
Fast, Differentiable and Sparse Top-k: a Convex Analysis Perspective

Michael E. Sander * 1 Joan Puigcerver 2 Josip Djolonga 2 Gabriel Peyré 1 3 Mathieu Blondel 2

Abstract
The top-k operator returns a sparse vector, where
the non-zero values correspond to the k largest
values of the input. Unfortunately, because it is a
discontinuous function, it is difficult to incorpo-
rate in neural networks trained end-to-end with
backpropagation. Recent works have considered
differentiable relaxations, based either on regu-
larization or perturbation techniques. However,
to date, no approach is fully differentiable and
sparse. In this paper, we propose new differen-
tiable and sparse top-k operators. We view the
top-k operator as a linear program over the per-
mutahedron, the convex hull of permutations. We
then introduce a p-norm regularization term to
smooth out the operator, and show that its com-
putation can be reduced to isotonic optimization.
Our framework is significantly more general than
the existing one and allows for example to express
top-k operators that select values in magnitude.
On the algorithmic side, in addition to pool adja-
cent violator (PAV) algorithms, we propose a new
GPU/TPU-friendly Dykstra algorithm to solve
isotonic optimization problems. We successfully
use our operators to prune weights in neural net-
works, to fine-tune vision transformers, and as a
router in sparse mixture of experts.

1. Introduction
Finding the top-k values and their corresponding indices in
a vector is a widely used building block in modern neural
networks. For instance, in sparse mixture of experts (MoEs)
(Shazeer et al., 2017; Fedus et al., 2022), a top-k router maps

*Work done during an internship at Google Re-
search, Brain team. 1Ecole Normale Supérieure 2Google
Research, Brain team 3CNRS. Correspondence to:
Michael E. Sander <michael.sander@ens.fr>, Joan
Puigcerver <jpuigcerver@google.com>, Josip Djolonga
<josipd@google.com>, Gabriel Peyré <gabriel.peyre@ens.fr>,
Mathieu Blondel <mblondel@google.com>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

each token to a selection of k experts (or each expert to a
selection of k tokens). In beam search for sequence decod-
ing (Wiseman & Rush, 2016), a beam of k possible output
sequences is maintained and updated at each decoding step.
For pruning neural networks, the top-k operator can be used
to sparsify a neural network, by removing weights with the
smallest magnitude (Han et al., 2015; Frankle & Carbin,
2018). Finally, top-k accuracy (e.g., top-3 or top-5) is fre-
quently used to evaluate the performance of neural networks
at inference time.

0 1 2 3 4 5
s

0.0

0.2

0.4

0.6

0.8

1.0
to

pk
m

as
k(

(s
)) 2

+
to

pk
m

as
k(

(s
)) 3

Hard
p = 2
p = 4/3

Figure 1. Illustration of our differentiable and sparse top-k
mask. For k = 2, we consider θ(s) = (3, 1,−1 + s, s) ∈ R4

and plot topkmask(θ(s))2+topkmask(θ(s))3 as a function of s.
We compare the hard version (no regularization) with our proposed
operator using p-norm regularization: p = 2 leads to differentiable
a.e. operator; p = 4/3, leads to a differentiable operator. Both
operators are sparse: they are exactly 0 for some values of s.

However, the top-k operator is a discontinuous piecewise
affine function with derivatives either undefined or constant
(the related top-k mask operator, which returns a binary
encoding of the indices corresponding to the top-k values,
has null derivatives). This makes it hard to use in a neu-
ral network trained with gradient backpropagation. Recent
works have considered differentiable relaxations, based ei-
ther on regularization or perturbation techniques (see §2
for a review). However, to date, no approach is differen-
tiable everywhere and sparse. Sparsity is crucial in neural
networks that require conditional computation. This is for
instance the case in sparse mixture of experts, where the
top-k operator is used to “route” tokens to selected experts.

1

Fast, Differentiable and Sparse Top-k: a Convex Analysis Perspective

Without sparsity, all experts would need to process all to-
kens, leading to high computational cost. This is also the
case when selecting weights with highest magnitude in neu-
ral networks: the non-selected weights should be exactly 0
in order to optimize the computational and memory costs.

In this work, we propose novel differentiable everywhere
and sparse top-k operators (see Figure 1). We build upon
the framework of Blondel et al. (2020b), which casts sorting
and ranking as linear programs over the permutahedron, and
uses a reduction to isotonic optimization. We significantly
generalize that framework in several ways. Specifically, we
make the following contributions:

• After reviewing related work in §2 and background in
§3, we introduce our generalized framework in §4. We
introduce a new nonlinearity φ, allowing us to express
new operators (such as the top-k in magnitude). In doing
so, we also establish new connections between so-called
k-support norms and the permutahedron.

• We introduce a regularization term to obtain a relaxed
top-k operator. In particular, using p-norm regularization,
we obtain the first differentiable everywhere and sparse
top-k operator (Figure 3).

• In §5, we derive pool adjacent violator (PAV) algorithms
for solving isotonic optimization when using φ and/or
when using p-norm regularization. We show that the
Jacobian of our operator can be computed in closed form.

• As a GPU/TPU friendly alternative to PAV, we propose a
Dykstra algorithm to solve isotonic optimization, which
is easy to vectorize in the case p = 2.

• In §6, we chose to focus on three applications of our oper-
ators. First, we use them to prune weights in a multilayer
perceptron during training and show that they lead to bet-
ter accuracy than with a hard top-k. Second, we define
top-k losses to fine-tune vision transformers (ViTs) and
obtain better top-k accuracy than with the cross-entropy
loss. Finally, we use our operators as a router in vision
mixture of experts, and show that they outperform the
hard top-k router.

2. Related work
Differentiable loss functions. Several works have pro-
posed a differentiable loss function as a surrogate for a
discrete, discontinuous metric. For example, loss functions
have been proposed for top-k accuracy (Lapin et al., 2015;
2016; Berrada et al., 2018; Petersen et al., 2022) and various
ranking metrics (Chapelle & Wu, 2010; Adams & Zemel,
2011; Rolı́nek et al., 2020).

Differentiable operators. In a different line of research,
which is the main focus of this work, a differentiable opera-
tor is proposed, which can be used either as an intermediate

layer in a neural network or as final output, fed into an ar-
bitrary loss function. For example, Niepert et al. (2021)
proposed a framework for computing gradients of discrete
probability distributions or optimization problems. Amos
et al. (2019) and Qian et al. (2022) proposed a smooth (but
not sparse) top-k operator based on binary entropy regular-
ization. Related projections on the capped simplex were
proposed (Martins & Kreutzer, 2017; Malaviya et al., 2018;
Blondel, 2019) in different contexts. These works use ad-
hoc algorithms, while we use a reduction to isotonic opti-
mization. Cuturi et al. (2019) proposed a relaxation of the
sorting and ranking operators based on entropy-regularized
optimal transport and used it to obtain a differentiable (but
again not sparse) top-k operator. Its computation relies on
Sinkhorn’s algorithm (Sinkhorn, 1967; Cuturi, 2013), which
in addition makes it potentially slow to compute and dif-
ferentiate. A similar approach was proposed by Xie et al.
(2020). Petersen et al. (2021) propose smooth differentiable
sorting networks by combining differentiable sorting func-
tions with sorting networks. Other relaxation of the sort and
operators have been proposed by Grover et al. (2019) and
Prillo & Eisenschlos (2020).

The closest work to ours is that of Blondel et al. (2020b),
in which sorting and ranking are cast as linear programs
over the permutahedron. To make these operators differen-
tiable, regularization is introduced in the formulation and it
is shown that the resulting operators can be computed via
isotonic optimization in O(n log n) time. Unfortunately, the
proposed operators still include kinks: they are not differen-
tiable everywhere. The question of how to construct a differ-
entiable everywhere and sparse relaxation with O(n log n)
time complexity is therefore still open. In this work, we
manage to do so by using p-norm regularization. Further-
more, by introducing a new nonlinearity φ, we significantly
generalize the framework of Blondel et al. (2020b), allowing
us for instance to express a new top-k operator in magnitude.
We introduce a new GPU/TPU friendly Dykstra algorithm
as an alternative to PAV.

Instead of introducing regularization, another technique re-
lies on perturbation (Berthet et al., 2020). This technique
has been used to obtain a differentiable (but still not sparse)
top-k for image patch selection (Cordonnier et al., 2021).

Pruning weights with small magnitude. Many recent
works focus on neural network pruning, where parameters
are removed to significantly reduce the size of a model.
See Blalock et al. (2020) for a recent survey. A simple yet
popular method for pruning neural networks is by global
magnitude pruning (Collins & Kohli, 2014; Han et al., 2015):
weights with lowest absolute value are set to 0. While most
of the pruning techniques are performed after the model
is fully trained (Blalock et al., 2020), some works prune
periodically during training (Gale et al., 2019). However,

2

Fast, Differentiable and Sparse Top-k: a Convex Analysis Perspective

to the best of our knowledge, pruning by magnitude is not
done in a differentiable fashion. In this work, we empir-
ically show that pruning weights with a differentiable (or
differentiable almost everywhere) top-k operator in magni-
tude during training leads to faster convergence and better
accuracy than with a “hard” one.

Top-k operator for mixture of experts. Sparse mixture
of experts models (MoEs) (Shazeer et al., 2017) are a class
of deep learning models where only a small proportion of
the model, known as experts, is activated, depending on its
input. Therefore, sparse MoEs are able to increase the num-
ber of parameters without increasing the time complexity
of the model. Sparse MoEs have achieved great empirical
successes in computer vision (Riquelme et al., 2021; Zhou
et al., 2022) as well as natural language processing (Shazeer
et al., 2017; Lewis et al., 2021; Fedus et al., 2021). At the
heart of the sparse MoE model is its routing mechanism,
which determines which inputs (or tokens) are assigned to
which experts. In the sparse mixture of experts literature,
some works have recently proposed new top-k operators in
the routing module. Hazimeh et al. (2021) proposed a binary
encoding formulation to select non-zero weights. However,
their formulation does not approximate the true top-k op-
erator and sparsity is only supported at inference time, not
during training. Liu et al. (2022) proposed an optimal trans-
port formulation supporting k-sparsity constraints and used
it for sparse mixture of experts. In this work, we propose
to replace the hard top-k router, which is a discontinuous
function, by our smooth relaxation.

3. Background
Notation. We denote a permutation of [n] by σ =
(σ1, . . . , σn) and its inverse by σ−1. When seen as a vector,
we denote it σ. We denote the set of all n! permutations
by Σ. Given a vector x ∈ Rn, we denote the version of
x permuted according to σ by xσ := (xσ1

, . . . , xσn
). We

denote the i-th largest value of x ∈ Rn by x[i]. With-
out loss of generality, we always sort values in descend-
ing order. The conjugate of f(x) is denoted by f∗(y) :=
supx∈Rn⟨x,y⟩ − f(x).

Review of operators. We denote the argsort operator as
the permutation σ sorting x ∈ Rn, i.e.,

argsort(x) := σ, where xσ1
≥ · · · ≥ xσn

.

We denote the sort operator as the values of x ∈ Rn in
sorted order, i.e.,

sort(x) := xσ, where σ = argsort(x).

The value [sort(x)]i is also known as the i-th order statistic.
We denote the rank operator as the function returning the

positions of the vector x ∈ Rn in the sorted vector. It is
formally equal to the argsort’s inverse permutation:

rank(x) := σ−1, where σ = argsort(x).

Smaller rank [rank(x)]i means that xi has higher value. The
top-k mask operator returns a bit-vector encoding whether
each value xi is within the top-k values or not:

[topkmask(x)]i :=

{
1, if [rank(x)]i ≤ k

0, otherwise.
.

The top-k operator returns the values themselves if they are
within the top-k values or 0 otherwise, i.e.,

topk(x) := x ◦ topkmask(x),

where ◦ denotes element-wise multiplication. The top-k in
magnitude operator is defined similarly as

topkmag(x) := x ◦ topkmask(|x|).

To illustrate, if x3 ≥ x1 ≥ x2 and |x2| ≥ |x3| ≥ |x1|, then

• argsort(x) = (3, 1, 2)

• sort(x) = (x3, x1, x2)

• rank(x) = (2, 3, 1)

• topkmask(x) = (1, 0, 1)

• topk(x) = (x1, 0, x3),

• topkmag(x) = (0, x2, x3),

where in the last three, we used k = 2.

Permutahedron. The permutahedron associated with a
vector w ∈ Rn, a well-known object in combinatorics (Bow-
man, 1972; Ziegler, 2012), is the convex hull of the permu-
tations of w, i.e.,

P (w) := conv({wσ : σ ∈ Σ}) ⊂ Rn.

We define the linear maximization oracles (LMO) associated
with P (w) by

f(x,w) := max
y∈P (w)

⟨x,y⟩

y(x,w) := argmax
y∈P (w)

⟨x,y⟩ = ∇1f(x,w),
(1)

where ∇1f(x,w) is technically a subgradient of f w.r.t.
x. The LMO can be computed in O(n log n) time. Indeed,
the calculation of the LMO reduces to a sorting operation,
as shown in the following known proposition. A proof is
included for completeness in Appendix A.1.

3

Fast, Differentiable and Sparse Top-k: a Convex Analysis Perspective

Proposition 1. (Linear maximization oracles)

If w1 ≥ · · · ≥ wn (if not, sort w), then

f(x,w) =

n∑
i=1

wix[i] and y(x,w) = wrank(x).

LP formulations. Let us denote the reversing permutation
by ρ := (n, n − 1, . . . , 1). Blondel et al. (2020b) showed
that the sort and rank operators can be formulated as linear
programs (LP) over the permutahedron:

sort(x) = y(ρ,x) = argmax
y∈P (x)

⟨ρ,y⟩

rank(x) = y(−x,ρ) = argmax
y∈P (ρ)

⟨−x,y⟩.

In the latter expression, the minus sign is due to the fact
that we use the convention that smaller rank indicates higher
value (i.e., the maximum value has rank 1).

Although not mentioned by Blondel et al. (2020b), it is also
easy to express the top-k mask operator as an LP

topkmask(x) = y(x,1k) = argmax
y∈P (1k)

⟨x,y⟩, (2)

where 1k := (1, ..., 1︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
n−k

). For this choice of w, the

permutahedron enjoys a particularly simple expression

P (1k) = {y ∈ Rn : ⟨y,1⟩ = k,y ∈ [0, 1]n}

and P (1k/k) is known as the capped simplex (Warmuth &
Kuzmin, 2008; Blondel et al., 2020a). This is illustrated in
Figure 2. To obtain relaxed operators, Blondel et al. (2020b)
proposed to introduce regularization in (1) (see “recovering
the previous framework” in the next section) and used a
reduction to isotonic optimization.

4. Proposed generalized framework
In this section, we generalize the framework of Blondel
et al. (2020b) by adding an optional nonlinearity φ(x). In
addition to the operators covered by the previous framework,
this allows us to directly express the top-k in magnitude
operator, which was not possible before. We also support p-
norm regularization, which allows to express differentiable
and sparse operators when 1 < p < 2.

Introducing a mapping φ. Consider a mapping φ(x) :=
(ϕ(x1), . . . , ϕ(xn)). Given x ∈ Rn and w ∈ Rn, we define

fφ(x,w) := f(φ(x),w)

yφ(x,w) := ∇1fφ(x,w).

When φ(x) = x (identity mapping), we clearly recover
the existing framework, i.e., fφ(x,w) = f(x,w) and
yφ(x,w) = y(x,w).

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

(1

2
, 1

2
, 0)

(1

2
, 0, 1

2
)

(0, 1

2
, 1

2
)

Figure 2. The permutahedron P (w) is a polytope whose vertices
are permutations of w. Depending, on the choice of w, it can
express several known polytopes. When w = (1, 0, 0), P (w) is
the probability simplex (light beige), which corresponds to the top-
1 setting. When w = (1

2
, 1
2
, 0), P (w) is the capped probability

simplex (blue), which corresponds to the top-k setting (here, with
k = 2). When w = (2

3
, 1
3
, 0), P (w) is an hexagon, which

corresponds to the partial ranking setting (gray).

When φ(x) ̸= x, our framework starts to differ from the
previous one, since φ affects differentiation. By the chain
rule and Danskin’s theorem (1966), we get

yφ(x,w) := ∇1fφ(x,w)

= ∂φ(x)⊤y(φ(x),w)

= (ϕ′(x1), . . . , ϕ
′(xn)) ◦ y(φ(x),w),

(3)

where ∂φ(x) ∈ Rn×n denotes the Jacobian of φ(x) and
y(x,w) is given by Proposition 1.

Top-k in magnitude. As we emphasized, one advantage
of our proposed generalization is that we can express the
top-k in magnitude operator. Indeed, with ϕ(x) = 1

2x
2, we

can see from (2) and (3) that we have for all x ∈ Rn

topkmag(x) = yφ(x,1k) = ∇1fφ(x,1k). (4)

Obviously, for all x ∈ Rn
+, we also have topkmag(x) =

topk(x). Top-k in magnitude is useful for pruning weights
with small magnitude in a neural network, as we demon-
strate in our experiments in §6.

Introducing regularization. We now explain how to
make our generalized operator differentiable. We introduce
convex regularization R : Rn → R in the dual space:

f∗
φ,R(y,w) := f∗

φ(y,w) +R(y),

where f∗
φ is the conjugate of fφ in the first argument. Going

back to the primal space, we obtain a new relaxed operator.
A proof is given in Appendix A.2.

4

Fast, Differentiable and Sparse Top-k: a Convex Analysis Perspective

Proposition 2. (Relaxed operator)

Let R : Rn → R be a convex regularizer. Then

fφ,R(x,w) := max
y∈Rn

⟨y,x⟩ − f∗
φ(y,w)−R(y)

= min
u∈Rn

R∗(x− u) + fφ(u,w)

yφ,R(x,w) := y⋆ = ∇R∗(x− u⋆) = ∇1fφ,R(x,w).

The mapping φ also affects conjugacy. We have the follow-
ing proposition.

Proposition 3. (Conjugate of fφ in the first argument)

If ϕ is convex and w ∈ Rn
+, then

f∗
φ(y,w) = min

z∈P (w)
Dϕ∗(y, z),

where Df (y, z) :=
∑n

i=1 zif(yi/zi).

A proof is given in Appendix A.3. The function (yi, zi) 7→
y′iϕ

∗(yi/zi) is known as the perspective of ϕ∗ and is jointly
convex when zi > 0. The function Df (y, z) is known as
the f -divergence between y and z. Therefore, f∗

φ(y,w) can
be seen as the minimum “distance” between y and P (w) in
the ϕ∗-divergence sense.

Recovering the previous framework. If ϕ(x) = x, then

ϕ∗(yi/zi) =

{
0, if yi = zi

∞, otherwise
.

This implies that f∗
φ(y,w) = f∗(y,w) = δP (w)(y), the

indicator function of P (w), which is 0 if y ∈ P (w) and∞
otherwise. In this case, we therefore obtain

fφ,R(x,w) = max
y∈P (w)

⟨y,x⟩ −R(y),

which is exactly the relaxation of Blondel et al. (2020b).

Differentiable and sparse top-k operators. To obtain
a relaxed top-k operator with our framework, we simply
replace fφ with fφ,R and yφ with yφ,R in (4) to define

topkmagR(x) := yφ,R(x,1k) = ∇1fφ,R(x,1k).

A relaxed top-k mask can be defined in a similar way, but us-
ing ϕ(x) = x instead of ϕ(x) = 1

2x
2. For the regularization

R, we propose to use p-norms to the power p:

R(y) =
1

p
∥y∥pp :=

1

p

n∑
i=1

|yi|p.

The choice p = 2 used in previous works leads to sparse
outputs but is not differentiable everywhere. Any p between

1 (excluded) and 2 (excluded) leads to differentiable and
sparse outputs. We propose to use p = 4/3 to obtain a
differentiable everywhere operator, and p = 2 to obtain
a differentiable a.e. operator, which is more convenient
numerically. This is illustrated in Figure 3.

Connection with k-support and OWL norms. When
ϕ(x) = 1

2x
2 and w = 1k, we obtain

f∗
φ(y,w) =

1

2
min

z∈[0,1]n

n∑
i=1

y2i
zi

s.t. ⟨z,1⟩ = k,

which is known as the squared k-support norm (Argyriou
et al., 2012; McDonald et al., 2014; Eriksson et al., 2015).
Our formulation is a generalization of the squared k-support
norm, as it supports other choices of w and ϕ. For instance,
we use it to define a new notion of k-support negentropy in
Appendix B.1. When φ(x) = |x|, we recover the ordered
weighted lasso (OWL) norm (Zeng & Figueiredo, 2014) as

fφ(x,w) =

n∑
i=1

wi|x|[i].

With that choice of φ, it is easy to see from (3) that (4)
becomes a signed top-k mask. Note that, interestingly, k-
support and OWL norms are not defined in the same space.

Biconjugate interpretation. Let us define the set of k-
sparse vectors, which is nonconvex, as Sk := {x ∈
Rn : ∥x∥0 ≤ k}, where ∥x∥0 is the number of non zero
elements in x. We saw that if ϕ(x) = 1

2x
2 then f∗

φ(y,1k)
is the squared k-support norm. It is known to be the bicon-
jugate (i.e., the tightest convex relaxation) of the squared
L2 norm restricted to Sk (Eriksson et al., 2015; Liu et al.,
2022). We now prove a more general result: f∗

φ(y,1k) is
the biconjugate of

∑n
i=1 ϕ

∗(yi) restricted to Sk.

Proposition 4. (Biconjugate interpretation)

Let Φk(y) :=
∑n

i=1 ϕ
∗(yi) + δSk

(y). Suppose that ϕ
is convex. Then the biconjugate of Φk is given by

Φ∗∗
k (y) = f∗

φ(y,1k)

See Appendix A.4 for a proof.

5. Algorithms
In this section, we propose efficient algorithms for comput-
ing our operators. We first show that the calculation of our
relaxed operator reduces to isotonic optimization.

Reduction to isotonic optimization. We now show how
to compute u⋆ in Proposition 2 by reduction to isotonic
optimization, from which y⋆ can then be recovered by y⋆ =

5

Fast, Differentiable and Sparse Top-k: a Convex Analysis Perspective

Figure 3. Example of our relaxed top-k operators. We take ϕ(x) = 1
2
x2 and k = 2. For an input x = (x1, x2,

1
2
, 1), we plot

yφ,R(x, 1k)1 + yφ,R(x, 1k)2 for R = 0 (left), R = λ
2
∥x∥22 (center) and R = λ

p
∥x∥pp with p = 4

3
(right). We take λ = 0.3. While no

regularization leads to a discontinuous mapping, the 2-norm regularization leads to continuity and a.e. differentiability, and the 4
3

-norm
regularization provides a continuously differentiable mapping. We emphasize that, although in the left plot the graph looks connected, it is
actually a discontinuous function. Note that our relaxed operators are sparse as they are exactly 0 in the center.

∇R∗(x − u⋆). We first recall the case φ(x) = x, which
was already proved in existing works (Lim & Wright, 2016;
Blondel et al., 2020b).

Proposition 5. (Reduction, φ(x) = x case)

Suppose that R(y) =
∑n

i=1 r(yi). Let σ be the per-
mutation sorting x, s := xσ and

v⋆ = argmin
v1≥···≥vn

R∗(s− v) + f(v,w).

Then u⋆ from Proposition 2 is given by u⋆ = v⋆
σ−1 .

The set {v ∈ Rn : v1 ≥ · · · ≥ vn} is called the monotone
cone. Next, we show that a similar result is possible when
ϕ(x) and r∗ are both even functions (sign-invariant) and
increasing on R+.

Proposition 6. (Reduction, φ(x) = φ(−x) case)

Suppose that R(y) =
∑n

i=1 r(yi) and φ(x) =
(ϕ(x1), . . . , ϕ(xn)). Assume ϕ and r∗ are both even
functions (sign-invariant) and increasing on R+. Let
σ be the permutation sorting |x|, s := |x|σ and

v⋆ = argmin
v1≥···≥vn≥0

R∗(s− v) + fφ(v,w).

Then, u⋆ (Proposition 2) is equal to sign(x) ◦ v⋆
σ−1 .

See Appendix A.6 for a proof. Less general results are
proved in (Zeng & Figueiredo, 2014; Eriksson et al., 2015)
for specific cases of ϕ and R. The set {v ∈ Rn : v1 ≥
· · · ≥ vn ≥ 0} is called the non-negative monotone cone.
In practice, the additional non-negativity constraint is easy
to handle: we can solve the isotonic optimization problem
without it and truncate the solution if it is not non-negative
(Németh & Németh, 2012).

Pool adjacent violator (PAV) algorithms. Under the con-
ditions of Proposition 6, assuming v and w are both sorted,
we have from Proposition 1 that

f(v,w) =

n∑
i=1

wivi, fφ(v,w) =

n∑
i=1

wiϕ(vi).

We then get that the problems in Proposition 5 and 6 are
coordinate-wise separable:

v⋆ = argmin
v1≥···≥vn

n∑
i=1

hi(vi), (5)

for hi(vi) = r∗(si − vi) + wiϕ(vi). Such problems can
be solved in O(n) time using the pool adjacent violator
(PAV) algorithm (Best et al., 2000). This algorithm works
by partitioning the set [n] into disjoint sets (B1, · · ·Bm),
starting from m = n and Bi = {i}, and by merging these
sets until the isotonic condition is met. A pseudo-code is
available for completness in Appendix B.2. At its core, PAV
simply needs a routine to solve the “pooling” subproblem

γ⋆
B = argmin

γ∈R

∑
i∈B

hi(γ) (6)

for any B ⊆ [n]. Once the optimal partition (B1, · · ·Bm)
is identified, we have that

v⋆ = (γ⋆
B1

, . . . , γ⋆
B1︸ ︷︷ ︸

|B1|

, · · · , γ⋆
Bm

, . . . , γ⋆
Bm︸ ︷︷ ︸

|Bm|

) ∈ Rn.

Because Proposition 5 and 6 require to obtain the sorting
permutation σ beforehand, the total time complexity for our
operators is O(n log n).

Example. Suppose ϕ(x) = 1
2x

2 and R = λ
2 ∥.∥

2
2, where

λ > 0. Since R∗ = 1
2λ∥.∥

2, this gives hi(vi) =
1
2 (wiv

2
i +

6

Fast, Differentiable and Sparse Top-k: a Convex Analysis Perspective

1
λ (si − vi)

2). The solution of the sub-problem is then

γ⋆
B =

∑
i∈B si∑

i∈B(λwi + 1)
.

Using this formula, when λ is small enough, we can upper-
bound the error between the hard and relaxed operators:
∥topkmagR(x)− topkmag(x)∥∞ ≤ λ∥x∥∞. See Ap-
pendix A.6 for details and for the case p = 4

3 .

Dykstra’s alternating projection algorithm. The PAV
algorithm returns an exact solution of (5) in O(n) time.
Unfortunately, it relies on element-wise dynamical array
assignments, which makes it potentially slow on GPUs and
TPUs. We propose an alternative to obtain faster computa-
tions. Our key insight is that by defining

C1 := {v ∈ Rn : v1 ≥ v2, v3 ≥ v4, . . . }
C2 := {v ∈ Rn : v2 ≥ v3, v4 ≥ v5, . . . },

one has {v ∈ Rn : v1 ≥ · · · ≥ vn} = C1 ∩ C2. We can
therefore rewrite (5) as

v⋆ = argmin
v∈C1∩C2

n∑
i=1

hi(vi).

In the case R = 1
2∥.∥

2 and ϕ(x) = x or 1
2x

2, this reduces to
a projection onto C1 ∩ C2, for which we can use Dykstra’s
celebrated projection algorithm (Boyle & Dykstra, 1986;
Combettes & Pesquet, 2011). Jegelka et al. (2013) have
used this method for computing the projection onto the
intersection of submodular polytopes, whereas we project
onto a single polyhedral face. When ϕ(x) = x, Dykstra’s
projection algorithm takes the simple form in Algorithm 1.

Algorithm 1. (Dykstra’s projection algorithm)

Starting from v0 = s, p0 = q0 = 0, Dykstra’s algo-
rithm iterates

yk = argmin
y∈C1

1

2
∥vk + pk − y∥22 + ⟨y,w⟩

pk+1 = vk + pk − yk

vk+1 = argmin
v∈C2

1

2
∥yk + qk − v∥22 + ⟨v,w⟩

qk+1 = yk + qk − vk+1.

Each argmin calculation corresponds to a Euclidean projec-
tion onto C1 or C2, which can be computed in closed form.
Therefore, vk provably converges to v⋆. Each iteration of
Dykstra’s algorithm is learning-rate free, has linear time
complexity and can be efficiently written as a matrix-vector
product using a mask, which makes it particularly appealing
for GPUs and TPUs. Interestingly, we find out that when
w = 1k, then Dykstra’s algorithm converges surprisingly

fast to the exact solution. We validate that Dykstra leads to
a faster runtime than PAV in Figure 4. We use 100 iterations
of Dykstra, and verify that we obtain the same output as
PAV.

For the general non-Euclidean R∗ case, i.e., p ̸= 2, we
can use block coordinate ascent in the dual of (5). We can
divide the dual variables into two blocks, corresponding to
C1 and C2; see Appendix A.8. In fact, it is known that in the
Euclidean case, Dykstra’s algorithm in the primal and block
coordinate ascent in the dual are equivalent (Tibshirani,
2017). Therefore, although a vectorized implementation
could be challenging for p ̸= 2, block coordinate ascent can
be seen as an elegant way to generalize Dykstra’s algorithm.
Convergence is guaranteed as long as each hi is strictly
convex.

Differentiation. The Jacobian of the solution of the iso-
tonic optimization problems can be expressed in closed form
for any p-norm regularization.

Proposition 7. (Differentiation)

Let v⋆ = (γ⋆
B1

, . . . , γ⋆
B1
· · · , γ⋆

Bm
, . . . , γ⋆

Bm
) be the

optimal solution of the isotonic optimization problem
with R = 1

p∥.∥
p
p and p > 0. Then one has that v⋆ is

differentiable with respect to s = (s1, . . . , sn). Fur-
thermore, for any r ∈ {1, . . . ,m} and i ∈ Br,

∂γ⋆
Br

∂si
=

|γ⋆

Br
−si|q−2∑

j∈Br
|γ⋆

Br
−sj |q−2 if ϕ(x) = x

(q−1)|γ⋆
Br

−si|q−2∑
j∈Br

(q−1)|γ⋆
Br

−sj |q−2+wj
if ϕ(x) = 1

2x
2

where q is such that 1
p + 1

q = 1. When i /∈ Br, one

simply has
∂γ⋆

Br

∂si
= 0.

One then has ∂v⋆j /∂si = ∂γ⋆
Brj

/∂si where rj is such that
v⋆j = γ⋆

Brj
. See Appendix A.7 for a proof. Thanks to Propo-

sition 7, we do not need to solve a linear system to compute
the Jacobian of the solution v⋆, in contrast to implicit differ-
entiation of general optimization problems (Blondel et al.,
2021). In practice, this also means that we do not need
to perform backpropagation through the unrolled iterata-
tions of PAV or Dykstra’s projection algorithm to obtain
the gradient of a scalar loss function, in which our operator
is incorporated. In particular, we do not need to store the
intermediate iterates of these algorithms in memory. Along
with PAV and Dykstra’s projection algorithm, we implement
the corresponding Jacobian vector product routines in JAX,
using Proposition 7.

7

Fast, Differentiable and Sparse Top-k: a Convex Analysis Perspective

0 1000 2000 3000

Dimension n

0.00

0.02

0.04

R
u

n
n

in
g

ti
m

e
(s

ec
s.

)

PAV

Dykstra

Hard

Figure 4. Runtime
comparison for
computing our relaxed
top-k on a TPU using
PAV, Dykstra, as
a function of the
dimension n. For each
n, we set k = ⌈n/10⌉.
We also compare
with the hard top-k
computation.

6. Experiments
We now demonstrate the applicability of our top-k opera-
tors through experiments. Our JAX (Bradbury et al., 2018)
implementation is available at the following URL. See Ap-
pendix C for additional experimental details.

0 20 40 60 80 100 120

Training time (seconds)

4

7

T
es

t
er

ro
r

Hard top-k

Diff. top-k (p = 4/3)

Diff. top-k (p = 2)

No top-k

Figure 5. Test error with respect to training time when training an
MLP on MNIST. We compare the baseline (grey) with the case
where 90% of the weights are set to 0 by magnitude pruning, using
a differentiable a.e. (red), fully differentiable (green) or a hard
top-k (blue).
Weight pruning in neural networks. We experimentally
validate the advantage of using a smoothed top-k for weight
pruning in neural networks. We use a multilayer perceptron
(MLP) with 2 hidden layers and with ReLU activation. The
width of the layers are respectively 784, 32, 32 followed by
a linear classification head of width 10. More precisely, our
model takes as input an image a ∈ R784 and outputs

x = W3σ(W2σ(W1a+ b1) + b2) + b3 (logits),

where W1 ∈ R32×784, b1 ∈ R32, W2 ∈ R32×32, b2 ∈ R32,
W1 ∈ R10×32, b3 ∈ R10 and σ is a ReLU. In order
to perform weight pruning we parametrize each Wi as
Wi = topkmagR(W

′
i) and learn W ′

i instead of learning
Wi directly. The output is then fed into a cross-entropy
loss. We compare the performance of the model when ap-
plying a hard vs differentiable top-k operator to keep only
10% of the coefficients. For the differentiable top-k, we
use a regularization R(y) = λ

p ∥y∥
p with p ∈ { 43 , 2} and

λ = 10−4. We find out that the model trained with the
differentiable top-k trains significantly faster than the one
trained with the hard top-k. We also verify that our relaxed

top-k maintains the 10% rate of non-zero weights. Results
on MNIST are displayed in Figure 5. We also compare with
an entropy-regularized approximation of the top-k operator
using the framework proposed in Cuturi et al. (2019) and
adapted in Petersen et al. (2022). To guarantee the sparsity
of the weights, we use the ”straight-through” trick: the hard
top-k is run on the forward pass but we use the gradient of
the relaxed top-k in the backward pass. This method leads
to a test error of 5.9%, which is comparable to the results
obtained with our differentiable operators.

Smooth top-k loss. To train a neural network on a clas-
sification task, one typically minimizes the cross-entropy
loss, whereas the performance of the network is evaluated
using a top-k test accuracy. There is therefore a mismatch
between the loss used at train time and the metric used at
evaluation time. Cuturi et al. (2019) proposed to replace
the cross-entropy loss with a differentiable top-k loss. In
the same spirit, we propose to finetune a ViT-B/16 (Dosovit-
skiy et al., 2020) pretrained on the ImageNet21k dataset on
CIFAR 100 (Krizhevsky et al., 2009) using a smooth and
sparse top-k loss instead of the cross-entropy loss. We use a
Fenchel-Young loss (Blondel et al., 2020a). It takes as input
the vector a and parameters θ of a neural network gθ:

x = gθ(a) (logits)
ℓ(x, t) = fφ,R(x,1k)− ⟨x, t⟩,

where fφ,R(x,1k) is given by Proposition 2 and t is a one-
hot encoding of the class of a. We set ϕ(x) = x as we
want a top-k mask. We consider p norm regularizations for
R, where p = 2 or p = 4/3. We take k = 3. We use the
exact same training procedure as described in Dosovitskiy
et al. (2020) and use the corresponding pretrained ViT model
B/16, and train our model for 100 steps. Results are reported
in Figure 6. We find that the ViT finetuned with the smooth
top-3 loss outperforms the one finetuned with the cross-
entropy loss in terms of top-k error, for various k.

1 2 3 4 5 6 7 8 9

k

80 %

85 %

90 %

95 %

99 %

T
op

-k
ac

cu
ra

cy

p = 2

p = 4/3

Cross-Entropy loss

Figure 6. Validation top-k accuracy when fine-tuning a ViT-B/16
on CIFAR 100 using either the cross-entropy loss or our smooth
top-3 loss for training. We have the following running times
obtained with a TPUv3-8. Baseline: 9.5 sec/step, p = 2: 9.7
sec/step and p = 4/3: 10 sec/step.

8

https://github.com/google-research/google-research/tree/master/sparse_soft_topk

Fast, Differentiable and Sparse Top-k: a Convex Analysis Perspective

Sparse MoEs. Finally, we demonstrate the applicability
of our proposed smooth top-k operators on a large-scale
classification task using vision sparse mixture of experts (V-
MoE) (Riquelme et al., 2021). Vision transformers (ViTs)
are made of a succession of self-attention layers and MLP
layers. The idea of V-MoEs is to replace MLPs in ViTs
by a sparsely-gated mixture of MLPs called experts. This
way, only some of the experts are activated by a given patch
token. At the heart of the token-expert assignment lies
a routing mechanism which performs a top-k operation
on gate values. We focus on the MoE with expert choice
routing framework (Zhou et al., 2022), where each expert is
assigned to k tokens. We train a S/32 variant of the V-MoE
model, with 32× 32 patches on the JFT-300M dataset (Sun
et al., 2017), a dataset with more than 305 million images.
Our model has 32 experts, each assigned to k = 28 tokens
selected among n = 400 at each MoE layer. We compare
the validation accuracy when using the baseline (hard top-k)
with our relaxed operator. We use p = 2 and Dykstra’s
projection algorithm, as we found it was the fastest method
on TPU. We used the training procedure proposed by Zhou
et al. (2022) to obtain a fair comparison with the baseline.
Due to the large size of the JFT-300M dataset (305 million
images), we performed one run, as in Liu et al. (2022). We
find that our approach improves validation performance.
Results are displayed in Figure 7.

400000 450000 500000
Training steps

0.28

0.30

0.32

0.34

0.36

0.38

Pr
ec

isi
on

-a
t-1

Hard top-k
Differentiable top-k

Figure 7. Precision-
at-1 on the JFT-300M
dataset when using a
hard top-k (baseline,
in blue) or a differ-
entiable a.e. one (in
red) in a sparse MoE
with a ViT-S/32. We
zoom in on the last
training steps, where
our proposed method
outperforms the
baseline. The runtime
is 10 hours for the
baseline and 15 for
the differentiable
a.e. top-k (gradient
calculation is the
bottleneck here).

7. Discussion
Advantage of the non-linearity. As an alternative to per-
forming a relaxed top-k operator in magnitude of x, one
can perform a differentiable top-k mask on |x|, and then
multiply the output by x. This alternative would also lead
to a differentiable top-k operator in magnitude. However,
our operator has more principled behavior at the limit cases.
For instance, as λ → ∞, it is easy to see that the relaxed

top-k mask converges to the vector (k/n)×1n. Therefore, a
rescaling by n/k is needed to obtain the identity as λ→∞,
in contrast to our top-k in magnitude. From a theoretical
point of view, the introduction of a non-linearity allows us
to draw connections with the k-support norm. It also has a
bi-conjugate interpretation, which we believe has an interest
by itself.

Sensitivity to the choice of p. The subproblem needed
within PAV enjoys a closed form only for specific choices
of p. This is why we focused on p = 2 and p = 4

3 in
our experiments. However, we stress out that the proposed
methods work for any choice of p. As an example, we
provide the same illustration as for Figure 1 in Figure 8.

0 1 2 3 4 5
s

0.00

0.25

0.50

0.75

1.00

to
p
km

as
k(

µ(
s)

) 2
+

to
p
km

as
k(

µ(
s)

) 3

Hard

DiÆerentiable

Smooth

0 1 2 3 4 5
s

0.00

0.25

0.50

0.75

1.00

to
p
km

as
k(

µ(
s)

) 2
+

to
p
km

as
k(

µ(
s)

) 3

Hard

DiÆerentiable

Smooth

Figure 8. Illustration of our differentiable and sparse top-k
mask. Same setup as for Figure 1, with more values for p.

8. Conclusion
In this work, we proposed a generalized framework to ob-
tain fast, differentiable (or differentiable a.e.) and sparse
top-k and top-k masks operators, including operators that
select values in magnitude. Thanks to a reduction to iso-
tonic optimization, we showed that these operators can be
computed using either the Pool Adjacent Violators (PAV)
algorithm or Dykstra’s projection algorithm, the latter being
faster on TPU hardware. We successfully demonstrated the
usefulness of our operators for weight pruning, top-k losses
and as routers in vision sparse mixture of experts.

Acknowledgments. We thank Vincent Roulet and Joelle
Barral for comments on a draft of this paper. We thank
Felipe Llinares-López for helpful feedbacks regarding the
experiments, as well as Fabian Pedregosa for fruitful mathe-
matical discussions. We also thank the anonymous review-
ers for their feedback.

9

Fast, Differentiable and Sparse Top-k: a Convex Analysis Perspective

References
Adams, R. P. and Zemel, R. S. Ranking via sinkhorn propa-

gation. arXiv e-prints, 2011.

Amos, B., Koltun, V., and Kolter, J. Z. The limited multi-
label projection layer. arXiv preprint arXiv:1906.08707,
2019.

Argyriou, A., Foygel, R., and Srebro, N. Sparse prediction
with the k-support norm. Advances in Neural Information
Processing Systems, 25, 2012.

Beck, A. First-order methods in optimization. SIAM, 2017.

Berrada, L., Zisserman, A., and Kumar, M. P. Smooth
loss functions for deep top-k classification. International
Conference on Learning Representations, 2018.

Berthet, Q., Blondel, M., Teboul, O., Cuturi, M., Vert, J.-
P., and Bach, F. Learning with differentiable pertubed
optimizers. Advances in neural information processing
systems, 33:9508–9519, 2020.

Best, M. J., Chakravarti, N., and Ubhaya, V. A. Minimizing
separable convex functions subject to simple chain con-
straints. SIAM Journal on Optimization, 10(3):658–672,
2000.

Blalock, D., Gonzalez Ortiz, J. J., Frankle, J., and Guttag, J.
What is the state of neural network pruning? Proceedings
of machine learning and systems, 2:129–146, 2020.

Blondel, M. Structured prediction with projection oracles.
Advances in neural information processing systems, 32,
2019.

Blondel, M., Martins, A. F., and Niculae, V. Learning with
fenchel-young losses. J. Mach. Learn. Res., 21(35):1–69,
2020a.

Blondel, M., Teboul, O., Berthet, Q., and Djolonga, J.
Fast differentiable sorting and ranking. In International
Conference on Machine Learning, pp. 950–959. PMLR,
2020b.

Blondel, M., Berthet, Q., Cuturi, M., Frostig, R., Hoyer,
S., Llinares-López, F., Pedregosa, F., and Vert, J.-P. Effi-
cient and modular implicit differentiation. arXiv preprint
arXiv:2105.15183, 2021.

Bowman, V. Permutation polyhedra. SIAM Journal on
Applied Mathematics, 22(4):580–589, 1972.

Boyle, J. P. and Dykstra, R. L. A method for finding projec-
tions onto the intersection of convex sets in hilbert spaces.
In Advances in order restricted statistical inference, pp.
28–47. Springer, 1986.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
Wanderman-Milne, S., and Zhang, Q. JAX: composable
transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Chapelle, O. and Wu, M. Gradient descent optimization
of smoothed information retrieval metrics. Information
retrieval, 13(3):216–235, 2010.

Collins, M. D. and Kohli, P. Memory bounded deep con-
volutional networks. arXiv preprint arXiv:1412.1442,
2014.

Combettes, P. L. and Pesquet, J.-C. Proximal splitting meth-
ods in signal processing. In Fixed-point algorithms for
inverse problems in science and engineering, pp. 185–
212. Springer, 2011.

Cordonnier, J.-B., Mahendran, A., Dosovitskiy, A., Weis-
senborn, D., Uszkoreit, J., and Unterthiner, T. Differen-
tiable patch selection for image recognition. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 2351–2360, 2021.

Cuturi, M. Sinkhorn distances: Lightspeed computation
of optimal transport. Advances in neural information
processing systems, 26, 2013.

Cuturi, M., Teboul, O., and Vert, J.-P. Differentiable ranking
and sorting using optimal transport. Advances in neural
information processing systems, 32, 2019.

Danskin, J. M. The theory of max-min, with applications.
SIAM Journal on Applied Mathematics, 14(4):641–664,
1966.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

Eriksson, A., Thanh Pham, T., Chin, T.-J., and Reid, I. The
k-support norm and convex envelopes of cardinality and
rank. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 3349–3357,
2015.

Fedus, W., Zoph, B., and Shazeer, N. Switch transform-
ers: Scaling to trillion parameter models with simple and
efficient sparsity, 2021.

Fedus, W., Dean, J., and Zoph, B. A review of
sparse expert models in deep learning. arXiv preprint
arXiv:2209.01667, 2022.

10

https://arxiv.org/abs/1106.1925
https://arxiv.org/abs/1106.1925
http://github.com/google/jax

Fast, Differentiable and Sparse Top-k: a Convex Analysis Perspective

Frankle, J. and Carbin, M. The lottery ticket hypothesis:
Finding sparse, trainable neural networks. arXiv preprint
arXiv:1803.03635, 2018.

Gale, T., Elsen, E., and Hooker, S. The state of sparsity in
deep neural networks. arXiv preprint arXiv:1902.09574,
2019.

Grover, A., Wang, E., Zweig, A., and Ermon, S. Stochastic
optimization of sorting networks via continuous relax-
ations. In International Conference on Learning Repre-
sentations, 2019.

Han, S., Pool, J., Tran, J., and Dally, W. Learning both
weights and connections for efficient neural network.
Advances in neural information processing systems, 28,
2015.

Hazimeh, H., Zhao, Z., Chowdhery, A., Sathiamoorthy, M.,
Chen, Y., Mazumder, R., Hong, L., and Chi, E. Dselect-k:
Differentiable selection in the mixture of experts with
applications to multi-task learning. Advances in Neural
Information Processing Systems, 34:29335–29347, 2021.

Järvelin, K. and Kekäläinen, J. Ir evaluation methods for
retrieving highly relevant documents. In ACM SIGIR
Forum, volume 51, pp. 243–250. ACM New York, NY,
USA, 2017.

Jegelka, S., Bach, F., and Sra, S. Reflection methods for user-
friendly submodular optimization. Advances in Neural
Information Processing Systems, 26, 2013.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Kyrillidis, A., Becker, S., Cevher, V., and Koch, C. Sparse
projections onto the simplex. In International Conference
on Machine Learning, pp. 235–243. PMLR, 2013.

Lapin, M., Hein, M., and Schiele, B. Top-k multiclass svm.
Advances in Neural Information Processing Systems, 28,
2015.

Lapin, M., Hein, M., and Schiele, B. Loss functions for
top-k error: Analysis and insights. In Proc. of CVPR,
2016.

Lewis, M., Bhosale, S., Dettmers, T., Goyal, N., and Zettle-
moyer, L. Base layers: Simplifying training of large,
sparse models. In International Conference on Machine
Learning, pp. 6265–6274. PMLR, 2021.

Lim, C. H. and Wright, S. J. Efficient bregman projections
onto the permutahedron and related polytopes. In Artifi-
cial Intelligence and Statistics, pp. 1205–1213. PMLR,
2016.

Liu, T., Puigcerver, J., and Blondel, M. Sparsity-constrained
optimal transport. arXiv preprint arXiv:2209.15466,
2022.

Malaviya, C., Ferreira, P., and Martins, A. F. Sparse and con-
strained attention for neural machine translation. arXiv
preprint arXiv:1805.08241, 2018.

Martins, A. F. and Kreutzer, J. Learning what’s easy: Fully
differentiable neural easy-first taggers. In Proceedings
of the 2017 conference on empirical methods in natural
language processing, pp. 349–362, 2017.

McDonald, A. M., Pontil, M., and Stamos, D. Spectral
k-support norm regularization. Advances in neural infor-
mation processing systems, 27, 2014.

Németh, A. and Németh, S. How to project onto the mono-
tone nonnegative cone using pool adjacent violators type
algorithms. arXiv preprint arXiv:1201.2343, 2012.

Niepert, M., Minervini, P., and Franceschi, L. Implicit
mle: backpropagating through discrete exponential family
distributions. Advances in Neural Information Processing
Systems, 34:14567–14579, 2021.

Petersen, F., Borgelt, C., Kuehne, H., and Deussen, O. Dif-
ferentiable sorting networks for scalable sorting and rank-
ing supervision. In International Conference on Machine
Learning, pp. 8546–8555. PMLR, 2021.

Petersen, F., Kuehne, H., Borgelt, C., and Deussen, O. Dif-
ferentiable top-k classification learning. In International
Conference on Machine Learning, pp. 17656–17668.
PMLR, 2022.

Prillo, S. and Eisenschlos, J. Softsort: A continuous relax-
ation for the argsort operator. In International Conference
on Machine Learning, pp. 7793–7802. PMLR, 2020.

Qian, Y., Lee, J., Duddu, S. M. K., Dai, Z., Brahma, S.,
Naim, I., Lei, T., and Zhao, V. Y. Multi-vector retrieval
as sparse alignment. arXiv preprint arXiv:2211.01267,
2022.

Riquelme, C., Puigcerver, J., Mustafa, B., Neumann, M.,
Jenatton, R., Susano Pinto, A., Keysers, D., and Houlsby,
N. Scaling vision with sparse mixture of experts. Ad-
vances in Neural Information Processing Systems, 34:
8583–8595, 2021.

Rolı́nek, M., Musil, V., Paulus, A., Vlastelica, M., Michaelis,
C., and Martius, G. Optimizing rank-based metrics with
blackbox differentiation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 7620–7630, 2020.

11

Fast, Differentiable and Sparse Top-k: a Convex Analysis Perspective

Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le,
Q., Hinton, G., and Dean, J. Outrageously large neural
networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

Sinkhorn, R. Diagonal equivalence to matrices with pre-
scribed row and column sums. The American Mathemati-
cal Monthly, 74(4):402–405, 1967.

Sun, C., Shrivastava, A., Singh, S., and Gupta, A. Revisiting
unreasonable effectiveness of data in deep learning era.
In Proceedings of the IEEE international conference on
computer vision, pp. 843–852, 2017.

Tibshirani, R. J. Dykstra’s algorithm, admm, and coordinate
descent: Connections, insights, and extensions. Advances
in Neural Information Processing Systems, 30, 2017.

Warmuth, M. K. and Kuzmin, D. Randomized online pca
algorithms with regret bounds that are logarithmic in the
dimension. Journal of Machine Learning Research, 9
(Oct):2287–2320, 2008.

Wiseman, S. and Rush, A. M. Sequence-to-sequence
learning as beam-search optimization. arXiv preprint
arXiv:1606.02960, 2016.

Xie, Y., Dai, H., Chen, M., Dai, B., Zhao, T., Zha, H.,
Wei, W., and Pfister, T. Differentiable top-k with optimal
transport. Advances in Neural Information Processing
Systems, 33:20520–20531, 2020.

Zeng, X. and Figueiredo, M. A. The ordered weighted l1
norm: Atomic formulation, projections, and algorithms.
arXiv preprint arXiv:1409.4271, 2014.

Zhou, Y., Lei, T., Liu, H., Du, N., Huang, Y., Zhao, V.,
Dai, A., Chen, Z., Le, Q., and Laudon, J. Mixture-
of-experts with expert choice routing. arXiv preprint
arXiv:2202.09368, 2022.

Ziegler, G. M. Lectures on polytopes, volume 152. Springer
Science & Business Media, 2012.

12

Fast, Differentiable and Sparse Top-k: a Convex Analysis Perspective

A. Proofs
A.1. Linear Maximization Oracle - Proof of Proposition 1

Assuming w is sorted in descending order, we have for any x ∈ Rn

n∑
i=1

wix[i] = max
σ∈Σ
⟨xσ,w⟩

= max
π∈Σ
⟨x,wπ⟩

= max
y∈P (w)

⟨x,y⟩.

In the first line, we used that the inner product is maximized by finding the permutation σ sorting x in descending order.
In the second line, we used that ⟨xσ,w⟩ = ⟨x,wπ⟩, if π is the inverse permutation of σ. In the third line, we used the
fundamental theorem of linear programming, which guarantees that the solution happens at one of the vertices of the
polytope. To summarize, if σ is the permutation sorting x in descending order, then y⋆ = wσ−1 .

A.2. Relaxed operator - Proof of Proposition 2

Recall that f∗
φ,R(y,w) := f∗

φ(y,w) +R(y). We then have

fφ,R(x,w) = max
y∈Rn

⟨y,x⟩ − f∗
φ(y,w)−R(y).

It is well-known that if h1 and h2 are two convex functions, then (h1 + h2)
∗ is equal to the infimal convolution of h∗

1 with
h∗
2 (Beck, 2017, Theorem 4.17):

(h1 + h2)
∗(x) = (h∗

1□h∗
2)(x) := min

u∈Rn
h∗
1(u) + h∗

2(x− u).

With h1 = f∗
φ and h2 = R, we therefore get

fφ,R(x,w) = min
u∈Rn

R∗(x− u) + fφ(u,w).

Finally, the expression of y⋆ follows from Danskin’s theorem applied.

A.3. Conjugate - Proof of Proposition 3

We have
f∗
φ(y,w) = max

x∈Rn
⟨x,y⟩ − fφ(x,w)

= max
x∈Rn

⟨x,y⟩ − max
y′∈P (w)

⟨φ(x),y′⟩

= max
x∈Rn

min
y′∈P (w)

⟨x,y⟩ − ⟨φ(x),y′⟩.

If w ∈ Rn
+, then y′ ∈ Rn

+ for all y′ ∈ P (w). Then the function (x,y′) 7→ ⟨x,y⟩ − ⟨φ(x),y′⟩ is concave-convex and we
can switch the min and the max to obtain

f∗
φ(y,w) = min

y′∈P (w)
max
x∈Rn

⟨x,y⟩ − ⟨φ(x),y′⟩

= min
y′∈P (w)

n∑
i=1

y′iϕ
∗
i (yi/y

′
i).

A.4. Biconjugate interpretation - Proof of Proposition 4

One has

Φ∗
k(x) = max

y∈Sk

⟨x,y⟩ −
n∑

i=1

ϕ∗(yi).

13

Fast, Differentiable and Sparse Top-k: a Convex Analysis Perspective

As in (Kyrillidis et al., 2013), let Σk be the set of subsets of [n] with cardinality smaller than k. Then

Φ∗
k(x) = max

I⊂Σk

max
y∈Rn

∑
i∈I

xiyi − ϕ∗(yi).

This gives

Φ∗
k(x) = max

I⊂Σk

∑
i∈I

ϕ(xi) =

k∑
i=1

φ(x)[i].

Taking the conjugate gives the desired result.

A.5. Reduction to isotonic optimization

We focus on the case when φ is sign-invariant, i.e., φ(x) = φ(−x), since the case φ(x) = x is already tackled in (Lim &
Wright, 2016; Blondel et al., 2020b).

We first show that u⋆ preserves the sign of x. We do so by showing that for any u ∈ Rn, u′ := sign(x) ◦ |u| achieves
smaller objective value than u. Recall that

fφ,R(x,w) = min
u∈Rn

R∗(x− u) + fφ(u,w) = min
u∈Rn

R∗(x− u) + f(φ(u),w).

Clearly, we have f(φ(u′),w) = f(φ(u),w). Moreover, if R(y) =
∑n

i=1 r(yi), then R∗(x− u) =
∑n

i=1 r
∗(xi − ui). If

r∗ is sign-invariant and increasing on R+, we then have

r∗(xi − u′
i) = r∗(sign(xi)(|xi| − |ui|))
= r∗(|xi| − |ui|)
≤ r∗(xi − ui),

where we used the reverse triangle inequality ||xi − |ui|| ≤ |xi − ui|. We conclude that u⋆ has the same sign as x. From
now on, we can therefore assume that x ∈ Rn

+, which implies that u ∈ Rn
+.

Since u ∈ Rn
+ and ϕ is increasing on R+, we have uσ1

≥ · · · ≥ uσn
⇒ ϕ(uσ1

) ≥ · · · ≥ ϕ(uσn
). We know that for

all u ∈ Rn and w ∈ Rn, we have f(φ(u),w) = ⟨φ(u)σ,w⟩ = ⟨φ(uσ),w⟩, where σ is the permutation sorting u in
descending order. From now on, let us fix σ to the permutation sorting u⋆. We will show in the sequel that this is the same
permutation as the one sorting x. We then have

fφ,R(x,w) = min
u∈Rn

R∗(x− u) + ⟨φ(uσ),w⟩.

Using the change of variable v = uσ ⇔ vσ−1 = u, we obtain

fφ,R(x,w) = max
v1≥···≥vn

R∗(xσ − v) + ⟨φ(v),w⟩

where we used that if R(y) =
∑n

i=1 r(yi), then

R∗(x− u) = R∗(x− vσ−1) = R∗(xσ − v).

Let s := xσ. It remains to show that s1 ≥ · · · ≥ sn, i.e., that s and v⋆ are both in descending order. Suppose sj > si for
some i < j. Let s′ be a copy of s with si and sj swapped. Since R∗ is convex, by (Blondel et al., 2020b, Lemma 4),

R∗(s− v⋆)−R∗(s′ − v⋆) = r∗(si − v⋆i) + r∗(sj − v⋆j)− r∗(sj − v⋆i)− r∗(si − v⋆j) ≥ 0,

which contradicts the assumption that v⋆ and the corresponding σ are optimal.

A.6. Subproblem derivation

Case ϕ(x) = 1
2x

2 and R(x) = λ
2 ∥x∥

2. One has hi(γ) = 1
2 (wiγ

2 + 1
λ (si − γ)2) so that dhi

dγ = (wi +
1
λ)γ −

1
λsi.

Therefore,
d
∑

i∈B hi(γ)

dγ
= γ

∑
i∈B

(wi +
1

λ
)− 1

λ

∑
i∈B

si.

14

Fast, Differentiable and Sparse Top-k: a Convex Analysis Perspective

Since in addition
∑

i∈B hi is convex we obtain that its minimum is given by canceling the derivative, hence

γ⋆
B =

∑
i∈B si∑

i∈B(λwi + 1)
.

Remark. This result shows that when λ is small enough, one can control the approximation error induced by our proposed
operator in comparison to the hard operator. For simplicity, let us focus on the case where there are no ties: ∀i ̸= j, xi ̸= xj .
This implies that s1 > s2 > · · · > sn. In this case, for λ small enough, we get

γ⋆
{1} > γ⋆

{2} > · · · > γ⋆
{n}

so that the optimal partition in PAV’s algorithm is given by taking Bi = {i}. Therefore, v⋆i = si
λwi+1 . One then has

u⋆ = sign(x) ◦ v⋆
σ−1 =

x

λwσ−1 + 1
.

Plugging it into y⋆ given by Proposition 2 gives

y⋆ =
wσ−1 ◦ x
λwσ−1 + 1

.

Since the hard operator is given by wσ−1 ◦ x, the approximation error eλ(x,w) in infinite norm is then simply bounded by

eλ(x,w) := ∥wσ−1 ◦ x(1

λwσ−1 + 1
− 1)∥∞ ≤ ∥w∥∞∥x∥∞∥

λw

λw + 1
∥∞.

In the topkmag case, w = 1k, so that eλ(x,w) ≤ λ∥x∥∞.

Case ϕ(x) = x and R(x) = λ
p ∥x∥

p with p = 4
3 . One has hi(γ) = wiγ + 1

4λ3 (si − γ)4 so that dhi

dγ = wi +
1
λ3 (γ − si)

3.
Therefore,

d
∑

i∈B hi(γ)

dγ
=

1

λ3

∑
i∈B

(γ − si)
3 +

∑
i∈B

wi.

Since in addition
∑

i∈B hi is convex we obtain that its minimum is given by canceling the derivative, and hence by solving
the third-order polynomial equation

1

λ3

∑
i∈B

(γ − si)
3 +

∑
i∈B

wi = 0.

In practice, we solve this equation using the root solver from the numpy library. Note that taking p = 4
3 leads to an easier

subproblem than p = 3
2 , hence our choice for p.

Case ϕ(x) = 1
2x

2 and R(x) = λ
p ∥x∥

p with p = 4
3 . The derivation is very similar to the previous case. Indeed, one has

hi(γ) =
1
2wiγ

2 + 1
4λ3 (si − γ)4 so that dhi

dγ = wiγ + 1
λ3 (γ − si)

3. Therefore,

d
∑

i∈B hi(γ)

dγ
=

1

λ3

∑
i∈B

(γ − si)
3 + γ

∑
i∈B

wi.

A.7. Differentiation - Proof of Proposition 7

Case ϕ(x) = x. One has hi(γ) =
1
q |si − γ|q + wivi. For any optimal B in PAV one has the optimality condition∑

i∈B

(sign(γ⋆
B − si)|γ⋆

B − si|q−1 + wi) = 0.

Using the implicit function theorem gives that γ⋆
B is differentiable, and differentiating with respect to any si for i ∈ B leads

to
∂γ⋆

B

∂si
=

|γ⋆
B − si|q−2∑

j∈B |γ⋆
B − sj |q−2

.

15

Fast, Differentiable and Sparse Top-k: a Convex Analysis Perspective

Case ϕ(x) = 1
2x

2. Similar calculations lead to

∂γ⋆
B

∂si
=

(q − 1)|γ⋆
B − si|q−2∑

j∈B(q − 1)|γ⋆
B − sj |q−2 + wj

.

A.8. Dual of isotonic optimization

min
v1≥···≥vn

n∑
i=1

hi(vi) = min
v∈Rn

max
α∈Rn−1

+

n∑
i=1

hi(vi)− αi(vi − vi+1)

= min
v∈Rn

max
α∈Rn−1

+

n∑
i=1

hi(vi)− vi(αi − αi−1)

= max
α∈Rn−1

+

−

[
n∑

i=1

h∗
i (αi − αi−1)

]
where α0 := 0 and αn := 0 are constants (i.e., not optimized). An optimal solution v⋆ is recovered from α⋆ by
v⋆i = (h∗

i)
′(α⋆

i − α⋆
i−1). Since α is only constrained to be non-negative, we can solve the dual by coordinate ascent. The

subproblem associated with αi, for i ∈ {1, . . . , n− 1}, is

max
αi∈R+

−h∗
i (αi − αi−1)− h∗

i+1(αi+1 − αi).

The subproblem is a simple univariate problem with non-negative constraint. Let us define α′
i as the solution of (h∗

i)
′(α′

i −
αi−1)− (h∗

i+1)
′(αi+1 − α′

i) = 0. The solution is then α⋆
i = [α′

i]+.

In practice, we can alternate between updating α1, α3, . . . in parallel and α2, α4, . . . in parallel. The dual variables with
odd coordinates correspond to the set C1 = {v ∈ Rn : v1 ≥ v2, v3 ≥ v4, . . . } and the dual variables with even coordinates
correspond to the set C2 = {v ∈ Rn : v2 ≥ v3, v4 ≥ v5, . . . }. Coordinate ascent converges to an optimal dual solution,
assuming each h∗

i is differentiable, which is equivalent to each hi being strictly convex.

Note that the subproblem can be rewritten in primal space as

max
αi∈R+

−h∗
i (αi − αi−1)− h∗

i+1(αi+1 − αi)

= max
αi∈R+

−
[
max
vi

(αi − αi−1)vi − hi(vi)

]
−

[
max
vi+1

(αi+1 − αi)vi+1 − hi+1(vi+1)

]
= min

vi,vi+1

αi−1vi + hi(vi)− αi+1vi+1 + hi+1(vi+1) + max
αi∈R+

αi(vi+1 − vi)

= min
vi≥vi+1

hi(vi) + hi+1(vi+1) + αi−1vi − αi+1vi+1.

In fact, in the Euclidean case, it is known that Dykstra’s algorithm in the primal and block coordinate ascent in the dual are
equivalent (Tibshirani, 2017). Therefore, block coordinate ascent can be seen as an elegant way to generalize Dykstra’s
algorithm to the non-Euclidean case.

B. Additional material
B.1. k-support negentropies

When ϕ(x) = ex−1 and w = 1k, we obtain

f∗
φ(y,w) = min

z∈[0,1]n

n∑
i=1

yi log(
yi
zi
) s.t. ⟨z,1⟩ = k.

We call it a k-support negative entropy.

16

Fast, Differentiable and Sparse Top-k: a Convex Analysis Perspective

(1, 0, 0) (0, 1, 0)

(0, 0, 1)

Figure 9. Contours of the k-support entropy on the simplex for n = 3 and k = 2. Lighter colors indicate lower values.

B.2. PAV algorithm

We present the pseudo code for PAV, adapted from Lim & Wright (2016). Recall that we define

γ⋆
B = argmin

γ∈R

∑
i∈B

hi(γ).

Algorithm 1 Pool Adjacent Violators (PAV)
Input: Convex functions {hi : R→ R}i∈[n]

Initalize partitions P ← {{i}|i ∈ [n]}
Initialize vi ← γ⋆

{i} for all i ∈ [n]
while there exists i such that vi < vi+1 do

Find Bri and Bri+1
in P such that i ∈ Bri and i+ 1 ∈ Bri+1

Remove Bri and Bri+1
from P

Add Bri ∪Bri+1 to P
Compute γ⋆

Bri
∪Bri+1

by solving (6)
Assign vr ← γ⋆

Bri
∪Bri+1

for all r ∈ Bri ∪Bri+1

end while
return v

C. Experimental details
C.1. Weight pruning in neural networks

For our experiment on the MNIST dataset, we train the MLP using SGD with a batch size of 128 and a constant learning
rate of 10−2. We trained the model for 30 epochs. In terms of hardware, we use a single GPU.

C.2. Smooth top-k loss

For our experiment on the CIFAR-100 dataset, we train the ViT-B/16 using SGD with a momentum of 0.9 and with a batch
size of 512.

For the cross-entropy loss, we follow the training procedure of Dosovitskiy et al. (2020): warmup phase until the learning
rate reaches 3× 10−3. The model is trained for 100 steps using a cosine learning rate scheduler. This choice of learning rate
gave the best performance for this number of training steps.

For our top-3 losses: warmup phase until the learning rate reaches 5× 10−3. The model is trained for 100 steps using a
cosine learning rate scheduler.

In terms of hardware, we use 8 TPUs.

17

Fast, Differentiable and Sparse Top-k: a Convex Analysis Perspective

C.3. Sparse MoEs

We train the V-MoE S/32 model (Riquelme et al., 2021) on the JFT-300M dataset (Sun et al., 2017). JFT is a multilabel
dataset, and thus accuracy is not an appropriate metric since each image may have multiple labels. Therefore, we measure the
quality of the models using the commonly-used precision-at-1 metric (Järvelin & Kekäläinen, 2017). The training procedure
is analogous to the one described in Riquelme et al. (2021), except that we replace the routing algorithm. In particular, we
use the Expert Choice Routing algorithm described in Zhou et al. (2022) as our baseline, and replace the non-differentiable
top-k operation used there with our differentiable approach (we perform 10 iterations of Dykstra’s algorithm).

We use exactly the same hyperparameters as described in Riquelme et al. (2021), except for the fact that Expert Choice
Routing does not require any auxiliary loss. Specifically, we train for 7 epochs using a batch size of 4 096. We use the
Adam optimizer (β1 = 0.9, β2 = 0.999), with a peak learning rate of 10−3, warmed up for 10 000 steps and followed by
linear decay. We use mild data augmentations (random cropping and horizontal flipping) and weight decay of 10−1 in all
parameters as means of regularization. We trained both models on TPUv2-128 devices.

18

