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Abstract
Polar slice sampling (Roberts & Rosenthal, 2002)
is a Markov chain approach for approximate sam-
pling of distributions that is difficult, if not im-
possible, to implement efficiently, but behaves
provably well with respect to the dimension. By
updating the directional and radial components
of chain iterates separately, we obtain a family
of samplers that mimic polar slice sampling, and
yet can be implemented efficiently. Numerical
experiments in a variety of settings indicate that
our proposed algorithm outperforms the two most
closely related approaches, elliptical slice sam-
pling (Murray et al., 2010) and hit-and-run uni-
form slice sampling (MacKay, 2003). We prove
the well-definedness and convergence of our meth-
ods under suitable assumptions on the target dis-
tribution.

1. Introduction
Bayesian inference heavily relies on efficient sampling
schemes of posterior distributions that are defined on high-
dimensional spaces with probability density functions that
can only be evaluated up to their normalizing constants.
We develop a Markov chain method that can be used to
approximately sample a large variety of target distributions.
For convenience we frame the problem in a black-box set-
ting. We assume that the distribution of interest ν is defined
on (Rd,B(Rd)) and given by a density, i.e. a measurable
function ϱν : Rd → R+ := [0,∞), such that

ν(A) =

∫
A
ϱν(x)dx∫

Rd ϱν(x)dx
, A ∈ B(Rd).

In the following, knowledge of the normalization constant
of ϱν , i.e. the denominator of the above ratio, is not required.
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Since exact sampling is generally infeasible, we aim to
produce approximate samples from ν, i.e. realizations of
random variables whose distributions are, in some sense,
close to ν.

To pursue this goal, we rely on Markov chain Monte Carlo
(MCMC), which implements an irreducible and aperiodic
Markov kernel P that leaves ν invariant. For such a ker-
nel, well-established theory shows that the distribution of
iterates Xn of a Markov chain (Xn)n∈N0

with transition
kernel P converges to ν as n → ∞. An MCMC method
generates a realization (xn)1≤n≤N ⊂ Rd of X1, . . . , XN

from (Xn)n∈N0
and uses some or all of the realized chain

iterates xn as approximate samples of ν. Here, we focus on
slice sampling MCMC methods, that use auxiliary “slice”
or threshold random variables (Tn)n∈N0

. In general, Tn

given Xn−1 follows a uniform distribution over an inter-
val that depends on Xn−1. Specifically, we consider polar
slice sampling (PSS), which was proposed by Roberts &
Rosenthal (2002). PSS factorizes the target density ϱν into

ϱν(x) = ϱ(0)ν (x)ϱ(1)ν (x),

ϱ(0)ν (x) = ∥x∥1−d
,

ϱ(1)ν (x) = ∥x∥d−1
ϱν(x)

(1)

for x ̸= 0, where ∥·∥ is the Euclidean norm on Rd. Given
an initial value x0 ∈ Rd with x0 ̸= 0 and ϱν(x0) > 0,
PSS recursively realizes the n-th chain iterate xn from the
(n− 1)-th iterate xn−1 as follows: An auxiliary variable tn
is chosen as a realization of1

Tn ∼ U((0, ϱ(1)ν (xn−1))).

Given tn, the next chain iterate is generated using polar
coordinates Xn = RnΘn where the radius Rn is a random
variable on R+ and the direction Θn is a random variable
on the (d− 1)-sphere

Sd−1 := {θ ∈ Rd | ∥θ∥ = 1} ⊂ Rd.

To conform with the general slice sampling principle of
Besag & Green (1993), the variables (Rn,Θn) need to be

1With U(G) we denote the uniform distribution on a set G
w.r.t. some reference measure that is clear from the context, as it is
always either the Lebesgue measure, the surface measure on the
(d− 1)-sphere or a product measure of the two.
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sampled from the joint uniform distribution

U({(r, θ) ∈ R+ × Sd−1 | ϱ(1)ν (rθ) > tn}). (2)

Standard slice sampling theory then guarantees that the
resulting transition kernel has invariant distribution ν. For
the convenience of the reader, in Appendix A we elaborate
on how PSS can be derived from the general slice sampling
principle of Besag & Green (1993). In the following, we
refer to the process of sampling Xn given Tn as X-update
of PSS.

The theoretical analysis of PSS by Roberts & Rosenthal
(2002) offered performance guarantees for approximate sam-
pling that are dimension-independent for rotationally invari-
ant, log-concave target densities. Overall, their analysis sug-
gests that PSS works generally robustly in high-dimensional
scenarios. Despite this, PSS received little attention in the
MCMC literature during the twenty years since its publi-
cation. We believe that this lack of engagement is not the
result of PSS performing poorly on paper, but rather that
of practical challenges in efficiently implementing it. Con-
current work by Rudolf & Schär (2023) supports this view.
They prove – again in the rotationally invariant, log-concave
setting – dimension-independent spectral gap estimates for
PSS, which imply dimension-independence w.r.t. the mean
squared error and the asymptotic variance within the central
limit theorem of the MCMC average of a summary function.

The practical challenge in implementing PSS is that the
polar variables (Rn,Θn) need to be jointly drawn uniformly
from a high-dimensional set that often has a complicated
structure. Therefore, this step is usually implemented by an
acceptance/rejection scheme using uniform samples from
a tractable superset. In moderate to high dimensions, for
target densities ϱν that are not rotationally invariant, the
fraction of directions θ ∈ Sd−1 for which the set

{r ∈ R+ | ϱ(1)ν (rθ) > t}

is non-empty becomes tiny for most thresholds t occur-
ring as realizations of Tn. This usually leads to an im-
practically low acceptance rate of the aforementioned ac-
ceptance/rejection scheme, such that – in expectation – an
astronomically large number of proposals needs to be drawn
during a single transition. In other words, although a valid
implementation of PSS is available in principle, the itera-
tions of the sampler are computationally inefficient resulting
in exceedingly long simulation runs.

To address this deficiency, we develop an MCMC framework
that imitates PSS, but is guaranteed to run in a computa-
tionally efficient manner. Imitating here refers to keeping
the PSS structure and splitting the difficult joint uniform
sampling of radius and direction of (2) into separate steps.
Intuition suggests that if the resulting transition mechanism
is close to the original version of PSS, then also some of its

desirable convergence properties will be inherited. The even-
tually proposed MCMC algorithm is essentially tuning-free
and explores the state space remarkably quickly. We pro-
vide a basic theoretical underpinning of our method, proving
that it asymptotically samples from the target distribution ν
under mild regularity conditions. Moreover, we illustrate its
potential to improve upon related methods through a series
of numerical experiments.

The remainder of this paper is structured as follows: In Sec-
tion 2 we propose our modifications of PSS that we term
Gibbsian polar slice sampling. To provide a better under-
standing, we present different variants that culminate in a
Gibbsian polar slice sampler that incorporates a stepping-out
and shrinkage procedure. In Section 3 we provide theoreti-
cal support for our methods. We discuss possible extensions
and alternative mechanisms that can also be used in our
framework in Section 4 and comment on related approaches
in Section 5. In Section 6 we present a number of numeri-
cal experiments comparing our algorithm to the two most
closely related ones that are similarly feasible to use in
practice. We conclude with a short discussion in Section 7.

2. Gibbsian Polar Slice Sampling
The idea is to decompose the X-update of PSS by replac-
ing the joint sampling of radius rn and direction θn with
separate updates of both variables in a Gibbsian fashion.

Variant 1

Our initial modification of PSS is mostly of theoretical
interest. First, we only update the directional component of
the last chain iterate xn−1, resulting in an intermediate state
rn−1θn, where rn−1 = ∥xn−1∥ and θn is a realization of

Θn ∼ U({θ ∈ Sd−1 | ϱ(1)ν (rn−1θ) > tn}). (3)

We then update the radial component of the intermediate
state, resulting in the new chain iterate xn := rnθn, where
rn is a realization of

Rn ∼ U({r ∈ R+ | ϱ(1)ν (rθn) > tn}). (4)

In contrast to standard Gibbs sampling which cycles over
coordinate-wise updates of the current state, we rely on a
systematic conditional renewal in terms of the polar transfor-
mation components given as radius and direction. Although
the modification does not solve the runtime issue, it lays the
groundwork for further algorithmic improvements.

At this stage, we would already like to mention Theorem 3.1
which states that ν is the invariant distribution of the tran-
sition kernel of the 1st variant of Gibbsian polar slice sam-
pling (GPSS). Therefore, GPSS provides a correct MCMC
method for targeting ν.
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We note that by randomizing the deterministic updating
scheme (i.e. rather than always updating the direction first
and then the radius, both are sampled in random order), one
can obtain the stronger statement that the transition kernel
is reversible w.r.t. ν.

Variant 2

The direction update is still a challenging implementation is-
sue, since it requires sampling of a uniform distribution over
a (d−1)-dimensional set with d possibly being large. There-
fore, to sample the next direction, we suitably use (ideal)
spherical slice sampling (Habeck et al., 2023), a recently
developed MCMC method for (approximate) sampling from
distributions on Sd−1. The radius update is not changed in
this variant (since it consists of a 1-dimensional uniform
distribution sampling step).

Let Sd−2
θ be the great subsphere w.r.t. θ, i.e. the set

{ϑ ∈ Sd−1 | θTϑ = 0}

of directions in Sd−1 that are orthogonal to θ. In (Habeck
et al., 2023) it is shown that one can sample uniformly from
Sd−2
θ as follows: Draw V1 ∼ Nd(0, Id), set V2 := V1 −

(θTV1)θ and finally V3 := V2/∥V2∥, then V3 ∼ U(Sd−2
θ ).

Furthermore, for any y ∈ Sd−2
θ the set

{θ cos(ω) + y sin(ω) | ω ∈ [0, 2π)}

is the unique great circle in Sd−1 that contains both θ and y.

A single iteration of this variant imitates the X-update of
PSS as follows: First, a reference point y is drawn uniformly
from the great subsphere w.r.t. the direction θn−1 of the
previous sample. The new direction θn is then sampled
uniformly from the great circle of Sd−1 running through
both θn−1 and y, intersected with

{θ ∈ Sd−1 | ϱ(1)ν (rn−1θ) > tn}.

Then, a new radius is chosen by sampling (4).

Variant 3: The Concrete Algorithm

In practice, the univariate direction and radius updates of the
2nd variant of GPSS still need to be implemented as accep-
tance/rejection schemes that might exhibit low acceptance
rates. Therefore, the final variant of GPSS replaces both
updates with adaptive procedures that are essentially guar-
anteed to be fast and result in an algorithm that empirically
converges against the correct target distribution.

In the radius update, we use the stepping-out and shrinkage
procedure as proposed for uniform slice sampling by Neal
(2003). In the direction update, we incorporate a shrink-
age procedure. Actually, our direction update can be inter-
preted as running the shrinkage-based spherical slice sam-

Algorithm 1 Gibbsian Polar Slice Sampling
1: Input: target density ϱν , initial value x0 ∈ Rd with

x0 ̸= 0 and ϱν(x0) > 0, initial interval length w > 0

2: Define ϱ
(1)
ν : x 7→ ∥x∥d−1

ϱν(x)
3: Set r0 := ∥x0∥ and θ0 := x0/r0
4: for n = 1, 2, . . . do
5: Draw Tn ∼ U((0, ϱ(1)ν (xn−1))), call result tn
6: θn := Geodesic Shrinkage(ϱ(1)ν , tn, rn−1, θn−1)

7: rn := Radius Shrinkage(ϱ(1)ν , tn, rn−1, θn, w)
8: xn := rnθn
9: end for

10: return (xn)n≥0

Algorithm 2 Geodesic Shrinkage

1: Input: transform ϱ
(1)
ν of target density, current thresh-

old tn, current radius rn−1, current direction θn−1

2: Draw Y ∼ U(Sd−1
θn−1

), call the result y
3: Draw ωmax ∼ U([0, 2π]), set ωmin := ωmax − 2π
4: repeat
5: Draw Ω ∼ U([ωmin, ωmax]), call result ω
6: Set θn := θn−1 cosω + y sinω
7: if ω < 0 then ωmin := ω else ωmax := ω
8: until ϱ(1)ν (rn−1θn) > tn
9: return θn

pler (Habeck et al., 2023). This ultimate variant is readily
implemented by Algorithms 1, 2 and 3.

Briefly a single iteration works as follows: An element y of
the great subsphere is determined as in variant 2 and then
the new direction θn is sampled via a shrinkage procedure
on the great circle of Sd−1 running through both θn−1 and
y. Finally, a new radius is chosen via a stepping-out and
shrinkage procedure on the ray emanating from the origin
in direction θn, where shrinkage can be performed around
the old radius rn−1 because it satisfies the target condition
by construction.

3. Validation – Theoretical Support
We provide some basic theoretical underpinning of the pro-
posed methods with a focus on the 2nd variant of GPSS.
The reasons for this are threefold: First, in principle this
variant can also be implemented by using univariate accep-
tance/rejection schemes2. Second, we want to avoid any
deep discussion about the stepping-out procedure that is in-
volved in Algorithm 3. Third, since Algorithms 2 and 3 both

2For the direction update this is immediately possible, since
[0, 2π] is a superset of the corresponding acceptance region. For
the radius update this is more complicated and may require some
structural knowledge about ϱν .
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Algorithm 3 Radius Shrinkage

1: Input: transform ϱ
(1)
ν of target density, current thresh-

old tn, current radius rn−1, current direction θn, initial
interval length w > 0

2: Sample U ∼ U([0, 1]), call the result u
3: rmin := max(rn−1 − u · w, 0)
4: rmax := rn−1 + (1− u) · w
5: while rmin > 0 and ϱ

(1)
ν (rminθn) > tn do

6: rmin := max(rmin − w, 0)
7: end while
8: while ϱ

(1)
ν (rmaxθn) > tn do

9: rmax := rmax + w
10: end while
11: Sample Rn ∼ U([rmin, rmax]), call the result rn
12: while ϱ

(1)
ν (rnθn) ≤ tn do

13: if rn < rn−1 then rmin := rn else rmax := rn
14: Sample Rn ∼ U([rmin, rmax]), call the result rn
15: end while
16: return rn

contain a shrinkage procedure, no explicit representation
of the corresponding transition kernels is available to our
knowledge. The proofs of the following statements can be
found in Appendix B.
Theorem 3.1. The transition kernels corresponding to the
1st and 2nd variant of GPSS admit ν as invariant distribu-
tion.

To verify that ν is an invariant distribution, we argue that the
direction and radius update are both individually reversible
w.r.t. ν. This could also serve as a strategy to prove the
invariance of the 3rd variant of GPSS. For the direction
update (Algorithm 2), this can be done by virtue of results
of (Habeck et al., 2023; Hasenpflug et al., 2023). For the
radius update, the interplay of stepping-out and shrinkage
makes it difficult to prove reversibility rigorously. However,
intuitively the arguments of Neal (2003) apply.

Under weak regularity assumptions on ϱν we also get a
convergence statement.
Theorem 3.2. Assume that the target density ϱν is strictly
positive, i.e. ϱν : Rd → (0,∞). Then, for ν-almost ev-
ery initial value x0, the distribution of an iterate Xn of a
Markov chain (Xn)n∈N0 with X0 = x0 and transition ker-
nel corresponding to the 2nd variant of GPSS converges to
ν in total variation as n → ∞.

Under an additional restrictive structural requirement the
convergence result also holds for the 3rd variant of GPSS.
Namely, if we assume that the radius shrinkage of Algo-
rithm 3 with threshold tn, current radius rn−1 and direction
θn realizes sampling w.r.t.

U({r ∈ R+ | ϱ(1)ν (rθn) > tn}).

For example, this is true if ϱ(1)ν is unimodal along rays. This
actually is a scenario where the direction update relies on
the shrinkage-based Algorithm 2, but the radius update is
exact as in the 2nd variant of GPSS.

4. Alternative Transition Mechanisms
We emphasize that our 3rd variant of GPSS is just one of
many possible ways to create a valid and efficiently im-
plementable method that is based on the 2nd variant. For
example, many of the ideas in Section 2.4 of (Murray et al.,
2010) for modifying the shrinkage procedure used by ellipti-
cal slice sampling easily transfer to the shrinkage procedure
used in the direction update of GPSS. For the radius update,
one could drop stepping-out, i.e. just place an interval of
size w > 0 randomly around the current rn and then use
the shrinkage procedure right away. With the same choice
of the hyperparameter w this reduces the number of target
density evaluations per iteration at the cost of also reducing
the speed at which the sampler explores the distribution of
interest. One could also replace our radius update by the
update mechanism of latent slice sampling (Li & Walker,
2023). In principle, one could even use Metropolis-Hastings
transitions for either one of the updates. As long as each
transition mechanism leaves the corresponding distribution
in either (3) or (4) invariant, the resulting sampler should
be well-behaved. In this sense, GPSS provides a flexible
framework that leads to a variety of different samplers.

5. Related Work
The radius update we use for GPSS in the 3rd variant has
previously been considered in Section 4.2.2 of (Thompson,
2011), where it was suggested to alternate it with a standard
update on Rd, i.e. one that does not keep the radius fixed.
Intuitively, our GPSS improves upon this approach by intro-
ducing a dedicated direction update, which, by not wasting
effort on exploring the entire sample space, can more effi-
ciently determine a (hopefully) good new direction.

Furthermore, although GPSS was developed as imitating
classical polar slice sampling, it also bears some resem-
blance to two other slice sampling methods, namely ellip-
tical slice sampling (ESS) (Murray et al., 2010) and hit-
and-run uniform slice sampling3 (HRUSS). Both methods
have been analyzed theoretically to some extent, ESS in
(Natarovskii et al., 2021; Hasenpflug et al., 2023), HRUSS
in (Latuszyński & Rudolf, 2014) and an idealized version
of HRUSS in (Rudolf & Ullrich, 2018). Moreover, a so-
phisticated sampling algorithm that employs a large number
of ESS-based Markov chains running in parallel has been

3The idea of HRUSS is already formulated in the paragraph
‘How slice sampling is used in real problems’ in Section 29.7 in
(MacKay, 2003)
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suggested in (Nishihara et al., 2014).

Both ESS and HRUSS follow the same basic principle as all
other slice sampling approaches: In iteration n, they draw a
threshold tn w.r.t. the value of some fixed function ϱ

(1)
ν at

the latest sample xn−1. They then determine the next sam-
ple xn by approximately sampling from some distribution
restricted to the slice (or level set) of ϱ(1)ν at threshold tn.

For a given threshold, ESS draws an auxiliary variable from
a mean zero multivariate Gaussian and performs shrinkage
on the zero-centered ellipse running through both the aux-
iliary point and the latest sample, using the latter as the
reference point for shrinkage. This is very similar to the
direction update in the 3rd variant of GPSS4, where we draw
the auxiliary variable y from the uniform distribution on the
great subsphere w.r.t. the direction θn−1 of the latest sample
xn−1 and then perform shrinkage on the unique great circle
of Sd−1 that contains both y and θn−1.

HRUSS on the other hand uses neither ellipses nor circles.
For a given threshold, it proceeds by choosing a random
direction (uniformly from Sd−1) and determining the next
sample xn by performing stepping-out and shrinkage pro-
cedures on the line through the latest sample xn−1 in this
direction. This is obviously very similar to the radius update
used in the 3rd GPSS variant. The two major differences are
that the latter does not use an auxiliary variable to determine
the direction along which it performs the update, and that
HRUSS performs an update on an entire line, whereas GPSS
only considers a ray (by requiring radii to be non-negative).

Based on these comparisons, we may expect an iteration of
our 3rd GPSS variant to be roughly as costly as one of ESS
and one of HRUSS combined. Various experiments suggest
this to be a good rule of thumb, though GPSS actually tends
to be faster than ESS if the latter is not well-tuned (we
explain what this means in Section 6). Although HRUSS
is clearly the fastest among the three, it usually takes large
amounts of very small steps, so that it tends to lag behind the
other two samplers when considering metrics like effective
sample size per time unit.

6. Experiments
We illustrate the strengths of our 3rd variant of GPSS by a
series of numerical experiments in which we compare its
performance with those of ESS and HRUSS5. Source code
allowing the reproduction (in nature) of our experimental

4In fact, both approaches can even be implemented to use the
same random variables, d samples from N (0, 1), for determining
the one-dimensional object to perform shrinkage on.

5All of our experiments were conducted on a workstation
equipped with an AMD Ryzen 5 PRO 4650G CPU.

results is provided in a github repository6. Some remarks
on the pitfalls in implementing our method are provided in
Appendix C, additional sampling statistics in Appendix D,
an additional experiment on Bayesian logistic regression in
Appendix E, and further illustrative plots in Appendix F.

Before we discuss the individual experiments, some ex-
planation of our general approach to using and comparing
these methods is in order. The positive hyperparameter w
in HRUSS determines the initial size of the search interval
in the stepping-out procedure, playing the same role as the
eponymous parameter of GPSS in Algorithm 3. Therefore,
when we compare the two samplers in some fixed setting,
we always use the same value of w for both of them. We
note, however, that neither parameter has much of an influ-
ence on the sampler’s performance as long as they are not
chosen orders of magnitude too small. Accordingly, we did
not carefully tune them in any of the experiments.

As ESS is technically only intended for posterior densities
with mean zero Gaussian priors, whenever we are in a differ-
ent setting, we artificially introduce a mean zero Gaussian
prior and use the target divided by the prior as likelihood. As
we will see in the following, the performance of the method
can be quite sensitive to the choice of the covariance matrix
for this artificial prior, so we sometimes consider both a
“naive” (or “untuned”) and a “sophisticated” (or “tuned”)
choice in our comparisons.

To make the sophisticated choices, we typically rely on the
fact that the radii of samples from Nd(0, Id) scatter roughly
around

√
d, but also on an understanding of the desired

range of radii gained either through theoretical analysis of
the target density or by examining samples generated by
GPSS. In one of our experiments, where the variables are
highly correlated in the sense that their joint density – our
target density – is very far from rotational invariance, we
even use the empirical covariance of samples generated by
GPSS as the covariance matrix for ESS.

6.1. Multivariate Standard Cauchy Distribution

First we considered the multivariate generalization of the
pathologically heavy-tailed standard Cauchy distribution,
i.e. the distribution ν with ϱν(x) = (1+∥x∥2)−(d+1)/2. We
chose the sample space dimension to be d = 100, initialized
all samplers with x0 := (1, . . . , 1)T and ran each of them
for N = 106 iterations. Since ν is rotationally invariant and
the covariance of naive ESS was already on a reasonable
scale, we refrained from using a tuned version of ESS here.

As the canonical test statistics mean and covariance are
undefined for ν, we instead measured the sample quality
by letting the samplers estimate a probability w.r.t. ν. For

6https://github.com/microscopic-image-
analysis/Gibbsian Polar Slice Sampling
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Figure 1. Progression over iterations of the estimates of p(b) from
(5) in the multivariate standard Cauchy experiment. Note the
logarithmic scale. The dashed black line denotes the ground truth,
which, using our knowledge of the target’s rotational invariance, we
could compute by numerically solving a one-dimensional integral.

this we chose the probability of the event that ∥Z∥ > b and
simultaneously Z1 > 0, where Z = (Z1, . . . , Zd)

T ∼ ν
and b > 0. Described in formulas, the samplers estimated

p(b) := ν({z ∈ Rd | ∥z∥ > b, z1 > 0}), (5)

where z1 is the first entry of z = (z1, . . . , zd)
T ∈ Rd.

Note that the condition ∥Z∥ > b measures how well the
sample radii reflect those that would occur in exact sampling
from ν, whereas the condition Z1 > 0 detects if the sample
directions (i.e. the samples divided by their radii), are biased
towards either one of the two half-spaces separated by the
hyperplane through all but the first coordinate axes. Hence
both radii and directions need to be sampled well in order
for the estimate of p(b) to quickly approach the true value.

The progressions of the samplers’ estimates of p(b) are
shown in Figure 1. It can be seen that those produced by
GPSS converge to the true value orders of magnitude faster
than those by both HRUSS and ESS. In Appendix F, Figure
11, we provide a peek into the sampling behind these results
by displaying the progression of radii and log radii over
Nwindow = 5 · 104 iterations. As exact sampling from ν
is tractable (using samples from the multivariate normal
and the χ2-distribution), we also display traces of exact
i.i.d. samples for comparison.

Figure 11 suggests that the samples produced by GPSS are
comparable in quality to i.i.d. ones, and shows that those by
HRUSS and ESS are certainly not. Upon closer examination,
the reason for this becomes evident: Although all samplers
take trips to the distribution’s tails, those taken by HRUSS
and ESS last several orders of magnitude longer than those
of GPSS into the same distance. Consequently, HRUSS

and ESS make their excursions to the extremely far-off
parts of the tails (say, the points of radii in the thousands
or more) with vanishingly small frequency. Thus GPSS
needs a much shorter chain to properly reflect the tails of
the target distribution. We acknowledge, however, that the
advantage GPSS has over HRUSS in this setting would be
considerably smaller if the target density was not centered
around the origin.

6.2. Hyperplane Disk

Next we considered the target density

ϱν(x) = exp
(
−(

∑d
i=1 xi)

2 − ∥x∥2
)

(6)

for x = (x1, . . . , xd)
T ∈ Rd. Intuitively, the sum term

within the density leads to a concentration of its probability
mass around a hyperplane, i.e. a (d− 1)-dimensional sub-
space, given by the set of points x ∈ Rd for which the sum
term vanishes. The norm term ensures that the function is
integrable with Gaussian tails in all directions, which intu-
itively further concentrates the distribution around a circular
disk within the hyperplane. We set d = 200 and initialized
all chains in an area of high probability mass. We then ran
each sampler for N = 104 iterations. To tune ESS, we took
all N samples generated by GPSS, computed their empirical
covariance matrix and used it as the covariance parameter
for the artificial Gaussian prior of ESS.

The results are shown in Appendix F, Figure 12. The pro-
gression of the sample radii suggests that GPSS has a con-
siderable advantage over all other approaches. However,
impressions based on sample radii should be taken with
some caution, since GPSS is the only method that specifi-
cally updates the radii during sampling. Accordingly, when
considering empirical step sizes, the advantage of GPSS is
less pronounced, but still present. For example, the mean
step sizes are ≈ 5.0 for GPSS, ≈ 3.5 for tuned ESS, ≈ 2.4
for untuned ESS and ≈ 0.6 for HRUSS.

There are two drawbacks regarding the performance of tuned
ESS, which by the aforementioned aspects is the closest
competitor to our method in this setting. On the one hand,
as noted before, we tuned ESS using the samples generated
by GPSS, thus relying on the robust performance of GPSS
to compute a good estimate of the target distribution’s true
covariance matrix. On the other hand, the computational
overhead of sampling from a multivariate Gaussian with
non-diagonal covariance matrix slows tuned ESS down sig-
nificantly. As a result, tuned ESS consistently ran slower
than all the other samplers in this experiment. The advan-
tage of GPSS over tuned ESS is remarkable, not just because
only the latter uses a proposal distribution adjusted to the
shape of the target distribution, but also because the tails of
the target are Gaussian, which in principle should benefit
ESS (by virtue of its proposal distribution being Gaussian

6
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as well).

We attribute the relatively poor performance of HRUSS to
the curse of dimensionality: As a result of the target den-
sity being narrowly concentrated around a hyperplane of
a very high-dimensional space, from any given point in
the target’s high probability region there are very few di-
rections in which one can take large steps without leaving
the high-probability region. Nevertheless, HRUSS isotropi-
cally samples the direction along which it will move, such
that most of the time only small steps along the sampled
direction are allowed.

6.3. Axial Modes

Our third experiment was concerned with the target density

ϱν(x) = ∥x∥4∞ exp(−∥x∥1). (7)

Due to the counteracting forces of ∞-norm and 1-norm, ϱν
possesses 2d fairly isolated modes, 2 along each coordinate
axis, see Figure 8 (appendix) for an illustration.

This particular structure enables an interesting quantitative
diagnostic for the performance of MCMC methods targeting
this distribution: For any given x = (x1, . . . , xd)

T ∈ Rd,
one can use the absolute values of its components to assign
it to a pair of modes (that lie on the same coordinate axis)
via

axis(x) := argmax
1≤i≤d

|xi|.

For a finite chain of samples (x(n))n=1,...,N ⊂ Rd that was
generated as the output of some MCMC method, numerous
quantitative diagnostics can then be applied to the values
(axis(x(n)))n=1,...,N . For example, one can say that the
chain jumped between modes in step i if and only if

axis(x(i)) ̸= axis(x(i−1)).

One can then count the total number of jumps within the N
iterations (which provides information about how quickly
the chain moved back and forth between the mode pairs)
and compare these values between different chains. Alter-
natively, one could compute the mean dwelling time, i.e. the
average number of iterations the chain spent at a mode pair
until jumping to the next. This may be a more helpful quan-
tity than the total number of jumps, because it is essentially
independent of the number N of iterations. It may also be
worthwhile to consider the maximum dwelling time, i.e. the
largest number of iterations the chain spent at a mode pair
without leaving, as this is more suitable than mean dwelling
time and total number of jumps for detecting whether a
chain occasionally gets stuck at a mode pair for excessively
many iterations.

We ran each sampler for N = 105 iterations in each of
the dimensions d = 10, 20, . . . , 100. As initialization we

Figure 2. Progression over dimensions d of the mean dwelling
time, determined based on N = 105 iterations, in the axial modes
experiment, as described in Section 6.3.

Figure 3. Progression over dimensions d of the maximum dwelling
times within N = 105 iterations in the axial modes experiment,
as described in Section 6.3.

used x0 := (5, 1, . . . , 1)T ∈ Rd. For the ESS covariance
we considered both the usual naive choice Σ = Id and the
carefully hand-tuned choice Σ = (5 + d/10)2/d · Id.

In Figures 2 and 3 we display for each sampler the progres-
sion over the dimensions d of mean and maximum dwelling
time. In terms of mean dwelling time, GPSS has a clear
advantage over both untuned ESS and HRUSS, only the
carefully tuned ESS is competitive with it. In terms of max-
imum dwelling time, GPSS is slightly ahead of all other
samplers, even tuned ESS. In Appendix F, Figure 13 we
provide a peek into the sampling behind these results by
displaying the progression of currently visited mode pair in
the last Nwindow = 2 · 104 iterations of the samplers’ runs
for the highest dimension d = 100.

7
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6.4. Neal’s Funnel

In our fourth experiment, we considered an arguably even
more challenging target density that was originally proposed
by Neal (2003) and is commonly termed Neal’s funnel. It is
given by

ϱν(x) = N (x1; 0, 9)

d∏
i=2

N (xi; 0, exp(x1)), (8)

where we write x = (x1, . . . , xd)
T ∈ Rd and denote by

N (z;µ, σ2) the density of N (µ, σ2) evaluated at z. As the
name suggests, the density is shaped like a funnel, having
both a very narrow and a very wide region of high prob-
ability mass, which smoothly transition into one another.
Besides being a challenging target, the funnel is of particu-
lar interest to us because its marginal distribution in the first
coordinate is simply N (0, 9) and a sampler needs to explore
both the narrow and the wide part of the funnel equally well
in order to properly approximate this marginal distribution
via the marginals of its samples (i.e. the set containing each
of its samples truncated after the first component).

We ran the slice samplers for the funnel in dimension d = 10
(as suggested by Neal) and initialized all of them with
x0 := (2, 0, . . . , 0)T ∈ Rd. For ESS we used the rela-
tively well-tuned covariance Σ = diag(9, 70, . . . , 70). For
this experiment we also extend our comparison to a sam-
pler that is only related to GPSS by the fact that it is also
an MCMC method. Namely, we compare GPSS with the
No-U-Turn Sampler (NUTS) (Hoffman & Gelman, 2014),
which is widely regarded to be the current state-of-the-art in
MCMC sampling7. We used the implementation of NUTS
provided by the probabilistic programming Python library
PyMC (Salvatier et al., 2016).

In this experiment we study the convergence to several tar-
get quantities. To enable a fair comparison of the samplers,
we took differences in the speed of the iterations into ac-
count. This was achieved by allocating a fixed time budget
of 1 minute to each sampler and letting it run for sufficiently
many iterations to deplete this time budget, while tracking
how much time had elapsed after each completed iteration8.
We assessed the convergence ten times per second, resulting
in 600 measurement times in total. Finally, we determined
for each measurement time t and each sampler s the ex-
act number of iterations nt,s ∈ N it had completed up to
that time (using the aforementioned logs) and estimated the
target quantities from only the nt,s samples produced in
these iterations. As target quantities we considered mean,
standard deviation, 0.001-quantile and 0.999-quantile. To

7Note, however, that NUTS needs the target density to be
differentiable and requires oracle access to its gradient, neither of
which is true for the slice sampling methods we consider.

8Except for NUTS, where we only approximated this by as-
suming the runtime per iteration to be constant.

Figure 4. Progression over runtime of the empirical mean of the
marginal samples in the experiment on Neal’s funnel (8). The
dashed black line denotes the ground truth.

Figure 5. Progression over runtime of the empirical standard devi-
ation of the marginal samples in the experiment on Neal’s funnel
(8). The dashed black line denotes the ground truth.

generate estimates of these quantities from marginal sam-
ples, we simply used their empirical versions.

The progression over time of each sampler’s approximations
to these target quantities are shown in Figures 4, 5, 6 and
7. Additionally, we provide the marginal histograms of all
samples generated within the time budget as well as a peek
into the progression of the marginal samples and sample
radii in Appendix F, Figure 14.

It can be clearly seen from the first four figures that GPSS
performs better overall than any of the other methods. We
note that HRUSS is more competitive with it than ESS and
that GPSS converges well despite completing only 3.39 ·105
iterations in the allotted time, which is less than half the
7.95 · 105 iterations completed by HRUSS, and about the
same as the 2.94·105 completed by ESS. In other words, had

8
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Figure 6. Progression over runtime of the empirical 0.001-quantile
of the marginal samples in the experiment on Neal’s funnel (8).
The dashed black line denotes the ground truth.

Figure 7. Progression over runtime of the empirical 0.999-quantile
of the marginal samples in the experiment on Neal’s funnel (8).
The dashed black line denotes the ground truth.

we used the same number of iterations for all slice samplers
– like in other experiments – the convergence results would
attribute GPSS an even larger advantage. Regarding the
performance of NUTS, we observe that it is very successful
at retrieving the 0.999-quantile, but, due to its refusal to
enter the narrow part of the funnel, it performs worst among
the four methods not just for the 0.001-quantile, but also for
mean and standard deviation.

7. Discussion
We introduced a Gibbsian polar slice sampling (GPSS)
framework as a general Markov chain approach for approxi-
mate sampling from distributions on Rd given by an unnor-
malized Lebesgue density. The efficiently implementable
version that we propose is essentially tuning-free. It has only

a single hyperparameter with little impact on the method’s
performance, as long as it is not chosen orders of magni-
tude too small. GPSS can quickly produce samples of high
quality, and numerical experiments indicate advantages com-
pared to related approaches in a variety of settings.

Although GPSS is generally quite robust, its performance
slowly deteriorates when the distance between the target
distribution’s center of mass and the coordinate origin is in-
creased. This could potentially be avoided by automatically
centering the target on the origin. However, such a modifica-
tion would likely follow an adaptive MCMC approach and
therefore result in a method that no longer fits the “strict”
MCMC framework.

Particularly good use cases for GPSS appear to be heavy-
tailed target distributions. For example, one could apply
GPSS to intractable posterior distributions resulting from
Cauchy priors (perhaps on just some of the variables) and
likelihoods that do not change the nature of the tails. As
illustrated in Section 6.1, GPSS can have enormous advan-
tages over related methods when heavy tails are involved.
Another type of target for which GPSS could be of practical
use are distributions with strong funneling, which naturally
occur in Bayesian hierarchical models (cf. Neal (2003)).
By nature, these targets call for methods with variable step
sizes, because they contain both very narrow regions, which
necessitate small step sizes, and very wide regions, in which
much larger step sizes are advantageous to speed up the
exploration of the sample space. Due to their use of variable
step sizes, slice sampling methods might be considered a
natural choice and, as demonstrated in Section 6.4, GPSS
appears to perform better than related slice samplers for
such targets.

We envision that many more applications for GPSS will
be found. Moreover, we think it may be possible to derive
qualitative or even quantitative geometric convergence guar-
antees for GPSS. Aside from giving helpful insight into how
well GPSS retains the desirable theoretical properties of
PSS, this would further justify using GPSS in real-world ap-
plications, where the sample quality is often hard to validate.
Finally, we emphasize that the 2nd variant of GPSS, the in-
termediate step between idealized framework and efficiently
implementable method, can also be used as the foundation
for a variety of other hybrid samplers (cf. Section 4).
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A. Formal Derivation
In order to explain how PSS as described in Section 1 can
be derived from the usual slice sampling framework laid out
in (Besag & Green, 1993), we provide two technical tools.
The first one is a well-known identity from measure theory.

Proposition A.1. Any integrable real-valued function g on
(Rd,B(Rd)) satisfies∫

Rd

g(x)dx =

∫ ∞

0

∫
Sd−1

g(rθ)rd−1σd(dθ)dr,

where σd is the surface measure on (Sd−1,B(Sd−1)).

Proof. See for example Theorem 15.13 in (Schilling, 2005).
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Though this identity does not by itself involve any prob-
abilistic quantities, we apply it in a stochastic setting to
obtain our second tool, which we term sampling in polar
coordinates.

Corollary A.2. Let ξ be a distribution on (Rd,B(Rd)) with
probability density ϱξ. Then by Proposition A.1 we get for
any A ∈ B(Rd) that

ξ(A) =

∫
Rd

1A(x)ϱξ(x)dx

=

∫
Sd−1

∫ ∞

0

1A(rθ)ϱξ(rθ)r
d−1drσd(dθ).

Consequently a random variable X ∼ ξ can be sampled in
polar coordinates as X := R ·Θ by sampling (R,Θ) from
the joint distribution with probability density

(r, θ) 7→ ϱξ(rθ)r
d−11R+(r)

w.r.t. λ1 ⊗ σd, where λ1 denotes the Lebesgue measure on
(R,B(R)).

We can now apply the second tool to PSS. In the framework
of Besag & Green (1993), the X-update of slice sampling
for a target density factorized as in (1) is to be performed
by sampling Xn from the distribution with unnormalized
density

x 7→ ϱ(0)ν (x)1(tn,∞)(ϱ
(1)
ν (x)) = ∥x∥1−d

1(tn,∞)(ϱ
(1)
ν (x)).

By Corollary A.2, this can equivalently be done by sampling
Xn in polar coordinates as Xn := RnΘn, where (Rn,Θn)
is drawn from the joint distribution with unnormalized den-
sity

(r, θ) 7→ r1−d1(tn,∞)(ϱ
(1)
ν (rθ)) rd−11R+(r)

= 1(tn,∞)(ϱ
(1)
ν (rθ))1R+

(r)

w.r.t. λ1 ⊗ σd. As this distribution is simply (2), PSS as
described in Section 1 is equivalent to the slice sampler
resulting from factorization (1) in the general slice sampling
framework of Besag & Green (1993).

B. Proofs
We assume some familiarity with transition kernels and
Markov chains throughout this section. For details we refer
to the introductory sections of (Douc et al., 2018).

We introduce some notation and provide a few observations.
Let Cν :=

∫
Rd ϱν(x)dx, so that

Cν ν(dx) = ϱ(0)ν (x)ϱ(1)ν (x)dx.

For t > 0 define the level set

L(t) := {x ∈ Rd | ϱ(1)ν (x) > t}.

Note that, by

1
(0,ϱ

(1)
ν (x))

(t) = 1L(t)(x),

the transition kernel corresponding to PSS for ν can be
expressed as

P (x,A) :=
1

ϱ
(1)
ν (x)

∫ ∞

0

µt(A)1L(t)(x)dt

for x ∈ Rd, A ∈ B(Rd), where we set

µt(A) :=

∫
A
ϱ
(0)
ν (x)1L(t)(x)dx∫

Rd ϱ
(0)
ν (x)1L(t)(x)dx

for t > 0. It is known that νP = ν (Roberts & Rosenthal,
2002). We formulate a criterion for invariance w.r.t. imita-
tions of polar slice sampling.

Lemma B.1. Suppose that for each t > 0 we have a tran-
sition kernel U (t)

X on Rd × B(Rd) with µtU
(t)
X = µt. Then

the transition kernel Q on Rd × B(Rd) given by

Q(x,A) :=
1

ϱ
(1)
ν (x)

∫ ∞

0

U
(t)
X (x,A)1L(t)(x)dt

satisfies νQ = ν.

Proof. Let A ∈ B(Rd) arbitrary. Then

Cν · νQ(A) = Cν

∫
Rd

Q(x,A)ν(dx)

=

∫
Rd

∫ ∞

0

U
(t)
X (x,A)1L(t)(x)dtϱ(0)ν (x)dx

=

∫ ∞

0

∫
Rd

U
(t)
X (x,A)ϱ(0)ν (x)1L(t)(x)dxdt

=

∫ ∞

0

(∫
Rd

U
(t)
X (x,A)µt(dx)

)
·
(∫

Rd

ϱ(0)ν (x)1L(t)(x)dx
)

dt

=

∫ ∞

0

µt(A)

∫
Rd

ϱ(0)ν (x)1L(t)(x)dxdt

=

∫
Rd

∫ ∞

0

µt(A)1L(t)(x)dtϱ(0)ν (x)dx

= Cν

∫
Rd

P (x,A)ν(dx)

= Cν · νP (A) = Cν · ν(A),

which shows νQ = ν.

Note that the framework we rely on was previously used
in Lemma 1 in (Latuszyński & Rudolf, 2014) to analyze
the reversibility of hybrid uniform slice sampling. Further
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note that in proving Lemma B.1 we never use the precise
factorization of ϱν into ϱ

(0)
ν and ϱ

(1)
ν that is dictated by

PSS. Hence the result also holds true for any other slice
sampling scheme that adheres to this format. Moreover, in
the previous lemma it is assumed that U (t)

X is a transition
kernel on Rd × B(Rd). For given t > 0 it is sometimes
more convenient to define a corresponding transition kernel
U

(t)
X on L(t)× B(L(t)). In such cases we consider U

(t)

X as
extension of U (t)

X to Rd × B(Rd) given as

U
(t)

X (x,A) =

{
U

(t)
X (x,A ∩ L(t)) x ∈ L(t)

1A(x) x ̸∈ L(t).

In the following we write U
(t)
X for U

(t)

X and consider U (t)
X

as extension if necessary. We turn our attention to the 1st
variant of GPSS.

Lemma B.2. For Tn = t the transition kernel U (t)
X on

(L(t),B(L(t))) of the X-update of the 1st variant of GPSS
takes the form U

(t)
X = U

(t)
D1

U
(t)
R with kernels

U
(t)
D1

(rθ,A) =

∫
Sd−1 1A(rθ̃)σd(dθ̃)∫

Sd−1 1L(t)(rθ̃)σd(dθ̃)
,

U
(t)
R (rθ,A) =

∫∞
0
1A(r̃θ)dr̃∫∞

0
1L(t)(r̃θ)dr̃

, (9)

where r ∈ R+, θ ∈ Sd−1, x = rθ ∈ L(t) and A ∈ B(L(t)).
Moreover, U (t)

D1
and U

(t)
R are reversible w.r.t. µt.

Proof. The overall X-update consists of consecutively
realizing (3) and (4). Obviously, the direction update
rn−1θn−1 7→ rn−1θn (according to (3)) corresponds to
U

(t)
D1

and the radius update rn−1θn 7→ rnθn (according to

(4)) corresponds to U
(t)
R . Consequently, the transition ker-

nel of the X-update is U (t)
X = U

(t)
D1

U
(t)
R , that is, U (t)

X is the

product of the kernels U (t)
D1

and U
(t)
R .

Now we prove the claimed invariance property. We use the
fact that ϱ(0)ν (x) = ∥x∥1−d. To simplify the notation, set

ct :=

(∫
Rd

∥x∥1−d
1L(t)(x)dx

)−1

, (10)

so that the restriction of µt to L(t) can be written as

µt(dx) = ct∥x∥1−ddx.

Observe that Proposition A.1 yields for all A,B ∈ B(L(t))∫
A

U
(t)
D1

(x,B)µt(dx)

= ct

∫
A

U
(t)
D1

(x,B)∥x∥1−ddx

= ct

∫ ∞

0

∫
Sd−1

1A(rθ)U
(t)
D1

(rθ,B)σd(dθ)dr

= ct

∫ ∞

0

∫
Sd−1 1A(rθ)σd(dθ)

∫
Sd−1 1B(rθ̃)σd(dθ̃)∫

Sd−1 1L(t)(rθ̃)σd(dθ̃)
dr.

Similarly, again by Proposition A.1, we obtain∫
A

U
(t)
R (x,B)µt(dx)

= ct

∫
A

U
(t)
R (x,B)∥x∥1−ddx

= ct

∫
Sd−1

∫ ∞

0

1A(rθ)U
(t)
R (rθ,B)drσd(dθ)

= ct

∫
Sd−1

∫∞
0
1A(rθ)dr

∫∞
0
1B(r̃θ)dr̃∫∞

0
1L(t)(r̃θ)dr̃

σd(dθ).

As the last expression in each of these two computations is
symmetric in A and B, they show both U

(t)
D1

and U
(t)
R to be

reversible w.r.t. µt.

We also provide a suitable representation for the 2nd variant
of GPSS.

Lemma B.3. For Tn = t the transition kernel U (t)
X on

(L(t),B(L(t))) of the X-update of the 2nd variant of GPSS
takes the form U

(t)
X = U

(t)
D2

U
(t)
R with U

(t)
R being specified

as in (9) and a suitable9, w.r.t. µt reversible, kernel U (t)
D2

.

Proof. We require some further notation: For r ∈ R+

and θ, ϑ ∈ Sd−1 let g(θ,ϑ) : [0, 2π] → Sd−1 be given by
g(θ,ϑ)(α) = θ cos(α) + ϑ sin(α) and define

L(t, r) := {θ ∈ Sd−1 | rθ ∈ L(t)}
L(t, r, θ, ϑ) := {α ∈ [0, 2π] | g(θ,ϑ)(α) ∈ L(t, r)}.

Define the transition kernel S(t,r) on L(t, r)× B(Sd−1) as

S(r,t)(θ, C) :=

∫
Sd−2
θ

∫
L(t,r,θ,ϑ)

1C(g
(θ,ϑ)(α)) dα

λ1(L(t, r, θ, ϑ))
ξθ(dϑ),

where θ ∈ L(t, r) and C ∈ B(Sd−1), with ξθ being the
uniform distribution on Sd−2

θ . The transition kernel S(r,t)

coincides with the transition kernel of the ideal geodesic
slice sampler on the sphere that is reversible w.r.t. the uni-
form distribution on L(t, r), see Lemma 14 in (Habeck et al.,

9We provide an explicit expression of U (t)
D2

in the proof of the
statement.
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2023). Denote the uniform distribution on L(t, r) as γ(r,t),
i.e.

γ(r,t)(dθ) =
1L(t,r)(θ)σd(dθ)

σd(L(t, r))
.

Now observe that the transition kernel of the direction up-
date U (t)

D2
specified in the 2nd variant of GPSS for x = rθ ∈

L(t) with r ∈ R+ and θ ∈ Sd−1 is given by

U
(t)
D2

(rθ,A) = S(r,t)(θ,A(r)), (11)

where for A ∈ B(Rd) we denote

A(r) := {ϑ ∈ Sd−1 | rϑ ∈ A}.

Note that the radius update of the 2nd variant of GPSS coin-
cides with the one of the 1st variant, i.e. U (t)

R is given by (9).
Hence the total X-update takes the form U

(t)
X = U

(t)
D2

U
(t)
R .

It remains to prove the reversibility of U (t)
D2

w.r.t. µt: For
A,B ∈ B(L(t)) we have with ct as in (10) that∫

A

U
(t)
D2

(x,B)µt(dx)

= ct

∫
A

U
(t)
D2

(x,B)∥x∥1−ddx

= ct

∫ ∞

0

∫
Sd−1

1A(rθ)U
(t)
D2

(rθ,B)σd(dθ)dr

= ct

∫ ∞

0

∫
A(r)

S(r,t)(θ,B(r))γ(r,t)(dθ) · σd(L(t, r)) dr,

which is, by the reversibility of S(r,t) w.r.t. γ(r,t), symmetric
in A and B. Consequently, U (t)

D2
is reversible w.r.t. µt and

the claimed statement is proven.

Theorem 3.1 is now an easy consequence.

Proof of Theorem 3.1. By Lemmas B.2 and B.3, given
Tn = t, the transition kernel of the X-update of the 1st
and 2nd variant of GPSS is U (t)

X := U
(t)
Di

U
(t)
R for i = 1, 2

respectively. By the reversibility of the individual kernels
w.r.t. µt, see Lemma B.2 and Lemma B.3, we have

µtU
(t)
X = µtU

(t)
Di

U
(t)
R = µtU

(t)
R = µt,

proving that U
(t)
X leaves µt for i = 1, 2 invariant. By

Lemma B.1, this yields that the variants of GPSS leave
the target distribution ν invariant.

We add another auxiliary result.

Lemma B.4. For (t, θ) ∈ (0,∞)× Sd−1 let

L(t, θ) := {r ∈ R+ | rθ ∈ L(t)}.

Then λ1(L(t, y/∥y∥)) < ∞ holds for λ1 ⊗ λd-almost all
(t, y) ∈ R+ × Rd.

Proof. By Proposition A.1 follows∫
Rd

ϱν(x)dx =

∫
Sd−1

∫ ∞

0

ϱ(1)ν (rθ)drσd(dθ)

=

∫ ∞

0

∫
Sd−1

∫ ∞

0

1L(t)(rθ)drσd(dθ)dt

=

∫ ∞

0

∫
Sd−1

λ1(L(t, θ))σd(dθ)dt.

From this and the fact that ϱν is integrable by assumption, it
is immediate that λ1(L(t, θ)) < ∞ for λ1 ⊗ σd-almost all
(t, θ) ∈ R+ × Sd−1. By defining

F := {(t, θ) ∈ R+ × Sd−1 | λ1(L(t, θ)) = ∞},

we can alternatively express this result as (λ1⊗σd)(F ) = 0.
With another application of Proposition A.1, this yields

(λ1 ⊗ λd)({(t, y) ∈ R+ × Rd | λ1(L(t, y/∥y∥)) = ∞})
= (λ1 ⊗ λd)({(t, y) ∈ R+ × Rd | (t, y/∥y∥) ∈ F})

=

∫
Rd

∫ ∞

0

1F (t, y/∥y∥)dtdy

=

∫ ∞

0

∫
Sd−1

∫ ∞

0

1F (t, θ)dt σd(dθ)rd−1dr

=

∫ ∞

0

(λ1 ⊗ σd)(F ) rd−1dr = 0,

which proves the lemma’s claim.

Now we turn to the proof of Theorem 3.2.

Proof of Theorem 3.2. We use the same notation as in the
proof of Theorem 3.1. Moreover, we know from the proof10

of Theorem 15 in (Habeck et al., 2023) that there exists a
constant ε > 0 (independent of t, r) such that

S(r,t)(θ,D) ≥ ε σd(D ∩ L(t, r)),

for any θ ∈ L(t, r) and D ∈ B(Sd−1). By (11) this implies
for x = rθ ∈ L(t) and B ∈ B(L(t)) that

U
(t)
D2

(rθ,B) = S(r,t)(θ,B(r)) ≥ ε σd(B
(r) ∩ L(t, r))

= ε

∫
Sd−1

1B∩L(t)(rϑ)σd(dϑ)

= ε

∫
Sd−1

1L(t)(rϑ)δrϑ(B)σd(dϑ),

where δz denotes the Dirac-measure at z ∈ Rd. Concisely
written down, the former inequality yields

U
(t)
D2

(rθ, dy) ≥ ε

∫
Sd−1

1L(t)(rϑ)δrϑ(dy)σd(dϑ).

10The theorem applies in their notation with p(θ) = 1L(t,r)(θ),
C = L(t, r) and β = 1, where also Remark 1 of (Habeck et al.,
2023) should be taken into account.
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For ϑ ∈ Sd−1 we use L(t, ϑ) as defined in Lemma B.4
and note that the normalizing constant within U

(t)
R satisfies∫∞

0
1L(t)(sϑ)ds = λ1(L(t, ϑ)). Taking the representation

of the X-update of the 2nd variant of GPSS into account we
obtain (using the same variables as earlier)

U
(t)
X (rθ,B) = U

(t)
D2

U
(t)
R (rθ,B)

=

∫
Rd

U
(t)
R (y,B)U

(t)
D2

(rθ, dy)

≥ ε

∫
Sd−1

∫
Rd

U
(t)
R (y,B)1L(t)(rϑ)δrϑ(dy)σd(dϑ)

= ε

∫
Sd−1

U
(t)
R (rϑ,B)1L(t)(rϑ)σd(dϑ)

= ε

∫
Sd−1

∫ ∞

0

1B(r̃ϑ)

λ1(L(t, ϑ))
1L(t)(rϑ)dr̃ σd(dϑ)

= ε

∫
B

1L(t)(ry/∥y∥)
∥y∥d−1

λ1(L(t, y/∥y∥))
dy,

where the last equality follows by Proposition A.1. There-
fore the transition kernel Q corresponding to the 2nd variant
of GPSS satisfies for any A ∈ B(Rd) and 0 ̸= x ∈ Rd with
x = rθ that

Q(x,A) =
1

ϱ
(1)
ν (x)

∫ ϱ(1)
ν (x)

0

U
(t)
X (x,A ∩ L(t))dt

≥ ε

ϱ
(1)
ν (x)

∫
A

∫ ϱ(1)
ν (x)

0

1L(t)(ry/∥y∥)1L(t)(y)

∥y∥d−1
λ1(L(t, y/∥y∥))

dt dy

=
ε

ϱ
(1)
ν (x)

∫
A

∫ min{ϱ(1)
ν (x),ϱ(1)

ν (y),ϱ(1)
ν (ry/∥y∥)}

0

· ∥y∥1−d

λ1(L(t, y/∥y∥))
dt dy.

By Lemma B.4 we have that the mapping

(t, y) 7→ λ1(L(t, y/∥y∥))

is λ1 ⊗ λd-almost surely finite, so that we obtain that the
function

(t, y) 7→ ∥y∥1−d

λ1(L(t, y/∥y∥))
is λ1 ⊗ λd-almost surely strictly larger than zero. By the
assumption and definition of ϱ(1)ν we have that ϱ(1)ν > 0
on Rd \ {0}, such that Q(x,A) > 0 whenever λd(A) > 0.
We apply the former implication: Let A ∈ B(Rd) such that
ν(A) > 0. Then, by the absolute continuity of ν w.r.t. λd

we obtain that λd(A) > 0 and thus Q(x,A) > 0 for any
0 ̸= x ∈ Rd. This yields that the transition kernel of the 2nd
variant of GPSS is ν-irreducible and aperiodic, as defined
in Section 3 in (Tierney, 1994).

Since by Theorem 3.1 we also know that ν is an invariant
distribution of Q, applying Theorem 1 of (Tierney, 1994)

yields that ν is the unique invariant distribution. Moreover,
the same theorem gives that the distribution of Xn converges
ν-almost surely (regarding the initial state) to ν in the total
variation distance.

C. Implementation Notes
The code we provide not only allows for the reproduction of
our experimental results, but also contains an easily usable,
general purpose implementation of GPSS in Python 3.10,
based on numpy.

Those still seeking to implement GPSS themselves, per-
haps in another programming language, can pretty much
follow Algorithms 1, 2 and 3. Still we find it appropriate
to give two pieces of advice. First, the target density ϱν , its
transform ϱ

(1)
ν and the thresholds tn should all be moved

into log-space in order to make the implementation numeri-
cally stable. Second, upon generating a direction proposal,
i.e. immediately following the code-adaptation of line 6 of
Algorithm 2, the proposal should be re-normalized.

Although in theory the proposal should already be normal-
ized, in practice the operations involved in generating it
always introduce small numerical errors. Individually, these
errors are far too small to matter, but, due to the way in
which each direction variable depends on that from the
previous iteration, without re-normalization the errors ac-
cumulate and lead the direction variables to be more and
more unnormalized. If the sampler goes through many thou-
sands of iterations, these accumulating errors eventually
introduce large amounts of bias into the sampling, because
the initial proposal set in the direction update is no longer a
great circle but rather an elongated ellipse. Of course the re-
normalization is not necessary if the direction variables are
extracted from the full samples whenever required instead
of being stored separately.

D. Additional Sampling Statistics

Table 1. Target density evaluations per iteration (TDE/I) and inte-
grated autocorrelation times (IAT) for the experiments presented
in Sections 6.1 and 6.2. The IATs were computed w.r.t. the sample
log radii in the Cauchy experiment and w.r.t. the sample radii in
the hyperplane experiment.

CAUCHY HYPERPLANE
SAMPLER TDE/I IAT TDE/I IAT

GPSS 6.90 8.59 12.23 1.09
HRUSS 8.46 51346.93 7.78 684.57
NAIVE ESS 5.86 35543.94 7.91 199.17
TUNED ESS – – 6.51 188.13

14



Gibbsian Polar Slice Sampling

E. Bayesian Logistic Regression
In this section we examine how well GPSS performs in a
more classical machine learning setting, namely Bayesian lo-
gistic regression with a mean-zero Gaussian prior. We begin
by giving a brief overview of the problem. Bayesian logistic
regression is a binary regression problem. Supposing the
training data to be given as pairs (a(i), b(i)), i = 1, ...,m,
where a(i) ∈ Rd and b(i) ∈ {−1, 1}, and choosing the
prior distribution as Nd(0, 0.1

2Id), the posterior density of
interest is given by

ϱπ(x) = Nd(x; 0, 0.1
2Id)

m∏
i=1

1

1 + exp
(
−b(i)⟨a(i), x⟩

) ,
where ⟨·, ·⟩ denotes the standard inner product on Rd.

We consider the CoverType data set (Blackard, 1998;
Blackard et al.), which has cartographic variables as its
features and forest cover types as its labels. The raw data
set has m = 581,012 instances, 54 features and 7 differ-
ent labels. As one of the labels occurs in about the same
number of instances (283,301) as all the other labels com-
bined (297,711), we make the regression problem binary
by mapping this label to +1 and all other labels to −1. As
the data set is quite large and we want to keep all of our
experiments easily reproducible (in particular avoiding pro-
hibitively large execution times), we use only 10% of it as
training data and the remaining 90% as test data. Moreover,
we normalized the data (i.e. each feature was affine-linearly
transformed to have mean zero and standard deviation one)
and added a constant feature (to enable a non-zero inter-
cept of the regression line), rendering the problem d = 55
dimensional.

We then ran the usual three slice samplers and NUTS for
N = 5000 iterations each, initializing them equally with a
draw x0 from the prior distribution Nd(0, 0.1

2Id). Viewing
the first Nb = 5000 iterations as burn-in, we computed
sample means for each sampler based only on the latter
Na = 5000 iterations and then used these sample means as
predictors to compute training and testing accuracies. For
reference, we also solved the problem11 with the default
solver of the classical python machine learning package
scikit-learn (typically abbreviated sklearn).

As can be seen in Table 2, all five methods solved the logistic
regression problem equally well, achieving virtually identi-
cal accuracies on both training and test data. Nevertheless,
some differences between the samplers’ behaviors become
evident when considering the usual sampling metrics, see
Table 3: On the one hand, GPSS used as many target den-

11Note that sklearn technically solved a slightly different prob-
lem, because it only performed maximum likelihood without con-
sidering the prior. However, this did not appear to have a significant
effect in practice, see Table 2.

Table 2. Training and testing accuracies of the different solvers in
the Bayesian logistic regression experiment.

SOLVER TRAIN ACC TEST ACC

GPSS 0.75520 0.75571
HRUSS 0.75472 0.75583
ESS 0.75506 0.75585
NUTS 0.75510 0.75573
SKLEARN 0.75562 0.75580

sity evaluations as HRUSS and ESS combined, on the other
hand it also achieved more than twice the mean step size of
either method (which should in principle help GPSS explore
the target distribution’s mode more thoroughly, though evi-
dently this did not lead to it finding a better predictor than the
other samplers, cf. Table 2). In terms of IAT, the three slice
samplers perform relatively similarly12. Notably, NUTS,
for which target density evaluations are neither available
nor a sensible metric (due to the sampler’s use of gradient
information), vastly outperformed all three slice samplers
in terms of both IAT and mean step size.

Table 3. Target density evaluations per iteration (TDE/I), integrated
autocorrelation time (IAT) and mean step size (MSS) for the
Bayesian logistic regression experiment. The IATs were com-
puted w.r.t. the marginal samples consisting of the second entry
of each sample. Whereas the TDE/I were computed based on the
entire sampling runs, both IAT and MSS are only based on the
samples generated after the burn-in period.

SAMPLER TDE/I IAT MSS

GPSS 23.55 311.37 0.0268
HRUSS 9.12 179.30 0.0125
ESS 10.81 116.17 0.0115
NUTS – 1.18 0.2942

Aside from classification accuracies, another important as-
pect to consider when using samplers for logistic regression
is how long they need to reach the target distribution’s mode
from wherever they are initialized. For this we refer to
Figures 9 and 10, where it can be seen that, at least in this
case, GPSS and HRUSS converged towards the mode about
equally fast, with the convergence of ESS seemingly being
slightly slower. NUTS again worked vastly better than all
slice samplers, converging almost instantaneously. This
may seem remarkable at first glance, but is to be expected
when considering that NUTS – unlike the slice samplers –
relies on gradient information, which is extremely valuable
in solving logistic regression tasks.

Overall, the results do not suggest Bayesian logistic regres-

12Note that the IAT values varied significantly between different
runs of this experiment.
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Figure 9. Log target density values for the Bayesian logistic regres-
sion experiment, over the course of each sampler’s Na = 2500
iterations after the burn-in period.

Figure 10. Sample radii (Euclidean norms) for the Bayesian lo-
gistic regression experiment over the course of each sampler’s
N = 5000 iterations.

sion to be a particularly worthwhile application of GPSS,
which is not surprising to us based on our observations about
the method’s apparent strengths and weaknesses (cf. Sec-
tions 6 and 7).
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F. Additional Results of Numerical Experiments

Figure 11. Sample runs for the multivariate standard Cauchy distribution, i.e. the density ϱν(x) = (1 + ∥x∥2)−(d+1)/2, in dimension
d = 100. The plots in the left column display the progression of the radii (Euclidean norms) of the individual samples over the course of
N = 5 · 104 iterations. Their counterparts on the right show the logarithms of these values. Note that we include the log radii plots to
provide more insight into the short-term behavior of exact sampling and the GPSS chain, which can not be ascertained from the radii plots
due to the magnitude of their respective outliers.
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Figure 12. Sample runs and step size histograms for the hyperplane disk density (6) in dimension d = 200. The plots in the left column
display the progression of the radii (Euclidean norms) of the individual samples over the course of N = 104 iterations. The plots in the
right column show histograms of the Euclidean distances between each two consecutive samples. The descriptor tuned ESS refers to ESS
where the artificial Gaussian prior is given the empirical covariance of the samples generated by GPSS as its covariance parameter Σ.
Untuned ESS corresponds, as usual, to Σ := Id.
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Figure 13. Progression of currently visited mode pair over the last Nwindow = 2 · 104 iterations for the axial modes target density (7) in
dimension d = 100. Here the covariance used by untuned ESS was Σ = Id and that used by tuned ESS Σ = (5 + d/10)2/d · Id.
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Figure 14. Marginal traces, marginal histograms and sample radii for Neal’s funnel (8) in dimension d = 10. The plots in the left column
show the progression of the first coordinate component of each sample over the course of each sampler’s final Nwindow = 104 iterations.
The plots in the middle column display histograms of the first coordinate component of all samples each sampler generated within the
awarded time budget, with the thick black line marking the target marginal distribution. The plots in the right column show the progression
of sample radii (Euclidean norms) over the course of each sampler’s final Nwindow = 104 iterations. In particular, the quantities displayed
in the left and right column of each row are derived from the same Nwindow samples.
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