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Abstract
We consider distributed linear bandits where M
agents learn collaboratively to minimize the over-
all cumulative regret incurred by all agents. Infor-
mation exchange is facilitated by a central server,
and both the uplink and downlink communica-
tions are carried over channels with fixed capac-
ity, which limits the amount of information that
can be transmitted in each use of the channels.
We investigate the regret-communication trade-
off by (i) establishing information-theoretic lower
bounds on the required communications (in terms
of bits) for achieving a sublinear regret order; (ii)
developing an efficient algorithm that achieves the
minimum sublinear regret order offered by cen-
tralized learning using the minimum order of com-
munications dictated by the information-theoretic
lower bounds. For sparse linear bandits, we show
a variant of the proposed algorithm offers better
regret-communication trade-off by leveraging the
sparsity of the problem.

1. Introduction
The tension between learning efficiency and communication
cost is evident in many distributed learning problems. If
distributed agents can share all their locally obtained in-
formation and fully coordinate their actions, the problem
effectively reduces to a centralized problem, and the greatest
learning efficiency defined by the centralized counterpart is
trivially achieved at the price of high communication cost.

What is the minimum amount (in terms of bits) of communi-
cations needed to achieve the learning efficiency offered by
centralized learning? How one might design a distributed
learning algorithm that operates at such an optimal point
in the communication-learning efficiency trade-off curve?
These fundamental questions have not been adequately ad-
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dressed in the literature.

1.1. Main Results

In this paper, we address the above questions within the
scope of distributed linear bandits. We consider a system
of M distributed agents whose actions generate random re-
wards governed by a common unknown mean θ∗ ∈ Rd. The
agents aim to optimize their actions over time to minimize
the overall cumulative regret incurred by all agents over a
horizon of length T . Communications across agents are fa-
cilitated by a central server. To quantify the communication
cost to the bit level, we assume that both the uplink and
downlink channels have a capacity of R bits per channel
use.

Our main results are twofold. First, we establish an
information-theoretic lower bound on the required communi-
cations for achieving a sublinear regret order. Second, we de-
velop an efficient algorithm that achieves the optimal regret
order offered by centralized learning using the minimum or-
der of communications dictated by the information-theoretic
lower bound. For sparse linear bandits, we show a variant of
the proposed algorithm offers better regret-communication
trade-off by leveraging the sparsity of the problem.

For the distributed linear bandit problem, to achieve the
optimal regret order of Ω(d

√
MT ) in both M and T as of-

fered by centralized learning, the agents need to cooperate
in learning the underlying reward vector θ∗. In addition to a
policy for choosing reward-generating actions at each time,
a distributed learning algorithm also includes a communica-
tion strategy that governs when to communicate and what
and how to send it (i.e., quantization and encoding) over
the finite-capacity channels. To minimize the total regret
that is accumulating over time and aggregating over the
agents while using a minimum amount of communications,
the communication strategy needs to work in tandem with
action selection to ensure a continual flow of information
available at all agent for decision-making.

The key idea of the proposed algorithm is an progressive
learning and sharing (PLS) structure that systematically
coordinates the collective exploration of θ∗ and the infor-
mation sharing of the estimates of θ∗ over finite-capacity
channels. Specifically, the PLS algorithm progresses as
each agent learns and shares one-bit information about θ∗
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(per dimension) at a time, starting from the most signifi-
cant bit in the binary expansion of θ∗ in each dimension.
This bit-by-bit learning and sharing is structured in inter-
leaving exploration and exploitation epochs with carefully
controlled epoch lengths, to achieve both the minimum or-
der of channel usage and the minimum order of cumulative
regret.

1.2. Related Work

Communication cost is commonly partitioned into two parts:
the size of the message at each information exchange and
the frequency of information exchange. As detailed be-
low, these two sides of the same coin have largely been
dealt with separately in the literature when developing
communication-efficient algorithms for distributed bandit
problems. Our work departs from existing studies by taking
a holistic view on communication cost and making an initial
attempt at characterizing the information-theoretic limit on
the communication-learning trade-off in distributed linear
bandits.

In the group of work focusing on reducing communication
frequency through intermittent information exchange, it is
often assumed that the information being transmitted, typ-
ically a vector in Rd, can be communicated with infinite
precision, which requires a channel with infinite capacity.
See, for example, (Hillel et al., 2013; Tao et al., 2019; Agar-
wal et al., 2021) on discrete bandit problems and (Wang
et al., 2019; Ghosh et al., 2021; Huang et al., 2021; Chawla
et al., 2022; Amani et al., 2022) on linear bandits. In par-
ticular, Wang et al. (2019); Huang et al. (2021) and Amani
et al. (2022) proposed algorithms based on batched elimina-
tion of arms where poorly performing arms are eliminated
at the end of each batch. The batched structure offers a
natural way to limit communication to one message ex-
change per batch. However, there is no constraint on the
amount of information that can be transmitted in each batch,
allowing numbers to be sent with infinite precision. Further-
more, the downlink cost in Wang et al. (2019) and Huang
et al. (2021) grows as O((M + d log log d) log(MT )) and
O((M + d2) log(MT )) scalars respectively. The linear
scaling with the number of agents makes this cost signifi-
cantly worse than the O(d log(MT )) bits offered by PLS.
We provide a more detailed comparison with these results
in Appendix A.

The other group of work focuses on reducing the size of
the message at each information exchange. The frequency
of communication is not an concern. The objective is to
best approximate the information being exchanged via tech-
niques such as quantization and sparsification (see, for ex-
ample, Konečný et al. (2016); Hanna et al. (2021); Mitra
et al. (2022); Suresh et al. (2017)). In particular, Hanna
et al. (2021) proposed a quantization scheme to reduce the

communication overhead in discrete multi-armed bandit
problems at the cost of a small multiplicative constant in the
regret. Recently, Mitra et al. (2022) proposed an algorithm
for decentralized linear bandits with a finite-capacity uplink
channel and an infinite-capacity downlink channel. They
developed an adaptive encoding scheme for communication
that ensured order-optimal regret for their proposed algo-
rithm. However, with a linear order of message exchanges
in T , the total uplink communication cost is O(dT ) bits
as opposed to the O(d log T ) bits of communication cost
in our proposed algorithm. Moreover, the results in Mitra
et al. (2022) hold only for single agent while ours hold for a
distributed setup with multiple agents.

In the context of developing communication-efficient algo-
rithm, another line of related work is Federated Learning
(FL) (McMahan et al., 2017). FL aims to collaboratively
learn a model by leveraging the data available at all the
agents with a focus on ensuring privacy of the data for the
participating agents. Developing communication efficient
FL algorithms is an active area of research (see Konečný
et al. (2016); Liu et al. (2019); Sun et al. (2019); Reisizadeh
et al. (2020); Haddadpour et al. (2021); Jhunjhunwala et al.
(2021); Hönig et al. (2022) and references therein). De-
tailed surveys can be found in Tang et al. (2020) and Zhao
et al. (2022). These studies focus on the first-order stochas-
tic optimization, which is different from the (zeroth-order)
stochastic linear bandits considered in this work, in terms of
both action selection strategies and the relevant information
that needs to be exchanged.

It is impossible to do full justice to the vast literature on
communication-efficient distributed learning. We present
above existing studies on distributed bandits that are most
relevant to this work. Additional discussions of related
work is provided in Appendix A, albeit remaining to be
incomplete.

2. Problem Formulation
Consider a system of M distributed agents indexed by
{1, 2, . . . ,M}. The agents face a common stochastic linear
bandit model characterized by an unknown mean reward
vector θ∗ ∈ Rd. Specifically, each agent j ∈ {1, 2, . . . ,M}
has access to an action set A = {a ∈ Rd : ∥a∥2 ≤ 1} and
chooses to play an action ajt ∈ A at every time instant t
during a time horizon of T instants. When an action ajt ∈ A
is played by agent j at time t, it receives a reward

yjt = ⟨θ∗, ajt ⟩+ ηjt ,

where ηjt is zero-mean noise that is i.i.d. across time instants
and across the agents and satisfies log(E[exp(ληjt )]) ≤
λ2σ2/2 for all λ ∈ R, i.e., the noise is σ2-sub-Gaussian.
WLOG, we assume ∥θ∗∥2 ≤ 1. It is straightforward to ex-
tend it to the case ∥θ∗∥2 ≤ B, where B is a known constant,
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by appropriately scaling the obtained rewards. We point out
that the unit ball assumption on the action space is adopted
to facilitate a simpler exposition with greater focus on the
impact of communication constraints. The algorithm can be
easily extended to general action spaces (see Appendix E.1).

Information exchange across the agents goes through a cen-
tral server. Both the uplink channel (from the agents to the
server) and downlink channel (from the server to the agents)
have a finite capacity of R bits per channel use, which limits
the message size in each information exchange. This model
quantifies the cumulative communication cost to the bit
level, and represents a more challenging problem than those
considered in the literature where communication channel
between the server and the agent is assumed to have infinite
capacity in at least one direction, if not both.

The design objective is a distributed learning policy consist-
ing of (i) a decision strategy that governs the selection of
actions {ajt} of each agent j at each time t and (ii) a com-
munication strategy that determines when to communicate
what and how to send it over the channel via quantization
and encoding. The performance of a learning policy is mea-
sured in terms of the overall cumulative regret R(T ) and
the cumulative communication cost C(T ) incurred by the
policy. The overall cumulative regret is given by

R(T ) =

M∑
j=1

T∑
t=1

[
max
a∈A
⟨θ∗, a⟩ − ⟨θ∗, ajt ⟩

]
. (1)

The communication cost C(T ) is measured using Cu(T )
and Cd(T ), the number of bits transmitted on the uplink
channel (i.e., by any agent to the server) and that on the
downlink channel (i.e., the average number of bits transmit-
ted by the server to an agent), respectively.

The learning and communication efficiency of a learning
policy is measured against the benchmarks. In particular, the
cumulative regret is lower bounded by Ω(d

√
MT ), which

is the optimal regret order in a centralized setting with total
MT reward observations centrally available for learning. In
Sec. 5, we establish an information-theoretic lower bound on
the communication cost required for achieving a sublinear
regret order.

3. Progressive Learning and Sharing
In this section, we present the Progressive Learning and
Sharing (PLS) algorithm. We start in Sec. 3.1 with the basic
structure of the algorithm followed by a detailed implemen-
tation in Sec. 3.2.

3.1. The Basic Structure of PLS

In PLS, learning and information sharing progress along
the binary expansion of θ∗ in each dimension, starting from

the most significant bit. Below we present separately the
information sharing and learning components of PLS.

3.1.1. PROGRESSIVE INFORMATION SHARING

In PLS, the unknown reward vector θ∗ is learnt with increas-
ing accuracy, one bit at a time, as the algorithm progresses.
Once the next bit in the binary expansion1 of θ∗ in each
of the d coordinates is learnt with sufficient accuracy, the
agents transmit their estimates of this bit to the central server,
which aggregates the estimates and broadcast the aggregated
estimate of the new bit to the agents for subsequent exploita-
tion and further exploration of θ∗.

This progressive sharing mechanism can be seamlessly inte-
grated with regret minimization to achieve both minimum
regret order and minimum channel usage. Specifically, since
only 1 bit of information is shared per coordinate in each
information exchange, it suffices to send d bits in each trans-
mission, achieving the benefit of having small messages.
Furthermore, one can note that any reward-maximizing ac-
tion taken based on an estimate θ̂ incurs a regret propor-
tional to the estimation error ∥θ̂ − θ∗∥2. Consequently,
an estimation error of O(1/

√
T ) is sufficient to ensure an

order-optimal regret, implying that it is sufficient to estimate
each coordinate of θ∗ up to an accuracy ofO(1/

√
T ). Since

sending the first r bits of the binary representation ensures
an error of no more than 2−r, transmitting the firstO(log T )
bits of the binary representation is sufficient to achieve the
required accuracy. As a result, infrequent communication
with a total of O(log T ) rounds can transmit all relevant
information about θ∗.

3.1.2. PROGRESSIVE COLLABORATIVE LEARNING

The progressive learning component of PLS is carried out
in two stages: an initial stage for estimating the norm of θ∗

followed by a refinement stage with interleaving exploration
and exploitation.

In the initial norm estimation stage, the goal is to estimate,
within a multiplicative factor, the norm ∥θ∗∥2 of the under-
lying mean reward. This procedure is purely exploratory
in nature. The collaborative exploration across agents is
carried out in epochs with exponentially growing epoch
lengths. At the end of each epoch, a threshold-based termi-
nation test is employed to determine whether the required
estimation accuracy has been reached, which terminates the
norm estimation stage. Information exchange occurs at the
end of each epoch, and the exponentially growing epoch
length ensures a low communication frequency.

The norm estimation stage serves multiple purposes. First,

1While the algorithm learns an one bit at a time, it does not
necessarily imply that the bit sequence learnt corresponds to the
binary expansion.
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it allows PLS to be adaptive to the norm of θ∗ through the
threshold-based termination rule. Specifically, it provides
sufficient initial exploration with sufficiency automatically
adapted to ∥θ∗∥2 to ensure the estimation error is small
enough for subsequent exploitation in the refinement stage.
Second, this initial norm estimate sets the dynamic range
of subsequent estimates of θ∗ to be used in the differential
quantization for subsequent information sharing. Third, the
estimate of ∥θ∗∥2 is also used to control the length of the
exploitation epoch in the refinement stage to balance the
exploration-exploitation trade-off.

In the refinement stage, the estimate of θ∗ obtained in the
norm estimation stage is further refined. Similar to the
norm estimation stage, the refinement stage also proceeds
in epochs. The difference is that each epoch in the refine-
ment stage consists of an exploration sub-epoch followed
by an exploitation one. The exploration sub-epochs are for
continual learning of θ∗, one bit in each sub-epoch. The
exploitation sub-epochs are to maximize rewards at each
agent by playing the best action based on the current esti-
mate of θ∗. The lengths of the exploration and exploitation
sub-epochs are both growing exponentially, but at different
rates to carefully balance the exploration-exploitation trade-
off. Information sharing is carried out only at the end of
each exploration sub-epoch for the newly learned bit of θ∗.
The refinement stage with its interleaved exploration and
exploitation continues until the end of the time horizon.

3.2. Detailed Description of PLS

In this section, we dive into the details of PLS.

3.2.1. PROGRESSIVE COLLABORATIVE LEARNING

Norm Estimation Stage: This stage proceeds in purely
exploratory epochs. During an epoch k, each agent plays
each unit vector in an orthonormal basis2 of Rd for sk times.
Each agent j computes the sample mean of the observed
rewards for each basis vector to obtain an estimate θ̂

(j)
k of

the underlying vector θ∗. This estimate θ̂
(j)
k is clipped to

within a radius of Rk + Bk, quantized using a stochastic
quantizer with resolution αk and sent to the server by the
agent. The process is repeated in every epoch until the
agents receive a message from the server to terminate. We
defer the details of the clipping and quantization steps to the
Sec. 3.2.2 that describes the communication strategy. All
policy parameters are specified at the end of the section.

At the server, upon receiving the estimates from the agents,
the server averages them to obtain a combined estimate
θ̂
(SERV)
k . The server compares the norm of this estimate to

a threshold 4τk. If the norm exceeds the threshold, the
2The basis is chosen a priori and known to all the agents and

the server. It can be any orthonormal basis of Rd.

server sends a message to the agents to terminate the norm
estimation stage. Otherwise, the server and the agents pro-
ceed into the next epoch. The value of τk is chosen to be
an upper bound on the estimation error of θ∗ at the end
of the kth epoch, allowing PLS to estimate ∥θ∗∥2 within a
multiplicative factor at the end of the norm estimation stage.

The pseudo code for the norm estimation stage is given in
Algorithms 1 and 2.

Algorithm 1 Norm Estimation: Agent j ∈ {1, 2, . . . ,M}
1: Set k ← 1
2: while True do
3: Play each basis vector sk times and compute the

sample mean θ̂
(j)
k

4: θ̃
(j)
k ← CLIP(θ̂

(j)
k , Rk +Bk)

5: Q(θ̃
(j)
k )← STOQUANT(θ̃

(j)
k , αk, Rk +Bk)

6: Send Q(θ̃
(j)
k ) to the server

7: if received terminate from server then
8: break
9: else

10: k ← k + 1
11: end if
12: end while

Algorithm 2 Norm Estimation: The Server

1: Set k ← 1
2: while True do
3: Compute θ̂

(SERV)
k = 1

M

∑M
j=1 Q(θ̃

(j)
k )

4: if τk ≤ 1
4∥θ̂

(SERV)
k ∥ then

5: Server sends terminate to all agents
6: break
7: else
8: k ← k + 1
9: end if

10: end while

Refinement Stage: This stage also proceeds in epochs,
starting with the epoch index at which Norm Estimation
stage terminated. Each epoch k during Refinement begins
with an exploration sub-epoch where, similar to Norm Es-
timation, each agent obtains their estimate of θ∗, θ̂(j)k , by
playing each of the basis vectors sk times. At the end of the
sub-epoch, the agents share the next bit learnt during this
time by transmitting θ̂

(j)
k − θ̄k−1 to the server after appropri-

ate clipping and quantization. Here θ̄k−1 denotes the current
estimate of θ∗ available to the agents after k − 1 epochs.
This differential quantization allows the agents to share only
the “new bit” learnt during the exploration sub-epoch. As a
response, the agents receive Q(θ̂

(SERV)
k ), a quantized version

of the udpate, from the server which is used to refine their
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estimate of θ∗ to θ̄k = θ̄k−1 + Q(θ̂
(SERV)
k ). The exploita-

tion sub-epoch follows the communication round where all
agents play the unit vector along θ̄k throughout the tk time
steps of the sub-epoch. The refinement stage continues by
proceeding into the next epoch and repeating the process
until the end of the time horizon.

The steps at the server in this stage are similar to those in
the norm estimation stage. In particular, the server collects
estimates from the agents at the end of the exploration sub-
epoch, computes the mean θ̂

(SERV)
k and then broadcasts the

differential update θ̂
(SERV)
k − θ̄k−1 after passing it through a

deterministic quantizer with resolution βk. A pseudo code
for the refinement stage is given in Algorithms 3 and 4.

Algorithm 3 Refinement: Agent j ∈ {1, 2, . . . ,M}
1: Input: The epoch index at the end of Norm Estimation

stored as k0, θ̄k0−1 ← 0, k ← k0
2: while budget is not exhausted do
3: Play each basis vector sk times and compute the

sample mean θ̂
(j)
k

4: θ̃
(j)
k ← CLIP(θ̂

(j)
k − θ̄k−1, Rk +Bk)

5: Q(θ̃
(j)
k )← STOQUANT(θ̃

(j)
k , αk, Rk +Bk)

6: Send Q(θ̃
(j)
k ) to the server

7: Receive Q(θ̂
(SERV)
k ) from the server

8: θ̄k ← θ̄k−1 +Q(θ̂
(SERV)
k )

9: if k = k0 then
10: Set µ0 ← ∥θ̄k∥2
11: end if
12: Play the action a = θ̄k/∥θ̄k∥ for the next tk rounds.
13: k ← k + 1
14: end while

Algorithm 4 Refinement: The Server

1: Input: The epoch index at the end of Norm Estimation
stored as k0, θ̄k0−1 ← 0, k ← k0

2: while time horizon T is not reached do
3: Receive Q(θ̃

(j)
k ) from all the agents

4: Compute θ̂
(SERV)
k = θ̄k−1 +

1
M

∑M
j=1 Q(θ̃

(j)
k )

5: Q(θ̂
(SERV)
k )← DETQUANT(θ̂

(SERV)
k − θ̄k−1, βk, Bk+

τk) and broadcasts it to all agents
6: k ← k + 1
7: end while

Setting Policy Parameters: We now specify the values of
parameters used in PLS. For an epoch k, the length of the ex-
ploration (sub-)epoch, sk, is set to ⌈40σ2d log(8MK/δ)4k⌉
and that of the exploitation one is set to tk := ⌈Ms2kµ

2
0⌉.

In the above definitions, K denotes the maximum possi-
ble number of epochs in the algorithm and is defined as
K := max{k ∈ N : 40σ2d log(8Mk/δ)(4k − 4) ≤ T} =

O(log T ). In the definition of tk, µ0 is the estimate of ∥θ∗∥2
obtained at the end of the norm estimation stage. The ex-
ponential lengths of the epoch designed for the bit by bit
progressive learning are evident from the above choices.
This choice of the lengths also allows PLS to address the
exploration-exploitation trade-off by balancing the regret
incurred during the exploration and exploitation sub-epochs.

The threshold τk and sequence Rk are set based upon high
probability bounds on ∥θ̂(SERV)

k − θ∗∥2 and ∥θ̂(j)k − θ∗∥2
respectively that simultaneously hold for all agents. In
particular, τk is set to 3 · 2−(k+1)/

√
M and Rk := 2−k.

Notice that this choice of Rk echoes the progressive learning
feature, allowing the agents to learn θ∗, one bit at a time.
The sequence Bk bounds the error ∥θ̄k−1−θ∗∥2 and is set to
5τk for k ≥ 2 with B1 = 1. Lastly, the resolution parameter
sequences αk and βk are defined as αk := α0σ

√
d/
√
sk

and βk = β0τk for some numerical constants α0, β0 < 1.
The constants α0 and β0 control the message size associated
with uplink and downlink communication respectively.

3.2.2. PROGRESSIVE INFORMATION SHARING

The communication protocol of PLS consists of two steps
: clipping and quantizing the vector to be sent to reduce
the size of message being transmitted and encoding the
quantized value to send it over the communication channel.

Clipping and Quantization: This step employs well-
known sub-routines described below to map a vector to
a low resolution, quantized version of itself.

• CLIP(x, r) is a simple routine that takes input a vector
x and clips it within a ℓ2 ball of radius r. Mathemati-
cally, the routine returns the value x ·min{1, r/∥x∥}.

• STOQUANT(y, ε, r) returns the quantized version of
a scalar y using the popular approach of stochastic
quantization. Specifically, the interval [−r, r] is di-
vided into lε = ⌈2r/ε⌉ intervals of equal length and
indexed from 1 to lε. The value y is quantized to one
of the end points of the intervals to which it belongs
in a randomized manner with the probability inversely
proportional to the distance from y. In particular, the
stochastic quantizer outputs Qs(y) given by

Qs(y) =

{
bl−1 w.p. bl − y,

bl otherwise.

In the above expression, bm = r

(
2m

lε
− 1

)
for

m = 1, 2, . . . , lε and l = {m : bm−1 ≤ y <
bm}. With a slight abuse of notation, we also use
STOQUANT(x, ε′, r) to denote stochastic quantization
of a vector x. In the case of a vector, all the coordinates
are quantized as mentioned above with ε = ε′/

√
d.

5



Distributed Linear Bandits under Communication Constraints

• DETQUANT(y, ε, r) is also a quantization routine simi-
lar to STOQUANT(y, ε, r) with the only difference that
the output of this routine is deterministic. Specifically,
the deterministic quantizer outputs

Qd(y) =

{
bl−1 if |bl − y| > |bl−1 − y|,
bl otherwise.

Once again we overload the definition with a vector
analogue DETQUANT(x, ε′, r) where each coordinate
is deterministically quantized with ε = ε′/

√
d.

The two different quantization schemes used in this step
serve their own, different purposes in algorithm. PLS em-
ploys stochastic quantization for uplink communication
which allows it to exploit the concentration properties of the
zero mean noise added by the quantization. Consequently,
it enables to completely leverage the access to observations
from M different agents to achieve the speed up propor-
tional to the number of agents. A deterministic quantization
scheme in its place would have resulted in accumulation
of errors and consequently prevented the speedup with the
number of agents. On the other hand, the deterministic
quantization used for downlink transmission ensures that all
the agents have the same estimate of θ∗ and consequently
the same value of µ0, the estimate of ∥θ∗∥2 . Since µ0

governs the length of the exploitation sub-epoch, a com-
mon value shared between the agents helps maintain the
synchronization across different epochs and agents.

Encoding: As described above, both the quantization rou-
tines used in PLS when run with accuracy parameter ε,
quantize each coordinate axis into lε intervals resulting in
lε + 1 possible values for the quantized version of each
coordinate. The encoding step maps these (lε+1)d possible
values of quantized vectors to different messages that can
be sent over the communication channel. We use a common
encoding strategy for the uplink and downlink channels.

PLS sends each coordinate of the quantized version, one by
one, using the variable-length encoding strategy, unary cod-
ing (Cover & Thomas, 2006). In particular, each coordinate
is represented by a header followed by a sequence of 1’s
whose length is equal to the absolute value of the coordinate.
The header is 3 bits long where the first and the third bit are
both 0 and the second bit represents the sign of the value,
where 0 & 1 imply negative and positive values respectively.
As an example, in this encoding scheme, the numbers −3
and 5 are represented as 000111 and 01011111 respectively.

4. Performance Analysis
In this section, we show that PLS achieves the order-optimal
regret ofO(d

√
MT ) up to logarthmic factors with a commu-

nication cost that matches the order of information-theoretic
lower bound established in Sec. 5.

4.1. Regret Analysis

The following theorem characterizes the regret of PLS.

Theorem 4.1. Consider the distributed stochastic linear
bandit setting described in Sec. 2. If PLS is run with param-
eters as described in Sec. 3.2 for T time instants, then the
following relation holds with probability at least 1− δ,

RPLS(T ) ≤ Cd
√
MT log

(
8MK

δ

)
log
(
9
√
MT

)
+O(log T ),

for some constant C > 0, independent of d,M, δ and T .

Theorem 4.1 establishes that the regret incurred by PLS
is Õ(d

√
MT ) which matches the lower bound for a cen-

tralized setting with MT queries up to logarithmic fac-
tors. This implies that PLS explores the achievability of
communication-learning trade-off at the frontier of optimal
learning performance.

We here provide a sketch of the proof for Theorem 4.1.
We begin the proof by decomposing the regret incurred by
PLS as follows : RPLS(T ) = RNE(T ) + RREF(T ), where
RNE(T ) and RREF(T ) denote the regret incurred during the
norm estimation and the refinement stages respectively. The
bound on regret incurred by PLS is obtained by separately
bounding each of above the two terms in the decomposi-
tion. The following lemma provides a bound on the regret
incurred during the norm estimation stage.

Lemma 4.2. Consider the Norm Estimation stage described
in Alg. 1 and 2. If it is run for at most T time instants in
a distributed setup with M agents and ∥θ∗∥ ≤ 1, then
the regret incurred during this stage satisfies the following
relation with probability at least 1− δ,

RNE(T ) ≤ Cd(1 + σ2)
√
MT log(1/δ′) log2

(
9
√
MT

)
+ 2d log2(9

√
MT ),

where δ′ = δ/8MK and C > 0 is a constant independent
of d,M, δ and T .

Since the Norm Estimation stage is based on pure explo-
ration, we upper bound RNE(T ) by 2∥θ∗∥2 times the du-
ration of the norm estimation stage, where 2∥θ∗∥2 corre-
sponds to the trivial bound on the instantaneous regret. The
central step in the proof of the above lemma is bounding the
duration of the norm estimation stage. For this part, we first
establish a O(1/∥θ∗∥22) bound on the duration based on our
threshold test which determines when the stage terminates.
However, the fixed length of the time horizon dictates a hard
upper bound of T on the duration of this stage. The proof
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is completed by taking a minimum of these two bounds to
bound the duration of the norm estimation stage followed
optimizing over ∥θ∗∥2 to obtain the tightest bound.

To bound RREF(T ), we separately bound the regret incurred
during the exploration and exploitation sub-epochs. The
regret incurred during the exploration sub-epoch of the kth

epoch is bounded by 2∥θ∗∥2 times dsk, the duration of the
exploration sub-epoch, similar to the proof of Lemma 4.2.
The regret incurred during the exploitation sub-epoch is
bounded using the following lemma, which is similar to
Lemma 3.6 in Rusmevichientong & Tsitsiklis (2010).
Lemma 4.3. If θ̂ is an estimate of a vector θ such that
∥θ̂ − θ∥2 ≤ τ ≤ ∥θ∥2, then instantaneous regret incurred
by an algorithm that plays the action a = θ̂/∥θ̂∥2 on a
stochastic linear bandit instance with true underlying vector
θ can be bounded by τ2/∥θ∥.

Lemma 4.3 implies that even when the estimation error is
ν∥θ∗∥2, for ν ∈ [0, 1] the regret incurred by the algorithm
scales as ν2∥θ∗∥2. This is a crucial fact that helps bal-
ance the exploration-exploitation trade-off. In particular, the
lengths of the exploration and exploitation epochs in PLS are
designed based on the result of this lemma. The estimation
error at the end of exploration sub-epoch in epoch k satisfies
O(s−1/2

k ) while the regret incurred during the sub-epoch
satisfiesO(sk∥θ∗∥2). Based on the above lemma, the regret
incurred during the corresponding exploitation sub-epoch of
length tk = O(s2k∥θ∗∥22) is O( 1

sk∥θ∗∥2
· tk) = O(sk∥θ∗∥2)

matching the regret incurred during the exploration phase.
This is the fundamental mechanism that provides the neces-
sary balance between exploration and exploitation in PLS
allowing it to achieve optimal-order regret. Moreover, this
also provides additional insight into the novel choice of the
length exploitation epoch based on the norm of θ∗ in PLS.

The final bound on RREF(T ) is obtained by noting each
epoch is O(s2k + sk) = O(16k) steps long implying a total
of O(log T ) epochs. The detailed proofs of all the Lemmas
and the Theorem can be found in Appendix B.

4.2. Communication Cost

The communication cost incurred by PLS is characterized
in the following theorem.
Theorem 4.4. Consider the distributed stochastic linear
bandit setting described in Sec. 2. If PLS is run with pa-
rameters as described in Sec. 3 for a time horizon of T ,
then the uplink and the downlink communication costs
(in bits) incurred by PLS, i.e. Cu(T ) and Cd(T ), satisfy

O
(

d

α0
log T

)
and O

(
d

β0
(logM + log T )

)
respectively.

Thus, Theorem 4.4 in conjunction with Theorem 4.1
shows that PLS incurs the order-optimal regret while si-

multaneously achieving the order-optimal communication
cost matching the lower bound in Sec. 5. Hence, PLS
further reduces the communication cost as compared to
communication-efficient algorithms proposed in Wang et al.
(2019); Huang et al. (2021); Amani et al. (2022) while main-
taining the optimal regret performance. The proof of the
above theorem revolves around the following lemma.

Lemma 4.5. Consider the communication scheme of PLS
outlined in Sec. 3.2.2. If PLS is run with parameters as
described in Sec. 3.2, then any message exchanged between
the server and an agent during PLS is at most O(d) bits.

The bound on uplink communication cost Cu(T ) immedi-
ately follows by noting that there are at most K = O(log T )
epochs, or equivalently, communication rounds in PLS. The
additional O(d logM) term in Cd(T ) is incurred when the
server sends the initial estimate of θ∗ to all the agents. The
details of the proof along with proof of Lemma 4.5 are
provided in Appendix B.
Remark 4.6. Based on Lemma 4.5, it can immediately con-
cluded that a capacity of R = O(d) bits for both the uplink
and the downlink channel suffices for PLS to achieve order-
optimal regret performance. Some other studies like Suresh
et al. (2017) and Mitra et al. (2022) have also proposed
encoding schemes which result in message sizes of O(d)
bits. Suresh et al. (2017) proposed an encoding scheme for
distributed mean estimation using the well-known variable
length encoding schemes such as Huffman and Arithmetic
encoding. It first constructs a histogram over the different
lε+1 values in the qunatized version of a vector followed by
a Huffman tree based on that histogram. During each com-
munication round, the sender first sends the corresponding
Huffman tree followed by the message encoded using that.
Compared to such variable-length schemes, our proposed
scheme is easier to implement, both in terms of memory
and computation, and also avoids overheads like sending
the Huffman tree. The IC-Lin-UCB algorithm proposed
in Mitra et al. (2022) uses an encoding scheme based on
constructing ε-cover of hyperspheres in Rd at every time
instant. The computational cost of constructing such cover-
ing sets grows exponentially with the dimension, rendering
the approach infeasible even for problems of moderate di-
mensionality. On the other hand, the computational cost of
the encoding scheme in PLS grows linearly with dimension,
making PLS an attractive option even for high dimensional
problems.
Remark 4.7. TheO(d logM) term in the downlink commu-
nication cost can be interpreted as the cost incurred by the
server to facilitate information exchange since the data is
distributed across M agents. In other words, the server pro-
vides each agent with the additional information learnt from
the other agents through these O(d logM) bits, leading to
collaboration among them. In absence of transmission of
these bits, the problem would reduce to M independent
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agents trying to learn a linear bandit model and incurring
an overall regret of O(dM

√
T ) that grows linearly with

M . Thus, it can also be interpreted as the cost associated
with having a sublinear regret with respect to the number
of agents M . Similarly, O(d log T ) term corresponds to the
cost associated with having a sublinear regret with respect
to the time horizon.

5. Lower Bound on Communication Cost
In this section, we explore the converse result for the
communication-learning trade-off. In particular, the follow-
ing theorem establishes information theoretic lower bounds
in terms of actual number of bits that need to be transmit-
ted by the clients and the server over the channel for any
distributed algorithm to achieve sublinear regret.
Theorem 5.1. Consider the distributed linear bandit in-
stance with M agents described in Section 2. Any dis-
tributed algorithm that incurs an overall cumulative regret
that is order optimal in both T and M with probability at
least 2/3 needs to transmit at least Ω(d log(MT )) bits of
information over the downlink channel and Ω(d log T ) bits
of information over the uplink channel.

The lower bounds established in the above theorem match
the achievability results for PLS shown in the previous sec-
tion. We would like to emphasize that PLS is the first
algorithm for distributed linear bandits for which commu-
nication cost incurred matches the order of information
theoretic lower bounds in terms of actual number of bits
transmitted over the channel. Additionally, PLS simultane-
ously attains order-optimal regret guarantees. Thereby, the
above theorem along with the performance guarantees of
PLS provides a holistic view of the communication-learning
efficiency trade-off in distributed linear bandits. The proof
of the theorem follows from an application of Fano’s in-
equality along with bounds on metric entropy. A detailed
proof of the above theorem is provided in Appendix C.

6. Leveraging Sparsity
We now consider a variant of the original problem where
the underlying reward vector θ∗ is known to satisfy an addi-
tional sparsity constraint. In particular, it is known that the
number of non-zero elements in θ∗ are no more than s≪ d,
i.e., ∥θ∗∥0 ≤ s. For this setup, we propose Sparse-PLS,
a variant of PLS, to leverage the sparsity of θ∗ to further
reduce the communication cost.

Sparse-PLS makes two modifications to the original PLS al-
gorithm to leverage the sparsity of θ∗. The first modification
is made to the set of actions played during an exploration
epoch. Specifically, Sparse-PLS replaces the orthonormal
basis of Rd with a set of actions, Bs, that spans only a sub-
space of Rd. Bs consists of m = O(s log(d/δ)) ≪ d vec-

tors drawn independently from the set {−1/
√
d,+1/

√
d}d.

It is ensured that all the agents use the same random set
Bs via a common random seed. This modification offers
a two-fold advantage. First, it helps reduce the message
size required for uplink communication as it is sufficient
to transmit these noisy projections in Rm, where m ≪ d,
in order to recover the original sparse vector θ∗ (Candès
et al., 2006; Candes & Tao, 2006; 2007). Second, since
the regret incurred in PLS is proportional to length of the
exploration epochs, this modification allows Sparse-PLS to
replace a factor of the actual dimension of the vector with
the level of sparsity in the regret bounds, making it smaller
(See Theorem 6.1). The second modification is made to the
process to estimate θ∗ at the server. Sparse-PLS employs
the LASSO estimator (Tibshirani, 1996; Bickel et al., 2009)
at the server to obtain a sparse estimate of θ∗ from the noisy
projections sent by the agents. Please refer to the supple-
mentary material for a pseudo-code and additional details
about Sparse-PLS.

The following theorem characterizes the performance of
Sparse-PLS,in terms of both regret and communication cost.

Theorem 6.1. Consider the distributed stochastic linear
bandit setting described in Sec. 2 with an additional as-
sumption of sparsity on the underlying mean reward, i.e.,
∥θ∗∥0 ≤ s. If Sparse-PLS is run for a time horizon of T ,
then the regret incurred by Sparse-PLS satisfies

RSparse-PLS(T ) ≤ C
√
sdMT log (MK/δ) log

(√
MT

)
,

with probability at least 1 − δ for some C > 0, indepen-
dent of s, d,M and T . Moreover, the uplink and downlink
communication costs, Cu(T ) and Cd(T ) are no more than
O(s log T ) and O(d(logM + log T )) bits respectively.

As it can be noted from the above theorem, Sparse-PLS
replaces a factor of dimension d with the sparsity level
s, or equivalently the effective dimension, in the regret
bound matching the optimal-order regret bounds (Abbasi-
Yadkori et al., 2012). Furthermore, it also reduces Cu(T )
from O(d log T ) to O(s log T ) demonstrating its ability to
leverage the inherent sparsity to reduce communication and
regret. We refer the reader to Appendix D for a detailed
proof.

7. Conclusion
In this work, we investigated the communication-learning
trade-off in distributed learning setups within the scope
of distributed linear bandits. We proposed a novel algo-
rithm, called Progressive Learning and Sharing (PLS), that
learns and shares the information about the unknown re-
ward vector progressively, one bit at a time. We showed
that PLS incurs order-optimal regret using a uplink commu-
nication of O(d log T ) bits and downlink communication
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of O(d(logM + log T )) bits. We also established match-
ing information-theoretic lower bounds on the communi-
cation cost for any algorithm with sublinear regret. Lastly,
for sparse linear bandits, we showed that a variant of the
proposed algorithm offers better communication-learning
trade-off by leveraging the sparsity of the problem.
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A. Additional Related Work
In this section, we discuss some more works related to ours broadly in the context of distributed learning.

Distributed Bandits: The multi-armed bandit (MAB) problem with a finite number of arms has been extensively studied
in various distributed learning setups. A line of work (Chawla et al., 2020; Landgren et al., 2017; Shahrampour et al.,
2017; Korda et al., 2016; Sankararaman et al., 2019; Mitra et al., 2021; Shi et al., 2021; Zhu et al., 2021) focuses on
developing algorithms for cooperative learning in MAB under different structures of the underlying network. Another line
of work (Liu & Zhao, 2010; Kalathil et al., 2012; Rosenski et al., 2016; Bistritz & Leshem, 2021) explores a collision
based approach with no explicit communication inspired by cognitive radio networks. There are several works that also
consider the impact of communication and develop communication efficient algorithms by either reducing the frequency of
communication (Agarwal et al., 2021; Hillel et al., 2013; Tao et al., 2019) or proposing quantization approaches (Hanna
et al., 2021). The setup of linear bandits considered in this work is more challenging than the MAB setup considered in the
above works, especially for the communication constrained setting.

For the problem of distributed linear bandits, the results closest to our are by Wang et al. (2019); Huang et al. (2021)
and Amani et al. (2022). Since all algorithms, including PLS and the ones proposed in these papers, achieve order-optimal re-
gret performance, we focus on the communication cost incurred by these algorithms. The DELB algorithm proposed in Wang
et al. (2019) has an uplink cost of O(d log(MT )) scalars and a downlink cost of O((M + d log log d) log(MT )) scalars.
Assuming it is sufficient to represent each scalar using O(log(MT )) bits to ensure accuracy over MT samples, the uplink
and downlink cost incurred by the algorithm can be written as O(d log2(MT )) bits and O((M + d log log d) log2(MT ))
bits respectively. The Fed-PE algorithm proposed in Huang et al. (2021) has an uplink cost of O(dK log(MT )) scalars and
a downlink cost of O((M logK + d2) log(MT )) scalars, which can be equivalently written as O(dK log2(MT )) bits and
O((M logK + d2) log2(MT )) bits respectively. In the above expressions, K refers to the number of actions in the action
set. The DisBE-LUCB algorithm (Amani et al., 2022) has an uplink cost of O(d log log(MT )) scalars and a downlink cost
of O(d log log(MT )) scalars. Once again using a sufficient accuracy bit representation, both these costs are equivalent to
O(d log(MT ) log(log(MT ))) bits. However, these results hold only for T = Ω(d22), which also almost never encountered
in practice. Furthermore, the DisBE-LUCB algorithm is most computationally intensive among all four algorithms. Lastly,
the uplink and downlink costs incurred by PLS are O(d log(T )) bits and O(d log(MT )) bits which match the information
theoretic lower bounds, making the results in PLS tight. It clearly improves upon the d2 dependence in Huang et al. (2021).
Moreover, the linear scaling of the downlink cost with the number of agents in Wang et al. (2019) and (Huang et al., 2021)
makes them significantly worse than that of PLS. This is also corroborated by the numerical results (see Appendix F).
Moreover, the uplink communication cost of PLS is independent of the number of agents, unlike other algorithms, which is
a useful property as individual requirements should not scale with the size of the network. Furthermore, it might seem that
the reduction in logarithmic factor is rather incremental. We would like to point out that such logarithmic factors can only
be considered insignificant in the presence of a dominating polynomial factor. However, in this case of communication
cost, the leading order itself is a polylogarthmic term, in which case ignoring the logarithmic factors is no longer justified.
PLS improves the communication cost (in bits) from O(log2(MT )) to O(log T ). This reduces the cost to the square root of
the original value which certainly has a practical importance. We would like to point out that in such cases, the relative
reduction is what matters in practice more than the absolute reduction, and which is a major contribution offered by PLS.
Furthermore, in practice, one usually encounters finite capacity channels. The use of O(log T ) bits to represent scalars
imposes a constraint on capacity which requires it to depend on time horizon and is not a desirable characteristic in practice.
Lastly, the reduction of the log T factor requires non-trivial algorithm design and analysis, which is a contribution of PLS
over existing results.

There are several other studies in addition to the ones discussed previously. Ghosh et al. (2021) et al. study the problem under
heterogeneity assumptions on the agents and propose a new algorithms under personalization and clustering frameworks, the
two different ways adopted to tackle heterogeneity. Chawla et al. (2022) consider a high dimensional linear bandit setting
where the underlying mean reward lies in a low-dimensional space chosen from a known, finite collection. They propose a
decentralized algorithm based on communication over a network to quickly identify this subspace to ensure sub-linear regret.
While there is some focus on communication in this study, the proposed algorithm does not offer a linear speed up with
respect to the number of agents, although per agent regret improves under collaboration. Korda et al. (2016) et al. consider
the problem in a peer-to-peer communication model instead of a star topology. They propose an algorithm that achieves
order-optimal regret guarantees with limited communication. However, their proposed policy requires communication of
O(d2) bits per message over the network which is worse than the O(d) required by PLS.

12
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Sparse Linear Bandits: The problem of sparse linear bandits has been studied mainly in the centralized setting.Abbasi-
Yadkori et al. (2012) proposed an algorithm for sparse linear bandits using a online to batch conversion of the confidence
intervals. Borrowing techniques from compressed sensing, Carpentier & Munos (2012) proposed an algorithm that incurs an
overall regret of O(s

√
T ). Chen et al. (2022) proposed the sparse variants of the famous Lin-UCB (Abbasi-Yadkori et al.,

2011) and Sup-Lin-UCB (Chu et al., 2011) algorithms for the contextual bandit problem. Hao et al. (2020) proposed an
algorithm with dimension-independent regret bounds for very high dimensional problems where the dimension is much
larger than the time horizon. As mentioned previously, all these works consider the centralized setting which is different
from the distributed setting considered in this work. To the best knowledge of the authors, this is the first work considering
sparse linear bandits under a distributed setting with communication constraints.

Lower Bounds in Distributed Settings: Several studies have attempted to characterize information theoretic lower
bounds on communication under for various statistical estimation tasks. The classical paper of Duchi et al. (2014) derived
guarantees on communication requirements for distributed mean estimation for both independent and interactive protocols.
Similarly, Tsitsiklis & Luo (1987) have studied the communication complexity in convex optimization while Diakonikolas
et al. (2017) study the effect of communication constraints for the task of distribution estimation. For linear bandits, most of
the papers that study lower bounds have been in context of lower bounds on regret (Dani et al., 2008; Rusmevichientong &
Tsitsiklis, 2010), typically under centralized setting. In the distributed setting, to the best knowledge of the authors, the only
work that discusses lower bounds especially in context of communication is Amani et al. (2022). They derive a lower bound
on the regret for the contextual linear bandit problem under communication constraints. However, in our work we study the
lower bounds on communication costs under regret constraints, which is different from the problem considered in their
work and requires significantly different analysis techniques. Recently, Acharya et al. (2022) also analyzed the benefit of
interactive protocols in distributed estimation. However, we restrict ourselves to non-interactive settings in this work and
extension to such interactive settings is left as a future work.

Explore-then-Commit: The algorithms proposed in Rusmevichientong & Tsitsiklis (2010) and Yang et al. (2021) are
based on explore-then-commit type of approach which shares some features with PLS. While there is a high-level similarity
in the general approach of explore-then-commit, the structure of the norm estimation followed by refinement in PLS
differentiates our work. This structure leads to adaptivity to the unknown ∥θ∗∥ and the same regret order even when ∥θ∗∥ is
arbitrarily small. Differing from the self-adaptivity in PLS, the algorithm in Rusmevichientong & Tsitsiklis (2010) resorts to
prior knowledge on the distribution of θ∗, i.e., a Bayesian setting.

B. Analysis for PLS
Before providing the detailed proofs of the Theorems regarding the performance of PLS, we state and prove two supplemen-
tary lemmas that will be used in the proofs.

Lemma B.1. Let X1,X2, . . . ,Xn be a collection of n i.i.d. random vectors in Rd with mean µ. Each coordinate of every
random vector is assumed to be an independent sub-Gaussian random variable with variance proxy σ2. Let {Yi}ni=1 be
another collection of random vectors such that Yi = Xi1{x : ∥x∥ ≤ R+B} for all i ∈ {1, 2, . . . , n}. Then the following
relation holds for any t > 0, R > σ

√
2 log(4n) and B > ∥µ∥∞,

Pr

(∥∥∥∥∥ 1n
n∑

i=1

Yn − µ

∥∥∥∥∥ ≥ t

)
≤ 2 · 5d · exp

(
− nt2

8σ2

)
.

Consequently,

∥∥∥∥∥ 1n
n∑

i=1

Yn − µ

∥∥∥∥∥ ≤ 2σ√
n
(2
√
d+

√
2 log(2/δ)) with probability at least 1− δ.

Proof. Let v ∈ Rd be any unit vector. Since the entries of Xi are independent, Zi = v⊤X is a sub-Gaussian random
variable with mean µZ = vTµ and variance proxy σ2 for all i ∈ {1, 2, . . . , n}. Let Wi = Zi1{[−(R + B), (R + B)]}.
Since B ≥ ∥µ∥∞, µZ ≤ B. We also define the event A :=

⋂n
i=1Ai where Ai = {|Zi| ≤ R + B}. For any λ ∈ R, we
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have,

E

[
exp

(
λ

(
1

n

n∑
i=1

Wi − µZ

))]
=

∫ ∞

−∞
exp

(
λ

(
1

n

n∑
i=1

wi − µZ

))
fW1,...,Wn(w1, . . . , wn) dw1 . . . dwn

=

∫ ∞

∞
exp

(
λ

(
1

n

n∑
i=1

wi − µZ

))
1

Pr(A)
fZ1,...,Zn

(w1, . . . , wn)1{A} dw1 . . . dwn

≤
∫ ∞

∞
exp

(
λ

(
1

n

n∑
i=1

wi − µZ

))
1

Pr(A)
fZ1,...,Zn

(w1, . . . , wn) dw1 . . . dwn

≤ 1

Pr(A)
E

[
exp

(
λ

(
1

n

n∑
i=1

Zi − µZ

))]

≤ exp(λ2σ2/2n)

Pr(A)
.

Let us bound the term Pr(A). We have,

Pr(A) = Pr

(
n⋂

i=1

Ai

)

= Pr

(
n⋂

i=1

{|Zi| ≤ R+B}

)

= 1− Pr

(⋃
i=1

|Zi| > R+B

)
≥ 1− nPr(|Z1| > R+B),

Since Z1 is a sub-Gaussian random variable,

Pr(Z1 > R+B) = Pr(Z1 − µZ > R+B − µZ)

≤ Pr(Z1 − µZ > R)

≤ exp

(
− R2

2σ2

)
.

Similarly,

Pr(Z1 < −(R+B)) = Pr(Z1 − µZ < −R−B − µZ)

≤ Pr(Z1 − µZ < −R)

≤ exp

(
− R2

2σ2

)
.

On combining the two, we obtain,

Pr(A) ≥ 1− 2n exp

(
− R2

2σ2

)
.

If R ≥ σ
√
2 log(4n), then Pr(A) ≥ 1/2. Consequently,

E

[
exp

(
λ

(
1

n

n∑
i=1

Wi − µZ

))]
≤ 2 exp(λ2σ2/2n),

and

Pr

(
1

n

n∑
i=1

Wi − µZ > t

)
≤ 2 exp(−nt2/2σ2).
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To obtain concentration bounds for

∥∥∥∥∥ 1n
n∑

i=1

Yn − µ

∥∥∥∥∥, we use the same technique used for unbounded sub-Gaussian

random variables (Jin et al., 2019). We reproduce the proof here for completeness. For brevity of notation, we define

W :=
1

n

n∑
i=1

Yn.

Let N denote a minimal 1/2-cover of Bd(1), where Bd(r) = {x ∈ Rd : ∥x∥2 ≤ r}. This implies that for all x ∈ Bd(1),
∃y ∈ N such that ∥x − y∥2 ≤ 1/2. Using the standard volumetric bounds, the cardinality of N can be bounded as
|N | ≤ 5d.

Once again, let v ∈ Bd(1) denote a unit vector. For every v, we have a zv ∈ N such that v = zv + u with ∥u∥ ≤ 1/2.
Thus, for any vector X, we have,

max
v∈Bd(1)

v⊤X = max
v∈Bd(1)

(zv + u)⊤X

≤ max
z∈N

z⊤X+ max
u∈Bd(1/2)

u⊤X

≤ max
z∈N

z⊤X+
1

2
max

u∈Bd(1)
u⊤X.

Thus, maxv∈Bd(1) v
⊤X ≤ 2maxz∈N z⊤X. Moreover, since ∥v∥2 = 1, maxv∈Bd(1) v

⊤X = ∥X∥. Consequently,

Pr (∥Z− µ∥ ≥ t) ≤ Pr( max
v∈Bd(1)

v⊤(W − µ) ≥ t)

≤ Pr(max
z∈N

z⊤(W − µ) ≥ t/2)

≤ 2|N | exp
(
− nt2

8σ2

)
.

Plugging in the value of |N | yields the final result.

Lemma B.2. For any epoch k in PLS, the estimate θ̂
(SERV)
k satisfies

∥θ̂(SERV)
k − θ∗∥ ≤ τk,

with probability at least 1− δ.

Proof. We prove the claim using induction. Firstly, note that if we define θ̄k−1 := 0 for all epochs k during the norm
estimation stage, then we can rewrite the method to compute the estimate at the server, θ̂(SERV)

k , during the norm estimation
stage in the same way as it is computed during the refinement stage. Thus, we consider the definition of θ̂(SERV)

k as used in
Algorithm 4 while implicitly assuming θ̄k−1 = 0 for all epochs k during the norm estimation stage.

Let η(j)k ∈ Rd denote the quantization noise added by jth client during the kth epoch, i.e., the quantized version received by
the server can be written as Q(θ̃

(j)
k ) = θ̃

(j)
k + η

(j)
k . Since each coordinate is quantized independently, each coordinate of

η
(j)
k is an independent zero mean sub-Gaussian random variable with variance proxy α2

k/4d. At the end of the kth epoch, we
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have

∥θ̂(SERV)
k − θ∗∥ =

∥∥∥∥∥∥θ̄k−1 +
1

M

M∑
j=1

Q(θ̃
(j)
k )− θ∗

∥∥∥∥∥∥
=

∥∥∥∥∥∥θ̄k−1 +
1

M

M∑
j=1

(θ̃
(j)
k + η

(j)
k )− θ∗

∥∥∥∥∥∥
=

∥∥∥∥∥∥θ̄k−1 +
1

M

M∑
j=1

(θ̂
(j)
k − θ̄k−1)1Rk+Bk

+
1

M

M∑
j=1

η
(j)
k − θ∗

∥∥∥∥∥∥
≤

∥∥∥∥∥∥ 1

M

M∑
j=1

(θ̂
(j)
k − θ̄k−1)1Rk+Bk

− (θ∗ − θ̄k−1)

∥∥∥∥∥∥+
∥∥∥∥∥∥ 1

M

M∑
j=1

η
(j)
k

∥∥∥∥∥∥ .
The second term can be bounded using the concentration of sub-Gaussian random vectors as∥∥∥∥∥∥ 1

M

M∑
j=1

η
(j)
k

∥∥∥∥∥∥ ≤ 2αk√
M

(
1 +

√
1

2d
log

(
2K

δ

))
.

For the first term, we will employ Lemma B.1. However, we first need to ensure that the conditions of the lemma are satisfied.
For any epoch k, the particular choice of Rk and sk in PLS satisfies the assumption in Lemma B.1 for all k. To bound the
mean, we need to consider the epochs with θ̄k−1 = 0 (i.e., the norm estimation stage) and θ̄k−1 ̸= 0 (the refinement stage)
separately. We begin with the case of θ̄k−1 = 0. Under this scenario, note that ∥E[θ̂(j)k − θ̄k−1]∥ = ∥E[θ̂(j)k ]∥ = ∥θ∗∥. For
the first epoch, we know that ∥θ∗∥ ≤ 1 = B1. This implies, we can apply the lemma for the base case. For any epoch k ≥ 2,
we use the inductive hypothesis to establish the bound on the mean. In particular, we use a better estimate of ∥θ∗∥ by noting
that the norm estimation stage had not been terminated by epoch k − 1 which implies that ∥θ̂(SERV)

k−1 ∥ ≤ 4τk−1. Along with

the induction hypothesis, ∥θ̂(SERV)
k−1 − θ∗∥ ≤ τk−1, we can conclude that ∥θ∗∥ ≤ 5τk−1 ≤ Bk, as required.

Now we are ready to invoke Lemma B.1. Using Lemma B.1, we can conclude that with probability at least 1− δ/K,∥∥∥∥∥∥ 1

M

M∑
j=1

(θ̂
(j)
k − θ̄k−1)1Rk+Bk

− (θ∗ − θ̄k−1)

∥∥∥∥∥∥ ≤ 4σ
√
d√

Msk

(
1 +

√
1

2d
log

(
2K

δ

))
.

On plugging in the value of sk and αk and combining the equations, we obtain,

∥θ̂(SERV)
k − θ∗∥ ≤ 2−k

√
M

+
2−(k+1)

√
M

=
3√
M
· 2−(k+1) = τk,

holds with probability at least 1− δ/K.

We similarly consider the case where in epoch k, θ̄k−1 ̸= 0. For this case, we apply Lemma B.1 conditioned on the value
of θ̄k−1 and hence all expectations and probabilities are computed with respect to the conditional measure. For brevity of
notation and ease of understanding, we will assume the conditioning has been implicitly applied. The condition on Rk holds
using the argument as in the previous case and hence we focus only on showing the bound on the mean. If ζk−1 denotes the
quantization error during the k − 1 epoch, then we can write θ̄k−1 = θ̂

(SERV)
k−1 + ζk−1. Consequently, ∥E[θ̂(j)k − θ̄k−1]∥ =

∥θ∗− θ̄k−1∥ = ∥θ∗− θ̂
(SERV)
k−1 − ζk−1∥ ≤ ∥θ∗− θ̂

(SERV)
k−1 ∥+∥ζk−1∥ ≤ ∥θ∗− θ̂

(SERV)
k−1 ∥+βk−1 ≤ τk−1+βk−1 ≤ Bk. For the

last step, the bound on ∥θ∗ − θ̂
(SERV)
k−1 ∥ holds due to the hypothesis in the induction step. In the base case, i.e., k0, the index

of the epoch when the norm estimation stage terminates, the bound holds from the result obtained for the case of θ̄k−1 = 0.
This implies that we can apply the lemma also for the case of θ̄k−1 ̸= 0, thereby obtaining the bound on ∥θ̂(SERV)

k − θ∗∥ for
all k.
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We would like to point that to avoid repeating steps in the proof, we have directly shown the result after invoking Lemma B.1
for all epochs k. The proof actually follows by first invoking Lemma B.1 for the base case and establishing the result. For
any epoch k, we then use the inductive hypothesis of the relation for k − 1 to establish the conditions on the mean after
which Lemma B.1 is invoked to complete the induction step.

Lastly, consider the events given by Ek := {∥θ̂(SERV)
k − θ∗∥ ≤ τk} for k = 1, 2, . . .K and the event E :=

K⋂
k=1

Ek. From the

above analysis, we know that Pr(Ek|E1, E2, . . . , Ek−1) ≥ 1− δ/K for k = 1, 2, . . . ,K, where Pr(E0) = 1. Thus, we have

Pr(E) = Pr

(
K⋂

k=1

Ek

)

=

k∏
i=1

Pr(Ek|E1, E2, . . . , Ek−1)

≥
K∏
i=1

(
1− δ

K

)K

≥ 1− δ,

as required.

We now proceed to provide detailed proofs of the various theorems and lemmas that characterize the regret and communica-
tion cost of PLS.

B.1. Proof of Lemma 4.2

Let RNE(T ) denote the regret incurred during the norm estimation stage. We assume that the stage continues until a
terminate is received from the server or each client has played a total of T actions, whichever happens first.

Under the event E as defined in Proof of Lemma B.2, the algorithm will terminate at the end of epoch k0 where k0 :=

min{k ∈ N : 4τk ≤ ∥θ̂(SERV)
k ∥}. We note that for all k for which the inequality 4τk ≤ ∥θ̂(SERV)

k ∥ holds, we also have the
relation

∥θ̂(SERV)
k − θ∗∥ ≤ τk ≤

1

4
· ∥θ̂(SERV)

k ∥

=⇒ ∥θ∗∥ ∈
[
3

4
∥θ̂(SERV)

k ∥, 5
4
∥θ̂(SERV)

k ∥
]

=⇒ ∥θ̂(SERV)
k ∥ ∈

[
4

5
∥θ∗∥, 4

3
∥θ∗∥

]
.

Consequently, we also have τk ≤ 1
3 · ∥θ

∗∥. On plugging in the value of τk, we obtain

τk ≤
1

3
· ∥θ∗∥ =⇒ 2−k ≤ 2

√
M

9
∥θ∗∥ =⇒ k ≥ log2

(
9

2∥θ∗∥
√
M

)
.

Since k0 is the smallest natural number satisfying this relation, k0 = max

{⌈
log2

(
9

2∥θ∗∥
√
M

)⌉
, 1

}
.

We know that at, a∗ ∈ A = {x : ∥x∥2 ≤ 1} for all t ∈ {1, 2, 3, . . . , T}. Hence, the instantaneous regret at time instant can
be bounded as

rt = ⟨θ∗, a∗⟩ − ⟨θ∗, at⟩ ≤ ∥θ∗∥2∥a∗ − at∥2 ≤ 2∥θ∗∥2.
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Consequently, we can bound RNE(T ) as follows. If k0 = 1, then RNE(T ) can be simply upper bounded as Mds1 = O(1).
If k0 ≥ 2, we have

RNE(T ) ≤
k0∑
k=1

2M∥θ∗∥2 · dsk

≤ 2Md∥θ∗∥2 · sk0
· k0

≤ 2Md∥θ∗∥2 ·
(
32dσ2 log

(
8MK

δ

)
4log2(9/2∥θ

∗∥2)+1 + 1

)
·
(
log2

(
9

2∥θ∗∥2

)
+ 1

)
≤ 2Md∥θ∗∥2 ·

(
2592

dσ2

∥θ∗∥22
log

(
8MK

δ

)
+ 1

)
·
(
log2

(
9

2∥θ∗∥2

)
+ 1

)
≤ 5184

d2σ2

∥θ∗∥2
log

(
8MK

δ

)(
log2

(
9

2∥θ∗∥2

)
+ 1

)
+ 2d

(
log2

(
9

2∥θ∗∥2

)
+ 1

)
.

A trivial bound on RNE(T ) is 2∥θ∗∥2MT . Note that for larger values of ∥θ∗∥2, the former bound is tighter. However,
as ∥θ∗∥2 gets smaller, the latter bound becomes a stronger one. To obtain the optimal bound on RNE(T ), we choose the
minimum of the two. Thus,

RNE(T ) ≤ min

{
5184

d2σ2

∥θ∗∥2
log

(
8MK

δ

)(
log2

(
9

2∥θ∗∥2

)
+ 1

)
+ 2d

(
log2

(
9

2∥θ∗∥2

)
+ 1

)
, 2∥θ∗∥2MT

}
.

On setting ∥θ∗∥2 = d/
√
MT , we obtain RNE(T ) is O(d

√
MT · log(MT ) · log(log T/δ)), as required.

B.2. Proof of Lemma 4.3

We are given access to estimate, θ̂, of the true vector, θ, such that ∥θ̂ − θ∥2 ≤ τ ≤ ∥θ∥2. This implies that ∥θ̂∥2 ∈
[∥θ∥2 − τ, ∥θ∥2 + τ ]. Consider the relation,

∥θ̂ − θ∥22 ≤ τ2

=⇒ ∥θ̂∥22 + ∥θ∗∥22 − 2⟨θ̂, θ⟩ ≤ τ2

=⇒ −⟨θ̂, θ⟩ ≤ 1

2

(
τ2 − ∥θ̂∥22 − ∥θ∥22

)
=⇒ ∥θ∥ − 1

∥θ̂∥2
⟨θ̂, θ⟩ ≤ 1

2∥θ̂∥2

(
τ2 − ∥θ∥22 − ∥θ∥22 + 2∥θ∥2∥θ∥2

)
=⇒ ∥θ∥ − 1

∥θ̂∥2
⟨θ̂, θ⟩ ≤ 1

2∥θ∥2
(
τ2 − (∥θ∥2 − ∥θ∥2)2

)
.

Note that the LHS in the last equation is an upper bound on the regret incurred by playing the action a = θ̂/∥θ̂∥2. If we
denote the regret incurred by playing the action a by Reg(a) and let ∥θ̂∥2 = ∥θ∥2 + υ, for some υ ∈ [−τ, τ ], then

Reg(a) ≤ τ2 − υ2

2(∥θ∥2 + υ)
.

To bound the above expression, we consider the function f(υ) =
τ2 − υ2

(∥θ∥2 + υ)
. Since f is rational function of two

polynomials, it is differentiable. On differentiating f , we obtain f ′(υ) = −υ2 + 2υ∥θ∥2 + τ2

(∥θ∥2 + υ)2
. The solutions for f ′(υ) = 0

are given by υ+ = −∥θ∥2 +
√
∥θ∥22 − τ2 and υ− = −∥θ∥2 −

√
∥θ∥22 − τ2. By double differentiating f , we can verify

that it is indeed maximized at υ+ for υ ∈ [−τ, τ ]. Moreover, note that solutions for f ′(υ) = 0 are real numbers only for
τ ≤ ∥θ∥2. This explains the need for the constraint on τ . On setting υ = υ+ in the expression for Reg(a), we obtain the
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following bound.

Reg(a) ≤ τ2 − (−∥θ∗∥2 +
√
∥θ∥22 − τ2)2

2
√
∥θ∥2 − τ2

≤ τ2 − ∥θ∥22 − ∥θ∥22 + τ2 + 2∥θ∥2
√
∥θ∥22 − τ2

2
√
∥θ∥2 − τ2

≤ ∥θ∥2 −
√
∥θ∥22 − τ2

≤ τ2

∥θ∥
.

B.3. Proof of Theorem 4.1

Let RREF(T ) denote the regret incurred during the refinement stage. To obtain a bound on RREF(T ), we consider an epoch
k during the refinement stage. Similar to the norm estimation stage, we bound the regret incurred during the exploration
sub-epoch as 2∥θ∗∥2 ·Mdsk. Using Lemma 4.3 and the fact that ∥θ̄k − θ∗∥ ≤ 2τk (Ref. Lemma B.2), we can bound the

regret during the exploitation sub-epoch as
4τ2k
∥θ∗∥2

·Mtk. If R(k) denotes the regret incurred during epoch k, then we have

the following relation.

R(k) ≤ 2∥θ∗∥2 ·Mdsk +
4Mτ2k
∥θ∗∥2

· (Ms2kµ
2
0 + 1)

≤ 2∥θ∗∥2 ·Mdsk +
100(Mτksk∥θ∗∥2)2

9∥θ∗∥2
+

4Mτ2k
∥θ∗∥2

≤ 64∥θ∗∥2Md2σ2 log

(
8MK

δ

)
4k + 2∥θ∗∥2 ·Md+ 8M∥θ∗∥2

(
6400σ4d2 log2

(
8MK

δ

)
4k + 4−k

)
+M∥θ∗∥2

≤ 51200 · ∥θ∗∥2Md2σ2(1 + σ2) log2
(
8MK

δ

)
4k +M∥θ∗∥2

(
8 · 4−k + 2d+ 1

)
Note that the regret incurred during the exploration sub-epoch is the same as that incurred during the exploitation sub-epoch
upto constant factors. This echoes the discussion in Sec. 4 on the careful choice of the lengths of exploration and exploitation
epochs in PLS using the estimated norm of ∥θ∗∥2.

Let k1 denote the index of the epoch when the query budget ends. Also, recall that k0 was defined to be the epoch index
during which the norm estimation stage terminates. If k1 = k0, then it implies that the exploitation sub-epoch of the kth

0

epoch was not completed. Consequently, the regret incurred during the partial sub-epoch is bounded by the regret incurred
during the corresponding exploration sub-epoch (upto a constant factor) which in turn is bounded by the regret incurred
during the norm estimation stage. Hence, the overall regret has the same order as the of the norm estimation stage, that is,
Õ(d
√
MT ), as required. For the rest of the proof we focus on the case k1 ≥ k0 + 1.

The regret incurred during the refinement stage can be be bounded as

RREF(T ) ≤
k1∑

k=k0

R(k).

Since we already have a bound on k0, we can bound the above expression by finding an upper bound on k1. We can bound
k1 by using the length of the time horizon. We have,

k1−1∑
k=1

dsk +

k1−1∑
k=k0

tk ≤ T.

The first term corresponds to the length of all the exploration (sub-)epochs, including the ones during the norm estimation
procedure, while the second accounts for the length of all the exploitation sequences. On plugging in the values of sk and tk,
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we obtain,

T ≥
k1−1∑
k=1

dsk +

k1−1∑
k=k0

tk

≥
k1−1∑
k=k0

Ms2kµ
2
0

≥
k1−1∑
k=k0

16384

25
Md2∥θ∗∥2σ4 log2

(
8MK

δ

)
16k

≥ 1024

9
Md2∥θ∗∥2σ4 log2

(
8MK

δ

)
16k1 − 16k0

15

≥ 100Md2∥θ∗∥2σ4 log2
(
8MK

δ

)
16k1 .

where the last step follows by noting that k1 ≥ k0 + 1. This implies that,

k1 ≤ log16

(
T

100Md2∥θ∗∥22σ4

(
log

(
8MK

δ

))−2
)

.

Consequently,

RREF(T ) ≤
k1∑

k=k0

R(k)

≤
k1∑

k=k0

51200 · ∥θ∗∥2Md2σ2(1 + σ2) log2
(
8MK

δ

)
4k +M∥θ∗∥2

(
8 · 4−k + 2d+ 1

)
≤ 69000 · ∥θ∗∥2Md2σ2(1 + σ2) log2

(
8MK

δ

)
4k1 +Mk1∥θ∗∥2 (2d+ 9)

≤ 69000 · ∥θ∗∥2Md2σ2(1 + σ2) log2
(
8MK

δ

)
· 1

dσ2∥θ∗∥2

(
log

(
8MK

δ

))−1

×√
T

100M
+Mk1∥θ∗∥2 (2d+ 9)

≤ 6900(1 + σ2) log

(
8MK

δ

)
· d
√
MT +Mk1∥θ∗∥2 (2d+ 9) .

Adding this to the regret incurred during the norm estimation stage, we can conclude that RPLS(T ) satisfies O(d
√
MT ·

log(MT ) · log(log T/δ)).

B.4. Proof of Lemma 4.5

Consider a vector x ∈ Rd with ∥x∥ ≤ r and let Q(x) denote its quantized version achieved by a quantizer (deterministic
or stochastic) upto a precision of ε. This implies that ∥x−Q(x)∥2 ≤ ε =⇒ ∥Q(x)∥2 ≤ r + ε. Note that Q(x) can be
represented as (q1, q2, . . . , qd)⊤ where qi ∈ {−lε/2, . . . , 0, . . . , lε/2} represents the corresponding quantized index for all
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i ∈ {1, 2, . . . , d}. Thus, we have,

d∑
i=1

q2i

(
2r

lε

)2

≤ (r + ε)2

=⇒
d∑

i=1

q2i ≤
(
(r + ε)lε

2r

)2

≤ 4d
(r
ε
+ 1
)2

.

Consequently,

d∑
i=1

|qi| ≤

√√√√d

d∑
i=1

q2i ≤ 2d
(r
ε
+ 1
)
.

It can be noted that under the encoding scheme based on unary encoding used in PLS, the message size in bits in PLS
is given by 3d +

∑d
i=1 |qi|, where 3d corresponds to the sum of lengths of the headers. As a result, the message size is

bounded by d(3 + 2(r/ε + 1)). We use this relation to establish the message sizes on both the uplink and the downlink
channels.

Let us first consider the uplink communication. In epoch k, r corresponds to Rk + Bk and ε to αk. On plugging in
the prescribed values of the above parameters, we note that (Rk + Bk)/αk is C/α0, where C is a constant independent
of d,M and T . Hence, any message sent on the uplink channel is no more than O(d) bits. Similarly, for the downlink
communication, the ratio (Bk + τk)/βk ≤ C ′/β0 where once again C ′ is a constant independent of d,M and T . Hence,
any message sent on the downlink channel also has a size of O(d) bits, as required.

B.5. Proof of Theorem 4.4

The bound on the uplink communication cost follows immediately from Lemma 4.5. Since the agents send a message of
O(d/α0) bits only once every epoch and there are no more than K = O(log T ) epochs in PLS, the uplink communication
cost of PLS, Cu(T ), satisfies O((d/α0) log T ). The O((d/β0) log T ) term in Cd(T ), the downlink cost, also follows using
the same argument.

The O(d logM) term in the downlink communication cost corresponds to sending the initial estimate of θ∗ to the clients,
specifically in the event that the norm estimation stage ends within the first epoch. Note that, if the norm estimation stage
ends in the first epoch, the estimation error in θ∗ becomes τ1 = O(

√
1/M) from the initial estimate of O(1). As a result,

PLS requires O(d logM) bits to transmit the estimate, adding to the downlink communication cost. This O(d logM) cost
is what facilitates information exchange between the agents that leads to the linear speedup with respect to the number of
agents.

Remark B.3. This estimate is also sent using the unary encoding scheme used in PLS over O(logM) rounds with each
round sending one additional bit of information per coordinate. Depending on the synchronization requirements as dictated
by the hardware, the learner may not be allowed multiple uses of the channel. In the event that it is possible to use the
channel several times between two actions, this information can be easily sent with O(logM) uses of the channel. However,
if the server is allowed to use the channel only once between two actions of the agent, this transmission of the initial estimate
can be accommodated within PLS as follows. At the end of the exploration sub-epoch of the first epoch, instead of starting
with the exploitation sub-epoch, the agents begin with the exploration sub-epoch of the second epoch. During this time, the
server broadcasts the initial estimate of θ∗ over the next O(logM) time instants. The agents continue to play the actions as
dictated by the exploration sub-epoch until the communication is completed. Once the communication is completed, the
agents now start with the exploitation sub-epoch of the first epoch. At the end of the first epoch, they restart the exploration
sub-epoch, starting from where they had left at the end of the communication. Thus, if needed, PLS can accommodate the
additional transmission requirements by a minor reordering of the explorative and exploitative actions.
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C. Lower Bounds
In this section, we discuss the details of the proofs to establish the lower bounds on the communication cost under regret
constraints.

C.1. Proof of Theorem 5.1

The proof of this theorem consists of two main steps. In the first step, we show that all algorithms achieving a sub-linear
cumulative regret need to solve the problem of distributed mean estimation. This reduction allows us to leverage several
existing techniques and results for information-theoretic lower bounds, especially in the case of distributed statistical
estimation. The second step is to establish lower bound on communication cost (both uplink and downlink) for a given
estimation error based on the above reduction. The primary idea for this step is to use to classical reduction to identification
from a specifically constructed hard instance. Specifically, we show that for any estimator with a small error it is necessary
to solve the identification problem. The final bound on the communication cost is then obtained by using Fano’s inequality
to bound the error of this identification problem.

We first establish how the constraint of a sub-linear cumulative regret for linear bandit algorithm can be translated to having
a small simple regret. Consider any policy π that achieves a sub-linear regret Rπ(T ) under the setup described in Sec. 2.
Consequently, the policy π also guarantees a sub-linear regret of Rπ(T )/MT . This follows immediately by choosing the
final action to be the average of all the actions chosen by all the agents. Note that this is a permissible action since A is
a convex set. As a result, a lower bound of r(T ) on simple regret achievable by any policy immediately implies a lower
bound of R(T ) = MTr(T ) on the cumulative regret achievable by any policy. This relation is used later in the proof to
draw parallels with the problem of distributed mean estimation.

For the second step, we separately establish the lower bounds for the uplink and downlink communication cost, by
constructing two different hard instances. We begin with the lower bound on the downlink cost. We would like to point out
that we prove a more general case for the downlink cost where we allow algorithms that incur a sublinear w.r.t to both T and
M , as opposed to just being order optimal.

C.1.1. PROOF OF DOWNLINK COST

For the lower bound on the downlink cost, recall that for a policy a π with sub-linear cumulative regret of Rπ(T ), the
average of all the actions chosen by all the agents, denoted by āπ , achieves a simple regret of Rπ(T )/MT . This implies that
using the actions taken by π, one can estimate θ∗ to a reasonable accuracy dictated by Rπ(T ). In particular, let θ̂(A;π)
denote an estimator of θ∗ based on all the actions taken by a policy π, which we denote by the random variable A, and
∥θ∗∥2 = 1. Then,

inf
θ̂
∥θ̂(A;π)− θ∗∥22 ≤

∥∥∥∥ āπ
∥āπ∥2

− θ∗
∥∥∥∥2
2

≤ ∥āπ∥
2
2

∥āπ∥22
+ ∥θ∗∥22 − 2⟨θ∗, āπ

∥āπ∥2
⟩

= 2(1− ⟨θ∗, āπ⟩)

≤ 2
Rπ(T )

MT
.

We use the above relation to obtain a bound on the downlink communication cost based on the information carried in A, the
actions taken by a policy, about the underlying vector θ∗.

Let Vε denote a maximal 2ε-packing of Sd using the ∥ · ∥2 norm, where Sd denotes the surface of a unit sphere in Rd.
Equivalently, Sd = ∂Bd(1) ∈ Rd−1, where Bd(r) denotes a ball (in ∥ · ∥2-norm) of radius r in Rd. Let V be a random
variable chosen uniformly at random from Vε. Consider a linear bandit instance instantiated with θ∗ = V . Note that this
construction implicitly ensures ∥θ∗∥2 = 1. As before, let θ̂(A;π) denote an estimator of θ∗ based on all the actions taken by
a policy π. This problem of estimating θ∗ can be mapped to that of identifying V using classical techniques by defining a
testing function V̂ for each estimator θ̂. In particular, define V̂ := argminv∈Vε

∥θ̂(A;π) − v∥2, that is, it maps θ̂ to the
closest point in the set Vε.

Since Vϵ is 2ε-packing, ∥θ̂(A;π) − V ∥2 > ε whenever V̂ ̸= V . Consequently, Pr
(
∥θ̂(A;π)− θ∗∥22 > ε2/2

)
=
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Pr
(
∥θ̂(A;π)− V ∥22 > ε2/2

)
≥ Pr(V̂ ̸= V ). Since V → A→ V̂ from a Markov chain, using Fano’s inequality (Cover &

Thomas, 2006), we can conclude that

Pr(V̂ ̸= V ) ≥ 1− I(V ;A) + log 2

|Vε|
,

where I(V ;A) denotes the mutual information between V and A. Note that the event {∥θ̂(A;π)− θ∗∥22 > ε2/2} implies
that no estimator based on the actions of π can estimate θ∗ within an error of ε2/2 implying that π incurs a cumulative regret
of at least ε2MT/4. Hence, to ensure a cumulative regret of Rπ(T ) with probability at least 2/3, we need to ensure Pr(V̂ ̸=
V ) ≤ Pr

(
∥θ̂(A;π)− θ∗∥22 > ε2/2

)
< 1/3 for ε = 2

√
Rπ(T )/MT . Equivalently, I(V ;A) ≥ 2 log |Vε|/3− log 2 with

ε = 2
√
Rπ(T )/MT . Using the standard bounds on packing numbers (Ball, 1997) and noting that Rπ(T ) is sub-linear

in both M and T , we can conclude that I(V ;A) ≥ Ω(d log(MT )). The bound on the communication cost is obtained
using the data processing inequality. Let Z denote all the messages broadcast by the server. Then I(V ;Z) is a lower bound
on the downlink communication cost. Notice that Z obeys the Markov chain V → Z → A→ V̂ since the actions taken
by the agents change with V through the messages broadcast by the server. From data processing inequality, we have,
I(V ;Z) ≥ I(V ;A). In other words, since the messages Z transfer the information about the actions of other agents to any
given agent, they should at least have as much information about θ∗ (or equivalently V ) as much as A, the set of all actions,
does. Combining this with the bound on I(V ;A), we arrive the required lower bound on the downlink communication cost.

C.1.2. PROOF FOR UPLINK COST

We establish bounds on the uplink cost by drawing parallels to the distributed mean estimation problem. Consider the
problem of distributed mean estimation where X denotes the random variable corresponding to the observations by the
agents and Y denotes the messages sent by the agents to the server. Based on the messages Y , if no estimator can recover θ∗

to within a mean squared error of ε2, then no linear bandit algorithm can achieve a simple regret of ε2. This is similar to the
argument shown for the downlink case. This implies that, only if θ∗ can be estimated to within an accuracy of ε2, can there
exist a linear bandit algorithm with a simple regret ε2 and hence potentially with a cumulative regret of 2ε2MT . Thus, we
consider the problem of distributed mean estimation and show that unless all agents send Ω(d log T ) bits of information to
the server, no estimator can estimate θ∗ within an accuracy of 1/MT with probability at least 2/3. For this case, we only
consider the optimal rates instead of any sublinear rates.

The proof borrows ideas and techniques from the classical results in (Duchi et al., 2014). In particular, the proof is similar to
those of Proposition 2 and Theorem 1 in (Duchi et al., 2014). However, it is different in its own sense as it builds upon those
results and strengthens the lower bounds with the missing logarithmic factors. Thus, this proof might be of independent
interest to the larger community.

The basic idea in the proof is to construct a Markov chain V → X → Y , where X represents the collection of all the
observations at all the agents and Y denotes the messages sent by the agents. In particular, X = (X(1), X(2), . . . , X(M))
and Y = (Y1, Y2, . . . , YM ), where X(j) denotes the set of observations at agent j and Yj denotes the messages sent by
agent j to the server. Since the agents cannot communicate with each other directly, we assume Yj depends only on X(j).

We begin with construction the hard instance for the random variable V. Let V = {±1}d−1 and υ = (υ1, υ2, . . . , υℓ) ∈ Vℓ

for some ℓ ∈ N specified later. For each υ ∈ Vℓ, we define a vector µυ ∈ Rd−1 given by

µυ :=

ℓ∑
r=1

2−r

√
d− 1

υr.

Note that ∥µυ∥2 ≤
∑ℓ

r=1
2−r

√
d−1
∥υr∥ ≤

∑ℓ
r=1 2

−r ≤ 1. Thus, µυ ∈ Bd−1(1) for all υ ∈ Vℓ. We also define a lifting map
f : Bd−1(1)→ Sd≥0, where Sd≥0 denotes the hemisphere where the last coordinate only takes on non-negative values. It
maps a vector x ∈ Bd−1(1) to a vector x′ ∈ Sd≥0, where x′

1:d−1 = x and x′
d =

√
1− ∥x∥2. In other words, f lifts a point

in unit hypersphere in d− 1 to the corresponding point on the unit hyper(hemi)sphere in Rd by adding the last component.
From the definition, one can note that f is a bijection. Furthermore, one can note that for any two points x, x′ ∈ Bd−1, we
have ∥x− x′∥2 ≤ ∥f(x)− f(x′)∥2 ≤

√
2∥x− x′∥2.

Let V be a random variable drawn from the set Vℓ. We construct a linear bandit instance with θ∗ = f(δµV) for some
δ ∈ (0, 1) whose value is specified later. Since, f is a bijection that preserves distances upto a constant, it equivalent to
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consider the problem of estimating θ∗ = θV = δµV, where the operation f is assumed to have been carried out implicitly.
Hence, for the remainder of the proof, we focus only of the problem on estimating θV.

To specify the observation model, we first need to set up some notations and definitions. Given a u ∈ {−1, 1} and ρ ∈ [0, 1],
we define Pu,ρ to be the distribution that assigns a mass of (1 + ρ)/2 to u and (1− ρ)/2 to −u. We overload the definition
of Pu,ρ for when u = (u1, u2, . . . , up)

⊤ ∈ {−1, 1}p is a vector. In this case, a sample from Pu,ρ is a vector whose ith

coordinate is drawn according to Pui,ρ, independently of others. For a given value of V = υ, each agent j, independent
of other agents, receives an collection of T i.i.d. samples, denoted by X(j) = {X(j,k)}nk=1 for j = 1, 2, . . . ,M . Each
sample X(j,k) is obtained by first drawing Ṽ (j,k)(υ) = (Ṽ (j,k,1)(υ), . . . , Ṽ (j,k,ℓ)(υ)) ∈ Vℓ, where Ṽ (j,k,r)(υ) ∼ Pυr,ρ0

for r = 1, 2, . . . , ℓ and then setting X(j,k) = µṼ (j,k)(υ). In the above definition ρ0 := δ/(Tℓ). If X(j)
i denotes the vector

obtained by taking the ith coordinate of all the T samples at agent j, then from the above definition, one can note that X(j)
i ’s

are independent across i, that is, each coordinate is independent of others.

Having specified the underlying mean vector and the observation model, the next step is to use strong data processing
inequality (Duchi et al., 2014) to quantitatively relate I(V;Yj) and I(X(i);Yj). To establish this relation, we make use of
Lemma 5 from (Duchi et al., 2014). Before invoking the Lemma, we first need to establish a bound on the likelihood ratio of
any realization xi, of the random variable X

(j)
i , under two different values of V, say υ,υ′ and also specify the measurable

sets over which the bound holds. Throughout this part, we carry out all the analysis for a fixed agent j.

Note that any realization xi can be mapped to the realizations {ṽ(j,k)i }Tk=1, where ṽ
(j,k)
i = (ṽ

(j,k,1)
i , . . . , ṽ

(j,k,ℓ)
i ). For any

fixed value of r ∈ {1, 2, . . . , ℓ}, consider the set ṽ(j,1:T,r)
i = {ṽ(j,1:T,r)

i }Tk=1 which only contains values from {−1, 1}
drawn from Pυr,i,ρ0

. Here υr,i denotes the ith coordinate of υr. Suppose this collection contains T1 instances of +1 and

T − T1 of −1, then the likelihood ratio any under any pair (υ,υ′) can be bounded as
(

1+ρ0

1−ρ0

)|T−2T1|
. If Sr denotes the

absolute value of sum of the elements in ṽ
(j,1:T,r)
i , then this bound on the likelihood ratio can be rewritten as

(
1+ρ0

1−ρ0

)Sr

.

Since all ℓ sequences in {ṽ(j,1:T,r)
i }ℓr=1 are independent of each other, the likelihood ratio can be bounded as

sup
xi

sup
υ,υ′∈Vℓ

Pr(xi|υ)
Pr(xi|υ′)

≤
(
1 + δ/(Tℓ)

1− δ/(Tℓ)

)S1

· · ·
(
1 + δ/(Tℓ)

1− δ/(Tℓ)

)Sℓ

=

(
1 + δ/(Tℓ)

1− δ/(Tℓ)

)S1+···+Sℓ

.

To construct a measurable set Gi corresponding to each coordinate i on which the likelihood ratio can be appropriately
bounded, consider the set Z defined as

Z =

{
(v1, . . . , vT ) ∈ {−1,+1}T :

∣∣∣∣∣
T∑

r=1

vr

∣∣∣∣∣ ≤ a
√
2T + δ/ℓ

}

for some a > 0 to be determined later. We set Gi = {xi : ṽ
(j,1:T,r)
i ∈ Z ∀ r ∈ {1, 2, . . . , ℓ}} for all coordinates i. That is,

Gi consists of all sequences xi such that all its corresponding ṽ sequences belong to Z . When X
(j)
i belongs to the σ-field

generated by the elements of Gi, we can bound the likelihood ratio as

sup
xi∈σ(Gi)

sup
υ,υ′∈Vℓ

Pr(xi|υ)
Pr(xi|υ′)

≤
(
1 + δ/(Tℓ)

1− δ/(Tℓ)

)ℓ(a
√
2T+δ/ℓ)

≤ exp

(
3ℓ(a
√
2T + δ/ℓ) · δ

(Tℓ)

)
≤ exp

(
3(a+ δ/ℓ)δ

√
2

T

)
:= exp(φ).

for all T ≥ 4ℓ/3. As the last step to invoke the Lemma, we define E
(j,r)
i = 1{ṽ(j,1:T,r)

i ∈ Z} and E
(j)
i =

∏ℓ
r=1 E

(j,r)
i ,

where 1{A} denotes the indicator variable for the event A. Using the definition of Gi, we can also define E
(j)
i as

1{X(j)
i ∈ Gi}. Lastly, we also define E(j) =

∏d−1
i=1 E

(j)
i .
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We are now all set to invoke Lemma 5 from (Duchi et al., 2014). Using the Lemma, we can conclude that for the message
sent by agent j, Yj , the following inequality holds

I(V;Yj) ≤ 2(e4φ − 1)2I(X(j);Yj |E(j) = 1) +

d−1∑
i=1

H(E
(j)
i ) +

d−1∑
i=1

H(Vi) Pr(E
(j)
i = 0),

where H(W ) denotes the entropy of the random variable W and Vi refers to the tuple formed by taking the ith coordinate
of all the elements in tuple represented by V.

For the first term, note that for T ≥ 200(a+ 1)2, φ ≤ 5/16 implying that 2(exp(4φ)− 1)2 ≤ 2(8φ)2 = 128φ2. Using the
standard concentration bounds for Bernoulli random variables, we can conclude that Pr(E(j,r)

i = 0) ≤ 2 exp(−a2) and
consequently Pr(E

(j)
i = 0) ≤ 2ℓ exp(−a2). On plugging these results into the previous equation, we obtain,

I(V;Yj) ≤
2304(a+ δ/ℓ)2δ2

T
I(X(j);Yj |E(j) = 1) +

d−1∑
i=1

ℓ∑
r=1

H(E
(j,r)
i ) + 2

d−1∑
i=1

ℓ2 exp(−a2)

≤ 2304(a+ δ/ℓ)2δ2

T

T∑
k=1

I(X(j,k);Yj |E(j) = 1, X(j,1:(k−1))) + (d− 1)ℓ(h2(2e
−a2

) + 2ℓe−a2

)

≤ 2304(a+ δ/ℓ)2δ2

T

T∑
k=1

min{H(X(j,k)|E(j) = 1, X(j,1:(k−1))), H(Yj |E(j) = 1, X(j,1:(k−1)))}

+ (d− 1)ℓ(h2(2e
−a2

) + 2ℓe−a2

)

≤ 2304(a+ δ/ℓ)2δ2

T

T∑
k=1

min{H(X(j,k)), H(Yj)}+ (d− 1)ℓ(h2(2e
−a2

) + 2ℓe−a2

)

≤ 2304(a+ δ/ℓ)2δ2

T

T∑
k=1

min{(d− 1)ℓ,H(Yj)}+ (d− 1)ℓ(h2(2e
−a2

) + 2ℓe−a2

))

≤ 2304(a+ δ/ℓ)2δ2 min{(d− 1)ℓ,H(Yj)}+ (d− 1)ℓ(h2(2e
−a2

) + 2ℓe−a2

),

where we used the relation I(W ;W ′) ≤ min{H(W ), H(W ′)} for two random variables along with the fact that condition-
ing reduces entropy. In the above equations h2(p) := −p log2(p)− (1− p) log2(1− p), denotes the entropy of a Bernoulli
random variable with mean p, for p ∈ [0, 1]. Since each message Yj depends only on X(j), we have,

I(V;Y ) ≤
M∑
j=1

I(V;Yj)

≤
M∑
j=1

[
2304(a+ δ/ℓ)2δ2 min{(d− 1)ℓ,H(Yj)}+ (d− 1)ℓ(h2(e

−a2

) + ℓe−a2

)
]
.

This gives us the bound on I(V;Y ) in terms of H(Yj), which is a lower bound on the required communication cost to
send the message corresponding to agent j. The last step is use Fano’s inequality to translate this bound to a bound on the
estimation error.

Let θ̂(Y ) denote the estimate obtained at the server using the received messages Y . Similar to the previous case, let
V̂ := argminυ∈Vℓ ∥θ̂(Y )− θυ∥2 denote the corresponding estimate of V. For V̂ ̸= V, the estimation error ∥θ̂(Y )− θυ∥22
satisfies ∥θ̂(Y )− θυ∥22 ≥ ∥θV̂ − θV∥22/4 ≥ δ2∥µV̂ − µV∥22 ≥ δ24−ℓ−1/(d− 1). The last bound follows by noting that
∥µυ − µυ′∥ ≥ δ2−ℓ/

√
d− 1 for υ ̸= υ′.

We set a := 2
√
log(4Mℓ), δ2 :=

[
9216(a+ 1/ℓ)

∑M
j=1 min

{
1,

H(Yj

(d−1)ℓ

}]−1

and ℓ = log4(T ). Since V → Y → V̂
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forms a Markov chain, Fano’s inequality tells us that

Pr(V̂ ̸= V) ≥ 1− I(V;Y ) + log 2

log |Vℓ|

≥ 1− 1

(d− 1)ℓ

 (d− 1)ℓ

4
+

M∑
j=1

[
(d− 1)ℓ(h2(e

−a2

) + ℓe−a2

)
]
+ log 2


≥ 1−


M∑
j=1

[
1

4M
min

{
1,

H(Yj)

(d− 1)ℓ

}
+

6

80M2ℓ2
+

1

256M4ℓ3

]
+

log 2

(d− 1)ℓ

 .

In the last step, we used the value of a along with the fact that h2(p) ≤ 1.2
√
p for all p ∈ [0, 1]. For T ≥ 2048, we have that

Pr(V̂ ̸= V) ≥ 4
5 −

1
4 = 11

20 ≥
1
3 . Hence, we can conclude that the estimation error is at least C

T
∑M

j=1 min
{
1,

H(Yj
(d−1)ℓ

} for some

universal constant C > 0 with probability at least 1/3. Consequently, unless
∑M

j=1 min
{
1,

H(Yj

(d−1)ℓ

}
is Ω(M(d − 1)ℓ),

the estimation error will satisfy Ω(1/MT ) with probability at least 1/3. This implies that for at least Ω(M) agents H(Yj)
should be at least as large as (d − 1)ℓ bits. In other words, the uplink cost (per agent) should be at least Ω(d log T ) bits
since ℓ = log4 T .

D. Sparse PLS
In this section, provide additional details and analysis of Sparse-PLS. We begin with the pseudo codes.

Algorithm 5 Sparse-PLS Norm Estimation: Agent j ∈ {1, 2, . . . ,M}
1: Input: The set of actions Bs
2: Set k ← 1
3: while True do
4: Play each vector in Bs for sk times and compute the sample mean θ̂

(j)
k

5: θ̃
(j)
k ← CLIP(θ̂

(j)
k , Rk +Bk)

6: Q(θ̃
(j)
k )← STOQUANT(θ̃

(j)
k , αk, Rk +Bk)

7: Send Q(θ̃
(j)
k ) to the server

8: if received terminate from server then
9: break

10: else
11: k ← k + 1
12: end if
13: end while

Algorithm 6 Sparse-PLS Norm Estimation: The Server

1: Input: The set of actions Bs
2: Set k ← 1
3: while True do
4: Compute θ̂

(SERV)
k := argminθ

d
m

∥∥∥ 1
M

∑M
j=1 Q(θ̃

(j)
k )−Xθ

∥∥∥2
2
+ λk∥θ∥1

5: if τk ≤ 1
4∥θ̂

(SERV)
k ∥ then

6: Server sends terminate to all agents
7: break
8: else
9: k ← k + 1

10: end if
11: end while
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In the pseudo codes for Sparse-PLS, X refers to the Rm×d matrix obtained by stacking the vectors in Bs one under the
other. The parameters for Sparse-PLS are set as sk := ⌈40σ2d log(16MK/δ)4k⌉, tk := ⌈mMs2k/d⌉, Rk := 2−k

√
m/d,

Bk = 7τk
√
m/d, τk := 3 · 2(−(k+1)/

√
M , αk = α0σ

√
s/sk, βk = β0τk and λk := 4σ

√
3

2msk
(
√

log(2d) +
√
log(4/δ).

The underlying philosophy behind the choice of these parameters is similar to that of PLS. The only additional parameters
in Sparse-PLS is the regularization constant λk and the size of the set Bs, m. λk is chosen based on analysis of the LASSO
estimator (Rigollet & Hütter, 2017) while m is chosen to ensure that X satisfies the restricted eigenvalue condition (Bickel
et al., 2009). In particular, based on the result in Baraniuk et al. (2008), we set m = 80(s log(150d/s) + log(4/δ)) which
ensures that with probability at least 1− δ/2 over the randomness of Bs the following holds for any θ ∈ Cs,

3

4
∥θ∥2 ≤

√
d

m
∥Xθ∥2 ≤

5

4
∥θ∥2.

In the above definition Cs = {θ : ∥θSc∥1 ≤ 3∥θS∥1 for all S ⊂ {1, 2, . . . , d} with |S| ≤ s} where θS refers to the
sub-vector of θ corresponding to the coordinates indexed by S.

Algorithm 7 Sparse-PLS Refinement: Agent j ∈ {1, 2, . . . ,M}
1: Input: The epoch index at the end of Norm Estimation stored as k0, The set of actions Bs
2: θ̄k0−1 ← 0, k ← k0
3: while time horizon T is not reached do
4: Play each vector in Bs for sk times and compute the sample mean θ̂

(j)
k

5: θ̃
(j)
k ← CLIP(θ̂

(j)
k − θ̄k−1, Rk +Bk)

6: Q(θ̃
(j)
k )← STOQUANT(θ̃

(j)
k , αk, Rk +Bk)

7: Send Q(θ̃
(j)
k ) to the server

8: Receive Q(θ̂
(SERV)
k ) from the server

9: θ̄k ← θ̄k−1 +Q(θ̂
(SERV)
k )

10: if k = k0 then
11: Set µ0 ← ∥θ̄k∥2
12: end if
13: Play the action a = θ̄k/∥θ̄k∥ for the next tk rounds.
14: k ← k + 1
15: end while

Algorithm 8 Sparse-PLS Refinement: The Server

1: Input: The epoch index at the end of Norm Estimation stored as k0, The set of actions Bs
2: θ̄k0−1 ← 0, k ← k0
3: while time horizon T is not reached do
4: Receive Q(θ̃

(j)
k ) from all the agents

5: Compute θ̂
(SERV)
k = θ̄k−1 + argminθ

d
m

∥∥∥ 1
M

∑M
j=1 Q(θ̃

(j)
k )−X(θ − θ̄k−1)

∥∥∥2
2
+ λk∥θ∥1

6: Q(θ̂
(SERV)
k )← DETQUANT(θ̂

(SERV)
k − θ̄k−1, βk, Bk + τk) and broadcasts it to all agents

7: k ← k + 1
8: end while

Before the proof of Theorem 6.1, we state and prove a lemma analogous to Lemma B.2 for sparse bandits.

Lemma D.1. For any epoch k in Sparse-PLS, the estimate θ̂
(SERV)
k satisfies

∥θ̂(SERV)
k − θ∗∥ ≤ τk,

with probability at least 1− δ/2.

Proof. Similar to the proof of Lemma B.2, we use induction and also define θ̄k−1 := 0 for all epochs k during the norm
estimation stage.
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In Sparse-PLS, the estimate θ̂
(SERV)
k is obtained by minimizing

Lk(θ) :=
d

m

∥∥∥∥∥∥ 1

M

M∑
j=1

Q(θ̃
(j)
k )−X(θ − θ̄k−1)

∥∥∥∥∥∥
2

2

+ λk∥θ∥1

=
d

m

∥∥∥∥∥∥ 1

M

M∑
j=1

(θ̃
(j)
k + η

(j)
k )−X(θ − θ̄k−1)

∥∥∥∥∥∥
2

2

+ λk∥θ∥1

=
d

m

∥∥∥∥∥∥ 1

M

M∑
j=1

(θ̂
(j)
k −Xθ̄k−1)1Rk+Bk

+
1

M

M∑
j=1

η
(j)
k −X(θ − θ̄k−1)

∥∥∥∥∥∥
2

2

+ λk∥θ∥1

=
d

m

∥∥∥∥∥∥ 1

M

M∑
j=1

(θ̂
(j)
k −Xθ̄k−1)1Rk+Bk

+
1

M

M∑
j=1

η
(j)
k −X(θ − θ̄k−1)

∥∥∥∥∥∥
2

2

+ λk∥θ∥1

=
d

m

∥∥∥∥∥∥Xθ∗ +
1

M

M∑
j=1

∆k −Xθ̄k−1 +
1

M

M∑
j=1

η
(j)
k −X(θ − θ̄k−1)

∥∥∥∥∥∥
2

2

+ λk∥θ∥1

=
d

m

∥∥∥∥∥∥Xθ∗ +
1

M

M∑
j=1

∆k +
1

M

M∑
j=1

η
(j)
k −Xθ

∥∥∥∥∥∥
2

2

+ λk∥θ∥1,

where ∆k corresponds to clipped sub-Gaussian observation noise. Using the result of Theorem 2.18 in (Rigollet & Hütter,
2017), we can conclude that

∥θ̂(SERV)
k − θ∗∥22 ≤

1024sd log(8K/δ)

mM

(
σ2

sk
+

α2
k

4s

)
.

Plugging in the choice of sk and αk yields,

∥θ̂(SERV)
k − θ∗∥2 ≤

3√
M
· 2−(k+1) = τk,

with probability at least 1− δ/K. Here, similar to proof of Lemma B.2 the choice of Rk and Bk allows us to use the clipped
sub-Gaussian concentration which is implicitly used while invoking the result from Rigollet & Hütter (2017).

Using an argument similar to the one in Lemma B.2, we can conclude that the above inequality holds for epochs during the
algorithm with probability at least 1− δ/2.

D.1. Proof of Theorem 6.1

The analysis for the regret performance of Sparse-PLS is almost identical to that of PLS, as described in Appendix B. Once
again, the regret is decomposed into the sum of regret incurred during the norm estimation stage and the refinement stage.

Recall that the regret during the norm estimation stage of PLS is bounded using the result in Lemma B.2. Since Lemma D.1
is identical to Lemma B.2, the proof of Lemma 4.2 follows through almost unchanged for the case of Sparse-PLS. The only
difference in the case of Sparse-PLS is that there are m actions in the basis set instead of d as in the case of PLS. This scales
the corresponding term in the regret incurred during the norm estimation stage by a factor of m/d resulting in an overall
regret of O(

√
sdMT log(d/δ) log(MT ) log(log T/δ)).

Similarly, the analysis in the refinement stage also follows through identically but for a couple of minor changes. The
regret during a exploration sub-epoch is also scaled by a factor of m/d for the same reason as in the case of the norm
estimation stage. The analysis for exploration sub-epoch follows through as is with the different value of tk which is
also scaled by a factor of s/d. Carrying out the same steps with these updated values result in an overall regret of
O(
√
sdMT log(d/δ) log(MT ) log(log T/δ)), as required.
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For the communication cost, the bound on the downlink cost follows as in case for PLS. For the case of the uplink cost,
note that in Sparse-PLS, the transmitted vector lies in Rm. Using the same argument in used on the proof of Lemma 4.5 for
vectors in Rm along with the updated choice of Rk, Bk and αk, we can conclude that each uplink message is at most O(m)
bits long, resulting in an overall uplink cost of O(m log T ) = O(s log dT ).

E. Extensions
E.1. Beyond the Unit Ball

The unit ball assumption on the action space can be relaxed to smooth action spaces without any change to the algorithm.
We refer an action spaceA to be smooth if for any θ, θ′ in the unit ball, ∥a(θ)− a(θ′)∥ ≤ L∥θ− θ′∥ for some L > 0, where
a(θ) = argmaxv∈A⟨v, θ⟩. The smoothness condition allows one to directly use the estimate of θ∗ as a proxy for θ∗ for
pure exploitation. In particular, for θ̂ satisfying ∥θ∗ − θ̂∥ ≤ τ , the regret incurred by using θ̂ as a proxy can be written as
⟨a(θ∗), θ∗⟩ − ⟨a(θ̂), θ̂⟩ ≤ ∥a(θ∗) − a(θ̂)∥∥θ∗ − θ̂∥ ≤ Lτ2. This result is generalization of Lemma 4.3 to smooth action
spaces. The rest of the analysis follows as is, yielding the result.

The assumption on the action space can be completely done away with to allow for general arbitrary actions by making
two minor modifications to the PLS algorithm. Firstly, during the exploration sub-epoch, the orthogonal basis of Rd

is replaced by a B ⊆ A, where the set B satisfies |B| = d, span(B) = Rd and that all the eigenvalues of
∑

x∈B xx⊤

are greater than some λ > 0. The existence of such a set B is a very mild assumption on the action set. We also
set the length of the exploration sub-epoch sk = ⌈40(σ/λ)2d log(8MK/δ)4k⌉ and modify the remaining parameters
appropriately. Secondly, on account of the possible non-smoothness of the action set, pure exploitation using θ̂ as a proxy
may no longer yield optimal regret guarantees as the optimal action may change by a lot even by a small perturbation
in θ∗. The non-smoothness necessitates a small amount of continuous exploration in the “exploitation” phase to avoid
sticking on one action, which we ensure using the uncertainty ellipsoid technique. In particular, for the rth instant during the
exploitation sub-epoch of the kth epoch, take the action Ar = argmaxa∈Ak

⟨a, θ̆r−1⟩+Γa⊤C−1
r−1a. In the above description,

Ak = {a ∈ A : ⟨a, θ̄k⟩ ≥ maxa′∈A⟨a′, θ̄k⟩ − 2τk}, Cr = Cr−1 + ArA
⊤
r , θ̆r−1 = C−1

r−1

∑r
l=1 Al(yl − ⟨Al, θ̄k⟩), where

Al denotes the action taken at the lth instant, yl denotes the corresponding reward, C0 = I (the identity matrix) and Γ > 0 is
an appropriately chosen constant.

The analysis for the modified version of PLS is very similar to that of the original one. Since B also spans Rd, the error
bounds on θ̂(SERV) follow as is. For the regret analysis, the regret for the exploration sub-epochs remains unchanged. In the
“exploitation” sub-epoch, we can use result from Rusmevichientong & Tsitsiklis (2010); Chu et al. (2011) to conclude that
the regret incurred during the sub-epoch is O(d

√
tk), which upon substituting the value of tk yields the same bound as in

the current version, upto constants. The final bound on the regret then follows exactly as described in Appendix B.3.

E.2. Beyond Linear Bandits

The idea of progressive learning and sharing and be extended to convex optimization to achieve optimal accuracy-
communication trade-off. In a follow up work (Salgia et al., 2023), we show how this idea of PLS can be used to
design algorithm for distributed stochastic convex optimization that achieves optimal regret and communication guarantees.
The primary idea is to progressively learn and share information about x∗, the minimizer, as opposed to about θ∗. The
proposed approach, called Communication Efficient Adaptive Learning (CEAL), builds upon minibatch gradient descent,
where the batch size is adaptively tuned to the gradient at that iterate using the norm estimation routine developed for PLS.

F. Empirical Studies
In this section, we provide empirical evidence that corroborates our theoretical findings. We compare our proposed PLS
algorithm with three popular distributed linear bandit algorithms, namely, Distributed Elimination for Linear Bandits
(DELB) (Wang et al., 2019), Federated Phased Elimination (Fed-PE) (Huang et al., 2021) and Distributed Batch Elimination
Linear Upper Confidence Bound (DisBE-LUCB) (Amani et al., 2022).

We consider a distributed linear bandit instance with d = 20, M = 10 agents which is run for a time horizon of T = 106

steps. The underlying mean reward vector is drawn uniformly from the surface of a unit ball. The rewards are corrupted with
a zero mean Gaussian with unit variance. We plot the averaged cumulative regret for different algorithms considered over
the time horizon of T in Fig. 1 and report the uplink and downlink communication costs in Table 1. Recall that the uplink
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(a) DELB (continuous action space) (b) DELB (discrete action space)

(c) Fed-PE (d) DisBE-LUCB

Figure 1: Cumulative Regret vs Time for different algorithms. The bold line represents the mean obtained over 10 Monte
Carlo runs and the shaded region represents the region of error bars corresponding to one standard deviation.

communication cost is defined as the number of bits sent by one agent to the server and the downlink cost is defined as the
number of bits broadcast by the server. All the results are reported after averaging over 10 Monte Carlo runs. For a fair
comparison, we assume that the real numbers are represented by log(MT ) bits, which comes out to 24 bits in our setting as
opposed to 32 for regular floats. We, however, for the purpose of implementation transfer the full float representation, which
works in favor of the other algorithms.

F.1. Experimental Setup

Since DELB, Fed-PE and DisBE-LUCB are designed for different settings, we perform a pairwise comparison of PLS with
each of these algorithms based on the setting for which they are original designed for. We describe each of experimental
setups in detail below.

• DELB: Since the underlying setting in DELB is the same as that considered in PLS, we carry out two sets of experiment
to compare the performance of PLS against that of DELB. In the first experiment, we consider a linear bandit instance
with unit ball as the action space. In the second experiment, we consider an action space consisting of K = 120 actions
drawn from a unit ball at random.

• FED-PE: We consider the shared parameter setting described in Huang et al. (2021). For each agent, we choose
K = 120 actions randomly from the unit ball, independent of other agents. The phase lengths for FED-PE are set to be

30



Distributed Linear Bandits under Communication Constraints

Experiment Algorithm Uplink Cost Downlink Cost

DELB continuous
action space

DELB 531.8 7400.2
PLS 103.0 139.6

DELB discrete
action space

DELB 336.0 4700
PLS 112.9 155.1

Federated
homogeneous setting

Fed-PE 72960 249900
PLS 301.1 402.5

Stochastic Contexts DisBE-LUCB 2000 2000
PLS 188.9 309.5

Table 1: Communication cost (in bits) for various algorithms against PLS in their corresponding experimental setup.
Reported values are obtained after averaging over 10 Monte Carlo runs.

growing in powers of 2, similar to the choice adopted in Huang et al. (2021).

• DisBE-LUCB: We adopt the same experimental setup as considered in Amani et al. (2022) for the evaluation of
DisBE-LUCB. However, instead of a distribution over 100 instances, we consider a distribution over 50 instances with
K = 40 actions in each of them.

Depending on the experimental setup, we either use the implementation of PLS as outlined in the main paper or that of its
extension to general action spaces as described in Appendix E.1.

F.2. Results

PLS offers a significantly lower cumulative regret as compared to DELB in both the cases and the significant improvement
of PLS over DELB in terms of communication cost also evident from Table 1. In particular, the difference in downlink cost
is significant due to the linear scaling with the number of agents for DELB. For the case for FED-PE, PLS outperforms it
in terms of regret incurred despite not being designed for this heterogeneous setting. In terms of communication cost, the
scaling with respect to the number of actions significantly deteriorates the uplink cost for FED-PE and the dependence on
d2 worsens the downlink cost. On the other hand, PLS continues to enjoy both small uplink and downlink costs. Lastly,
PLS also offers superior performance over DisBE-LUCB, both in terms of regret and communication cost, even within the
stochastic contextual bandit setup. The above experimental results demonstrate the improved performance of PLS over
existing distributed linear bandit algorithms across a variety of setups.
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