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Abstract
Many state-of-the-art hyperparameter optimiza-
tion (HPO) algorithms rely on model-based op-
timizers that learn surrogate models of the tar-
get function to guide the search. Gaussian pro-
cesses are the de facto surrogate model due to
their ability to capture uncertainty but they make
strong assumptions about the observation noise,
which might not be warranted in practice. In
this work, we propose to leverage conformal-
ized quantile regression which makes minimal
assumptions about the observation noise and, as
a result, models the target function in a more
realistic and robust fashion which translates to
quicker HPO convergence on empirical bench-
marks. To apply our method in a multi-fidelity
setting, we propose a simple, yet effective, tech-
nique that aggregates observed results across dif-
ferent resource levels and outperforms conven-
tional methods across many empirical tasks.

1. Introduction
Hyperparameters play a vital role in the machine learning
(ML) workflow. They control the speed of the optimization
process (e.g., learning rate), the capacity of the underly-
ing statistical model (e.g., number of units) or the general-
ization quality through regularization (e.g., weight decay).
While virtually all ML pipelines benefit from having their
hyperparameters tuned, this can be tedious and expensive
to do, and practitioners tend to leave many of them at their
default values.

Hyperparameter optimization (Feurer & Hutter, 2018) is
a powerful framework to tune hyperparameters automati-
cally with a large body of work to tackle this optimiza-
tion problem, spanning from simple heuristics to more
complex model-based methods. Random search-based ap-
proaches (Bergstra & Bengio, 2012) define a uniform dis-
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tribution over the configuration space and repeatedly sam-
ple new configurations until an total budget is exhausted.
Evolutionary algorithms modify a population of hyperpa-
rameter configurations by hand-designed mutations. Fi-
nally, model-based methods, such as Bayesian optimiza-
tion (Snoek et al., 2012) use the collected data points to
fit a surrogate model of the target objective, which informs
the sampling distribution so that more promising configu-
rations are selected over time.

Unfortunately, solving the HPO problem can become com-
putationally expensive, as each function evaluation incurs
the cost of fully training and validating the underlying ma-
chine learning model. Multi-fidelity HPO (Karnin et al.,
2013; Li et al., 2017) accelerates this process by termi-
nating the evaluation of under-performing configurations
early and only training promising configurations to the end.
Early stopping allows algorithms to explore more config-
urations within the total search budget. Baseline multi-
fidelity methods can be made more efficient by relying on
model-based sampling, exploiting past observations to se-
lect more promising configurations over time.

Model-based multi-fidelity methods constitute the state-
of-the-art in HPO today, but still face some limitations.
Concretely, we identify two major gaps with the current
approaches. First, Bayesian optimization usually assume
that the observation noise is homoskedastic and distributed
as a Gaussian. This allows for an analytic expression
of the likelihood for Gaussian processes, the most popu-
lar probabilistic model for Bayesian optimization (Snoek
et al., 2012). However, most HPO problems exhibit het-
eroskedastic noise that can span several orders of magni-
tude (Salinas et al., 2020; Cowen-Rivers et al., 2020). For
instance, the validation error of a model trained with SGD
can behave very sporadically for large leaning rate and not
taking this heteroskedasticity into account can severely hin-
der the performance of methods with Gaussian assump-
tions.

Second, it is difficult to model probabilistically the target
metric both across configurations and resources (e.g., num-
ber of epochs trained), while at the same time retaining
the simplicity of Gaussian processes. Previous work main-
tains separate models of the target at different resource lev-
els (Falkner et al., 2018; Li et al., 2022), or use a single
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joint model (Klein et al., 2020; Swersky et al., 2014). The
former does not take into account dependencies across re-
source levels, even though these clearly exist. The latter
has to account for the non-stationarity of the target func-
tion, and requires strong modeling assumptions in order to
remain tractable.

With this paper, we propose a conformalized quantile re-
gression surrogate model that can be used in the pres-
ence of any noise, possibly non Gaussian or heteroskedas-
tic. We further propose a new way to expand any model-
based single-fidelity HPO method to the multi-fidelity set-
ting, by aggregating observed results across different re-
source levels. This strategy can be used with most single-
fidelity method and greatly simplifies the model based
multi-fidelity setup. We show that, in spite of its simplicity,
our framework offers competitive results across most com-
mon single-fidelity methods and significant improvements
over baselines when paired with conformalized quantile re-
gression. Our main contributions are the following:

• We introduce a novel surrogate method for HPO
based on conformalized quantile regression which can
handle heteroskedastic and non-Gaussian distributed
noise.

• We propose a simple way to extend any single-fidelity
method into a multi-fidelity method, by using only the
last observed datapoint for each hyperparameter con-
figuration to train the function surrogate.

• We run empirical evaluations on a large set of bench-
marks, demonstrating that quantile regression surro-
gates achieve a more robust performance compared to
state-of-the-art methods in the single-fidelity case

• We show that our new multi-fidelity framework
outperforms state-of-the-art methods across multiple
single-fidelity surrogates.

The paper first reviews related work and then discuss our
proposed method for single-fidelity optimization leverag-
ing conformal quantile prediction. We then describe an
extension to the multi-fidelity case, before evaluating the
method on an extensive set of benchmarks.

2. Related work
Bayesian optimization is one of the most successful strate-
gies for hyperparameter optimization (HPO) (Shahriari
et al., 2016). Based on a probabilistic model of the objec-
tive function, it iteratively samples new candidates by op-
timizing an acquisition function, that balances between ex-
ploration and exploitation when searching the space. Typi-
cally, Gaussian processes are used as the probabilistic sur-
rogate model (Snoek et al., 2012), but other methods, such

as random forests (Hutter et al., 2011) or Bayesian neural
networks (Springenberg et al., 2016; Snoek et al., 2015) are
possible. Alternatively, instead of modeling the objective
function, previous work (Bergstra et al., 2011; Tiao et al.,
2021) estimate the acquisition function directly by the den-
sity ratio of well and poorly performing configurations.

Despite its sample efficiency, Bayesian optimization still
requires tens to hundreds of function evaluations to con-
verge to well-performing configurations. To accelerate the
optimization process, multi-fidelity optimization exploits
cheap-to-evaluate fidelities of the objective function such
as training epochs (Swersky et al., 2014). Jamieson & Tal-
walkar (2016) proposed to use successive halving (Karnin
et al., 2013) for multi-fidelity hyperparameter optimiza-
tion which trains a set of configurations for a small budget
and then only let the the top half configurations continue
for twice as many resources. Hyperband (Li et al., 2017)
calls successive halving as a sub-routine with varying min-
imum resources level, to avoid that configurations are ter-
minated too early. Falkner et al. (2018) combined Hyper-
band with Bayesian optimization to replace the inefficient
random sampling of configuration by Bayesian optimiza-
tion with kernel density estimators (Bergstra et al., 2011).
ASHA (Li et al., 2019) proposed to extend Hyperband to
the asynchronous case when using multiple workers which
led to significant improvements and Klein et al. (2020); Li
et al. (2022) later combined this method with Gaussian pro-
cess based Bayesian optimization. Instead of relying on
a model-based approach, Awad et al. (2021) instead pro-
posed to combine Hyperband with evolution algorithms.

An orthogonal line of work models the learning curves of
machine learning algorithms directly; see Mohr & van Rijn
(2022) for an overview. Previous work by Domhan et al.
(2015) fits an ensemble of parametric basis functions to the
learning curve of a neural network. This method can be
plugged into any HPO approach such that evaluation of an
network is stopped if it is unlikely to outperform previous
configurations and the prediction of the model is returned
to the optimizer. Klein et al. (2017) used a Bayesian neural
networks to predict the parameters of these basis functions
which is able to model the correlation across hyperparam-
eter configurations. Wistuba & Pedapati (2020) proposed
neural networks architectures that ranks learning curves
across different tasks.

To avoid requiring Gaussian homoskedastic noise, several
papers considered the use of quantile regression for HPO
(Picheny et al., 2013; Salinas et al., 2020; Moriconi et al.,
2020) but those approaches do not ensure that the provided
uncertainties are well calibrated. Conformal prediction has
been gaining traction recently in ML applications due to its
ability to provide well calibrated uncertainty with widely
applicable assumptions, in particular not requiring the pres-
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ence of a Gaussian homoskedastic distribution (Shafer &
Vovk, 2007). To the best of our knowledge, conformal pre-
diction has only been considered for single-fidelity HPO by
(Stanton et al., 2022) and Doyle (2022). The former applies
conformal correction to standard GP posteriors in order to
improve model calibration on non-Gaussian noise, whereas
we build our method on quantile regression which is al-
ready robust to non-Gaussian and heteroskedastic noise.
The latter conducted a preliminary study showing that con-
formal predictors can outperform random-search on four
datasets. The key difference to our method is that we uti-
lize the framework of conformal quantile prediction from
(Romano et al., 2019) which leverages quantile regression
allowing to bypass the need to fit an additional model for
the variance. In both cases, our work differs as we con-
sider the asynchronous multi-fidelity case which allows the
method to perform much better in presence of hundreds of
observations.

3. Single-fidelity Hyperparameter
Optimization

In the single-fidelity hyperparameter optimization setting,
we are interested in finding the hyperparameter minimizing
of a blackbox function f :

x∗ = argmin
x∈X

f(x)

where f(x) ∈ X denotes the validation error obtained for
a hyperparameter configuration x. Hyperparameters may
include the learning rate, number of layers and number of
hidden dimensions of a transformer or a convolutional neu-
ral network. Given that evaluating f is typically expen-
sive and gradients are not readily available, we look for
gradient-free and sample efficient optimization methods.

Bayesian Optimization is arguably one of the most popu-
lar approaches owing to its ability to efficiently trade-off
exploration and exploitation when searching the configu-
ration space. In each iteration n, a probabilistic model of
the objective function f is fitted on the n previous obser-
vations D = {(x1, y1), . . . , (xn, yn)}; the first initial con-
figurations are typically drawn at random. To select the
next point to evaluate, an acquisition function is then opti-
mized to select the most promising candidate based on the
probabilistic surrogate, for instance by picking the config-
uration that maximizes the expected improvement (Jones
et al., 1998).

The standard approach to model the objective function uses
Gaussian Processes due its computational tractability and
theoretical guarantees (Srinivas et al., 2012). However,
this approach assumes that the observation noise is Gaus-
sian and homoskedastic. We next describe an approach to
lift this restriction by leveraging quantile regression with

conformal prediction as a probabilistic model for f .

4. Conformal Quantile Regression
Preliminaries. For a real-valued random variable Y , we
denote by g(y) its probability density function and by
FY (y) =

∫ y
−∞ g(t)dt its cumulative distribution function

(CDF). The associated quantile function of Y is then de-
fined as follows:

F−1Y (α) = inf
y∈R
{FY (y) ≥ α}.

The quantile function allows to easily obtain confidence in-
tervals. One can also easily sample from the distribution by
first sampling a random quantile uniformly α ∼ U([0, 1])
and then computing y = F−1Y (α) which provides one sam-
ple y from the distribution Y .

Quantile regression. Given data drawn from a joint dis-
tribution (x, y) ∼ F(X,Y ), quantile regression aims to esti-
mate a given quantile α of the conditional distribution of Y
given X = x, e.g. to learn the function

qα(x) = F−1Y |X=x(α)

which predicts the quantile α conditioned on x. This prob-
lem can be solved by minimizing the quantile loss function
(Bassett & Koenker, 1982) for a given quantile α and some
predicted value ŷ:

Lα(y, ŷ) :=

{
α(y − ŷ) if y − ŷ > 0,

(1− α)(ŷ − y) otherwise.
(1)

A critical property is that minimizing the quantile loss al-
lows to retrieve the desired quantile in the sense that

argmin
ŷ

Ey∼FY [Lα(y, ŷ)] = F−1Y (α).

Given a set of n observations D = {(xi, yi)}ni=1, one can
thus estimate the quantile function by training a model q̂α
with parameters θ that minimizes the quantile loss given by
Eq. 1:

θ∗ = argmin
θ

1

n

n∑
i=1

Lα(yi, q̂α(xi)). (2)

Quantile Regression Surrogate. We now explain how
we can leverage quantile regression to build a probabilistic
surrogate for Bayesian Optimization.

To this end, we estimate m models by minimizing Eq.
2 for equally spread-out quantiles {α1, . . . , αm} where
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Figure 1: Samples from the synthetic function f(x) ∼ N (0, ρ(x)2) to be minimized (left), illustration of the Thompson
sampling procedure based on m = 8 predicted quantiles (middle) and acquisition function obtained for our method and a
GP (right). When sampling, we sample one random quantile for each candidate and pick the best configuration obtained.

Samples from f(x) ∼ (0, ρ(x)2)
f(x) ∼ (0, ρ(x)2)
±ρ(x)

x * = argminx∈X ̃y(x)x * = argminx∈X ̃y(x)x * = argminx∈X ̃y(x)x * = argminx∈X ̃y(x)x * = argminx∈X ̃y(x)x * = argminx∈X ̃y(x)x * = argminx∈X ̃y(x)x * = argminx∈X ̃y(x)x * = argminx∈X ̃y(x)

Illustration of the proposed sampling Acquisition function
GP
QR

αj = j/(m+1) and wherem > 1 is an even number. This
allows to provide probabilistic predictions conditioned on
any hyperparameter x. We then use independent Thomp-
son sampling as the acquisition function by taking advan-
tage that samples can easily be obtained through predicted
quantiles. Indeed, one can then draw a sample ỹ(x) from
the estimated conditional distribution of FY |X by simply
sampling a quantile at random among the m quantiles pre-
dicted by the model {q̂α1

(x), . . . , q̂αm(x)}.1

To select the next configuration to evaluate, we then use
independent Thompson sampling as the acquisition func-
tion. We first sample a set of N candidates X̃ =
{x̃1, . . . , x̃N} uniformly at random and then sample a val-
idation performance for each of those candidates to obtain
{ỹ(x̃1), . . . , ỹ(x̃N )}. We then return the configuration that
has the lowest sampled value

x∗ = argmin
x∈{x̃1,...,x̃N}

ỹ(x).

We illustrate this procedure in Figure 1 which shows how
different quantiles are sampled in a toy example and how
the next point is selected by picking the configuration with
the lowest sampled predicted value. In this example, we
consider f(x) ∼ N (0, ρ(x)2) as the function to minimize
with ρ(x) = sin(x)2 + κ where κ is set to κ = 0.3 to en-
sure positive variance. Samples of this function are shown
in Figure 1, left. For this function, a standard GP is not
able to represent the heteroskedastic variance and as such
cannot favor any part of the space as shown by its uni-
formly distributed acquisition. However, while the mean

1One downside typically associated with fitting m models
is that the quantiles predicted may not be monotonic (Gasthaus
et al., 2019), however this problem does not occur in our case
since we simply use samples from the predicted distribution.

of the function is always zero, the optimal points to sample
are both situated at π/2 and 3π/2 where the uncertainty is
the highest. While, the GP cannot model this information
given its homoskedastic noise, quantile regression is able
to regress the conditional quantiles and therefore correctly
identify the best regions to sample as evidenced by the ac-
quisition function which peaks at the two best values for
the next candidate.

Conformalizing predictions. While quantile regression
can learn the shape of any continuous distribution given
enough data, the model predictions are not guaranteed to
be well calibrated given insufficient data.

More precisely, the quantiles estimated allows us to con-
struct m/2 confidence intervals

Cj(x) =
[
q̂αj (x), q̂1−αj (x)

]
for j ≤ m/2.2 For each confidence interval, we would like
to have a miscoverage rate 2αj , i.e. the predictions should
have probability at least 1− 2αj of being in the confidence
interval Cj(x),

P[Y ∈ Cj(x)] = 1− 2αj . (3)

In the presence of heteroskedasticity, this requires to have
the length of Cj(x) to depend on x which is possible with
the use of quantile regression as illustrated in Figure 1.
However, the coverage statement of Eq. 3 cannot be guar-
anteed when fitting models on finite sample size. Miscali-
brated intervals can be problematic for HPO, as it may lead
to a model converging early to a suboptimal solution. To

2Note that the values chosen for the quantiles αj = j/(m +
1) ensures that the quantile 1 − αj belongs to the m quantiles
computed since 1− αj = αm−j .
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address this problem, we propose using the split conformal
method from Romano et al. (2019) that allows to obtain
robust coverage for each m/2 of the predicted confidence
intervals that we now describe.

The method consists in applying an offset on each con-
fidence interval, which is estimated on a validation set.
We divide the dataset of available observations D =
{(xi, yi)}ni=1 into a training set Dtrain and a validation set
Dval. After fitting each of the m quantile regression models
q̂αj on the training setDtrain, we compute conformity scores
that measure how well the predicted conformal intervals fit
the data for each sample in the validation set:

Ej =
{

max(q̂αj (xi)− yi, yi − q̂1−αj (xi))
}|Dval|
i=1

. (4)

The intuition of the conformity scores is the following.
First note that the sign of the score is positive when the
target yi is outside of the target and negative when the tar-
get falls inside the predicted interval. This allows the score
to account for both overcoverage and undercoverage cases
as we want to reduce the interval in cases of overcoverage
and increase it in case of undercoverage. In addition, the
score amplitude always measures the distance to the closest
quantile of the confidence interval, i.e. the score amplitude
of each sample is |yi − qi| where qi is the closest quantile
from yi between q̂αj (xi) and q̂1−αj (xi).

Given this score we compute a correction γj which is set to

γj = (1−2αj)

(
1 +

1

|Dval|

)
-th empirical quantile of Ej .

(5)

The conformalized prediction interval for a new data point
(x, y) is then given by

Ĉj(x) =
[
q̂αj (x)− γj , q̂1−αj (x) + γj

]
. (6)

An important property of this procedure is that the cor-
rected confidence intervals are guaranteed to have valid
coverage, e.g. the probability that y belongs the prediction
interval Ĉj can then be shown to arbitrarily close to 1−2αj
(Romano et al., 2019)

1− 2αj ≤ P[Y ∈ Ĉj(x)] ≤ 1− 2αj +
1

|Dval|+ 1
.

Once the confidence intervals are readjusted by offsetting
quantiles, we can sample new candidates to evaluate us-
ing a protocol based on Thompson sampling discussed in
the previous section while being able to guarantee coverage
properties of our predicted quantiles. The pseudo-code of

the proposed algorithm to select the next configuration to
evaluate is given in Algo. 1 where the key three steps are
1) fitting quantile regression models, 2) computing quantile
adjustments and 3) sampling the best candidate with inde-
pendent Thompson sampling.

5. Multi-fidelity and Successful Halving
Single-fidelity methods steer the search towards the most
promising part of the configuration space based on the ob-
served validation performance of hyperparameter configu-
rations, however, this does not consider leveraging other
available signals, such as the loss emitted at each epoch for
a neural network trained with SGD. Multi-fidelity meth-
ods consider this additional information to further acceler-
ate the search by cutting poor configurations preemptively.

Formally, multi-fidelity optimization considers the follow-
ing optimization problem:

x∗ = argmin
x∈X

f(x, rmax)

where f(x, rmax) denotes the blackbox error obtained for
a hyperparameter x at the maximum budget rmax (for in-
stance the maximum number of epochs) and we assume
that r ∈ [rmin, rmax]. Typically, early values of f(x, r) for
r < rmax are informative of f(x, rmax), while being com-
putationally cheaper to collect and can help us to cut poorly
performing configurations.

Asynchronous Successive Halving. Asynchronous Suc-
cessive Halving (ASHA) (Li et al., 2019) is a multi-fidelity
method that can leverage several workers to evaluate mul-
tiple configurations asynchronously while stopping poor
configurations early. The method starts by evaluating a list
of random configurations in parallel for a small initial bud-
get. When a result is collected from a worker, it is contin-
ued or stopped based on its result - the evaluation of the
configuration continues if it is in the top results seen so
far for a given fidelity and interrupted otherwise. Stopped
configurations are replaced with new candidates sampled
randomly and the process is iterated until the tuning budget
is exhausted.

ASHA avoids synchronization points by evaluating each
configuration based on the data available at the time, which
can lead to false positives in the continuation decision. In-
deed, some configurations may be continued due to poor
competition rather than good performance and would have
been stopped if more data was available. However, the
avoidance of synchronization points efficiently deals with
straggler evaluation and is one of the key components of the
method’s excellent performance in practice. The pseudo-
code of the method is given in the appendix.
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Algorithm 1 CQR candidate suggestion pseudo-code.

1: function SUGGEST()
2: Input: configuration space X , set of observations

D, number of quantiles m, number of candidates N
3: Output: next configuration to evaluate
4: Dtrain,Dval = split train val(D)
5: for 1 ≤ j ≤ m do
6: Fit model q̂αj on Dtrain with Eq. 2
7: end for
8: for 1 ≤ j ≤ m/2− 1 do
9: Compute conformity scores Ej with Eq. 4

10: Compute correction γj with Eq. 5
11: end for
12: X̃ = Sample N candidates from X
13: for 1 ≤ i ≤ N do
14: Draw random quantile j in [1,m]
15: if j < m/2 then
16: ỹi = q̂αj (xi)− γj
17: else
18: ỹi = q̂αj (xi) + γm−j
19: end if
20: end for
21: i∗ = argmini ỹi
22: return xi∗
23: end function

Model-based ASHA. One pitfall of ASHA is that can-
didates are sampled randomly at initialization and when
workers become free after configurations are interrupted.
However after spending some time in the tuning process,
we gathered results which we would clearly like to be able
to bias the search towards the most promising parts of the
configuration space.

One challenge is that most single-fidelity model-based ap-
proaches regress a surrogate model f(x, rmax) given ob-
servations at the final fidelity rmax. It becomes then diffi-
cult to combine model-based and multi-fidelity approaches
given that when we stop a poor configuration at a resource
r < rmax, we are unsure about what would have been the
value at f(x, rmax).

Bridging single and multi-fidelity methods. We pro-
pose a simple data transformation that allows to use any
single fidelity method in the multi-fidelity setting. We de-
note the configurations and evaluations obtained at a given
time as {

(xi, {f(xi, r1), . . . , f(xi, rnxi )})
}n
i=1

where n denotes the number of configurations evaluated
and nx denotes the number of fidelities evaluated for a con-
figuration x.

We propose to consider the transformation that takes the

last value of the time-observations of a given configuration.
Namely, we propose to consider the transformation: z =
f(x, rnx) and then use a single-fidelity method rather than
random-search to determine the best next configuration to
evaluate given the observations D = {(xi, zi)}ni=1 while
using ASHA for the stopping decisions.

Relying on the last observed value f(x, rnx) rather than
all fidelities f(x, r) for r ≤ rnx significantly simplifies
the multi-fidelity setup but obscures a portion of the avail-
able signal. However, as evaluating configuration candi-
dates longer is expected to improve their result, the data
transformation is effectively pushing the poor and well per-
forming configurations further apart. Assuming configu-
rations are stopped with a probability inversely correlated
with their performance and their results would not cross if
the training were to continue, the result-based ordering of
configurations remains constant regardless of whether we
use the last or final observation. This means that it remains
possible under those assumptions to discriminate between
promising and not-promising configurations. 3

In addition to working well with the Conformal Quantile
Regression that we introduced, we will also show in our
experiments that this simple transformation allows to com-
bine single-fidelity methods with ASHA while reaching
the performance of state-of-the-art dedicated model-based
multi-fidelity methods.

6. Experiments
We evaluate our method against state-of-the-art HPO al-
gorithms on a large collection of real-world datasets on
both single and multi-fidelity tasks. The code to repro-
duce our results is available at https://github.com/
geoalgo/syne-tune/tree/icml_conformal.

Benchmarks. Our experiments rely on 13 tasks coming
from FCNet (Klein & Hutter, 2019), NAS201 (Dong &
Yang, 2020) and LCBench (Zimmer et al., 2021) bench-
marks as well as NAS301 (Siems et al., 2020) using the im-
plementation provided in (Pfisterer et al., 2022). All meth-
ods are evaluated asynchronously with 4 workers. Details
on these benchmarks and their configuration spaces distri-
butions are given in Appendix B.

Baselines. For single-fidelity benchmarks, we compare
our proposed method (CQR) with random-search (RS)
(Bergstra et al.), TPE (Bergstra et al., 2011), Gaussian
Process (GP) (Snoek et al., 2012), regularized-evolution

3The accentuated spread between bad and good configurations
can be mitigated by using quantile normalization as the transfor-
mation is invariant to monotonic changes. We do not report results
for this approach as it adds a layer of complexity and performed
on-par with just taking the last observations in our experiments.

6

https://github.com/geoalgo/syne-tune/tree/icml_conformal
https://github.com/geoalgo/syne-tune/tree/icml_conformal


Optimizing Hyperparameters with Conformal Quantile Regression

(REA) (Real et al., 2019) and BORE (Tiao et al., 2021).
For multi-fidelity benchmarks, we compare against ASHA
(Li et al., 2019), BOHB (Falkner et al., 2018), Hyper-Tune
(HT) (Li et al., 2022) and Mobster (MOB) (Klein et al.,
2020).

Experiment Setup. All tuning experiments run asyn-
chronously with 4 workers and are stopped when 200∗rmax
results were observed, which corresponds to seeing 200 dif-
ferent configurations for single-fidelity methods, or when
the wallclock time exceeded a fixed budget. All runs are
repeated with 30 different random seeds, and we report
mean and standard errors. We use gradient boosted trees
(Friedman, 2001) for the quantile-regression models with
the same hyperparameter used for BORE. We use the simu-
lation backend provided by Syne Tune (Salinas et al., 2022)
on a AWS m5.4xlarge machine to simulate methods
which allows to account for both optimizers and blackbox
runtimes.

Metrics. We benchmark the performance of methods us-
ing normalized regret, ranks averaged over tasks and crit-
ical diagrams. The normalized regret, also called average
distance to the minimum, is defined as (yt− ymin)/(ymax−
ymin) where ymin and ymax denotes respectively the best and
worse possible values of the blackbox f and yt denotes the
best value found after at a time-step t for a given method.
To aggregate across tasks, we report scores at 50 fractions
of the total budget for each tasks. We then average normal-
ized regret over each budget proportion across tasks and
seeds. We compute ranks for each method at all time-steps
and also average those values over tasks and seeds. Crit-
ical diagrams show group of methods that are statistically
tied together with a horizontal line using the statistical test
proposed by (Demšar, 2006). They are computed over av-
eraged ranks of the methods obtained for a fixed budget.
The performance of all methods per task is also given in
the appendix in Fig. 3, 4, 5.

Results discussion for single-fidelity. Aggregated met-
rics of single-fidelity methods are shown in Figure 2 top.
Our proposed method (CQR) outperforms all baselines in
term of both rank and regret. In particular, critical diagrams
shows that our method outperforms all baselines at 50% of
the tuning budget and is only tied statistically to (BORE)
given 100% of the budget. Our results also show that GP-
based tuning performs really well in the low sample regime
where it can rely on its informative prior. After enough ob-
servations, our data-driven approach starts to outperform
Bayesian competitor as it can model irregular noise better.

Analyzing surrogate performance. To better under-
stand performance gains, we now analyze the properties
of different surrogate models in more detail. In Tab. 1,

Table 1: RMSE, Calibration error and runtime for different
surrogates when increasing the number of samples.

RMSE ↓ Calibration error ↓ Runtime ↓
model GP QR CQR GP QR CQR GP QR CQR
n

16 1.01 0.78 0.81 0.06 0.13 0.13 1.11 1.13 1.06
64 0.92 0.57 0.58 0.04 0.10 0.08 1.71 1.48 1.43
256 0.85 0.43 0.44 0.06 0.05 0.04 2.27 1.75 1.71
1024 0.58 0.37 0.37 0.11 0.04 0.03 20.03 2.23 2.16

we compare the surrogate accuracy (RMSE), the quality of
their uncertainty estimate (calibration error) and their run-
time. In particular, we measure those metrics for different
number of samples n. In each case, we draw a random sub-
set of size n to train the surrogate model and then evaluate
the three metrics on remaining unseen examples. Results
are averaged across seeds and benchmarks and we normal-
ize the target with quantile normalization. Results per task
are also given in the appendix as well as the definition of
calibration error metric.

We compare three surrogates: the baseline GP, conformal-
ized quantile regression CQR as well as quantile regres-
sion QR. Compared to GP, the RMSE of the boosted-trees
surrogates is always better, which is expected as boosted-
trees are known for their good performance on tabular data.
However, a critical aspect in HPO is to provide good un-
certainty estimates in addition to good mean predictors as
uncertainty plays a critical in balancing exploration versus
exploitation.

To measure the quality of uncertainty estimates, we analyze
the calibration error of the different surrogates which mea-
sures how much over or under confident are each predicted
quantiles of the surrogate predictive distribution. When few
observations are available (e.g. when n ≤ 64), the quality
of uncertainty estimates of GP is better compared to both
boosted tree-methods, which is expected as GP can rely
on their prior in this regime whereas data-driven QR and
CQR lack the amount of data to estimate quantile levels
well enough. The lack of data also means that CQR can-
not adjust confidence intervals accurately given that its val-
idation set is too small and its calibration performance just
matches QR. However, as the number of samples increases,
the calibration of tree-based methods quickly becomes bet-
ter, which underlines that quantile regression better fits the
noise function observed in the benchmarks. As expected
given the theoretical coverage guarantees, the calibration
of CQR exceeds the calibration of QR given sufficient data
making it a better suited surrogate for HPO.

Results discussion for multi-fidelity. Next, we analyze
the performance in the multi-fidelity setting in the middle
of Fig. 2 where we show the performance of (CQR+MF)
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Figure 2: Performance for single fidelity (top) multi-fidelity (middle) and multi-fidelity variants (bottom) for average rank
over all tasks (left), normalized regret (middle) and critical diagrams obtained at 50% and 100% of the total budget (right).

which combines the single-fidelity method with the simple
transformation described in section 5.

In contrast to single-fidelity, multi-fidelity optimization
quickly yields many hundreds of observations and the ma-
jority of the tuning process lies in the high-data regime.
In this setup, (CQR+MF) shows significant improvement
in term of HPO performance. In particular, while most
multi-fidelity approaches are not statistically distinguish-
able from ASHA, our proposed method (CQR+MF) of-
fers statistically significant improvements over ASHA at all
times and over all other model-based multi-fidelity meth-
ods after spending 50% and 100% of the total budget. We
understand the improvement mainly comes from the multi-
fidelity setting which offers more observations to the HPO
tuning methods which plays into the strengths of the CQR
surrogate illustrated in the previous paragraph in term of
accuracy and calibration.

Ablation study. The surrogate analysis showed that con-
formal prediction improves the calibration of quantile re-
gression but has little effect on the surrogate RMSE. To
examine the benefit of this contribution on the HPO set-
ting, we next evaluate quantile regression with and without
applying conformal correction (QR+MF) in the bottom of
Fig. 2. The performance of QR+MF is much worse than
CQR+MF which highlights the benefit of the better uncer-
tainty provided by conformalizing predictions.

Next, we investigate in Fig. 2 the performance of the best
single-fidelity methods REA, GP and BORE extended to
the multi-fidelity setting with our simple extension. As for
QR+MF and CQR+MF, all those methods surrogates are
trained using the last fidelity observed for each hyperpa-
rameter and the worst configurations are stopped with asyn-
chronous successful halving. While those methods perform
worse than CQR+MF, they all outperform ASHA in term
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of average rank and regret except for REA which we be-
lieve is due to the lower performance of the method. Those
simple extensions also match or improve over the perfor-
mance of dedicated model-based multi-fidelity methods.

This illustrates the robustness of the proposed extension
with respect to the choice of the single-fidelity method also
shows the potential of future work to extend other advanced
single fidelity methods - for instance multi-objective or
constrained - to the multi-fidelity case.

7. Conclusion
We presented a new HPO approach that allows to use
highly accurate tabular predictors, such as gradient boosted
trees, while obtaining calibrated uncertainty estimates
through conformal predictions. In addition, we showed that
most single-fidelity methods can be extended to the multi-
fidelity case by just using the last fidelity available while
achieving good performance.

The method we proposed has a few limitations. For in-
stance the use of Thompson Sampling may be less efficient
in the presence of many hyperparameters, as such further
work could consider extending the method with other ac-
quisition functions, such as UCB. Further work could also
investigate providing regret bounds or extension to support
multi-objective or transfer learning scenarios.
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A. ASHA description
We recall how the method ASHA proposed by (Li et al., 2019) works. Given some positive constant η ≥ 2, let us define a
finite set of rungsR = {η0rmin, η

1 ∗rmin, η
2rmin, ..., rmax}. Successive halving (Karnin et al., 2013; Jamieson & Talwalkar,

2016) starts with a set of N = ηK initial candidates, where for simplicity, we assume that K = logη rmax/rmin. Now,
in the first iteration, successive halving collects the performance of all N configurations on rmin and only continues the
evaluation of the top 1/η configurations for the next rung level. This process is iterated until the maximum resource level
rmax is reached and repeated until we reach some total budget for the entire search process.

Successive halving can be trivially parallelized in the synchronous setting, however, this will require synchronization points
at each rung level to wait for stragglers. Li et al. (2019) adapted successive halving to the asynchronous setting (ASHA),
where configurations are immediately promoted to the next rung level, once we observed at least η configurations. While
this potentially leads to the promotion of configurations that are not among the top 1/η configurations, it removes any
synchronization overhead and has been shown to perform very well in practice. See Algo. 2 for the pseudo-code of ASHA.

Algorithm 2 ASHA pseudo-code.

1: function ASHA()
2: Input: minimum resource rmin, maximum resource rmax, reduction factor η
3: repeat
4: for each free worker do
5: (x, k) = get job()
6: run then return val loss(x, rminη

k)
7: end for
8: for completed job (x, k) with loss l do
9: Update configuration x in rung k with loss l.

10: end for
11: until desired
12: end function

13: function get job()
14: // Check if there is a promotable config.

15: for k = blogη(rmax/rmin)c − 1, . . . , 1, 0 do
16: candidates = top k(rung k, |rung k|/η)
17: promotable = {t ∈ candidates : t not promoted}
18: if |promotable| > 0 then
19: return promotable[0], k + 1
20: end if
21: // If not, grow bottom rung.

22: Suggest random configuration x.
23: return x, 0
24: end for
25: end function

B. Experiment details
Statistics of different blackboxes are given in Table 2 and their configuration spaces are given in Table 3 together with
the base distribution used for each hyperparameters which are used when sampling random candidates. For LCBench, we
run the 5 most expensive tasks among the 35 tasks available (”airlines”, ”albert”, ”covertype”, ”christine” and ”Fashion-
MNIST”). Since LCBench does not contain all possible evaluations on a grid, we run evaluations using a k-nearest-
neighbors surrogate with k = 1. We use Yahpo implementation (Pfisterer et al., 2022) to get access to NAS301 (Siems
et al., 2020).

Schedulers details We give here the list of parameters used for running schedulers in our experiments. In general, the
Syne Tune defaults have been used.
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Table 2: Tabulated benchmark statistics

Benchmark #Evaluations #Hyperparameters #Tasks #Fidelities

FCNet 62208 9 4 100
LCBench 2000 7 5 52
NAS201 15625 6 3 200
NAS301 NA 35 1 97

Table 3: Configuration spaces for all tabulated benchmarks.

Benchmark Hyperparameter Configuration space Domain

FCNet activation 1 [tanh, relu] categorical
activation 2 [tanh, relu] categorical
batch size [8, 16, 32, 64] finite-range log-space
dropout 1 [0.0, 0.3, 0.6] finite-range
dropout 2 [0.0, 0.3, 0.6] finite-range
init lr [0.0005, 0.001, 0.005, 0.01, 0.05, 0.1] categorical
lr schedule [cosine, const] categorical
n units 1 [16, 32, 64, 128, 256, 512] finite-range log-space
n units 2 [16, 32, 64, 128, 256, 512] finite-range log-space

NAS201 x0 [avg pool 3x3, nor conv 3x3, skip connect, nor conv 1x1, none] categorical
x1 [avg pool 3x3, nor conv 3x3, skip connect, nor conv 1x1, none] categorical
x2 [avg pool 3x3, nor conv 3x3, skip connect, nor conv 1x1, none] categorical
x3 [avg pool 3x3, nor conv 3x3, skip connect, nor conv 1x1, none] categorical
x5 [avg pool 3x3, nor conv 3x3, skip connect, nor conv 1x1, none] categorical

LCBench num layers [1, 5] uniform
max units [64, 512] log-uniform
batch size [16, 512] log-uniform
learning rate [1e-4, 1e-1] log-uniform
weight decay [1e-5, 0.1] uniform
momentum [0.1, 0.99] uniform
max dropout [0.0, 1.0] uniform

NAS301 edge-normal-{0-13} [max pool 3x3, avg pool 3x3, skip connect, sep conv 3x3, sep conv 5x5, dil conv 3x3, dil conv 5x5] categorical
node-normal-{0-13} [max pool 3x3, avg pool 3x3, skip connect, sep conv 3x3, sep conv 5x5, dil conv 3x3, dil conv 5x5] categorical
inputs-node-normal-{3-5} [0 1, 0 2, 1 2] categorical
inputs-node-reduce-{3-5} [0 1, 0 2, 1 2] categorical

• REA is run with a population size of 10, and 5 samples are drawn to select a mutation from

• GP is run using a Matérn 5
2 kernel with automatic relevance determination parameters. For each suggestion, the

surrogate model is fit by marginal likelihood maximization, and a configuration is returned which maximizes the
expected improvement acquisition function. This involves averaging over 20 samples of fantasy outcomes for pending
evaluations.

• TPE is based on a multi-variate kernel density estimator as proposed by Falkner et al. (2018) to capture interactions
between hyperparameters, which is not possible with unit-variant kernel density estimator as used for the original TPE
approach (Bergstra et al.). We limit the minimum bandwidth for the kernel density estimator to 0.1 to avoid that all
probability mass is assigned to a single categorical value, which would eliminate extrapolation.

• ASHA is running the stopping variant described in (Klein et al., 2020) with grace period 1 and reduction factor 3, so
that stopping trials happens after 1, 3, 9, . . . epochs. Configurations for new trials are sampled at random.

• BOHB uses the same multi-variate kernel density estimator as TPE, and hyperparameters are set to default values
in Falkner et al. (2018). Note that BOHB uses the same asynchronous scheduling as ASHA and MOB, while the
algorithm in Falkner et al. (2018) is synchronous.

• MOB is running the same scheduling as ASHA, but configurations for new trials are chosen as in Bayesian optimiza-
tion. We deal with pending evaluations by averaging the acquisition function over 20 samples of fantasy outcomes.

• BORE is evaluated with XGBoost as the classifier with default hyperparameters (Chen & Guestrin, 2016). We use the
default hyperparameters of the method, in particular, γ = 1/4 which means that the method maximizes the probability
that a configuration is in the top 25% of configurations.

• HT uses the same rung levels (given by grace period and reduction factor) as ASHA and fit independent Gaussian
process models to data at each rung level. Compared to MOB, HT is using a more advanced acquisition function,
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which averages the rung level models with a weighting depending on the fraction of trials which flipped ranks between
low and high levels.

• QR and CQR: we estimate m = 4 quantiles by fitting gradient boosted trees models with quantile-losses and we
use the same hyperparameter as BORE for the boosted-trees. We conformalize only when more than 32 samples are
available to avoid poorly estimated correction due to too little samples and use 10% of the data for validation. We
sample N = 2000 candidates when performing independent Thompson Sampling to select the next candidate.

• {REA/GP/BORE/CQR} + MF: for these methods, we run ASHA by calling each single fidelity method when a
new configuration has to be suggested using the data transformation proposed in section 5 to obtain the method
observations D = {(xi, zi)}ni=1.

All multi-fidelity methods based on successful-halving/ASHA (e.g. all except BOHB) uses a single bracket. We use
implementations of all baselines provided in Syne Tune (https://github.com/awslabs/syne-tune).

C. Performance per task
We plot the performance of methods on all 13 tasks for single-fidelity methods in Figure 3 and 4 for multi-fidelity methods.

D. Surrogate performance
RMSE. To compute RMSE for quantile predictions, we first compute the mean by taking the average of predicted quan-
tiles.

Calibration error. A calibrated estimator of the conditional distribution q̂α(x) should exceed the target α percent of the
time asymptotically. For instance, we expect the predicted P90-th percentile to exceed the target 90% of the time for a
calibrated estimator. Formally, we expect the following property to hold for a calibrated estimator for all α ∈ [0, 1]:

E(x,y)∈D[1y<q̂α(x)] = α

where the mean is taken over examples on a validation set (x, y) ∈ Dval.

The calibration error measures the gap shown in predictions compared to this expected property (Kuleshov et al., 2018).
Let us denote P (α) = E(x,y)∈D[1y<q̂α(x)] the average number of times the prediction q̂α(x) exceeds the target, then

the calibration error is defined over a set of quantiles α1, . . . , αk as
√∑k

j=1(P (αj)− αj)2. We report this error on 5
equally-spaced quantiles in surrogate experiments. For models predicting quantiles (QR and CQR), we evaluate directly the
calibration on the predicted quantiles and for models predicting normal distribution (GP), we compute quantiles predictions
using the Gaussian inverse CDF.
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Figure 3: Performance of single-fidelity methods over time on all individual tasks considered. Mean and standard errors
are computed over 30 seeds.
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Figure 4: Performance of multi-fidelity methods over time on all individual tasks considered. Mean and standard errors
are computed over 30 seeds.
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Figure 5: Performance of multi-fidelity ablation variants over time on all individual tasks considered. Mean and standard
errors are computed over 30 seeds.
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Table 4: Calibration error, Pearson correlation and runtime for different surrogates when increasing the number of samples.
Results are averaged over 30 different seeds.

RMSE ↓ Calibration error ↓ Runtime ↓
model GP QR CQR GP QR CQR GP QR CQR

task n

airlines

16 1.44 0.89 0.88 0.17 0.13 0.16 1.92 0.95 0.87
64 1.19 0.68 0.67 0.11 0.09 0.08 3.11 1.36 1.27
256 1.10 0.51 0.54 0.14 0.07 0.04 3.90 1.67 1.59
1024 0.92 0.45 0.45 0.17 0.07 0.05 19.02 2.45 2.34

cifar10

16 0.79 0.74 0.81 0.01 0.14 0.13 0.54 1.20 1.14
64 0.78 0.53 0.54 0.01 0.09 0.06 0.74 1.49 1.41
256 0.72 0.41 0.42 0.02 0.06 0.04 0.97 1.71 1.73
1024 0.22 0.35 0.35 0.05 0.03 0.03 19.39 2.11 2.04

parkinsons

16 0.79 0.71 0.72 0.01 0.13 0.11 0.88 1.22 1.17
64 0.80 0.51 0.53 0.01 0.11 0.09 1.28 1.60 1.60
256 0.75 0.37 0.37 0.03 0.04 0.04 1.96 1.87 1.81
1024 0.58 0.31 0.31 0.12 0.02 0.02 21.68 2.14 2.10
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