109 N/A 0.7373 0.6755 0.9642

Yale
NMI 0.6034 0.5744 0.6723 0.5428 0.5499 0.5068 0.6418
ARI 0.3644 0.3226 0.4567 0.2817 0.2920 0.2398 0.4230

GCM
NMI 0.4385 0.1715 0.1882 N/A 0.4228 0.3923 0.4476
ARI 0.1308 -0.0119 -0.0071 N/A 0.1188 0.0880 0.2492

Ecoli
NMI 0.6332 0.6606 0.7111 N/A 0.6332 0.5707 0.6633
ARI 0.4997 0.6505 0.7261 N/A 0.4997 0.3893 0.7027

Movement Libras
NMI 0.6044 0.6118 0.6086 N/A 0.5959 0.3147 0.6142
ARI 0.3260 0.3236 0.3144 N/A 0.3147 0.2223 0.3351

Mice Protien Exp
NMI 0.2373 0.0056 0.2596 N/A 0.2873 0.2951 0.3108
ARI 0.1260 0.0019 0.1558 N/A 0.1756 0.1796 0.1652

USPS
NMI 0.5368 0.0777 0.0180 0.6961 0.5376 0.4538 0.5566
ARI 0.4304 -0.0033 0.0002 0.5907 0.4306 0.3226 0.4537

CTG
NMI 0.3581 0.0391 0.0419 N/A 0.3507 0.3587 0.3154
ARI 0.1780 0.0060 0.0078 N/A 0.1766 0.1818 0.1736

Segment
NMI 0.5846 0.0102 0.0085 N/A 0.5853 0.6102 0.5489
ARI 0.4607 0.0005 0.0003 N/A 0.4612 0.5038 0.4331

FMNIST
NMI 0.5036 0.6429 0.0051 0.5948 0.5008 0.3339 0.5183
ARI 0.3461 0.4307 0.0005 0.4113 0.3369 0.2279 0.3665

(a) β = 0.001. (b) β = 0.1. (c) β = 1. (d) β = 10. (e) β = 15.

(f) β = 20. (g) β = 25. (h) β = 30. (i) β = 50. (j) β = 100.

Figure 11: Basins of attraction vs Voronoi partition for three clusters. Partitions induced by AM basins of attraction
with given memories (black dots) for different β are shown by the colored regions (T=10). Dashed lines show the Voronoi
partition.

B.7. Histogram of entropy of involved datasets

Figure 14 shows the histograms of entropy for each of the the ten datasets used to evaluate ClAM. Equation 13 denotes how
entropy is calculated on every data point x in the dataset where we use the optimum β (from Table 6) and learned memories

18

End-to-end Differentiable Clustering with Associative Memories

(a) β = 0.001. (b) β = 0.1. (c) β = 1. (d) β = 10. (e) β = 15.

(f) β = 20. (g) β = 25. (h) β = 30. (i) β = 50. (j) β = 100.

Figure 12: Basins of attraction vs Voronoi partition for five clusters. Partitions induced by AM basins of attraction
with given memories (black dots) for different β are shown by the colored regions (T=10). Dashed lines show the Voronoi
partition.

(a) True (b) Lloyd’s (c) DEC (d) ClAM

Figure 13: Clustering with ClAM. Three clusters (figure 13a), and solutions found by k-means (Lloyd, 1982) (figure 13b),
DEC relaxation (Xie et al., 2016)(figure 13c), and our proposed end-to-end differentiable SGD-based ClAM (figure 13d).
The black dots indicate the learned prototypes. ClAM discovers the ground-truth clusters while the baselines cannot.

(ρµ) after training for each dataset.

H(x) = −
∑

µ∈[M]

pµ(x) log(pµ(x)) where pµ(x) = σ(−β∥ρµ − x∥2) (13)

These histograms represent the sharpness of the softmax function that explains how much the partition found by ClAM is
like a Voronoi partition where a value of zero means it always assigns the points to its closest memories and exactly matches
with Voronoi.

B.8. How does ClAM handle noise in the input data?

Observe that ClAM considers the same objective function as the traditional k-means combinatorial optimization problem,
and utilizes a new novel relaxation that allows us to solve the problem in an end-to-end differentiable manner in place of the
well-established iterative discrete Lloyd’s algorithm. Therefore, robustness of ClAM would be tied to the robustness of the
original k-means objective to noise, and will of course depend on the nature of the noise.

One relevant form of noise in the context of clustering is the presence of outliers, and it is known that k-means is generally
sensitive to outliers given that the k-means objective is effectively penalizing variance, which is sensitive to outliers. Spectral

19

End-to-end Differentiable Clustering with Associative Memories

(a) Zoo (b) Yale (c) Ecoli

(d) Movement Libras (e) Mice Protien Expression (f) USPS

(g) CTG (h) Segment (i) GCM (j) Fashion-MNIST

Figure 14: Histogram of entropy for each of the ten datasets used to evaluate ClAM.
.

Table 10: Noise handling in input data.

Method SC (clean data) SC (noisy data)

k-means 0.511 0.477
ClAM 0.531 0.531

clustering can also be sensitive to outliers. Given that, we expect ClAM to be potentially sensitive to outliers in the data. If
we instead consider a more robust clustering objective in ClAM (for example, by replacing the squared Euclidean distance in
equation (6) with a Manhattan distance), it would be more robust to outliers.

To evaluate the robustness to outliers, we consider a toy-example (Figure 15) with two clusters and we study the performance
of k-means and ClAM in the presence of outliers. Figure 15a refers to the original dataset and Figure 15d refers to the
dataset with outliers (which are shown in magenta color). Next, we run k-means and ClAM on both the original and noisy
datasets (Figure 15b. Figure 15c refers to the results on the original dataset, and Figure 15e and Figure 15f refer to the
results on the noisy dataset). We then compute the clustering quality via SC, NMI and ARI metrics. However, for the noisy
dataset, we compute the metrics only on the inliers (i.e., excluding the outliers), to see how much the outliers affect the
clustering quality of the actual inliers. Table 10 shows the performance of k-means and ClAM as noise (outliers) is added to
the data. The results indicate that, as expected, the addition of outliers reduces the clustering quality of k-means. However,
ClAM is able to cluster the data points correctly even with the outliers, with NMI and ARI both equal to 1.0. This indicates
that ClAM turns out to be robust to the outliers in this example.

20

End-to-end Differentiable Clustering with Associative Memories

(a) Clean (b) k-Means clean (c) ClAM clean

(d) Noisy (e) k-Means noisy (f) ClAM noisy

Figure 15: Noise handling in input data: top row – clustering on original data, and bottom row – clustering with outliers.

C. Technical details
C.1. Proof of Proposition 3.1

Here we will provide a proof for Proposition 3.1.

First consider the following optimization problem:

min
θ

∑
x∈S

f(x; θ) (14)

Lemma C.1 (Nesterov (2003); Fang et al. (2018)). For a smooth function f (with respect to θ), SGD converges to a
ϵ-stationary solution with O|S|ϵ−2) queries to the stochastic gradient oracle.
Corollary C.2. SGD converges to a ϵ-stationary solution with O(ϵ−2) epochs over the dataset S.

We use these for proving Proposition 3.1:

Proof. For each point x ∈ B in a batch, the computation cost of T AM recursions, with each recursion taking O(dk)
time, takes a total of O(dkT) time. Within one epoch, we perform the T AM recursions for each x ∈ S, hence requiring
O(dkt|S|) time, where |S| is the cardinality of S. Thus N epochs in TrainClAM takes O(dkTN |S|) time.

If the objective in equation 9 is smooth, then Corollary C.2 tells us that the optimization will converge to a O(N−1/2)-
stationary point. So what remains to be shown is that the objective in equation 9 is smooth, or more specifically, given
R = {ρµ, µ ∈ [k]} and R′ = {ρ′

µ, µ ∈ [k]}, there exists a universal constant C > 0

Em∼M∥m̄⊙ (x− xT
R)∥2 − Em∼M∥m̄⊙ (x− xT

R′)∥2 ≤ C
∑
µ∈[k]

∥ρµ − ρ′
µ∥ (15)

First, for binary masks m ∼M

Em∼M∥m̄⊙ (x− xT
R)∥2 − Em∼M∥m̄⊙ (x− xT

R′)∥2 ≤ ∥x− xT
R∥2 − ∥x− xT

R′∥2 (16)

For x ∈ S and bounded R,R′, triangle inequality gives us the following for some univeral constant C1 such that

∥x− xR∥2 − ∥x− xR′∥2 ≤ C1∥xT
R − xT

R′∥ (17)

21

End-to-end Differentiable Clustering with Associative Memories

thus, we need to show that ∥xT
R − xT

R′∥ ≤ C2

∑
µ∈[k] ∥ρµ − ρ′

µ∥ for some universal constant C2.

Now, we have from the AM recursion and Cauchy-Schwartz inequality that:

∥xT
R − xT

R′∥ ≤
T∑

t=1

∥δtR − δtR′∥ (18)

where δtR ≜ xt
R − xt−1

R , and δtR′ ≜ xt
R′ − xt−1

R′ .

Considering the first AM update δ1R, δ1R′ , we have

∥δ1R − δ1R′∥ ≤
∑
µ∈[k]

∥∥∥(ρµ − x) exp(−β∥ρµ − x∥2)− (ρ′
µ − x) exp(−β∥ρ′

µ − x∥2)
∥∥∥ (19)

≤
∑
µ∈[k]

(
exp(−β∥ρµ − x∥2)

∥∥ρµ − ρ′
µ

∥∥+ ∥ρ′
µ − x∥

∣∣∣ exp(−β∥ρµ − x∥2)− exp(−β∥ρ′
µ − x∥2)

∣∣∣)
≤

∑
µ∈[k]

(∥∥ρµ − ρ′
µ

∥∥+ ∥ρ′
µ − x∥

∣∣∣ exp(−β∥ρµ − x∥2)− exp(−β∥ρ′
µ − x∥2)

∣∣∣)
≤ C3

∑
µ∈[k]

∥∥ρµ − ρ′
µ

∥∥ (20)

for some universal C3 for bounded x,ρµ,ρ
′
µ since the exp(·) function is also smooth.

For the (t+ 1)th AM update δt+1
R , δt+1

R′ , we have

∥δt+1
R − δt+1

R′ ∥ ≤
∑
µ∈[k]

∥∥∥(ρµ − xt
R) exp(−β∥ρµ − xt

R∥2)− (ρ′
µ − xt

R′) exp(−β∥ρ′
µ − xt

R′∥2)
∥∥∥ (21)

≤
∑
µ∈[k]

∥∥ρµ − ρ′
µ

∥∥+
∥∥xt

R − xt
R′

∥∥+ ∥ρ′
µ − xt

R′∥
∣∣exp(−β∥ρµ − xt

R′∥2)− exp(−β∥ρ′
µ − xt

R′∥2)
∣∣

≤ C3

∑
µ∈[k]

∥∥ρµ − ρ′
µ

∥∥+ k
∥∥xt

R − xt
R′

∥∥ (22)

≤ C3

∑
µ∈[k]

∥∥ρµ − ρ′
µ

∥∥+ k

t∑
i=1

∥∥δiR − δiR′

∥∥ (23)

in the same way as with δ1R, δ1R′ except with the additional recursive sum
∑t

i=1

∥∥δiR − δiR′

∥∥. By induction, we can show
that

∥δt+1
R − δt+1

R′ ∥ ≤ C3(k + 1)t
∑
µ∈[k]

∥∥ρµ − ρ′
µ

∥∥ (24)

which we can apply to the RHS of equation 18 to get the desired

∥xT
R − xT

R′∥ ≤ C2

∑
µ∈[k]

∥∥ρµ − ρ′
µ

∥∥ (25)

for an universal constant C2. This equation 25 combined with equation 17 gives us the desired condition in equation 15 for
smoothness of the ClAM self-supervised loss function in equation 9. This completes the proof.

C.2. Proof of Proposition 3.2

Proof. The proof of Proposition 3.2 follows for combining the computation cost of T AM recursions, with each recursion
taking O(dk) time, leading to a total of O(dkT) time per point x ∈ S. Then the total runtime of InferClAM is O(dkT |S|),
where |S| is the cardinality of S.

22

