
Rethinking Warm-Starts with Predictions: Learning Predictions Close to
Sets of Optimal Solutions for Faster L-/L♮-Convex Function Minimization

Shinsaku Sakaue 1 Taihei Oki 1

Abstract
An emerging line of work has shown that machine-
learned predictions are useful to warm-start algo-
rithms for discrete optimization problems, such as
bipartite matching. Previous studies have shown
time complexity bounds proportional to some dis-
tance between a prediction and an optimal solu-
tion, which we can approximately minimize by
learning predictions from past optimal solutions.
However, such guarantees may not be meaningful
when multiple optimal solutions exist. Indeed, the
dual problem of bipartite matching and, more gen-
erally, L-/L♮-convex function minimization have
arbitrarily many optimal solutions, making such
prediction-dependent bounds arbitrarily large. To
resolve this theoretically critical issue, we present
a new warm-start-with-prediction framework for
L-/L♮-convex function minimization. Our frame-
work offers time complexity bounds proportional
to the distance between a prediction and the set
of all optimal solutions. The main technical diffi-
culty lies in learning predictions that are provably
close to sets of all optimal solutions, for which we
present an online-gradient-descent-based method.
We thus give the first polynomial-time learnability
of predictions that can provably warm-start algo-
rithms regardless of multiple optimal solutions.

1. Introduction
Algorithms with predictions (Mitzenmacher & Vassilvitskii,
2021)—improving algorithms performance with predictions
learned from data—is a rapidly growing research field. Sem-
inal work by Dinitz et al. (2021) has initiated the study of
using predictions to warm-start discrete optimization al-
gorithms. A brief description of their result for weighted
perfect bipartite matching problems is as follows. Consider

1The University of Tokyo, Japan. Correspondence to: Shinsaku
Sakaue <sakaue@mist.i.u-tokyo.ac.jp>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

finding a maximum-weight perfect matching in a bipartite
graph (V,E) with an equal-sized bipartition V = L∪R and
edge weights w ∈ ZE .1 The dual of this problem is written
as a linear program (LP) with variables p = (s, t) ∈ RV :

minimize
s∈RL,t∈RR

∑
i∈L

si −
∑
j∈R

tj

subject to si − tj ≥ wij ∀ij ∈ E.
(1)

The authors showed that given a prediction p̂ ∈ RV of some
optimal dual solution p∗, we can efficiently convert p̂ into an
initial feasible solution p◦, and the Hungarian method warm-
started by p◦ runs in O(|E|

√
|V |∥p∗ − p̂∥1) time, whereas

the worst-case running time is O(|E||V |). Moreover, given
about Ω(|V |3) optimal solutions p∗ drawn i.i.d. from a fixed
distributionD, we can learn p̂ that approximately minimizes
Ep∗∼D[∥p∗ − p̂∥1] via empirical risk minimization. In a
nutshell, learning predictions from past optimal solutions
can provably accelerate the Hungarian method.

The above argument, however, has a subtle but critical pitfall:
there always exist arbitrarily many optimal dual solutions.
To see this, let p′ be an optimal solution to (1). Then, adding
any vector in the all-one direction to p′ does not change the
objective function value and the left-hand sides of the con-
straints; therefore, p′ + ζ1 is also optimal for all ζ ∈ R.
Hence, the O(|E|

√
|V |∥p∗ − p̂∥1)-time bound requires us

to select one optimal solution p∗, and the bound can be arbi-
trarily large if selected p∗ is far away from p̂. One may think
such a concern is unnecessary since the Hungarian method
warm-started by p̂ would return p∗ close to p̂. This idea,
however, makes p∗ selected depending on p̂, and no existing
results on the learnability of predictions p̂ can deal with such
dependence. We further detail this issue in Appendix A.

The cause of this troublesome situation is that an optimal
solution p∗ is not unique for a given bipartite matching in-
stance. By contrast, the set of all optimal solutions is unique.
Therefore, the distance between p̂ and the set of all optimal
solutions (or equivalently, the minimum distance between p̂
and an optimal solution) is a well-defined measure to quan-
tify the speed-up gained by using prediction p̂. Moreover,

1While the minimum-weight setting was originally studied, we
describe the maximum-weight setting as in (Sakaue & Oki, 2022).

1

Learning Predictions Close to Sets of Optimal Solutions for Faster L-/L♮-Convex Function Minimization

Table 1: Improved time complexity bounds for the problems
studied in (Sakaue & Oki, 2022) (see also Table 1 therein).
For weighted perfect bipartite matching and discrete energy
minimization, n and m are the sizes of vertex and edge sets,
respectively. For weighted matroid intersection, r is the rank
of matroids, n is the ground-set size, and τ is the running
time of independence oracles.

Problem Time complexity

Weighted perfect bipartite matching O(m
√
n · µ̄(p̂; g))

Weighted matroid intersection O(τnr1.5 · µ̄(p̂; g))
Discrete energy minimization O(mn2 · µ̄(p̂; g))

this idea can strengthen distance-dependent time complexity
bounds by taking the minimum among all optimal solutions.

1.1. Our Contribution

We present a new framework with time complexity bounds
proportional to the distance between prediction p̂ and the set
of all optimal solutions. Building on a recent improvement
(Sakaue & Oki, 2022) of (Dinitz et al., 2021), we develop
our framework for L-/L♮-convex function minimization, a
broad class of discrete optimization problems, such as the
weighted perfect bipartite matching, weighted matroid in-
tersection, and discrete energy minimization. The pitfall
mentioned above also exists in L-/L♮-convex minimization
(see Remark 2.3) and has remained open in the prior work.

We here give some informal definitions for convenience (see
Section 2 for details). Let g be an L-/L♮-convex function to
be minimized, which represents both an objective function
and constraints, taking +∞ if infeasible. We quantify the
distance between prediction p̂ and the set, conv(argmin g),
of all optimal solutions with the ℓ±∞-norm; let µ̄(p̂; g) denote
this distance. Our high-level idea is to use µ̄(p̂; g) instead of
any distance defined with some fixed optimal p∗. Although
the idea is simple, it involves two unprecedented challenges:
(i) to show that algorithms warm-started with p̂ run in time
proportional to µ̄(p̂; g) and (ii) to learn p̂ that approximately
minimizes Eg[µ̄(p̂; g)]. We describe how to achieve them.

Section 3 shows that an L-/L♮-convex minimization method
warm-started with p̂ enjoys a time complexity bound propor-
tional to µ̄(p̂; g). As with (Sakaue & Oki, 2022), we employ
the steepest descent method for solving L-/L♮-convex mini-
mization, and we additionally utilize a fact that it converges
to an optimal solution closest to an initial feasible solution.
Our analysis applies to all the problems studied in (Sakaue
& Oki, 2022) and improves their time complexity bounds,
which are proportional to the ℓ∞-distance, ∥p∗ − p̂∥∞, be-
tween p̂ and some fixed optimal p∗. Table 1 summarizes our
improved time complexity bounds, and Figure 1 illustrates
how our idea improves their previous bounds.

"̂

"∗

con
v(a
rgm
in $
) "̅(%̂; ')

"∗ − "̂ "

conv(dom $)

Figure 1: Comparison of our result with µ̄(p̂; g) and the pre-
vious result with ∥p∗− p̂∥∞ (Sakaue & Oki, 2022). Imagine
L-convex minimization in Z2. Let p̂ ∈ R2 be a given predic-
tion, g an L-convex function, and p∗ an optimal solution se-
lected for g. The gray area, conv(dom g), is (the convex hull
of) the feasible region, and the darker area, conv(argmin g),
is the set of all optimal solutions. As discussed in Section 1,
conv(argmin g) has freedom in the all-one direction; hence,
∥p∗−p̂∥∞ can be arbitrarily large if p∗ is far from p̂. By con-
trast, µ̄(p̂; g) uniquely represents the minimum ℓ±∞-distance
between p̂ and p∗ ∈ conv(argmin g) closest to p̂.

Section 4 presents how to learn p̂ that approximately mini-
mizes Eg[µ̄(p̂; g)]. Similar to (Khodak et al., 2022; Sakaue
& Oki, 2022), we prove a regret bound of the online gradient
descent method (OGD) for learning p̂ and obtain a sample
complexity bound via online-to-batch conversion. Our con-
tribution is to obtain those bounds for µ̄(p̂; g), not for any
distance between p̂ and fixed optimal p∗. The main difficulty
lies in computing subgradients of µ̄(·; g) used in OGD, for
which we use a connection between µ̄(·; g) and a shortest
path problem and Danskin’s theorem (see Section 4.3). Also,
computing a subgradient requires an inequality system that
represents the set, conv(argmin g), of all optimal solutions,
for which we give polynomial-time methods (see Section 5).
We thus obtain the first polynomial-time learnability of pre-
dictions that can provably warm-start algorithms regardless
of multiple optimal solutions. Furthermore, our regret bound
is tight up to constant factors, as shown in Appendix D.

Remarks and Limitations. Since we focus on theoreti-
cally refining prediction-dependent time complexity bounds,
the practical impact would be somewhat limited; still, Sec-
tion 6 presents some promising empirical results. Also, we
do not discuss worst-case bounds since we can bound the
worst-case runtime by executing standard algorithms with
worst-case guarantees in parallel, as in (Sakaue & Oki, 2022,
Section 6). We emphasize that our motivation is to warm-
start simple algorithms with predictions, while theoretically
fast algorithms, which are often hard to implement and slow
in practice, sometimes enjoy better time complexity bounds.

1.2. Related Work

A flurry of recent work has been devoted to going beyond the
worst-case analysis of algorithms using predictions. While

2

Learning Predictions Close to Sets of Optimal Solutions for Faster L-/L♮-Convex Function Minimization

improving competitive ratios of online algorithms has oc-
cupied a central place (Purohit et al., 2018; Bamas et al.,
2020; Lykouris & Vassilvitskii, 2021; Azar et al., 2022),
the idea has gained increasing attention in various areas, in-
cluding algorithmic game theory (Agrawal et al., 2022) and
data structures (Boffa et al., 2022). A comprehensive list of
papers in this field is provided by Lindermayr & Megow.

Besides (Sakaue & Oki, 2022), Chen et al. (2022) have im-
proved the prediction-dependent time complexity bound of
(Dinitz et al., 2021) and presented general results for warm-
starting various graph algorithms and learning predictions.
Polak & Zub (2022) have used predictions to warm-start a
maximum-flow algorithm. Although those existing studies
have provided time complexity bounds depending on some
distance, ∥p∗ − p̂∥, between an optimal solution p∗ and a
prediction p̂, the non-uniqueness of p∗, despite its preva-
lence, has not been well discussed—p∗ has been (implicitly)
assumed to be unique.2 Researchers have also used predic-
tions to accelerate algorithms for support estimation (Eden
et al., 2021), the shortest path problem (Feijen & Schäfer,
2023), generalized sorting (Lu et al., 2021), nearest neigh-
bor search (Andoni & Beaglehole, 2022), and clustering
(Ergun et al., 2022), while their time complexity analyses
are different from those of warm-starts with predictions.

The L-/L♮-convexity is a fundamental notion in discrete con-
vex analysis (Murota, 2003), a discrete analog of convex
analysis. It enables us to see various discrete optimization
algorithms as the steepest descent method. This viewpoint
offers a geometric understanding of warm-starts with predic-
tions; that is, a prediction closer to an optimum is naturally
better since an algorithm iteratively approaches an optimum.
Although (Sakaue & Oki, 2022) is also based on the steepest
descent method, they did not utilize a notable property that
it converges to an optimal solution closest to an initial point
(see Proposition 2.4), which is a key to obtaining our result.

2. Preliminaries
Let ⌊·⌋, ⌈·⌉, and ⌊·⌉ be the element-wise ceiling, floor, and
rounding, respectively, where ⌊·⌉ rounds down 0.5 fractional
parts. For n ∈ N, let V = {1, 2, . . . , n} be a finite ground
set of size n. Let 0,1 ∈ RV denote the all-zero and all-one
vectors, respectively. For S ⊆ RV , let conv(S) ⊆ RV be
the convex hull of S and δS the indicator function of S, i.e.,
δS(p) = 0 if p ∈ S and +∞ otherwise.

For a function g : ZV → R∪ {+∞}, we define its effective
domain by dom g =

{
p ∈ ZV

∣∣ g(p) < +∞
}

, which rep-
resents the feasible region of a minimization problem of the
form minp∈ZV g(p). We say g is proper if dom g ̸= ∅.

2In (Polak & Zub, 2022), their bound is said to hold for every
optimal solution, but its non-uniqueness is not correctly handled
when learning predictions. See Appendix A.3 for details.

2.1. L-/L♮-Convex Functions and Sets

We overview the properties of L-/L♮-convex functions and
sets. We refer the reader to (Murota, 2003) for more details.

Let g : ZV → R∪ {+∞} be a proper function. We say g is
L-convex if g(p)+ g(q) ≥ g(p∨ q)+ g(p∧ q) for all p, q ∈
ZV , where ∨ (∧) is the element-wise maximum (minimum),
and there exists r ∈ R such that g(p+1) = g(p)+ r for all
p ∈ ZV . We say g is L♮-convex if g̃(p0, p) := g(p− p01) is
L-convex on Z × ZV ; this is equivalent to g(p) + g(q) ≥
g
(⌈

p+q
2

⌉)
+ g
(⌊

p+q
2

⌋)
for all p, q ∈ ZV , analogous to the

standard convexity of functions on RV . Since L-convexity
on Z×ZV and L♮-convexity on ZV are equivalent, we may
use whichever is convenient. If g1 and g2 are L-/L♮-convex
on ZV and g1 + g1 is proper, g1 + g1 is L-/L♮-convex.

The L-/L♮-convex function minimization, minp∈ZV g(p), is
known to contain a wide variety of problems, e.g., the dual
of weighted bipartite matching, dual of weighted matroid
intersection, and discrete energy minimization, which gener-
alizes minimum-cost flow (see (Murota, 2003, Chapter 9)).
In what follows, we make the following basic assumption.
Assumption 2.1. L-/L♮-convex functions g always have at
least one minimizer, i.e., argmin g ̸= ∅.

A non-empty set S ⊆ ZV is L-/L♮-convex if its indicator
function δS : ZV → {0,+∞} is L-/L♮-convex. Conversely,
if g : ZV → R ∪ {+∞} is L-/L♮-convex, dom g ⊆ ZV is
an L-/L♮-convex set; furthermore, the set of all minimizers,
argmin g ⊆ ZV , is also L-/L♮-convex (Murota, 2003, Theo-
rem 7.17). We use this fact in Section 4.3. L-/L♮-convex sets
enjoy useful inequality-system representations as follows.
Proposition 2.2 (Murota (2003, Sections 5.3 and 5.5)). For
a non-empty set S ⊆ ZV , the following two are equivalent:
(i) S is an L♮-convex set and (ii) S is written as{

p ∈ ZV

∣∣∣∣∣ αi ≤ pi ≤ βi for i ∈ V ,
pj − pi ≤ γij for distinct i, j ∈ V

}
(2)

with some αi ∈ Z ∪ {−∞}, βi ∈ Z ∪ {+∞}, and γij ∈
Z∪{+∞}. Also, S is L-convex if and only if S is written as
in (2) without box constraints, i.e., αi = −∞ and βi = +∞.
The convex hull, conv(S) ⊆ RV , of an L-/L♮-convex set S
is also characterized as above replacing ZV in (2) with RV .
Example 1. The dual LP (1) of weighted bipartite matching
with variables (s, t) ∈ RV has constraints si− tj ≥ wij for
ij ∈ E. These are of the form (2) and represent the convex
hull of the L-convex feasible region, or conv(dom g). Fur-
thermore, given a maximum weight matching M∗ ⊆ E, a
dual feasible (s, t) is optimal if and only if si− tj = wij for
ij ∈M∗ (see Proposition 5.1). Thus, we can represent the
L-convex set of optimal dual solutions, or conv(argmin g),
with additional inequalities si − tj ≤ wij for ij ∈M∗.
Remark 2.3. The fact that argmin g is written as in (2) im-
mediately implies the non-uniqueness of optimal solutions.

3

Learning Predictions Close to Sets of Optimal Solutions for Faster L-/L♮-Convex Function Minimization

Algorithm 1 Steepest descent method

1: p← p◦ ▷ p◦ ∈ dom g is an initial feasible solution.
2: while not converged :
3: d← argmin{g(p+ d′) | d′ ∈ N }
4: if g′(p; d) = 0 :
5: return p
6: λ← sup{λ′ ∈ Z>0 | g′(p;λ′d) = λ′g′(p; d)}
7: p← p+ λd

Specifically, if g is L-convex, shifting p∗ ∈ argmin g in the
all-one direction never goes out of argmin g, as discussed
in Section 1, and similar reasoning applies to the L♮-convex
case if such a shifting does not go out of box constraints.

2.2. Steepest Descent for L-/L♮-Convex Minimization

We can solve L-/L♮-convex minimization, minp∈ZV g(p),
by using the steepest descent method in Algorithm 1, which
iterates to proceed along a locally steepest descent direction.
The set,N , of local directions is defined asN := {0,+1}V
if g is L-convex and N := {0,−1}V ∪ {0,+1}V if g is
L♮-convex. Let g′(p; d) := g(p+d)−g(p) denote the slope
of g at p ∈ dom g in the direction of d ∈ ZV .

We detail how Algorithm 1 works. Starting from an initial
point p◦ ∈ dom g, it iteratively performs the following steps:
find a steepest direction d by solving a local optimization
problem (Step 3), compute a step length λ ≥ 1 (Step 6),3

and update a current solution p by adding λd to p (Step 7).
If slope g′(p; d) in some steepest direction d is zero (Step 4),
p is ensured to be optimal (due to the L-/L♮-convexity of g).
In short, Algorithm 1 minimizes an L-/L♮-convex function g
by iteratively solving local optimization problems in Step 3.

A remarkable property of Algorithm 1 is that the number
of iterations is bounded by the distance between an initial
point p◦ and an optimal solution p∗ ∈ argmin g closest to
p◦. We introduce some definitions to describe this property
more precisely. For any p ∈ RV , we define the ℓ±∞-norm as

∥p∥±∞ = max
i∈V

max{0,+pi}+max
i∈V

max{0,−pi},

which satisfies the axioms of norms. For any L-/L♮-convex
g : ZV → R ∪ {+∞}, we define µ(·; g) : ZV → Z≥0 as a
function that returns the ℓ±∞-distance between input p ∈ ZV

and an optimal solution p∗ ∈ argmin g closest to p, i.e.,

µ(p; g) := min
{
∥p∗ − p∥±∞

∣∣ p∗ ∈ argmin g
}
.

Then, Algorithm 1 converges to an optimal solution closest
to p◦ in µ(p◦; g) + 1 iterations, as in the next proposition.

3Step 6 computes a so-called long-step λ (Fujishige et al., 2015;
Shioura, 2017). If computing λ is costly, we can instead set λ← 1
without affecting Proposition 2.4 and the subsequent analysis.

Proposition 2.4 ((Murota & Shioura, 2014, Theorem 1.2)
and (Fujishige et al., 2015, Theorem 6.2)). Algorithm 1
returns an optimal solution p∗ ∈ argmin g such that ∥p∗ −
p◦∥±∞ = µ(p◦; g) in at most µ(p◦; g) + 1 iterations.
Example 2. We again consider the dual LP (1) of weighted
perfect bipartite matching. Since wij are integers, we can
restrict the domain to ZV and reduce the LP to the mini-
mization of an L-convex function g, which is a sum of a
linear objective function and the indicator function of the
L-convex feasible region. As in (Sakaue & Oki, 2022, Sec-
tion 3.1), we can reduce local optimization in Step 3 to a
maximum cardinality matching problem. If we solve it with
the O(m

√
n)-time Hopcroft–Karp algorithm, Algorithm 1

runs in O(m
√
n·µ(p◦; g)) time, which can be faster than the

O(mn)-time Hungarian method if µ(p◦; g) is small. Indeed,
Algorithm 1 with a fixed feasible p◦ closely resembles the
Hungarian method (see (Schrijver, 2003, Section 18.5b)).

For later use, we also define µ̄(·; g) : RV → R≥0 as

µ̄(p; g) := min
{
∥p∗ − p∥±∞

∣∣ p∗ ∈ conv(argmin g)
}
,

which is a continuous extension of µ(·; g) and is helpful in
benefiting from real-valued predictions. Note that using µ̄
instead of µ only strengthens time complexity bounds since
µ̄(p; g) ≤ µ(p; g) for all p ∈ ZV . Indeed, µ̄(p; g) = µ(p; g)
holds for all p ∈ ZV , which we can prove by confirming the
existence of integral p∗ ∈ conv(argmin g) that attains the
minimum ℓ±∞-distance. See Appendix B for the proof.
Lemma 2.5. Let g : ZV → R ∪ {+∞} be an L-/L♮-convex
function. For every p ∈ ZV , it holds that µ(p; g) = µ̄(p; g).

3. Time Complexity Bound
We give an improved prediction-dependent time complexity
bound for L-/L♮-convex minimization. As with (Dinitz et al.,
2021; Sakaue & Oki, 2022), we decompose our framework
into three phases: (i) converting a prediction p̂ ∈ RV into
an initial feasible solution p◦ ∈ ZV , (ii) solving a problem
with an algorithm warm-started by p◦, and (iii) learning pre-
dictions p̂. The following theorem gives formal guarantees
to phases (i) and (ii), and Section 4 studies phase (iii).
Theorem 3.1. Let g : ZV → R∪{+∞} be an L-/L♮-convex
function and p̂ ∈ RV a possibly infeasible prediction.

(i) If we can compute an ℓ±∞-projection q̂ of the prediction p̂
onto conv(dom g), defined by

q̂ ∈ argmin
{
∥q − p̂∥±∞

∣∣ q ∈ conv(dom g)
}
, (3)

in Tprj time, we can obtain an initial feasible solution p◦ =
⌊q̂⌉ ∈ dom g in O(Tprj + |V |) time.

(ii) Algorithm 1 starting from p◦ = ⌊q̂⌉ returns an optimal
solution to minp∈ZV g(p) in 2µ̄(p̂; g) + 2 iterations. Thus,
if we can solve local optimization in Step 3 in Tloc time,
Algorithm 1 runs in O(Tloc · µ̄(p̂; g)) time.

4

Learning Predictions Close to Sets of Optimal Solutions for Faster L-/L♮-Convex Function Minimization

Proof. The claim of (i) is identical to that of (Sakaue & Oki,
2022, Theorem 1), and so is its proof. We below prove the
claim of (ii) by modifying their original proof.

Proposition 2.4 states that Algorithm 1 finds an optimal
solution in µ(p◦; g) + 1 iterations. Hence, the second claim
holds if µ(p◦; g) ≤ 2µ̄(p̂; g)+1, which is proved as follows.

For the given prediction p̂, take any p∗ ∈ conv(argmin g)
that attains ∥p∗ − p̂∥±∞ = µ̄(p̂; g). Note that we have

µ(p◦; g) = µ̄(p◦; g) ≤ ∥p∗ − p◦∥±∞,

where the equality is due to Lemma 2.5 with p◦ = ⌊q̂⌉ ∈ ZV

and the inequality comes from the definition of µ̄(·; g) and
p∗ ∈ conv(argmin g). From p◦ = ⌊q̂⌉ and the fact that
rounding changes each entry up to ±1/2, we have

∥p∗ − p◦∥±∞ ≤ ∥p∗ − q̂∥±∞ + 1.

Furthermore, the triangle inequality implies

∥p∗ − q̂∥±∞ ≤ ∥p∗ − p̂∥±∞ + ∥q̂ − p̂∥±∞.

Here, we have ∥p∗− p̂∥±∞ = µ̄(p̂; g) due to the choice of p∗.
Also, ∥q̂ − p̂∥±∞ ≤ ∥p∗ − p̂∥±∞ = µ̄(p̂; g) holds since q̂ is
defined as in (3) and p∗ ∈ conv(argmin g) ⊆ conv(dom g).
Thus, we obtain µ(p◦; g) ≤ 2µ̄(p̂; g) + 1.

Theorem 3.1 states that, given a prediction p̂ ∈ RV , we can
solve minp∈ZV g(p) in O(Tprj + |V |+ Tloc · µ̄(p̂; g)) time.
Furthermore, it holds that Tprj + |V | ≤ Tloc in most cases,
including all the problems listed in Table 1 (see (Sakaue &
Oki, 2022, Section 3)). In such cases, our time complexity
bound reduces to O(Tloc · µ̄(p̂; g)), and we can obtain the
results in Table 1 by substituting the running time of local
optimization solvers into Tloc. For example, in the bipartite-
matching case, we can solve local optimization (maximum
cardinality matching) with the Hopcroft–Karp algorithm in
Tloc = O(m

√
n) time, thus obtaining the O(m

√
n·µ̄(p̂; g))-

time bound in Table 1. For Tloc of the other problems, see
(Sakaue & Oki, 2022, Sections 3.2 and 3.3). Note that our
bounds in Table 1 are at least as good as those of (Sakaue &
Oki, 2022) up to constant factors since we have µ̄(p̂; g) ≤
∥p∗ − p̂∥±∞ ≤ 2∥p∗ − p̂∥∞ for any p∗ ∈ conv(argmin g).

4. Learning Predictions
We now discuss how to learn predictions p̂ ∈ RV . Following
(Khodak et al., 2022; Sakaue & Oki, 2022), we mainly study
the online learning setting, where L-/L♮-convex functions
gt for t = 1, . . . , T are chosen adversarially. We apply the
online gradient descent method (OGD) to online minimiza-
tion of µ̄(·; gt) and prove its regret bound. We then obtain
a sample complexity bound via online-to-batch conversion.
To begin with, we briefly overview basics of OGD.

4.1. Basics of Online Gradient Descent

Let ft : RV → R be the tth loss for each t = 1, . . . , T . We
consider the following standard OGD: starting from p̂1 = 0,
in each tth round, play p̂t, observe ft, compute zt ∈ ∂ft(p̂t),
and set p̂t+1 ← ΠC(p̂t − ηzt), where η > 0 is a learning
rate and ΠC is the ℓ2-projection onto [−C,+C]V . This
OGD enjoys the following regret bound.

Proposition 4.1 (Orabona (2020, Section 2.2)). Let C > 0
and f1, . . . , fT be an arbitrary sequence of convex functions
from RV to R. If OGD uses subgradients zt ∈ ∂ft(p̂t) such
that ∥zt∥2 ≤ L for t = 1, . . . , T and a learning rate of
η = C

L

√
n
T , it returns p̂1, . . . , p̂T satisfying

T∑
t=1

ft(p̂t) ≤ min
p̂∗∈[−C,+C]V

T∑
t=1

ft(p̂
∗) + CL

√
nT .

4.2. Main Results

Our basic idea is to regard ft(p̂) = µ̄(p̂; gt) as the tth loss
for t = 1, . . . , T and use the above OGD. We first confirm
the convexity of the loss functions.

Lemma 4.2. ft(p̂) = µ̄(p̂; gt) is convex in p̂ ∈ RV .

Proof. Let S = conv(argmin gt). We can rewrite ft(p̂) =
µ̄(p̂; gt) = min{∥p∗ − p̂∥±∞ | p∗ ∈ S } as

ft(p̂) = inf
{
∥p∗ − p̂∥±∞ + δS(p

∗)
∣∣ p∗ ∈ RV

}
,

where δS : RV → {0,+∞} is the indicator function of a
convex set S. Also, ∥·∥±∞ is convex by the triangle inequal-
ity. Thus, ft(p̂) is the infimal convolution of convex func-
tions, hence convex (Rockafellar, 1970, Theorem 5.4).

Our goal is to show that OGD applied to µ̄(p̂; gt) enjoys a
regret upper bound and runs in polynomial time as follows.

Theorem 4.3. Let C > 0. For an arbitrary sequence of
L-/L♮-convex functions, g1, . . . , gT , from ZV to R ∪ {+∞},
OGD computes predictions p̂1, . . . , p̂T that satisfy

T∑
t=1

µ̄(p̂t; gt) ≤ min
p̂∗∈[−C,+C]V

T∑
t=1

µ̄(p̂∗; gt) + C
√
2nT .

In each round t, if an inequality system of conv(argmin gt)
can be obtained in Tineq time (as in Assumption 4.6) and
p∗t ∈ argmin gt is given, OGD takes Tineq +O(n2) time.

Note that the regret bound in terms of µ̄(p̂; gt) is the main
difference from the previous studies, which consider simpler
functions of the form ∥p∗t − p̂∥ with some fixed optimal p∗t .
Our regret bound is as small as that of (Sakaue & Oki, 2022)
even though we consider more involved functions, µ̄(·; gt),
and is indeed asymptotically tight as shown in Appendix D.

5

Learning Predictions Close to Sets of Optimal Solutions for Faster L-/L♮-Convex Function Minimization

To prove Theorem 4.3, it suffices to show how to compute a
subgradient zt of ft(p̂t) = µ̄(p̂t; gt) such that ∥zt∥2 ≤ L =√
2 in Tineq +O(n2) time, which we present in Section 4.3.

We show in Section 5.2 that Tineq is polynomial even when
we only have black-box access to gt. Moreover, Section 5.1
shows that Tineq can be much smaller for the specific prob-
lems listed in Table 1. The assumption that p∗t ∈ argmin gt
is available usually holds since we learn p̂t after solving the
tth instance, minp∈ZV gt(p). (If not, we may solve the tth
instance with standard polynomial algorithms; then OGD
runs in polynomial time.) In the bipartite-matching case,
under those assumptions, OGD will turn out to take only
O(m + n log n) time per round (see Section 5.1), which
is even faster than a single local optimization step in Al-
gorithm 1, or the O(m

√
n)-time Hopcroft–Karp algorithm.

Therefore, although our learning method is generally slower
than the previous ones, it is usually not a serious drawback.

Given Theorem 4.3, we can obtain a sample complexity
bound via online-to-batch conversion. The proof is almost
identical to those of (Khodak et al., 2022; Sakaue & Oki,
2022) and thus deferred to Appendix C.

Corollary 4.4. Let D be an (unknown) distribution over
L-/L♮-convex functions g : ZV → R ∪ {+∞}, δ ∈ (0, 1],

and ε > 0. Given T = Ω
((

C
ε

)2(
n+ log 1

δ

))
i.i.d. draws

of g1, . . . , gT ∼ D, we can obtain p̂ ∈ RV that satisfies

Eg∼D[µ̄(p̂; g)] ≤ min
p̂∗∈[−C,+C]V

Eg∼D[µ̄(p̂
∗; g)] + ε

with probability at least 1 − δ. Under the assumptions of
Theorem 4.3, we can compute p̂ in O(T · (Tineq +n2)) time.

Remark 4.5. We can usually bound C with instance param-
eters. For example, if edge weights of bipartite-matching in-
stances are always in [−W,+W], C = nW is large enough
to ensure that an optimal prediction p̂∗ is in [−C,+C]V .
See (Sakaue & Oki, 2022, Section 4) for more information.

4.3. Computation of Subgradients

We below omit t and let, e.g., g = gt and p̂ = p̂t for brevity
since this section focuses only on the tth round.

First, we detail the assumption in Theorem 4.3. Recall that
argmin g is an L-/L♮-convex set due to (Murota, 2003, The-
orem 7.17). Therefore, conv(argmin g) has an inequality-
system representation as in Proposition 2.2. In this section,
we assume one such inequality system to be available.

Assumption 4.6. We can obtain an inequality-system rep-
resentation of conv(argmin g) ⊆ RV of the form{

p ∈ RV

∣∣∣∣∣ αi ≤ pi ≤ βi for i ∈ V ,
pj − pi ≤ γij for distinct i, j ∈ V

}
(4)

in Tineq time, where −αi, βi, γij ∈ Z ∪ {+∞}.

"̂ = (2, −2)

"! ≤ 1

−1 ≤ "!

−1 ≤ ""

"" ≤ 1"! − "" ≤ 1

"" − "! ≤ 2
conv(argmin -)

(a) conv(argmin g)

!

"

−1
21

0+1 −1 −1
3 3

5
−2

(b) (Ṽ , Ẽ) and a shortest path

Figure 2: If conv(argmin g) is given by inequalities in (a)
and p̂ = (2,−2), we can compute µ̄(p̂; g) by solving the
shortest path problem in (Ṽ , Ẽ) as in (b), where weights of
dashed edges are zero and the others have weights w̃ij(p̂)
shown nearby edges. A shortest path P ∗ = {s2, 21, 1t} is
shown in red, and the negative of its total weight is equal to
µ̄(p̂; g) = 2. We can obtain a subgradient, −∇ϕ(p̂;P ∗) =
(+1,−1), as shown in blue in (b). If we replace a redundant
inequality constraint, p1−p2 ≤ 2, in (a) with p1−p2 ≤ +∞,
the edge from 2 to 1 is removed in (b); still, the other shortest
path, {s2, 20, 01, 1t}, yields the same subgradient.

Remark 4.7. Although inequality-system representations of
conv(argmin g) are not unique, whichever of the form (4)
works in the following discussion. If an inequality system at
hand lacks inequalities for some i, j ∈ V , we suppose those
with αi = −∞, βi = +∞, and γij = +∞ to be given; we
always apply this treatment to all αi and βi if g is L-convex
since argmin g has no box constraints (see Proposition 2.2).

We then observe that computing the value of µ̄(p̂; g) for any
given p̂ ∈ RV can be reduced to a shortest path problem in
a directed graph with possibly negative weights. Since the
reduction is presented in (Sakaue & Oki, 2022, Appendix D),
we here only give a brief description for later convenience.

Let E = { ij | i, j ∈ V ; i ̸= j } and V0 = {0} ∪ V . We use
Ṽ = V0 ∪ {s, t} as a vertex set, where s is the origin and t
is the destination. We define a set Ẽ of directed edges as

E ∪{{0} × V }∪ {V × {0}}∪ {{s} × V0}∪ {V0 × {t}}.

Given any p̂ ∈ RV , we define weights of edges ij ∈ Ẽ as

w̃ij(p̂) =

γij − p̂j + p̂i if ij ∈ E,
−αi + p̂i if i ∈ V and j = 0,
βj − p̂j if i = 0 and j ∈ V ,
0 if i = s or j = t,

(5)

where αi, βj , γij are those representing conv(argmin g) as
in (4). We take ij ∈ Ẽ to be removed if w̃ij = +∞.

Note that the negative weights, −w̃ij(p̂), for ij ∈ V0 × V0
indicate how much p̂ violates the corresponding inequali-
ties in (4) representing conv(argmin g). From this fact, we
can show that the negative of the total weight of a shortest

6

Learning Predictions Close to Sets of Optimal Solutions for Faster L-/L♮-Convex Function Minimization

s–t path in (Ṽ , Ẽ) is equal to µ̄(p̂; g), or how far p̂ is from
conv(argmin g) in terms of the ℓ±∞-norm (see (Sakaue &
Oki, 2022, Appendix D)). Figure 2 illustrates an example of
conv(argmin g) and the shortest path problem for comput-
ing µ̄(p̂; g). Note that (Ṽ , Ẽ) has no negative cycles; other-
wise, the shortest-path weight is−∞, hence µ̄(p̂; g) = +∞,
contradicting argmin g ̸= ∅ (Assumption 2.1). Also, the
shortest-path weight is always non-positive since there al-
ways exist zero-weight s–t paths {si, it} for i ∈ V0.

We then rewrite µ̄(p̂; g) keeping the reduction to the shortest
path problem in mind. Let P ⊆ 2Ẽ be the set of all simple
s–t paths. For each P ∈ P , define ϕ(·;P) : RV → R by

ϕ(p̂;P) :=
∑
ij∈P

w̃ij(p̂), (6)

which equals the total weight of an s–t path P . Since µ̄(p̂; g)
is the negative of the total weight of a shortest path, we have

µ̄(p̂; g) = max{−ϕ(p̂;P) | P ∈ P }. (7)

Since each −ϕ(p̂;P) is linear in p̂ by (5) and (6), and P is
finite (hence compact), Danskin’s theorem (Danskin, 1966)
(see, also (Bertsekas, 2016, Proposition B.22)) implies

∂µ̄(p̂; g) = conv{−∇ϕ(p̂;P ∗) | P ∗ ∈ P(p̂)},

where P(p̂) := argmax{−ϕ(p̂;P) | P ∈ P } is the set of
all the shortest s–t paths when p̂ ∈ RV is given. Therefore,
we can compute a subgradient of µ̄(·; g) at p̂ by finding a
shortest s–t path P ∗ ∈ P(p̂) and calculating

−∇ϕ(p̂;P ∗) = −
∑

ij∈P∗

∇w̃ij(p̂).

We then take a closer look at the subgradient −∇ϕ(p̂;P ∗).
From (5), each −∇w̃ij(p̂) has at most one −1 and one +1.
These non-zeros are canceled out by taking the summation
along the shortest path P ∗, except for at most two non-zeros,
−1 and +1, corresponding to the two vertices adjacent to s
and t in P ∗, respectively; if s and/or t are adjacent to 0 ∈ V0,
the corresponding non-zeros also vanish. See Figure 2b for
an illustration of how −∇ϕ(p̂;P ∗) is calculated.

Formally, if the first and last edges in a shortest path P ∗ ∈
P(p̂) are si and jt, respectively, with i ̸= j, a subgradient
−∇ϕ(p̂;P ∗) ∈ ∂µ̄(p̂; g) can be written as

(ith jth
0 . . . 0 −1i̸=0 0 . . . 0 1j ̸=0 0 . . . 0

)
, (8)

where 1k ̸=0 = 1 if k ̸= 0 and 0 otherwise; if i = j, the
subgradient is zero. To conclude, we obtain the next lemma.

Lemma 4.8. If an inequality system of conv(argmin g) and
p∗ ∈ argmin g are available, we can compute a subgradient
z ∈ ∂µ̄(p̂; g) with ∥z∥2 ≤

√
2 in O(n2) time.

Proof. Given a shortest s–t path P ∗ ∈ P(p̂), we can com-
pute z ∈ ∂µ̄(p̂; g) as in (8), which satisfies ∥z∥2 ≤

√
2.

To obtain P ∗, we first transform the possibly negative edge
weights (5) into non-negative ones that preserve the shortest-
path set P(p̂) via a potential (see Appendix E for details).
We can do this transformation in O(|Ẽ|) time by using an op-
timal solution p∗ ∈ argmin g, which is assumed to be given
in Theorem 4.3. Therefore, by finding a shortest s–t path P ∗

with Dijkstra’s algorithm in O(|Ẽ|+ |Ṽ | log |Ṽ |) ≲ O(n2)
time, we can compute a subgradient in O(n2) time.

We can easily obtain an intuition of the subgradient (8) when
a shortest s–t path, P ∗ ∈ P(p̂), is of the form {si, ij, jt}.
Such a shortest path implies that a current prediction p̂ vio-
lates inequality constraint pj−pi ≤ γij most largely among
those in (4) that represent conv(argmin g). Updating p̂
along the negative direction of the subgradient (8) reduces
the magnitude of the violation, p̂j − p̂i − γij > 0, by in-
creasing p̂i and decreasing p̂j . Thus, the subgradient descent
moves a current prediction closer to conv(argmin g).

At a high level, our strategy is to write the distance to the
set of optimal solutions as a maximum of linear (or convex)
functions, as in (7), and use Danskin’s theorem to obtain a
subgradient. Then, we can use OGD to learn predictions
close to sets of optimal solutions. We expect that this simple
idea is also useful in other settings, e.g., (Chen et al., 2022).

5. Obtaining Inequality Systems of Minimizers
We show how to get an inequality system of conv(argmin g)
as in Assumption 4.6. Section 5.1 provides efficient meth-
ods that utilize problem-specific structures, and Section 5.2
presents a general polynomial-time method that only uses
black-box access to g, implying Tineq is at most polynomial.

5.1. Efficient Problem-Specific Methods

We can efficiently construct a desired inequality system if
the primal-dual structure of the problem, minp∈ZV g(p), is
available. We detail this method for bipartite matching.

We consider the weighted perfect bipartite matching prob-
lem introduced in Section 1. Let (V,E) be a bipartite graph
with equal-sized bipartition V = L ∪R, weights w ∈ ZE ,
n = |V |, and m = |E|. Recall that we can write the dual
LP as in (1) with constraints si − tj ≥ wij for ij ∈ E. The
following complementarity theorem gives a useful charac-
terization of the set of dual optimal solutions.

Proposition 5.1 (Murota (1995, Proposition 2.3)). LetM ⊆
E be a matching in (V,E) and p = (s, t) ∈ ZL∪R a dual
feasible solution to (1). Then, M and p are optimal if and
only if si − tj = wij for all ij ∈M .

This proposition implies that given an arbitrary maximum

7

Learning Predictions Close to Sets of Optimal Solutions for Faster L-/L♮-Convex Function Minimization

weight matching M∗ ⊆ E, we can represent the set of dual
optimal solutions, argmin g, by an inequality system as{

p = (s, t) ∈ ZL∪R

∣∣∣∣∣ si − tj ≥ wij for ij ∈ E,
si − tj ≤ wij for ij ∈M∗

}
,

and replacing ZL∪R with RL∪R yields an inequality-system
representation of conv(argmin g) (see Proposition 2.2).
Note that a maximum weight matching M∗ is usually avail-
able for free since the tth instance is already solved when
learning p̂t. Once M∗ is given, we can construct the above
inequality system in O(m) time, hence Tineq = O(m).

Having seen Tineq is small enough, the dominant part in the
per-round time complexity of OGD is Dijkstra’s algorithm
for computing a subgradient, which runs in O(m+ n log n)
time since the above inequality system leads to graph (Ṽ , Ẽ)
with |Ẽ| = O(m). Hence, OGD’s per-round running time is
shorter than that of solving local optimization in Algorithm 1
once with the O(m

√
n)-time Hopcroft–Karp algorithm.

The core idea of the above method is to utilize the “if and
only if” condition of the complementarity theorem. In other
words, once we find an arbitrary primal (dual) optimal solu-
tion, we can capture the set of all dual (primal) optimal solu-
tions via the complementarity condition. This idea has been
well studied in combinatorial relaxation (Murota, 1995)
and is applicable to matroid intersection and discrete energy
minimization. Below, we only present the results due to the
space limitation; see Appendices F.1 and F.2, respectively.

Theorem 5.2. Consider the dual problem, minp∈ZV g(p),
of weighted matroid intersection defined on a ground set V
of size n. If a maximum weight common base is available
(or the problem is already solved), we can obtain an inequal-
ity system of the form (4) representing conv(argmin g) in
Tineq = O(τnr) time, where r is the rank of the matroids
and τ is the running time of independence oracles.

Theorem 5.3. Consider discrete energy minimization,
minp∈ZV g(p), defined on a graph with n vertices and m
edges. If dom g ⊆ [0,W]V for some W > 0 (which is true
in most computer-vision applications), we can obtain an in-
equality system of the form (4) representing conv(argmin g)
in Tineq = O(mn log(n2/m) log(nW)) time.

5.2. General Polynomial-Time Method

We then discuss L-/L♮-convex minimization, minp∈ZV g(p),
where we only have black-box access to g values. Unlike
the above cases, this setting does not enjoy useful primal-
dual structures. Still, we can construct a desired inequality
system in polynomial time. We here assume argmin g ∩
[−C,+C]V ̸= ∅, whereC > 0 is the constant used in OGD,
to deal with possibly unbounded argmin g. This condition
is reasonable since the best prediction, p̂∗, in Theorem 4.3 is
selected from [−C,+C]V . We also assume g to have a finite

minimum value. Under these assumptions, the following
theorem holds (see Appendix F.3 for the complete proof).

Theorem 5.4. For general L-/L♮-convex function minimiza-
tion, minp∈ZV g(p), such that argmin g ∩ [−C,+C]V ̸= ∅
and min g > −∞, we can obtain an inequality system of a
subset of conv(argmin g) that is sufficient for the subgradi-
ent computation in Tineq = O(n2 log2 C · (EO ·n3 log2 n+
n4 logO(1) n)) time, where EO is the time for evaluating g.

Proof sketch. Note that argmin g can be written with O(n2)
inequalities due to Proposition 2.2. We seek appropriate val-
ues of all the O(n2) constants, αi, βi, γij ∈ Z, via binary
search, each of which takes O(logC) iterations by the as-
sumption of argmin g ∩ [−C,+C]V ̸= ∅. In each iteration,
we check whether a given inequality, e.g., pj − pi ≤ γij ,
is satisfied by all relevant minimizers of g or not. Based
on the steepest descent scaling algorithm (Murota, 2003,
Section 10.3.2), we can check this by solving submodular
function minimization (defined as with local optimization in
Step 3 of Algorithm 1) O(logC) times. If we solve it with
an O(EO ·n3 log2 n+n4 logO(1) n)-time algorithm of (Lee
et al., 2015), we obtain the desired time complexity.

6. Experiments
We conducted experiments on random weighted bipartite
matching instances to compare our learning method with
the previous methods (Dinitz et al., 2021; Sakaue & Oki,
2022). The source code is available at https://github
.com/ssakaue/alps-l-convex-optset-code.

We generated random instances with n = 10 and 100 as fol-
lows. Let (L,R) be a bipartition of a vertex set V such that
L = {1, 2, . . . , n2 } and R = {n2 + 1, n2 + 2, . . . , n}. First,
we created edges (i, i+|L|) ∈ L×R for i = 1, . . . , |L|with
a weight of 1 to ensure that there always exists at least one
perfect matching. Then, for the other pairs of (i, j) ∈ L×R,
we let wij = ⌊ 100n2 × i× (j − |L|)⌋+ u, where u is a noise
term drawn uniformly at random from [−σ,+σ] ∩ Z for
some σ > 0. If wij > 0, we created edges (i, j) ∈ L× R
with weights wij . Hence, predictions should be learned to
match i ∈ L and j ∈ R such that both i and j are large,
while i ∈ L and i+ |L| ∈ R should not be matched since
(i, i+ |L|) only has an edge weight of 1. We thus created a
dataset of T = 1000 random weighted bipartite graphs. We
repeated this procedure 10 times to obtain 10 independent
datasets, with which we calculated the mean and standard
deviation of the results. We created such datasets for various
noise strengths σ ∈ {1, 5, 10, 20}.
We consider the online setting where the random weighted
bipartite graphs arrive sequentially for t = 1, . . . , T . Each
method learns predictions p̂t ∈ RV for t = 1, . . . , T with
OGD, where the loss function ft differs among the meth-

8

https://github.com/ssakaue/alps-l-convex-optset-code
https://github.com/ssakaue/alps-l-convex-optset-code

Learning Predictions Close to Sets of Optimal Solutions for Faster L-/L♮-Convex Function Minimization

5.0

7.5

10.0

#
It

er
at

io
n

(a
ve

ra
ge

) σ = 1 σ = 5

0 500 1000
t

5.0

7.5

10.0

#
It

er
at

io
n

(a
ve

ra
ge

) σ = 10

0 500 1000
t

σ = 20

Method

`1

`∞
µ̄

Cold

ρ (LR scale)

0.01

0.1

1.0

10.0

20

40

60

80

#
It

er
at

io
n

(a
ve

ra
ge

) σ = 1 σ = 5

0 500 1000
t

20

40

60

80

#
It

er
at

io
n

(a
ve

ra
ge

) σ = 10

0 500 1000
t

σ = 20

Method

`1

`∞
µ̄

Cold

ρ (lr scale)

0.01

0.1

1.0

10.0

Figure 3: The average number of iterations of Algorithm 1 warm-started with predictions learned by each method for
bipartite matching instances with n = 10 (left) and 100 (right). σ represents the noise strength and ρ is the scaling factor of
the learning rate (LR) of OGD. The error band indicates the standard deviation over 10 independently random datasets.

ods, as described shortly. To improve the empirical perfor-
mance, we used the following refined variant of OGD: we
used the anytime online-to-batch scheme (Cutkosky, 2019)
for the last iterate convergence of each tth prediction (see
Appendix C for details) and an adaptive learning rate of
ηt =

C
√
2n√∑t

t′=1
∥zt′∥2

2

(Streeter & Brendan McMahan, 2010)

in each tth iteration of OGD, where zt is the tth subgradient,
C = nW , and W is the largest edge weight in a dataset (as
discussed in Remark 4.5). Furthermore, since OGD’s perfor-
mance was sensitive to the scale of learning rates, we used
rescaled learning rates ρ× ηt for ρ ∈ {0.01, 0.1, 1.0, 10.0}.
We compared methods with three types of loss functions:
ft(p̂) = ∥p∗t − p̂∥1 (Dinitz et al., 2021), ft(p̂) = ∥p∗t − p̂∥∞
(Sakaue & Oki, 2022), and ft(p̂) = µ̄(p̂; gt) (ours), where
the first two used p∗t returned by Algorithm 1 (or the Hungar-
ian method) warm-started by p̂t. We also used the cold-start
method as a baseline, which always set p̂t = 0. We denote
those methods by ℓ1, ℓ∞, µ̄, and Cold, respectively, for short.
To convert prediction p̂t into an initial feasible solution, ℓ1
used the greedy algorithm in (Dinitz et al., 2021), while
ℓ∞, µ̄, and Cold used the ℓ±∞-projection and rounding, as in
Theorem 3.1. We can find a specific ℓ±∞-projection method
for bipartite matching in (Sakaue & Oki, 2022, Section 3.1).

Figure 3 shows the average number of iterations of Algo-
rithm 1 (or the Hungarian method) warm-started with pre-
dictions p̂t learned by each method, where the average is
taken over the past t instances for t = 1, . . . , T . As for
n = 10, ℓ1, ℓ∞, and µ̄ with ρ = 0.1 significantly outper-
formed Cold in the low-noise setting (σ = 1), while their
advantages decrease as the noise strength σ increased, as is
also observed in (Dinitz et al., 2021, Section 4). In every
case, our µ̄ with ρ = 0.1 returned the best prediction, lead-
ing to the smallest number of iterations. Moreover, µ̄ with
ρ = 0.1 decreased the number of iterations more quickly
than the other methods, implying that it can learn good pre-
dictions from fewer sampled instances. As for n = 100, our

µ̄ with ρ = 0.01 outperformed the other methods in every
case. One curious observation with n = 100 is the unstable
behavior of ℓ1: it performed best with ρ = 1.0 for σ = 1, 5
and with ρ = 0.01 for σ = 10, 20; also, it failed to outper-
form Cold in the latter case with larger noise strengths. This
is probably because learning predictions with the ℓ1-loss
has caused extreme changes in predictions, since the num-
ber of iterations of Algorithm 1 (or the Hungarian method)
depends on the ℓ∞-distance, as implied by Proposition 2.4.

7. Conclusion
We have presented a new warm-start-with-prediction frame-
work for L-/L♮-convex minimization that provides time com-
plexity bounds proportional to µ̄(p̂; g), the ℓ±-distance be-
tween a prediction p̂ and the set, conv(argmin g), of opti-
mal solutions. Specifically, we have shown that the steepest
descent method warm-started by p̂ takes O(µ̄(p̂; g)) itera-
tions and that we can learn p̂ to approximately minimize
Eg[µ̄(p̂; g)] in polynomial time. At a technical level, we
have shown an efficient method for computing subgradients
of µ̄(·; g) to learn p̂ with OGD. Our results imply the first
polynomial-time learnability of predictions that can prov-
ably warm-start algorithms regardless of the non-uniqueness
of optimal solutions. This implication would be significant
progress in warm-starts with predictions because the non-
uniqueness always exists in the broad class of L-/L♮-convex
minimization, as described in Section 1 and Remark 2.3.
Studying how to learn predictions with similar guarantees
for other problems will be an interesting future direction.

Acknowledgements
The authors thank the anonymous reviewers for their helpful
comments. This work was supported by JST ERATO Grant
Number JPMJER1903 and JSPS KAKENHI Grant Number
JP22K17853.

9

Learning Predictions Close to Sets of Optimal Solutions for Faster L-/L♮-Convex Function Minimization

References
Agrawal, P., Balkanski, E., Gkatzelis, V., Ou, T., and Tan,

X. Learning-augmented mechanism design: Leveraging
predictions for facility location. In Proceedings of the
23rd ACM Conference on Economics and Computation
(EC 2022), pp. 497–528. ACM, 2022. ↰ p.3

Ahuja, R. K., Hochbaum, D. S., and Orlin, J. B. Solving the
convex cost integer dual network flow problem. Manage.
Sci., 49(7):950–964, 2003. ↰ p.17

Andoni, A. and Beaglehole, D. Learning to hash robustly,
guaranteed. In Proceedings of the 39th International
Conference on Machine Learning (ICML 2022), volume
162, pp. 599–618. PMLR, 2022. ↰ p.3

Arora, R., Dekel, O., and Tewari, A. Online bandit learn-
ing against an adaptive adversary: From regret to policy
regret. In Proceedings of the 29th International Cofer-
ence on International Conference on Machine Learning
(ICML 2012), pp. 1747–1754. Omnipress, 2012. ↰ p.12

Azar, Y., Panigrahi, D., and Touitou, N. Online graph
algorithms with predictions. In Proceedings of the 2022
Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2022), pp. 35–66. SIAM, 2022. ↰ p.3

Bamas, E., Maggiori, A., and Svensson, O. The primal-dual
method for learning augmented algorithms. In Advances
in Neural Information Processing Systems (NeurIPS
2020), volume 33, pp. 20083–20094. Curran Associates,
Inc., 2020. ↰ p.3

Bertsekas, D. P. Nonlinear Programming. Athena Scientific,
3rd edition, 2016. ↰ p.7

Boffa, A., Ferragina, P., and Vinciguerra, G. A learned
approach to design compressed rank/select data structures.
ACM Trans. Algorithms, 18(3):1–28, 2022. ↰ p.3

Cesa-Bianchi, N. and Lugosi, G. Prediction, Learning, and
Games. Cambridge University Press, 2006. ↰ p.14

Cesa-Bianchi, N., Conconi, A., and Gentile, C. On the gen-
eralization ability of on-line learning algorithms. IEEE
Trans. Inf. Theory, 50(9):2050–2057, 2004. ↰ p.13

Chen, J., Silwal, S., Vakilian, A., and Zhang, F. Faster
fundamental graph algorithms via learned predictions.
In Proceedings of the 39th International Conference on
Machine Learning (ICML 2022), volume 162, pp. 3583–
3602. PMLR, 2022. ↰ p.3, ↰ p.7, ↰ p.12

Cutkosky, A. Anytime online-to-batch, optimism and accel-
eration. In Proceedings of the 36th International Confer-
ence on Machine Learning (ICML 2019), volume 97, pp.
1446–1454. PMLR, 2019. ↰ p.9, ↰ p.13

Danskin, J. M. The theory of max-min, with applications.
SIAM J. Appl. Math., 14(4):641–664, 1966. ↰ p.7

Dinitz, M., Im, S., Lavastida, T., Moseley, B., and Vassilvit-
skii, S. Faster matchings via learned duals. In Advances in
Neural Information Processing Systems (NeurIPS 2021),
volume 34, pp. 10393–10406. Curran Associates, Inc.,
2021. ↰ p.1, ↰ p.2, ↰ p.3, ↰ p.4, ↰ p.8, ↰ p.9, ↰ p.12

Eden, T., Indyk, P., Narayanan, S., Rubinfeld, R., Silwal,
S., and Wagner, T. Learning-based support estimation in
sublinear time. In International Conference on Learning
Representations (ICLR 2021), 2021. ↰ p.3

Edmonds, J. Matroids and the greedy algorithm. Math.
Program., 1:127–136, 1971. ↰ p.15

Ergun, J. C., Feng, Z., Silwal, S., Woodruff, D., and Zhou, S.
Learning-augmented k-means clustering. In International
Conference on Learning Representations (ICLR 2022),
2022. ↰ p.3

Feijen, W. and Schäfer, G. Dijkstra’s algorithm with predic-
tions to solve the single-source many-targets shortest-path
problem. arXiv:2112.11927, 2023. ↰ p.3

Frank, A. Connections in Combinatorial Optimization. Ox-
ford University Press, 2011. ↰ p.16

Fujishige, S., Murota, K., and Shioura, A. Monotonicity
in steepest ascent algorithms for polyhedral L-concave
functions. J. Oper. Res. Soc. Japan, 58(2):184–208, 2015.
↰ p.4

Hazan, E. and Kale, S. Online submodular minimization. J.
Mach. Learn. Res., 13(93):2903–2922, 2012. ↰ p.14

Khodak, M., Balcan, M.-F., Talwalkar, A., and Vassilvitskii,
S. Learning predictions for algorithms with predictions.
In Advances in Neural Information Processing Systems
(NeurIPS 2022), volume 35, pp. 3542–3555. Curran As-
sociates, Inc., 2022. ↰ p.2, ↰ p.5, ↰ p.6, ↰ p.12

Kolmogorov, V. and Shioura, A. New algorithms for convex
cost tension problem with application to computer vision.
Discrete Optim., 6(4):378–393, 2009. ↰ p.16, ↰ p.17

Lee, Y. T., Sidford, A., and Wong, S. C.-W. A faster cutting
plane method and its implications for combinatorial and
convex optimization. In Proceedings of the 2015 IEEE
56th Annual Symposium on Foundations of Computer
Science (FOCS 2015), pp. 1049–1065. IEEE, 2015. ↰ p.8,
↰ p.17

Lindermayr, A. and Megow, N. Website for Algorithms
with Predictions (ALPS). https://algorithms
-with-predictions.github.io/. Accessed:
2023-05-11. ↰ p.3

10

https://algorithms-with-predictions.github.io/
https://algorithms-with-predictions.github.io/

Learning Predictions Close to Sets of Optimal Solutions for Faster L-/L♮-Convex Function Minimization

Lu, P., Ren, X., Sun, E., and Zhang, Y. Generalized sort-
ing with predictions. In Proceedings of the 4th SIAM
Symposium on Simplicity in Algorithms (SOSA 2021), pp.
111–117. SIAM, 2021. ↰ p.3

Lykouris, T. and Vassilvitskii, S. Competitive caching with
machine learned advice. J. ACM, 68(4):1–25, 2021. ↰ p.3

Mitzenmacher, M. and Vassilvitskii, S. Algorithms with
predictions. In Beyond the Worst-Case Analysis of Algo-
rithms, pp. 646–662. Cambridge University Press, 2021.
↰ p.1

Murota, K. Computing the degree of determinants via com-
binatorial relaxation. SIAM J. Comput., 24(4):765–796,
1995. ↰ p.7, ↰ p.8

Murota, K. Discrete Convex Analysis. Discrete Mathematics
and Applications. SIAM, 2003. ↰ p.3, ↰ p.6, ↰ p.8, ↰ p.13,
↰ p.16, ↰ p.17

Murota, K. and Shioura, A. Exact bounds for steepest
descent algorithms of L-convex function minimization.
Oper. Res. Lett., 42(5):361–366, 2014. ↰ p.4

Orabona, F. A Modern Introduction to Online Learning.
OpenBU, 2020. ↰ p.5

Polak, A. and Zub, M. Learning-augmented maximum flow.
arXiv:2207.12911, 2022. ↰ p.3, ↰ p.12, ↰ p.13

Purohit, M., Svitkina, Z., and Kumar, R. Improving online
algorithms via ML predictions. In Advances in Neural
Information Processing Systems (NeurIPS 2018), vol-
ume 31, pp. 9684–9693. Curran Associates, Inc., 2018.
↰ p.3

Rockafellar, R. T. Convex Analysis. Princeton University
Press, 1970. ↰ p.5

Sakaue, S. and Oki, T. Discrete-convex-analysis-based
framework for warm-starting algorithms with predictions.
In Advances in Neural Information Processing Systems
(NeurIPS 2022), volume 35, pp. 20988–21000. Curran
Associates, Inc., 2022. ↰ p.1, ↰ p.2, ↰ p.3, ↰ p.4, ↰ p.5,
↰ p.6, ↰ p.7, ↰ p.8, ↰ p.9, ↰ p.12, ↰ p.13, ↰ p.15, ↰ p.17

Schrijver, A. Combinatorial Optimization: Polyhedra and
Efficiency. Springer, 2003. ↰ p.4, ↰ p.14, ↰ p.16

Shioura, A. Algorithms for L-convex function minimization:
Connection between discrete convex analysis and other
research fields. J. Oper. Res. Soc. Japan, 60(3):216–243,
2017. ↰ p.4

Streeter, M. and Brendan McMahan, H. Less regret via
online conditioning. arXiv:1002.4862, 2010. ↰ p.9

11

Learning Predictions Close to Sets of Optimal Solutions for Faster L-/L♮-Convex Function Minimization

A. Details of Issues Caused by Non-uniqueness of Optimal Solutions
We detail the problem caused by ignoring the non-uniqueness of optimal solutions p∗, which arises in many problem settings,
including the dual of bipartite matching and L-/L♮-convex function minimization. In short, the problem is a kind of dilemma:
if we fix some optimal p∗ independently of prediction p̂, the time complexity bounds depending on ∥p∗ − p̂∥ can be poor;
if we select optimal p∗ depending on prediction p̂ to make ∥p∗ − p̂∥ small, we cannot use existing results on the learnability
of p̂ due to the dependence of p∗ on p̂. We below detail these two types of problems.

A.1. On Fixing Optimal Solutions Independently of Predictions

If an optimal solution is uniquely associated with each input instance independently of predictions, we can rely on the existing
learnability results of predictions. Hence, one may first think of using some tie-breaking rule to handle the non-uniqueness
of optimal solutions. Note, however, that no tie-breaking rule can lead to essentially stronger results than ours of using
the minimum distance to the set of all optimal solutions. Moreover, seemingly reasonable tie-breaking rules often result
in poor bounds. For example, consider a natural tie-braking rule that uniquely selects an optimal p∗ closest to some fixed
point, say the origin 0 ∈ RV , in the ℓ2-norm. If an instance with conv(argmin g) =

{
p ∈ R2

∣∣ p2 − p1 = 100
}

is given,
p∗ ∈ conv(argmin g) closest to 0 is p∗ = (−50, 50). Then, if a given prediction is p̂ = (1, 100), we have ∥p∗ − p̂∥∞ = 50
even though µ̄(p̂; g) = 1. Therefore, such a tie-breaking rule that selects p∗ closest to some fixed point generally results in
poor prediction-dependent time complexity bounds even when p̂ is close to the set, conv(argmin g), of optimal solutions.

A.2. On Existing Results for Learning Predictions

Considering the above drawback of fixing p∗, one may want to let p∗ be an optimal solution close to a given prediction p̂.
Indeed, most experiments in the previous studies seem to be implicitly based on this kind of idea; that is, they let p∗ be an
optimal solution returned by an algorithm warm-started by p̂ and learn p̂ to decrease loss values of the form ∥p∗ − p̂∥. This
idea, however, makes optimal p∗ ∈ conv(argmin g) selected depending on a given prediction p̂. We below explain why the
existing theoretical results for learning predictions p̂ cannot deal with the dependence of p∗ on p̂.

PAC learning approach. A popular approach to obtaining guarantees for learning predictions is to use the PAC learning
framework (Dinitz et al., 2021; Chen et al., 2022). With this approach, supposing input instances g to be drawn i.i.d. from a
distribution, we usually analyze the pseudo-dimension of a function class of the form

{
fp̂ : g 7→ R

∣∣ p̂ ∈ RV
}

. The existing
studies, however, analyzed the pseudo-dimension of a class of functions of the form fp̂(p

∗) = ∥p∗ − p̂∥, ignoring the
non-uniqueness of optimal p∗. If we want to let p∗ be an optimal solution close to p̂, we must regard p∗ as a function of p̂ and
specify how p∗ is uniquely computed from p̂ for each instance g; hence, the function should look like fp̂(g) = ∥p∗(p̂, g)− p̂∥.
No existing PAC learnability results for warm-starts with predictions have discussed such a complicated dependence.

Online learning approach. Another approach is to use online algorithms for learning predictions (Khodak et al., 2022;
Sakaue & Oki, 2022). In those studies, the tth loss function takes the form ft(p̂) = ∥p∗t − p̂∥, where p∗t is some optimal
solution selected for the tth instance, and the regret is defined as

∑T
t=1∥p∗t − p̂t∥ −minp̂∗∈[−C,+C]V

∑T
t=1∥p∗t − p̂∗∥. If

we want to let p∗ depend on p̂, we need to learn p̂t against an adversary who selects p∗t depending on p̂t. In this situation,
the above regret does not make sense; one obvious issue is that there is room for achieving a small regret by choosing p̂t to
make the second term large since p̂t can affect p∗t . A similar issue is discussed in (Arora et al., 2012), but the problem here
would be more severe since the adversary acts after the learner. The existing studies have not considered this situation. Note
that, although our method belongs to this category, our loss function, µ̄(p̂; gt), is designed to avoid the non-uniqueness issue.

A.3. On Learnability Result of (Polak & Zub, 2022)

Polak & Zub (2022) have studied a maximum flow algorithm warm-started with predictions. The authors have stated that
their method enjoys a time complexity bound proportional to ∥p∗ − p̂∥1 for an optimal flow p∗ closest to p̂. Although this
means that p∗ depends on p̂, their analysis for learning p̂ seems insufficient for handling the dependence, as detailed below.

In (Polak & Zub, 2022, Lemma 7), the authors present a uniform bound on the difference between empirical and expected
losses. Specifically, given T instances g1, . . . , gT drawn i.i.d. from a distribution D, the lemma says that a bound of the form∣∣∣ 1T ∑T

t=1∥p∗(gt)− p∥1 − Eg∼D[∥p∗(g)− p∥1]
∣∣∣ ≤ 1 holds for all p ∈ ZV satisfying some constraints with high probability.

Then, in the proof of (Polak & Zub, 2022, Theorem 4), the authors use Lemma 7 substituting prediction p̂ into p, where

12

Learning Predictions Close to Sets of Optimal Solutions for Faster L-/L♮-Convex Function Minimization

the “for all p ∈ ZV ” part is justified by using the fact that prediction p̂ is chosen after instances gt are sampled from D.
This justification is correct if p∗(g) is independent of p̂, i.e., we can uniquely define function fg(p) = ∥p∗(g)− p∥1 from g.
However, if we let p∗(g) be an optimal solution closest to p̂, this justification is incorrect. For a bound like Lemma 7 to hold
for p∗(g) depending on p̂, we need to derive a uniform convergence by, e.g., defining how p∗(g) is computed from a pair of
(p̂, g) and bounding the pseudo-dimension for the computation procedure. Considering the above, the sample complexity
bound of (Polak & Zub, 2022) for learning p̂ seems to be true only when p∗(g) is fixed for each g independently of p̂.

B. Proof of Lemma 2.5
Lemma 2.5. Let g : ZV → R ∪ {+∞} be an L-/L♮-convex function. For every p ∈ ZV , it holds that µ(p; g) = µ̄(p; g).

Proof. Let p ∈ ZV . As discussed in Section 4.3, µ̄(p; g) is equal to the negative of the total weight of a shortest path in
(Ṽ , Ẽ), which we can represent as an optimal value of the following LP (see (Sakaue & Oki, 2022, Appendix D)):

maximize qt − qs
subject to qj − qi ≤ w̃ij(p) ∀ij ∈ Ẽ,

q0 = 0,
(9)

where

w̃ij(p) =

γij − pj + pi if ij ∈ E,
−αi + pi if i ∈ V and j = 0,
βj − pj if i = 0 and j ∈ V ,
0 if i = s or j = t

for −αi, βj , γij ∈ Z∪{+∞}. From p ∈ ZV , all w̃ij(p) are integers. Furthermore, the constraints in (9) can be written with
a totally unimodular matrix. Therefore, the LP (9) has an integer optimal solution q∗ ∈ ZṼ . Let q∗V ∈ ZV be the restriction
of q∗ to V = Ṽ \{0, s, t}. Then, p∗ = p+q∗V attains ∥p∗−p∥±∞ = µ̄(p; g), as shown in (Sakaue & Oki, 2022, Appendix D).
Moreover, p∗ is an integer vector due to p ∈ ZV and q∗V ∈ ZV , and thus we have p∗ ∈ conv(argmin g) ∩ ZV = argmin g,
where the equality is known as the hole-free property of L-/L♮-convex sets (Murota, 2003, Theorem 5.2 and Section 5.5).
From ∥p∗−p∥±∞ = µ̄(p; g) and p∗ ∈ argmin g, we have µ(p; g) = ∥p∗−p∥±∞, hence µ(p; g) = ∥p∗−p∥±∞ = µ̄(p; g).

C. Proof of Corollary 4.4
Corollary 4.4. Let D be an (unknown) distribution over L-/L♮-convex functions g : ZV → R ∪ {+∞}, δ ∈ (0, 1], and

ε > 0. Given T = Ω
((

C
ε

)2(
n+ log 1

δ

))
i.i.d. draws of g1, . . . , gT ∼ D, we can obtain p̂ ∈ RV that satisfies

Eg∼D[µ̄(p̂; g)] ≤ min
p̂∗∈[−C,+C]V

Eg∼D[µ̄(p̂
∗; g)] + ε

with probability at least 1− δ. Under the assumptions of Theorem 4.3, we can compute p̂ in O(T · (Tineq + n2)) time.

Proof. The basic proof idea is to use online-to-batch conversion (Cesa-Bianchi et al., 2004) to convert the regret bound
(Theorem 4.3) into the sample complexity bound. Here, we use a refined variant, called anytime online-to-batch conversion
(Cutkosky, 2019, Theorem 1), which is useful for ensuring the last iterate convergence of predictions computed for stochastic
loss functions. We also use this technique in the experiments in Section 6.

To use (Cutkosky, 2019, Theorem 1), we slightly modify the online algorithm for computing predictions. In each tth round, let
qt =

1
t

∑t
t′=1 p̂t′ and compute a subgradient zt at qt, i.e., zt ∈ ∂µ̄(qt, gt). The tth loss function revealed to an online learner

is a linear loss function ft(p̂) = ⟨zt, p̂⟩, and the learner uses an online algorithm to compute p̂1, . . . , p̂T ∈ [−C,+C]V that
satisfy a regret bound of

∑T
t=1 ft(p̂t)−

∑T
t=1 ft(p̂

∗) =
∑T

t=1⟨zt, p̂t − p̂∗⟩ = O(C
√
nT) for any p̂∗ ∈ [−C,+C]V . Here,

the learner can use OGD described in Section 4.1; one can easily confirm that it enjoys the C
√
2nT -regret bound also for

the linearized loss ft(p̂) = ⟨zt, p̂⟩. Then, by substituting ∥zt∥1 ≤ 2 and max
{
∥p− q∥∞

∣∣ p, q ∈ [−C,+C]V
}
≤ 2C into

(Cutkosky, 2019, Theorem 1), we can show that p̂ = qT satisfies the following inequality with a probability of at least 1− δ:

Eg∼D[µ̄(p̂; g)]− min
p̂∗∈[−C,+C]V

Eg∼D[µ̄(p̂
∗; g)] ≤ C

√
2nT + 8C

√
T log(2/δ)

T
=

C√
T

(
√
2n+ 8

√
log

2

δ

)
.

13

Learning Predictions Close to Sets of Optimal Solutions for Faster L-/L♮-Convex Function Minimization

Thus, the sample size of T = Ω
((

C
ε

)2(
n+ log 1

δ

))
is sufficient for ensuring that the right-hand side is at most ε.

As for the time complexity, the per-round running time of OGD is Tineq +O(n2) by Lemma 4.8 (since p∗t ∈ argmin gt is
available), and this is repeated T times to obtain p̂ = qT . Therefore, it takes O(T · (Tineq + n2)) time in total.

D. Regret Lower Bound
We show an Ω(C

√
nT) regret lower bound for online minimization of µ̄(p̂; gt) to complement Theorem 4.3. The proof idea

is based on (Hazan & Kale, 2012, Theorem 14), which presents a regret lower bound for online submodular minimization.

For ease of analysis, we only consider a learner who selects p̂1, . . . , p̂T from [−C,+C]V . Our OGD satisfies this condition
due to the ℓ2-projection onto [−C,+C]V ; hence the lower bound implies the tightness of the O(C

√
nT) upper bound.

Another remark is that we below obtain a lower bound by using gt such that argmin gt∩[−C,+C]V = ∅, while predictions p̂
are constrained to [−C,+C]V . We leave it for future work to prove a lower bound using gt with argmin gt∩[−C,+C]V ̸= ∅.
Theorem D.1. Let C > 0 be an integer. For any online leaner who plays p̂1, . . . , p̂T ∈ [−C,+C]V , there is a sequence of
L♮-convex functions g1, . . . , gT such that the learner incurs an Ω(C

√
nT) regret.

Proof. Let n = |V | be even and i(t) = (t mod n/2) + 1 ∈ {1, . . . , n/2} for t = 1, . . . , T . In each tth round, choose a
Rademacher random variable σt ∈ {−1,+1} independently of all other random variables. Let gt be an indicator function
such that dom gt is a singleton, {p∗t }, where p∗t ∈ ZV has two non-zeros: the i(t)th entry is 3σtC, the (i(t) + n/2)th entry
is −3σtC, and the others are zero. Since we have argmin gt = {p∗t }, for any p̂ ∈ [−C,+C]V , it holds that

µ̄(p̂; gt) = ∥p∗t − p̂∥±∞ = max
i∈V

max
{
0, p∗t,i − p̂i

}
+max

i∈V
max

{
0, p̂i − p∗t,i

}
= 6C + σt(p̂i(t)+n/2 − p̂i(t)).

Thus, for any learner’s choice p̂t ∈ [−C,+C]V , we have E[µ̄(p̂t; gt)] = 6C, where the expectation is taken over the
randomness of σt. Therefore, the expected total loss of any online learner is 6CT .

We then show that there exists p̂∗ ∈ [−C,+C]V that has an Ω(C
√
nT) advantage over the learner’s expected loss, implying

an Ω(C
√
nT) regret lower bound. Let sign(x) denote a function that returns +1 if x > 0, 0 if x = 0, and −1 if x < 0. Let

Xi =
∑

t:i(t)=i σt for i = 1, . . . , n/2. Set the ith entry of p̂∗ to sign(Xi)× C for i = 1, . . . , n/2 and − sign(Xi)× C for
i = n/2 + 1, . . . , n. Then, in each tth round, the i(t)th entry of p∗t − p̂∗ causes a loss value of 2C if sign(Xi(t)) = σt, 3C
if Xi(t) = 0, and 4C otherwise. Similarly, the (i(t) + n/2)th entry causes a loss value of 2C, 3C, or 4C. Hence we have

T∑
t=1

µ̄(p̂∗; gt) =

T∑
t=1

∥p∗t − p̂∗∥±∞ = 3CT − C
n/2∑
i=1

|Xi|+ 3CT − C
n/2∑
i=1

|Xi| = 6CT − 2C

n/2∑
i=1

|Xi|,

which implies that the expected regret is at least 2C ×E
[∑n/2

i=1 |Xi|
]
. Since each Xi is a sum of at least

⌊
T

n/2

⌋
independent

Rademacher random variables, Khintchine’s inequality (see, e.g., (Cesa-Bianchi & Lugosi, 2006, Appendix A.1.4)) implies

E[|Xi|] ≥
√

1
2

⌊
T

n/2

⌋
. Thus, the expected regret is at least 2C × n

2

√
1
2

⌊
T

n/2

⌋
= Ω(C

√
nT). This expected lower bound

implies that there is a specific choice of σt values such that the learner incurs an Ω(C
√
nT) regret.

E. Transformation into Non-negative Edge Weights
We show how to transform the shortest path problem in Section 4.3 into another one with non-negative edge weights. Once
we obtain such a transformed problem, we can use Dijkstra’s algorithm to find a shortest path. The transformation is based
on a so-called potential, which has been well studied in combinatorial optimization (Schrijver, 2003, Section 8.2).

Recall that the vertex set is Ṽ = V0 ∪ {s, t}, where V0 = {0} ∪ V , and the edge set is

Ẽ = E ∪ {{0} × V } ∪ {V × {0}} ∪ {{s} × V0} ∪ {V0 × {t}},

where E = { ij | i, j ∈ V ; i ̸= j }. The set of all simple s–t paths in (Ṽ , Ẽ) is denoted by P ⊆ 2Ẽ . We also have the
following inequality-system representation of conv(argmin g), as in Assumption 4.6:

conv(argmin g) =

{
p ∈ RV

∣∣∣∣∣ αi ≤ pi ≤ βi for i ∈ V ,
pj − pi ≤ γij for distinct i, j ∈ V

}
. (10)

14

Learning Predictions Close to Sets of Optimal Solutions for Faster L-/L♮-Convex Function Minimization

For any given prediction p̂ ∈ RV , the original (possibly negative) edge weights w̃ij(p̂) (ij ∈ Ẽ) are defined as follows:

w̃ij(p̂) =

γij − p̂j + p̂i if ij ∈ E,
−αi + p̂i if i ∈ V and j = 0,
βj − p̂j if i = 0 and j ∈ V ,
0 if i = s or j = t.

We transform them into non-negative weights. We call q ∈ RṼ a potential if w̃ij(p̂)− qj + qi ≥ 0 holds for ij ∈ Ẽ. If we
have a potential, we can define non-negative edge weights w̃+

ij(p̂) := w̃ij(p̂)− qj + qi for ij ∈ Ẽ. For any simple s–t path
P ∈ P in (Ṽ , Ẽ), the telescoping sum implies∑

ij∈P

w̃+
ij(p̂) =

∑
ij∈S

(w̃ij(p̂)− qj + qi) = qs − qt +
∑
ij∈S

w̃ij(p̂),

where qs and qt are independent of the choice of P ∈ P . Hence P ∈ P is the shortest with respect to edge weights w̃ij(p̂)
if and only if P is the shortest with respect to w̃+

ij(p̂). Therefore, once a potential is given, we can obtain non-negative edge
weights that do not change the set of shortest paths in O(Ẽ) time, and we can find a shortest path with Dijkstra’s algorithm
in O(|Ẽ|+ |Ṽ | log |Ṽ |) time. We below present how to obtain a potential from an arbitrary optimal solution p∗ ∈ argmin g,
which is available for free since the tth instance is assumed to be solved in Theorem 4.3.

To simply notation, we add elements p̂0 = p̂s = p̂t = 0 to p̂ ∈ RV . Also, let γi0 = −αi for i ∈ V , γ0j = βj for j ∈ V ,
γsj = p̂j for j ∈ V0, and γit = −p̂i for i ∈ V0. Then, the original edge weights w̃ij(p̂) can be written as

w̃ij(p̂) = γij − p̂j + p̂i for ij ∈ Ẽ. (11)

Since we have p∗ ∈ argmin g ⊆ conv(argmin g), p∗ ∈ RV satisfies the inequalities in (10). Thus, by additionally defining
p∗0 = 0, p∗s = maxj∈V0

(p∗j − p̂j), and p∗t = mini∈V0
(p∗i − p̂i), we have

p∗j − p∗i ≤ γij for ij ∈ Ẽ. (12)

Then, q := p∗ − p̂ ∈ RṼ is indeed a potential since we have

w̃ij − qj + qi = w̃ij − (p∗j − p̂j) + (p∗i − p̂i)
(11)
= γij − p̂j + p̂i − (p∗j − p̂j) + (p∗i − p̂i) = γij − p∗j + p∗i

(12)
≥ 0

for all ij ∈ Ẽ. By using this potential, we can obtain non-negative edge weights w̃+
ij(p̂) as described above.

F. Missing Proofs in Section 5
We detail how to obtain an inequality system of conv(argmin g) for weighted matroid intersection (Appendix F.1), discrete
energy minimization (Appendix F.2), and general L-/L♮-convex minimization under the value-oracle model (Appendix F.3).

F.1. Proof of Theorem 5.2

We discuss the weighted matroid intersection problem, a generalization of various problems such as bipartite matching and
packing spanning trees. A matroid M consists of a finite set V and a non-empty set family B ⊆ 2V of bases satisfying the
following: for any B1, B2 ∈ B and i ∈ B1 \B2, there exists j ∈ B2 \B1 such that B1 \ {i} ∪ {j}, B2 \ {j} ∪ {i} ∈ B.
For any v ∈ ZV and X ⊆ V , let v(X) =

∑
i∈X vi. For any v ∈ ZV and matroid M = (V,B), let Bv := argmaxB∈B v(B)

and Mv := (V,Bv), which also forms a matroid (Edmonds, 1971).

Let M1 = (V,B1) and M2 = (V,B2) be two matroids on an identical ground set V equipped with weights w ∈ ZV . We
assume that the rank of each matroid is at most r (i.e., maxB∈Bk

|B| ≤ r for k = 1, 2) and that independence oracles of
M1 and M2 run in τ time, each of which returns whether input X ⊆ V is a subset of some B ∈ Bk or not (k = 1, 2).
The weighted matroid intersection problem asks to find B ∈ B1 ∩ B2 that maximizes w(B). Its dual problem is written as
minimization of the following L-convex function g (see (Sakaue & Oki, 2022, Section 3.2)):

minimize
p∈ZV

g(p) = max
B∈B1

p(B) + max
B∈B2

(w − p)(B).

We below prove the following theorem.

15

Learning Predictions Close to Sets of Optimal Solutions for Faster L-/L♮-Convex Function Minimization

Theorem 5.2. Consider the dual problem, minp∈ZV g(p), of weighted matroid intersection defined on a ground set V of
size n. If a maximum weight common base is available (or the problem is already solved), we can obtain an inequality
system of the form (4) representing conv(argmin g) in Tineq = O(τnr) time, where r is the rank of the matroids and τ is
the running time of independence oracles.

Proof. LetB∗ ∈ B1∩B2 be any common base that maximizes w(B∗). By the strong duality (Frank, 2011, Theorem 13.2.4),
it holds that w(B∗) = g(p∗) for any optimal dual solution p∗ ∈ ZV . This means that p ∈ ZV is optimal if and only if

B∗ ∈ argmax
B∈B1

p(B) ∩ argmax
B∈B2

(w − p)(B). (13)

Furthermore, an optimality condition for linear maximization on matroid bases says that for any v ∈ ZV and matroid M =
(V,B), B ∈ argmaxB′∈B v(B

′) holds if and only if vi ≥ vj for all i ∈ B and j ∈ V \B with B \ {i} ∪ {j} ∈ B (see, e.g.,
(Schrijver, 2003, Corollary 39.12b)). If we apply this condition to each of argmaxB∈B1

p(B) and argmaxB∈B2
(w− p)(B)

in (13), the “if and only if” condition of (13) implies that we can represent argmin g as follows:{
p ∈ ZV

∣∣∣∣∣ pi ≥ pj for (i, j) ∈ E1(B
∗),

wi − pi ≥ wj − pj for (i, j) ∈ E2(B
∗)

}
, (14)

whereB∗ is an arbitrary maximum weight common base andEk(B
∗) = { (i, j) | i ∈ B∗, j ∈ V \B∗, B∗\{i}∪{j} ∈ Bk }

for k = 1, 2. The same inequality system on RV represents conv(argmin g), as in Proposition 2.2.

By the assumption in Theorem 5.2, a maximum weight common base B∗ is available. Once B∗ is given, we can construct
the inequality system (14) in O(τ |B∗||V \B∗|) ≲ O(τnr) time, hence Tineq = O(τnr).

We additionally show that the per-round running time of OGD is O(τnr+n log n). Since |Ek| = O(|B∗||V \B∗|) ≲ O(nr)
for k = 1, 2, the inequality system (14) yields a graph (Ṽ , Ẽ) such that |Ẽ| = O(nr). Therefore, Dijkstra’s algorithm in the
proof of Lemma 4.8 takes O(nr + n log n) time, and the per-round running time of OGD is Tineq +O(nr + n log n) =
O(τnr+ n log n). Since solving local local optimization in Algorithm 1 takes Tloc = O(τnr1.5) time as in Table 1, OGD’s
per-round running time is as short as Tloc if log n ≲ O(τr1.5).

F.2. Proof of Theorem 5.3

We discuss discrete energy minimization (Kolmogorov & Shioura, 2009), which appears in computer-vision (CV) applica-
tions. (Although Kolmogorov & Shioura (2009) considered undirected graphs, a similar result holds for directed graphs
as follows; see also (Murota, 2003, Section 9).) Let (V,A) be a directed graph with |V | = n and |A| = m. Each vertex
i ∈ V and edge a ∈ A are associated with univariate convex functions ϕi : Z → R ∪ {+∞} and ψa : Z → R ∪ {+∞},
respectively, which we can evaluate in constant time. Then, a discrete energy minimization problem is written as

minimize
p∈ZV

g(p) =
∑
i∈V

ϕi(pi) +
∑

a=ij∈A

ψa(pj − pi), (15)

which is an L♮-convex minimization problem and a generalization of minimum-cost flow. We assume dom g ⊆ [0,W]V for
some W > 0; this is usually true in CV applications since the range of pixel values is bounded. This assumption implies
that we can restrict domϕi and domψa to [0,W] ∩ Z and [−W,+W] ∩ Z, respectively.

We then introduce the dual problem of (15). For a vector ξ ∈ RA, called a flow, we define its boundary ∂ξ ∈ RV by
(∂ξ)i =

∑
a∈δ+(i) ξa−

∑
a∈δ−(i) ξa for i ∈ V , where δ+(i) (resp. δ−(i)) is the set of edges entering to (resp. leaving from)

i ∈ V . We can write the dual problem of (15) as the following convex cost flow problem:

maximize
ξ∈RA

f(ξ) =
∑
i∈V

min
x∈Z

ϕi[−(∂ξ)i](x) +
∑
a∈A

min
y∈Z

ψa[−ξa](y),

where, for any u : R → R ∪ {+∞} and b ∈ R, u[b] denotes a function defined by u[b](x) = u(x) + bx for x ∈ R. The
following proposition is useful to characterize the primal-dual structure.

16

Learning Predictions Close to Sets of Optimal Solutions for Faster L-/L♮-Convex Function Minimization

Proposition F.1 ((Kolmogorov & Shioura, 2009, Theorem 3.1); cf. (Murota, 2003, Theorem 9.4)). Take any flow ξ∗ ∈ RA

maximizing f(ξ). Let αi, βi be integers with argminϕi[−(∂ξ∗)i] = [αi, βi] ∩ Z for i ∈ V , and let γ̌a, γ̂a be integers with
argminψa[−ξ∗a] = [γ̌a, γ̂a] ∩ Z for a ∈ A. Then, we can represent argmin g as follows:{

p∗ ∈ ZV

∣∣∣∣∣ αi ≤ p∗i ≤ βi for i ∈ V ,
γ̌a ≤ p∗j − p∗i ≤ γ̂a for a = ij ∈ A

}
. (16)

We now prove the following theorem.

Theorem 5.3. Consider discrete energy minimization, minp∈ZV g(p), defined on a graph with n vertices and m edges.
If dom g ⊆ [0,W]V for some W > 0 (which is true in most computer-vision applications), we can obtain an inequality
system of the form (4) representing conv(argmin g) in Tineq = O(mn log(n2/m) log(nW)) time.

Proof. From Proposition F.1, given an arbitrary optimal flow ξ∗, we can represent argmin g by the inequality system (16).
We can find one such ξ∗ by using an algorithm of (Ahuja et al., 2003) in O(mn log(n2/m) log(nW)) time. Then, since we
can restrict domϕi and domψa to [0,W] ∩ Z and [−W,+W] ∩ Z, respectively, we can locate values of αi, βi, γ̌a, γ̂a ∈ Z
for all i ∈ V and a ∈ A in O((n+m) logW) time via binary search (which is faster than the algorithm for computing ξ∗).
Therefore, we can obtain the inequality system (16) in Tineq = O(mn log(n2/m) log(nW)) time, and the same system on
RV represents conv(argmin g).

F.3. Proof of Theorem 5.4

We consider L-/L♮-convex function minimization, minp∈ZV g(p), with a value oracle of g. We prove the following theorem.

Theorem 5.4. For general L-/L♮-convex function minimization, minp∈ZV g(p), such that argmin g ∩ [−C,+C]V ̸= ∅
and min g > −∞, we can obtain an inequality system of a subset of conv(argmin g) that is sufficient for the subgradient
computation in Tineq = O(n2 log2 C · (EO · n3 log2 n+ n4 logO(1) n)) time, where EO is the time for evaluating g.

Proof. Recall that prediction p̂ ∈ RV , at which we compute a subgradient of µ̄(·; g), is always contained in [−C,+C]V
since OGD performs the ℓ2-projection onto [−C,+C]V . First, we show that an inequality system of S = conv(argmin g)∩
[−2C,+2C]V is sufficient for computing a subgradient; that is, we only need to obtain an inequality system of the form

αi ≤ pi ≤ βi for i ∈ V and pj − pi ≤ γij for distinct i, j ∈ V

such that

αi ∈ [−2C,+2C] ∩ Z, βi ∈ [−2C,+2C] ∩ Z, and γij ∈ [−4C,+4C] ∩ Z. (17)

As discussed in Section 4.3, we can compute a subgradient of µ̄(p̂; g) by finding a shortest s–t path in (Ṽ , Ẽ) with weights
w̃ij(p̂). This procedure is indeed equivalent to computing an ℓ±∞-projection of p̂ onto the convex hull of an L♮-convex set,
conv(argmin g) (see (Sakaue & Oki, 2022, Appendix D)). Since we have p̂ ∈ [−C,+C]V and argmin g∩ [−C,+C]V ̸= ∅,
such an ℓ±∞-projection of p̂ never goes out of [−2C,+2C]V . Therefore, among all inequalities representing conv(argmin g),
those that do not intersect with [−2C,+2C]V can be ignored when computing a shortest path in (Ṽ , Ẽ). This implies that
we can compute a subgradient of µ̄(p̂; g) if we have an inequality system of S = conv(argmin g) ∩ [−2C,+2C]V .

We then describe how to obtain an inequality system of S. From the above discussion, we can focus on searching for
appropriate values of αi, βi, and γij satisfying (17). We seek such values via binary search as follows. Consider, for example,
doing binary search on [−4C,+4C] to find an appropriate γij value. Given a current γij value, the inequality pj−pi ≤ γij is
valid for all minimizers p ∈ S if and only if adding a constraint pj −pi ≥ γij +1 to min

{
g(p)

∣∣ p ∈ [−2C,+2C]V ∩ ZV
}

increases the minimum value. We can check whether the latter is true by solving the L♮-convex minimization problem with
an effective domain restricted to [−2C,+2C]V ∩

{
p ∈ ZV

∣∣ pj − pi ≥ γij + 1
}

. By using the steepest descent scaling
algorithm (Murota, 2003, Section 10.3.2), we can solve the problem via O(logC) times submodular function minimization,
each of which can be solved with an O(EO ·n3 log2 n+n4 logO(1) n)-time algorithm of (Lee et al., 2015). By repeating this
test O(logC) times, the binary search produces a tight inequality pj−pi ≤ γij (i.e., it defines a facet of conv(S)). Similarly,
we can find αi and βi values. To find all αi, βi, and γij values, we perform binary search O(n2) times. Therefore, the total
computation time for obtaining the desired inequality system is Tineq = O(n2 log2 C · (EO ·n3 log2 n+n4 logO(1) n)).

17

	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 Preliminaries
	2.1 L-/L-natural-Convex Functions and Sets
	2.2 Steepest Descent for L-/L-natural-Convex Minimization

	3 Time Complexity Bound
	4 Learning Predictions
	4.1 Basics of Online Gradient Descent
	4.2 Main Results
	4.3 Computation of Subgradients

	5 Obtaining Inequality Systems of Minimizers
	5.1 Efficient Problem-Specific Methods
	5.2 General Polynomial-Time Method

	6 Experiments
	7 Conclusion
	A Details of Issues Caused by Non-uniqueness of Optimal Solutions
	A.1 On Fixing Optimal Solutions Independently of Predictions
	A.2 On Existing Results for Learning Predictions
	A.3 On Learnability Result of (Polak & Zub, 2022)

	B Proof of Lemma 2.5
	C Proof of Corollary 4.4
	D Regret Lower Bound
	E Transformation into Non-negative Edge Weights
	F Missing Proofs in Section 5
	F.1 Proof of Theorem 5.2
	F.2 Proof of Theorem 5.3
	F.3 Proof of Theorem 5.4

