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Abstract
We study a new framework of learning mixture
models via automatic clustering called PRESTO,
wherein we optimize a joint objective function on
the model parameters and the partitioning, with
each model tailored to perform well on its spe-
cific cluster. In contrast to prior work, we do not
assume any generative model for the data. We
convert our training problem to a joint param-
eter estimation and a subset selection problem,
subject to a matroid span constraint. This al-
lows us to reduce our problem into a constrained
set function minimization problem, where the
underlying objective is monotone and approx-
imately submodular. We then propose a new
joint discrete-continuous optimization algorithm
which achieves a bounded approximation guar-
antee for our problem. We show that PRESTO
outperforms several alternative methods. Finally,
we study PRESTO in the context of resource ef-
ficient deep learning, where we train smaller re-
source constrained models on each partition and
show that it outperforms existing data partition-
ing and model pruning/knowledge distillation ap-
proaches, which in contrast to PRESTO, require
large initial (teacher) models.

1. Introduction
In the problem space of learning mixture models, our goal
is to fit a given set of models implicitly to different clus-
ters of the dataset. Mixture models are ubiquitous ap-
proaches for prediction tasks on heterogeneous data (Das-
gupta, 1999; Achlioptas & McSherry, 2005; Kalai et al.,
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2010; Belkin & Sinha, 2010a; Pace & Barry, 1997; Belkin
& Sinha, 2010b; Sanjeev & Kannan, 2001; Hopkins & Li,
2018; Fu & Robles-Kelly, 2008), and find use in a plethora
of applications, e.g., finance, genomics (Dias et al., 2009;
Liesenfeld, 2001; Pan et al., 2003), etc. Existing literature
on mixture models predominately focuses on the design of
estimation algorithms and the analysis of sample complex-
ity for these problems (Faria & Soromenho, 2010; Städler
et al., 2010; Kwon et al., 2019; Yi et al., 2014), and an-
alyzes them theoretically for specific and simple models
such as Gaussians, linear regression, and SVMs. Addition-
ally, erstwhile approaches operate on realizable settings
— they assume specific generative models for the cluster
membership of the instances. Such an assumption can be
restrictive, especially when the choice of the underlying
generative model differs significantly from the hidden data
generative mechanism. Very recently, Pal et al. (2022) con-
sider a linear regression problem in a non-realizable set-
ting, where they do not assume any underlying generative
model for the data. However, their algorithm and analysis
is tailored towards the linear regression task.

1.1. Present Work

Responding to the above limitations, we design PRESTO, a
novel data partitioning based framework for learning mix-
ture models. In contrast to prior work, PRESTO is designed
for generic deep learning problems including classification
using nonlinear architectures, rather than only linear mod-
els (linear regression or SVMs). Moreover, we do not as-
sume any generative model for the data. We summarize our
contributions as follows.

Novel framework for training mixture models. At the
outset, we aim to simultaneously partition the instances
into different subsets and build a mixture of models across
these subsets. Here, each model is tailored to perform well
on a specific portion of the instance space. Formally, given
a set of instances and the architectures of K models, we
partition the instances into K disjoint subsets and train a
family of K component models on these subsets, wherein,
each model is assigned to one subset, implictly by the algo-
rithm. Then, we seek to minimize the sum of losses yielded
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by the models on the respective subsets, jointly with respect
to the model parameters and the candidate partitions of the
underlying instance space.

Note that our proposed optimization method aims to attach
each instance to one of the K models on which it incurs
the least possible error. Such an approach requires that the
loss function helps guide the choice of the model for an in-
stance, thus rendering it incompatible for use at inference
time. We build an additional classifier to tackle this prob-
lem; given an instance, the classifier takes the confidence
from each of the K models as input and predicts the final
label.

Design of approximation algorithm. Our training prob-
lem involves both continuous and combinatorial optimiza-
tion variables. Due to the underlying combinatorial struc-
ture, the problem is NP-hard even when all the models are
convex. To solve this problem, we first reduce our train-
ing problem to a parameter estimation problem in conjunc-
tion with a subset selection task, subject to a matroid span
constraint (Iyer et al., 2014). Then, we further transform
it into a constrained set function minimization problem
and show that the underlying objective is a monotone and
α-submodular function (El Halabi & Jegelka, 2020; Gat-
miry & Gomez-Rodriguez, 2018) and has a bounded cur-
vature. Finally, we design PRESTO, an approximation algo-
rithm that solves our training problem, by building upon the
majorization-minimization algorithms proposed in (Iyer &
Bilmes, 2015; Iyer et al., 2013a; Durga et al., 2021). We
provide the approximation bounds of PRESTO, even when
the learning algorithm provides an imperfect estimate of
the trained model. Moreover, it can be used to minimize
any α-submodular function subject to a matroid span con-
straint and therefore, is of independent interest.

Application to resource-constrained settings. With
the advent of deep learning, the complexity of machine
learning (ML) models has grown rapidly in the last few
years (Liu et al., 2020; Arora et al., 2018; Dar et al., 2021;
Bubeck & Sellke, 2021; Devlin et al., 2018; Liu et al., 2019;
Brown et al., 2020). The functioning of these models is
strongly contingent on the availability of high performance
computing infrastructures, e.g., GPUs, large RAM, multi-
core processors, etc.

The key rationale behind the use of an expensive neu-
ral model is to capture the complex nonlinear relation-
ship between the features and the labels across the entire
dataset. Our data partitioning framework provides a new
paradigm to achieve the same goal, while enabling mul-
tiple lightweight models to run on a low resource device.
Specifically, we partition a dataset into smaller subslices
and train multiple small models on each subslice— since
each subslice is intuitively a smaller and simpler data sub-
set, we can train a much simpler model on the subslice

thereby significantly reducing the memory requirement. In
contrast to approaches such as pruning (Wang et al., 2020a;
Lee et al., 2019; Lin et al., 2020; Wang et al., 2020b; Jiang
et al., 2019; Li et al., 2020; Lin et al., 2017) and knowledge
distillation (Hinton et al., 2015; Son et al., 2021), we do
not need teacher models (high compute models) with the
additional benefit that we can also train these models on
resource constrained devices.

Empirical evaluations. Our experiments reveal several in-
sights, summarized as follows. (1) PRESTO yields signif-
icant accuracy boost over several baselines. (2) PRESTO
is able to trade-off accuracy and memory consumed dur-
ing training more effectively than several competitors, e.g.,
pruning and knowledge distillation approaches. At the
benefit of significantly lower memory usage, the perfor-
mance of our framework is comparable to existing prun-
ing and knowledge distillation approaches and much bet-
ter than existing partitioning approaches and mixture mod-
els. Our code is available at https://github.com/
parthsangani00/PRESTO.

1.2. Related Work

Mixture Models and Clustering. Mixture Mod-
els (Dempster et al., 1977; Jordan & Jacobs, 1994) and
k-means Clustering (MacQueen, 1967; Lloyd, 1982) are
two classical ML approaches, and have seen significant re-
search investment over the years. Furthermore, the two
problems are closely connected and the algorithms for
both, i.e., the k-means algorithm and the Expectation Max-
imization algorithm for mixture models are closely related
– the EM algorithm is often called soft-clustering, wherein
one assigns probabilities to each cluster. Mixture mod-
els have been studied for a number of problems includ-
ing Gaussian Mixture Models (Xu & Jordan, 1996), Mix-
tures of SVMs (Collobert et al., 2001; Fu & Robles-Kelly,
2008), and linear regression (Faria & Soromenho, 2010;
Städler et al., 2010; Kwon et al., 2019; Pal et al., 2022).
Most prior work involving mixture models pertaining to
regression is in the realizable setting, with the exception
of (Pal et al., 2022). Pal et al. (2022) approach the prob-
lem of linear regression under the non-realizable setting by
defining prediction and loss in the context of mixtures and
formulating a novel version of the alternating maximisa-
tion (AM) algorithm. In recent years, there is an interest in
mixture of experts models (Shazeer et al., 2017; Chen et al.,
2022) which select a sparse combination from a set of ex-
pert models using a trainable gating mechanism to process
each input. Such an approach focus on end-to-end differen-
tiable training mechanism, whereas our approach optimizes
for a combinatorial loss. We provide more connection with
our approach and mixture of experts in Section 2.3.

Resource-constrained learning. In the pursuit of better

2

https://github.com/parthsangani00/PRESTO
https://github.com/parthsangani00/PRESTO


Discrete-Continuous Optimization Framework for Simultaneous Clustering and Training in Mixture Models

performance, most state of the art deep learning models are
often over-parameterized. This makes their deployment in
the resource constrained devices nearly impossible. To mit-
igate the problems, several handcrafted architectures such
as SqueezeNets (Iandola et al., 2016; Gholami et al., 2018),
MobileNets (Howard et al., 2017; Sandler et al., 2018) and
ShuffleNets (Zhang et al., 2018; Ma et al., 2018) were
designed to work in mobile devices. Recently, Efficient-
Net (Tan & Le, 2019) was proposed, that employs neural
architecture search. However, they are designed to work on
the entire training set, and leave a heavy memory footprint.

Simultaneous model training and subset selection. Data
subset selection approaches are predominately static, and
most often, do not take into account the model’s current
state (Wei et al., 2014a;b; Kirchhoff & Bilmes, 2014;
Kaushal et al., 2019; Liu et al., 2015; Bairi et al., 2015;
Lucic et al., 2017; Campbell & Broderick, 2018; Boutsidis
et al., 2013). Some recent approaches attempt to solve the
problem of subset selection by performing joint training
and subset selection (Mirzasoleiman et al., 2020a;b; Kil-
lamsetty et al., 2021b;a; Durga et al., 2021). On the other
hand, some other approaches (Mirzasoleiman et al., 2020a;
Killamsetty et al., 2021a) select subsets that approximate
the full gradient. Further, some of these approaches (Kil-
lamsetty et al., 2021b;a) demonstrate improvement in the
robustness of the trained model by selecting subsets using
auxiliary or validation set.

2. Problem Formulation
In this section, we first present the notations and then for-
mally state our problem. Finally, we connect our proposal
with mixture of expert model.

2.1. Notations
We have N training instances {(xi, yi) | 1 ≤ i ≤ N},
where xi ∈ X is the feature vector and yi ∈ Y is the label
of the ith instance. In our work, we set X = Rd and treat
Y to be discrete. Given K, we denote hθ1

, .., hθK
as the

component models that are going to be used for the K sub-
sets resulting from a partition of X . Here θk is the trainable
parameter vector of hθk

. These parameters are not shared
across different models, i.e., there is no overlap between θk
and θk′ for k ̸= k′. In fact, the models hθk

and hθk′ can
even have different architectures. Moreover, the represen-
tation of the output hθk

can vary across different settings.
For example, given x ∈ X , sign(hθk

(x)) is a predictor of
y for support vector machines with Y ∈ {±1} whereas,
for multiclass classification, hθk

(x) provides a distribution
over Y . To this end, we use ℓ(hθk

(x), y) to indicate the
underlying loss function for any instance (x, y). We define
[A] = {1, . . . , A} for an integer A.

2.2. Problem Statement
High level objective. Our broad goal is to fit a mixture
of models on a given dataset, without making any assump-
tion concerning the generative process, the instances or fea-
tures. Given a family of model architectures, our aim is to
learn to partition the instance space X into a set of sub-
sets, determine the appropriate model architecture to be as-
signed to each subset and to subsequently train the appro-
priate models on the respective subsets.

Problem statement. We are given the training instances
D, the number of subsets K resulting from partitioning
D and a set of model architectures hθ1

, . . . , hθK
. Our

goal, then, is to partition the training set D into K sub-
sets S1, ..SK with Sk ∩ Sk′ = ∅ and ∪kSk = D so that
when the model hθk

is trained on Sk for k ∈ [K], the to-
tal loss is minimized. To this end, we define the following
regularized loss, i.e.,

F ({(Sk,θk) | k ∈ [K]})=
K∑

k=1

∑
i∈Sk

ℓ
(
hθk

(xi), yi
)
+ λ||θk||2.

(1)

Then, we seek to solve the following constrained optimiza-
tion problem:

minimize
θ1,...,θK ;S1,...SK

F ({(Sk,θk) | k ∈ [K]}) (2)

subject to, Sk ∩ Sk′ = ∅, ∀k ∈ [K],∪k∈[K]Sk = D.

Here, λ is the coefficient of the L2 regularizer in Eq. (2).
The constraint Sk∩Sk′ = ∅ ensures that that each example
i ∈ D belongs to exactly one subset and the constraint
∪k∈[K]Sk = D entails that the subsets {Sk | k ∈ [K]}
cover the entire dataset. The above optimization problem is
a joint model parameter estimation and a partitioning prob-
lem. If we fix the partition {S1, S2, ..., SK}, then the op-
timal parameter vector θk depends only on Sk, the subset
assigned to it. To this end, we denote the optimal value
of θk for the above partition as θ∗

k(Sk) and transform the
optimization (2) into the following equivalent problem:

minimize
S1,S2,...,SK

F ({Sk,θ
∗
k(Sk) | k ∈ [K]}) (3)

subject to, Sk ∩ Sk′ = ∅, ∀k ∈ [K],∪k∈[K]Sk = D.

Note that, computing θ∗
k(Sk) has a polynomial time com-

plexity for convex loss functions. However, even for such
functions, minimizing F as defined above is NP-hard.

Test time prediction. Since computation of the optimal par-
titioning requires us to solve the optimization (3), it cannot
be used to assign an instance x to a model hθk

during the
test time. To get past this blocker, we train an additional
multiclass classifier πϕ, which combines hθk

(x) for all k
and predict the label for the unseen instance x.
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2.3. Connection and Difference with Mixture of
Experts

Let us consider the following MoE model. The label y is
computed using

∑K
k=1 πϕ(x)[k]hθk

(x). Here, K is the
number of experts, πϕ is a gating network which is typi-
cally modelled as a probability distribution over the experts
and hθk

is the k-th expert model. Here, the predicted prob-
ability for y is computed by averaging over the gating prob-
abilities. Thus, the corresponding training loss becomes∑

i∈D ℓ
(∑K

k=1 πϕ(xi)[k]hθk
(xi), yi

)
. This can also be

written as
∑

i∈D ℓ(Ek∼πϕ(xi)[hθk
(xi)], yi).

Now, instead of computing average over the expert
networks and then computing loss, we can first compute
loss for a given expert and then compute average over
experts as follows:

∑
i∈D Ek∼πϕ(xi)[ℓ(hθk

(xi), yi)]. By
Jensen inequality,

∑
i∈D Ek∼πϕ(xi)[ℓ(hθk

(xi), yi)] ≥∑
i∈D ℓ(Ek∼πϕ(xi)[hθk

(xi)], yi)) and therefore,∑
i∈D Ek∼πϕ(xi)[ℓ(hθk

(xi), yi)] minimises the error
more aggressively. Note that Jensen’s inequality holds in
this case because we need the loss function to be convex
w.r.t hθk

(xi) (not necessarily the model parameters θ).
This will hold for loss functions such as SVM hinge
loss, cross entropy loss, etc. In our setup, we minimize
the second loss

∑
i∈D Ek∼πϕ(xi)[ℓ(hθk

(xi), yi)] in the
combinatorial sense. Here, we do not use a neural gating
network. Instead, for each xi, we assume π(xi)[k] to be
the probability that the instance xi belongs to expert k.
Here, π(xi) and π(xj) do not share any parameter—they
are different variables. Consider the following continuous
optimization problem:

min
ϕ,{θk}

∑
i∈D

Ek∼πϕ(xi)[ℓ(hθk
(xi), yi)] (4)

It can be seen as an approximation of the following combi-
natorial optimization problem:

min
{π(xi)}i∈D,{θk}k∈[K]

∑
i∈D

∑
k∈[K]

π(x)[k][ℓ(hθk
(x), y)] (5)

subject to,
∑

k∈[K]

π(xi)[k] = 1, (6)

π(xi)[k] ≥ 0, k ∈ [K], i ∈ D (7)

as long as the gating network πϕ is highly expressive, so
that it can model all the independent variables π(xi) via a
shared neural network. Now, the above problem is a lin-
ear program w.r.t. π(xi), the solution of π(xi) lies in the
vertices of the linear constraints and thus at optimal point,
we have π(xi)[k] = 1 or 0. This effectively reduces to our
problem as given below:

min
{Sk,θk}k∈[K]

∑
i∈Sk

∑
k∈[K]

ℓ(hθk
(xi), yi),

where, Sk = {i : π(xi)[k] = 1} (8)

We believe that our combinatorial formulation offers two

advantages over MoE setup. (1) It minimizes a more ag-
gressive loss which is the average of losses on different sub-
sets. (2) The gating network is rather a soft version of our
proposed combinatorial subset assignment problem. More-
over, during end to end training, the trained models may
be inaccurate, as the gating network πϕ only approximates
π. Note that, our approach also involves πϕ, but the model
training is decoupled from πϕ.

2.4. Application in the Resource-Constrained Setup

In general, the relationship between an instance x and the
label y can be arbitrarily nonlinear. A complex deep neu-
ral network captures such relationship by looking into the
entire dataset. However, such networks require high per-
formance computing infrastructure for training and infer-
ence. The training problem (3) can be used to build K
lightweight models hθ1

, . . . , hθK
, each of which is local-

ized to a specific regime of the instance space X . Thus, a
model is required to capture the nonlinearity only from the
region assigned to it and not the entire set X . As a result, it
can be lightweight and used with limited resources.

Consider a large model with number of parameters equal
to the total number of parameters collectively across the K
models, i.e.,

∑K
k=1 dim(θk). Such a model has to be loaded

entirely into a GPU RAM for training or inference, and thus
requires a larger GPU RAM. In contrast, our approach re-
quires us to load at a time, only one model component hθk

and the corresponding subset Sk during both training and
test time. This is instead of having to load all the K model
components and the entire dataset. While this can increase
both training and inference time, it can substantially reduce
the memory consumption by 1/K times in comparison to
a large model having similar expressiveness.

3. PRESTO: Proposed Framework to Solve
the Training Problem (3)

In this section, we first show that the optimization prob-
lem (3) is equivalent to minimizing a monotone set func-
tion subject to matroid span constraint (Iyer et al., 2014;
Schrijver et al., 2003). Subsequently, we show that this
set function is α-submodular and admits a bounded curva-
ture. Finally, we use these results to design PRESTO, an ap-
proximation algorithm to solve the underlying constrained
set function optimization problem. We next present these
analyses, beginning with the necessary definitions about
monotonicity, α-submodularity and different matroid re-
lated properties.

Definition 1. (1) Monotonicity, α-submodularity and
generalized curvature: Given a ground set V, let G :
2V → R be a set function whose marginal gain is de-
noted by G(e |S) = G(S ∪ {e}) − G(S). The func-
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tion G is monotone non-decreasing if G(e |S) ≥ 0 for
all S ⊂ V and e ∈ V\S. G is α-submodular with
α ∈ (0, 1] if G(e |S) ≥ αG(e |T) for all S ⊆ T and e ∈
V\T (Hashemi et al., 2019; El Halabi & Jegelka, 2020).
The generalized curvature of G(S) is defined as κG(S) =
1 − mine∈S G(e |S\e)/G(e | ∅) (Iyer et al., 2013b; Zhang
& Vorobeychik, 2016). (2) Base, rank and span of a ma-
troid: Consider a matroid M = (V, I) where I is the set
of independent sets (Refer to Appendix A.1 for more de-
tails). A base of M is a maximal independent set. The
rank function rM : 2V → N is defined as: rM(S) =
maxI∈I:I⊂S |I|. A set S is a spanning set if it is the super-
set of a base or equivalently, rM(S) = rM(V) (Schrijver
et al., 2003; Iyer et al., 2014; Edmonds, 2003).

3.1. Representation of (3) as a Matroid Span
Constrained Subset Selection Task

Transforming partitions into 2D configurations. Given
the training instances D and the size of partition K, we first
define the ground set V in the space of Cartesian products
of D and [K], i.e., V = D × [K]. Thus V consists of all
pairs {(i, k) | i ∈ D, k ∈ [K]} which enumerates all possi-
ble assignments between the instances and model compo-
nents. Moreover, we define Vi⋆ = {(i, k) | k ∈ [K]} and
V⋆k = {(i, k) | i ∈ D}. Here, Vi⋆ = {i} × [K] enu-
merates all possible assignments of the ith instance and
V⋆k = D × {k} enumerates all possible configurations
specifically wherein Sk is assigned to an instance.

Optimization (3) as constrained subset selection. Hav-
ing defined the ground set V and the partitions in
2D configuration space as above, we define S =
{(i, k) | i ∈ Sk, k ∈ [K]} that encodes the set of assign-
ments in space of V induced by the underlying partition.
Then, the set Ŝk = {(i, k) | i ∈ Sk} specifies the set of
instances attached to the subset k and elucidates the sub-
set containing i. It can be observed that Ŝk = S ∩ V⋆k.
Since every instance is assigned exactly to one subset Sk ∈
{S1, . . . , SK}, we have that |S∩Vi⋆| = 1. To this end, we
introduce the following set function, which is the sum of
the fitted loss functions in Eq. (1), trained over individual
subsets.

G(S) =
∑

k∈[K]

∑
(i,•)∈S∩V⋆k

[
ℓ
(
hθ∗

k(S∩V⋆k)(xi), yi

)
+ λ||θk||2

]
.

(9)

We rewrite our optimization problem (3) as follows:

minimize
S⊂V

G(S) subject to, |S ∩ Vi⋆| = 1 ∀ i ∈ D. (10)

Theoretical characterization. Here, we show that our ob-
jective admits monotonicity, α-submodularity and bounded
curvature in a wide variety of scenarios (Proven in Ap-
pendix A.2)

Theorem 2. Given the set function G(S) (9) and the indi-
vidual regularized loss functions ℓ introduced in Eq. (1),

we define: εmin = mink,i Eigenmin[∇2
θk
ℓ(hθk

(xi), yi)],
ℓmin,min = mini∈D,θk

[ℓ(hθk
(xi), yi) + λ||θk||2 and

ℓmin,max = maxi∈D minθk
[ℓ(hθk

(xi), yi) + λ||θk||2].
Then, we have the following results:

(1) Monotonicity: The function G(S) defined in Eq. (9) is
monotone non-decreasing in S.

(2) α-submodularity: If ℓ(hθk
(x), y) is L-Lipschitz for all

k ∈ {1, ..,K} and the regularizing coefficient λ satis-
fies: λ > −εmin, function G(S) is α-submodular with

α ≥ αG =
ℓmin,min

ℓmin,min + 2L2

λ+0.5εmin
+ λL2

(λ+0.5εmin)2

(11)

(3) Generalized curvature: The generalized curvature
κG(S) for any set S is given by: κG(S) ≤ κ∗

G =
1− ℓmin,min/ℓmin,max.

Solving the optimization (10) is difficult due to the equality
constraint. However, as suggested by Theorem 2 (1), G(S)
is monotone in S. Hence, even if we relax the equality
constraints |S ∩ Vi⋆| = 1 to the inequality constraint |S ∩
Vi⋆| ≥ 1, they achieve the equality at the optimal solution
S∗. Thus, the optimization (10) becomes
minimize

S⊂V
G(S) subject to, |S ∩ Vi⋆| ≥ 1 ∀ i ∈ D. (12)

As we formally state in the following proposition, the
above constraint (set) can be seen as a matroid span con-
straint for a partition matroid. This would allow us to de-
sign an approximation algorithm to solve this problem.

Proposition 3. Let the set S satisfies |S ∩ Vi⋆| ≥ 1 for all
i ∈ D. Then S is a spanning set of the partition matroid
M = (V, I) with I = {I | |I ∩ Vi⋆| ≤ 1}. Moreover, if S
satisfies |S∩Vi⋆| = 1 for all i ∈ D, then S is a base of M.

The above proposition suggests that the optimal solution S∗
of the optimization (12) is a base of the partition matroid
M = (V, I) with I = {I | |I ∩ Vi⋆| ≤ 1}.

3.2. PRESTO: Our Proposed Approximation Algorithm

Here, we aim to minimize a monotone approximate-
submodular function G. In contrast to submodular or ap-
proximate submodular maximization where one can use
greedy algorithms, minimizing the approximate submodu-
lar function G needs a completely different approach. Here,
we resort to minimizing an upper bound m of G— reduc-
ing the value of this upper bound m will ensure the value
of the underlying function G remains low. Now, we need
to design m such that maximizing m is convenient. To
this aim, we choose m to be modular. One can connect
such a modular approximation of a set function to a sim-
ple linear approximation of a complex nonlinear function
in the context of continuous optimization. Specifically, we
build PRESTO upon Durga et al. (2021) which employs
Majorization-Minimization approach (Iyer et al., 2013a;b).
Toward that goal, we first develop the necessary ingredients
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Algorithm 1 The PRESTO Algorithm
Require: Training data D, αG, K model architectures,

Iterations.
1: Output: The learned parameters {θk | k ∈ [K]}, the parti-

tioning of D: D = ∪k∈[K]Ŝk

2: Ŝ1 ← ∅, .., ŜK ← ∅
3: for k ∈ [K] do
4: θ̂k ← INITPARAMS( )
5: for all i ∈ D do
6: G({(i, k)})← Train({i} ; θ̂k)
7: end for
8: end for

9: for r ∈ [Iterations] do
10: for k ∈ [K] do
11: Ŝk ←

{
(i, k) | i ∈ Ŝk

}
12: θ̂k, G(Ŝk)← Train(Ŝk;θk)

13: for i ∈ Ŝk do
14: G(Ŝk\(i, k))←Train(Ŝk\i;θk)

15: M [i][k]← αG[G(Ŝk)−G(Ŝk \ {(i, k)})]
16: end for
17: for all i /∈ Ŝk, set M [i][k] =

G({(i, k)})
αG

18: end for
19: for p ∈ [N ] do
20: (i∗, k∗)← argmini,k(M [i][k])

21: Ŝk∗ ← Ŝk∗ ∪ i∗

22: For all k ̸= k∗ : Ŝk ← Ŝk\ {i∗}
23: For all k : M [i∗][k]←∞
24: end for
25: Ŝ←

{
(i, k) | i ∈ Ŝk, k ∈ [K]

}
26: end for
27: Return θ̂1, ..., θ̂K , Ŝ

as follows.

Computation of modular upper bound. First, we present
a modular upper bound for G(S) (Iyer et al., 2013a). Given
a fixed set Ŝ and the set function G which is α-submodular
and monotone, let the modular function mG

Ŝ
[S] be defined

as follows:

mG
Ŝ [S] = G(Ŝ)−

∑
(i,k)∈Ŝ

αGG((i, k) | Ŝ\ {(i, k)})

+
∑

(i,k)∈Ŝ∩S

αGG((i, k) | Ŝ\ {(i, k)}) +
∑

(i,k)∈S\Ŝ

G((i, k) | ∅)
αG

.

(13)

If G is α-submodular and monotone, it holds that G(S) ≤
mG

Ŝ
[S] for all S ⊆ D (Durga et al., 2021). Note that when

G is submodular, i.e., when α = 1, the expression mG
Ŝ
[S]

gives us the existing modular upper bounds for submodular
functions (Nemhauser et al., 1978; Iyer et al., 2013a; Iyer
& Bilmes, 2012).

Outline of PRESTO (Alg. 1). Minimizing mG
Ŝ [S]

is the same as finding the lowest values of
αGG((i, k)|Ŝ\ {(i, k)}) or G((i, k)|∅)/αG depending
on whether (i, k) ∈ Ŝ (third term in Eq (13)) or (i, k) ̸∈ Ŝ

(fourth term in Eq (13)). We compute these two quantities
in line nos. 15 and 17 in Algorithm 1 and store the
values of m at different pairs (i, k) in the matrix M . The
complexity of this operation is O(|D|K). Finally, we
take the minimum of M to find (i∗, k∗) (line 20) which
indicates that the partition k∗ should contain i∗. Therefore,
we include i∗ to Ŝk∗ (line 21). Now, since any instance
can belong to exactly one partition, we remove i∗ from
all other partition k ̸= k∗ (line 22). Finally, we update
Ŝ (line 25). Finally, note that to evaluate G, we need to
train the algorithm on the specific datapoints and partition,
as encapsulated in the Train( ) routine in Algorithm 1.
Here, Train(S, θk) trains the model for partition k on the
subset Ŝk for a few iterations and, returns the estimated
parameters θ̂k and the objective G(Ŝk).

Approximation guarantee. The following theorem shows
that if G is α-submodular with α > αG, and curvature
κ > κG, Algorithm 1 enjoys an approximation guarantee
(Proven in Appendix A.3).

Theorem 4. Given the set function G(S) defined in Eq. (9),
let OPT be an optimal solution of the optimization prob-
lem (10) (or equivalently (12)). If Algorithm 1 returns Ŝ as
the solution, then G(Ŝ) ≤ G(OPT )/[(1− κG)α

2
G], where

κG and αG are computed using Theorem 2.

Discussion on quality of approximation guarantee: Note
that, for classification task, we will always have ℓmin,min >
0. Consequently, our algorithm will always have a non-
trivial approximation guarantee. While the quality of the
guarantee may differ depending on the setting, we would
like to highlight some cases where the quality of approx-
imation guarantee will be high. Note that the approxi-
mation guarantee has a stronger dependence on α than κ
since Theorem 4 suggests that the approximation factor is
1/((1− κ)α2). Therefore, to obtain a high quality approx-
imation guarantee, it is crucial to ensure α to be as much
close to 1 as possible. By looking into the expression of
α, we note that α → 1 is possible when the loss function
is heavily convex with respect to θ, so that the minimum
eigenvalue of ∇2

θℓ(hθk(xi), yi) is high. This leads to the
high values of εmin. Consequently the second and third
term of the above expression become small and α becomes
high. Apart from that, even when λ is high or the loss func-
tion is stable during training, we obtain α to be close to 1
and the resulting function is close to submodular. There-
fore, in these cases, we will have a better approximation
guarantee.

The approximation factor also depends on κ which is the
curvature. We would like κ to be close to 0 whereby our
algorithm has an approximation factor close to 1. If we ob-
serve the expression in Theorem 2 (point number 3), this
is true if ℓmin,min ≈ ℓmin,max which can happen if a) the
regularization factor λ is slightly high, and b) the differ-
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Figure 1. Snapshot of the true partition (panel (a)); and, the snapshots of the trained models {hθk | k ∈ [K]} and the partitions
{Sk | k ∈ [K]} predicted by PRESTO (panels (b)–(d)) on the synthetic dataset during progression of Algorithm 1. The dataset is gen-
erated using a degenerate mixture model with K = 4 components. Here, an instance (xi, yi) belongs to exactly one of the four sets
{S∗

k | k ∈ [4]}with probability 1, where S∗
k are defined in Eqs. (14)— (17). Each model component is an SVM, i.e., hθk (x) = w⊤

k x+bk
and ℓ(ŷ, y) = (1 − ŷy)+. We observe that as r increases, PRESTO becomes more and more accurate in assigning an instance to the
correct mixture component and finally, at r = 50, it is almost able to recover the true mixture component— the ground truth assignments
of the instances (panel (a)) is extremely close to the final assignments (panel (d)).

ence between the losses across different points are not too
high, which means that the obtained clusters have similar
hardness. We will add these details in the revised version
of the paper. Note that there exists a slightly tighter bound
in Appendix A.3 (Eq. (41)), which shows that even when
κ = 1 in the worst case, we will have a bounded approx-
imation guarantee with |D|/αG. Note that Theorem 4 in
Appendix A.3 indicates a data dependent approximation
bound. However, for brevity, we preferred to mention a
data independent approximation bound in the main paper.

4. Experiments on Synthetic Data
In this section, we experiment with synthetically generated
instances from a latent degenerate mixture distribution and
show that, Algorithm 1 can accurately recover the parti-
tions which correspond to the true mixture components.

4.1. Experimental Setup

Dataset generation. We generate |D| = 20000 examples
{(xi, yi)}i∈D where X = [−1.73, 1.73] × [−1.17, 2.59]
and Y = {−1,+1}. The instances (x, y) belong to one of
the K = 4 sets, viz., S∗

1 , S
∗
2 , S

∗
3 , S

∗
4 defined as follows:

S∗
1 = {(x, y) | 7x[1] + x[2]− 2y − 27 = 0

∧x ∈ [−1.73,−0.86]× [−1.16, 0.04]} (14)

S∗
2 =

{
(x, y) | 20(x[1]2)− 200x[1] + 414 + x[2]− 2y

∧x ∈ [−0.87, 0.01]× [−1.15, 2.59]} (15)
S∗
3 = {(x, y) |x[2] + 1 + exp(−x[1]) + 2y

∧ x ∈ [−0.01, 0.87]× [−1.17, 2.56]} (16)
S∗
4 = {(x, y) | 7x[1] + x[2]− 2y + 43 = 0

∧x ∈ [0.86, 1.73]× [−1.17, 0.04]} (17)

Panel (a) of Figure 1 shows a scatter plot of (x, y). The
instances are homogeneously distributed across all compo-
nents, i.e., |S∗

k | = 5000.

Choice of fθk
and ℓ. We consider K = 4 linear

support vector machines hθk
(x) = w⊤

k x + bk with
θk = {wk, bk} set ℓ as the margin based hinge loss, i.e.,
ℓ(hθk

(x), y) = (1 − y(wkxk + bk))+. Then we apply
PRESTO (Algorithm 1) to simultaneously learn the param-
eters {(wk, bk) | 1 ≤ k ≤ 4} and the partitions Sk such that
D = ∪4

k=1Sk.

4.2. Results

In Figure 1, we plot different snapshots of the models hθk

and the partitions D = ∪4
k=1Sk, as PRESTO progresses

during different iterations r (line 9 in Algorithm 1). We
make the following observations: (1) As r increases, the
classification accuracy increases. For r = 50, we ob-
serve that PRESTO is able to recover the true partitions, i.e.,
S∗
k ≈ Sk (2) We observe that PRESTO finds it relatively

difficult to correctly assign the instances on S∗
2 and S∗

3 to
the right mixture components. This is due to two reasons:
first, the instances on S∗

2 and S∗
3 fit naturally to a nonlinear

SVMs, whereas we attempt to fit a linear SVM; second, the
instances in S∗

2 and S∗
3 , which are around (0, 0), are close

to each other— this poses difficulty in demarcating their
model components.

5. Experiments with Real Data
In this section, we provide a comprehensive evaluation of
our method on three real world classification datasets and
several baselines. Next, we evaluate PRESTO in the con-
text of resource constrained deep learning methods. Ap-
pendix E contains additional experimental results.

5.1. Experimental Setup

Datasets. We experiment with three real world classi-
fication datasets, viz., CIFAR10 (Krizhevsky, 2009), CI-
FAR100 (Krizhevsky, 2009) and STL (Coates et al., 2011).
Following previous work (Chen et al., 2022), we rotate
each image by 30 degrees and include the rotated images
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Accuracy P(ŷ = y) Macro F1-score
Method CIFAR10 CIFAR100 STL CIFAR10 CIFAR100 STL
Kmeans++ 87.31 65.78 74.95 87.28 65.08 74.29
Agglomerative 81.19 69.68 78.68 81.12 69.02 78.43
MoE 90.02 85.19 79.73 90.06 85.13 79.67
GMM 87.31 64.51 73.42 87.28 62.61 72.82
Learn-MLR 87.95 81.82 81.93 87.94 81.81 81.91
PRESTO 95.49 94.86 90.07 95.48 94.85 90.06

Table 2. Comparison of classification accuracy P(ŷ = y) and Macro-F1 score of PRESTO against two unsupervised partitioning
methods (Kmeans++ (Arthur & Vassilvitskii, 2006), Agglomerative (Müllner, 2011)); and three mixture models Mixture of Experts
(MoE) (Shazeer et al., 2017) (GMM (Bishop & Nasrabadi, 2006) and Learn-MLR (Pal et al., 2022)) for all datasets. In all cases, we
used exactly the same model architecture for each component, which is a ResNet18 network with reduced capacity (described in Sec-
tion 5.1) The best and second best results are highlighted in green and yellow respectively.

with the original one. Finally, the task is to predict if the
image is rotated, which is a binary classification problem.
As argued in Chen et al. (2022), such rotated dataset pro-
vide some clusters around the object labels, which leads
to a natural source of heterogeneity. Note that, traditional
(unrotated) CIFAR10 dataset does not contain any natural
mixture of diverse models and may not be a suitable dataset
for our purpose, as also suggested by the marginal improve-
ment of MoE model from single model (Chen et al., 2022).

Implementation details. For all models, we extract fea-
tures x from sixth layer of a pre-trained ResNet18 (He
et al., 2016). We design hθk

using a neural architecture
similar to ResNet18 with reduced capacity– specifically,
starting with the seventh layer and until the eighth layer,
we reduce the number of convolutional filters to 8 instead
of 256 and 16 instead of 512, respectively. In each case, we
set the number of model components K using cross val-
idation. Specifically, for our model, we set K = 6 for
CIFAR10 and K = 4 for each of CIFAR100 and STL. We
use a fully connected single layer neural network to model
the additional classifier πϕ that is used to decide the model
component to be assigned to an instance during inference.
Further details are in Appendix D.

5.2. Results
Comparison with partitioning methods. We first com-
pare our method against several unsupervised partition-
ing methods and mixture models. In the case of unsu-
pervised partitioning, we use clustering methods to slice
the data into K partitions before the start of the training
and then use these data partitions to train the K models.
Specifically, we consider two clustering methods, viz., (1)
Kmeans++ (Arthur & Vassilvitskii, 2006), a variant of K-
means method that uses a smarter initialisation of cluster
centers. (2) Agglomerative clustering (Müllner, 2011),
where the clusters are built hierarchically, and three mix-
ture models, viz., (3) Mixture of Experts (MoE) (Chen
et al., 2022), a Sparsely-Gated Mixture-of-Experts layer
(MoE), which selects a sparse combination from a set of
expert models using a trainable gating mechanism to pro-

cess each input, and two mixture models, viz., (4) Gaus-
sian mixture models for classification (GMM) (Bishop &
Nasrabadi, 2006) and (5) Learn-MLR (Pal et al., 2022)
which presents a version of the AM algorithm for learning
mixture of linear regressions. We adapt this algorithm for
classification as a baseline for PRESTO. Across all base-
lines, we employed exactly same set of model architec-
tures. Details of these methods is given in Appendix D.

In Table 2, we summarize the results in terms of classifica-
tion accuracy P(ŷ = y) and Macro-F1 score. We make the
following observations. (i) PRESTO demonstrates signifi-
cantly better predictive accuracy than all the baselines for
all three datasets. MoE model is the second best method,
which outperforms all other baselines in CIFAR10 and CI-
FAR100 datasets. Note that the objective of the MoE model
is a surrogate of our objective (2), as explained in Sec-
tion 2.3 (Eq. (4) vis-a-vis Eq. (8)). The quality of approx-
imation provided by this MoE surrogate depends strongly
how well the gating network πϕ can generalize the cluster
assignment of each instance xi (Eq. (7) vs Eq. (8)). Mo-
roever, MoE performs end-to-end training. Thus, the in-
accuracy of the gating network affects the quality of the
trained model. In contrast, we first optimize the true objec-
tive directly using Algorithm 1 and then train πϕ using the
direct supervision from the partitions {Sk | k ∈ [K]} we
learned. (ii) Learn-MLR is the second best performer in the
STL dataset and is the third best performer in CIFAR10 and
CIFAR100 datasets. (iii) Among loss oblivious clustering
baselines, Kmeans++ shows extremely poor performance.
But Agglomerative outperforms GMM, in CIFAR100 and
STL.

In Table 3, we compare the performance of PRESTO with
the partitioning methods in terms of clustering metrics such
as Normalized Mutual Information (NMI), Adjusted Rand
Index (ARI), Inter-cluster similarity (ICS) and Intra-cluster
dissimilarity (ICD). Note that NMI and ARI require ground
truth clusters for a fair comparison. We use the original
ground truth object labels as surrogate ground truth clus-
ter labels. We expect that in CIFAR10 (100), we will have
10 (100) clusters each containing similar objects (car, air-
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CIFAR10 CIFAR100
Method NMI ARI NMI ARI
Kmeans++ 2e-4 1e-4 1e-3 9e-5
MoE 3e-4 -3e-4 14e-4 -3e-4
Learn-MLR 2e-4 1e-3 2e-3 -4e-3
PRESTO 1e-1 6e-2 15e-2 16e-2

CIFAR10 CIFAR100
Method ICS ICD ICS ICD
Kmeans++ 0.326 0.676 0.326 0.676
MoE 0.325 0.675 0.256 0.743
Learn-MLR 0.326 0.676 0.326 0.676
PRESTO 0.399 0.690 0.436 0.712

Table 3. Comparison of Normalized Mutual Information (NMI),
Adjusted Rand Index (ARI) (top half); and, Intra-cluster simi-
larity (ICS) and Inter-cluster dissimilarity (ICD) (bottom half) of
PRESTO against the most competitive methods for CIFAR10 and
CIFAR100. Note that for all metrics, a higher number ensures bet-
ter clustering quality. The best results are highlighted in green.

Method Training time GPU Usage (MiB) Test time GPU Usage (MiB)
CIFAR10 CIFAR100 STL CIFAR10 CIFAR100 STL

GraSP 1104.23 1104.23 1413.99 814.26 814.26 1028.93
SNIP 863.66 863.66 1068.53 815.2 815.2 1027.84
KD 274.27 274.27 270.02 27.61 27.61 25.03
DGKD 274.27 274.28 270.02 27.61 27.61 25.03
PRESTO 58.12 84.05 81.55 12.07 12.07 12.07

Table 4. Maximum GPU memory used during training and test (in
mebibytes, MiB) for PRESTO, two model pruning methods, viz.,
GraSP (Wang et al., 2020a) and SNIP (Lee et al., 2019) and two
knowledge distillation methods, viz., KD (Hinton et al., 2015) and
DGKD (Son et al., 2021) to reach 90% accuracy in all datasets.
The best and second best results are highlighted in green and yel-
low respectively. Numbers in green and yellow indicate the best
and the second best method.

plane, etc.). We report NMI and ARI under these ground
truth cluster assignments. Intra-cluster similarity (ICS) is
the ratio of the number of pairs that have the same clus-
ter and same original image label (from CIFAR10 (100))
to the number of pairs that have the same cluster. Inter-
cluster dissimilarity (ICD) is the ratio of the number of
pairs that have different clusters and different image labels
to the number of pairs that have different clusters. Note that
in all these metrics, a higher value indicates better cluster-
ing quality. PRESTO outperforms all the baselines in almost
all cases, except in CIFAR100 in terms of ICD.

Application on resource constrained learning. Given
K, the number of partitions, PRESTO works with K
lightweight models, which can be trained on different parti-
tions of a dataset, instead of training a very large model on
the entire dataset. To evaluate the efficacy of PRESTO on a
resource constrained learning setup, we compare it against
two model pruning methods, viz., (1) GraSP (Wang et al.,
2020a), (2) SNIP (Lee et al., 2019) and two methods for
knowledge distillation, viz., (3) KD (Hinton et al., 2015)
(4) DGKD (Son et al., 2021) in terms of GPU memory used
during training and inference. Pruning methods mask con-
nections of a larger model that are relatively less important

for training, whereas knowledge distillation methods start
with a high capacity model (teacher model) and then design
a lightweight model (student) that can mimic the output of
the large model with fewer parameters. For a fair com-
parison, we maintain roughly similar (with 5% tolerance)
number of parameters of each of the final lightweight mod-
els obtained by the student models given by the knowledge
distillation methods; the total number parameters used in
our approach is

∑K
k=1 dim(θk) +dim(ϕ).

First, we set K of PRESTO same as in Table 2. This
gives the number of parameters of PRESTO as 122630 for
K = 6, and 81754 for K = 4. In Table 4, we summa-
rize the results for this setup. We make the following ob-
servations. (i) PRESTO consumes significantly lesser GPU
memory than any other method across all datasets. Dur-
ing training, PRESTO consumes 78% lesser GPU memory
than the knowledge distillation methods, i.e., the second
best method, on CIFAR10, whereas, for CIFAR100 and
STL it consumes 70% lesser memory. During inference, it
consumes 56% lesser GPU memory on CIFAR10 and CI-
FAR100, whereas, for STL it consumes 52% lesser mem-
ory. (ii) The pruning models take 3–4x memory as com-
pared to the knowledge distillation models.

6. Conclusion
We present PRESTO, a novel framework of learning mix-
ture models via data partitioning. Individual models spe-
cialising on a data partition, present a good alternative to
learning one complex model and help achieve better gen-
eralisation. We present a joint discrete-continuous opti-
mization algorithm to form the partitions with good ap-
proximation guarantees. With our experiments we demon-
strate that PRESTO achieves best performance across differ-
ent datasets when compared with several mixture-models
and unsupervised partitioning methods. We also present
that PRESTO achieves best accuracy vs. memory utilisation
trade-off when compared with knowledge distillation and
pruning methods. Future work involves extending our work
into different distributed learning setups including feder-
ated learning. It would also be interesting to extend our
work in a multi class learning setup, where different clus-
ters are aligned with different tasks.
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Appendix
(Discrete-Continuous Optimization Framework for

Simultaneous Clustering and Training in Mixture Models)

A. Proofs of the Technical Results in Section 3
A.1. Formal Discussion on Matroid

Definition 5. A matroid is a combinatorial structure M := (V, I) defined on a ground set V and a family of independent
sets I ⊆ 2V, which satisfies two conditions.

(1) If S ⊆ T and T ∈ I, then S ∈ I.
(2) If S ∈ I and T ∈ I and |T| > |S|, then there exists a e ∈ T\S so that S ∪ {e} ∈ I.

From the above definition, it is clear the all the maximal independent sets have same cardinality. A maximum independent
set is called the base of the matroid.

A.2. Monotonicity and α-submodularity of G

Here we prove the claims of Theorem 2. We repeat the theorem for convenience

Theorem (2). Given the set function G(S) defined in Eq. (9) and the individual regularized loss functions ℓ introduced in
Eq. (1), we define: εmin = mink,i Eigenmin[∇2

θk
ℓ(hθk

(xi), yi)], ℓmin,min = mini∈D minθk
[ℓ(hθk

(xi), yi)+λ||θk||2] and
ℓmin,max = maxi∈D minθk

[ℓ(hθk
(xi), yi) + λ||θk||2]. Then, we have the following results:

(1) Monotonicity: The function G(S) defined in Eq. (9) is monotone non-decreasing in S.
(2) α-submodularity: If ℓ(hθk

(x), y) is L-Lipschitz for all k ∈ {1, ..,K} and that the regularizing coefficient λ satisfies:
λ > −εmin, function G(S) is α-submodular with

α ≥ α∗ =
ℓmin,min

ℓmin,min + 2L2

λ+0.5εmin
+ λL2

(λ+0.5εmin)2

(18)

(3) Generalized curvature: The generalized curvature κG(S) for any set S is given by: κG(S) ≤ κ∗
G = 1 −

ℓmin,min/ℓmin,max.

Proof. (1) (Proof of monotonicity) We define the regularized g(θk, S) =
∑

i∈S ℓ(hθk
(xi), yi) + λ∥θk∥2. First, we show

that g(θ∗
k(S ∪ {j}), S ∪ {j})− g(θ∗

k(S), S) > 0. To that aim, note that,
g(θ∗

k(S ∪ {j}), S ∪ {j})− g(θ∗
k(S), S)

= g(θ∗
k(S ∪ {j}), S ∪ {j})− g(θ∗

k(S ∪ {j}), S) + g(θ∗
k(S ∪ {j}), S)− g(θ∗

k(S), S) (19)
Now, since θ∗

k(S) = argminθk
g(θk, S), we have g(θ∗

k(S ∪ {j}), S) ≥ g(θ∗
k(S), S). From Eq. (19), this leads to the

following inequality:
g(θ∗

k(S ∪ {j}), S ∪ {j})− g(θ∗
k(S), S) ≥ g(θ∗

k(S ∪ {j}), {j}) ≥ ℓmin > 0 (20)
Now, if we include a new element (j, t) into S, then it will only change the loss g(θ∗

t (S), S) among all model components.
Thus we have,

G(S ∪ {(j, t)})−G(S) ≥ g(θ∗
t (S ∪ {j}), (S ∪ {j}))− g(θ∗

t (S), S) > 0

(2) (Proof of α-submodularity) First, we try to show α-submodularity of g(θ∗
k(S), S). Hence, we first bound the following

ratio:
g(θ∗

k(S ∪ {j}), S ∪ {j})− g(θ∗
k(S), S)

g(θ∗
k(T ∪ {j}), T ∪ {j})− g(θ∗

k(T ), T )
(21)

Eq. (20) directly provides bound on the numerator of this ratio:
g(θ∗

k(S ∪ {j}), S ∪ {j})− g(θ∗
k(S), S) ≥ ℓmin (22)

Next, we try to upper bound g(θ∗
k(T ∪ {j}), T ∪ {j})− g(θ∗

k(T ), T ). We note that:
g(θ∗

k(T ∪ {j}), T ∪ {j})− g(θ∗
k(T ), T )

= g(θ∗
k(T ∪ {j}), T ∪ {j})− g(θ∗

k(T ), T ∪ {j}) + g(θ∗
k(T ), T ∪ {j})− g(θ∗

k(T ), T ). (23)
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Now, since θ∗
k(T ∪ {j}) = argminθk

g(θk, T ∪ {j}), we have:
g(θ∗

k(T ∪ {j}), T ∪ {j})− g(θ∗
k(T ), T ∪ {j}) ≤ 0 (24)

Next, we note that g(θ∗
k(T ), T ∪ {j})− g(θ∗

k(T ), T ) = g(θ∗
k(T ), {j}) which gives us:

g(θ∗
k(T ∪ {j}), T ∪ {j})− g(θ∗

k(T ), T ) = g(θ∗
k(T ), {j}) (25)

This leads us to bound the ratio in Eq. (21) as follows:
g(θ∗

k(S ∪ {j}), S ∪ {j})− g(θ∗
k(S), S)

g(θ∗
k(T ∪ {j}), T ∪ {j})− g(θ∗

k(T ), T )
(26)

≥ g(θ∗
k(S ∪ {j}), {j})
g(θ∗

k(T ), {j})

≥ g(θ∗
k(S ∪ {j}), {j})

g(θ∗
k(S ∪ {j}), {j}) + g(θ∗

k(T ), {j})− g(θ∗
k(S ∪ {j}), {j})

. (27)

To bound the denominator, we note that:
g(θ∗

k(T ), {j})− g(θ∗
k(S ∪ {j}), {j}) ≤ ℓ(hθ∗

k(T )(xj), yj)− ℓ(hθ∗
k(S∪{j})(xj), yj) + λ∥θ∗

k(T )∥2

Now, we note that

0 ≥ g(θ∗
k(T ), T )− g(0, T ) = λ∥θ∗

k(T )∥2 +

(
∇θℓ(hθ(xi), yi)

)⊤

θ=0

θ∗
k(T )

+
1

2
[θ∗

k(T )∇2ℓ(hθ(xi), yi)]θ∈(0,θ∗
k(T ))θ

∗
k(T )

=⇒ 1

2
∥θ∗

k(T )∥2εmin + λ∥θk∥2 − L∥θk∥ < 0 (28)

Thus, we have: ∥θk∥ ≤ L
λ+

εmin
2

. Putting this in Eq. (28), we have:

g(θ∗
k(T ), {j})− g(θ∗

k(S ∪ {j}), {j}) ≤ L∥θ∗
k(T )− θ∗

k(S ∪ {j})∥+ λ∥θ∗
k(T )∥2 (29)

≤ 2L2

λ+ εmin

2

+
λL2

(λ+ εmin

2 )2
(30)

Thus, replacing the above quantity in Eq. (27), we have:

α ≥ α∗ =
ℓmin,min

ℓmin,min + 2L2

λ+0.5εmin
+ λL2

(λ+0.5εmin)2

(31)

(3) (Proof of the bound on Generalized curvature) From the definition of curvature,

1− κg(S) = min
a∈V

g(θ∗
k(S), S)− g(θ∗

k(S \ {a}), S \ {a})
g(θ∗

k({a}), {a})
(32)

From Eq. (20),
g(θ∗

k(S), S)− g(θ∗
k(S \ {a}), S \ {a}) ≥ ℓmin,min (33)

g(θ∗
k({a}), {a}) ≤ max

a

[
λ∥θk∥2 + l(fθk

(xa), ya)
]
= ℓmin,max (34)

Thus,

κg(S) ≤ 1− ℓmin,min

ℓmin,max
(35)

If we add an element a = (j, t) to S only g(θt, S) will be changed among the component models. Thus,

κG(S) = 1−min
a∈V

G(S)−G(S \ {a})
G(a)

(36)

= 1−min
a∈V

g(θ∗
t (S), S)− g(θ∗

t (S \ {a}), S \ {a})
g(θ∗

t ({a}), {a})

≥ 1− ℓmin,min

ℓmin,max
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A.3. Approximation Guarantees

We next prove the approximation bound for Theorem 4.

Theorem (4). If the function G is αG-submodular and has a curvature κG, Algorithm 1 obtains an approximation guar-
antee of |D|

αG(1+(|D|−1)(1−κG)αG) ≤
1

α2
G(1−κG)

assuming there exists a perfect training oracle in Lines (6,12,14).

Proof. From the definition of α-submodularity, note that αGG(S) ≤
∑

i∈S G(i). Next, we can obtain the following
inequality for any k ∈ S using weak submodularity:

G(S)−G(k) ≥ αG

∑
j∈S\k

(G(j|S\j) (37)

We can add this up for all k ∈ S and obtain:

|S|G(S)−
∑
k∈S

G(k) ≥ αG

∑
k∈S

∑
j∈S\k

(G(j|S\j)

≥ αG(|S| − 1)
∑
k∈S

G(k|S\k) (38)

Finally, from the definition of curvature, note that G(k|S\k) ≤ (1− κf )G(k). Combining all this together, we obtain:

|S|G(S) ≥ (1 + αG(1− κf )(|S| − 1))
∑
j∈S

G(j) (39)

which implies: ∑
j∈S

G(j) ≤ |S|
1 + αG(1− κG)(|S| − 1)

G(S) (40)

Combining this with the fact that αGG(S) ≤
∑

i∈S G(i), we obtain that:

G(S) ≤ 1

αG

∑
i∈S

G(i) ≤ |S|
αG(1 + αG(1− κG)(|S| − 1))

G(S) (41)

Note that |S|/(1 + αG(1 − κG)(|S| − 1) ≤ 1/α2
G(1 − κG) so we just use this factor in the approximation bound. The

approximation guarantee then follows from some simple observations. In particular, given an approximation

mG(S) =
1

αG

∑
i∈S

G(i) (42)

which satisfies G(S) ≤ mG(S) ≤ βGG(S), we claim that optimizing mG essentially gives a βG approximation factor.
To prove this, let S∗ be the optimal subset, and Ŝ be the subset obtained after optimizing mG. The following chain of
inequalities holds:

G(Ŝ) ≤ mG(Ŝ) ≤ mG(S∗) ≤ βGG(S∗) (43)

This shows that Ŝ is a βG approximation of S∗. Finally, note that this is just the first iteration of PRESTO, and with
subsequent iterations, PRESTO is guaranteed to reduce the objective value since we only proceed if there is a reduction in
objective value.

B. Comparison with EM Algorithm
General EM algorithm usually considers a prior and computes the membership probability of each datapoint at each
iteration. It makes assumption about the generative mechanism of the data as well as the prior about the cluster probabilities.
Such a probabilistic approach naturally leads one to develop EM algorithm.

On the other hand, our method makes no assumption about the data as well as cluster membership. We do not make
any probabilistic assumption which naturally led us to develop a set optimization problem— we do not make use of any
“continuous” or “soft” scores on cluster membership. Thus, our method is an MM algorithm which is an iterative set
optimization algorithm, which is functionally very different from EM algorithm.
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C. Difference with Mixture of Linear Regression
All our experiments consider classification tasks. Therefore, we modify Learn-MLR (Pal et al., 2022) to a mixture of clas-
sifiers. However, we note that the optimization problem formulation of the mixture of linear regression (or classification)
can be viewed as special case of the problem formulation of our method.

In most cases, the existing methods make assumptions about the generative mechanism of the cluster membership (e.g.,
some definite prior) and resort to an algorithm which makes an involved use of that assumption and is significantly tailored
to a particular task (mixture of regression or classification).

In contrast, our framework operates on a generic framework and does not make any specific assumption about the data or
the cluster membership. Moreover, the algorithm is very different from what is used by the usual mixture model learning
algorithms.

D. Additional Details about Experimental Setup
D.1. Dataset details

We experiment with three real world classification datasets in our experiments,

• CIFAR10 (Krizhevsky, 2009) has images of 10 different real-world objects.
• CIFAR100 (Krizhevsky, 2009) has images of 100 different real-world objects.
• STL (Coates et al., 2011) images of 10 different real-world objects.

For all datasets we extract embeddings from the sixth layer of a pretrained ResNet18. We rotate each of the examples by
30 degrees and post-processing, pick them in such a way that half of the examples are rotated in the train and test sets for
each dataset.

D.2. Model Architecture used for our method, the Unsupervised Partitioning methods and the Mixture Models

In case of our method, the unsupervised partitioning methods and the mixture models (all methods in Table 2 and PRESTO
in Table 4), we use a relatively light model. This model is exactly same in terms of architecture design to the final four
layers of ResNet18. This model design is chosen because we use extracted embeddings for training. The model reduces
the convolution filters at various junctures. The filter at fourth last layer is changed from 256 to 8, filter at third last layer
is changed from 512 to 16. We train an additional classifier. This classifier is a single layer fully connected feed forward
network that aids in predicting the final class for each instance.

D.3. Implementation Details for PRESTO

Number of partitions K. Number of partitions (K) is found for various datasets by performing an analysis of classification
accuracy v/s K in the validation. Specifically, for our model, we set K = 6 for CIFAR10 and K = 4 for each of CIFAR100
and STL using cross-validation. Similarly, we obtain the values of K = 5 for CIFAR10 and CIFAR100, and K = 4 for
STL for the clustering baselines.

Initialization. PRESTO is initialised using one of the clustering techniques depending on the dataset. We also try to ensure
that the clusters are of approximately the same size. We impose |N |

|K| size constraints for each of the bin with some leeway.
The leeway granted for every dataset is also a tunable hyperparameter.

Final selection of (i, k) from the matrix M . The values of the matrix M computed in line 19 of Algorithm 1 are
supplemented with euclidean distance (D) of a point to the existing bin center. The final criterion for binning becomes
M + ϵD. Here, we have ϵ = 6e− 3.

Optimizer. We use an Adam optimizer with the Cross-Entropy Loss to train the PRESTO models and the classifier. The
learning rate is set to 0.01. We set the value of the regularizer λ = 1e − 4. In Algorithm 1, Train(·) train the models on
the respective data partitions for 10 epochs. We set Iterations = 30. The additional classifier πϕ is also trained for 10
epochs.

Table 2 mentions various baselines. Details about each baseline is covered in the following points.
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D.4. Implementation details about the Unsupervised Partitioning methods and Mixture Models

Kmeans++. We use the scikit-learn (Pedregosa et al., 2011) implementation of Kmeans++ with the following parameters:
The number of clusters is set as K. A Kmeans++ initialization is used for selecting the initial centroids. We keep the
number of times the algorithm will be run with different centroid seeds as n init = 10. The final result is the best output
of n init consecutive runs in terms of inertia. The algorithm runs either a max of 300 iterations or convergence, whichever
occurs earlier. The convergence criterion is defined as the Frobenius norm of the difference in the cluster centers of two
consecutive iterations becoming less than 1e− 4.

Agglomerative. It is a bottom-up hierarchical clustering approach. We use the scikit-learn (Pedregosa et al., 2011) imple-
mentation of Agglomerative We use the Euclidean distance metric to calculate distance between data points. Initially each
data point is in its own cluster. The clusters are subsequently merged based on a linkage criterion. We use the ward linkage
criterion, which minimizes the sum of square differences within each cluster. The number of clusters is set as K.

GMM. We use the scikit-learn (Pedregosa et al., 2011) implementation of GMM with the number of components = K.
The GMM weights are initialized according to a KMeans initialization. The convergence threshold for the EM iterations
is set as 1e− 3.

Learn-MLR. We adapt the original paper (Pal et al., 2022) for the purpose of classification. The initial partitioning is
random and the we do not have a leeway when the data is re-partitioned. The ϵ parameter which gives a contribution to the
euclidean distance (D) is set to 0. An Adam optimizer is used with Cross-Entropy loss. The learning rate is set to 0.01 and
the regularizer λ = 1e− 4.

Mixture of Experts. We use the Sparse-MoE layer described in (Shazeer et al., 2017) for classification. The expert
networks have the architecture described in Section D.2. We adapt the (Rau, 2019) implementation for this purpose. We
use Noisy Top-K Gating as described in (Shazeer et al., 2017), which balances the number of training examples each
expert receives. We set the number of experts used for each batch element, k = 4.

D.5. Implementation Details for Resource-Constrained Experiments

We evaluate PRESTO in a resource-constrained learning setting by comparing with model pruning and knowledge distilla-
tion methods. The specifications for them are mentioned in the following points.

SNIP (Lee et al., 2019). SNIP is a pruning at initialization method, that given a large reference network prunes network
connections to a desired sparsity level (i.e. number of non-zero weights). Pruning is done prior to training, in a data-
dependent way based on the loss function at a variance scaling initialization, to create a sparse subnetwork which is then
used for inference. We adapt the implementation from (Su et al., 2020) to run experiments using SNIP. We train a large
reference model, with the same architecture as the PRESTO models described in Section D.2. The reference model has the
convolution filter size at the fourth last layer as 512 and at the third last layer as 1024. The models are trained on using an
Adam optimizer and the Cross-Entropy loss with a learning rate of 0.1. The reference models are trained for 150 epochs,
and the subsequent pruned models are trained for a total of 20 epochs till convergence.

GraSP (Wang et al., 2020a). GraSP is a pruning at initialization method similar to SNIP and also learns a smaller
subnetwork given a reference network, which can subsequently be trained independently. The gradient norm after pruning
is the pruning criterion in GraSP, and those weights whose removal will result in least decrease in the gradient norm after
pruning are pruned. We adapt the implementation from (Su et al., 2020) to run experiments using SNIP. We train a large
reference model, with the same architecture as the PRESTO models described in Section D.2. The reference model has the
convolution filter size at the fourth last layer as 512 and at the third last layer as 1024. The models are trained on using an
Adam optimizer and the Cross-Entropy loss with a learning rate of 0.1. The reference models are trained for 150 epochs,
and the subsequent pruned models are trained for a total of 20 epochs till convergence.

KD (Hinton et al., 2015). We train two models, a teacher model and a student model. The architecture of these models
is same as the PRESTO models described in Section D.2. The teacher model is heavier in size, the convolution filter
size at the fourth last layer is 256 and at the third last layer is 512. On the other hand, the lighter student model has
convolution filter size set to 24 and 32. The models are trained on using an Adam optimizer and the Cross-Entropy loss.
The KD Temperature hyperparameter is set to 5. The teacher model is trained and the loss of the student model is modified
to include a contribution from the teacher model. The multiplicative hyperparameter controlling the contribution of the
teacher model is set to 0.9.
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DGKD (Son et al., 2021). This method requires us to train 3 models, a teacher model, a TA model and a student model.
The teacher model is the heaviest, having the convolution filters set to 256 and 512. The TA model is slightly lighter with
filter size of 64 and 128. The student model is the lightest with filter size of 24 and 32. The temperature hyperparameter
is 5 and the factor controlling the contribution of the teacher and TA model is set at 0.9. We train the teacher and the TA
models independently. As in KD, the loss function of the student model is tweaked to consider a contribution from the
teacher and the TA models.

Machine configuration. We performed our experiments on a computer system with Ubuntu 16.04.6 LTS, an i-7 with 8
cores CPU and a total RAM of 528 GBs. The system had a single Titan RTX GPU which was employed in our experiments.

E. Additional Experiments
NMI and ARI for synthetic data. Here, we measure the performance of PRESTO against competitive partitioning and
mixture model techniques on clustering metrics such as Normalized Mutual Information (NMI) and Adjusted Rand Index
(ARI). These results are presented in Table 5.

NMI ARI
Kmeans++ 0.26 0.09
Agglomerative 0.71 0.79
MoE 0.28 0.21
Learn-MLR 0.59 0.63
PRESTO 0.86 0.92

Table 5. Comparison of Normalized Mutual Information (NMI) and Adjusted Rand Index (ARI) of PRESTO against the unsupervised
partitioning and mixture model methods for synthetic data. The best results are highlighted in green.

Accuracy vs K. Here, we aim to assess the impact of number of partitions (K) on the accuracy. K is varied from 4 to
7. Figure 6 shows the variation of K with the test accuracy and the Macro-F1 score. Note that the Macro-F1 score is the
harmonic mean of the precision and recall.
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Figure 6. Accuracy vs. the number of partitions K

At the outset, we expect each cluster to contain similar samples. In principle, a cluster, that has the larger set of similar
examples, would be most effective for training the underlying model. Thus, when we change K, three factors weigh
differently.

Factor 1 : Semantic similarity within a cluster. As the number of clusters K increases, each cluster tends to become
more and more homogeneous and therefore, the semantic similarity across instances within the cluster increases. This
renders the model easier to train, making the model accuracy to increase with K.

Factor 2 : Reduction in the number of examples per cluster. As the number of clusters K increases, each cluster
contains less instances on average. This causes overfitting making the accuracy to decrease as K increases.

Factor 3 : Accuracy of πϕ. As K increases, the accuracy of the additional classifier (πϕ) becomes much lower since it
needs to distinguish between multiple clusters at test time.

In CIFAR10, if we use very small K (K ≤ 4), we observe that several dissimilar objects are clustered together and Factor
1 starts to weigh in more than Factors 2 and 3. Hence, accuracy is low for these values of K. However, CIFAR-10 has more
redundancy or less diversity since we have only 10 objects and 6000 examples per object. Therefore, a slightly larger value
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of K (K = 5, 6) is enough for a large number of semantically similar items to get clustered together. Here, we observe
clusters of the right groups of classes, for e.g., cats and dogs, cars and trucks, etc.; and, we obtain high accuracy.

The diversity of images in CIFAR100 is very high— we have 100 object classes and only 600 examples per object. Hence,
at K = 5, 6 unlike CIFAR10, the average self similarity across inter-cluster instances does not change much from K = 4.
Thus Factor 1 does not play any role in this regime and Factors 2 and 3 weigh in. Consequently, we have highest accuracy
at K = 4 since at K = 4, it has a higher number of instances per cluster than K = 5, 6 and the additional classifier πϕ

has to distinguish between smaller numbers of clusters (4 vs 5,6), while having approximately the same diversity. Now if
we increase K substantially, as we described before, Factors 2 and 3 come in again, the number of instances per cluster
becomes too small and the final classification task by the additional classifier also becomes difficult.

Accuracy vs GPU usage. Here we vary the number of parameters p of PRESTO (through K), which gives us p ∈
[81754, 143068] on all datasets. Then we probe the variation in accuracy vs. maximum GPU memory used during both
training and inference. In Figure 7, we summarize the results for PRESTO and KD and DGKD— the two most resource
efficient methods from Table 4. We observe that PRESTO consumes significantly lower memory for diverse model size
during both training and inference.
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Figure 7. Trade off between accuracy and maximum GPU memory for KD, DGKD and PRESTO during training (panel (a)) and inference
(panel (b)).

F. Time Complexity Analysis
Although PRESTO performs data partitioning while simultaneously learning a set of mixture of models, the partitioning
time (lines 19-24 in Algorithm 1) is negligible as the bulk of the time is devoted to training (lines 10-18 in Algorithm
1). Table 8 presents an analysis of the per-iteration training time for PRESTO against the relevant baselines. The table
reports two numbers for PRESTO and the clustering baselines. The first number corresponds to the training time required
to serially train all the bin-wise models and the external classifier for 1 epoch. The number in the bracket corresponds to
the training time that would be required if we are able to parallelize the individual bin-wise training. PRESTO has a time
complexity of O(#Iterations · |D| · |K|), we can remove the |K| factor by parallelizing the cluster-wise training procedure
and have a better compute efficiency. This number is required for a fair comparison to the MoE baseline which uses an end
to end training cycle and does not have the sequential bin-wise training that PRESTO follows.
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Training time per iteration (s)
Method CIFAR10 CIFAR100 STL

PRESTO 70.35 (10.05) 49.31 (9.87) 29.00 (5.80)
Kmeans++ 65.19 (9.31) 41.92 (8.38) 26.2 (5.24)

Agglomerative 75.22 (10.74) 54.44 (10.91) 34.45 (6.89)
GMM 58.28 (8.33) 39.77 (7.95) 24.19 (4.84)
MoE 7.32 9.73 4.73

Learn-MLR 44 52.58 22.74

Table 8. Comparison of training time per iteration of PRESTO against GMM (Bishop & Nasrabadi, 2006), Kmeans++ (Arthur & Vassil-
vitskii, 2006), MoE (Shazeer et al., 2017), Agglomerative (Müllner, 2011) and Learn-MLR (Pal et al., 2022). Note that the table reports
two numbers for PRESTO and the clustering baselines. PRESTO uses a sequential bin-wise training procedure which is reflected in the
first number, whereas the numbers in the bracket signifies the time taken to train if we had parallelised the bin-wise training procedure.
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