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Abstract
This paper introduces a new principled approach
for off-policy learning in contextual bandits. Un-
like previous work, our approach does not de-
rive learning principles from intractable or loose
bounds. We analyse the problem through the PAC-
Bayesian lens, interpreting policies as mixtures
of decision rules. This allows us to propose novel
generalization bounds and provide tractable al-
gorithms to optimize them. We prove that the
derived bounds are tighter than their competitors,
and can be optimized directly to confidently im-
prove upon the logging policy offline. Our ap-
proach learns policies with guarantees, uses all
available data and does not require tuning ad-
ditional hyperparameters on held-out sets. We
demonstrate through extensive experiments the
effectiveness of our approach in providing perfor-
mance guarantees in practical scenarios.

1. Introduction
Online industrial systems encounter sequential decision
problems as they interact with the environment and strive
to improve based on the received feedback. The contextual
bandit framework formalizes this mechanism, and proved
valuable with applications in recommender systems (Valko
et al., 2014) and clinical trials (Villar et al., 2015). It de-
scribes a game of repeated interactions between a system
and an environment, where the latter reveals a context that
the system interacts with, and receives a feedback in return.

While the online solution to this problem involves strategies
that find an optimal trade-off between exploration and ex-
ploitation to minimize the regret (Lattimore & Szepesvári,
2020), we are concerned with its offline formulation (Swami-
nathan & Joachims, 2015b), which is arguably better suited
for real-life applications, where more control over the
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decision-maker, often coined the policy, is needed. The
learning of the policy is performed offline, based on his-
torical data, typically obtained by logging the interactions
between an older version of the decision system and the
environment. By leveraging this data, our goal is to discover
new strategies of greater performance.

There are two main paths to address this learning problem.
The direct method (Sakhi et al., 2020a; Jeunen & Goethals,
2021) attacks the problem by modelling the feedback and
deriving a policy according to this model. This approach can
be praised for its simplicity (Brandfonbrener et al., 2021), is
well-studied in the offline setting (Nguyen-Tang et al., 2022)
but will often suffer from a bias as the feedback received is
complex and the efficiency of the method directly depends
on our ability to understand the problem’s structure.

We will consider the second path of off-policy learning,
or IPS: inverse propensity scoring (Horvitz & Thompson,
1952) where we learn the policy directly from the logged
data after correcting its bias with importance sampling
(Owen & Zhou, 2000). As these estimators (Bottou et al.,
2013; Swaminathan & Joachims, 2015a) can suffer from
a variance problem as we drift away from the logging pol-
icy, the literature gave birth to different learning principles
(Swaminathan & Joachims, 2015b; Ma et al., 2019; Lon-
don & Sandler, 2019; Faury et al., 2020) motivating penal-
izations toward the logging policy. These principles are
inspired by generalization bounds, but introduce a hyperpa-
rameter λ to either replace intractable quantities (Swami-
nathan & Joachims, 2015b) or to tighten a potentially vac-
uous bound (London & Sandler, 2019). These approaches
require tuning λ on a held-out set and sometimes fail at
improving the previous decision system (London & Sandler,
2019; Chen et al., 2019).

In this work, we analyse off-policy learning from the PAC-
Bayesian perspective (McAllester, 1998; Catoni, 2007). We
aim at introducing a novel, theoretically-grounded approach,
based on the direct optimization of newly derived tight gen-
eralization bounds, to obtain guaranteed improvement of
the previous system offline, without the need for held-out
sets nor hyperparameter tuning. We show that our approach
is perfectly suited to this framework, as it naturally incor-
porates information about the old decision system and can
confidently improve it.
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2. Preliminaries
2.1. Setting

We use x ∈ X to denote a context and a ∈ A = [K]
an action, where K denotes the number of available ac-
tions. For a context x, each action is associated with a cost
c(x, a) ∈ [−1, 0], with the convention that better actions
have smaller cost. The cost function c is unknown. Our
decision system is represented by its policy π : X → P(A)
which given x ∈ X , defines a probability distribution over
the discrete action space A of size K. Assuming that the
contexts are stochastic and follow an unknown distribution
ν, we define the risk of the policy π as the expected cost
one suffers when playing actions according to π:

R(π) = Ex∼ν,a∼π(·|x) [c(x, a)] .

The learning problem is to find a policy π which minimizes
the risk. This risk can be naively estimated by deploying the
policy online and gathering enough interactions to construct
an accurate estimate. Unfortunately, we do not have this
luxury in most real-world problems as the cost of deploying
bad policies can be extremely high. We can obtain instead
an estimate by exploiting the logged interactions collected
by the previous system. Indeed, the previous system is
represented by a logging policy π0 (e.g a previous version
of a recommender system that we are trying to improve),
which gathered interaction data of the following form:

Dn = {xi, ai ∼ π0(·|xi), ci}i∈[n] , with ci = c(xi, ai).

Given this data, one can build various estimators, with the
clipped IPS (Bottou et al., 2013) the most commonly used. It
is constructed based on a clipping of the importance weights
or the logging propensities to mitigate variance issues (Ion-
ides, 2008). We are more interested in clipping the logging
probabilities as we need objectives that are linear in the
policy π for our study. The cIPS estimator is given by:

R̂τn(π) =
1

n

n∑
i=1

π(ai|xi)
max{π0(ai|xi), τ}

ci (1)

with τ ∈ [0, 1] being the clipping factor.

Choosing τ ≪ 1 reduces the bias of cIPS. We recover
the classical IPS estimator (Horvitz & Thompson, 1952)
(unbiased under mild conditions) by taking τ = 0.

Another estimator with better statistical properties is the
doubly robust estimator (Ben-Tal et al., 2013), which uses
the importance weights as control variates to reduce fur-
ther the variance of the cIPS estimators. This estimator is
asymptotically optimal (Farajtabar et al., 2018) (in terms
of variance) amongst the class of unbiased and consistent
off-policy estimators.

We consider a simplified version of this estimator, which
replaces the use of a model ĉ of the cost by one parameter
ξ ∈ [−1, 0] that can be chosen freely. We define the control
variate clipped IPS, or cvcIPS as follows:

R̂τ,ξn (π) = ξ +
1

n

n∑
i=1

π(ai|xi)
max{π0(ai|xi), τ}

(ci − ξ). (2)

The cvcIPS estimator can be seen as a special case of the
doubly robust estimator when the cost model ĉ = ξ is
constant and τ = 0. cIPS is recovered by setting ξ = 0. This
simple estimator is deeply connected to the SNIPS estimator
(Swaminathan & Joachims, 2015a) and was shown to be
more suited to off-policy learning as it mitigates the problem
of propensity overfitting (Joachims et al., 2018).

2.2. Related Work: Learning Principles

The literature so far has focused on deriving new principles
to learn policies with good online performance. The first line
of work in this direction is CRM: Counterfactual Risk mini-
mization (Swaminathan & Joachims, 2015b) which adopted
SVP: Sample Variance Penalization (Maurer & Pontil, 2009)
to favor policies with small empirical risk and controlled
variance. The intuition behind it is that the variance of cIPS
depends on the disparity between π and π0 making the esti-
mator unreliable when π drifts away from π0. The analysis
focused on the cIPS estimator and used uniform bounds
based on empirical Bernstein inequalities (Maurer & Pon-
til, 2009), where intractable quantities were replaced by a
tuning parameter λ, giving the following learning objective:

argmin
π

R̂τn(π) + λ

√
V̂n(π)

n

 (3)

with V̂n(π) the empirical variance of the cIPS estimator.
A majorization-minimization algorithm was provided in
(Swaminathan & Joachims, 2015b) to solve Equation (3)
for parametrized softmax policies.

In the same spirit, (Faury et al., 2020; Sakhi et al., 2020b)
generalize SVP using the distributional robustness frame-
work, showing that the CRM principle can be retrieved with
a particular choice of the divergence and provide asymptotic
coverage results of the true risk. Their objectives are com-
petitive with SVP while providing simple ways to scale its
optimization to large datasets.

Another line of research, closer to our work, uses PAC-
Bayesian bounds to derive learning objectives in the same
fashion as (Swaminathan & Joachims, 2015b). Indeed, (Lon-
don & Sandler, 2019) introduce the Bayesian CRM, moti-
vating the use of L2 regularization towards the parameter
θ0 of the logging policy π0. The analysis uses (McAllester,
2003)’s bound, is conducted on the cIPS estimator and con-
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trols the L2 norm by a hyperparameter λ, giving the follow-
ing learning objective for parametrized softmax policies:

argmin
θ

{
R̂τn(πθ) + λ||θ − θ0||2

}
. (4)

(London & Sandler, 2019) minimize a convex upper-bound
of objective (4) (by taking a log transform of the policy)
which is amenable to stochastic optimization, giving better
results than (3) while scaling better to the size of the dataset.

Limitations. The principles found in the literature are
mainly inspired by generalization bounds. However, the
bounds from where these principles are derived either de-
pend on intractable quantities (Swaminathan & Joachims,
2015b) or are not tight enough to be used as-is (London &
Sandler, 2019). For example, (Swaminathan & Joachims,
2015b) derive a generalisation bound (see Theorem 1 in
(Swaminathan & Joachims, 2015b)) for offline policy learn-
ing using the notion of covering number. This introduces
the complexity measure QH(n, γ) that cannot be computed
(even for simple policy classes) making their bound in-
tractable. This forces the introduction of a hyperparameter
λ that needs further tuning. Unfortunately, this approach
suffers from numerous problems:

• No Theoretical Guarantees. Introducing the hyper-
parameter λ in Equations (3) and (4) gives tractable
objectives, but loses the theoretical guarantees given by
the initial bounds. These objectives do not necessarily
cover the true risk, and optimizing them can lead to
policies worse than the logging π0. Empirical evidence
can be found in (Chen et al., 2019; London & Sandler,
2019) where the SVP principle in Equation (3) fails to
improve on π0.

• Inconsistent Strategy. These principles were first in-
troduced to mitigate the suboptimality of learning with
off-policy estimators, deemed untrustworthy for their
potential high variance. The strategy minimizes the ob-
jectives for different values of {λ1, ..., λm}, generating
a set of policy candidates {πλ1

, ..., πλm}, from which
we select the best policy πλ∗ according to the same
untrustworthy, high variance estimators on a held-out
set. This makes the selection strategy used inconsistent
with what these principles are claiming to solve.

• Tuning requires additional care. Tuning λ needs to
be done on a held-out set. This means that we need
to train multiple policies (computational burden) on
a fraction of the data (data inefficiency), and select
the best policy among the candidates using off-policy
estimators (variance problem) on the held-out set.

In this paper, we derive a coherent principle, that learns
policies using all the available data and provides guaran-

tees on their performance, without the introduction of new
hyperparameters.

2.3. Learning With Guaranteed Improvements

Our first concern in most applications is to improve upon
the actual system π0. As Dn is collected by π0, we have
access to R(π0)1. Given a new policy π, we want to be
confident that the improvement I(π, π0) = R(π0)−R(π)
is positive before deployment.

Let us suppose that we are restricted to a class of policies
H, and have access to a generalization bound that gives the
following result with high probability over draws of Dn:

R(π) ≤ UBn(π) ∀π ∈ H.

with UBn an empirical upper bound that depends on Dn.
For any π, we define the guaranteed improvement:

GIUBn(π, π0) = R(π0)− UBn(π).

We can be sure of improving R(π0) offline if we manage
to find π ∈ H that achieves GIUBn(π, π0) > 0 as the
following result will hold with high probability:

I(π, π0) ≥ GIUBn(π, π0) > 0.

To obtain such a policy, we look for the minimizer of UBn
over the class of policies H as:

π∗
UBn ∈ argmin

π∈H
UBn(π) = argmax

π∈H
GIUBn(π, π0).

We define the best guaranteed risk and the best guaranteed
improvement follows:

GR∗
UBn = UBn(π∗

UBn)

GI∗
UBn(π0) = R(π0)− GR∗

UBn .

A theoretically-grounded strategy to improve π0
will be to deploy π∗

UBn if we obtain a positive guar-
anteed improvement GI∗

UBn(π0) > 0, otherwise
continue collecting data with the current system π0.

This strategy will always produce policies that are at least
as good as π0, optimizes directly a bound over all data and
does not require held-out sets nor new hyperparameters.
However, the tightness of the bounds UBn will play an
important role. Indeed, If we fix Dn and π0, GI∗

UBn(π0)
will only depend on the minimum of UBn, motivating the
derivation of bounds that are tractable and tight enough to
achieve the smallest minimum possible.

In this regard, we opt for the PAC-Bayesian framework to
tackle this problem as it is proven to give tractable, non-
vacuous bounds even in difficult settings (Dziugaite & Roy,

1up to a small O(1/
√
n) approximation error.
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2017). Its paradigm also fits our application as we can
incorporate information about the previous system π0 in the
form of a prior; see (Alquier, 2021) for a recent review.

Contributions. We advocate for a theoretically grounded
strategy that uses generalization bound to improve π0 with
guarantees. So far, the existing bounds are either intractable
(Swaminathan & Joachims, 2015b) or can be proven to be
suboptimal (London & Sandler, 2019). In this work,

• we derive new, tractable and tight generalization
bounds using the PAC-Bayesian framework. These
bounds are fully tractable unlike (Swaminathan &
Joachims, 2015b)’s bound and are tighter than (London
& Sandler, 2019)’s bound.

• we provide a way to optimize our bounds over a particu-
lar class of policies and show empirically that they can
guarantee improvement over π0 in practical scenarios.

3. Motivating PAC-Bayesian tools
As previously discussed, in the contextual bandit setting, we
seek a policy that minimizes the expected cost:

R(π) = Ex∼ν,a∼π(·|x) [c(x, a)] .

The minimizer of this objective over the unrestricted space
of policies is a deterministic decision rule defined by:

∀x, a π∗(a|x) = 1[argmin
a′

c(x, a′) = a].

Given a context x, the solution will always choose the action
that has the minimum cost. However, as the function c is
generally unknown, we instead learn a parametric score
function fθ ∈ FΘ = {fθ : X × [K] → R, θ ∈ Θ} that
encodes the action’s relevance to a context x. Given a
function fθ, we define the decision rule dθ by:

dθ(a|x) = 1[argmax
a′

fθ(x, a
′) = a].

These parametric decisions rules will be the building blocks
of our analysis. We view stochastic policies as smoothed
decision rules, with smoothness induced by distributions
over the space of score functions FΘ. Given a context x,
instead of sampling an action a directly from a distribution
on the action set, we sample a function fθ from a distribution
over FΘ and compute the action as a = argmaxa′ fθ(x, a

′).
With this interpretation, for any distribution Q on FΘ, the
probability of an action, a ∈ A, given a context x ∈ X , is
defined as the expected value of dθ over Q, that is:

πQ(a|x) = Eθ∼Q [dθ(a|x)]

= PQ

(
argmax

a′
fθ(x, a

′) = a

)
.

Policies as mixtures of decision rules. This perspective
on policies was introduced in (Seldin et al., 2011) and later
developed in (London & Sandler, 2019). Constructing poli-
cies as mixtures of deterministic decision rules does not
restrict the class of policies our study applies to. Indeed,
if the family FΘ is rich enough (e.g, neural networks), we
give the following theorem that proves that any policy π can
be written as a mixture of deterministic policies.

Theorem 3.1. Let us fix a policy π. Then there is a probabil-
ity distributionQπ on the set of all functions f : X × [K] →
{0, 1} such that

∀x, a π(a|x) = Ef∼Qπ
[
1

[
argmax

a′
f(x, a′) = a

]]
.

A formal proof of Theorem 3.1 is given in Appendix A.1.
This means that adopting this perspective on policies does
not narrow the scope of our study. For a policy πQ defined
by a distribution Q over FΘ, we observe that by linearity,
its true risk can be written as:

R(πQ) = Eθ∼Q[R(dθ)].

Similarly, clipping the logging propensities in our empirical
estimators allows us to obtain a linear estimators in π. For
instance, we can estimate empirically the risk of the policy
πQ with cvcIPS (as it generalizes cIPS) and obtain:

R̂τ,ξn (πQ) = Eθ∼Q[R̂
τ,ξ
n (dθ)].

By linearity, one can see that both the true and empirical risk
of a policy πQ can also be interpreted as the average risk
of decision rules drawn from the distribution Q. This dual-
ity is in the heart of our analysis and paves the way nicely
to the PAC-Bayesian framework, which studies generaliza-
tion properties of the average risk of randomized predictors
(Alquier, 2021). If we fix a reference distribution P over
FΘ and define the KL divergence from P to Q as:

KL(Q||P ) =


∫

ln
{
dQ
dP

}
dQ if Q is P -continuous,

+∞ otherwise,

we can construct with the help of PAC-Bayesian tools
bounds holding for the average risk of decision rules over
any distribution Q;

Eθ∼Q[R(dθ)] ≤ Eθ∼Q[R̂τ,ξn (dθ)] +O (KL(Q||P )) .

Our objective will be to find tight generalisation bounds of
this form as this construction, coupled with the linearity of
our objective and estimator, allows us to obtain tight bounds
holding for any policy πQ;

R(πQ) ≤ R̂τ,ξn (πQ) +O (KL(Q||P )) .
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The PAC-Bayesian Paradigm. Before we dive deeper into
the analysis, we want to emphasize the similarities between
the PAC-Bayesian paradigm and the offline contextual ban-
dit problem. This learning framework proceeds as follows:
Given a class of functions FΘ, we fix a prior (reference dis-
tribution) P on FΘ before seeing the data, then, we receive
some data Dn which help us learn a better distribution Q
over FΘ than our reference P . With the previous perspec-
tive on policies, the prior P , even if it can be any data-free
distribution, will be our logging policy (i.e. π0 = πP ), and
we will use the data Dn to learn distribution Q, thus a new
policy πQ that improves the logging policy π0.

4. PAC-Bayesian Analysis
4.1. Bounds for clipped IPS

The clipped IPS estimator (Bottou et al., 2013) is often stud-
ied for offline policy learning (Swaminathan & Joachims,
2015b; London & Sandler, 2019) as it is easy to analyse, and
have a negative bias (once the cost is negative) facilitating
the derivation of learning bounds.

(London & Sandler, 2019) adapted (McAllester, 2003)’s
bound to derive their learning objective. We state a slightly
tighter version in Proposition 4.1 for the cIPS estimator. The
proof of this bound cannot be adapted naively to the cvcIPS
estimator, because once ξ ̸= 0, the bias of the estimator, an
intractable quantity that depends on the unknown distribu-
tion ν, is no longer negative and needs to be incorporated in
the bound, making the bound itself intractable.

Proposition 4.1. Given a prior P on FΘ, τ ∈ (0, 1], δ ∈
(0, 1], the following bound holds with probability at least
1− δ uniformly for all distribution Q over FΘ:

R(πQ) ≤ R̂τn(πQ) +
2(KL(Q||P ) + ln 2

√
n
δ )

τn

+

√
2[R̂τn(πQ) +

1
τ ](KL(Q||P ) + ln 2

√
n
δ )

τn
.

The upper bound stated in the previous proposition will be
denoted by LSP,δ,τn (πQ). When there is no ambiguity, we
will also drop P, δ, τ (all fixed) and only use LSn(πQ).

(McAllester, 2003)’s bound can give tight results in the
[0, 1]-bounded loss case when the empirical risk is close to
0 as one obtains fast convergence rates inO(1/n). However,
its use in the case of offline contextual bandits is far from
being optimal. Indeed, to achieve a fast rate in this context,
one needs R̂τn(πQ) +

1
τ ≈ 0. This is hardly achievable in

practice especially when n is large and τ ≪ 1.

To defend our claim, let us suppose that for each context x,
there is one optimal action a∗x for which c(x, a∗x) = −1 and

it is 0 otherwise. Let us write down the clipped IPS:

R̂τn(π) =
1

n

n∑
i=1

π(ai|xi)
max{π0(ai|xi), τ}

ci ≥ −1

τ
.

To get equality, we need:

∀i ∈ [n], ci = −1, π0(ai|xi) ≤ τ, π(ai|xi) = 1.

If n is large, the first condition on the costs means that π0 is
near optimal and the played actions ai are optimal. For this,
we get that ∀i ∈ [n], π0(ai|xi) ≈ 1. This, combined with
the second condition on π0 gives that τ ≈ 1. In practice, π0
is never the optimal policy and τ ≪ 1 which makes the fast
rate condition R̂τn(π)+

1
τ ≈ 0 unachievable. In the majority

of scenarios, as we penalize πQ to stay close to π0 through
the KL divergence, we will have R̂τn(πQ) ∈ [−1, 0], thus
R̂τn(πQ) +

1
τ ≈ 1

τ , giving a limiting behavior:

LSn(πQ) = R̂τn(πQ) +O

(
1

τ

√
KL(Q||P )

n

)
.

If we want to get tighter results, we need to look for bounds
with better dependencies on τ and n. In our pursuit of a
tighter bound, we derive the following result:

Proposition 4.2. Given a prior P on FΘ, τ ∈ (0, 1], δ ∈
(0, 1]. The following bound holds with probability at least
1− δ uniformly for all distribution Q over FΘ:

R(πQ) ≤ min
λ>0

1− exp
(
−τλR̂τn(πQ)− 1

n

[
KL(Q||P ) + ln 2

√
n
δ

])
τ(eλ − 1)

We will denote by CP,δ,τn (πQ) the upper bound stated in this
proposition. When there is no ambiguity, we will also drop
P, δ, τ (all fixed) and only use Cn(πQ).

This is a direct application of (Catoni, 2007)’s bound to the
bounded loss cIPS while exploiting the fact that its bias is
negative. A full derivation can be found in Appendix A.2.
Note that Proposition 4.2 cannot be applied to the cvcIPS
estimator (ξ ̸= 0) as its bias is non-negative and intractable.
To be able to measure the tightness of this bound, we esti-
mate its limiting behaviour to understand its dependency on
τ and n. We derive in Appendix A.3 the following result:

Cn(πQ) = R̂τn(πQ) +O
(
KL(Q||P )

τn

)
.

This shows that Cn has a better dependency on n compared
to LSn. Actually, we can prove that Cn will always give
tighter results as the next theorem states that it is smaller
than LSn in all scenarios.

Theorem 4.3. For any Dn ∼ (µ, π0)
n, any distributions

P,Q, any τ ∈ (0, 1], δ ∈ (0, 1], we have:

CP,δ,τn (πQ) ≤ LSP,δ,τn (πQ).

5



PAC-Bayesian Offline Contextual Bandits With Guarantees

One can refer to Appendix A.4 for the full proof. This result
confirms that the bound given by Proposition 4.2 is theoreti-
cally tighter than the bound in Proposition 4.1, making LSn
unusable if we seek tight guarantees on R(πQ).

4.2. Going beyond clipped IPS

The cvcIPS estimator in Equation (2) generalizes cIPS,
and can behave better as it achieves improved variance
with a well chosen ξ. To study its learning proper-
ties, we derive a novel Bernstein-type PAC-Bayesian
bound that holds for the cvcIPS estimator. Let g be
the function g : u −→ exp(u)−1−u

u2 . We also define the
conditional bias Bτn and the conditional second moment Vτn :

• Bτn(π) =
1

n

n∑
i=1

Eπ(.|xi)

[
1[π0(a|xi) < τ ]

(
1− π0(a|xi)

τ

)]

• Vτn(π) =
1

n

n∑
i=1

Eπ(.|xi)

[
π0(a|xi)

max{π0(a|xi), τ}2

]
.

With these definitions, we can state our proposition:

Proposition 4.4. Given a prior P on FΘ, ξ ∈ [−1, 0], τ ∈
(0, 1], δ ∈ (0, 1] and a set of strictly positive scalars Λ =
{λi}i∈[nΛ]. The following bound holds with probability at
least 1− δ uniformly for all distribution Q over FΘ:

R(πQ) ≤ R̂τ,ξn (πQ)− ξBτn(πQ) +

√
KL(Q||P ) + ln 4

√
n
δ

2n

+min
λ∈Λ

{
KL(Q||P ) + ln 2nΛ

δ

λn
+ λlξg (λbξ)Vτn(πQ)

}
with lξ = max

[
ξ2, (1 + ξ)2

]
, bξ = (1 + ξ)/τ − ξ.

The choice of Λ as well as the full proof of a more general
version of Proposition 4.4 can be found in Appendix A.5.
The upper bound given by Proposition 4.4 (with P, τ, δ
fixed) will be denoted by CBBξn(πQ).

Proposition 4.4 covers the general cvcIPS estimator (ξ ̸= 0)
and its objective is decomposable into a sum, making it
amenable to stochastic first order optimization (Robbins &
Monro, 1951). However, minimizing it requires access to
the logging policy π0. This is reasonable as π0 represents
the currently deployed decision system, which we want to
improve. In the limit, the bound is estimated to behave like:

CBBξn(πQ) = R̂τ,ξn (πQ)− ξBτn(πQ)

+O

((
1

2
√
2
+
√
lξVτn(πQ)

)√
KL(Q||P )

n

)

A derivation of this result can be found in Appendix A.5.3.
We have Vτn ≤ 1/τ and expect this bound to give tight
results when Vτn(πQ) ≪ 1/τ . However, once π0 is uniform

and τ = 1/K, we can never have the previous condition as:

∀π, Vτn(π) = 1/τ.

This means that the worst regime for CBBξn is when π0 is
uniform, and even in that case, this bound should be tighter
than LSn as it has a better dependency on τ . We can also
get an intuition about the impact of ξ, in particular:

• ξ = 0 recovers cIPS. This estimator has the best depen-
dency on the bias (it nullifies the impact of Bτn(πQ))
and the worst dependency on Vτn(πQ) as lξ = 1.

• ξ = −0.5 obtains the best dependency on Vτn(πQ) as
lξ reaches its minimum and make the bound suffer only
half the bias Bτn(πQ).

• ξ = −1 in the other hand, has both the worst dependen-
cies on the bias and the variance, and can be considered
a bad choice. Actually, this value of ξ shifts the costs
to be always positive (∀i, ci − ξ ≥ 0), which is known
to make the off-policy risk estimators not suited for
policy learning (Swaminathan & Joachims, 2015b).

These observations point to the importance of the choice of
ξ, which can drastically change the behavior of the bound.
We will empirically study the impact of two candidate values
of ξ ∈ {0,−0.5} on the tightness of the bound.

5. Restricting the Space of Policies
Our PAC-Bayesian bounds hold for any policy πQ. How-
ever, to obtain policies of practical use, we ask for some
desired properties that are summarized in the points below.

Sampling. Being able to efficiently sample actions from our
policy is crucial as the decisions taken by our online system
boil down to sampling. For a given context x, we have:

a ∼ πQ(·|x) ⇐⇒ a = argmax
a′

fθ(x, a
′), θ ∼ Q.

The complexity of sampling from πQ depends on how easy
it is to sample from the distribution Q.

Computing propensities. Computing propensities for a
given pair (x, a) is essential for off-policy evaluation. A
generic estimate can be obtained by:

π̂naive
Q (a|x) = 1

S

S∑
i=1

dθi(a|x)

with {θi}Si=1 samples from Q. This estimator will behave
badly once we deal with large action spaces and/or high-
dimensional distributions parameters. Ideally, we would
like to exploit the family of distributions Q considered and
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the form of the function fθ to come up with a better behaved
estimator for the propensities.

Numerical optimization. If we restrict our study to a para-
metric family QΨ = {Qψ, ψ ∈ Ψ}, computing gradients
will be essential to minimising the bounds. For a given pair
(x, a), we can compute for any parameterized distribution
Qψ the score function gradient estimator (Williams, 1992)
of πQψ (a|x):

∇ψπQψ (a|x) = ∇ψEθ∼Qψ [dθ(a|x)]
= Eθ∼Qψ [dθ(a|x)∇ψ logQψ(θ)].

This gradient suffers from a variance problem (Xu et al.,
2019) and we might need to choose a specific family of
distributions QΨ, or/and specify a form of fθ to obtain
ψ → πQψ (a|x) with better behaved gradients.

(London & Sandler, 2019) restricted their study to Mixed
Logit policies (Hensher & Greene, 2003). These policies
are easy to sample from, and have easy to compute propen-
sities and gradients. However, their learning properties are
demonstrated to be sub-optimal (Mei et al., 2020). To this
end, we adopt another class of policies that we deem better
behaved for our objective. We discuss the reasons behind
this choice in detail in Appendix A.7.

5.1. Linear Independent Gaussian Policies

As mentioned previously, even if our analysis is valid for all
distributions Q and any form of fθ, we need to restrict our
space to obtain practical policies. We restrict fθ to:

∀x, a fθ(x, a) = ϕ(x)T θa (5)

with ϕ a fixed transform2 over the contexts. This form of
fθ is widely used in this context (Faury et al., 2020; Swami-
nathan & Joachims, 2015b). This results in a parameter θ of
dimension d = p×K with p the dimension of the features
ϕ(x) and K the number of actions.

We also restrict the family of distributions Qd+1 =
{Qµ,σ = N (µ, σ2Id),µ ∈ R

d, σ > 0} to independent
Gaussians with shared scale.

With these choices of fθ and Q, the induced πµ,σ,
that we call LIG: Linear Independent Gaussian poli-
cies, will provide fast sampling and easily computable
propensities and gradients. Indeed, sampling from πµ,σ
will reduce to sampling from a normal distribution
θ ∼ Qµ,σ and computing a = argmaxa′ fθ(x, a

′).
When it comes to estimating the propensity of a given
x, we can suggest another expression of πµ,σ(a|x) that

2Even if we assume that ϕ is fixed, the analysis can be naturally
extended to the more general case where ϕψ is a parameterized
neural network that we learn.

reduces the computation to a one dimensional integral:

πµ,σ(a|x) = Eϵ∼N (0,1)

∏
a′ ̸=a

Φ

(
ϵ+

ϕ(x)T (µa − µa′)

σ||ϕ(x)||

)
= Eϵ∼N (0,1) [Gµ,σ(ϵ, a, x)]

with Φ the cumulative distribution function of the standard
normal. See Appendix A.6 for a full derivation. The com-
putation of πµ,σ(a|x) becomes easier as one dimensional
standard normal integrals can be well approximated. The
gradient can also be derived from this new expression:

∇µ,σπµ,σ(a|x) = Eϵ∼N (0,1) [∇µ,σGµ,σ(ϵ, a, x)]

which can be seen as a one dimensional reparametrization
trick gradient, and is known to behave better than the score
function gradient estimator (Xu et al., 2019).

Optimising the bounds. For their practicality, we focus
on the class of LIG policies to optimise the bounds. As
these policies are built with Gaussian distributions Q, we
also adopt Gaussian priors3 P = N (µ0, σ0Id) to obtain an
analytical expression for KL(Q||P ). We state the bounds
for LIG policies with Gaussian priors in Appendix A.8.

Optimizing for LIG policies, the best guaranteed risk de-
fined in Section 2.3 and the minimizer π∗

UBn for the different
bounds UBn ∈ {LSn, Cn, CBBξn} are given by:

GR∗
UBn = min

πµ,σ

UBn(πµ,σ) (6)

π∗
UBn = argmin

πµ,σ

UBn(πµ,σ). (7)

The best guaranteed improvement GI∗(π0) with these
bounds follows as the difference between R(π0) and GR∗.

6. Experiments
We are interested in studying the effectiveness of the pro-
posed bounds in providing guaranteed improvement of the
previously deployed system π0 after collecting Dn.

Experimental Setup. For ease of exposition, we use a
softmax logging policy of parameter µ0 ∈ Rp×K :

πS
µ0

(a|x) ∝ exp(ϕ(x)Tµ0a).

µ0a ∈ Rp is the parameter associated with action a. The
policy πS

µ0
is used to generate the logged interactions data

Dn and its parameter µ0 constructs the reference distribu-
tion P = N (µ0, Id) for all bounds.

We adopt the standard supervised-to-bandit conversion to
generate logged data in all of our experiments (Swaminathan
& Joachims, 2015b). We use two mutliclass datasets: Fash-
ionMNIST (Xiao et al., 2017) and EMNIST-b (Cohen et al.,

3The prior uses the parameters of the logging policy π0.
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Figure 1: The Guaranteed Risk given by LSn optimized over Mixed Logit and LIG policy classes while changing π0. The
LSn bound fails to guarantee improvement (GR∗

LSn > R(π0)) in all scenarios considered.

2017), alongside two multilabel datasets: NUS-WIDE-128
(Chua et al., 2009) with 128-VLAD features (Spyromitros-
Xioufis et al., 2014) and Mediamill (Snoek et al., 2006)
to empirically validate our findings. The statistics of the
datasets are described in Table 1 in Appendix B.1; N the
size of the training split, K the number of actions and p the
dimension of the features ϕ(x). We take a small fraction
(5%) of the training data that will only be used to learn µ0

in a supervised manner.

With µ0 obtained, we introduce an inverse temperature
parameter α to our softmax logging policy πS

αµ0
giving a

prior P = N (αµ0, Id). Changing α allows us to cover
logging policies with different entropies (α ≈ 0 gives a
uniform π0 and α ≈ 1 gives a peaked π0). We run παµ0 on
the rest (nc = 0.95N ) of the training data to generate Dn.
For a context x and an action a, we define in our setting the
cost as c = −1[a ∈ y] with y the set of true labels for x.

Learning µ0 on a split different than the one logged allows
us to use the previous bounds as the parameter µ0 does not
depend on the logged interactions, making the reference
distribution P data-free.

We set the allowed uncertainty to δ = 0.05. For all datasets,
τ will be set to τ = 1/K to get no bias when the logging
policy is close to uniform. We use Adam (Kingma & Ba,
2014) with a learning rate of 10−3 for 100 epochs to opti-
mize the bounds w.r.t their parameters. More details on the
training procedure can be found in Appendix B.2.

LSn is not tight enough. We demonstrated in this work
that the LSn bound used by (London & Sandler, 2019)
is suboptimal as it generally shows a worse dependence
on τ and can be shown to be theoretically dominated by
Cn (Theorem 4.3). However, we want to verify if it can
guarantee the improvement of the logging policy π0. Given
logged data Dn generated by π0, we optimize the LSn
bound with both the LIG (Equation (6)) and Mixed Logit
(Theorem 3 in (London & Sandler, 2019)) policy classes.

In Figure 1, we plot R(π0), the true risk of π0 alongside
the best guaranteed risk GR∗

LSn given by the two policy
classes, while changing the logging policies π0 (going from
uniform to peaked policies by changing α).

We can observe, for the two policy classes and all scenarios
considered, that this bound fails at providing guaranteed im-
provement as its guaranteed risk GR∗

LSn is always smaller
than R(π0) and is vacuous (GR∗

LSn ≥ 0) for some datasets.
This bound is not tight enough to be used with our strategy.

Cn and CBBξn do guarantee improvement. Given logged
data Dn, we optimize Cn and CBBξn for LIG policies (Equa-
tion (6)) and plot in Figure 2 the guaranteed risk GR∗, the
true risk of the minimizer R(π∗) as well as the positive
guaranteed improvement by the bound max(GI∗, 0).

To answer our question, we are interested in the first row
(best guaranteed risk GR∗) and last row (best guaranteed
improvement GI∗) of Figure 2. For the CBBξn bound, we
study particularly the two values of ξ ∈ {0,− 1

2}.

We can observe that contrary to LSn, our bounds can guar-
antee improvement over π0 in the majority of scenarios.

The Cn bound gives great results when π0 is close to uniform
(α → 0) but fails sometimes (when α → 1) at improving
the logging policy and one can observe that in the context
of FashionMNIST and EMNIST-b.

As for the CBBξn bound, we can observe that choosing
ξ = − 1

2 consistently give the best results as it reduces
considerably the dependency on Vτn . Note that CBBξ with
ξ = − 1

2 never fails to produce guaranteed improvement
across all settings. Having a uniform logging policy π0 is
the worst regime for this bound as Vτn reaches its highest
value 1/τ . This is empirically confirmed with our experi-
ments. We can see in Figure 2 that, for small values of α,
the CBBξn bound suffers the most; CBBn(ξ = 0) is always
worse than Cn and CBBn(ξ = − 1

2 ) produces worse guar-
antees than Cn in the NUS-WIDE-128 dataset. Once we
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Figure 2: Behavior of the guaranteed risk GR∗ (↓ is better), the risk of the minimizer R(π∗) (↓ is better) and the guaranteed
improvement GI∗ (↑ is better) given by the bounds (optimized with LIG policies) while changing π0. We can observe that
the newly proposed bounds can efficiently improve on π0, with CBBξn (ξ = − 1

2 ) giving the best results.

drift away from uniform logging policies, the CBBξ bound,
especially with ξ = − 1

2 gives the best guarantees on all the
datasets considered.

Tighter bounds give the best true risk. In real-world prob-
lems, we cannot have access to R(π∗) before deployment.
In our experiments, we can compute R(π∗) on the test sets
as we have access to the true labels4. We are interested
in this quantity as we want to make sure that the bounds
giving low guaranteed risk GR∗ will produce policies π∗

with low true risk R(π∗). Even if the limiting behaviors
of the bounds give an intuition of how they compare, this
will further confirm that the gap between the bounds is not
linked to constants but to quantities valuable to learning π∗.
The second row on Figure 2 confirms that the bounds with
the best GR∗ reliably give the best R(π∗) in all settings.

Take away. These experiments confirm that the policies
π∗ obtained by optimising our newly proposed bounds im-
prove, with high confidence, the logging policies π0. The
results also suggest the use of the variance sensitive bound
CBBn(ξ = −1/2) for its consistent results across the dif-
ferent scenarios. However, if computing expectations under
π0 is difficult, one can adopt Cn as it showed great results.

4up to a small O(1/
√
nt) approximation error .

7. Conclusion
In this work, we introduce a new theoretically grounded
strategy for offline policy optimization. This approach is
based on generalization bounds, uses all the available data
and does not require additional hyperparameters. Leverag-
ing PAC-Bayesian tools, we provide novel generalization
bounds tight enough to make our strategy viable, giving
practitioners a principled way to confidently improve over
the previous decision system offline. Our results can nicely
be extended to learning efficient policies over slates (Swami-
nathan et al., 2017) or continuous action policies (Kallus &
Zhou, 2018). We believe that our work brings us closer to
offline policy learning with online performance certificates.
In the future, we would like to investigate tighter bounds for
this problem and loosen our assumptions; e.g. to remove
the need for having access to the logging policy π0.
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A. DISCUSSIONS AND PROOFS
A.1. Policies as mixtures of deterministic decision rules

As described in the paper, a policy π takes a context x ∈ X and defines a probability distribution over the K-dimensional
simplex ∆K . In our work, we reinterpret policies as mixtures of deterministic decision rules.

Let f be the function that encodes the relevance of the action to the context x. Given a distribution Q over the functions
f ∈ FΘ = {fθ, θ ∈ Θ}, we define a policy as:

∀x, a πQ(a|x) = Ef∼Q
[
1

[
argmax

a′
f(x, a′) = a

]]
.

A natural question is: can any policy π be written in this form?

In general, the answer depends on the set FΘ = {fθ, θ ∈ Θ} we are considering. When the class FΘ is rich enough, answer
is yes, as proven by the following theorem.

Theorem A.1. Let us fix a policy π. Let

G = {g : X ×A → {0, 1} such that ∀x, ∃!a, g(x, a) = 1}.

Then, there is a σ-algebra S on G and a probability distribution Qπ on (G,S) such that

∀x, a π(a|x) = Ef∼Qπ
[
1

[
argmax

a′
f(x, a′) = a

]]
.

Proof: Fix a policy π. Define the set Ω = [K]X . That is, an element ω of Ω is a family of elements of [K] indexed by X :
ω = (ωx)x∈X . Define the set of cylinders

C =

{
A ⊂ Ω : A =

∏
x∈X

Ax and card({x : Ax ̸= [K]}) <∞

}
.

For such a set A =
∏
x∈X Ax we define

Pπ(A) =
∏

x:Ax ̸=Ω

[∑
a∈Ax

π(a|x)

]
.

Note in particular that, for a fixed x ∈ X and a ∈ [K], we have

Pπ({ω ∈ Ω : ωx = a}) = π(a|x). (8)

Then, Kolmogorov extension theorem guarantees that there is a unique extension of Pπ to the σ-field D generated by C, that
is D = σ(C). We have thus built a probability space (Ω,D, Pπ).

Now, for any ω = (ωx)x∈X , we define the function fω : X × A → {0, 1} by fω(x, a) = 1 [ωx = a]. Define, for any
C ∈ D, SC := {fω, ω ∈ C} and Qπ(SC) = Pπ(C), and finally put S = {SC , C ∈ D}. As the function F : ω 7→ fω is a
bijection from Ω to G, S is a σ-field and Qπ is a probability distribution. We have thus equiped G with a σ-field S and a
probability Qπ: (G,S, Qπ) is a probability space.

Now, we check that

Ef∼Qπ

[
1

[
argmax

a′
f(x, a′) = a

]]
= Qπ

({
f ∈ G : argmax

a′
f(x, a′) = a

})
= Pπ

({
ω ∈ Ω : argmax

a′
fω(x, a

′) = a

})
= Pπ ({ω ∈ Ω : ωx = a})
= π(a|x)

thanks to (8). This ends the proof.
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A.2. Proof of Proposition 1

Proposition 4.2 is a direct application of (Catoni, 2007)’s bound (see Theorem 3 in (Letarte et al., 2019)) to the rescaled
cIPS 0 ≤ 1 + τ · R̂τn(·) ≤ 1 with deterministic decision functions dθ. Let us fix a prior P over FΘ and τ ∈ (0, 1]. For any
δ ∈ (0, 1], we have with probability at least 1− δ over draws of Dn ∼ (ν, π0)

n: for any Q that is P -continuous, any λ > 0:

1 + τ ·Eθ∼Q
[
E(ν,π0)

[
R̂τn(dθ)

]]
≤ 1

(1− e−λ)

(
1− exp

[
−λ · (1 + τ ·Eθ∼Q[R̂τn(dθ)])−

KL(Q||P ) + ln 2
√
n
δ

n

])

with KL[Q||P ] = EQ [lnQ/P ].

By linearity of the expectation and R̂τn(·), we get:

1 + τ ·E(ν,π0)

[
R̂τn(πQ)

]
≤ 1

(1− e−λ)

(
1− exp

[
−λ · (1 + τ · R̂τn(πQ))−

KL[Q||P ] + ln 2
√
n
δ

n

])
.

Rearranging the terms gives:

E(ν,π0)

[
R̂τn(πQ)

]
≤ e−λ

τ(1− e−λ)

(
1− exp

[
−λ · τ · R̂τn(πQ)−

KL[Q||P ] + ln 2
√
n
δ

n

])

≤ 1

τ(eλ − 1)

(
1− exp

[
−λ · τ · R̂τn(πQ)−

KL[Q||P ] + ln 2
√
n
δ

n

])
.

The last step is to exploit the fact that the bias of R̂τn(·) is negative (because the cost c ≤ 0), we have for any π:

Ex∼ν,a∼π0(·|x)

[
R̂τn(π)

]
= Ex∼ν,a∼π0(·|x)

[
π(a|x)

max(π0(a|x), τ)
c(x, a)

]
≥ Ex∼ν,a∼π0(·|x)

[
π(a|x)
π0(a|x)

c(x, a)

]
= R(π)

which gives the result stated in Proposition 4.2 by taking the minimum over λ > 0:

R(πQ) ≤ min
λ>0

1

τ(eλ − 1)

(
1− exp

[
−λ · τ · R̂τn(πQ)−

KL[Q||P ] + ln 2
√
n
δ

n

])
.

A.3. Limiting behavior of Cn

To build an intuition of the dependency of Cn on both n and τ , we can linearize the bound by exploiting the well-known
inequality 1− exp(−x) ≤ x for x ∈ [−1, 1]. This gives:

Cn(πQ) ≤ min
λ>0

λ

(eλ − 1)
R̂τn(πQ) +

KL[Q||P ] + ln 2
√
n
δ

τ(eλ − 1)n
.

As the upper bound is a minimum over λ > 0, fixing λ = 1
50 for example still gives a valid upper bound. This value leads to

λ
(eλ−1)

≈ 1 and eλ − 1 ≈ 1
50 , giving an approximated behaviour of the upper bound on Cn of:

Cn(πQ) ≤ R̂τn(πQ) + 50 ·
KL[Q||P ] + ln 2

√
n
δ

τn

≤ R̂τn(πQ) +O

(
KL[Q||P ] + ln 2

√
n
δ

τn

)
.

This result shows that Cn improves the dependency on n compared to LSn.
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A.4. Proof of Theorem 1

We fix Dn ∼ (µ, π0)
n, τ ∈ (0, 1]. To prove Theorem 4.3, we use the equality stated in Theorem 3 from (Letarte et al., 2019)

applied to the rescaled cIPS 0 ≤ L̂n(·) = 1+ τ · R̂τn(·) ≤ 1. For any distribution P , any distribution Q that is P -continuous,
δ ∈ (0, 1], we have:

sup
0≤p≤1

{
p : kl(L̂n(πQ)||p) ≤

KL[Q||P ] + ln 2
√
n
δ

n

}
= 1 + τ · CP,δ,τn (πQ)

with CP,δ,τn (πQ) := min
λ>0

1− e−τλΓ
τ
n(Q,λ,δ)

τ(eλ − 1)
, Γτn(Q,λ, δ) = R̂τn(πQ) +

KL[Q||P ]+ln 2
√
n
δ

τλn and kl(q||p) = q log( qp ) + (1 −

q) log( 1−q1−p ), the KL divergence between two Bernoulli variables of parameters p and q. This means that:

kl(L̂n(πQ)||1 + τ · CP,δ,τn (πQ)) ≤
KL[Q||P ] + ln 2

√
n
δ

n
.

By leveraging the following inequality: p ≤ q +
√
2qkl(q||p) + 2kl(q||p) for p ≤ q, we get:

1 + τCP,δ,τn (πQ) ≤ 1 + τR̂τn(πQ) +

√
2[1 + τR̂τn(πQ)](KL[Q||P ] + ln 2

√
n
δ )

n
+

2(KL[Q||P ] + ln 2
√
n
δ )

n
.

Giving the result of Theorem 4.3:

CP,δ,τn (πQ) ≤ R̂τn(πQ) +

√
2[ 1τ + R̂τn(πQ)](KL[Q||P ] + ln 2

√
n
δ )

τn
+

2(KL[Q||P ] + ln 2
√
n
δ )

τn
.

A.5. Proposition 3 beyond the i.i.d. case

xi aji cji

j ∈ {1, ...,mi}

i ∈ {1, ..., nc}

Figure 3: The ”Multiple Interactions” Setting.

In a multitude of applications, the i.i.d. assumption made on {xi, ai, ci}i∈[n] can be violated. Indeed, a decision system can
interact with the same context xi multiples times, trying different actions and logging the feedbacks as represented in Figure
3. Let mi be the number of times the system interacted with context xi. The logged dataset in this case can be represented
by

D{mi}i∈[nc]
nc =

{
xi, {aji , c

j
i}j∈[mi]

}
i∈[nc]

with nc representing the number of contexts and n =
∑nc
i mi the total number of datapoints. As soon as we have an

mi0 > 1, the i.i.d. assumption does not hold anymore as the samples {xi0 , {a
j
i0
, cji0}

mi0
j=1} share the same observation xi0

and thus are dependent. In this case, the cvcIPS estimator will be written as:

R̂τ,ξn (πQ) = ξ +

nc∑
i=1

mi∑
j=1

ωτπQ(a
j
i |xi)(c

j
i − ξ)

ncmi

We recover the i.i.d. case by taking mi = 1 ∀i. Under this weaker assumption, (Catoni, 2007) or any classical PAC-Bayesian
bound cannot be applied directly.
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A.5.1. PROOF OF PROPOSITION 3

In this section, we begin by stating Proposition 4.4 for the more general case where we have a logged dataset D{mi}i∈[nc]
nc .

Proposition A.2. Given a prior P on FΘ, ξ ∈ [−1, 0], τ ∈ (0, 1], δ ∈ (0, 1] and a set of strictly positive scalars
Λ = {λi}i∈[nΛ]. We have with probability at least 1 − δ over draws of D{mi}i∈[nc]

nc ∼
∏nc
i=1(ν, π

mi
0 ): For any Q that is

P -continuous, any λ ∈ Λ:

R(πQ) ≤ R̂τ,ξn (πQ)− ξBτnc(πQ) +

√
KL[Q||P ] + ln

4
√
nc
δ

2nc

+
KL[Q||P ] + ln 2nλ

δ

λ
+
λlξ
nc

nc∑
i=1

1

minc
g

(
λbξ
minc

)
Vτ,i(πQ)

with g : u −→ exp(u)−1−u
u2 , lξ = max

(
ξ2, (1 + ξ)2

)
, bξ = 1+ξ

τ − ξ, Vτ,i(π) = Eπ(.|xi)
[

π0(a|xi)
max(τ,π0(a|xi))2

]
and

Bτnc(π) =
1
nc

∑nc
i=1Eπ(.|xi)

[
1[π0(a|xi) < τ ]

(
1− π0(a|xi)

τ

)]
.

We use a decomposition similar to (Kuzborskij et al., 2021) and rewrite the difference R(πQ)− R̂τ,ξn (πQ) = D1(πQ) +
D2(πQ) +D3(πQ) with:

D1(πQ) = R(πQ)−
1

nc

nc∑
i=1

R(πQ|xi)

D2(πQ) =
1

nc

nc∑
i=1

R(πQ|xi)−
1

nc

nc∑
i=1

ξ +Ea∼π0(·|xi)

[
ωτπQ(a

j
i |xi)(c(a, xi)− ξ)

]
D3(πQ) =

1

nc

nc∑
i=1

ξ +Eπ0(·|xi)

[
ωτπQ(a|xi)(c(a, xi)− ξ)

]
− R̂τ,ξn (πQ).

For the first difference D1, we use (McAllester, 1998) bound for the [0, 1]-bounded loss using 0 ≤ 1 +R(πQ|xi) ≤ 1. We
get with probability at least 1− δ, For any Q that is P -continuous:

D1(πQ) ≤

√
KL[Q||P ] + ln

2
√
nc
δ

2nc
. (9)

The second difference quantifies the bias of our estimator given the contexts {xi, ..., xnc}. Even if we cannot compute it, we
can give an upper bound for D2. We have:

D2(πQ) =
1

nc

nc∑
i=1

R(πQ|xi)−
1

nc

nc∑
i=1

ξ +Ea∼π0(·|xi)

[
ωτπQ(a|xi)(c(a, xi)− ξ)

]
=

1

nc

nc∑
i=1

Ea∼π0(·|xi)

[
(ω0
πQ(a|xi)− ωτπQ(a|xi))(c(a, xi)− ξ)

]
=

1

nc

nc∑
i=1

Ea∼π0(·|xi)

[
1[π0(a|xi) < τ ](

πQ(a|xi)
π0(a|xi)

− πQ(a|xi)
τ

)(c(a, xi)− ξ)

]

=
1

nc

nc∑
i=1

Ea∼πQ(·|xi)

[
1[π0(a|xi) < τ ](1− π0(a|xi)

τ
)(c(a, xi)− ξ)

]
(c ≤ 0)

≤ − ξ

nc

nc∑
i=1

Ea∼πQ(·|xi)

[
1[π0(a|xi) < τ ](1− π0(a|xi)

τ
)

]
= −ξBτnc(πQ).

We obtain −ξBτnc(πQ), an empirical upper bound to D2(πQ).
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The last step is to control the difference D3. Before doing this, we need to state two lemmas that will help us control the
difference D3.
Lemma A.3. Change of measure: Let f be a function of the parameter θ and data S, for any distribution Q that is P
continuous, for any δ ∈ (0, 1], we have with probability 1− δ :

Eθ∼Q[f(θ, S)] ≤ KL[Q||P ] + ln
Ψf
δ

(10)

with Ψf = ESEθ∼P [e
f(θ,S)].

Lemma A.3 is the backbone of many PAC Bayes bounds. It is proven in many references, see for example (Alquier, 2021)
or Lemma 1.1.3 in (Catoni, 2007). We will combine it with an inequality on the moment generating function to prove a
Bernstein-like PAC-Bayes bound (Seldin et al., 2012).

Lemma A.4. Let W be a r.v with E[W 2] <∞, we suppose that E[W ]−W ≤ B. Let g : u −→ exp(u)−1−u
u2 , we have for

all η ≥ 0:

E[exp(η(E[W ]−W )− η2g(ηB)V[W ])] ≤ 1. (11)

Lemma A.4 is stated and proven in (McDiarmid, 1998).

Combining both lemmas allows us to control the difference D3 with a conditional Bernstein PAC-Bayesian bound:
Corollary A.5. Conditional Bernstein PAC-Bayesian Bound: Let’s fix a λ > 0 and a prior P , for any distribution Q that is
P continuous, for any δ ∈ (0, 1], we have with probability at least 1− δ:

D3(πQ) ≤
KL[Q||P ] + ln 1

δ

λ
+
λlξ
nc

nc∑
i=1

1

minc
g

(
λbξ
minc

)
Vτ,i(πQ) (12)

with lξ = max
(
ξ2, (1 + ξ)2

)
, bξ = 1+ξ

τ − ξ, Vτ,i(π) = Eπ(.|xi)
[

π0(a|xi)
max(τ,π0(a|xi))2

]
.

Proof: Let us fix a context xi and an action aji and let θ ∼ P . We have:

Dj
i (θ) = Eπ0(·|xi)

[
ωτdθ (a|xi)(c(a, xi)− ξ)

]
− ωτdθ (a

j
i |xi)(c(a

j
i , xi)− ξ) ≤ bξ =

1 + ξ

τ
− ξ.

We fix a λ and choose:

f(θ, S) =

nc∑
i=1

mi∑
j=1

[
λ

minc
Dj
i (θ)− (

λ

minc
)2g

(
λbξ
minc

)
Eπ0(·|xi)[Di(θ)

2]

]

=

nc∑
i=1

mi∑
j=1

[
∆j
i (θ)

]
.

From Lemma 2 and because the prior P does not depend on the data, we have:

Ψf = E∏
i π0(·|xi)Eθ∼P [e

f(θ,S)] = Eθ∼PE∏
i π0(·|xi)[e

f(θ,S)]

= Eθ∼P
∏
i

(Eπ0(·|xi)[e
∆0
i (θ)])mi ≤ 1.

It means that lnΨf ≤ 0. Using this in Lemma 1, we get:

D3(πQ) ≤
KL[Q||P ] + ln 1

δ

λ
+

nc∑
i=1

mi∑
j=1

λ

(minc)2
g

(
λbξ
minc

)
Eπ0(·|xi)

[
Eθ∼Q[Di(θ)

2]
]

=
KL[Q||P ] + ln 1

δ

λ
+

λ

nc

nc∑
i=1

1

minc
g

(
λbξ
minc

)
Eθ∼Q

[
Eπ0(·|xi)

[
Di(θ)

2
]]
.
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we also use the following inequality to upper bound Eπ0(·|xi)[Di(θ)
2]:

Eπ0(·|xi)[Di(θ)
2] ≤ Ea∼π0(·|xi)

[
dθ(a|xi)

max(π0(a|xi), τ)2
(c(a, xi)− ξ)2

]
≤ max(ξ2, (1 + ξ)2)Ea∼π0(·|xi)

[
dθ(a|xi)

max(π0(a|xi), τ)2

]
because both c, ξ ∈ [−1, 0]

= lξVτ,i(dθ).

As the quantity Vτ,i is linear in dθ, the result in Corollary 1 follows:

D3(πQ) ≤
KL[Q||P ] + ln 1

δ

λ
+
λlξ
nc

nc∑
i=1

1

minc
g

(
λbξ
minc

)
Vτ,i(πQ).

Finally, We take a union bound of Corollary 1 over Λ, a discrete set with cardinal nΛ, and combine its result with the bound
giving (9) through another union bound to obtain Proposition A.2.

A.5.2. CHOICE OF Λ WHEN mi = m

When the number of interactions m is constant across all contexts, the result in Corollary 1 becomes for a fixed λ:

D3(πQ) ≤
KL[Q||P ] + ln 1

δ

λn
+ λlξg (λbξ)Vτnc(πQ)

where Vτnc(πQ) was defined in Proposition 4.4.

We would like to choose a λ that minimizes the bound on D3. Unfortunately, we cannot do it because the minimizer λ∗

depends on Q. Instead, we build an interval in which λ∗ can be found.

The function g : u −→ exp(u)−1−u
u2 behaves like exp(u)

u2 when u is big enough, meaning that we should control the values of

g, and thus λ by an upper bound. Choosing λ ≤ b = 2n
bξ

allows us to control the function g
(
λbξ
n

)
≤ g(2) ≤ 1.1.

Now that an upper bound is found, we still need to find the lowest possible value for λ∗. Of course, choosing the interval
[0, b] can be enough but we want to do more than that. λ∗ verifies the following equality:

λ∗ =

√√√√ KL[Q||P ] + ln 1
δ

lξ
n g
(
λ∗bξ
n

)
Vτnc(πQ) +

λ∗lξbξ
n2 g′

(
λ∗bξ
n

)
Vτnc(πQ)

.

Let’s assume that λ⋆ ≤ b. (If not, we can still restrict to λ ∈ [a, b], with the value of a found below.) We have that
KL[Q||P ] ≥ 0, and Vτnc ≤

1
τ . As the function g is increasing and convex (g′ increasing), we get the following inequality:

λ∗ ≥

√
nτ ln 1

δ

lξg(2) + 2lξg′(2)
.

Using the fact that g′(2) = 1/2 and g(2) + 1 ≤ 5/2, we get:

λ∗ ≥

√
nτ ln 1

δ

lξg(2) + lξ
≥

√
2nτ ln 1

δ

5lξ
= a.

We now have an interval λ∗ ∈ [a, b]. One can observe that the optimal O(
√
n) ≤ λ∗ ≤ O(n).

We choose the set Λ to be a linear discretization of [a, b] giving Λ = {a+ i(b− a)}i∈[nΛ].
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A.5.3. DEPENDENCIES OF THE BOUND

The bound for the i.i.d. case can be written as:

R(πQ) ≤ R̂τ,ξn (πQ)− ξBτn(πQ) +

√
KL(Q||P ) + ln 4

√
n
δ

2n
+min
λ∈Λ

{
KL(Q||P ) + ln 2nΛ

δ

λn
+ λlξg (λbξ)Vτn(πQ)

}

with Λ = {ab + i (b−a)n }i∈[nΛ]. We know that the biggest value of λ ∈ Λ is b = 2
bξ

and that g(2) ≈ 1. This gives:

min
λ∈Λ

A(λ) = min
λ∈Λ

KL(Q||P ) + ln 2nΛ

δ

λn
+ λlξg (λbξ)Vτn(πQ)

≤ min
λ∈Λ

KL(Q||P ) + ln 2nΛ

δ

λn
+ λlξg (2)Vτn(πQ)

⪅ min
λ∈R+

KL(Q||P ) + ln 2nΛ

δ

λn
+ λlξVτn(πQ) = 2

√
lξVτn(πQ)

(
KL(Q||P ) + ln 2nΛ

δ

)
n

We make the hypothesis that our Λ is well built to have a value of λ close to the true minimizer most of the time. This gives
the following limiting behavior:

CBBξn(πQ) = R̂τ,ξn (πQ)− ξBτn(πQ) +O

((
1

2
√
2
+
√
lξVτn(πQ)

)√
KL(Q||P )

n

)
.

A.6. Linear Independent Gaussian Policies

To obtain these policies, we restrict fθ to:

∀x, a fθ(x, a) = ϕ(x)T θa (13)

with ϕ a fixed transform over the contexts. This results in a parameter θ of dimension d = p×K with p the dimension of the
features ϕ(x) and K the number of actions. We also restrict the family of distributions Qd+1 = {Qµ,σ = N (µ, σ2Id),µ ∈
R
d, σ > 0} to independent Gaussians with shared scale.

Estimating the propensity of a given x reduces the computation to a one dimensional integral:

πµ,σ(a|x) = Eϵ∼N (0,1)

∏
a′ ̸=a

Φ

(
ϵ+

ϕ(x)T (µa − µa′)

σ||ϕ(x)||

)
with Φ the cumulative distribution function of the standard normal.

Proof: We rewrite the definition of πµ,σ as a probability and exploit the stability of the Gaussian distribution.

πµ,σ(a|x) = Eθ∼N (µ,σ2Id)

[
1[argmaxa′ ϕ(x)

T θa′ = a]
]

= ES∼N (ϕ(x)Tµ,σ2||ϕ(x)||2IK) [1[argmaxa′ Sa′ = a]]

= PS∼N (ϕ(x)Tµ,σ2||ϕ(x)||2IK) (argmaxa′ Sa′ = a)

= PS∼N (ϕ(x)Tµ,σ2||ϕ(x)||2IK) (Sa ≥ Sa′ , ∀a′ ̸= a)

= PZ∼N (0K ,IK)

(
Za +

ϕ(x)T (µa − µa′)

σ||ϕ(x)||
≥ Za′ , ∀a′ ̸= a

)
.
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We condition on Za to obtain independent events as for all a, the random variables Za are independent.

πµ,σ(a|x) = PZ∼N (0K ,IK)

(
Za +

ϕ(x)T (µa − µa′)

σ||ϕ(x)||
≥ Za′ , ∀a′ ̸= a

)
= Eϵ∼N (0,1)

[
PZ∼N (0K ,IK)

(
ϵ+

ϕ(x)T (µa − µa′)

σ||ϕ(x)||
≥ Za′ , ∀a′ ̸= a|Za = ϵ

)]

= Eϵ∼N (0,1)

∏
a′ ̸=a

Pz∼N (0,1)

(
z ≤ ϵ+

ϕ(x)T (µa − µa′)

σ||ϕ(x)||

)
= Eϵ∼N (0,1)

∏
a′ ̸=a

Φ

(
ϵ+

ϕ(x)T (µa − µa′)

σ||ϕ(x)||

) .

A.7. Why not Mixed Logit Policies?

(London & Sandler, 2019) used in their analysis Mixed Logit Policies to derive a learning principle for softmax policies.
Mixed Logit Policies can be written as:

∀(a, x), πML
µ,σ (a|x) = Eθ∼N (µ,σ2Id)[softmaxK(ϕ(x)T θa)].

Even if these policies can behave properly (reparametrization trick gradient for instance), they are not ideal for learning with
guarantees in the context of Offline Contextual Bandits. Indeed, we know that the solution of the contextual bandit problem
is a deterministic decision function d∗, always choosing the action with the minimum cost. Let us suppose that there exists a
parameter µ∗ such that:

∀(a, x), d∗(a|x) = dµ∗(a|x) = 1[argmaxa′∈A(ϕ(x)
Tµ∗

a′) = a]

We also suppose that we have access to its parameter µ∗. To recover dµ∗ with LIG policies, we need to have the scale
parameter small enough σ → 0 as :

πµ∗,σ(a|x) −−−→
σ→0

dµ∗(a|x) ∀x, a.

For Mixed Logit policies however, having σ → 0 is not enough as:

πML
µ∗,σ(a|x) −−−→σ→0

softmaxK(ϕ(x)Tµ∗
a) ∀x, a.

One should also increase the norm of µ∗ enough (||µ∗|| → ∞) to obtain dµ∗ .

Let us suppose that we start with the same prior P = N (µ∗, Id) in our bounds. The price to pay in terms of complexity
KL(Qµ,σ||P ) to obtain the solution; a deterministic policy, will be much higher for Mixed Logit policies (as we should
decrease σ and increase the norm of µ) than LIG policies (only decrease σ and let µ = µ∗). This means that for a fixed
number of samples n, we will always get better results with LIG policies than Mixed Logit policies.

A.8. The bounds stated for LIG policies

In this section, we want to state the previous Propositions 4.2 and 4.4 (valid for any policy) for the class of LIG policies. This
class of policies uses Independent Gaussian distributions with shared scale so we will begin by stating the KL divergence
between P = N (µ0, σ0Id) and Q = N (µ, σId). We have:

KL[Q||P ] = D[µ, σ,µ0, σ0] =
||µ− µ0||2

2σ2
0

+ d

(
σ2

2σ2
0

+ ln
σ0
σ

− 1

2

)
.

We write the bounds slightly differently by taking the minimimum over the considered λ (if the bound is true for any λ, it is
true for the minimum of the bound over λ).

We state Catoni’s bound for LIG policies:
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Corollary A.6. LIG policies with Catoni’s bound

Given a Gaussian prior P = N (µ0, σ0Id), τ ∈ (0, 1], δ ∈ (0, 1]. We have with probability 1 − δ over draws of
Dn ∼ (ν, π0)

n:

∀µ ∈ Rd, σ > 0:

R(πµ,σ) ≤ min
λ>0

1

τ(eλ − 1)

[
1− exp

(
−τλR̂τn(πµ,σ) +

D[µ, σ,µ0, σ0] + ln 2
√
n
δ

n

)]

We call Cn(πµ,σ) the upper bound stated by this corollary. We get:

GR∗
C = min

πµ,σ

Cn(πµ,σ)

π∗
C = argmin

πµ,σ

Cn(πµ,σ)

GI∗
C = R(π0)− GR∗

C .

Similarly, we state our variance sensitive bound for LIG policies:
Corollary A.7. LIG policies variance sensitive bound.

Given a Gaussian prior P = N (µ0, σ0Id), ξ ∈ [−1, 0], τ ∈ (0, 1], δ ∈ (0, 1] and a set of strictly positive scalars
Λ = {λi}i∈[nΛ]. We have with probability at least 1− δ over draws of Dm

nc ∼
∏nc
i=1(ν, π

m
0 ):

∀µ ∈ Rd, σ > 0:

R(πµ,σ) ≤ R̂τ,ξn (πµ,σ)− ξBτnc(πµ,σ) +

√
D[µ, σ,µ0, σ0] + ln

4
√
nc
δ

2nc

+min
λ∈Λ

{
D[µ, σ,µ0, σ0] + ln 2nλ

δ

λ
+
λlξ
n
g

(
λbξ
n

)
Vτnc(πµ,σ)

}

We call CBBn(πµ,σ, ξ,m) the upper bound stated by this corollary. Similarly we get:

GR∗
CBB(ξ,m) = min

πµ,σ

CBBn(πµ,σ, ξ,m)

π∗
CBB(ξ,m) = argmin

πµ,σ

CBBn(πµ,σ, ξ,m)

GI∗
CBB(ξ,m) = R(π0)− GR∗

CBB(ξ,m).

B. EXPERIMENTS
B.1. Detailed Statistics of the dataset splits used

As described in the experiments section, we use the supervised to bandit conversion to simulate logged data as previously
adopted in the majority of the literature (Swaminathan & Joachims, 2015b;a; London & Sandler, 2019; Faury et al., 2020;
Sakhi et al., 2020b). In this procedure, you need a split Dl (of size nl) to train the logging policy π0, another split Dc (of
size nc) to generate the logging feedback with π0, and finally a test split Dtest (of size ntest) to compute the true risk R(π)
of any policy π. In our experiments, we split the training split Dtrain (of size N ) of the four datasets considered into Dl

(nl = 0.05N ) and Dc (nc = 0.95N ) and use their test split Dtest. The detailed statistics of the different splits can be found
in Table 1.

Datasets N nl nc ntest K p
FashionMNIST 60 000 3000 57 000 10 000 10 784

EMNIST-b 112 800 5640 107 160 18 800 47 784
NUS-WIDE-128 161 789 8089 153 700 107 859 81 128

Mediamill 30 993 1549 29 444 12 914 101 120

Table 1: Detailed statistics of the splits used.
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B.2. Detailed hyperparameters

Contrary to previous work, our method does not require tuning any loss function hyperparameter over a hold out set. We do
however need to choose parameters to optimize the policies.

The logging policy π0. π0 is trained on Dl (supervised manner) with the following parameters:

• We use L2 regularization of 10−6. This is used to prevent the logging policy π0 from being close to deterministic,
allowing efficient learning with importance sampling.

• We use Adam (Kingma & Ba, 2014) with a learning rate of 10−1 for 10 epochs.

Optimising the bounds. All the bounds are optimized with the following parameters:

• The clipping parameter τ is fixed to 1/K with K the action size of the dataset.

• We use Adam (Kingma & Ba, 2014) with a learning rate of 10−3 for 100 epochs.

• For the bounds optimized over LIG policies, the gradient is a one dimensional integral, and is approximated using
S = 32 samples.

πµ,σ(a|x) = Eϵ∼N (0,1)

∏
a′ ̸=a

Φ

(
ϵ+

ϕ(x)T (µa − µa′)

σ||ϕ(x)||

)
≈ 1

S

S∑
s=1

∏
a′ ̸=a

Φ

(
ϵs +

ϕ(x)T (µa − µa′)

σ||ϕ(x)||

)
ϵ1, ..., ϵS ∼ N (0, 1).

• For Cn, we treat λ as a parameter and we look for the minimum of the bound with respect to µ, σ and λ.

• For CBBξn, we choose the size of Λ to be nΛ = 100 and for each iteration j of the optimization procedure, we take
λj ∈ Λ that minimizes the estimated bound and proceed to compute the gradient w.r.t µ and σ with λj .

B.3. Impact of changing the number of interactions m

The bound proposed in Proposition 4.4 can work beyond the i.i.d. setting and applies to the ”multiple interactions” case.
Intuitively, adding more interactions with the contexts x allows us to reduce the uncertainty on the cost and thus learn
better policies. We want to explore this in Figure 4. We construct with π0 a logged dataset with the number of interactions
m ∈ {1, 2, 4, 8} using both FashionMNIST and Mediamill datasets. Once m > 1, we can only use the CBB bound. We
stick to the values of ξ previously used ξ ∈ {0,−1/2}.

We can observe that increasing the number of m consistently give better results, in terms of guarantees and also the quality of
the policy π∗ minimizing the bounds. We can also observe that even though m reduces the gap between the two estimators
(ξ = 0 compared to ξ = −1/2), the cvcIPS estimator with ξ = −1/2 still gives the best results.
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Figure 4: Behavior of the guaranteed risk GR∗ (↓ is better), the risk of the minimizer R(π∗) (↓ is better) and the guaranteed
improvement GI∗ (↑ is better) given by changing the number of interactions m and π0.
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