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Abstract
We study off-policy evaluation (OPE) of con-
textual bandit policies for large discrete action
spaces where conventional importance-weighting
approaches suffer from excessive variance. To
circumvent this variance issue, we propose a new
estimator, called OffCEM, that is based on the
conjunct effect model (CEM), a novel decomposi-
tion of the causal effect into a cluster effect and
a residual effect. OffCEM applies importance
weighting only to action clusters and addresses
the residual causal effect through model-based
reward estimation. We show that the proposed es-
timator is unbiased under a new condition, called
local correctness, which only requires that the
residual-effect model preserves the relative ex-
pected reward differences of the actions within
each cluster. To best leverage the CEM and lo-
cal correctness, we also propose a new two-step
procedure for performing model-based estimation
that minimizes bias in the first step and variance
in the second step. We find that the resulting Of-
fCEM estimator substantially improves bias and
variance compared to a range of conventional es-
timators. Experiments demonstrate that OffCEM
provides substantial improvements in OPE espe-
cially in the presence of many actions.

1. Introduction
Logged feedback is widely available in intelligent systems
for a growing range of applications from media streaming
to precision medicine. Many of these systems interact with
their users through the contextual bandit process, where a
policy repeatedly observes a context, takes an action, and
observes the reward for the chosen action. A common coun-
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terfactual question in this setting is that of off-policy evalua-
tion (OPE): how well would a new policy have performed, if
it had been deployed instead of a logging policy? The ability
to accurately answer this question using previously logged
feedback data is of great practical importance, as it avoids
costly and time-consuming online experiments (Dudı́k et al.,
2014; Su et al., 2020a).

While we already have practical OPE estimators for small
action spaces (Dudı́k et al., 2014; Swaminathan & Joachims,
2015a; Wang et al., 2017; Farajtabar et al., 2018; Su et al.,
2019; 2020a; Metelli et al., 2021), the effectiveness of these
estimators degrades for large action spaces, which are com-
mon in many potential applications of OPE with thousands
or millions of actions (e.g., movies, songs, products). In
particular, when the number of actions is large, existing
estimators – most of which are based on importance weight-
ing – can collapse due to extreme variance caused by large
importance weights (Saito & Joachims, 2022).

To alleviate the variance problem caused by large action
spaces, this paper introduces the Conjunct Effect Model
(CEM), which decomposes the expected reward into a clus-
ter effect and a residual effect. The cluster effect considers
the realistic situation where some clustering of the actions
already accounts for much of the reward variation (e.g.,
movie genres). The residual effect only needs to model what
causal effects remain from individual actions (e.g. movies)
that are not already modeled by the cluster effect. This is
a substantially more general formulation compared to the
Marginalized Inverse Propensity Score (MIPS) estimator
of Saito & Joachims (2022), which completely ignores the
residual effect and assumes no direct effect for individual
actions. Based on our new model of the reward function,
we propose a novel estimator, called Off-policy evaluation
estimator based on the Conjunct Effect Model (OffCEM),
which applies importance weighting over the action clus-
ters to unbiasedly estimate the cluster effect while dealing
with the residual effect via model-based estimation to avoid
extreme variance. We first show that OffCEM is unbiased
under a new condition called local correctness, which only
requires that the model-based residual-effect estimation pre-
serves the relative value difference of the actions within
each action cluster. To best leverage the structure of the
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CEM, we also provide a new learning procedure for a model-
based estimator that directly optimizes the bias and variance
of OffCEM. In particular, we propose to optimize regres-
sion models via a two-step procedure where the first-step
minimizes the bias by optimizing local correctness and the
second-step minimizes the variance by optimizing a baseline
value function for each action cluster.

Furthermore, we provide a thorough statistical comparison
against a range of conventional estimators. In particular,
we show that our estimator has a lower variance than In-
verse Propensity Score (IPS), MIPS, and Doubly Robust
(DR) (Dudı́k et al., 2014) because OffCEM considers im-
portance weighting with respect to the action cluster space,
which is much more compact than the original action space.
Moreover, OffCEM often has a lower bias than MIPS be-
cause it explicitly addresses the residual effect via model-
based estimation. Comprehensive experiments on synthetic
and extreme classification data demonstrate that OffCEM
can be substantially more effective than conventional esti-
mators, improving the bias-variance trade-off particularly
for challenging problems with many actions.

2. Background
We begin with a formal definition of OPE in the contextual
bandit setting. We also describe and discuss the limitations
of IPS, DR, and MIPS as the benchmark estimators.1

2.1. Off-Policy Evaluation

We formulate OPE following the general contextual ban-
dit process, where a decision maker repeatedly observes a
context x ∈ X drawn i.i.d. from an unknown distribution
p(x). Given context x, a possibly stochastic policy π(a|x)
chooses action a from a finite action space denoted as A.
The reward r ∈ [0, rmax] is then sampled from an unknown
distribution p(r|x, a), and we use q(x, a) := E[r|x, a] to
denote the expected reward given context x and action a.
We define the value of π as the key performance measure:

V (π) := Ep(x)π(a|x)p(r|x,a)[r] = Ep(x)π(a|x)[q(x, a)]

The logged bandit data we use is of the form D :=
{(xi, ai, ri)}ni=1, which contains n independent observa-
tions drawn from the logging policy π0 as (x, a, r) ∼
p(x)π0(a|x)p(r|x, a). In OPE, we aim to design an esti-
mator V̂ that can accurately estimate the value of a target
policy π (which is different from π0) using only D. We
measure the accuracy of V̂ by its mean squared error (MSE)

MSE(V̂ (π;D)) := ED

[(
V (π)− V̂ (π;D)

)2]
,

= Bias(V̂ (π;D))2 + VD
[
V̂ (π;D)

]
,

1Appendix A provides an extensive discussion of related work.

where ED[·] denotes the expectation over the logged data.
The bias and variance of V̂ are defined respectively as

Bias(V̂ (π;D)) := ED[V̂ (π;D)]− V (π),

VD
[
V̂ (π;D)

]
:= ED

[(
V̂ (π;D)− ED[V̂ (π;D)]

)2]
.

2.2. Limits of IPS and DR

Our first benchmark is the IPS estimator, which forms the
basis of many other OPE estimators (Dudı́k et al., 2014;
Wang et al., 2017; Su et al., 2019; 2020a; Metelli et al.,
2021). IPS estimates the value of π by re-weighting the
observed rewards as

V̂IPS(π;D) :=
1

n

n∑
i=1

π(ai |xi)
π0(ai |xi)

ri =
1

n

n∑
i=1

w(xi, ai)ri,

where w(x, a) := π(a |x)/π0(a |x) is the (vanilla) impor-
tance weight.

This estimator is unbiased (i.e., ED[V̂IPS(π;D)] = V (π))
under the following common support assumption.

Assumption 2.1. (Common Support) The logging policy
π0 is said to have common support for policy π if π(a |x) >
0 → π0(a |x) > 0 for all a ∈ A and x ∈ X .

The unbiasedness of IPS is indeed desirable. However, a crit-
ical issue is that its variance can be excessive, particularly
when there is a large number of actions. The DR estima-
tor (Dudı́k et al., 2014) has been a popular technique to
reduce the variance by incorporating a model-based reward
estimator q̂(x, a) ≈ q(x, a) as follows.

V̂DR(π;D, q̂)

:=
1

n

n∑
i=1

{w(xi, ai)(ri − q̂(xi, ai)) + q̂(xi, π)} ,

where q̂(x, π) := Eπ(a|x)[q̂(x, a)]. DR often improves the
MSE of IPS by reducing the variance. However, its vari-
ance can still be extremely large due to vanilla importance
weighting, which leads to substantial accuracy deterioration
in large action spaces (Saito & Joachims, 2022). This issue
of IPS and DR can be seen by calculating their variance

nVD
[
V̂DR(π;D, q̂)

]
= Ep(x)π0(a|x)[w(x, a)

2σ2(x, a)]

+ Ep(x)
[
Vπ0(a|x)[w(x, a)∆q,q̂(x, a)]

]
+ Vp(x)

[
Eπ(a|x)[q(x, a)]

]
, (1)

where σ2(x, a) := V[r|x, a] and ∆q,q̂(x, a) := q(x, a) −
q̂(x, a). Note that the variance of IPS can be obtained by set-
ting q̂(x, a) = 0. The variance reduction of DR comes from
the second term where ∆q,q̂(x, a) is smaller than q(x, a) if
q̂(x, a) is reasonably accurate. However, we can also see
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that the variance contributed by the first term can be ex-
tremely large for both IPS and DR when the reward is noisy
and the weights w(x, a) have a wide range, which occurs
when π assigns large probabilities to actions that have low
probability under π0. This is often the case when there are
many actions and the logging policy π0 aims to guarantee
universal support (i.e., π0(a |x) > 0 for all a and x).

2.3. Limits of The MIPS Estimator

To address the excessive variance of IPS and DR, Saito &
Joachims (2022) assume the existence of action embeddings
in the logged data. There are many cases where we have
access to such prior information about the actions. For ex-
ample, movies are characterized by genres (e.g., adventure,
documentary), director, or actors. The idea of MIPS (Saito
& Joachims, 2022) is to utilize this auxiliary information
about the actions to perform OPE more efficiently.

More formally, suppose we are given a de-dimensional ac-
tion embedding e ∈ E ⊆ Rde for each action a, where the
embedding is drawn i.i.d. from some unknown distribution
p(e |x, a). If the embedding is defined by predefined cate-
gory information, for instance, then it is independent of the
context and is deterministic given the action. However, if the
action embedding is, for example, a product price generated
by some personalized and randomized pricing algorithm, it
becomes continuous, stochastic, and context-dependent.

Leveraging the predefined action embeddings, Saito &
Joachims (2022) propose the following MIPS estimator.

V̂MIPS(π;D) :=
1

n

n∑
i=1

π(ei |xi)
π0(ei |xi)

ri =
1

n

n∑
i=1

w(xi, ei)ri,

where the logged dataset D = {(xi, ai, ei, ri)}ni=1 now
contains action embeddings for each data and

w(x, e) :=
π(e |x)
π0(e |x)

=

∑
a∈A p(e |x, a)π(a |x)∑
a∈A p(e |x, a)π0(a |x)

is the marginal importance weight based on marginal em-
bedding distribution π(e |x) :=

∑
a∈A p(e |x, a)π(a |x).

This estimator is unbiased (i.e., ED[V̂MIPS(π;D)] = V (π))
under the following assumptions (Saito & Joachims, 2022).

Assumption 2.2. (Common Embedding Support) The log-
ging policy π0 is said to have common embedding support
for policy π if π(e |x) > 0 → π0(e |x) > 0 for all e and x.

Assumption 2.3. (No Direct Effect) Action a has no direct
effect on the reward r given the embedding e if a ⊥ r | x, e.

Assumption 2.2 is a weaker version of Assumption 2.1,
requiring common support only with respect to the action
embedding space. Assumption 2.3 is about the quality of the

Figure 1. The Conjunct Effect Model (CEM)

given action embeddings and requires that every possible
effect of a on r be fully mediated by embedding e.

Even though MIPS often improves the MSE over existing es-
timators such as IPS and DR by utilizing action embeddings,
we argue that MIPS can still suffer from substantial bias
or variance in many realistic situations. First, if the given
action embeddings are high-dimensional and fine-grained,
MIPS becomes very similar to IPS, producing extreme vari-
ance. This is because, in such cases, the embedding distri-
bution p(e |x, a) is near-deterministic and thus the marginal
importance weight becomes close to the vanilla importance
weight, i.e., w(x, a) ≈ w(x, e). We can reduce the variance
of MIPS by performing action feature selection as described
in Saito & Joachims (2022), but this may produce a large
amount of bias by violating Assumption 2.3. This bias-
variance dilemma of MIPS motivates the development of a
new framework and estimator for large action spaces.

3. The Conjunct Effect Model and OffCEM
Estimator

The following proposes a new estimator that circumvents
the challenges of MIPS. The key idea is to decompose the
expected reward into the cluster effect and residual effect
rather than making the no direct effect assumption, which
might be unrealistic and thus cause the dilemma. Specifi-
cally, given some action clustering function ϕ : X ×A → C,
which may be learned from log data, where C is an action
cluster space (typically |C| ≪ |A|), we consider the follow-
ing conjunct effect model (CEM), which decomposes the
expected reward function into two separate effects.

The Conjunct Effect Model (CEM):

q(x, a) = g(x, ϕ(x, a))︸ ︷︷ ︸
cluster effect

+ h(x, a)︸ ︷︷ ︸
residual effect

(2)

For example, in a movie recommendation problem, the
cluster effect could capture the relevance of each genre to
the users, and the residual effect models how each movie
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is better or worse than the overall genre preference. In the
simplest case, a non-personalized residual effect can model
that some movies in each genre are generally better than
others, or it can model a personalized effect that a specific
user likes a particular actor. Note that Assumption 2.3
requires no residual effect for MIPS, i.e., h(x, a) = 0 for
all (x, a), so our CEM formulation is strictly more general
than that of Saito & Joachims (2022).2

Our proposed estimator, which we call the OffCEM esti-
mator, overcomes the limitations of MIPS by appropriately
selecting the estimation strategies for the cluster and residual
effect based on the CEM as follows.

V̂OffCEM(π;D) (4)

:=
1

n

n∑
i=1

{
w(xi, ϕ(xi, ai))(ri − f̂(xi, ai)) + f̂(xi, π)

}
,

where f̂(x, π) := Eπ(a|x)[f̂(x, a)] and we define the cluster
importance weight as

w(x, c) :=
π(c |x)
π0(c |x)

=

∑
a∈A I{ϕ(x, a) = c}π(a |x)∑
a∈A I{ϕ(x, a) = c}π0(a |x)

,

for c ∈ C. The first term of OffCEM estimates the cluster
effect via cluster importance weighting and the second term
deals with the residual effect via the regression model f̂ .3

Intuitively, our estimator is expected to perform better than
a range of typical estimators for large action spaces. First,
OffCEM performs importance weighting with respect to the
action cluster space and thus is expected to have a much
lower variance than IPS, DR, and MIPS, which apply im-
portance weighting with respect to the original action space
(IPS and DR) or potentially high-dimensional action embed-
dings (MIPS). Moreover, OffCEM can have a lower bias
than MIPS by dealing with the residual effect via model-
based estimation (the second term) rather than ignoring it
as in MIPS. Note that a seemingly natural choice of the

2Note that we consider action clusters as a particular type (one-
dimensional and discrete) of low-dimensional action embeddings
for brevity of exposition and analysis. By doing so, the CEM
can be formulated using the standard logged dataset of the form:
D = {(xi, ai, ri)}ni=1, which does not include action embeddings
e. However, our framework can be extended to a more general
formulation, as shown below:

q(x, a, e) = g(x, ϕ(x, e))︸ ︷︷ ︸
embedding effect

+h(x, a, e)︸ ︷︷ ︸
residual effect

, (3)

where e is a raw action embedding recorded in the dataset and
ϕ : X ×E → Rdϕ is a dϕ-dimensional (lower-dimensional) latent
representation of the action.

3Note that our estimator may look similar to DR at first glance,
but ours is derived from applying different estimation strategies
between the two terms in the CEM and this design principal is
substantially different from that of DR.

regression model f̂ is a direct estimate of the residual effect,
i.e., f̂ ≈ h(x, a), but we later show that there is a more
refined two-step procedure to optimize the regression model
to best leverage the structure of our conjunct effect model.

The following analyzes the statistical properties of OffCEM,
showing that it is unbiased under a new condition called
local correctness and that it has a much more favorable bias-
variance tradeoff compared to the conventional estimators.
We will also discuss how to optimize the regression model
f̂ based on our statistical analysis.

3.1. Theoretical Analysis

First, we formally introduce the local correctness assump-
tion and show that OffCEM is unbiased under it.

Assumption 3.1. (Local Correctness) A regression model
f̂(·, ·) and action clustering function ϕ(·, ·) satisfy local
correctness if the following holds true:

∆q(x, a, b) = ∆f̂ (x, a, b), (5)

for all x ∈ X and a, b ∈ A with ϕ(x, a) = ϕ(x, b), where
∆q(x, a, b) := q(x, a)− q(x, b) is the difference in the ex-
pected rewards between the actions a and b given context
x, which we call the relative value difference of the ac-
tions. ∆f̂ (x, a, b) := f̂(x, a)− f̂(x, b) is an estimate of the

relative value difference between a and b based on f̂ .

Assumption 3.1 only requires that the regression model
f̂ should correctly preserve the relative value difference
∆q(x, a, b) between the actions within each action cluster
c. Thus, to satisfy local correctness, we need not be able to
accurately estimate the absolute value of the reward function,
which is typically required for model-based estimators and
control variates. Note also that local correctness does not
require any particular relationship across different clusters.
For instance, suppose there are three movies a = 1, 2, 3
where a = 1 and a = 2 belong to the first cluster c = 1
while a = 3 belongs to the second cluster c = 2. Then, local
correctness only requires a regression model f̂ to preserve
the relative value difference between a = 1 and a = 2, but
f̂ does not need to learn any particular relationship between
a = 1, 2 (the first cluster) and a = 3 (the second cluster).
Appendix B provides more specific examples of locally
correct regression models.

The following shows that local correctness is indeed a new
requirement for an unbiased OPE based on our framework.

Proposition 3.2. Under Assumptions 2.2 (wrt E = C)
and 3.1, OffCEM is unbiased, i.e., ED[V̂OffCEM(π;D)] =
V (π). See Appendix C.1 for the proof.

Proposition 3.2 shows that OffCEM is unbiased even when
MIPS is biased due to violations of Assumption 2.3, if
we can merely learn the relative value difference within
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each cluster c. Beyond unbiasedness, the following also
characterizes the magnitude of the bias of OffCEM when
Assumption 3.1 is violated.

Theorem 3.3. (Bias of OffCEM) If Assumption 2.2 (wrt
E = C) is true, but Assumption 3.1 is violated, OffCEM has
the following bias for some given regression model f̂(·, ·)
and clustering function ϕ(·, ·).

Bias(V̂OffCEM(π;D))

= Ep(x)π(c|x)

[ ∑
a<b:ϕ(x,a)=ϕ(x,b)=c

π0(a |x, c)π0(b |x, c)

× (∆q(x, a, b)−∆f̂ (x, a, b))

×
(
π(b |x, c)
π0(b |x, c)

− π(a |x, c)
π0(a |x, c)

)]
,

where a, b ∈ A and π0(a |x, c) = π0(a |x)I{ϕ(x, a) =
c}/π0(c |x). See Appendix C.2 for the proof.

Theorem 3.3 shows that three factors contribute to the bias
of OffCEM when Assumption 3.1 is violated. The first fac-
tor is the entropy of the logging policy within each action
cluster. When action a is near deterministic given context
x and cluster c, π0(a |x, c) becomes close to zero or one,
making π0(a |x, c)π0(b |x, c) close to zero. This suggests
that even if Assumption 3.1 is violated, a sufficiently large
cluster space still enables nearly unbiased estimation with
OffCEM. The second factor is the accuracy of the regres-
sion model f̂ with respect to the relative value difference,
which is quantified by ∆q(x, a, b) −∆f̂ (x, a, b). When f̂
preserves the relative value difference of the actions within
each cluster well, the second factor becomes small and so
does the bias of OffCEM. This also suggests that, in an
ideal case when Assumption 3.1 is satisfied, OffCEM is
unbiased for any target policy, recovering Proposition 3.2.
The final factor is the relative similarity between logging
and target policy within each action cluster as quantified
by π(b | x,c)

π0(b | x,c) −
π(a | x,c)
π0(a | x,c) , which suggests that the bias of

OffCEM becomes small if the target and logging policies
are similar within each action cluster. Note that this still
allows the target and logging policy to be different in how
they choose between clusters for the third factor to diminish
and thus drive the overall bias to zero.

Next, we analyze the variance of OffCEM, which provides
additional insights as to how we should optimize the regres-
sion model f̂ to best exploit the CEM from Eq. (2).

Proposition 3.4. (Variance of OffCEM) Under Assump-
tions 2.2 (wrt E = C) and 3.1, OffCEM has the following

variance.

nVD
[
V̂OffCEM(π;D)

]
= Ep(x)π0(a|x)[w(x, ϕ(x, a))

2σ2(x, a)]

+ Ep(x)
[
Vπ0(a|x)[w(x, ϕ(x, a))∆q,f̂ (x, a)]

]
+ Vp(x)

[
Eπ(a|x)[q(x, a)]

]
, (6)

where ∆q,f̂ (x, a) := q(x, a)− f̂(x, a) is the estimation er-

ror of f̂(x, a) against the expected reward function q(x, a).
See Appendix C.3 for the proof.

Proposition 3.4 shows that the variance of OffCEM depends
only on the cluster importance weight rather than the vanilla
importance weight, implying reduced variance compared to
IPS and DR (c.f., Eq. (1)). Moreover, when action embed-
dings e are high-dimensional and fine-grained, the marginal
importance weight of MIPS becomes very similar to the
vanilla importance weight, and thus the variance of Of-
fCEM is expected to be smaller than that of MIPS in such
a situation. Moreover, Eq. (6) implies that we can improve
the variance of OffCEM by minimizing |∆q,f̂ (x, a)|, which
suggests an interesting two-step strategy for optimizing the
regression model f̂ as described in the next subsection.

3.2. A Two-Step Regression Procedure

The analysis in the previous section suggests how we should
optimize the regression model f̂ for a given clustering func-
tion ϕ.4 More specifically, Theorem 3.3 showed that the ac-
curacy of estimating the relative value difference ∆q(x, a, b)
(i.e., satisfaction of local correctness) characterizes the bias
of OffCEM while we should minimize |∆q,f̂ (x, a)| for min-
imizing its variance as implied in Proposition 3.4. Therefore,
we propose the following two-step procedure for optimizing
a regression model where the first-step corresponds to bias
minimization while the second-step aims to minimize the
variance of the resulting estimator.

1. Bias Minimization Step: Optimize the pairwise re-
gression function ĥθ : X ×A → R, parameterized by
θ, to approximate ∆q(x, a, b) via

min
θ

∑
(x,a,b,ra,rb)∈Dpair

ℓh

(
ra − rb, ĥθ(x, a)− ĥθ(x, b)

)
.

2. Variance Minimization Step: Optimize the baseline
value function ĝψ : X × C → R, parameterized by ψ,

4This clustering can be produced by a standard clustering algo-
rithm, but the development of a refined clustering procedure that
more explicitly optimizes the statistical properties of OffCEM is
an interesting direction for future work.
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to minimize ∆q,f̂ (x, a) given f̂ = ĝψ + ĥθ via

min
ψ

∑
(x,a,r)∈D

ℓg

(
r − ĥθ(x, a), ĝψ(x, ϕ(x, a))

)
.

ℓh, ℓg : R × R → R≥0 are some appropriate loss func-
tions such as cross-entropy or squared loss. As suggested
in our analysis, ĥθ(x, a) fully characterizes the bias of Of-
fCEM, and thus the second step can focus entirely on vari-
ance minimization by optimizing the baseline value function
ĝψ(x, ϕ(x, a)), which does not affect the bias. After per-
forming the two-step regression, we construct our regression
model as f̂θ,ψ(x, a) = ĝψ(x, ϕ(x, a)) + ĥθ(x, a).

Note that Dpair is a dataset augmented for performing the
bias minimization step, which is defined as

Dpair

:=

{
(x, a, b, ra, rb) |

(xa, a, ra), (xb, b, rb) ∈ D
x = xa = xb, ϕ(x, a) = ϕ(x, b)

}
,

where we assume the context space is finite here. If it is
difficult to find a pair of observed actions that have the same
cluster, we can instead define Dpair as

Dpair :=
{
(x, a, b, ra, rb) |

(xa, a, ra), (xb, b, rb) ∈ D
x = xa = xb

}
,

which may perform better empirically due to increased sam-
ple size. Note that, even if this two-step procedure is infea-
sible due to insufficient pairwise data, we can still perform
a conventional regression for the expected absolute reward
to learn the parameterized function f̂ω : X ×A → R via:

min
ω

∑
(x,a,r)∈D

ℓf

(
r, f̂ω(x, a)

)
, (7)

and then use f̂ω in Eq. (4). Even for such a conventionally
trained regression model f̂ω , the OffCEM estimator still has
advantages over the benchmark estimators. In particular,
cluster importance weighting still provides improved vari-
ance and f̂ω is still preferable over ignoring the residual
effect. In the following experiments, we empirically evalu-
ate the effectiveness of our two-step regression procedure,
but we also find that OffCEM performs better than existing
estimators even for conventionally trained f̂ω via Eq. (7).

4. Empirical Evaluation
We first evaluate OffCEM on synthetic data to identify the
situations where it enables a more accurate OPE. Second,
we validate real-world applicability of OffCEM on extreme
classification datasets, which can be converted into ban-
dit problems with large action spaces. Our experiments

are conducted using the OpenBanditPipeline (OBP)5, an
open-source software for OPE provided by Saito et al.
(2021a). The experiment code is publicly available on
GitHub: https://github.com/usaito/icml2023-offcem.

4.1. Synthetic Data

For the first set of experiments, we create synthetic datasets
to be able to compare the estimates to the ground-truth value
of the target policies. Our setup imitates a recommender
system, where each user repeatedly interacts with the system
to provide data useful for the two-step regression method
from Section 3.2. Specifically, we first define 200 unique
users whose 10-dimensional context vectors x are sampled
from the standard normal distribution. We then assign 10-
dimensional categorical action embedding ea ∈ E to each
action a where each dimension of E has a cardinality of 5.6

We also cluster the actions based on their embeddings where
the cluster assigned to action a is denoted as ca(= ϕ(a)).
We then synthesize the expected reward function as

q(x, a) = g(x, ca) + hca(x, a) (8)

Appendix D.2 defines g(·, ·) and h·(·, ·) in detail. We then
sample the reward r from a normal distribution with mean
q(x, a) and standard deviation σ = 3.

We synthesize the logging policy π0 by applying the softmax
function to the expected reward function q(x, a) as

π0(a |x) =
exp(β · q(x, a))∑

a′∈A exp(β · q(x, a′))
, (9)

where β is a parameter that controls the optimality and
entropy of the logging policy, and we use β = −0.1.

In contrast, the target policy π is defined as

π(a |x) = (1− ϵ) · I
{
a = argmax

a′∈A
q(x, a′)

}
+

ϵ

|A|
,

(10)

where the noise ϵ ∈ [0, 1] controls the quality of π, and
we set ϵ = 0.2 in the main text. Appendix D.2 provides
additional results for varying values of ϵ.

To summarize, we first sample a user and define the expected
reward q(x, a) as in Eq. (8). We then sample discrete action
a from π0 based on Eq. (9) where action a is associated with
a cluster ca and embedding vector ea. The reward is then
sampled from a normal distribution with mean q(x, a). Iter-
ating this procedure n times generates logged data D with n
independent copies of (x, a, ea, ca, r) where the same user
may appear multiple times in the logged data and thus the
two-step procedure from Section 3.2 is applicable.

5https://github.com/st-tech/zr-obp
6This is higher-dimensional and finer-grained than the embed-

dings used in the synthetic experiment of Saito & Joachims (2022).
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Figure 2. Comparison of the estimators’ MSE (normalized by the true value V (π)) with (i) varying logged data sizes (n), (ii) varying
numbers of actions (|A|), and (iii) varying numbers of unsupported actions (|U0|) in the synthetic experiment.

Table 1. Improvements in MSE provided by OffCEM against the baselines in the synthetic experiment. A smaller value indicates a larger
improvement by OffCEM. (default experiment parameters: n = 3, 000, |A| = 1, 000, and |U0| = 0)

n = 500 n = 8, 000 |A| = 200 |A| = 4, 000 |U0| = 0 |U0| = 900

MSE(V̂OffCEM)/MSE(V̂IPS) 0.169 0.314 0.767 0.082 0.185 0.560
MSE(V̂OffCEM)/MSE(V̂MIPS) 0.184 0.335 0.770 0.086 0.200 0.471
MSE(V̂OffCEM)/MSE(V̂DR) 0.317 0.339 0.720 0.112 0.254 0.311

4.1.1. BASELINES

We compare our estimator with the Direct Method (DM),
IPS, DR, and MIPS. We optimize the regression model
for OffCEM following the two-step procedure described in
Section 3.2. We use a neural network with 3 hidden layers
along with 3-fold cross-fitting (Newey & Robins, 2018) to
obtain q̂(x, a) for DR and DM, and (ĥθ, ĝψ) for OffCEM.

4.1.2. RESULTS

Figures 2 and 3 show the MSE (normalized by V (π)) of
the estimators computed over 300 simulations with different
random seeds. Table 1 shows the MSE of OffCEM relative
to those of the baselines where a smaller value indicates
a larger improvement by OffCEM. Note that we use n =
3, 000, |A| = 1, 000, and |C| = 50 as default parameters.

Performance comparisons. First, Figure 2 (i) compares
the estimators’ performance when we vary the logged data
size from 500 to 8,000. We observe that all estimators
except for DM improve the MSE with increasing logged
data sizes as expected, but OffCEM provides substantial
improvements in MSE over IPS, DR, and MIPS, particu-
larly when the logged data size is small. More specifically,
Table 1 shows that OffCEM provides approximately 83.0%
improvement (reduction) in MSE compared to IPS, 81.5%
improvement compared to MIPS, and 68.2% improvement
compared to DR when n = 500. The improvements of
OffCEM when n = 8, 000 are still substantial but slightly

smaller. Note that MIPS performs almost identically to IPS
since its marginal importance weight becomes similar to the
vanilla importance weight given fine-grained embeddings.
OffCEM also performs much better than DM, which suffers
from high bias. These strong results of OffCEM are due to
its almost zero bias and a variance similar to that of DM.7

Next, Figure 2 (ii) reports the estimators’ performance when
we increase the number of actions from 200 to 4,000. We
can see that OffCEM is appealing, particularly for large
action spaces, where it outperforms IPS, DR, and MIPS by
a larger margin than in small action spaces. Specifically,
Table 1 suggests that OffCEM improves IPS and MIPS by
approximately 99.1% and DR by 88.7% when |A| = 4, 000,
which are substantially larger improvements compared to
when |A| = 200. We can also see that MIPS suffers from
large action spaces similarly to IPS since its marginal im-
portance weight w(x, e) becomes almost identical to the
vanilla importance weight w(x, a) of IPS in our synthetic
environment. DR is slightly better than IPS and MIPS, but
it still suffers from growing variance due to vanilla impor-
tance weighting when the number of actions becomes larger.
These results suggest that cluster importance weighting is
increasingly effective in reducing the variance in larger ac-
tion spaces, while marginal importance weighting of MIPS
fails to improve IPS given fine-grained action embeddings.

7Appendix D.2 reports and discusses the bias-variance decom-
position of the synthetic results.
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Figure 3. Ablation analysis to evaluate the contribution of the key components of OffCEM with (i) varying logged data sizes (n), (ii)
varying numbers of actions (|A|), and (iii) varying numbers of unsupported actions (|U0|).

Finally, Figure 2 (iii) evaluates the estimators’ performance
when we increase the number of unsupported actions from
0 to 900, which introduces some bias in IPS, DR, and MIPS
by violating Assumption 2.1 (Sachdeva et al., 2020). We can
see from the figure that OffCEM is robust to the violation
of Assumption 2.1, which is likely to occur in large action
spaces, and is consistently more favorable compared to
the baseline estimators in various numbers of unsupported
actions |U0| (where U0 := {a ∈ A |π0(a | ·) = 0} is the
set of unsupported actions). This is due to the fact that
OffCEM avoids producing large bias in the cluster effect
estimate as long as some actions in each cluster are still
supported, while IPS, DR, and MIPS drastically increase
their bias. Note that a larger number of unsupported actions
introduce a larger bias in IPS, DR, and MIPS, but their
MSEs do not necessarily worsen due to reduced variance
with a smaller number of supported actions where logging
and target policies become relatively similar.

Ablation analysis. In addition to the performance com-
parisons, we perform an ablation study to investigate how
effective each component of OffCEM is. For this purpose,
in Figure 3, we gradually add the key components (cluster
importance weighting and regression model) of OffCEM to
MIPS and compare their MSE in various settings.8

We can see from Figure 3 that combining cluster importance
weighting and regression model is crucial for improving
OPE in large action spaces. More specifically, using only
cluster importance weighting (“+clustering”) ignores the

8The precise definitions of each estimator compared in
Figure 3 can be found in Appendix D.1. In partic-
ular, “+clustering” uses only cluster importance weight-
ing as 1

n

∑n
i=1 w(xi, ϕ(xi, ai))ri while “+regression model”

adds only a one-step regression model q̂(x, a) to MIPS as
1
n

∑n
i=1 {w(xi, ei)(ri − q̂(xi, ai)) + q̂(xi, π)}. “+clustering &

two-step reg” and “+clustering & one-step reg” are versions of
OffCEM w/ or w/o two-step regression.

Table 2. Dataset Statistics

ntrain ntest |A|
EUR-Lex 4K 15,449 3,865 3,956
Wiki10-31K 14,146 6,616 30,938

residual effect and often produces large bias while using
only a regression model (“+regression model”) produces
high variance due to marginal importance weights. The
result also suggests that combining only cluster importance
weight and one-step regression as in Eq. (7) is much better
than “+clustering” and “+regression model”, and effective
enough to greatly improve MIPS. But, we should perform
two-step regression when feasible to provide further im-
provements, which we can see by comparing “+clustering
& one-step reg” and “+clustering & two-step reg”.

4.2. Real-World Data

To assess the real-world applicability of OffCEM, we now
evaluate OffCEM on extreme classification data. Specifi-
cally, we use EUR-Lex 4K and Wiki10-31K from the Ex-
treme Classification Repository (Bhatia et al., 2016), which
were used in previous work on off-policy learning in large
action spaces (Lopez et al., 2021). Table 2 provides the
statistic of these datasets where we can see that both datasets
contain several thousands of labels (actions).

Following prior work (Dudı́k et al., 2014; Wang et al., 2017;
Su et al., 2019; 2020a), we convert the extreme classification
datasets with L labels into contextual bandit datasets with
the same number of actions. We consider stochastic rewards
where we first define the base reward function as follows.

q̃(x, a) =

{
1− ηa if a is a positive label
ηa − 1 otherwise

ηa is a noise parameter sampled separately for each action

8
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Figure 4. Comparison of the estimators’ MSE with varying logged data sizes on the real-world extreme classification datasets.

a from a uniform distribution with range [0, 0.2]. Then,
for each data, we sample the reward from a Bernoulli dis-
tribution with mean q(x, a) = σ(q̃(x, a)) where σ(z) =
(1 + exp(−z))−1 is the sigmoid function.

We define the logging policy π0 by applying the softmax
function to an estimated reward function q̂(x, a) similarly
to Eq. (9) where we use β = 30 and obtain q̂(x, a) by ridge
regression with full-information labels. We also define the
target policy π following Eq. (10) with ϵ = 0.1.

Results. We compare OffCEM against DM, IPS, and DR.
We cannot include MIPS in the real-world experiment since
there is no action embeddings available in the extreme clas-
sification datasets. Instead, we include “+clustering” from
the previous section as the best approximation of MIPS.
Note that we obtain q̂(x, a) by simply regressing the ob-
served reward as in Eq. (7) by a neural network with 3
hidden layers and use it for DM and DR. For OffCEM, we
perform the two-step regression from Section 3.2 to obtain
f̂(x, a) = ĝψ(x, ϕ(a)) + ĥθ(x, a) where ĝψ and ĥθ are pa-
rameterized by a neural network. We use uniform random
action clusters for OffCEM with |C| = 100 as a heuristic.

Figure 4 shows the MSEs of the estimators with varying
logged data sizes averaged over 100 OPE simulations per-
formed with different random seeds. The figure demon-
strates that our OffCEM estimator outperforms all baselines
on both datasets due to its substantially reduced variance
against the baselines and its small bias. “+clustering” also
performs better than DM, IPS, and DR, but it produces larger
bias and variance than OffCEM. The results suggest the
real-world applicability of OffCEM even with heuristically
generated and likely suboptimal action clusters, however,
we can still expect a further improvement of OffCEM with
a more refined clustering procedure.

5. Conclusion and Future Work
In this paper, we studied the problem of OPE for large ac-
tion spaces and proposed the conjunct effect model, as well

as its associated OffCEM estimator. OffCEM performs im-
portance weighting over action clusters and deals with the
remaining bias via model-based estimation. We characterize
the bias and variance of the new estimator and show that
it has superior statistical properties compared to IPS, DR,
and MIPS. We also describe how to optimize the regres-
sion model to minimize the bias and variance of OffCEM,
leveraging its local correctness condition via the two-step
procedure. Extensive experiments on synthetic and real-
world data demonstrate that OffCEM provides a substantial
reduction in MSE particularly for large actions spaces.

The findings in our paper raise several intriguing questions
for future work. In particular, we relied on a heuristic proce-
dure to find a clustering of the actions in the real-world ex-
periment. While OffCEM performed better than the bench-
marks even with heuristic clustering, we conjecture that
there are more refined clustering procedures as concurrently
explored by Peng et al. (2023). For example, it would be
valuable to consider an iterative procedure to optimize clus-
tering and regression model simultaneously to satisfy local
correctness better. It may also be possible to learn more
general types of action representations to bring in further
improvements beyond mere clustering. Moreover, this pa-
per only considered the statistical problem of estimating the
value of a fixed new policy, so it would be interesting to use
our estimator to enable a more efficient off-policy learning
in the presence of many actions.
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esnay. Scikit-learn: Machine learning in python. Journal
of Machine Learning Research, 12:2825–2830, 2011.

Peng, J., Zou, H., Liu, J., Li, S., Jiang, Y., Pei, J., and Cui,
P. Offline policy evaluation in large action spaces via
outcome-oriented action grouping. In Proceedings of the
ACM Web Conference 2023, pp. 1220–1230, 2023.

Sachdeva, N., Su, Y., and Joachims, T. Off-policy ban-
dits with deficient support. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 965–975, 2020.

Saito, Y. Doubly robust estimator for ranking metrics with
post-click conversions. In 14th ACM Conference on Rec-
ommender Systems, pp. 92–100, 2020.

Saito, Y. and Joachims, T. Counterfactual learning and
evaluation for recommender systems: Foundations, im-
plementations, and recent advances. In Proceedings of
the 15th ACM Conference on Recommender Systems, pp.
828–830, 2021.

Saito, Y. and Joachims, T. Off-policy evaluation for large ac-
tion spaces via embeddings. In International Conference
on Machine Learning, pp. 19089–19122. PMLR, 2022.

Saito, Y., Aihara, S., Matsutani, M., and Narita, Y. Open
bandit dataset and pipeline: Towards realistic and repro-
ducible off-policy evaluation. In Thirty-fifth Conference
on Neural Information Processing Systems Datasets and
Benchmarks Track, 2021a.

Saito, Y., Udagawa, T., Kiyohara, H., Mogi, K., Narita, Y.,
and Tateno, K. Evaluating the robustness of off-policy
evaluation. In Proceedings of the 15th ACM Conference
on Recommender Systems, pp. 114–123, 2021b.

Su, Y., Wang, L., Santacatterina, M., and Joachims, T. Cab:
Continuous adaptive blending for policy evaluation and
learning. In International Conference on Machine Learn-
ing, volume 84, pp. 6005–6014, 2019.

Su, Y., Dimakopoulou, M., Krishnamurthy, A., and Dudı́k,
M. Doubly robust off-policy evaluation with shrinkage.
In Proceedings of the 37th International Conference on
Machine Learning, volume 119, pp. 9167–9176. PMLR,
2020a.

Su, Y., Srinath, P., and Krishnamurthy, A. Adaptive es-
timator selection for off-policy evaluation. In Interna-
tional Conference on Machine Learning, pp. 9196–9205.
PMLR, 2020b.

Swaminathan, A. and Joachims, T. Batch learning from
logged bandit feedback through counterfactual risk min-
imization. The Journal of Machine Learning Research,
16(1):1731–1755, 2015a.

Swaminathan, A. and Joachims, T. Counterfactual risk
minimization: Learning from logged bandit feedback.
In International Conference on Machine Learning, pp.
814–823. PMLR, 2015b.

Swaminathan, A. and Joachims, T. The self-normalized
estimator for counterfactual learning. Advances in Neural
Information Processing Systems, 28, 2015c.

Swaminathan, A., Krishnamurthy, A., Agarwal, A., Dudik,
M., Langford, J., Jose, D., and Zitouni, I. Off-policy
evaluation for slate recommendation. In Advances in
Neural Information Processing Systems, volume 30, pp.
3632–3642, 2017.

Tennenholtz, G. and Mannor, S. The natural language of ac-
tions. In International Conference on Machine Learning,
pp. 6196–6205. PMLR, 2019.

Thomas, P. and Brunskill, E. Data-efficient off-policy policy
evaluation for reinforcement learning. In Proceedings of
the 33rd International Conference on Machine Learning,
volume 48, pp. 2139–2148. PMLR, 2016.

11



Off-Policy Evaluation for Large Action Spaces via Conjunct Effect Modeling

Udagawa, T., Kiyohara, H., Narita, Y., Saito, Y., and Tateno,
K. Policy-adaptive estimator selection for off-policy eval-
uation. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, volume 36, 2023.

Van Hasselt, H. and Wiering, M. A. Using continuous action
spaces to solve discrete problems. In 2009 International
Joint Conference on Neural Networks, pp. 1149–1156.
IEEE, 2009.

Vlassis, N., Chandrashekar, A., Gil, F. A., and Kallus, N.
Control variates for slate off-policy evaluation. Advances
in Neural Information Processing Systems, 34, 2021.

Voloshin, C., Le, H. M., Jiang, N., and Yue, Y. Empirical
study of off-policy policy evaluation for reinforcement
learning. arXiv preprint arXiv:1911.06854, 2019.

Wang, T., Gupta, T., Mahajan, A., Peng, B., Whiteson, S.,
and Zhang, C. Rode: Learning roles to decompose multi-
agent tasks. In International Conference on Learning
Representations, 2020.

Wang, Y.-X., Agarwal, A., and Dudık, M. Optimal and
adaptive off-policy evaluation in contextual bandits. In
International Conference on Machine Learning, pp. 3589–
3597. PMLR, 2017.

Xie, T., Ma, Y., and Wang, Y.-X. Towards optimal off-policy
evaluation for reinforcement learning with marginalized
importance sampling. In Advances in Neural Information
Processing Systems, pp. 9665–9675, 2019.

12



Off-Policy Evaluation for Large Action Spaces via Conjunct Effect Modeling

A. Related Work
Off-Policy Evaluation in Contextual Bandits and Reinforcement Learning: Off-policy evaluation of fixed decision-
making policies is of great practical relevance, providing a safe and cost-effective alternative for online A/B testing (Saito &
Joachims, 2021), and thus has gained particular attention in both contextual bandits (Dudı́k et al., 2014; Wang et al., 2017;
Liu et al., 2018; Farajtabar et al., 2018; Su et al., 2019; 2020a; Kallus et al., 2021; Metelli et al., 2021) and reinforcement
learning (RL) (Jiang & Li, 2016; Thomas & Brunskill, 2016; Xie et al., 2019; Kallus & Uehara, 2020; Liu et al., 2020).
There are three benchmark estimators in this area. The first estimator is DM, which estimates the expected reward function
by some off-the-self supervised machine learning methods and then estimates the value of new policies based on the
estimated rewards. DM has a lower variance than IPS, but it is susceptible to misspecification of the expected reward
function, which is often the case in highly complex real-world data (Farajtabar et al., 2018; Voloshin et al., 2019). The
second benchmark estimator is IPS, which applies importance weighting to the observed rewards to estimate the policy value.
Under some identification assumptions such as common support and unconfoundedness, IPS enables unbiased and consistent
OPE. However, a drawback is that it can produce excessive bias and variance in large action spaces. First, it can have a
high bias when the logging policy fails to satisfy the common support condition, which is expected when there are many
actions (Sachdeva et al., 2020). There is also the critical variance issue, as the importance weights are likely to be extremely
large in the presence of many actions. The weight clipping (Swaminathan & Joachims, 2015b; Su et al., 2019; 2020a)
and normalization (Swaminathan & Joachims, 2015c) might be applied to deal with the variance issue, but these simple
techniques often produce additional bias. Thus, DR has gained particular attention as a hybrid of DM and IPS, which can
achieve a lower bias than DM and a lower variance than IPS (Dudı́k et al., 2014; Wang et al., 2017; Farajtabar et al., 2018;
Su et al., 2020a). Though there are a number of extensions of DR both in contextual bandits (Dudı́k et al., 2014; Wang et al.,
2017; Farajtabar et al., 2018; Su et al., 2020a; Metelli et al., 2021) and RL (Jiang & Li, 2016; Thomas & Brunskill, 2016;
Kallus & Uehara, 2020), it may still degrade drastically due to extreme variance in large action spaces (as shown in Eq. (1)).
This is because DR relies on the vanilla importance weight defined with respect to the distributions over large action spaces,
causing the critical variance issue as in IPS. To overcome this fundamental variance issue of the typical OPE estimators for
large action spaces, Saito & Joachims (2022) recently propose a new framework and estimator called MIPS, which utilize
some prior information about the actions (i.e., action embeddings or action features) that are widely available in practice
and provide structure in the action space. More specifically, MIPS is based on the marginal importance weight, which is
defined with respect to the marginal distributions of the action embeddings induced by the target and logging policies. By
doing so, it was shown that MIPS has increasingly lower variance than IPS in larger action spaces while remaining unbiased
under the no direct effect assumption, which requires that the given action embeddings should be informative enough to
be able to mediate every causal effect of the actions on the rewards (Assumption 2.3). A similar assumption is also often
utilized when performing causal inference of long-term outcomes via short-term surrogates (Athey et al., 2019; 2020; Chen
& Ritzwoller, 2021) and to deal with the deficient support problem in OPE (Felicioni et al., 2022). Moreover, Lee et al.
(2022) propose a method based on normalizing flow to estimate the marginal importance weight when the logging and target
policies are unknown. Note that, in order to improve the MSE of MIPS, we can perform some data-driven action feature
selection in a way that minimizes the MSE of the resulting estimator based on existing estimator selection methods for
OPE (Su et al., 2020b; Udagawa et al., 2023). However, a caveat is that MIPS may still have a very large variance similarly
to IPS when the given action embeddings are high-dimensional and fined-grained. Moreover, it may produce a large bias if
the no direct effect is violated and there is much direct effect of the actions that is not captured by the action embeddings.
This bias issue is particularly expected when we perform action feature selection of high-dimensional and granular action
embeddings aiming for variance reduction. Therefore, there remains a critical bias-variance dilemma regarding MIPS –
high-dimensional action embeddings should be avoided to guarantee sufficient variance reduction, however, naively
doing so via action feature selection might produce large bias by violating no direct effect. The goal of our work is
thus to overcome this bias-variance dilemma of MIPS by generalizing the formulation and proposing a refined estimator.
Specifically, rather than making no direct effect, which is often stringent, we decompose the expected reward function into
what we call the cluster effect and residual effect. We then apply model-free estimation based on cluster importance weight
to estimate the cluster effect with no bias and apply model-based estimation based on the pairwise regression procedure
to estimate the residual effect with small variance rather than applying marginal importance weight to both terms as in
MIPS, possibly producing excessive variance. Our OffCEM estimator thus achieves much smaller variance than IPS, DR,
and MIPS in the presence of many actions or high-dimensional action embeddings, while often reducing the bias of MIPS
without ignoring the residual effect.
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Off-Policy Evaluation for Slate Recommendations and Rankings: Another line of related work is OPE of slate
recommendations and ranking policies where the estimators have to handle combinatorial action spaces, which could be
exponentially large (Swaminathan et al., 2017; Li et al., 2018; McInerney et al., 2020; Saito, 2020; Su et al., 2020a; Vlassis
et al., 2021; Lopez et al., 2021; Kiyohara et al., 2022). A conventional problem setting in this direction is OPE for slate
bandit policies, where it is assumed that only a single, slate-wise reward is observed for each data. Swaminathan et al. (2017)
tackle this setting by positing a linearity assumption on the reward function. The proposed pseudoinverse (PI) estimator was
shown to provide an exponential gain in the sample complexity over IPS. Following this seminal work, Vlassis et al. (2021)
improve the PI estimator by optimizing a set of control variates and Su et al. (2020a) did so by defining some shrinkage
estimators. Although these variants of PI are compelling, applications of this class of estimators are limited to the specific
problem of slate bandits. On the other hand, our framework is more general and applicable not only to slate bandits, but
also to other problem instances including OPE for ranking policies with observable slot-wise rewards (described below)
or general contextual bandits with large action spaces. In addition, all estimators for slate bandits rely on the linearity
assumption, which is not necessary for our framework.

There is also much work in OPE for ranking policies where it is assumed that the rewards for every slot in a ranking
(slot-wise rewards) are observed in the logged data. PI and its variants may be applied to this setting, but it was empirically
verified that the PI estimators do not work well, as they do not utilize the slot-wise rewards (McInerney et al., 2020).
Thus, some ranking-specific estimators have been proposed to leverage slot-wise rewards based on some assumptions on
user behavior from the click modeling literature (Guo et al., 2009; Chuklin et al., 2015). For example, Li et al. (2018)
assume that users interact with the items presented in a ranking independently, while McInerney et al. (2020) and Kiyohara
et al. (2022) assume that users examine the items one by one from the top position to the bottom one, namely the cascade
assumption. However, the reliability of these assumptions depends highly on a ranking interface and real user behavior.
If the assumption fails to explain real user behavior well, this approach can produce large bias. For example, the cascade
model is only applicable when a ranking interface is vertical, however, real-world ranking interfaces are often more complex
such as grid (Guo et al., 2020). Moreover, real-world user behaviors are often highly diverse and heterogeneous and cannot
be captured by a single assumption such as cascade (Borisov et al., 2016). In contrast, our framework and estimator are
applicable to any ranking interfaces without assuming any particular user behavior via performing clustering of the actions.
Moreover, ours is more general in that its application is not limited to information retrieval and recommender systems, but
includes robotics, education, conversational agents, or personalized medicine where click models are not relevant

Reinforcement Learning for Large Action Spaces: Although we focus on OPE, there have been several attempts
to enable high-performance policy learning for large action spaces. A typical approach is to factorize the action space
into binary sub-spaces (Pazis & Parr, 2011; Dulac-Arnold et al., 2012). By contrast, Van Hasselt & Wiering (2009) and
Dulac-Arnold et al. (2015) assume the existence of some continuous representations of discrete actions as prior knowledge
and utilize continuous policy gradients for policy optimization. Some recent studies also tackle how to learn useful action
representations from only available data. Chandak et al. (2019) perform supervised learning to predict the state transitions
and obtain action representations with no prior knowledge. Tennenholtz & Mannor (2019) achieve this from trajectories of
expert demonstrations. Wang et al. (2020) learn action representations that focus on accurate reconstruction of the rewards
and next observations. Gu et al. (2022) perform action representation learning based on a pseudometric with no auxiliary
data and perform offline reinforcement learning (offline RL) within the learned metric space. Compared to these works,
we consider the conjunct effect model of the reward function and perform cluster importance weighting (combined with a
locally correct regression model) to improve OPE in large action spaces rather than the off-policy learning task. Thus, as a
future work, it would be interesting to use our estimator to enable a more efficient off-policy learning in the presence of
many actions. It would also be valuable to consider extending our idea of the CEM to deal with large state and action spaces
in off-policy evaluation of RL policies or offline RL beyond mere contextual bandits.
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Table 3. Examples of locally correct regression models

a a0 a1 a2 a3

ϕ(x0, a) 0 1
q(x0, a) 4 1 3 2
f̂1(x0, a) 3 0 1 0

∆·,·(x0, a, b) 3 1

a a0 a1 a2 a3

ϕ(x0, a) 0 1
q(x0, a) 4 1 3 2
f̂2(x0, a) 50 47 -30 -31

∆·,·(x0, a, b) 3 1

a a0 a1 a2 a3

ϕ(x0, a) 0 1
q(x0, a) 4 1 3 2
f̂3(x0, a) 4 1 3 2

∆·,·(x0, a, b) 3 1

B. Examples: Locally Correct Regression Models

This section provides some examples of regression model f̂ that satisfy Assumption 3.1 (local correctness). Suppose that
there is only a single context X = {x0} and four actions A = {a0, a1, a2, a3}. The expected reward function q(x, a) and
clustering function ϕ(x, a) are given as follows.

q(x0, a0) = 4, q(x0, a1) = 1, q(x0, a2) = 3, q(x0, a3) = 2,

ϕ(x0, a0) = 0, ϕ(x0, a1) = 0, ϕ(x0, a2) = 1, ϕ(x0, a3) = 1.

Then, Table 3 provides three locally correct regression models (f̂1 to f̂3). More specifically, these example models
succeed in preserving the relative value difference of the actions within each action cluster. In fact, we can see that
∆q(x0, a0, a1) = ∆f̂1

(x0, a0, a1) = ∆f̂2
(x0, a0, a1) = ∆f̂3

(x0, a0, a1) = 3 and ∆q(x0, a2, a3) = ∆f̂1
(x0, a2, a3) =

∆f̂2
(x0, a2, a3) = ∆f̂3

(x0, a2, a3) = 1 where ϕ(x0, a0) = ϕ(x0, a1) and ϕ(x0, a2) = ϕ(x0, a3).

C. Omitted Proofs
First, we generalize the formulation in the main content and will be based on action clustering given deterministic action
embedding e ∈ E and context x, i.e., ϕ : X ×E → C to prove the theorems. Under this generalization, OffCEM is refined as

V̂OffCEM(π;D) :=
1

n

n∑
i=1

{
w(xi, ϕ(xi, eai))(ri − f̂(xi, ai, eai)) + f̂(xi, π)

}
, (11)

where f̂(x, π) := Eπ(a|x)[f̂(x, a, ea)] and

w(x, ϕ(x, ea)) :=
π(ϕ(x, ea) |x)
π0(ϕ(x, ea) |x)

=

∑
a′∈A I{ϕ(x, ea) = ϕ(x, ea′)}π(a′ |x)∑
a′∈A I{ϕ(x, ea) = ϕ(x, ea′)}π0(a′ |x)

.

Moreover, under this setup, the local correctness assumption in Assumption 3.1 is generalized as follows.

Assumption C.1. (Generalized Local Correctness) A regression model f̂(·, ·) and action clustering function ϕ(·, ·) satisfy
local correctness if the following holds true:

∆q(x, a, b) = ∆f̂ (x, a, b),

for all x ∈ X and a, b ∈ A with ϕ(x, ea) = ϕ(x, eb), where ∆q(x, a, b) := q(x, a, ea)− q(x, b, eb) is the difference in the
expected rewards between the actions a and b given context x, which we call the relative value difference of the actions.

Note that, given the fact: ∆q(x, a, b) = ∆f̂ (x, a, b) ⇒ ∆q,f̂ (x, a) = ∆q,f̂ (x, b), the local correctness assumption can
equivalently be described as:

A regression model f̂(·, ·) and action clustering function ϕ(·, ·) satisfy local correctness if there exists a cluster value function
g : X × C → R that satisfies the following:

∆q,f̂ (x, a) = g(x, ϕ(x, ea))
(
⇒ q(x, a, ea) = g(x, ϕ(x, ea)) + f̂(x, a, ea)

)
, (12)

for all x ∈ X and a ∈ A where ∆q,f̂ (x, a, e) := q(x, a, e) − f̂(x, a, e) is an estimation error of the regression model f̂
given context x, action a, and embedding e.
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Note that it is straightforward to see that Assumption C.1 is reduced to a simpler version used in the main text (Assump-
tion 3.1) when given is an action clustering function that depends directly on the action, i.e., ϕ : X ×A → C.

C.1. Proof of Proposition 3.2

Proof. We can calculate the expectation of OffCEM under Assumption C.1 below.

ED[V̂OffCEM(π;D)]

= Ep(x)π0(a|x)p(r|x,a,ea)

[
w(x, ϕ(x, ea))(r − f̂(x, a, ea)) + f̂(x, π)

]
= Ep(x)π0(a|x)

[
w(x, ϕ(x, ea))(q(x, a, ea)− f̂(x, a, e)) + f̂(x, π)

]
= Ep(x)π0(a|x)

[
w(x, ϕ(x, ea))∆q,f̂ (x, a, ea) + f̂(x, π)

]
= Ep(x)

[
f̂(x, π) +

∑
a∈A

π0(a |x)
π(ϕ(x, ea) |x)
π0(ϕ(x, ea) |x)

∆q,f̂ (x, a, ea)

]

= Ep(x)

[
f̂(x, π) +

∑
a∈A

π0(a |x)
π(ϕ(x, ea) |x)
π0(ϕ(x, ea) |x)

g(x, ϕ(x, ea))

]
∵ Eq. (12)

= Ep(x)

[
f̂(x, π) +

∑
a∈A

π0(a |x)
∑
c∈C

π(c |x)
π0(c |x)

g(x, c)I{ϕ(x, ea) = c}

]

= Ep(x)

[
f̂(x, π) +

∑
c∈C

π(c |x)
π0(c |x)

g(x, c)
∑
a∈A

π0(a |x)I{ϕ(x, ea) = c}

]

= Ep(x)

[
f̂(x, π) +

∑
c∈C

π(c |x)
π0(c |x)

g(x, c)π0(c |x)

]
∵ π0(c |x) =

∑
a∈A

π0(a |x)I{ϕ(x, ea) = c}

= Ep(x)

[
f̂(x, π) +

∑
c∈C

π(c |x)g(x, c)

]

= Ep(x)

[
f̂(x, π) +

∑
c∈C

g(x, c)
∑
a∈A

π(a |x)I{ϕ(x, ea) = c}

]
∵ π(c |x) =

∑
a∈A

π(a |x)I{ϕ(x, ea) = c}

= Ep(x)

[
f̂(x, π) +

∑
a∈A

π(a |x)
∑
c∈C

g(x, c)I{ϕ(x, ea) = c}

]

= Ep(x)

[∑
a∈A

π(a |x)
{
g(x, ϕ(x, ea)) + f̂(x, a, ea)

}]
= Ep(x)π(a|x) [q(x, a, ea)] ∵ Eq. (12)
= V (π)

and thus OffCEM is unbiased under Assumption C.1.

C.2. Proof of Theorem 3.3

Proof. We first derive the bias of the general form of OffCEM below.9

Bias(V̂OffCEM(π;D))

= Ep(x)π0(a|x)p(e|x,a)p(r|x,a,e)[w(x, ϕ(x, e))(r − f̂(x, a, e)) + f̂(x, π)]− V (π)

= Ep(x)π0(a|x)p(e|x,a)[w(x, ϕ(x, e))(q(x, a, e)− f̂(x, a, e)) + f̂(x, π)]− Ep(x)π(a|x)p(e|x,a)[q(x, a, e)]
9Here, we work on a slightly more general case with stochastic action embeddings based on p(e |x, a) as in Saito & Joachims (2022).
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= Ep(x)

[∑
a∈A

π0(a |x)
∑
e∈E

p(e |x, a)∆q,f̂ (x, a, e)w(x, ϕ(x, e))

]

+ Ep(x)

[∑
a∈A

∑
e∈E

π(a, e |x)f̂(x, a, e)

]
− Ep(x)

[∑
a∈A

π(a |x)
∑
e∈E

π0 (e |x)π0(a |x, e)
π0(a |x)

q(x, a, e)

]

= Ep(x)

[∑
a∈A

π0(a |x)
∑
e∈E

π0(e |x)π0(a |x, e)
π0(a |x)

∆q,f̂ (x, a, e)
∑
c∈C

w(x, c)I{ϕ(x, e) = c}

]

+ Ep(x)

[∑
a∈A

∑
e∈E

π0(a, e |x)
π(a, e |x)
π0(a, e |x)

f̂(x, a, e)

]
− Ep(x)

[∑
e∈E

π0(e |x)
∑
a∈A

w(x, a)π0(a |x, e)q(x, a, e)

]

= Ep(x)

[∑
c∈C

π0(c |x)w(x, c)
∑
a∈A

∑
e∈E

π0(e |x)π0(a |x, e)I{ϕ(x, e) = c}
π0(c |x)

∆q,f̂ (x, a, e)

]

+ Ep(x)

[∑
a∈A

∑
e∈E

π0(a, e |x)
π(a |x)p(e |x, a)
π0(a |x)p(e |x, a)

f̂(x, a, e)

]

− Ep(x)

[∑
e∈E

π0(e |x)
∑
a∈A

w(x, a)q(x, a, e)

∑
c∈C π0(c |x)π0(a, e |x, c)

π0(e |x)

]

= Ep(x)π0(c|x)

[
w(x, c)

∑
a∈A

∑
e∈E

π0(a, e |x, c)∆q,f̂ (x, a, e)

]

+ Ep(x)π0(c|x)

[∑
a∈A

∑
e∈E

w(x, a)π0(a, e |x, c)f̂(x, a, e)

]

− Ep(x)

[∑
c∈C

π0(c |x)
∑
a∈A

∑
e∈E

w(x, a)π0(a, e |x, c)q(x, a, e)

]

= Ep(x)π0(c|x)

[∑
a∈A

∑
e∈E

w(x, a)π0(a, e |x, c)
∑
a′∈A

∑
e′∈E

π0(a
′, e′ |x, c)∆q,f̂ (x, a

′, e′)

]

− Ep(x)π0(c|x)

[∑
a∈A

∑
e∈E

w(x, a)π0(a, e |x, c)∆q,f̂ (x, a, e)

]
∵ w(x, c) = Eπ0(a,e|x,c)[w(x, a)]

= Ep(x)π0(c|x)

[∑
a∈A

∑
e∈E

w(x, a)π0(a, e |x, c)

(( ∑
a′∈A

∑
e′∈E

π0(a
′, e′ |x, c)∆q,f̂ (x, a

′, e′)
)
−∆q,f̂ (x, a, e)

)]
(13)

where we used

w(x, c) =
π(c |x)
π0(c |x)

=
1

π0(c |x)
∑
a∈A

∑
e∈E

π(a |x)p(e |x, a)I{ϕ(x, e) = c}

=
1

π0(c |x)
∑
a∈A

∑
e∈E

π(a |x)π0(e |x)π0(a |x, e)
π0(a |x)

I{ϕ(x, e) = c}

=
∑
a∈A

∑
e∈E

π(a |x)
π0(a |x)

π0(a |x, e)
π0(e |x)I{ϕ(x, e) = c}

π0(c |x)

=
∑
a∈A

∑
e∈E

w(x, a)π0(a |x, e)p(e |x, c)

= Eπ0(a,e|x,c)[w(x, a)] ∵ π0(a |x, e) = π0(a |x, e, c)
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By applying Lemma B.1 of Saito & Joachims (2022) to Eq. (13), we obtain the following expression of the bias.

Bias(V̂OffCEM(π;D))

= Ep(x)π0(c|x)

[ ∑
(a,e) ̸=(a′,e′)

π0(a, e |x, c)π0(a′, e′ |x, c)(∆q,f̂ (x, a, e)−∆q,f̂ (x, a
′, e′))(w(x, a′)− w(x, a))

]
, (14)

where we use w(x, a) = π(a |x)/π0(a |x) = π(a, e |x)/π0(a, e |x).

Note that if we simplify the problem setting as in the main text, i.e., ϕ : X ×A → C, Eq. (14) is reduced to

Bias(V̂OffCEM(π;D))

= Ep(x)π0(c|x)

[∑
a<b

π0(a |x, c)π0(b |x, c)(∆q(x, a, b)−∆f̂(x, a, b))(w(x, b)− w(x, a))

]

= Ep(x)π0(c|x)

[∑
a<b

π0(a |x)I{ϕ(x, a) = c}
π0(c |x)

π0(b |x)I{ϕ(x, b) = c}
π0(c |x)

(w(x, b)− w(x, a))(∆q(x, a, b)−∆f̂(x, a, b))

]

= Ep(x)π0(c|x)

[
w(x, c)

∑
a<b:ϕ(x,a)=ϕ(x,b)=c

π0(a |x, c)π0(b |x, c)
(
π(b |x, c)
π0(b |x, c)

− π(a |x, c)
π0(a |x, c)

)
(∆q(x, a, b)−∆f̂(x, a, b))

]

= Ep(x)π(c|x)

[ ∑
a<b:ϕ(x,a)=ϕ(x,b)=c

π0(a |x, c)π0(b |x, c)
(
π(b |x, c)
π0(b |x, c)

− π(a |x, c)
π0(a |x, c)

)
(∆q(x, a, b)−∆f̂(x, a, b))

]
,

where we use w(x, a) = π(a|x)
π0(a|x) =

π(a|x,c)π(c|x)
π0(a|x,c)π0(c|x) =

π(a|x,c)
π0(a|x,c)w(x, c) for ϕ(x, a) = c.

Theorem 3.3 implies that OffCEM is unbiased under Assumption 3.1, as ∆q(x, a, b)−∆f̂(x, a, b) = 0 for all x, a, b with
ϕ(x, a) = ϕ(x, b) = c for a given clustering function ϕ(·, ·).

C.3. Proof of Proposition 3.4

Proof. We apply the law of total variance several times to obtain the variance of OffCEM.

Vp(x)π0(a|x)p(r|x,a,ea)

[
w(x, ϕ(x, ea))(r − f̂(x, a, ea)) + f̂(x, π)

]
= Ep(x)π0(a|x)

[
Vp(r|x,a,ea)

[
w(x, ϕ(x, ea))(r − f̂(x, a, ea)) + f̂(x, π)

]]
+ Vp(x)π0(a|x)

[
Ep(r|x,a,ea)

[
w(x, ϕ(x, ea))(r − f̂(x, a, ea)) + f̂(x, π)

]]
= Ep(x)π0(a|x)

[
w(x, ϕ(x, ea))

2σ2(x, a, ea)
]
+ Vp(x)π0(a|x)

[
w(x, ϕ(x, ea))(q(x, a, ea)− f̂(x, a, ea)) + f̂(x, π)

]
= Ep(x)π0(a|x)

[
w(x, ϕ(x, ea))

2σ2(x, a, ea)
]
+ Vp(x)π0(a|x)

[
w(x, ϕ(x, ea))∆q,f̂ (x, a) + f̂(x, π)

]
= Ep(x)π0(a|x)

[
w(x, ϕ(x, ea))

2σ2(x, a, ea)
]
+ Ep(x)

[
Vπ0(a|x)

[
w(x, ϕ(x, ea))∆q,f̂ (x, a) + f̂(x, π)

]]
+ Vp(x)

[
Eπ0(a|x)

[
w(x, ϕ(x, ea))g(x, ϕ(x, ea)) + f̂(x, π)

]]
∵ Assumption C.1

= Ep(x)π0(a|x)
[
w(x, ϕ(x, ea))

2σ2(x, a, ea)
]
+ Ep(x)

[
Vπ0(a|x)

[
w(x, ϕ(x, ea))∆q,f̂ (x, a)

]]
+ Vp(x)

[
Eπ(a|x)[q(x, a, ea)]

]
(15)

where ∆q,f̂ (x, a, e) = q(x, a, e) − f̂(x, a, e) and Eπ0(a|x)[w(x, ϕ(x, ea))g(x, ϕ(x, ea)) + f̂(x, π)] = Eπ(a|x)[q(x, a, ea)]
as in Section C.1 under Assumption C.1.

If we simplify the problem setting as in the main text, i.e., ϕ : X ×A → C, Eq. (15) is reduced to the following.

Vp(x)π0(a|x)p(r|x,a)

[
w(x, ϕ(x, a))(r − f̂(x, a)) + f̂(x, π)

]
= Ep(x)π0(a|x)

[
w(x, ϕ(x, a))2σ2(x, a)

]
+ Ep(x)

[
Vπ0(a|x)

[
w(x, ϕ(x, a))∆q,f̂ (x, a)

]]
+ Vp(x)

[
Eπ(a|x)[q(x, a)]

]
.
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D. Detailed Experiment Settings and Results
D.1. Baseline Estimators

Below, we define and describe the baseline estimators compared in our experiments in detail.

Direct Method (DM). DM is defined as follows.

V̂DM(π;D, q̂) := 1

n

n∑
i=1

q̂(xi, π) =
1

n

n∑
i=1

∑
a∈A

π(a |xi)q̂(xi, a),

where q̂(x, a) estimates q(x, a) based on logged bandit data. The accuracy of DM depends on the quality of q̂(x, a). If
q̂(x, a) is accurate, so is DM. However, if q̂(x, a) fails to estimate the expected reward accurately, the final estimator is no
longer consistent. As discussed in Appendix A, the misspecification issue is challenging, as it cannot be easily detected from
observed data (Farajtabar et al., 2018; Voloshin et al., 2019). This is why DM is often described as a high bias estimator.

Inverse Propensity Score (IPS). IPS is defined as follows.

V̂IPS(π;D) :=
1

n

n∑
i=1

w(xi, ai)ri

where w(x, a) := π(a |x)/π0(a |x) is the vanilla importance weight. IPS estimates the value of the target policy by simply
re-weighting the observed rewards and is unbiased under common support (Assumption 2.1). Its critical issue, however, is
that the variance can be excessive in large action spaces due to the fact that the importance weight inflates.

Doubly Robust (DR) (Dudı́k et al., 2014). DR is defined as follows.

V̂DR(π;D, q̂) :=
1

n

n∑
i=1

{w(xi, ai)(ri − q̂(xi, ai)) + q̂(xi, π)} ,

which combines DM and IPS in a way that reduces the variance. More specifically, DR utilizes the estimated reward function
q̂ as a control variate. If the expected reward is correctly specified, DR is semiparametric efficient meaning that it achieves
the minimum possible asymptotic variance among regular estimators (Narita et al., 2019). A problem is that, if the expected
reward is misspecified, this estimator can have a larger asymptotic MSE compared to IPS. Moreover, as shown in Eq. (1)
and empirically verified by Saito & Joachims (2022), DR can have a very large variance in the presence of many actions.

Marginalized Inverse Propensity Score (MIPS) (Saito & Joachims, 2022). MIPS is defined as follows.

V̂MIPS(π;D) :=
1

n

n∑
i=1

w(xi, ei)ri,

where w(x, e) := π(e |x)/π0(e |x) is the marginal importance weight defined based on the marginal embedding distribution
induced by the target and logging policies. MIPS is unbiased under common embedding support (Assumption 2.2) and no
direct effect (Assumption 2.3). It was also shown by Saito & Joachims (2022) that MIPS provides the following variance
reduction in comparison to IPS:

n
(
VD[V̂IPS(π;D)]− VD[V̂MIPS(π;D)]

)
= Ep(x)π0(e|x)

[
Ep(r|x,e)

[
r2
]
Vπ0(a|x,e) [w(x, a)]

]
, (16)

which is always non-negative and can be substantial when the variance of the vanilla importance weights is large, which
is likely for large action spaces. However, it is still possible that the variance of MIPS can be extremely large when
action embeddings are high-dimensional and fine-grained. Specifically, the variance of MIPS (under no direct effect from
Assumption 2.3) is given as

nVD
[
V̂MIPS(π;D)

]
= Ep(x)π0(e|x)[w(x, e)

2σ2(x, a)] + Ep(x)
[
Vπ0(e|x)[w(x, e)∆q,q̂(x, e)]

]
+ Vp(x)

[
Eπ(e|x)[q(x, e)]

]
,
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which may become almost identical to the variance of IPS when w(x, e) ≈ w(x, a) due to high-dimensional and fine-grained
embeddings. To reduce the variance of MIPS, Saito & Joachims (2022) describe a heuristic procedure to perform action
feature selection based on logged data, but this produces bias by violating the no direct effect assumption. Thus, the critical
bias-variance dilemma still remains in this estimator, particularly in the presence of high-dimensional action embeddings.

Definitions of the estimators compared in Figure 3 of Section 4.1. The following defines the estimators compared in
Figure 3 (ablation study) of Section 4.1.

V̂+clustering(π;D) :=
1

n

n∑
i=1

w(xi, ϕ(xi, ai))ri,

V̂+regressionmodel(π;D) :=
1

n

n∑
i=1

{w(xi, ei)(ri − q̂(xi, ai)) + q̂(xi, π)} ,

V̂clustering+1step reg(π;D) :=
1

n

n∑
i=1

{w(xi, ϕ(xi, ai))(ri − q̂(xi, ai)) + q̂(xi, π)} ,

V̂clustering+2step reg(π;D) :=
1

n

n∑
i=1

{
w(xi, ϕ(xi, ai))(ri − f̂(xi, ai)) + f̂(xi, π)

}
,

where f̂(x, a) = ĝψ(x, ϕ(x, a)) + ĥθ(x, a) is obtained by performing the two-step regression procedure described in
Section 3.2 while q̂(x, a) is obtained by simply performing a one-step reward regression as in Eq. (7).

V̂+clustering uses cluster importance weighting instead of vanilla and marginal importance weighting and thus reduces
the variance from IPS and MIPS. However, it may produce a large bias as it does not deal with the residual effect at all.
V̂+regressionmodel uses a regression model q̂ and somewhat reduces the variance of MIPS, but it may still produce a very
large variance as it depends on the marginal importance weight. V̂clustering+1step reg is a simple version of our proposed
estimator combining cluster importance weighting and a regression model q̂(x, a), but it does not perform the two-step
regression procedure and thus may not be optimal in terms of bias. In contrast, V̂clustering+2step reg fully leverages the
reward function decomposition of Eq. (2) and thus is the ideal version of our proposed estimator.

D.2. Additional Synthetic Experiment Setup and Results

D.2.1. ADDITIONAL EXPERIMENT SETUP

This section describes how we defined the synthetic reward function in detail. Recall that, in our synthetic experiments, we
synthesized the expected reward function as

q(x, a) = g(x, ca) + hca(x, a),

Specifically, we used the following functions as g(·, ·) (cluster effect) and h·(·, ·) (residual effect), respectively.

g(x, ca) = gbase(x, one hotca) + u1I{(
3∑
d=1

xd) < 1.5}

+ u2I{(
8∑
d=3

xd) < −0.5}+ u3I{(
3∑
d=2

xd) > 3.0}+ u4I{(
10∑
d=5

xd) < 1.0},

hca(x, a) = x⊤Mcaone hota + θ⊤x,cax+ θ⊤a,caone hota,

where one hotc is the one-hot encoding of the action cluster c and xd is the d-th dimension of the context vector x. We use
obp.dataset.polynomial reward function as gbase(·, ·) and u1, . . . , u4 are sampled from a uniform distribution with range
[−3, 3]. Mca , θx,ca , and θa,ca are parameter matrices or vectors sampled from a uniform distribution with range [−1, 1]
separately for each given action cluster ca.

D.2.2. ADDITIONAL RESULTS

This section reports and discusses additional synthetic experiment results regarding varying levels of noise on the rewards,
varying target policies, and varying numbers of action clusters. In particular, we demonstrate that OffCEM works particularly
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better than other baselines when the reward is noisy, and the target and logging policies differ greatly. We also observe that
OffCEM is appealing in particular when there is a fewer number of action clusters. The following also reports and discusses
the bias-variance decomposition of the results shown in the main text, providing additional insights.

How does OffCEM perform with varying noise levels, target policies, numbers of action embedding dimensions,
and numbers of clusters? First, Figure 5 evaluates how the level of noise on the rewards affects the comparison of the
estimators. To this end, we vary the noise level σ ∈ {1.0, 2.0, 3.0, 4.0, 5.0}, where σ is the standard deviation of Gaussian
reward noise, i.e., r ∼ N (q(x, a), σ2). We can see from the figures that the variance of IPS, DR, and MIPS grows with
increased noise as expected, and OffCEM performs increasingly better than the baselines with larger noise levels. Note that
DM is relatively more robust to the increased noise compared to IPS, DR, and MIPS, but it is highly biased in all situations,
and our OffCEM performs much better than DM in a range of reward noise settings.

Second, Figure 6 compares the estimators with a range of target policies (ϵ ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0} in Eq. (10)). Note
that a larger value of ϵ introduces a larger entropy for the target policy, making it closer to the logging policy given that we
use β = −0.1 as default (an extreme case with ϵ = 1.0 produces a uniform random target policy). Figure 6 shows that all
estimators perform worse for smaller ϵ as expected, where OPE becomes harder in general. IPS, DR, and MIPS perform
worse as their variance increases with decreasing ϵ, while DM performs worse as it produces a larger bias. The variance
of OffCEM also increases ever so slightly with decreasing ϵ, but it is often much smaller than those of the baselines. In
particular, our estimator becomes increasingly effective against the baseline estimators given a near-deterministic target
policy (small ϵ), which is highly prevalent in real-world scenarios given that it is often easier-to-implement than stochastic
policies and that the optimal policy is always deterministic (except for the case with non-unique optimal actions).

Finally, Figure 7 shows the estimators’ performance when we vary the number of action clusters from 10 to 200. We can
see from the figure that the variance of OffCEM becomes larger with increasing number of clusters, but it is generally
smaller than those of IPS, DR, and MIPS. When there are many action clusters underlying the data-generating process (e.g.,
|C| = 100, 200), however, we observe that the improvement provided by our estimator becomes slightly smaller due to
increased bias. Nonetheless, there is no reason to avoid using OffCEM because the baseline estimators do not outperform
ours in any of the experiment settings.

Discussion on the bias-variance decomposition of the synthetic results. Next, Figures 8 to 13 report and discuss the
bias-variance decomposition of the synthetic results reported in the main text. First, we can see in Figure 8 that the bias of
IPS of MIPS are very small as expected while their variance become extremely large especially for small sample sizes. We
can also see that DR provides some reduction in MSE due to reduced variance over IPS and MIPS, however, the variance
of our estimator is even smaller and is similar to that of DM while its bias is similar to that of DR, which is very small.
We can also confirm from the figure that DM remains highly biased even with increased sample sizes. Figure 9 reports
the bias-variance decomposition of the ablation study with varying sample sizes. In particular, it suggests that using only
cluster importance weighting (“+clustering”) reduces the variance of MIPS while it produces a large bias as it ignores the
residual effect. In contrast, using only a regression model provides some variance reduction while not producing a large
bias, but there is still much room for improvement in terms of variance due to its use of marginal importance weighting.
Simply combining these techniques (“+clustering and one-step reg”) is effective enough to outperform MIPS in a rage of
sample sizes. However, we also observe that performing two-step regression is beneficial in further reducing the bias. Next,
Figure 10 demonstrates that the variance of IPS, DR, and MIPS become larger for larger numbers of actions while that of
OffCEM is much more robust, contributing to its greatly reduced MSEs in large action spaces. In Figure 12, we observe that
the bias of IPS, DR, and MIPS become larger when there exists a larger number of unsupported actions as expected while
the bias of OffCEM remains very small by separately accounting for the cluster and residual effects. More specifically, it
can unbiasedly estimate the cluster effect and dealing with the residual effect to some extent via the model-based estimation.
Thus, the small bias of OffCEM is the main reason for its much better MSE than those of IPS, DR, and MIPS when there
are many unsupported actions. Note that the variance of IPS and DR decrease with increased unsupported actions, because
the deficiency between logging and target policies become relatively small in that setup. Note also that we can clearly see
the benefit of combining the two key techniques (cluster importance weighting and regression model) and that of using
two-step regression under varying numbers of actions and numbers of unsupported actions in Figures 11 and 13.
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D.3. Additional Real-World Experiment Setup

Following previous studies (Farajtabar et al., 2018; Dudı́k et al., 2014; Wang et al., 2017; Kallus et al., 2021; Su et al., 2020a;
Saito et al., 2021b), we transform the extreme classification datasets (namely EUR-Lex 4K and Wiki10-31K) to contextual
bandit feedback data. In a classification dataset {(xi, ai)}ni=1, we have some feature vector xi ∈ X and ground-truth label
ai ∈ A, which will be considered an action. Since the original datasets have very high-dimensional bag-of-words features,
we apply feature dimension reduction based on PCA implemented in scikit-learn (Pedregosa et al., 2011). We also drop the
labels/actions that have less than 1 (EUR-Lex 4K) or 9 (Wiki10-31K) positive labels during dataset pre-processing.

We consider stochastic binary rewards where we first define the base reward function as

q̃(x, a) =

{
1− ηa if a is a positive label
ηa − 1 otherwise (17)

where ηa is a noise parameter sampled separately for each action a from a uniform distribution with range [0, 0.2].
Then, for each data, we sample the reward from a Bernoulli distribution with mean q(x, a) = σ(q̃(x, a)) where σ(z) =
(1 + exp(−z))−1 is the sigmoid function.

We define the logging policy π0 by applying the softmax function to an estimated reward function q̂(x, a) as

π0(a |x) =
exp(β · q̂(x, a))∑

a′∈A exp(β · q̂(x, a′))
, (18)

where we use β = 30 for both datasets. We obtain q̂(x, a) by performing a ridge regression with full-information labels.
Note that we use the test data recorded in the original datasets for obtaining a logging policy while we use the training data
for performing OPE to make them independent. We also define the target policy π as follows.

π(a |x) = (1− ϵ) · I
{
a = argmax

a′∈A
q(x, a′)

}
+

ϵ

|A|
,

where we set ϵ = 0.05 in the real-world experiment.

To summarize, we first define the expected reward q(x, a) as in Eq. (17) on the training dataset. We then sample discrete
action a from π0 based on Eq. (18). Finally, we sample the reward from a normal distribution with mean q(x, a) and
standard deviation σ = 1. Iterating this n times generates logged bandit data D with n independent copies of (x, a, r).

22



Off-Policy Evaluation for Large Action Spaces via Conjunct Effect Modeling

Figure 5. Comparison of the estimators’ MSE (normalized by the true value V (π)) with varying noise levels (σ).

Figure 6. Comparison of the estimators’ MSE with varying target policies (ϵ).

Figure 7. Comparison of the estimators’ MSE (normalized by the true value V (π)) with varying numbers of clusters (|C|).

Note: We set |A| = 1, 000, |C| = 50, ϵ = 0.2, β = −0.1, and σ = 3.0 as default experiment parameters. The results are
averaged over 300 different sets of synthetic logged data replicated with different random seeds. The shaded regions in the
MSE plots represent the 95% confidence intervals estimated with bootstrap.
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Figure 8. MSE, Squared Bias, and Variance with varying sample sizes (n).

Figure 9. MSE, Squared Bias, and Variance (ablation) with varying sample sizes (n).

Note: We set |A| = 1, 000, |C| = 50, ϵ = 0.2, β = −0.1, and σ = 3.0 as default experiment parameters. The results are
averaged over 300 different sets of synthetic logged data replicated with different random seeds. The shaded regions in the
MSE plots represent the 95% confidence intervals estimated with bootstrap.
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Figure 10. MSE, Squared Bias, and Variance with varying numbers of actions (|A|).

Figure 11. MSE, Squared Bias, and Variance (ablation) with varying numbers of actions (|A|).

Note: We set n = 3, 000, |C| = 50, ϵ = 0.2, β = −0.1, and σ = 3.0 as default experiment parameters. The results are
averaged over 300 different sets of synthetic logged data replicated with different random seeds. The shaded regions in the
MSE plots represent the 95% confidence intervals estimated with bootstrap.
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Figure 12. MSE, Squared Bias, and Variance with varying numbers of unsupported actions.

Figure 13. MSE, Squared Bias, and Variance (ablation) with varying numbers of unsupported actions.

Note: We set n = 3, 000, |A| = 1, 000, ϵ = 0.2, β = −0.1, and σ = 3.0 as default experiment parameters. The results are
averaged over 300 different sets of synthetic logged data replicated with different random seeds. The shaded regions in the
MSE plots represent the 95% confidence intervals estimated with bootstrap.
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