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Abstract

We introduce a modality-agnostic neural compres-
sion algorithm based on a functional view of data
and parameterised as an Implicit Neural Repre-
sentation (INR). Bridging the gap between latent
coding and sparsity, we obtain compact latent rep-
resentations non-linearly mapped to a soft gating
mechanism. This allows the specialisation of a
shared INR network to each data item through
subnetwork selection. After obtaining a dataset
of such latent representations, we directly opti-
mise the rate/distortion trade-off in a modality-
agnostic space using neural compression. Varia-
tional Compression of Implicit Neural Represen-
tations (VC-INR) shows improved performance
given the same representational capacity pre quan-
tisation while also outperforming previous quan-
tisation schemes used for other INR techniques.
Our experiments demonstrate strong results over
a large set of diverse modalities using the same
algorithm without any modality-specific induc-
tive biases. We show results on images, climate
data, 3D shapes and scenes as well as audio and
video, introducing VC-INR as the first INR-based
method to outperform codecs as well-known and
diverse as JPEG 2000, MP3 and AVC/HEVC on
their respective modalities.

1. Introduction
Data compression has become a critical problem in the mod-
ern era, as vast amounts of data is added to and transmitted
through computer networks (Clissa, 2022) at previously
unimaginable rates. While momentous progress has been
made compared to naive representations, custom compres-
sion techniques are still developed for each modality at hand,
carefully introducing inductive biases into new algorithms.
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While being an undoubtedly successful approach, it has lim-
ited the transfer of algorithmic ideas between techniques
designed for different forms of data. More importantly, in
certain engineering or scientific problems, vast amounts
of data may be collected for which no generally accepted
compression technique may be available (e.g. the AR/VR
domain (Yang et al., 2022), point clouds, remote sensing or
climate data), inhibiting progress in such fields.

In this paper, we join a recent group of researchers (e.g.
Dupont et al., 2021; 2022b; Schwarz & Teh, 2022) in ar-
guing for a paradigm shift: Making modality-agnosticism
a key guiding principle, we advocate for a single algorith-
mic workbench on which methods applicable to any type
of data represented by a coordinate and feature space are
developed. This would allow research effort to be pooled
and any jointly developed model or learning improvement
to benefit multiple downstream compression applications at
once.

A promising approach towards realising this idea is the use
of Implicit Neural Representations (INRs) or Neural Fields
(e.g. Tancik et al., 2020; Sitzmann et al., 2020). An INR
relies on a functional interpretation of data, specifically
as a mapping from coordinates to features (e.g. (x, y) →
(r, g, b) for images), which is parameterised a neural net-
work. INRs offer various attractive properties, including
upsampling to arbitrary resolution (Chen et al., 2021) or
a pathway to new approaches to applications such as gen-
erative modeling or classification (Dupont et al., 2022a).
For our purpose, the most intriguing property of the INR
approach is its inherent modality-agnosticism, as any data
point can in theory be represented provided it is expressed
as a coordinate to feature mapping and thus learnable. Con-
sequently, a learned INR is simply an encoding of the data
point within the weights of a neural network, the efficient
storage of which has received much attention at a time
of ever increasing model capacity. We can thus state the
second guiding principle of the work at hand: Data- as
model-compression.

This second principle distinguishes our ideas from much of
the existing work on Neural Compression (e.g. Ballé et al.,
2017; 2018; Cheng et al., 2020b), which directly encodes a
given data point into a codespace, hence relying on carefully
designed modality-specific encoding and decoding networks
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(often called analysis/synthesis transforms). Throughout
the manuscript, we will highlight how we overcome this
limitation while building on rather than replacing the work
from this community.

Among the recent work on compression with INRs on the
other hand, various ideas for the efficient storage of INRs
have been explored. So far, proposed compression and
quantisation algorithms are relatively simple (e.g. Uniform
Quantisation) or rely on a separate per-signal optimisation
process (Strümpler et al., 2022), hence significantly increas-
ing runtime. In addition, much of this work relies on ideas
borrowed from Meta-Learning (Finn et al., 2017) to de-
crease encoding times, which opens up various questions
about the best trade-off between compact parameterisation
and (Meta-) Learning algorithms. Therefore, despite signifi-
cant efforts, a substantial gap still exists between INR-based
compression and the hand-designed compression methods
for certain modalities (e.g. JPEG 2000 for images, MP3 for
audio).

In this paper, we improve INR-based compression in a two-
fold approach (i) We experiment with advanced condition-
ing techniques resulting in better signal-reconstruction pre-
quantisation (ii) We overcome limitations of previously used
quantisation techniques and introduce a learned quantiser,
allowing us to maintain significantly higher reconstruction
quality at lower file sizes post-quantisation. Both directions
of investigation adhere to the guiding principles of modality-
agnosticism and the view of data as model compression.
This presentation is not accidental, as we can think of the
two axes of investigation as orthogonal algorithmic consid-
erations. Indeed, any improvement in (i) increases the upper
bound of performance maintained in the quantisation and
entropy coding steps in (ii), while any improvement in (ii)
reduces the gap between upper bound and actually realised
performance.

Contributions:

• Improved conditioning: We propose a middle ground
between recent sparsity and latent coding approaches
to compact representations. The proposed technique
introduces a non-linear mapping from a latent codes
to a low-rank soft gating matrix per layer, selecting a
sub-network to represent a data item in an underlying
INR. This is shown to learn more efficiently and result in
better reconstructions compared to previous approaches.
Our interpretation and experimental analysis shines new
lights onto related ideas explored in other contexts.

• Improved compression: We introduce a learned com-
pressor pre-trained on compact latent codes representing
training data. As such latent codes may be extracted
from any modality, our proposed compressor operates
fully modality-agnostic while making use of the same al-
gorithmic insights previously only applicable to specific

modalities.

We verify VC-INR on various data modalities, including
image, voxels, scene, climate, audio, and video datasets.
Overall, our experimental results demonstrate strong re-
sults, consistently outperforming previous INR-based com-
pression methods and improving on popular compression
schemes such as MP3 on audio and AVC/HEVC on video
clips. In particular, VC-INR achieves a new state-of-the-
art results on modality-agnostic compression with INRs,
improving the Peak Signal to Noise Ratio (PSNR) on the
same bits-per-pixel (bpp) bit rate by 3.3 dB for CIFAR-10
(Krizhevsky et al., 2009), by 2 dB on Kodak1 (both images),
3.5 dB for ERA5 (climate data) (Hersbach et al., 2019) and
9.5 dB for Librispeech (audio) (Panayotov et al., 2015) re-
spectively. In addition, we outperform MP3 on Librispeech
by 5.6 dB and HEVC on Videos by 8.8 dB.

Throughout this paper, we express a given data point
x as a set of coordinates c ∈ C and real-valued fea-
tures y ∈ Y and its corresponding INR representation
as ϕ ∈ RD. Whenever appropriate, we distinguish be-
tween N data points using superscripts, i.e., {(xi,ϕi)}Ni=1

and individual coordinate/feature pairs using subscripts, i.e.
xi := {(cj ,yj)}Mi=1.

2. Related Work
INRs are neural networks approximating the functional map-
ping from coordinate to feature space. INRs are effective
methods for modeling complex continuous signals, such as
as 2D images (Chen et al., 2021), 3D scenes (Park et al.,
2019), videos (Kim et al., 2022), and are even applicable
for modeling discrete data, e.g. graphs (Grattarola & Van-
dergheynst, 2022). To this end, several architectures have
been proposed to capture high-frequency signal details, ex-
amples being sinusoidal activations (Sitzmann et al., 2020),
positional encodings (Mildenhall et al., 2020), and Fourier
features (Tancik et al., 2020).

Neural compression is an end-to-end autoencoder-based
lossy compression framework aiming to directly minimise
the inherent rate/distortion trade-off. This is based on a
transform-coding approach (Goyal, 2001) shown in Figure
1a, where a data item x is transformed into a latent code
z through an analysis transform ga. During training, quan-
tisation is simulated through uniform noise (U) resulting
in a noisy z̃ and a corresponding reconstruction x̃ = gs(z̃)
through the synthesis transform gs. At test time, z is quan-
tised (and entropy coded), resulting in codes and recon-
structions ẑ, x̂ respectively. Taking ga, gs to be deep neural
networks, the neural compression paradigm was introduced
in (Ballé et al., 2017; Theis et al., 2017), who make theo-

1https://www.kaggle.com/datasets/
sherylmehta/kodak-dataset
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(a) (b) (c)

Figure 1. Operational diagrams of learned compression models. Inference time paths are shown in blue. (a) Conventional neural
compression (e.g Ballé et al., 2018) (b) Modality-agnostic neural compression with INRs (e.g Dupont et al., 2022b; Schwarz & Teh, 2022)
(c) Modality-agnostic variational compression of INRs is built upon the strengths of both techniques. ga, gs: Analysis/Synthesis; f : INR
network; U/Q: Uniform noise/Quantisation; O: Optimisation process; x,ϕ,x: data point, latent modulation, code element; ã, â: Noisy
version of a / Approximation of a. For more details see text.

retical connections to variational inference. Recently, much
of the recent work has focused on advanced designs of the
entropy model, e.g. by using auto-regressive priors (Minnen
et al., 2018a) or various forms of a hierarchical priors (Ballé
et al., 2018), such as Gaussian mixture models (GMM) in
(Minnen et al., 2018b) and GMMs with attention modules
(Cheng et al., 2020b). However, the majority of such neural
compression techniques are typically focused on specific
modalities, such as images (Lee et al., 2019; Agustsson
et al., 2019; Theis et al., 2022) or videos (Lu et al., 2019;
Habibian et al., 2019; Agustsson et al., 2020) and feature
architectures specifically designed for such modalities, for
instance convolutional architectures or the GDN activation
function designed for natural images (Ballé et al., 2015).

Data compression with INRs (Figure 1b), introduced by
(Dupont et al., 2021) as a modality agnostic compression
method required long optimisation processes and architec-
ture search to find a suitable rate/distortion trade-off. Fol-
lowing the wider INR literature (e.g. Tancik et al., 2021),
tabula-rasa learning was quickly replaced by a significantly
faster Meta-Learning (Finn et al., 2017) adaptation loop
(shown as O in the diagram) while architecture search has
been abandoned in favour of compact, instance specific
representations ϕ on which a deeper, shared INR f is con-
ditioned. The two mainstream approaches have been sparse
representations (Lee et al., 2021; Schwarz & Teh, 2022) im-
plementing a close surrogate for the rate loss and/or FiLM-
style modulations (Perez et al., 2018; Chan et al., 2021;
Mehta et al., 2021) optionally linearly predicted from a
compact latent code (Dupont et al., 2022a;b).

Differing from the conventional neural compression work-
flow, methods following this paradigm either do not feature
an explicit quantisation step (Dupont et al., 2021; Lee et al.,

2021) beyond default casting to 16-bit representation or rely
on simple uniform quantisation based on first and second
moment training statistics (Dupont et al., 2022b; Schwarz &
Teh, 2022). Recently, Gordon et al. (2023) introduce an al-
ternative quantisation scheme based on K-means clustering,
avoiding the likely sub-optimal division of the quantisation
space into equally sized regions. Crucially however, subse-
quent quantisation is not accounted for during training of the
previous approaches, forgoing optimisation for deviations in
the representations ϕ̂. This is highlighted by a separate path
at inference time in Figure 1b. While advanced quantisation
has been introduced (Strümpler et al., 2022), this requires
additional training stages, thus increasing encoding runtime.
Damodaran et al. (2023) is also similar to one aspect of
this work by focusing on improving compression of INRs,
showing strong improvements over COIN++ albeit only
evaluating the method on images. In terms of applications
of compression with INRs, Huang & Hoefler (2022) show
the large potential gains in climate applications. Damodaran
et al. (2023)

3. Variational Compression of INRs
3.1. Overview

In contrast to the two approaches discussed in the previous
section, we now present a computational framework which
maintains modality-agnosticism while allowing the use of
deep entropy coding. We show a high-level overview in
Figure 1c: The method can be best understood as an appli-
cation of the non-linear transform coding paradigm (Figure
1a) in the compact representation space of the INR approach
(Figure 1b).

More concretely, as in other INR techniques, we transform a
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data point x through an adaptation procedure O into a com-
pact latent representation space ϕ. We can improve on the
relatively simple quantisation techniques in prior works by
employing non-linear transforming coding in ϕ space, with
its analysis and synthesis transforms ga, gs now operating
on a modality-agnostic representation. This conceptionally
simple change has the prime advantage of allowing the use
of work from the neural compression literature with minimal
changes (limited to simplification of ga & gs), thus elevat-
ing conventional neural compression to a modality-agnostic
paradigm. Compared to prior INR based compression, this
allows the direction optimisation of the rate-distortion trade-
off (as opposed to using a surrogate) using a deep entropy
model. Moreover, a simple forward pass through ga, subse-
quent quantisation Q and then gs is preferable to an iterative
technique such as quantisation aware training (Strümpler
et al., 2022) at inference time due to runtime considerations.

The rest of this section is split into the two axes of algorith-
mic improvements presented in this work: After giving a
brief description of practical INR-learning on large datasets
(Section 3.2), we then (i) Present an improved conditioning
technique for specialising the shared base INR f on the
data-item specific representation ϕ (Section 3.3) (ii) give
a detailed discussion of the non-linear transform coding
approach use (Section 3.4).

3.2. INRs with Instance-Specific Modulations

An INR is a function f(·;θ) : C → Y representing a data
point through a network with parameters θ. The INR ob-
jective is the mean-squared-error of predictions on the data
point’s coordinates {cj} and the true features {yj}:

min
θ

M∑
j=1

∥∥f(cj ;θ)− yj

∥∥2
2
. (1)

In practice, naive optimisation would require a large number
of iterative steps and result in a set of high-dimensional
parameter vectors {θi} each representing a data point xi,
making this an unattractive choice.

It is thus attractive to introduce a low dimensional data-item
specific parameter ϕi to model variations in f , while the
much larger θ is used to capture structure across a dataset.
The shared INR f(·;θ) is specialised to xi through ϕi re-
sulting in f(·;θ,ϕi). A reduction in the number of iterative
steps per data item is achieved through Meta-Learning (Finn
et al., 2017), allowing ϕ∗ for a test data point x∗ to be ob-
tained in a handful of optimisation steps (see Appendix for
details on Meta-Learning).

Common ways to condition f on ϕi are layer-specific
modulations s(l) obtained by indexing into ϕi, i.e. ϕi =
[s(1), . . . , s(L)] (Mehta et al., 2021). These modulations
take the form of FiLM-style (Perez et al., 2018) shifts, i.e.

c(l−1) 7→ h(W(l)c(l−1)+b(l)+s(l)), where W(l),b(l) are
shared weights and biases and h is the activation function.
To further reduce the size of ϕi, modulations of an L-layer
INR s := [s(1), . . . , s(L)] can be predicted from ϕi using
a shared linear mapping as s = W

′
ϕ+ b

′
(Dupont et al.,

2022a) or alternatively by pruning dimensions in ϕi through
sparsity (Schwarz & Teh, 2022). Both techniques have their
own drawbacks: Predictions of s from ϕ have been challeng-
ing to train and so far been limited to linear mappings, thus
lacking representational capacity. Sparsity techniques on
the other hand require approximate inference, introducing
additional complexity and various new hyperparameters.

3.3. INR Specialisation through Subnetwork Selection

Instead, we take inspiration from both perspectives while
overcoming their respective limitations. Following the spar-
sity paradigm, we observe that while a single network may
be conditioned on potentially hundreds of distinct tasks
through subnetwork selection (Frankle & Carbin, 2018;
Schwarz et al., 2021), it is unclear whether this must be
done through hard gating (i.e. requiring exact zeros and
ones) and thus require approximate inference. Indeed, re-
cent work (He et al., 2019) suggests that soft-gating in the
form of the output of a sigmoid σ(x) = 1

1+e−x may be
sufficient. In addition, it is clear that the idea of parametric
predictions from ϕ may in principle be used in conjunction
with subnetwork selection, as a compact ϕ could then con-
centrate its capacity on the non-sparse entries of s, hence
naturally combining both ideas.

To this end, we thus suggest the use of a non-linear pre-
diction network mapping ϕ to low-rank soft gating masks
taking the same shape as the weight-matrices of each layer
(see Figure 2a). The functional form of the soft-gating
masks is inspired by (Skorokhodov et al., 2021) and takes
the form of a low-rank matrix obtained through the outer
product of two vectors non-linearly predicted from ϕ. This
choice is sensible for two reasons: First, low-rank parame-
terisation is widely used as an effective tool for parameter
reductions (Phan et al., 2020) and secondly, such modula-
tion have shown potential in representing complex signals
such as high-resolution images (Skorokhodov et al., 2021)
and videos (Yu et al., 2022). Formally, given the activations
of the preceding layer c(l−1), the transformation of each
layer l is

c(l−1) 7→ sin(ω0(G
(l)
low ⊙W(l) c(l−1) + b(l))) (2)

G
(l)
low := σ(U(l)V(l)⊤), (3)

where U(l),V(l) ∈ Rm×d are data specific parameters
with d ≪ m, ⊙ is element-wise multiplication and σ(·)
the sigmoid operator. Here, we use sinusoidal activation
function with its hyperparameters ω0 ∈ R+ introduced for
INRs in (Sitzmann et al., 2020). The central hypothesis
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+

(a) Non-linear projection from latent representation ϕ to G
(l)
low.

+

Bit stream

Shared INR

(b) Non-linear transform coding in latent representation space.

Figure 2. Architectural details of full model. AE/AD: Arithmetic Encoding/Decoding

of this approach is that G(l)
low acts as a subnetwork selection

method, effectively determining and scaling the entries in
each weight matrix W(l) that allow accurate modeling of the
data point at hand. We show evidence for this phenomenon
in the experimental section.

As before, we can reduce the dimensions of low-rank modu-
lation further, obtaining [U(1),V(1), · · · ,U(N),V(N)] di-
rectly from the compact representation ϕ by predicting a
long vector, subsequently reshaped into the respective ma-
trices. Unlike existing methods utilising a linear mapping
(Dupont et al., 2022a;b), we use deep residual networks
to increase the expressive power, enabled through various
stabilisation techniques:

Stabilisation Techniques In line with prior work, we find
the direct optimisation of non-linear networks via Meta-
Learning to be unstable and under-performing. As low-rank
parameterisations are also known to suffer from stability
issues, the direct use yield unsatisfactory results. Instead, we
suggest three stabilising techniques. (1) First, we propose
the normalisation of the modulation ϕ with LayerNorm
(Ba et al., 2016), i.e., ϕ 7→ LayerNorm(ϕ) as in Fig 2a.
Intuitively, this results in higher order gradient optimisation
becoming more stable as a normalisation scheme reduces the
sharpness of the gradients (Santurkar et al., 2018; Xu et al.,
2019). (2) We find residual connections and increasing
layer widths (up to computational limits) to aid gradient
propagation and significantly increase the performance of
non-linear networks. (3) We hypothesise that the sigmoidal
bounding of G(l)

low itself has a stabilising effect, preventing
the matrix norm from divergence.

At this point it is worth noting that the combination of
subnetwork selection techniques and non-linear predictors
are not unique to compression and indeed may be beneficial
in the wide array of downstream applications made possible
through the INR paradigm (Dupont et al., 2022b). Next, we
explain the subsequent quantisation of ϕ.

3.4. Variational Compression of Latent Modulations

The key to using non-linear transform coding in a modality-
agnostic paradigm is the observation that ϕ may be obtained
from data of any kind. For a given modulation ϕ, our goal is
now to encode the modulation into a code z = ga(ϕ) with
low Shannon cross-entropy (its rate) and a reconstruction
ϕ̂ = gs(ẑ) with low distortion from ϕ after quantisation
ẑ = Q(z) = round(z). Because ẑ is discrete, it can be loss-
lessy compressed using entropy coding such as arithmetic
or Huffman coding (Salomon, 2004) to obtain a bit stream.

Here, we use the deep-factorised prior introduced for im-
ages in (Ballé et al., 2017) and used as the basis of many
follow-up works. The authors establish the interpretation
of a relaxed rate-distortion performance as variational au-
toencoder under a specific generative and inference model,
lending the name VC-INR to our method.

We state the compression loss as the sum of (i) the rate of
the code and (ii) the distortion of the recovered signal:

Lcompress(πa,πs,x,ϕ)

= Lrate + λLdistortion
= − log2[pẑ(Q(ga(ϕ;πa)))] + λLMSE(gs(ẑ;πs),ϕ)

(4)

with pẑ the entropy model, LMSE the mean squared error
(MSE), and πa,πs parameters of the analysis and synthe-
sis transforms. The reconstruction ϕ̂ is decoded from the
quantised code ẑ. To optimise this loss, we follow (Ballé
et al., 2017) by approximating the discrete quantisation with
uniform noise U(− 1

2 ,
1
2 ) to generate a noisy code z̃ and use

the differentiable prior pz̃ with a non-parametric piecewise
linear density model (Ballé et al., 2018).

We show architectural details in Figure 2b: Differing from
the typical design of ga, gs we do not make use of activa-
tions with local gain control and find the SeLU activation
(Klambauer et al., 2017) sufficient. In addition, as the vec-
tors ϕ are flat regardless of modality, we can simplify the
design of both networks to residual MLPs, removing an-
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other form of modality specificity. Finally, we note that the
distortion term in Equation (4) is merely a surrogate for the
real reconstruction quality of the data x. We thus modify
Ldistortion to measure distortion on data directly:

Ldistortion = LMSE(f(·;θ, gs(ẑ;πs)),y) (5)

which we observe to result in the highest quality reconstruc-
tions. At this point we emphasise that advanced techniques
(Ballé et al., 2018; Cheng et al., 2020a) may be straight-
forwardly introduced.

4. Experiments
So far, we have discussed a two-fold approach: (i) Ad-
vanced conditioning to better capture an underlying signal
within a fixed representation pre-quantisation. (ii) Varia-
tional compression subsequently trained on datasets of such
representations. In our empirical evaluation, we will first
demonstrate the effectiveness of (i) in isolation (as its re-
sults is an upper bound for distortion performance). We
then demonstrate the combination of both ideas on a range
of compression problems. This will help clearly delineate
performance gains as well as provide additional insights
into the technique. Throughout the section, we primarily
evaluate the performance using the Peak Signal to Noise
Ratio (PSNR): −10 · log10(MSE), where MSE is the mean-
squared error between the original and the reconstructed
signal.

4.1. Effectiveness of Advanced Conditioning

Table 1. Results for various latent modulation sizes. Shown is
voxel accuracy (ShapeNet10) and PSNR (others).

Dataset Model Performance @ dim(ϕ)
64 128 256 512 1024

ERA5 (4×) Functa 43.2 43.7 43.8 44.0 44.1
MSCN 44.6 45.7 46.0 46.6 46.9

VC-INR 45.0 46.2 47.6 49.0 50.0

CelebA-HQ Functa 21.6 23.5 25.6 28.0 30.7
MSCN 21.8 23.8 25.7 28.1 30.9

VC-INR 22.0 23.9 26.0 28.3 30.8

SRN Cars Functa 22.4 23.0 23.1 23.2 23.1
MSCN 22.8 24.0 24.3 24.5 24.8

VC-INR 23.9 24.0 24.3 25.2 25.5

ShapeNet10 Functa 99.30 99.40 99.44 99.50 99.55
MSCN 99.43 99.50 99.56 99.63 99.69

VC-INR 99.54 99.61 99.64 99.70 99.71

We first evaluate our method pre-quantisation on various
modalities including images using CelebA-HQ dataset (Kar-
ras et al., 2018), manifolds using ERA5 (Hersbach et al.,
2019), 3d NeRF scenes using the SRN cars (Sitzmann et al.,
2019) and 3d voxels using the top 10 classes of ShapeNet

(Chang et al., 2015). Following prior work, we train SIREN
with 15 layers of 512 units and use MetaSGD (Li et al.,
2017) with 3 inner-loop steps as our Meta-Learning method
and use the same task batch size for comparable conditions.
For baselines, we compare our technique with latent mod-
ulations using Functa (Dupont et al., 2022a) and sparse
modulations using MSCN (Schwarz & Teh, 2022). More
details in the Appendix.

As illustrated in Table 1, we demonstrates a marked im-
provement over previous approaches in almost all cases.
Particularly noteworthy, VC-INR outperforms MSCN on
ERA5 by more than 3.1dB when using a modulation size
of 1024. This is particularly significant, as PSNR is based
on a logarithmic scale. In addition, we note that the use
of more complex latent→ modulations/mask networks (as
opposed to the linear projection of Functa) not only leads to
better results, but also exhibits significantly faster learning
progress (Figure 3a).

A key hypothesis of our proposed conditioning technique
is the idea of subnetwork selection. To provide empirical
evidence and understand the behaviour of our conditioning
method, we analyse the masks G(l)

low after obtaining ϕi for
test set images. This is shown in Figure 3. First, we note that
product of gating masks and a shared, Meta-Learning matrix
does indeed implement moderate sparsity levels (which we
define as |(Glow ⊙W)ij | < 0.001), despite avoiding the
use of approximate inference (Figure 3b). Remarkably,
we observe sparsity levels varying significantly per layer,
suggesting VC-INR learns where to learn. This is particular
significant as it is well known that only a fraction of layers
typically need to adapted in Meta-Learning (Zintgraf et al.,
2019). Indeed, this was a key insight of MSCN (Schwarz
& Teh, 2022) which we share despite our use of a much
simpler sparsity/gating method.

Moreover, further examining our soft gating mechanism, we
provide a t-SNE visualization (Maaten & Hinton, 2008) of
the adapted masks on CelebA-HQ (Figure 3c). Resulting
patterns intriguingly show clear clustering according to im-
age characteristics such as background color, indicating the
ability to condition the shared INR based on image statistics.

4.2. Data Compression Across Modalities

We now evaluate VC-INR for data compression, the pri-
mary focus of our work. To demonstrate the versatility of
VC-INR, we examine a range frequently encountered modal-
ities. We measure reconstruction performance measured in
terms of PSNR under different levels of compressed data
sizes measured in kilobits per second (kbps) for audio and
bits-per-pixel (bpp)2. Baselines are codecs such as JPEG
(Wallace, 1992), JPEG 2000 (Skodras et al., 2001), BPG

2bpp= bits per parameters×number of parameters
number of pixels
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of adapted weights throughout the network (c) t-SNE (Van der Maaten & Hinton, 2008) visualisation of masks Glow after adaptation.
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Figure 4. Compression results on image datasets CIFAR-10 (left) & Kodak (right). Modality-specific approaches are shown with a dashed
line and marked (s). Conventional neural compression methods (also modality-agnostic) with a dotted line and marked (s, n). BMS is
(Ballé et al., 2017), Strüpler is (Strümpler et al., 2022) and VTM (Bross et al., 2021).

(Bellard, 2014), MP3 (MP3, 1993), AVC (Wiegand et al.,
2003), and HEVC (Bross et al., 2021). We also compare
against the modality-specific neural compression scheme
BMS (Ballé et al., 2018), VTM (Bross et al., 2021) and
other INR techniques such as COIN (Dupont et al., 2021),
COIN++ (Dupont et al., 2022b), MSCN (Schwarz & Teh,
2022) and the method in (Strümpler et al., 2022).

Uniform vs Variational Compression

While the previous section provides empirical justification
for the architectural changes of VC-INR, we now addition-
ally show the effectiveness of the proposed quantisation
method. Figure 6 contrasts rate-distortion curves obtained
using Uniform Quantisation with the transform coding setup
introduced earlier. Results are obtained by compressing
the latent vectors obtained from two pre-trained models
to varying bit-rates by varying the number of bits for uni-
form quantisation or the rate-distortion trade-off parameter
λ for the full VC-INR model. We note that the use of Ballé
et al. (2017)’s transform coding drastically shifts the rate-
distortion curves towards lower bit-rates while maintaining
a better reconstruction ratio. Furthermore, we can also see
that the improved pre-training effectively increases the ceil-
ing reconstruction performance when comparing uniform
quantisation for VC-INR (light blue) with our COIN++ im-

plementation (orange).

Images We show compression performance on the image do-
main using the CIFAR-10 (Krizhevsky et al., 2009) and Ko-
dak (meta-trained on Div2k (Agustsson & Timofte, 2017))
datasets. In order to handle the large images found in the
Kodak dataset, we divide the images into smaller patches as
previously established in prior work.

Figure 4 shows that VC-INR significantly and consistently
outperforms prior INR-based data compression methods
(COIN, COIN++, MSCN, Strümpler) and even certain im-
age codecs (JPEG/JPEG 2000) on the CIFAR-10 dataset.
In addition, VC-INR reconstruction continue to improve
with higher bitrates, which we demonstrate by almost pixel-
perfect reconstruction. This implies that learned entropy
coding is a key factor in achieving strong results. Fur-
thermore, VC-INR shows comparable performance to the
strongest modality-specific methods at low bitrates, despite
not taking advantage of inductive biases. While not fully
matching state-of-the-art (SOTA) results on images com-
pared to all compression techniques, we significantly reduce
the gap. Note that we provide further results on Kodak using
Multiscale structural similarity index measure (MS-SSIM)
in the Appendix.
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Original COIN++ (BPP: 0.54) VC-INR (BPP: 0.51) VC-INR (BPP: 3.21)

PSNR: 30.12 PSNR: 32.99 PSNR: 41.84

(a) Compared with COIN++ (Dupont et al., 2022b).

Original MSCN (BPP: 0.50) VC-INR (BPP: 0.58) VC-INR (BPP: 4.34)

PSNR: 24.37 PSNR: 27.34 PSNR: 40.02

(b) Compared with MSCN (Schwarz & Teh, 2022).

Figure 5. Qualitative results from the Kodak dataset. Shown are VC-INR models in comparison with other INR-based techniques at
similar bit-rates (3rd column) as well as a high-quality model (last column).
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Figure 6. Learned vs uniform quantisation for VC-INR & COIN++
on CIFAR-10.

Manifolds This evaluates VC-INR on global temperature
measurements from the ERA5 (16×) dataset. The dataset
consists of temperature measurements (features) at equally
spaced latitudes and longitudes (coordinates) on Earth from
1979 to 2020, represented by spherical coordinates. Since
no codec or neural compression method has been devel-
oped specifically for this modality, we compare VC-INR
to COIN++ and image codecs (applied by unrolling the
manifold on a rectangular grid) as baselines. As shown in
Figure 7, VC-INR, we achieve an improvement of approx-
imately 3.5dB at the same bitrate compared to the SOTA.
This highlights the large potential impact modality-agnostic
techniques might have for specialised data types.

Audios Evaluating VC-INR in the audio domain, we utilise
the LibriSpeech dataset (Panayotov et al., 2015), a large
speech dataset recorded at a 16kHz sampling rate. We con-
sider the MP3 codec as well as COIN++ as baseline methods.
As in COIN++ we use patching to keep the comparison fair.
Our results, shown in Figure 8b demonstrate impressive re-
sults, showing that VC-INR significantly outperforms both
COIN++ as well as the widely used and popular MP3 codec.

Videos Turning to the video domain, we compress clips
from the UCF-101 action recognition dataset (Soomro et al.,
2012), once again using patching. Here, we compare VC-
INR to video codecs AVC and HEVC. Impressively, VC-
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Figure 7. Compression results on ERA5 (climate data/manifolds).

INR outperforms both, raising hopes for the potential of
INR-based compression to one day replace hand-designed
codecs for video. Qualitative results are available in Fig-
ure 9, showing the prediction errors of VC-INR models at
varying bit-rates, for all of which we achieve SOTA better
results.

5. Conclusion
We introduce VC-INR, a modality-agnostic neural compres-
sion technique showing strong and consistent improvements
over previous INR-based methods. This was achieved by
developing algorithmic improvements across the two axes
of representational power and advanced quantisation while
maintaining modality-agnosticism. Our technique bridges
the gap between recent approaches to compact INR repre-
sentations based on latent codes and sparsity and shows how
previously modality-specific algorithms can be elevated to
the modality-agnostic setting. Our evaluation shows strong
improvement on previous work with INRs (e.g. Dupont
et al., 2022b; Schwarz & Teh, 2022) while outperforming
certain established algorithms (e.g. JPEG on images, MP3
on audio and AVC/HEVC on videos) while reducing the gap
to others (e.g. BPG or BMS on images). We believe that
the conceptual advantage of a single algorithm applicable to
all modulations will continue to show rapid improvements
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Figure 8. Compression results on (a) videos and (b) audio.

as innovations are developed. Future work may focus on
including further developments such as advanced priors (e.g.
Ballé et al., 2018; Cheng et al., 2020b; Ladune et al., 2022).
In addition, improved patching strategies resulting from
e.g. memory-efficient Meta-Learning algorithms or path
allocation based on signal variation might be fruitful.
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Sitzmann, V., Zollhöfer, M., and Wetzstein, G. Scene repre-
sentation networks: Continuous 3d-structure-aware neu-
ral scene representations. In Advances in Neural Informa-
tion Processing Systems, 2019.

Sitzmann, V., Martel, J. N. P., Bergman, A. W., Lindell,
D. B., and Wetzstein, G. Implicit neural representations
with periodic activation functions. In Advances in Neural
Information Processing Systems, 2020.

Skodras, A., Christopoulos, C., and Ebrahimi, T. The jpeg
2000 still image compression standard. IEEE Signal
Processing Magazine, 2001.

Skorokhodov, I., Ignatyev, S., and Elhoseiny, M. Adversarial
generation of continuous images. In IEEE Conference on
Computer Vision and Pattern Recognition, 2021.

Soomro, K., Zamir, A. R., and Shah, M. UCF101: A dataset
of 101 human actions classes from videos in the wild.
arXiv preprint arXiv:1212.0402, 2012.
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A. Dataset Description
CelebA-HQ is a high-quality version of the CelebA dataset, which includes images of celebrities along with corresponding
attributes (Karras et al., 2018). By following (Dupont et al., 2022a), we divide the dataset into 27,000 training examples and
3,000 test examples, and pre-processed the pixel coordinates into [0, 1]2 and feature values ranging from 0 to 1.

ShapeNet is a dataset of 3D shapes of 10 different object categories (Chang et al., 2015). We follow the pre-processing
by (Dupont et al., 2022a), and downscale the resolution of 1283 to 643 by using scipy.ndimage.zoom function with
threshold 0.05. To augment the datasets, the authors applied a 50-fold expansion by independently scaling the shapes in the
x, y, and z axes using a randomly sampled scale within the range of 0.75 to 1.25. The resulting dataset includes 1,516,750
training examples and 168,850 test examples with voxel coordinates into [0, 1]3 and occupancies in binary {0, 1}.

ERA5 is a dataset consists of temperature observations from 1979 to 2020 on a global grid of equally spaced latitudes and
longitudes (Hersbach et al., 2019). By following (Dupont et al., 2022a), we downsample the grid resolution 721 × 1044 to
181 × 360. Each time step is treated as a separate data point, and the dataset is split into a training set of 9676 data points
and a test set of 2420 data points. As for the input, the given latitudes clat and longitudes clong are transformed into 3D
Cartesian coordinates c = (cos clat cos clong, cos clat sin clong, sin clat) where latitudes clat are equally spaced in [−π

2 ,
π
2 ]

and longitudes clong are equally spaced in [0, 2π(n−1)
n ] where n the number of distinct values of longitude (360).

SRN Cars is a dataset of car scenes, with 2458 examples in the training set and 703 examples in the test set (Sitzmann et al.,
2019). Each example consists of 50 random views centered on the car in the training set, and 251 views in the test set. The
pre-processing of the data was conducted according to the guidelines provided by (Dupont et al., 2022b).

CIFAR-10 is a dataset of 50,000 train and 10,000 test images with a resolution of 32 x 32, comprising 10 different object
categories (Krizhevsky et al., 2009). We use the same pre-processing as in CelebA-HQ dataset.

Kodak is a dataset of 24 uncompressed PNG images with a resolution of 768 × 512, provided by the Kodak corporation. By
following (Schwarz & Teh, 2022), we meta-learn on the high-quality versions of the Div2K dataset (Agustsson & Timofte,
2017), which consists of 900 images (by combining train and validation set). For Meta-Learning, we also train the model
on randomly cropped 32 × 32 patches and for evaluation, we split the image into non-overlapping patches where each
modulations are adapted on each patches. Here, we also use the same pre-processing as in CelebA-HQ dataset.

LibriSpeech is a collection of read English speech recordings at a 16kHz sampling rate (Panayotov et al., 2015). By
following Dupont et al. (2022b), we use the train-clean-100 split, which consists of 28,539 examples, and the test-clean split,
which consists 2,620 examples. For the experiments, we use the first 3 seconds of each example (which is 48,000 audio
samples) for both training and evaluation. For the pre-processing, we scale the coordinates into [−5, 5].

UCF-101 is a video action dataset comprising 13,320 videos with a resolution of 320 × 240, organised into 101 classes
(Soomro et al., 2012). In order to standardise the input for the model, we center-crop each video clip to 240 × 240 × 24 and
then resized to 128 × 128 × 24.

B. Numerical Results
For the sake of reputability, we now state the numerical compression values used to plot the results in Section 4. Note that
baseline results have been taken from the code repository for COIN++ (Dupont et al., 2022b):

# Cifar-10
vcinr_bpp = [0.29, 0.31, 1.18, 1.18, 2.95, 3.33, 4.88, 6.70, 8.69, 10.56, 12.52]
vcinr_psnr = [22.76, 22.86, 28.86, 28.86, 34.96, 35.95, 40.25, 43.45, 45.70, 47.56, 48.32]

# Kodak
vcinr_bpp = [0.08, 0.14, 0.48, 1.09, 1.54, 2.17, 3.09, 3.74, 5.56]
vcinr_psnr = [26.86, 28.33, 32.07, 34.78, 36.59, 38.57, 41.26, 42.12, 42.24]

# ERA-5
vcinr_bpp = [0.004, 0.004, 0.005, 0.00758, 0.011, 0.02119, 0.05, 0.07616]
vcinr_psnr = [39.172, 40.766, 45.219, 47.965, 49.612, 51.25, 52.89, 54.25]

# Librispeech
vcinr_bpp = [7.38, 8.04, 9.06, 14.61, 18.42, 20.06, 34.99, 43.69, 79.54, 120.77]

13

https://github.com/EmilienDupont/coinpp/tree/main/results


Modality-Agnostic Variational Compression of Implicit Neural Representations

vcinr_psnr = [44.10, 45.05, 45.93, 49.10, 50.68, 51.28, 55.61, 57.03, 59.33, 59.40]

# UCF-101
vcinr_bpp = [0.09, 0.10, 0.26, 0.27, 0.42, 0.99, 1.59, 2.17, 4.00, 4.42]
vcinr_psnr = [29.90, 30.37, 34.51, 34.75, 36.83, 41.07, 44.58, 47.86, 55.81, 56.22]

C. Meta-Learning Implicit Neural Representations with Latent Modulations
In order to efficiently and effectively encode a given signal into a compact latent representation, we utilise a Gradient-based
Meta-Learning approach, such as model-agnostic meta-learning (MAML) (Finn et al., 2017). In our case, MAML aims to
find a good initialisation ϕ0 and shared INR parameter θ, allowing for the encoding of a given signal x into the modulation
ϕ within a few gradient steps from ϕ0. Writing LMSE(θ,ϕ,x) as a shorthand for the INR fitting loss (Equation (1)), a single
gradient step adaptation of MAML is computed as:

ϕ = ϕ0 − α∇ϕ0
LMSE(θ,ϕ0,x), (6)

where α is the step size used in the inner loop. Note that one can easily iterate the adaptation for multiple steps. The key
idea of MAML is to backpropagate through this optimisation process, directly learning an initialisation ϕ0 (along with
additional shared parameters θ) such that ϕ can parameterise a good reconstruction of the signal after adaptation. This is
typically computed over the training signal distribution p(x):

min
θ,ϕ0

Ex∼p(x)

[
LMSE(θ,ϕ,x)

]
= min

θ,ϕ0

Ex∼p(x)

[
LMSE

(
θ,ϕ0 − α∇ϕ0

LMSE(θ,ϕ0,x),x
)]
. (7)

Here, we refer each optimisation of MAML, Equation (6) as “inner-loop”, and (7) as “outer-loop”, respec-
tively. In practise, we also meta-learn the step size α as another parameter updated in the outer loop, an ap-
proach known as MetaSGD (Li et al., 2017). This can be interpreted as a pre-conditioning of the gradient.

Algorithm 1 INR Meta-training stage
Data: Dataset {xi,yi}Ni=1

1 Initialise shared network θ and latent modulation initialisa-
tion ϕ0.

2 while not converged do
3 Sample batch of data B = {xj ,yj}Bj=1

// Adaptation loop (O in Figure 1c)

4 for j ← 1 to B do
// For 1 adaptation step

5 ϕj ← ϕ0 − α∇ϕ0
LMSE(f(xj ,θ,ϕ0),y

j)

// Update using adapted latent modulation

6 ϕ0 ← ϕ0 − βE[∇ϕ0
LMSE(f(xj ,θ,ϕj),yj)]

// Remaining INR parameters

7 θ ← θ − βE[∇θLMSE(f(xj ,θ,ϕj),yj)]

Result: Dataset of latent modulations {ϕi}Ni=1, θ

Algorithm 2 Quantisation training stage
Data: Dataset of latent modulations {ϕi}Ni=1, θ, λ

8 while not converged do
9 Initialise parameters πa,πs.

Sample batch of data B = {ϕj ,xj ,yj}Bj=1

for j ← 1 to B do
10 z← ga(ϕ

j ;πa)
// Rounding at inference to obtain ẑj

11 z̃j = zj + ϵ; ϵ ∼ U(− 1
2 ,

1
2 )

// Compute entropy model pẑ and rate

12 ℓjrate = − log2[pẑ(z̃)]

ϕ̃j ← gs(z̃
j ;πs)

ℓjdistortion = LMSE(f(xj ,θ, ϕ̃j),yj)

13 πa ← πa − βE[∇πa
(ℓjrate + λℓjdistortion)]

πs ← πs − βE[∇πs
(ℓjrate + λℓjdistortion)]

D. VC-INR algorithmic details
Algorithms 1 and 2 show details of the Meta-Learning (introduced in the previous section) and quantisation learning
stages. The output of Algorithm 1 directly feeds into the pipeline for quantisation. Hence, the two problems of optimal
parameterisation and quantisation can be tackled independently, thus allowing for various combination for future work.
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Figure 10. Performance during the meta-training phase. (a) investigates the effect of the width of the VC-INR non-linear projection layer
and (b) compares the effect of LayerNorm on VC-INR.

E. Additional experimental results
E.1. Stabilising Meta-Learning of Soft Gating mask Modulations with LayerNorm

In Section 3.3, we demonstrate the importance of using LayerNorm (Ba et al., 2016) in the meta-learning of our new
parameterisation. In Figure 10b we demonstrate that Meta-Learning becomes highly unstable by default (an effect becoming
more severe with larger dim(ϕ)) and thus requires extensive hyperparameter search which may still suffer from occasional
instability. Instead, we find that LayerNorm largely removes this phenomenon, leading to more stable training and better
results. We hypothesise that such a divergence occurs when the norm of the inner loop gradient is large, indicating a sharp
loss landscape. LayerNorm addresses this issue by smoothing the loss landscape, as has previously been shown (Santurkar
et al., 2018; Xu et al., 2019). Furthermore, it effectively bounds the norm of ϕ.

In addition, we show that our new parameterisation can effectively make use of increasing network capacity (while Functa
shows decreasing performance for non-linear mappings from latent parameters to modulations). Figure 10a shows this effect
to be particularly effective for increasing network width, which we recommend for optimal performance during pre-training.

E.2. Results using MS-SSIM

In addition to results measured using PSNR, we provide results on Kodak using Multiscale structural similarity index
measure (SSIM) (Wang et al., 2003) results in Figure 11 due to its better correlation with perceptual similarity. We observe
comparable the results in Figure 4 with VC-INR performing similarly to JPEG & JPEG-2000.
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Figure 11. Compression results on image dataset Kodak measured using Multi-Scale Structural Similarity (MS-SSIM). (a) MS-SSIM
scores, (b) Converted to decibel (i.e. −10 log10(1− MS-SSIM)).
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F. Qualitative Results
F.1. Cifar10

Figure 12 shows more qualitative results on Cifar10 for various rate/distortions trade-offs.

Original Pre Quantisation BPP: 11.66 BPP: 6.12 BPP: 4.15

PSNR: 47.36 PSNR: 44.63 PSNR: 40.61 PSNR: 35.92

.

Original Pre Quantisation BPP: 10.74 BPP: 5.62 BPP: 3.75

PSNR: 51.96 PSNR: 48.24 PSNR: 42.96 PSNR: 36.74

.
Original Pre Quantisation BPP: 11.42 BPP: 5.80 BPP: 3.73

PSNR: 47.29 PSNR: 45.20 PSNR: 40.05 PSNR: 35.08

.

Original Pre Quantisation BPP: 9.47 BPP: 4.75 BPP: 3.21

PSNR: 55.17 PSNR: 51.81 PSNR: 44.78 PSNR: 41.06

.
Original Pre Quantisation BPP: 11.81 BPP: 6.19 BPP: 4.06

PSNR: 48.61 PSNR: 45.72 PSNR: 40.29 PSNR: 34.40

.

Original Pre Quantisation BPP: 11.03 BPP: 5.85 BPP: 3.90

PSNR: 50.93 PSNR: 47.26 PSNR: 42.13 PSNR: 35.93

.

Figure 12. More qualitative results from the Cifar10 dataset.

In addition, we provide a further analysis of gating masks using a similar t-SNE projection as shown in the main text for
Cifar-10 as well as an analysis of sparsity level and reconstruction correlation in Figure 13. With regards to correlation, it is
firstly worth noting that there is little variation in the total sparsity level (reaching from 32.5 - 33.2). Secondly, we observe
only very weak correlation (Pearson’s correlation coefficient: 0.177) suggesting that no straightforward relationship between
sparsity and performance exists.

F.2. Kodak

Figure 14 shows more qualitative results on Kodak in comparison with COIN++ (Dupont et al., 2022b) and MSCN (Schwarz
& Teh, 2022).

F.3. UCF-101

Figure 15 shows more qualitative results on frames from the UCF-101 dataset. We provide links to each of the reconstruction
video clips and its residual in comparison with the original video in Table 2.

G. Hyperparameters
G.1. Compression Experiments

We show hyperparameters for both INR training and subsequent compression training for CIFAR-10 in Table 3, for Kodak
in Table 4, for ERA5 in Table 5, for LibriSpeech in Table 6 and for UCF-101 in Table 7.
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Figure 13. t-SNE (Van der Maaten & Hinton, 2008) visualisation of gating masks Glow after adaptation on CIFAR-10. (a) Full test set
results (b) zoomed-in (c) Correlation between gating mask sparsity and performance level. Sparsity calculated as the fraction of sparse
weights (i.e. |(Glow ⊙W)ij | < 0.001) relative to the total number of all weights in the network.

Quality
Low (BPP: 0.13) Medium (BPP: 1.39) High (BPP: 2.76) Best (BPP: 4.20)

Example 1 here here here here
Example 2 here here here here
Example 3 here here here here
Example 4 here here here here
Example 5 here here here here
Example 6 here here here here
Example 7 here here here here
Example 8 here here here here
Example 9 here here here here
Example 10 here here here here
Example 11 here here here here
Example 12 here here here here
Example 13 here here here here
Example 14 here here here here
Example 15 here here here here
Example 16 here here here here

Table 2. More qualitative examples from the UCF-101 datasets. Shown are full video reconstructions and residuals of various VC-INR
models at varying bit-rates.
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Original COIN++ (BPP: 0.54) VC-INR (BPP: 0.55) VC-INR (BPP: 4.13)

PSNR: 24.82 PSNR: 26.63 PSNR: 39.24

(a) Compared with COIN++ (Dupont et al., 2022b).
Original MSCN (BPP: 0.50) VC-INR (BPP: 0.55) VC-INR (BPP: 3.57)

PSNR: 29.87 PSNR: 31.96 PSNR: 41.17

(b) Compared with MSCN (Schwarz & Teh, 2022).
Original MSCN (BPP: 0.50) VC-INR (BPP: 0.52) VC-INR (BPP: 3.23)

PSNR: 30.29 PSNR: 33.04 PSNR: 42.64

(c) Compared with MSCN (Schwarz & Teh, 2022).
Original MSCN (BPP: 0.50) VC-INR (BPP: 0.59) VC-INR (BPP: 3.39)

PSNR: 29.28 PSNR: 32.22 PSNR: 41.74

(d) Compared with MSCN (Schwarz & Teh, 2022).
Figure 14. More qualitative results from the Kodak dataset. Shown are VC-INR models in comparison with other INR-based techniques
at similar bit-rates (3rd column) as well as a high-quality model (last column).
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Figure 15. More qualitative results from the UCF-101 dataset. Shown are VC-INR models at varying quality rates.

Table 3. Hyperparameters for compression experiments on CIFAR-10.
Parameter Considered range Comment
INR training
Patching {False}
Activation function {h(x) : sin(ω0x) (SIREN)}
ω0 {30}
Network depth {15}
Network width {512}
Batch size per device {32, 64}
Num devices {8}
Optimiser {Adam}
Outer learning rate {3 · 10−6}
Num inner steps {3}
Meta-learn ϕ init. {True}
Meta SGD range {[-5.0, 5.0]} (Max./Min. for Meta-SGD LRs)
Meta SGD init range {[1.0, 1.0]} (Uniformly sampled).

ϕ → {G(1)
low, . . . ,G

(L)
low } network

dim(ϕ) {2048, 3072, 4096}
Use LayerNorm {True}
Network width {6144}
Residual blocks {2}
Activation function {Leaky Relu} (Xu et al., 2015)
Adapt first Layer {False} Apply low-rank gating to 1st layer?

Quantiser training

Normalise ϕ {True} Per dim. ϕi−µ̂i
σ̂i

based on ϕ train-set stats.
λ (Ldistortion penalty) {0.33, 0.66, 1.0, 3.33, 6.66}
Analysis transform (ga) Residual blocks {1}
ga Network width {2048, 4096, 5120}
ga Activation function SeLU (Klambauer et al., 2017)
dim(y) {1024, 2048, 4096, 5120}
Synthesis transform gs Same as ga
Optimiser {Adam}
Learning rate {1 · 10−4}
Batch size per device {32, 64}
Num devices {1}
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Table 4. Hyperparameters for compression experiments on Div2k/Kodak.
Parameter Considered range Comment
INR training
Pre-training on {Div2k} as in (Schwarz & Teh, 2022; Strümpler et al., 2022)

Patching {(32× 32)} Dividing 768× 512 images.
Activation function {h(x) : sin(ω0x) (SIREN)}
ω0 {30}
Network depth {15}
Network width {512}
Batch size per device {32}
Num devices {8}
Optimiser {Adam}
Outer learning rate {3 · 10−6}
Num inner steps {3}
Meta-learn ϕ init. {True}
Meta SGD range {[-5.0, 5.0]} (Max./Min. for Meta-SGD LRs)
Meta SGD init range {[1.0, 1.0]} (Uniformly sampled).

ϕ → {G(1)
low, . . . ,G

(L)
low } network

dim(ϕ) {512, 1024}
Use LayerNorm {True}
Network width {4096}
Residual blocks {1}
Activation function {Leaky Relu} (Xu et al., 2015)
Adapt first Layer {False} Apply low-rank gating to 1st layer?

Quantiser training

Normalise ϕ {True} Per dim. ϕi−µ̂i
σ̂i

based on ϕ train-set stats.
λ (Ldistortion penalty) {0.01, 0.033, 0.1, 0.33, 0.66, 1.0}
Analysis transform (ga) Residual blocks {1}
ga Network width {256, 512, 1024}
ga Activation function SeLU (Klambauer et al., 2017)
dim(y) {256, 512, 1024}
Synthesis transform gs Same as ga
Optimiser {Adam}
Learning rate {1 · 10−4}
Batch size per device {128}
Num devices {1}
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Modality-Agnostic Variational Compression of Implicit Neural Representations

Table 5. Hyperparameters for compression experiments on ERA5 (16×).
Parameter Considered range Comment
INR training
Patching {False}
Activation function {h(x) : sin(ω0x) (SIREN)}
ω0 {30}
Network depth {10}
Network width {384}
Batch size per device {4}
Num devices {4}
Optimiser {Adam}
Outer learning rate {3 · 10−6}
Num inner steps {3}
Meta-learn ϕ init. {True}
Meta SGD range {[-5.0, 5.0]} (Max./Min. for Meta-SGD LRs)
Meta SGD init range {[1.0, 1.0]} (Uniformly sampled).

ϕ → {G(1)
low, . . . ,G

(L)
low } network

dim(ϕ) {4, 8, 12, 32, 64, 128}
Use LayerNorm {True}
Network width {512}
Residual blocks {2}
Activation function {Leaky Relu} (Xu et al., 2015)
Adapt first Layer {False} Apply low-rank gating to 1st layer?

Quantiser training

Normalise ϕ {True} Per dim. ϕi−µ̂i
σ̂i

based on ϕ train-set stats.
λ (Ldistortion penalty) {0.001, 0.01, 0.01, 0.1}
Analysis transform (ga) Residual blocks {2}
ga Network width {8, 12, 32, 64, 128}
ga Activation function SeLU (Klambauer et al., 2017)
dim(y) {8, 12, 32, 64, 128}
Synthesis transform gs Same as ga
Optimiser {Adam}
Learning rate {1 · 10−4}
Batch size per device {128, 256}
Num devices {1}
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Table 6. Hyperparameters for compression experiments on LibriSpeech.
Parameter Considered range Comment
INR training
Patching {(200, 400, 800)} Dividing 48k dim. audio signal.
Activation function {h(x) : sin(ω0x) (SIREN)}
ω0 {10, 30, 50}
Network depth {10}
Network width {512}
Batch size per device {32, 64}
Num devices {1}
Optimiser {Adam}
Outer learning rate {3 · 10−6}
Num inner steps {3}
Meta-learn ϕ init. {True}
Meta SGD range {[-5.0, 5.0]} (Max./Min. for Meta-SGD LRs)
Meta SGD init range {[1.0, 1.0]} (Uniformly sampled).

ϕ → {G(1)
low, . . . ,G

(L)
low } network

dim(ϕ) {64, 128, 256, 512, 1024}
Use LayerNorm {True}
Network width {512, 512, 768, 1536, 3072}
Residual blocks {2}
Activation function {Leaky Relu} (Xu et al., 2015)
Adapt first Layer {False} Apply low-rank gating to 1st layer?

Quantiser training

Normalise ϕ {True} Per dim. ϕi−µ̂i
σ̂i

based on ϕ train-set stats.
λ (Ldistortion penalty) {1.0, 10.0, 100.0}
Analysis transform (ga) Residual blocks {2}
ga Network width {128, 256, 512, 1024}
ga Activation function SeLU (Klambauer et al., 2017)
dim(y) {128, 256, 512, 1024}
Synthesis transform gs Same as ga
Optimiser {Adam}
Learning rate {1 · 10−4}
Batch size per device {128}
Num devices {1}
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Table 7. Hyperparameters for compression experiments on UCF-101.
Parameter Considered range Comment
INR training
Patching {(4, 8, 8), (8, 8, 8), (4, 16, 16), (8, 16, 16)} Dividing (24, 128, 128) dim. video.
Activation function {h(x) : sin(ω0x) (SIREN)}
ω0 {30}
Network depth {10}
Network width {256}
Batch size per device {4}
Num devices {4}
Optimiser {Adam}
Outer learning rate {3 · 10−6}
Num inner steps {3}
Meta-learn ϕ init. {True}
Meta SGD range {[-5.0, 5.0]} (Max./Min. for Meta-SGD LRs)
Meta SGD init range {[1.0, 1.0]} (Uniformly sampled).

ϕ → {G(1)
low, . . . ,G

(L)
low } network

dim(ϕ) {512, 1536, 2048, 2048}
Use LayerNorm {True}
Network width {512}
Residual blocks {2}
Activation function {Leaky Relu} (Xu et al., 2015)
Adapt first Layer {False} Apply low-rank gating to 1st layer?

Quantiser training

Normalise ϕ {True} Per dim. ϕi−µ̂i
σ̂i

based on ϕ train-set stats.
λ (Ldistortion penalty) {0.001, 0.01, 0.1, 1.0, 10.0}
Analysis transform (ga) Residual blocks {1}
ga Network width {256, 512, 1024, 2048}
ga Activation function SeLU (Klambauer et al., 2017)
dim(y) {256, 512, 1024, 2048}
Synthesis transform gs Same as ga
Optimiser {Adam}
Learning rate {1 · 10−4}
Batch size per device {64}
Num devices {1}
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