
Neural Markov Jump Processes

Patrick Seifner 1 2 Ramsés J. Sánchez 1 2

Abstract
Markov jump processes are continuous-time
stochastic processes with a wide range of applica-
tions in both natural and social sciences. Despite
their widespread use, inference in these models
is highly non-trivial and typically proceeds via
either Monte Carlo or expectation-maximization
methods. In this work we introduce an alterna-
tive, variational inference algorithm for Markov
jump processes which relies on neural ordinary
differential equations, and is trainable via back-
propagation. Our methodology learns neural,
continuous-time representations of the observed
data, that are used to approximate the initial distri-
bution and time-dependent transition probability
rates of the posterior Markov jump process. The
time-independent rates of the prior process are
in contrast trained akin to generative adversar-
ial networks. We test our approach on synthetic
data sampled from ground-truth Markov jump
processes, experimental switching ion channel
data and molecular dynamics simulations. Source
code to reproduce our experiments is available
online.1

1. Introduction
Markov Jump Processes (MJP) model time-dependent, dis-
crete probability distributions whose future is entirely de-
termined by knowledge of their present. Given an initial
distribution, the time evolution in these processes is com-
pletely characterized by the instantaneous transition proba-
bility rates between their states, in terms of which one can
express quantities of interest that can be probed experimen-
tally. Mean first-passage times, which provide information
regarding the short-term dynamics of the process, relax-
ation times to stationarity and the stationary distribution

1Lamarr Institute, Bonn, Germany. 2University of Bonn, Bonn,
Germany. Correspondence to: Patrick Seifner <seifner@cs.uni-
bonn.de>, Ramsés J. Sánchez <sanchez@bit.uni-bonn.de>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

1https://github.com/pseifner/NeuralMJP

itself, which concern the long-time asymptotics, or thermo-
dynamic quantities like (stochastic) entropy production, can
all be computed via the MJP transition rates.

Such a family of mathematical models is simple enough to
have a wide range of approximate validity, which has led to
its application in many fields of science. Examples abound,
and range from physics (Griffiths et al., 1966), chemistry
(Gillespie, 1977) and biology (Kimura, 1980) all the way up
to meteorology (Madsen et al., 1985), finance (Turner et al.,
1989) and sociology (Singer & Spilerman, 1976). Indeed,
there is a large class of systems whose evolution can be
phenomenologically understood as the result of individual
encounters between members of some population – think of
reacting chemical species or population systems, which die,
mate and give birth. Researchers can model such systems
by assigning probability rates to the transitions caused by
those encounters. Likewise many large, complex systems
often give rise to long-lived collective modes, trapped in
a set of metastable states at some macroscopic scale of
observation, whose dynamics can also naturally be modelled
in terms of transition rates between their metastable states.
In practice, however, a judicious choice of the transition
probability rates from first principles, in the large majority
of these systems, is seldom analytically tractable, which
leads researchers to resort to statistical methods in order to
infer them directly from raw data.

When a continuous record of the empirical process under
investigation exists, maximum likelihood estimation of the
transition rates is simple and well understood (Billingsley,
1961). When, on the contrary, the process is observed at
discrete time points only, as it is often the case, inference
becomes highly non-trivial and typically proceeds via ei-
ther Markov Chain Monte Carlo (MCMC) or Expectation
Maximization (EM) methods. Yet MCMC, while accurate,
does not normally scale well with data (Zhang et al., 2017),
whereas EM is frequently formulated to yield only point
estimates of its unknown parameters (Opper & Sanguinetti,
2007; Köhs et al., 2021) and can also struggle when faced
with large datasets.

In this work we introduce an alternative, variational infer-
ence algorithm for MJP – the Neural Markov Jump Process
model (NeuralMJP) – which relies on neural variational
inference (NVI) (Kingma & Welling, 2014; Rezende et al.,

1

https://github.com/pseifner/NeuralMJP

Neural Markov Jump Processes

2014) and Neural Ordinary Differential Equations (Neu-
ralODE) (Chen et al., 2018). In short, our model encodes
neural representations of (noisy) data into the parameters
of a master equation describing the time-evolution of the
posterior process. Numerically solving this equation yields
the instantaneous posterior distribution encoding the data.
At the same time, the model learns a global, implicit distri-
butions over the prior MJP, through the minimization of its
Kullback-Leibler divergence wrt. the posterior process. In
what follows we first review previous work on the inference
of MJP (Section 2), and revisit some of the basics of the
theory of MJP (Section 3). Section 4 introduces our model,
the inference algorithm and some general details about train-
ing. We test our methodology on four different datasets in
Section 5. Finally, Section 6 closes the paper with some
concluding remarks about future work, while Section 7 com-
ments on the main limitations of our approach.

2. Related Work
The question of whether observations on a given empirical
process are consistent with an underlying MJP is an old one
(Singer & Spilerman, 1976), and goes all the way back to
Elfving (1937) who formulated it as an embedding prob-
lem. Since then, the problem of parameter estimation for
MJP has been approached from many different angles. For
example, maximum likelihood estimators for MJP transi-
tion rates were first obtained via EM by Asmussen et al.
(1996). Their approach was later rediscovered by Bladt &
Sørensen (2005) and optimized further by Metzner et al.
(2007). Other (maximum likelihood) formulations estimate
the transition rates indirectly, by first fitting discrete-time
Markov Chains to the data (Crommelin & Vanden-Eijnden,
2006; McGibbon & Pande, 2015). Likewise, Bayesian so-
lutions to the problem of inferring MJP from noisy ob-
servations exist in many flavours. Boys et al. (2008), for
example, proposed a MCMC algorithm for parameter infer-
ence of certain MJP classes. Fearnhead & Sherlock (2006)
introduced an exact sampler for Markov-modulated Poisson
processes, which was later extended and generalized, using
an auxiliary-variable trick, by Rao & Teg (2013). The lat-
ter can however experience slow-mixing problems, and its
convergence is often difficult to quantify. Small-variance
asymptotic approaches (Huggins et al., 2015) and collapsed
variational MCMC algorithms (Zhang et al., 2017) were
recently introduced to tackle (some of) these issues.

Parallel to these efforts is a line of deterministic, varia-
tional models, the first of which was introduced by Opper &
Sanguinetti (2007). Their model uses a mean-field approxi-
mation to estimate the posterior distribution of coupled MJP
and is optimized via EM. Later Cohn et al. (2010) applied
Opper’s approach to continuous-time Bayesian networks,
while Wildner & Koeppl (2019) partitioned the set of tran-

sitions of the MJP, to express Opper’s variational objective
in terms of natural moment functions. More recently, Köhs
et al. (2021) proposed a variational EM scheme to infer
switching diffusion processes modulated by (hidden) MJPs.
Nevertheless, all these models are formulated to yield only
point estimates of the MJP parameters they infer.

Finally, most neural-based approaches tackle inference of
MJP mainly in specific representations. Point processes,
for example, have been modelled with recurrent (Du et al.,
2016; Mei & Eisner, 2017) and NeuralODE (Jia & Benson,
2019; Chen et al., 2021) networks, both trained via maxi-
mum likelihood. Ojeda et al. (2021a), in contrast, leveraged
recurrent, generative adversarial networks to infer queuing
processes. To the best of our knowledge, our methodology
is the first, neural-based variational solution to the problem
of posterior inference and parameter estimation of hidden
Markov jump processes.

3. Background
Let us consider a system S that can be described in terms
of a stochastic process Z(t) taking values on some count-
able set Z , over a finite time interval [0, T]. We define the
instantaneous probability rate of transiting from state z′ to
another state z ∈ Z different from z′ as

f(z|z′, t) = lim
∆t→0

1

∆t
p(z, t+∆t|z′, t), (1)

where p(z, t|z′, t′) is the probability to find the system in
state z at time t, given that it was in state z′ at time t′ < t.
If all changes in S are only due to transitions of the form
of Eq. 1, then S is Markovian, and one can readily show
that the probability distribution describing the state of the
system evolves according to the master equation

ṗ(z, t) =
∑
z′ ̸=z

(
f(z|z′, t)p(z′, t)− f(z′|z, t)p(z, t)

)
, (2)

where we use ṗ(z, t) to denote the time derivative of p(z, t).
See Appendix A for a brief derivation. The stochastic pro-
cess Z(t) associated with (the solution of) this equation is
made up of right-continuous, piecewise-constant paths (see
Appendix G), which explains why one usually refers to it as
a Markov jump process.

In this work we concentrate on (the inference of) homoge-
neous MJP, whose transition probability rates f are time-
independent, taking values on finite state spaces of size
|Z| = K. Note that in this case we can gather all transition
rates into a K ×K rate matrix F, and rewrite the master
equation as ṗ(t) = p(t) · F, where p(t) ∈ [0, 1]K is the
vector containing the time-dependent probabilities over the
K states in Z . We can now formally write the solution
to the master equation in terms of the matrix exponential
p(t) = p(0) · exp(Ft).

2

Neural Markov Jump Processes

Figure 1. Neural Markov Jump Process model. Left: Graphical model and encoding-decoding procedure. The observations x1, . . . ,xN

are encoded backwards in time with a ODE-RNN model (bottom block). The output ODE-RNN representations are used to condition the
posterior master equation (Eq. 4), which is solved forward in time (top block). The instantaneous posterior distribution is then sampled at
t1, . . . , tN . The resulting states z1, . . . , zN are decoded with the emission model. Right: Illustration of a one-dimension noisy signal
(bottom) and its underlying MJP (top). The discrete observations are marked with circles at the observation times t1, . . . , tN .

The matrix exponential representation naturally leads to
the notion of relaxation times to stationarity. Indeed,
let λ1, λ2, . . . , λK denote the eigenvalues of F. If all
K states in S are connected (i.e. if the Markov chain
associated to the process is irreducible), the Perron-
Frobenious theorem states that 0 = λ1 > Re(λ2) ≥
· · · ≥ Re(λK), where Re denotes real part (Berman
& Plemmons, 1994). It follows that the class prob-
abilities p(t) are nothing but linear combinations of
the terms 1, exp(−Re(λ2)t), . . . , exp(−Re(λK)t), maybe
multiplied by some oscillatory functions. The relaxation
time to stationarity is then simply given by the longest time
scale in the system, namely Re(λ2)−1. In the long-time
limit, all those exponential terms vanish away and one is
only left with a distribution p∗(t) which, at most, oscillates
among its states with time. This limit distribution is known
as the stationary distribution of the process. Appendix B
introduces it (properly).

The transition rates can also be used to obtain information
regarding the short-TERM behaviour of the MJP. An im-
portant example is the mean-first passage time τzz′ , which
measures how long the system would take to reach some
state of interest z′ ∈ Z , given that it started in some other
state z, at the beginning of the process. Appendix B defines
this time in terms of the rate matrix F.

4. Neural Markov Jump Processes
We address the general problem of inferring homogeneous
MJP taking values on some countable set of size K, from
a set of (noisy) observations on a given empirical process.
The empirical process in question can itself lie on some
countable, discrete space, like when one records the pop-
ulation of individuals in a given system. It can lie on a
low-dimensional, continuous space, like when one analyses
one-dimensional noisy signals jumping betweenK different
mean values. It can also lie on a high-dimensional space,
like when one studies the equilibrium dynamics of the atoms
in a molecule, which spend most of their time in a set of

K metastable, spatial configurations. Although the poste-
rior process associated to such noisy signals is too a MJP
(Bishop & Nasrabadi, 2006), the initial distribution and
rate probabilities characterizing it are complex, nonlinear
functions of the entire set of observations. This is specially
true in the high-dimensional, continuous cases of confor-
mational dynamics, typical of the molecular systems we
examine below.

In what follows we use NVI methods (Kingma & Welling,
2014; Rezende et al., 2014) to (i) learn neural functions en-
coding the discrete-time, noisy signal into the parameters of
a master equation describing the time-evolution of the pos-
terior process; (ii) solve, in the spirit of NeuralODE (Chen
et al., 2018), the master equation to infer the instantaneous
posterior distribution encoding the data; and (iii) learn an
implicit distribution on the prior homogeneous MJP that
best fits the posterior.

4.1. Generative Model

Let us suppose we are given a set of N observations
x1,x2, . . . ,xN ∈ X on some empirical process, recorded
at (non-equidistant) times 0 < t1 < t2 < · · · < tN < T ,
where X denotes the space of observations. We assume the
observations are generated conditioned on a hidden, homo-
geneous MJP, characterized by a master equation like Eq. 2,
but where the time-independent transition rates fθ(z|z′) are
trainable functions, parametrized by some learnable param-
eter θ. The joint probability distribution over the prior MJP
process, together with the set of N observations, can then
be written as

N∏
i=1

pθ(xi|z)pθ(z, t = ti), (3)

where pθ(z, t = ti) is the (instantaneous) solution of the
master equation specifying the prior process at time ti, and
pθ(xi|z) is some emission function modelling the noise in
the data, with learnable parameters θ. Let us specify each
of the components in Eq. 3.

3

Neural Markov Jump Processes

Algorithm 1. Training NeuralMJP
Requires: Dataset D and time horizon T
for each training iteration do

Sample: (t0:N ,x1:N) ∼ D and ε ∼ N (0, 0.1)

(1) Train encoder-decoder pair:
Freeze prior parameters in θ and free the rest
Compute: hT = ODE-RNN(x1:N , T)
Run: ODESOLVE[qϕ(z, 0), q̇ϕ(z, t,gϕ)]
Sample: {zi ∼ qϕ(z, ti|hT)}Ni=0

Backprob: θ, ϕ← Adam(∇ log pθ(x1:N |z0:N))

(2) Train prior parameters:
Freeze decoder parameters in θ and free the rest
Compute: fθ = Φθ(ε)
Backprob: θ ← Adam(∇LKL(fθ,gϕ))

end for

Emission Model. The choice of the emission functions
depends on the problem at hand. Below we shall deal with
different noisy signals on RD, for some fixed dimension
D. We therefore choose Gaussian emission models, whose
mean and covariance matrices are non-linear functions of
the hidden process state, modelled by neural networks.

Prior MJP Model. The prior MJP is characterized by its
initial condition and transition probability rates. We are
interested in learning the latter. Let fθ ∈ (R+)(K−1)K de-
note the set of (K − 1)K independent, global parameters
of the prior rate matrix. A natural solution to the problem
of learning fθ would be to define it as a vector of randomly
initialized, trainable parameters. However, we have found
empirically that such an approach yields fairly unstable
training, which is both prone to get stuck in local minima
and highly dependent on the random initialization (see Ap-
pendix C for details). The Bayesian alternative would be to
impose and learn prior distributions on the entries of fθ itself.
Instead we take a more pragmatic approach. We define a
generative neural model Φθ : Rp → (R+)(K−1)K that, akin
to the generator in Generative Adversarial Networks (Good-
fellow et al., 2017), maps random p-dimensional vectors,
sampled from a Gaussian distribution, into the transition
rates fθ. That is

fθ = Φθ(ε), ε ∼ N (0, σ),

with σ a hyperparameter of the model. Similar to earlier
approaches (Mohamed & Lakshminarayanan, 2016; Huszár,
2017; Yin & Zhou, 2018), this (prior) model implicitly
defines a distribution over the rate matrices of homogeneous
MJP. Below we demonstrate that the empirical mean of
this distribution is sharply peak around the parameters of
ground-truth rate matrices.

4.2. Inference Model

Exact inference of the generative model above is clearly
intractable. In this section we approximate the true posterior
MJP with a variational, inhomogeneous MJP solving the
master equation

q̇ϕ(z, t|x1:N) =
∑
z′ ̸=z

{
gϕ(z|z′, t,x1:N)qϕ(z

′, t|x1:N)

− gϕ(z′|z, t,x1:N)qϕ(z, t|x1:N)
}
, (4)

with data-dependent initial condition qϕ(z, 0|x1:N). Here
ϕ labels the trainable parameters of the inference model,
and x1:N denotes the sequence of empirical observations
x1, . . . ,xN . Also note that we allow the variational approx-
imation to capture inhomogeneous MJP, simply by making
the posterior rates gϕ explicitly time dependent.

As can be seen already from Eq. 4, our strategy consists in
encoding the empirical process x1:N into the posterior MJP
indirectly, through the initial condition and transition rates
defining its master equation. We define the former as

qϕ(z, 0|x1:N) = Λϕ(hT), Λϕ : RH → [0, 1]K ,

where hT ∈ RH is a neural representation encoding x1:N ,
and Λϕ is implemented with neural networks. Accordingly,
we define the (K − 1)K time-dependent transition rates of
the posterior MJP, which we denote by gϕ, as follows

gϕ(t,x1:N) = Ψϕ(hT , t), Ψϕ : RH ×R→ (R+)(K−1)K

where Ψϕ is implemented via neural networks too.

The only missing piece is the neural data representation
hT . This representation can in general be computed us-
ing any sequence-processing neural network, like e.g. a
LSTM (Hochreiter & Schmidhuber, 1997) or Transformer
(Vaswani et al., 2017) network. We experimented some-
what with different architectures, but in the end settled on
the ODE-RNN encoder of Rubanova et al. (2019), which
we found to be robust in all experiments without too much
overhead. For the sake of completeness, let us revisit it
briefly.

ODE-RNN Encoder. Consider the time interval [0, T] for
some time horizon T , so that 0 < t1 < · · · < tN < T .
Given some initial state h0, ODE-RNN encodes the se-
quence x1:N backwards in time, starting from the time hori-
zon t = T and reaching the end of the interval at t = 0.
ODE-RNN leverages two neural networks, namely (i) a
NeuralODE to update the data representation h(t) in be-
tween observations, and (ii) a recurrent neural network to
model instantaneous updates at the observation points. With
this procedure in mind, we define the representation hT
encoding the complete data sequence as the output of the

4

Neural Markov Jump Processes

Table 1. Inference of (ground-truth) Discrete Flashing Ratchet pro-
cess. Mean and standard deviation computed with 1000 samples
of the generative prior MJP model.

V r b

GROUND TRUTH 1.00 1.00 1.00

IRREGULAR GRID 1.06± 0.02 1.17± 0.01 1.14± 0.02
SHARED GRID 0.97± 0.02 1.17± 0.02 1.17± 0.01

REGULAR GRID 0.98± 0.05 1.37± 0.04 1.39± 0.04

last NeuralODE update, starting at t = t1 and ending at
t = 0. See Rubanova et al. (2019) for details.

Given hT , we can now numerically solve the Eq. 4 above
to obtain the instantaneous posterior distribution encoding
the data at the observation times. Thus NeuralMJP solves
one (posterior) master equation for each realization of the
empirical process (that is, for each time series in the dataset).
Figure 1 summarizes and illustrates this procedure.

4.3. Objective Functions

To optimize the parameter set {θ, ϕ} of our latent variable
model we maximize a variational lower bound on the loga-
rithm of the marginal likelihood of the data. Following
Opper & Sanguinetti (2007), we derive the latter using
a discrete-time representation of our MJP, and taking the
continuous-time limit at the end of the calculation. See
Appendix D for details. Our result reads

L =

∫ T

0

dtEqϕ(z,t)
∑
z′ ̸=z

{
gϕ(z

′|z, t,x1:N)− fθ(z′|z)

−gϕ(z′|z, t,x1:N) log
gϕ(z

′|z, t,x1:N)

fθ(z′|z)

}
+

N∑
i=0

Eqϕ(z,ti) [log pθ(xi|z(ti))] , (5)

where the integral is nothing but the Kullback-Leibler di-
vergence (Kullback & Leibler, 1951) between prior and
posterior MJP, whereas the last term is the reconstruction
cost. Let us note that the expectation values in the expres-
sion above are computed wrt. the instantaneous posterior
distribution qϕ(z, t|x1:N). We omitted its dependence on
the data in the equation above for clarity.

The training algorithm for our model is given in Algorithm 1.
Note that we train the prior model separately from the pos-
terior (encoder) and emission (decoder) models. See Ap-
pendix E for our reasoning behind this. See also Appendix F
for additional details and tricks we employ during training.

0

1

2

P
o

si
ti

o
n

0 1 2 3
Time [a.u.]

Off

On

P
o

te
n

ti
a

l True path

Observations

Reconstruction

Figure 2. Sample Discrete Flashing Ratchet trajectory. The white
region shows greedy samples from the posterior within the obser-
vation window. Gray region shows predictions of the model.

4.4. Prediction Process

NeuralMJP naturally allows for prediction of future events
of the empirical process, that is, events beyond the time
horizon T the model was trained on. Indeed, in order to
predict the behaviour of the empirical process at some time
T + l, for any l > 0, one must rely on the generative process
of the model, Eq. 3, albeit conditioned on the past.

Essentially, one must generate Monte Carlo samples from
the posterior distribution at the end of the observation win-
dow (i.e. at T) and propagate the latent representations into
the future, either by solving the prior master equation, or by
simulating the prior process (Gillespie, 1977) up to the time
of interest T + l. Finally, one decodes the samples from
the instantaneous prior distribution back onto the space of
observation via the emission model. For completeness, we
briefly revisit the classical simulation algorithm for MJP in
Appendix G.

5. Experiments
In this section we test our model on four different datasets of
varying complexity, each characterized by different dimen-
sionality, and corrupted by noise signals of very different
nature.

We begin by studying how NeuralMJP handles irregularly
sampled data, which we extract from a noiseless simulation
of a simple MJP named Discrete Flashing Ratchet process.
Next, we train the model on experimental, switching ion
channel data, that corresponds to a one-dimensional noisy
signal switching among a set of mean values. We infer
the equilibrium distribution, and relaxation and mean-first
passage times of the hidden MJP, and compare against the
switching diffusion model of Köhs et al. (2021). We then
use NeuralMJP to infer birth-death processes, a class of
coupled (i.e. interacting) MJPs, and compare against the
classical solution of Opper & Sanguinetti (2007). Finally,
we infer long- and short-time properties of (one all-atom

5

Neural Markov Jump Processes

0.00 0.01 0.02 0.03 0.04 0.05

Time [s]

0

2

4

6

C
u

rr
en

t
[p
A

]

Observations

Reconstruction

±1 std

Figure 3. Sample trajectory from Switching Ion Channel dataset.
The white region shows mean reconstruction values, conditioned
on posterior samples within the observation window. Gray region
shows predictions of the model.

simulation of) a small molecule named alanine dipeptide,
and compare against the neural, discrete-time variational
Markov models of Mardt et al. (2017) and Varolgünes et al.
(2019). Appendix N and O contain two more experiments,
in which we further compare NeuralMJP against the models
of Mardt et al. (2017) and Köhs et al. (2021), respectively.

Before diving in, let us provide some details regarding the
training of NeuralMJP, which are common to all the experi-
ments below.

Experimental Details. First of all, we normalize all obser-
vation times to lie within the interval [0, 1] and set the time
horizon T to 1.1.

To specify the posterior model, we fix the dimension H of
hT to 256 in all experiments. Its ODE-RNN encoder uses a
GRU network (Cho et al., 2014), with a hidden dimension of
256, for the instantaneous updates, and solves a NeuralODE
network, parametrized by an MLP with [256, 256] layers,
backwards in time with the Runge-Kutta method, starting
from T with initial condition h0 = 0. The functions Λψ

and Ψϕ are both MLPs with [128, 128] and [256, 256, 128]
internal layers, respectively. The posterior master equation
(Eq. 4) is solved with the adaptive step Dormand–Prince
method. The Kullback-Leibler divergence in Eq. 5 is ap-
proximated via Gaussian quadrature with 200 points. Next,
and regarding the generative prior, we set the dimension p
of the random input vector ε to 64, and model Φθ with a
single hidden layer of 64 units. The emission model, when
used, is set to a Gaussian model, whose mean and variance
are modelled with and MLP of [128, 128] layers.

Finally, all parameters are optimized using Adam (Kingma
& Ba, 2015), with learning rates varying from 1× 10−3 to
1× 10−4, and possible learning rate annealing. We provide
additional details on datasets, architectures and training in
Appendix H. We also report on training times and resource
consumption of NeuralMJP in Appendix I.

Table 2. Stationary distribution for the switching ion channel pro-
cess. We report the distributions inferred by NeuralMJP when
trained on both the one-second window (1 SEC) and the complete
dataset (FULL).

BOTTOM MIDDLE TOP

KÖHS ET AL. (2021) 0.17961 0.14987 0.67052

NEURALMJP (1 SEC) 0.17672 0.09472 0.72856
NEURALMJP (FULL) 0.19631 0.07153 0.73217

5.1. Discrete Flashing Ratchet

Before testing our methodology on real-world inference
problems, we evaluate the ability of the model to infer
ground-truth MJPs in a controlled experiment. To this end,
we consider the Discrete Flashing Ratchet (DFR) process,
introduced by Ajdari & Prost (1992).

The DFR process is a six-state MJP, which models the po-
sition of a particle that is subject to a periodic, asymmetric
potential, and is in contact with a thermal bath (here, of unit
temperature). The particle has three available states and we
denote them with i ∈ {0, 1, 2}. The potential has two states,
and we denote them with ON or OFF. The transition rates of
the DFR process are defined as follows (Roldán & Parrondo,
2010)

f(j,ON | i,ON) = exp

(
−V

2
(j − i)

)
, for i ̸= j,

f(j,OFF | i,OFF) = b, for i ̸= j,

f(i,OFF | i,ON) = f(i,ON | i,OFF) = r,

where V , r and b are parameters of the model. We set them
all to 1 in what follows and simulate a set of trajectories
from the DFR process thus defined.

With such a simple process at hand we set out to inves-
tigate how NeuralMJP handles observations recorded at
non-equidistant times. To do this, we sub-sample three
different datasets from the set of simulated DFR trajecto-
ries: (I) IRREGULAR GRID, in which each realization (i.e.
each trajectory) has a different, irregular grid; (II) SHARED
GRID, in which all realizations share a fixed, irregular grid;
and (III) REGULAR GRID, in which all realizations have a
fixed and regular grid. We do not corrupt these datasets with
any noise model. Accordingly, we trained a NeuralMJP
without emission model and use a cross-entropy loss as re-
construction cost. We also only allow transition rates in the
prior MJP model which are consistent with the ground truth.
The posterior is however left unconstrained. Additional de-
tails about the data simulation process, data preprocessing,
hyperparameters and training procedure can be found in
Appendix J.

6

Neural Markov Jump Processes

Table 3. Inference of (ground-truth) Lotka-Volterra process against the baselines. Mean and standard deviation values are computed with
1000 samples of the generative prior MJP model. All values are of the order of 10−4.

α β δ γ

GROUND TRUTH 5 1 1 5
OPPER & SANGUINETTI (2007) 13.5 2.32 1.78 15.7

NEURALMJP 4.5± 0.3 1.00± 0.08 0.76± 0.08 3.5± 0.2

Results. Table 1 shows the values inferred by NeuralMJP
from our three artificial datasets. Specifically, we report
the empirical mean and standard deviation computed from
1000 samples of the generative prior MJP. Note how all re-
sults are remarkably close to (and sharply peak around) the
ground-truth values, which indicates that NeuralMJP can
successfully infer MJP from sequential data. Interestingly,
the model performs (in average) best on the IRREGULAR
GRID, arguably because the dataset contains more informa-
tion about the underlying process. All in all we conclude
that NeuralMJP handles irregularly sampled data well.

Figure 2 shows a sample trajectory from the DFR process,
together with a NeuralMJP trajectory. The white region
corresponds to the observation window and displays greedy
samples from the posterior model. The gray region corre-
sponds to future (unseen) data and shows predictions of the
(prior) MJP model. The posterior process clearly models the
data well. The prediction process captures correctly some
of the jumps too.

For completeness, we have also trained 4 additional models,
with different initializations, on all three datasets. We report
the mean and std. of our results in Table 8 of Appendix J.
Our conclusions remain unaltered.

5.2. Switching Ion Channel Data

In this section we study the conformational switching of
the viral potassium channel KcvMT325, which is known to
switch between three different configurations (Gazzarrini
et al., 2006). Markov models are a natural choice to describe
the switching processes of ion channels (Rauh et al., 2017;
2018) and our methodology provides a scalable alternative
to directly infer both, long- and short-term dynamic proper-
ties of the switching process, without the need to resort to
frequentist approaches or introduce artificial lag time scales.

Let us assume that underlying the empirical switching pro-
cess is a three-state MJP. We denote its states as TOP, MID-
DLE and BOTTOM. Each state is characterized by its ion
permeability, which can be experimentally measured by ap-
plying a voltage drop across the cell membrane and record-
ing the ion flow. Here we analyse a current signal which
was generated by applying a voltage drop of 140 mV, and

recorded at a frequency of 5 kHz over a period of about 34
seconds. The dataset was made available to us via private
communication (see the acknowledgements below). Fig-
ure 3 illustrates a snapshot of the current signal. One can
visually identify the TOP and BOTTOM states, with small,
noisy oscillations about them.

We train NeuralMJP with a Gaussian emission model on (i) a
one-second window of the data (5000 observations) and (ii)
the complete dataset (without the first burn-in second, which
amounts to about 167000 observations). See Appendix K
for details. We compare against the variational, switching
diffusion model of Köhs et al. (2021). Note that they trained
their model on the one-second window of the data (i.e. the
same window we consider).

Results. We report in Table 2 the stationary distribution (of
the hidden process) inferred by each model. For NeuralMJP,
this is done by sampling the prior rate matrix 1000 times,
computing its corresponding stationary distribution and av-
eraging. The results agree well. Note in particular that the
MIDDLE state is the least likely, according to both models.
Very importantly, the distributions inferred by NeuralMJP
in both datasets agree well too.

As regards the short-term dynamics, we report in Table 9 of
Appendix K the estimated mean-first passage times. Neu-
ralMJP infers shorter transition times to and from the MID-
DLE state, as compared to the baseline, which implies that
NeuralMJP resolves transitions between TOP and BOTTOM
states via fast transitions to the MIDDLE state. This feature
is consistent in both short and long datasets. In contrast,
the model of Köhs et al. (2021) resolves TOP ⇔ BOTTOM
transitions that do not pass through the MIDDLE state.

Figure 3 shows the NeuralMJP reconstruction of a test tra-
jectory, both within and without the observation window.
The model clearly fits the data well. Figure 6 in the Ap-
pendix additionally compares the prediction capabilities of
NeuralMJP against the model of Köhs et al. (2021). The
performance of both models is similar.

5.3. A Birth-Death Process: Lotka-Volterra

In this section we leverage NeuralMJP to infer coupled MJP.
Let us consider the Lotka-Volterra process (LV), the stereo-

7

Neural Markov Jump Processes

typical Birth-Death Process, as our ground-truth, coupled
MJP. The LV process takes values on N×N and models the
population levels of prey and predator species as they inter-
act over time. The process is defined in terms of four positive
parameters (α, β, γ and δ), which control the strength of
the species interaction, as well as the birth and death rate of
prey and predator, respectively. In our experiments, we fix
the tuple (α, β, γ, δ) to (5, 1, 1, 5) × 10−4 and simulate a
set of trajectories from the LV process. The task is to infer
these four parameters from a dataset of noisy observations
on the LV process. See Appendix L for details.

Results. To handle the coupling in the LV process we
follow Opper & Sanguinetti (2007) and use their mean-field
approximation. Table 3 contains the inferred parameters of
the LV process against the point estimates reported by Opper
& Sanguinetti (2007). Our inferred parameters are clearly
closer to (and sharply peak around) the ground-truth values
as compared to the baseline. Nevertheless, let us remark
that the latter was trained on a significantly smaller dataset.
For the sake of a fairer comparison, we trained NeuralMJP
on the same small dataset used by the baseline. Appendix L
contains our results, which show our model outperforms the
baseline in this case too. These findings indicate our model
can successfully implement the mean-field trick and infer
coupled MJP from noisy data.

Figures 7 and 8 in the Appendix show the NeuralMJP re-
constructions of LV trajectories, for models trained on both
large and small datasets.

5.4. Alanine Dipeptide

Alanine dipeptide (ADP) is a well-studied, 22-atom
molecule that serves as a benchmark system for molecu-
lar dynamics (MD) simulations and computational biology
(Rossky & Karplus, 1979). When ADP is in equilibrium,
its energy surface consists of a multitude of local minima.
However, the structures of the protein associated to these
minima depend mainly on the relative configuration of two
central backbone atom sequences (Ramachandran et al.,
1963). This relative configuration can be represented by
two Ramachandran angles (ψ and ϕ), which are dihedral

Table 4. Stationary distributions for six-state Markov models of
ADP. VAMPnets results were extracted from Mardt et al. (2017).
The states are ordered such that the protein conformations associ-
ated to a given state are comparable in both models.

PROBABILITY PER STATE
I II III IV V VI

VAMPNETS 0.30 0.24 0.20 0.15 0.11 0.01

NEURALMJP 0.30 0.31 0.23 0.10 0.05 0.01

Figure 4. Alaine Dipeptide Protein six-state separation. For each
observation, the intensity of blue in subplot i = I, . . . , VI indi-
cates the posterior probability mass for state i at that observation.

angles of the two atom sequences (see e.g. Fig. 9 in the
Appendix). Projection to these angles reveal metastable
conformations of the protein, each containing several local
minima (Mironov et al., 2019).

While the conformations themselves have been studied ex-
tensively in the past (Hermans, 2011), their dynamics are
still inadequately understood. Trajectory analysis of MD
simulations is one typical approach to investigate the slow
dynamics, but is generally plagued with sampling problems,
specially when dealing with rare events (Chekmarev et al.,
2004; Trendelkamp-Schroer & Noé, 2016). In contrast,
constructing discrete-time Markov models from MD sim-
ulations to describe the slow, conformational dynamics of
simple molecules has proven a successful strategy in many
scenarios (Husic & Pande, 2018). Yet, discrete-time models
of inherently continuous-time dynamical systems neces-
sarily introduce a finite time scale, the so-called lag time
(i.e. the amount of time passing in between each step), which
is an extra hyperparameter that has to be chosen by hand,
and validated via secondary procedures. Such an arbitrary
discretization of time is rarely interpretable (McGibbon &
Pande, 2015), and the corresponding lag time has to be suf-
ficiently long to make the process Markovian, which lowers
the resolution of the model (Köhs et al., 2022).

A natural alternative is to assume that the conformational
dynamics of ADP is described by a hidden (continuos-time)
MJP. In this section we take this route and train NeuralMJP
on an all-atom MD simulation of ADP. This simulation
dataset was originally used by Wang et al. (2019) and was
made available to us via private communication (see the ac-
knowledgements below). Details about data preprocessing
and training procedures are provided in Appendix M.

Let us choose a six-state NeuralMJP to model the ADP
conformational dynamics. We compare our findings against

8

Neural Markov Jump Processes

those of three models: (i) the VAMPnets model of Mardt
et al. (2017), (ii) the GMVAE model of Varolgünes et al.
(2019), and (iii) the estimates provided by the trajectory
analysis of Trendelkamp-Schroer & Noé (2016).

Results. NeuralMJP automatically splits the Ramachandran
plot into the six regions shown in Figure 4. These states can
be identified with known metastable ADP conformations,
and are in good agreement with the states found by both
VAMPnets and GMVAE (Mardt et al., 2017; Varolgünes
et al., 2019).

From Table 4 we find that the asymptotic dynamics inferred
by our model, as measured by the stationary distribution,
is comparable to the stationary distribution of the hidden
Markov chain inferred by VAMPnets. Much of the probabil-
ity mass is concentrated on states I and II, which correspond
to low-energy regions of the Ramachandran plot. Also note
that the stationary probabilities for states V and VI are con-
siderably lower than those for the other states. Transitions to
these states represent the rare events of the ADP dynamics
(Trendelkamp-Schroer & Noé, 2016). Table 5 reports the
relaxation time scales characteristic of the ADP as inferred
by all models. Ours identifies time scales of three different
orders of magnitude. The fast time scales inferred by us
agree well with the fast time scales found by the baselines.
The longest relaxation time is however short, as compared
to what is extracted by the other models.

A similar pattern emerges with our mean first-passage time
estimates. These are gathered in Table 6. Our model predicts
more frequent transitions to the rare states V and VI, i.e. it
predicts faster first-passage times, as compared to e.g. the
60 ns estimate reported in Trendelkamp-Schroer & Noé
(2016). And yet for the more recurrent I⇔ IV transitions
the estimates of both approaches are quite similar. These
observations seem to indicate that NeuralMJP is biased
towards fitting faster time scales (see also Section 5.2 above
for similar findings).

All in all, our results show that NeuralMJP can correctly
describe the conformational dynamics of simple molecules,
without the need to introduce any artificial lag time scale.
We report additional results (as e.g. experiments with a
different number of hidden states, error bar estimations and
further analysis of the model) in Appendix M.

6. Conclusions
In this work we introduced a novel, neural-based variational
inference algorithm for MJP. The model leverages NVI and
NeuralODEs to encode, in an end-to-end fashion, noisy time
series data into the parameters defining the master equation
of the posterior MJP. We empirically demonstrated that
the model was able to successfully infer hidden MJP from
synthetic, experimental and MD simulation data.

Table 5. Relaxation time scales for six-state Markov models of
ADP. The time scales are ordered by size and reported in nanosec-
onds. VAMPnet results are taken from Mardt et al. (2017), GM-
VAE from Varolgünes et al. (2019) and MSM from Trendelkamp-
Schroer & Noé (2016).

RELAXATION TIME SCALES (IN ns)

VAMPNETS 0.008 0.009 0.055 0.065 1.920
GMVAE 0.003 0.003 0.033 0.065 1.430

MSM - - - - 1.490

NEURALMJP 0.009 0.009 0.043 0.069 0.774

Table 6. Mean first-passage times for six-state Markov models of
ADP. The row and column labels are the states identified in Figure
4. The entry of row i and column j represents the mean first-
passage time for transitions i→ j reported in nanoseconds.

τij I II III IV V VI

I 0. 0.028 0.290 0.107 13.727 15.864
II 0.032 0. 0.287 0.103 13.728 15.866

III 0.132 0.134 0. 0.063 13.729 15.859
IV 0.073 0.074 0.187 0. 13.706 15.844
V 0.917 0.913 1.055 0.932 0. 3.959

VI 0.804 0.800 0.952 0.824 2.563 0.

7. Limitations
The main limitation we find with NeuralMJP is its bias
towards better fitting the faster time scales of the empirical
data. We observed evidence of these when modelling both,
the switching ion channel data and the alanine dipeptide
MD simulation. We speculate that this bias might arise from
the KL evaluation, which favors larger transition rates. We
leave an analysis of this feature for future work.

8. Acknowledgement
This research has been funded by the Federal Ministry of
Education and Research of Germany and the state of North-
Rhine Westphalia as part of the Lamarr-Institute for Ma-
chine Learning and Artificial Intelligence (LAMARR22B).
We would like to thank Lukas Köhs for sharing the experi-
mental ion channel data with us. The actual experiment was
carried out by Kerri Kukovetz and Oliver Rauh, while work-
ing in the lab of Gerhard Thiel of TU Darmstadt. Similarly,
we would like to thank Nick Charron and Cecilia Clementi,
from the Theoretical and Computational Biophysics group
of the Freie Universität Berlin, for sharing the all-atom ala-
nine dipeptide simulation data with us. The simulation was
carried out by Christoph Wehmeyer while working in the
research group of Frank Noé of the Freie Universität Berlin.

9

Neural Markov Jump Processes

References
Ajdari, A. and Prost, J. Mouvement induit par un potentiel

périodique de basse symétrie: diélectrophorese pulsée.
Comptes rendus de l’Académie des sciences, 315(13):
1635–1639, 1992.

Asmussen, S., Nerman, O., and Olsson, M. Fitting phase-
type distributions via the EM algorithm. Scandinavian
Journal of Statistics, pp. 419–441, 1996.

Bengio, E., Bacon, P.-L., Pineau, J., and Precup, D. Condi-
tional computation in neural networks for faster models.
ArXiv preprint, abs/1511.06297, 2015.

Berman, A. and Plemmons, R. J. Nonnegative matrices in
the mathematical sciences. SIAM, 1994.

Billingsley, P. Statistical Inference for Markov Processes.
University of Chicago Press, 1961.

Bishop, C. M. and Nasrabadi, N. M. Pattern recognition
and machine learning, volume 4. Springer, 2006.

Bladt, M. and Sørensen, M. Statistical inference for dis-
cretely observed Markov jump processes. Journal of the
Royal Statistical Society: Series B (Statistical Methodol-
ogy), 67(3):395–410, 2005.

Boys, R. J., Wilkinson, D. J., and Kirkwood, T. B. Bayesian
inference for a discretely observed stochastic kinetic
model. Statistics and Computing, 18(2):125–135, 2008.

Chekmarev, D., Ishida, T., and Levy, R. M. Long-time
conformational transitions of alanine dipeptide in aque-
ous solution: Continuous and discrete-state kinetic mod-
els. Journal of Physical Chemistry B, 108:19487–19495,
2004.

Chen, R. T. Q. torchdiffeq, 2018.

Chen, R. T. Q., Amos, B., and Nickel, M. Neural Spatio-
Temporal Point Processes. In 9th International Con-
ference on Learning Representations. OpenReview.net,
2021.

Chen, T. Q., Rubanova, Y., Bettencourt, J., and Duvenaud,
D. Neural Ordinary Differential Equations. In Advances
in Neural Information Processing Systems 31, pp. 6572–
6583, 2018.

Cho, K., van Merriënboer, B., Bahdanau, D., and Bengio,
Y. On the Properties of Neural Machine Translation:
Encoder–Decoder Approaches. pp. 103–111. Association
for Computational Linguistics, 2014. doi: 10.3115/v1/
W14-4012.

Cohn, I. Mean Field Variational Approximations in
Continuous-Time Markov Processes. 2009.

Cohn, I., El-Hay, T., Friedman, N., and Kupferman, R.
Mean field variational approximation for continuous-time
Bayesian networks. The Journal of Machine Learning
Research, 11:2745–2783, 2010.

Crommelin, D. and Vanden-Eijnden, E. Fitting timeseries
by continuous-time Markov chains: A quadratic program-
ming approach. Journal of Computational Physics, 217
(2):782–805, 2006.

Du, N., Dai, H., Trivedi, R., Upadhyay, U., Gomez-
Rodriguez, M., and Song, L. Recurrent Marked Temporal
Point Processes: Embedding Event History to Vector. In
Proceedings of the 22nd ACM SIGKDD, pp. 1555–1564.
ACM, 2016. doi: 10.1145/2939672.2939875.

Durrett, R. Essentials of Stochastic Processes. 1999.

Elfving, G. Zur theorie der Markoffschen ketten. Acta Soc.
Finn. A, 2, 1937.

Fearnhead, P. and Sherlock, C. An exact Gibbs sampler for
the Markov-modulated Poisson process. Journal of the
Royal Statistical Society: Series B (Statistical Methodol-
ogy), 68(5):767–784, 2006.

Gardiner, C. W. Stochastic Methods: A Handbook for the
Natural and Social Sciences. 2009.

Gazzarrini, S., Kang, M., Epimashko, S., Van Etten, J. L.,
Dainty, J., Thiel, G., and Moroni, A. Chlorella virus
MT325 encodes water and potassium channels that inter-
act synergistically. Proceedings of the National Academy
of Sciences, 103(14):5355–5360, 2006.

Ghosh, A., Behl, H. S., Dupont, E., Torr, P. H. S., and Nam-
boodiri, V. STEER : Simple Temporal Regularization
For Neural ODE. In Advances in Neural Information
Processing Systems 33, 2020.

Gillespie, D. T. Exact Stochastic Simulation of Coupled
Chemical Reactions. The Journal of Physical Chemistry,
81:2340–2361, 1977.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A. C., and Bengio,
Y. Attention is All you Need. In Advances in Neural In-
formation Processing Systems 30, pp. 5998–6008, 2017.

Griffiths, R. B., Weng, C.-Y., and Langer, J. S. Relaxation
Times for Metastable States in the Mean-Field Model
of a Ferromagnet. Phys. Rev., 149:301–305, 1966. doi:
10.1103/PhysRev.149.301.

Hermans, J. The amino acid dipeptide: Small but still
influential after 50 years. Proceedings of the National
Academy of Sciences, 108:3095 – 3096, 2011.

10

Neural Markov Jump Processes

Hochreiter, S. and Schmidhuber, J. Long Short-Term Mem-
ory. Neural Computation, 9(8):1735–1780, 1997.

Huggins, J. H., Narasimhan, K., Saeedi, A., and Mans-
inghka, V. K. JUMP-Means: Small-Variance Asymp-
totics for Markov Jump Processes. In Proceedings of the
32nd International Conference on Machine Learning, vol-
ume 37 of JMLR Workshop and Conference Proceedings,
pp. 693–701. JMLR.org, 2015.

Husic, B. E. and Pande, V. S. Markov state models: From
an art to a science. Journal of the American Chemical
Society, 140(7):2386–2396, 2018.

Huszár, F. Variational inference using implicit distributions.
arXiv preprint arXiv:1702.08235, 2017.

Jang, E., Gu, S., and Poole, B. Categorical Reparameteri-
zation with Gumbel-Softmax. In 5th International Con-
ference on Learning Representations. OpenReview.net,
2017.

Jia, J. and Benson, A. R. Neural Jump Stochastic Differ-
ential Equations. In Advances in Neural Information
Processing Systems 32, pp. 9843–9854, 2019.

Kaiser, L., Bengio, S., Roy, A., Vaswani, A., Parmar, N.,
Uszkoreit, J., and Shazeer, N. Fast Decoding in Sequence
Models Using Discrete Latent Variables. In Proceed-
ings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learn-
ing Research, pp. 2395–2404. PMLR, 2018.

Kidger, P. On Neural Differential Equations. PhD thesis,
University of Oxford, 2021.

Kimura, M. A simple method for estimating evolutionary
rates of base substitutions through comparative studies of
nucleotide sequences. Journal of molecular evolution, 16
(2):111–120, 1980.

Kingma, D. P. and Ba, J. Adam: A Method for Stochas-
tic Optimization. In 3rd International Conference on
Learning Representations, 2015.

Kingma, D. P. and Welling, M. Auto-Encoding Variational
Bayes. In 2nd International Conference on Learning
Representations, 2014.

Köhs, L., Alt, B., and Koeppl, H. Variational Inference
for Continuous-Time Switching Dynamical Systems. In
Advances in Neural Information Processing Systems 34,
pp. 20545–20557, 2021.

Köhs, L., Kukovetz, K., Rauh, O., and Koeppl, H. Nonpara-
metric Bayesian inference for meta-stable conformational
dynamics. Physical Biology, 19, 2022.

Kullback, S. and Leibler, R. A. On Information and Suf-
ficiency. The Annals of Mathematical Statistics, 22(1):
79–86, 1951.

Madsen, H., Spliid, H., and Thyregod, P. Markov Models
in Discrete and Continuous Time for Hourly Observa-
tions of Cloud Cover. Journal of Applied Meteorology
and Climatology, 24(7):629 – 639, 1985. doi: 10.1175/
1520-0450(1985)024⟨0629:MMIDAC⟩2.0.CO;2.

Mardt, A., Pasquali, L., Wu, H., and Noé, F. VAMPnets for
deep learning of molecular kinetics. Nature Communica-
tions, 9, 2017.

McGibbon, R. T. and Pande, V. S. Efficient maximum like-
lihood parameterization of continuous-time Markov pro-
cesses. The Journal of chemical physics, 143(3):034109,
2015.

Mei, H. and Eisner, J. The Neural Hawkes Process: A
Neurally Self-Modulating Multivariate Point Process. In
Advances in Neural Information Processing Systems 30,
pp. 6754–6764, 2017.

Metzner, P., Horenko, I., and Schütte, C. Generator esti-
mation of Markov jump processes based on incomplete
observations nonequidistant in time. Phys. Rev. E, 76:
066702, 2007.

Mironov, V., Alexeev, Y., Mulligan, V. K., and Fedorov,
D. G. A systematic study of minima in alanine dipep-
tide. Journal of Computational Chemistry, 40(2):297–
309, 2019.

Mohamed, S. and Lakshminarayanan, B. Learn-
ing in implicit generative models. arXiv preprint
arXiv:1610.03483, 2016.

Ojeda, C., Cvejoski, K., Georgiev, B., Bauckhage, C.,
Schuecker, J., and Sánchez, R. J. Learning Deep Gen-
erative Models for Queuing Systems. In Thirty-Fifth
AAAI Conference on Artificial Intelligence, pp. 9214–
9222. AAAI Press, 2021a.

Ojeda, C., Georgiev, B., Cvejoski, K., Schucker, J., Bauck-
hage, C., and Sánchez, R. J. Switching dynamical systems
with deep neural networks. In 25th International Con-
ference on Pattern Recognition (ICPR), pp. 6305–6312.
IEEE, 2021b.

Opper, M. and Sanguinetti, G. Variational inference for
Markov jump processes. In Advances in Neural Infor-
mation Processing Systems 20, pp. 1105–1112. Curran
Associates, Inc., 2007.

Ramachandran, G. N., Ramakrishnan, C., and Sasisekharan,
V. Stereochemistry of polypeptide chain configurations.
Journal of molecular biology, 7:95–9, 1963.

11

Neural Markov Jump Processes

Rao, V. and Teg, Y. W. Fast MCMC Sampling for Markov
Jump Processes and Extensions. Journal of Machine
Learning Research, 14(11), 2013.

Rauh, O., Urban, M., Henkes, L. M., Winterstein, T.,
Greiner, T., Van Etten, J. L., Moroni, A., Kast, S. M.,
Thiel, G., and Schroeder, I. Identification of intrahelical
bifurcated h-bonds as a new type of gate in k+ channels.
Journal of the American Chemical Society, 139(22):7494–
7503, 2017.

Rauh, O., Hansen, U., Scheub, D., Thiel, G., and Schroeder,
I. Site-specific ion occupation in the selectivity filter
causes voltage-dependent gating in a viral k+ channel.
Scientific Reports, 8(1):10406, 2018.

Rezende, D. J., Mohamed, S., and Wierstra, D. Stochas-
tic Backpropagation and Approximate Inference in Deep
Generative Models. In Proceedings of the 31th Interna-
tional Conference on Machine Learning, volume 32 of
JMLR Workshop and Conference Proceedings, pp. 1278–
1286. JMLR.org, 2014.

Roldán, É. and Parrondo, J. M. R. Estimating dissipation
from single stationary trajectories. Physical review letters,
105 15:150607, 2010.

Rossky, P. J. and Karplus, M. Solvation. a molecular dynam-
ics study of a dipeptide in water. Journal of the American
Chemical Society, 101(8):1913–1937, 1979.

Rubanova, Y., Chen, T. Q., and Duvenaud, D. Latent Ordi-
nary Differential Equations for Irregularly-Sampled Time
Series. In Advances in Neural Information Processing
Systems 32, pp. 5321–5331, 2019.

Schwab, P., Miladinovic, D., and Karlen, W. Granger-
Causal Attentive Mixtures of Experts: Learning Impor-
tant Features with Neural Networks. In Thirty-Third AAAI
Conference on Artificial Intelligence, pp. 4846–4853.
AAAI Press, 2019. doi: 10.1609/aaai.v33i01.33014846.

Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le,
Q. V., Hinton, G. E., and Dean, J. Outrageously
Large Neural Networks: The Sparsely-Gated Mixture-
of-Experts Layer. In 5th International Conference on
Learning Representations. OpenReview.net, 2017.

Singer, B. and Spilerman, S. The representation of social
processes by Markov models. American journal of soci-
ology, 82(1):1–54, 1976.

Tolver, A. An Introduction to Markov Chains, 2016.

Trendelkamp-Schroer, B. and Noé, F. Efficient estimation
of rare-event kinetics. Physical Review X, 6(1):011009,
2016.

Turner, C. M., Startz, R., and Nelson, C. R. A Markov model
of heteroskedasticity, risk, and learning in the stock mar-
ket. Journal of Financial Economics, 25(1):3–22, 1989.
doi: https://doi.org/10.1016/0304-405X(89)90094-9.

Varolgünes, Y. B., Bereau, T., and Rudzinski, J. F. In-
terpretable embeddings from molecular simulations us-
ing Gaussian mixture variational autoencoders. Machine
Learning: Science and Technology, 1, 2019.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Wang, J., Olsson, S., Wehmeyer, C., Pérez, A., Charron,
N. E., De Fabritiis, G., Noé, F., and Clementi, C. Ma-
chine learning of coarse-grained molecular dynamics
force fields. ACS central science, 5(5):755–767, 2019.

Wildner, C. and Koeppl, H. Moment-Based Variational
Inference for Markov Jump Processes. In Proceedings of
the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research,
pp. 6766–6775. PMLR, 2019.

Xu, D., Ruan, C., Körpeoglu, E., Kumar, S., and Achan,
K. Self-attention with Functional Time Representation
Learning. In Advances in Neural Information Processing
Systems 32, pp. 15889–15899, 2019.

Yin, M. and Zhou, M. Semi-implicit variational inference.
In International Conference on Machine Learning, pp.
5660–5669. PMLR, 2018.

Zhang, B., Pan, J., and Rao, V. A. Collapsed variational
Bayes for Markov jump processes. In Advances in Neu-
ral Information Processing Systems 30, pp. 3749–3757,
2017.

12

Neural Markov Jump Processes

A. Derivation of Master Equation
We roughly follow Gardiner (2009) for the derivation of the master equation.

Given some stochastic process {Z(t) : t ∈ R+} taking values on some countable (and possibly unbounded) set Z , the
Markov property states that the conditional probability of observing any future state of the process depends entirely on its
current state.

Thus the probability of observing Z(t) = x, given that Z(t′) = y and Z(t′′) = z, with t ≥ t′ ≥ t′′, is given by

p(x, t|y, t′; z, t′′) = p(x, t|y, t′).

The instantaneous probability rate of transitioning from state z′ ∈ Z to any other state z ̸= z′ ∈ Z at t ∈ R+ is defined as

f(z | z′, t) = lim
∆t→0

1

∆t
p(z, t+∆t|z′, t). (6)

The forward master equation describes how the conditional probabilities of Z evolve with time. This evolution is
completely described by the instantaneous probability rates:

∂tp(x, t) = lim
∆t→0

1

∆t
[p(x, t+∆t)− p(x, t)]

= lim
∆t→0

1

∆t

[∑
z

p(x, t+∆t|z, t)p(z, t)− p(x, t)

]

= lim
∆t→0

1

∆t

∑
z ̸=x

p(x, t+∆t|z, t)p(z, t)− (1− p(x, t+∆t|x, t)) p(x, t)

= lim

∆t→0

1

∆t

∑
z ̸=x

p(x, t+∆t|z, t)p(z, t)−

∑
z ̸=x

p(z, t+∆t|x, t)

 p(x, t)

=
∑
z ̸=x

[f(x|z, t)p(z, t)− f(z|x, t)p(x, t)] (7)

Note that we used the law of total probability in the second and fourth line above.

Moreover, if Z is finite, the master equation 7 can be written in matrix form. Let p(t) = (p(x, t))x∈Z be the vector
containing the time-dependent probabilities over the states in Z and ṗ(t) its time derivative. Then we can define the rate
matrix or Q-matrix F(t) ∈ R|Z|×|Z| by

Fzx(t) =

{
−
∑
z′ ̸=x f(z

′|x, t) if x = z

f(x|z, t), otherwise.

and express the forward master equation by
ṗ(t) = p(t) · F(t).

B. On Stationary Distribution, Relaxation Times and Mean First-Passage Times of MJPs
A MJP with time-independent transition rates is called homogeneous. Let Z be the finite state space of a homogeneous
MJP Z with transition rates f and let F be the associated (time-independent) rate matrix.

Stationary Distribution: A probability distribution p∗ on Z is called a stationary distribution of Z, if p∗ · F = 0. Put
differently, a stationary distribution is a left eigenvector of F with eigenvalue 0, that is also a probability distribution. If Z is
irreducible, roughly meaning all states are connected, there exists a unique stationary distribution p∗. Moreover, Z will
converge to p∗ from any initial distribution. See (Tolver, 2016) for a detailed derivation of these results.

13

Neural Markov Jump Processes

We find that the learned prior MJPs in our experiments are irreducible and will therefore converge to their stationary
distribution in the long-term. However, short-term predictions with the prior MJP still significantly depend on the observed
time series.

Relaxation Time: Let λ2, λ3, . . . , λ|Z| be the non-zero eigenvalues of F. The time scales of the MJP are defined as

|Reλ2|−1
, |Reλ3|−1

, . . . ,
∣∣Reλ|Z|

∣∣−1
. They are exponential rates of decay that determine convergence from any state of

the process to its stationary distribution.

The long-term convergence behaviour is dominated by the largest time scale, which is known as the relaxation time of the
process.

Mean First-Passage Times: Suppose Z(0) = i ∈ Z , then the first-passage time to state j ∈ Z is defined as

Tij = inf{t ≥ 0 : Z(t) = j | Z(0) = i}

and the associated mean first-passage time as

τij = E[Tj | Z(0) = i] .

One can show that for finite state, time-homogeneous MJP, mean first-passage times are the solutions of |Z| systems of
equations: {

τii = 0

1 +
∑
k Fikτkj = 0 , j ̸= i

See Section 4.4 of (Durrett, 1999) for a derivation of this result.

C. Implicit vs Explicit Parametrization of The Prior Transition Rates
During early development of NeuralMJP, we treated the entries of the prior transition matrix as trainable parameters. One of
the main empirical observations we made was that, during training, their values changed very slowly, and eventually got
stuck in different regions of parameter space. We provide an example of this behaviour in Figure 5, for the α parameters of
the Lotka-Volterra process (see Appendix L for details).

Key here is that the location of these regions was strongly dependent on the parameters’ initialization values. Assuming no
prior knowledge about the scale of the entries of the (prior) transition matrix, as is the case in both the experimental ion
channel data and the molecular dynamics simulation, one cannot but choose the initialization values randomly, which led to
inconsistencies in the inferred rates.

We speculate that the reason behind the slow dynamics of the prior parameters was the magnitude of the gradient signals,
which directly modified their values. Opposite to the simple trainable parameters, a generator network can leverage weak
gradient signals to produce large changes in its output values, as to better fit the posterior rates. We found in practice that
this was indeed the case.

0 5000 10000 15000 20000

Training Step

2

4

6

8

α

×10−4

Ground Truth

Run 1

Run 2

Figure 5. Evolution of the Lotka-Volterra trainable parameter α during training of NeuralMJP for two random initializations. Given that
the prior parameters are learned separately from the rest (see Algorithm 1), α is learned only later in training and thus constant at the
beginning. The gap in α of the two runs is not consistently closed and remains significant throughout training.

14

Neural Markov Jump Processes

D. Derivation of Variational Bound
In this section we derive Eq. 5, a variational lower bound on the logarithm of the marginal likelihood of the data and the
objective of NeuralMJP. This bound was already used by Opper & Sanguinetti (2007) for their expectation-maximization
approach. See (Cohn, 2009) for a similar derivation of this bound.

We drop the dependence on parameters ψ, ϕ from the subscripts and the dependency of posterior transition rates g on the
observations for a less cluttered derivation.

Consider observations x0, . . . ,xN recorded at observation times 0 ≤ t̃0 < · · · < t̃N ≤ T . Let t0:K be a discretization
0 = t0 < t1 < · · · < tK = T of the interval [0, T] such that ∆tk = tk+1 − tk is small and bounded from above by some
∆t > 0. Moreover, assume that, without loss of generality, observation times t̃i are part of the discretization, so there exists
a map m : {0, . . . , N} −→ {0, . . . ,K} such that t̃i = tm(i). Let z0:K denote a trajectory of latent states recorded at the
discretization grid and

∑
z0:K

the sum over all such trajectories.

By the assumptions on the generative model and Jensen’s inequality, we have

log p(x0, x1, . . . ,xN) = log

(∑
z0:K

q(z0:K , t0:K)p(z0:K , t0:K)p(x0,x1, . . . ,xN | z0:K , t0:K)

q(z0:K , t0:K)

)

≥
N∑
i=0

Eq(z,tm(i))[log p(xi | zm(i))]− KLdiscr[q(z0:K , t0:K)∥p(z0:K , t0:K)] (8)

with

KLdiscr[q(z0:K , t0:K)∥p(z0:K , t0:K)] =
∑
z0:K

q(z0:K , t0:K) log
q(z0:K , t0:K)

p(z0:K , t0:K)
.

Note that the first summand of Eq. 8, referred to as the reconstruction cost, already appears in Eq. 5, using the notation
z(t̃i) = zm(i).

We now focus on the second summand. Because of the Markov property, we can factorize prior and posterior probabilities
in KLdiscr[q(z0:K , t0:K)∥p(z0:K , t0:K)]. After rearranging some terms, each summand is independent of future trajectories,
simplifying the expression.

KLdiscr[q(z0:K , t0:K)∥p(z0:K , t0:K)]

=
∑
z0:K

q(z0, t0)q(z1, t1 | z0, t0) . . . q(zK , tK | zK−1, tK−1) log
q(z0, t0)q(z1, t1 | z0, t0) . . . q(zK , tK | zK−1, tK−1)

p(z0, t0)p(z1, t1 | z0, t0) . . . p(zK , tK | zK−1, tK−1)

=
∑
z0

q(z0) log
p(z0)

q(z0)
+

K−1∑
k=0

∑
zk

q(zk, tk)
∑
zk+1

q(zk+1, tk+1 | zk, tk) log
q(zk+1, tk+1 | zk, tk)
p(zk+1, tk+1 | zk, tk)

=
∑
z0

q(z0) log
p(z0)

q(z0)
+

K−1∑
k=0

∆tk
∑
z

∑
z′

q(z, tk)q(z
′, tk+1 | z, tk)
∆tk

log
q(z′, tk+1 | z, tk)
p(z′, tk+1 | z, tk)

(9)

In the last equation, we changed the notation in preparation of the limit ∆tk → 0 and the Riemann integral below.

We consider the summands of Eq. 9 individually.

Following Opper & Sanguinetti (2007), our model does not include a prior for the initial condition, hence the first summand
vanishes.

For the other summand, we first consider the case of z′ ̸= z. Recall that by Eq. 6 and the time-homogeneous prior, we have

q(z′, tk+1 | z, tk) = g(z′ | z, tk)∆tk + o(∆tk)

p(z′, tk+1 | z, tk) = f(z′ | z)∆tk + o(∆tk)

15

Neural Markov Jump Processes

for small ∆tk. Therefore:

q(z, tk)q(z
′, tk+1 | z, tk)
∆tk

log
q(z′, tk+1 | z, tk)
p(z′, tk+1 | z, tk)

=q(z, tk)

[
g(z′ | z, tk) +

o(∆tk)

∆tk

]
log

g(z′ | z, tk) + o(∆tk)
∆tk

f(z′ | z) + o(∆tk)
∆tk

∆tk→0−→ q(z, tk)g(z
′ | z, tk) log

g(z′ | z, tk)
f(z′ | z)

(10)

We now consider the case of z′ = z, where we use the approximation log(1 + y) = y + o(y) for small y. By the law of
total probability we can express q(z, tk+1 | z, tk) as

q(z, tk+1 | z, tk) = 1−
∑
z′ ̸=z

q(z′, tk+1 | z, tk)

= 1−∆tk
∑
z′ ̸=z

g(z′ | z, tk)− o(∆tk)

and similarly p(z, tk+1 | z, tk). Therefore:

q(z, tk)q(z, tk+1 | z, tk)
∆tk

log
q(z, tk+1 | z, tk)
p(z, tk+1 | z, tk)

=q(z, tk)

1−∆tk
∑
z′ ̸=z

g(z′ | z, tk)− o(∆tk)

−∑
z′ ̸=z

g(z′ | z, t) +
∑
z′ ̸=z

f(z′ | z) + o(∆tk)

∆tk

∆tk→0−→ q(z, tk)

∑
z′ ̸=z

f(z′ | z)− g(z′ | z, tk)

 (11)

Finally, taking the limit ∆t→ 0 and combining Eq. 8 with 10 and 11 yields the variational bound

log p(x0, x1, . . . ,xN) ≥
N∑
i=0

Eq(z,t̃i)[log p(xi | z(t̃i))]−
∫ T

0

dtEq(z,t)
∑
z′ ̸=z

{
f(z′ | z)− g(z′ | z, t) + g(z′ | z, t) log g(z

′ | z, t)
f(z′ | z)

}
.

E. Two-Step Optimization Scheme
We describe the training scheme for our implementation of NeuralMJP in Algorithm 1. Notably, we employ a two-step
update approach that trains the encoder-decoder pair and prior parameters separately.

In principle, one can train the encoder-decoder pair together with the prior parameters in a single back-propagation step.
However, we have found empirically that the KL regularization had a smoothing effect on the inferred, time-dependent
(i.e. inhomogeneous) posterior rates. This effect generally led the model to underestimate the time-independent (i.e.
homogeneous) transition rates in the ground-truth experiments and, in some cases, it even led to mode collapse.

By construction, the posterior process is restricted to be an inhomogeneous MJP, even without the KL regularization.
Simultaneously updating the encoder-decoder pair while keeping the prior components fixed, and only updating the latter at
a second step, allowed us to find the best inhomogeneous MJPs fitting the data. Thus the main purpose of the isolated KL
term is to drive the prior towards homogeneous MJPs that best fit the optimal, inhomogeneous posterior process.

In practice we found this two-step update approach to yield excellent results with respect to the ground-truth processes, as
compared to the baselines.

16

Neural Markov Jump Processes

F. Training Instabilities And Index Collapse
In experiments with gaussian emission models, NeuralMJP can exhibit behaviour comparable to index collapse (Bengio
et al., 2015; Shazeer et al., 2017; Kaiser et al., 2018; Schwab et al., 2019; Ojeda et al., 2021b). The posterior MJP of such
models never assigns any probability mass to some states.

This defect affects the time series reconstructions of these models, which gets partially compensated by larger learned
covariances in the emission model. However, its effect on the posterior rates extends to the prior rates, which can not be
compensated.

In our experiments, we chose the number of latent states intentionally, either to recover some ground-truth or to compare
with the results of other papers. Therefore, we want to avoid index collapse in our experiments and use two schedulers to
counteract this behaviour.

The first scheduler is directly connected to the gaussian emission models. At the start of training, we fix the covariance to a
constant, diagonal covariance matrix and only learn the gaussian mean. Only after the model has arranged the latent states
and their corresponding mean reconstruction, we start learning the covariance matrix.

The second scheduler is connected to the latent dynamics and is inspired by a remark from Kidger (2021). At the beginning
of training, randomly initialized posterior rates do not represent the observed dynamics well. This can lead the model
towards local minima, where the latent space is not suitably arranged.

Therefore, we only train on the first 10 observations of each time series for the first 3000 batches. Afterwards, the number of
observations is annealed to the full time series over a period of 5000 batches. For the Alanine Dipeptide Protein dataset, we
increased this period to 10000 batches.

In our experiments, the combination of these schedulers reduced the occurrence of index collapse noticeably.

G. How to Sample Markov Jump Processes Trajectories?
The algorithm for sampling trajectories of homogeneous MJPs is due to Gillespie (1977). Here we recall a derivation of the
algorithm for convenience.

Let Z be a homogeneous MJP with finite state space Z and time-independent transition rates f . Assume Z is at state y ∈ Z
at time t, so Z(t) = y, and f(z | y) ̸= 0 for at least one z ∈ Z .

To sample a trajectory of Z starting at t, it is enough to repeatedly sample a single transition, because of the Markov property.
Moreover, to sample the transition of Z away from y, it is enough to sample the arrival time of the next transition and the
corresponding state transition.

Let T (y, t) ≥ t be the time of the next transition of Z, given Z(t) = y. To find the distribution of T (y, t), consider
Q(y, t, t+ τ) = P[T (y, t) ≥ t+ τ] for some τ ≥ 0.

By construction of the transition rates f (Eq. 6), we have

p(z, τ +∆t | y, τ) = f(z | y)∆t+ o(∆t)

for z ̸= y and small ∆t. Hence, the following transformations are valid:

Q(y, t+ τ, t+ τ +∆t) =
∏
z ̸=y

P[No transition from y to z in [t+ τ, t+ τ +∆t]]

=
∏
z ̸=y

(1− p(z, t+ τ +∆t | y, t+ τ))

=
∏
z ̸=y

(1− f(z | y)∆t+ o(∆t))

= 1−
∑
z ̸=y

f(z | y)∆t+ o(∆t)

17

Neural Markov Jump Processes

Therefore,

Q(y, t, t+ τ +∆t) = Q(y, t, t+ τ)Q(y, τ, t+ τ +∆t)

= Q(y, t, τ)(1−
∑
z ̸=y

f(z | y)∆t+ o(∆t))

and after some rearranging and ∆t→ 0,

∂τQ(y, t, t+ τ) = −
∑
z ̸=y

f(z | y)Q(y, t, t+ τ)

With the assumptions from above we have Q(y, t, t) = 1. Solving the initial value problem yields

Q(y, t, t+ τ) = e−
∑

z ̸=y f(z|y)τ

and hence

P[T (y, t) = τ] = ∂τ [1− P[T (y, t) ≥ τ]]

=
∑
z ̸=y

f(z | y)e−
∑

z ̸=y f(z|y)τ

So T (y, t) is exponentially distributed on values [t,∞) with rate λ =
∑
z ̸=y f(z | y) and can be sampled efficiently.

Also following Eq. 6, the probability of transitioning from y to x must be

f(x | y)∑
z ̸=y f(z | y)

. (12)

Thus, sampling one transition of a MJP at state y at time t requires sampling a exponentially distributed waiting time from
Exp(λ) and distribution 12 over Z \ {y}.

Note that this algorithm also applies to MJPs with countable state space Z , if for every z ∈ Z only finitely many transition
rates f(y | z) are non-zero, like in the Lotka-Volterra process (see Appendix L for details).

Furthermore, this sampling algorithm implies that MJP trajectories are right-continuous and piecewise-constant.

H. Reproducibility and Experiments
H.1. Dataloading

Because of data generation and pre-processing, all time series in train, test and validation sets of a given dataset are of the
same length. Each observation is comprised of a observation time and a observation value. We enrich them by the time
difference to the subsequent observation. For the last observation of each time series, his information is missing, so we drop
it during dataloading.

H.2. Architectures and Hyperparameters

The network architectures described below are kept constant across all experiments, apart from the LV single time series
dataset, where we reduced the MLPs to a single hidden layer of size 64.

We fix the dimension H of hT to 256 in all experiments, apart from the LV single time series dataset, where it is set to 64.

MLPs of the ODE-RNN and the posterior process Ψθ consist of hidden layers [256, 256] and [256, 256, 128] respectively,
have Tanh activation functions and are initialized with zero bias and weights sampled from N (0, 0.01). The MLP Λϕ has
hidden layers [128, 128] with ReLU activation functions and is initialized with Kaiming initialization. If the emission model
contains a MLP, it has hidden layers [128, 128], ReLU activation functions and is initialized with zero bias and weights
sampled from N (0, 0.01).

The MLP for the generative prior Φθ consist of one layer of width 64 with ReLU activation function and is initialized with
Kaiming initialization. Its input is a 64-dimensional sample from N (0, 0.01).

We use layer normalization and dropout of 0.2 for all MLPs.

18

Neural Markov Jump Processes

H.3. NeuralODEs: Additional Details

We use the torchdiffeq python package (Chen, 2018) to solve all NeuralODEs in our model. The ODE-RNN is solved
with the Runge-Kutta method. The posterior master equation is solved with the adaptive step Dormand-Prince method and
tolerances of 0.001. For faster training on the ADP dataset, we set the tolerances to 0.01 for these experiments.

To handle batches of irregular time series, we apply the technique described in Appendix F of (Chen et al., 2021).

We use STEER from (Ghosh et al., 2020) to regularize the ODE-RNN.

H.4. On The Variational Posterior Process

The posterior transition rates gϕ are time-dependent. We use Mercer a embedding (Xu et al., 2019) of t with 10 frequencies
and 20 Fourier coefficients as the time component of the input of Ψϕ, the MLP for gϕ.

Note that the Mercer embedding is not an integral part of our model. We found anecdotally that their addition leads to
marginal improvements in the learned dynamics, but do not change the results fundamentally.

The marginal posterior distribution at observation times are sampled with the Gumbel-Softmax estimator from (Jang et al.,
2017) with a sampling temperature of 1.

H.5. Numerical Approximation of the Kullback-Leibler Divergence

We approximate the integration of the Kullback-Leibler divergence in Eq. 5 by Gaussian quadrature with 200 points.

Alternatively, it could be approximated by augmenting the dynamics of the posterior master equation with the integrand of
the Kullback-Leibler divergence. In practice, we found this method to be much slower without providing noticeable benefits.

Finally, we tried approximating the KL with Tanh-Sinh quadrature. Its main advantage over Gaussian quadrature is the
progressive use of integrand evaluations when lowering the stepsize. We can not take advantage of this property, because
any additional integrand evaluation requires solving the posterior master equation, which is computationally expensive.

H.6. Optimizers

We use the Adam optimizer and apply gradient clipping with global norm 1 for all experiments. However, learning rate and
possible learning rate annealing depend on the specific experiments.

For the single LV time series and the Two-Mode Hybrid System we use a learning rate of 0.001.

For LV, DFR and ADP data we use a learning rate of 0.001, annealed by a factor of 0.8 every 50 epochs.

For Simple Protein Folding Model and Switching Ion Channel Data we use a learning rate of 0.0001, with an annealing of
0.8 every 100 and 200 epochs respectively.

In experiments with the Switching Ion Channel Data we found that the generative prior does not converge fast enough with
this annealing schedule. Hence, we use a separate optimizer only for the corresponding MLP with constant learning rate
0.0005.

H.7. Metrics

To compare RMSE between test and prediction sets, we use the following RMSE for multivariate time series.

Assume there are N time series of length T in D dimensional space. Let xijk be the observed k-th dimension of observation
j of the i-th time series. Let x̂ijk be the prediction of xijk. Then we define:

RMSE =

√√√√ 1

NT

N∑
i=1

T∑
j=1

D∑
k=1

(x̂ijk − xijk)2

19

Neural Markov Jump Processes

Next, we consider the RMSE of the prediction at a specific step j of all N time series:

RMSEj =

√√√√ 1

N

N∑
i=1

D∑
k=1

(x̂ijk − xijk)2

Note that this is the above formula with T = 0.

To evaluate the capabilities on the first m steps we compute the mean RMSE of the first m predictions:

1

m

m∑
j=1

RMSEj

I. Training times and resource consumption
We summarize the training times for all experiments in Table 7. Some models only only after several days of training, despite
loose tolerances. Presumably, more modern NeuralODE implementations like diffrax (Kidger, 2021) speed up training of
our model significantly. However, note that these training times are on the same scale as those of other NeuralODE based
models.

Each experiment was performed on a single NVIDIA GeForce GTX 1080 Ti.

I.1. Computational Complexity

The structure of NeuralMJP, a combination of a backward in time ODE-RNN encoding and a forward in time NeuralODE
solve, is the structure of LatentODE (Rubanova et al., 2019). Thus, the computational complexity of NeuralMJP and
LatentODE is equivalent. Like the ODE-Net (Chen et al., 2018), it scales linearly with the number of function evaluations of
the ODE solvers in the forward pass of the model.

In our implementation of NeuralMJP, the master equation is solved with an adaptive step solver. The number of steps it
takes depends on the complexity of the underlying dynamics.

Table 7. Training times for selected runs of all NeuralMJP experiments, including the number of datapoints in their training data.

DATA EXPERIMENT NUMBER OF DATAPOINTS ×103 TRAINING TIME (HOURS)

DFR

IRREGULAR GRID 224 41.3
SHARED GRID 224 22.5

REGULAR GRID 224 31.2
SINGLE TIME SERIES 0.016 36.61

ION CHANNEL
ONE-SECOND WINDOW 5 21.5

FULL DATASET 162.6 22.0

LV
IRREGULAR GRID 224 33.1

SHARED GRID 224 19.5
REGULAR GRID 224 19.0

ADP
SIX STATES 896 48.1

THREE STATES 896 20.6
TWO STATES 896 19.4

SIMPLE PROTEIN FOLDING MODEL 89.6 26.8

TWO-MODE HYBRID SYSTEM 0.067 26.3

20

Neural Markov Jump Processes

J. Discrete Flashing Ratchet
J.1. Data Description and Pre-Processing

The Discrete Flashing Ratchet (DFR) process (Roldán & Parrondo, 2010) is a MJP that models the position of a particle
in a termal bath of temperature T subject to a periodic, asymmetric potential. The particle can attain states 0, 1 or 2. The
potential can be ON or OFF, yielding six possible states for the MJP. The transition rates of the DFR process are (Roldán &
Parrondo, 2010)

f(j,ON | i,ON) = exp

(
−βV

2
(j − i)

)
for i ̸= j,

f(j,OFF | i,OFF) = b, for i ̸= j,

f(i,OFF | i,ON) = f(i,ON | i,OFF) = r,

where β = 1
T and V , r and b are parameters of the model.

We sample trajectories of DFR with parameters T = 1, V = 1, r = 1 and b = 1 and a time window of [0, 2.5]. Initial states
are sampled from the stationary distribution of the process:

p(0,ON) = 0.3012 p(1,ON) = 0.1365 p(2,ON) = 0.0623

p(0,OFF) = 0.2003 p(1,OFF) = 0.1591 p(2,OFF) = 0.1406

We sample 5000 trajectories of DFR with the algorithm described in Appendix G and observe them at three observation time
grids of length 50. For the IRREGULAR GRID dataset, the observation times for every time series are sampled uniformly in
a given time window. For the SHARED GRID dataset, observation times are sampled uniformly in a given time window, and
then used as a time series for all trajectories. Finally, for the REGULAR GRID dataset, all time series have a fixed, regular
grid with equidistant observation times. We do not add noise to the observed states, treat them as categorical observations
and load them as one-hot vectors.

Out of the 5000 time series, we use 70 batches of size 64 for training and leave the remaining time series for test and
validation. During training, we normalize observation times to lie in [0, 1].

We simulate 100 additional trajectories on a time window twice as long as above for prediction. The first half of each
trajectory is treated as another test set and observed on the same grid as the training data. The second half is also observed at
50 observation times on the same type of grid. Thus, each time series in the prediction set is of length 100.

J.2. Modelling and Results

We trained NeuralMJP with a six-state, unconstrained posterior MJP, meaning transitions between all states are possible.
The prior is constrained to a DFR process and parametrized as above. On the IRREGULAR GRID dataset, we additionally
trained a NeuralMJP, in which the posterior MJP is constrained to transitions which are possible in the prior process.

In the absence of noise, we train these NeuralMJPs without an emission model and use cross-entropy as reconstruction loss.
We summarize our results in Table 8. Constraining the posterior MJP reduces the KL loss, but the inferred parameters are
slightly more inaccurate.

Table 8. DFR parameters learned by NeuralMJP on multiple datasets with different observation grids. Additionally, KL divergence and
reconstruction loss on the test set. Last row contains the results on IRREGULAR GRID DATA with constrained posterior process. Values
are reported with mean and standard deviation of 5 runs of NeuralMJP with different initializations.

KL NLL V r b

GROUND TRUTH - - 1.00 1.00 1.00

IRREGULAR GRID DATA 20.0± 1.1 0.21± 0.01 0.98± 0.05 1.11± 0.06 1.13± 0.04
SHARED GRID DATA 18.7± 0.5 0.14± 0.01 0.95± 0.03 1.18± 0.04 1.14± 0.06

REGULAR GRID DATA 21.8± 0.7 0.18± 0.02 1.00± 0.05 1.37± 0.05 1.36± 0.05
MASKED POSTERIOR RATES 17.1± 0.4 0.22± 0.01 0.99± 0.02 1.18± 0.04 1.16± 0.03

21

Neural Markov Jump Processes

0.00 0.02 0.04 0.06

Time [s]

0

2

4

6

8

R
M

S
E

[1
0
−

1
2

]

0.00 0.01 0.02

Time [s]

1

2

R
M

S
E

[1
0
−

1
2

]

NeuralMJP

Köhs et al., 2021

Figure 6. Comparison of prediction capabilities of models trained on Switching Ion Channel data. Left: RMSE on observations after
training set. Right: 25 time series extracted from training period. Posterior from (Köhs et al., 2021) was extracted approximately from
their Figure 4.

K. Switching Ion Channel Data
K.1. Data Description and Pre-Processing

The ion permeability of the vial potassium channel KcvMT325 is experimentally measured by applying a voltage drop across
the cell membrane and recording the ion flow. The current has been measured with a frequency of 5 kHz and a voltage of
140 mV for a total of 34.323 seconds or 171615 observations.

Köhs et al. (2021) consider the one-second time window from observation 9200 to 14200. We cut this time window into 50
time series of length 100, create 5 batches of size 10 and use all of them for training. Additional test and validation time
series of length 100 are taken from parts of the trajectory outside of this time window.

The observation time for the first observation in each time series is set to 0 and subsequent observation times are adjusted
accordingly, retaining the measurement frequency from the original trajectory.

The time series for prediction includes observations from 14100 to 14500, where the first 100 observations are used to infer
the posterior distribution at observation 14200.

We also experiment with the full dataset. After removing a burn-in time of 5000 observations from the start of the
measurements, we split the trajectory into prediction, train, test and validation sets analogous to Section M.

We use 100 time series of length 200 for prediction and 10 time series of length 100 for test and validation each. This leaves
1626 time series of length 100 for training, from which we create 25 batches of size 64 and a additional batch with the
remaining time series.

We normalize observation times and values to lie in [0, 1] when training on both datasets.

Table 9. Mean first-passage times, expressed in seconds, of models trained on Switching Ion Channel one-second window data and the
full dataset. Comparing available results from (Köhs et al., 2021) and NeuralMJP. Entry j in row i is mean first-passage time of transition
i→ j of the corresponding model.

ONE-SECOND WINDOW FULL DATASET
KÖHS ET AL. (2021) NEURALMJP NEURALMJP

τij/s BOTTOM MIDDLE TOP BOTTOM MIDDLE TOP BOTTOM MIDDLE TOP

BOTTOM 0. 0.068 0.054 0. 0.019 0.031 0. 0.008 0.014
MIDDLE 0.133 0. 0.033 0.083 0. 0.014 0.031 0. 0.006

TOP 0.181 0.092 0. 0.119 0.038 0. 0.048 0.018 0.

22

Neural Markov Jump Processes

Table 10. Ordered relaxation time scales in seconds of models trained on Switching Ion Channel data.

ORDERED TIME SCALES

KÖHS ET AL. (2021) 0.01228 0.03396

NEURALMJP (1 SEC) 0.00295 0.02116
NEURALMJP (FULL) 0.00099 0.0097

K.2. Modelling and Results

We train three-state NeuralMJPs with gaussian emission models on both both datasets. They recover the three known
configurations of the ion channel.

We compare our results to the results of Köhs et al. (2021) on the one-second window dataset.

The learned dynamics of both models, here represented by mean first-passage times in Table 9, differ by their resolution of
transitions between TOP and BOTTOM. NeuralMJP resolves them by short transitions to the MIDDLE state, indicated by the
short mean first-passage times to and from state MIDDLE. These are much longer for Köhs et al. (2021), indicating that
transitions between TOP and BOTTOM do not pass through state MIDDLE.

This structural difference is also reflected in the significantly shorter learned time scales (see Table 10).

Figure 6 shows that the prediction capabilities of both models are very similar, despite their structural differences in the
learned dynamics.

Moreover, Table 10 reveals that NeuralMJP learns different relaxation time scales for each dataset. It captures a data shift
over the complete trajectory, where the MIDDLE configuration is only visited for very short periods and less frequently.

The fact that the relaxation time scales are shorter in the FULL dataset, as opposite to the 1 SEC dataset, reflect the fact
that the time-averaged pdf describing the system of the FULL dataset is closer to the stationary distribution, than the
corresponding time-averaged pdf of the 1 SEC dataset.

In other words, this result simply reflects the ergodicity of the system.

0 500 1000 1500 2000

Time [a.u.]

0

5

10

15

P
re

y
P

o
p

u
la

ti
o

n

True path

Observations

Reconstruction

±1 std

0 500 1000 1500 2000

Time [a.u.]

5

10

15

P
re

d
a

to
r

P
o

p
u

la
ti

o
n

Figure 7. Lotka-Volterra trajectory from the IRREGULAR GRID dataset, with the true underlying path (black dots) and the noisy
observations (black circles). The white background represents the test part of the trajectory, the grey shaded background on the right
represents the prediction part. Reconstruction of NeuralMJP (blue crosses) with learned standard deviation of the emission model (blue
shaded) follows the true path closely on the test and prediction parts of the trajectory.

23

Neural Markov Jump Processes

Table 11. LV parameters learned by NeuralMJP on multiple datasets. Additionally, KL divergence and reconstruction loss on the test set.
Values are reported as mean and standard deviations of 5 runs of NeuralMJP. Parameter values are reported in 10−4.

KL NLL α β δ γ

GROUND TRUTH - - 5 1 1 5
OPPER & SANGUINETTI (2007) - - 13.5 2.32 1.78 15.7

IRREGULAR GRID 31± 2 166± 2 4.3± 0.6 0.94± 0.07 0.83± 0.09 4.1± 0.4
SHARED GRID 36± 4 155± 2 5.4± 0.6 1.10± 0.07 1.00± 0.06 4.9± 0.4

REGULAR GRID 28± 5 163± 4 4.5± 0.6 1.00± 0.03 0.90± 0.08 4.3± 0.5
SINGLE TRAJECTORY 192± 114 13± 24 2.1± 0.6 0.67± 0.06 1.05± 0.32 9.3± 8.1

L. Lotka-Volterra
L.1. Data Description and Pre-Processing

The Lotka-Volterra (LV) process is a MJP on N× N that models the coupled population levels of prey and predator species
over time. As a pure birth-death process, only transitions to neighbouring states are possible. Moreover, it is assumed that
population levels of both species can not change at the exact same time.

To describe the transition rates, let x ∈ N and y ∈ N denote the population levels of prey and predator respectively. The
potentially non-zero transition rates of the Lotka-Volterra process are

f(x+ 1, y | x, y) = αx f(x− 1, y | x, y) = βxy

f(x, y + 1 | x, y) = δxy f(x, y − 1 | x, y) = γy

where α, β, δ, γ ∈ R+ are parameters of the model.

We sample trajectories of LV with parameters α = 0.0005, β = 0.0001, δ = 0.0001 and γ = 0.0005 and a time window
of [0, 1500]. Like Opper & Sanguinetti (2007), we add a small constant 10−6 to the transition rates f(1, y | 0, y) and
f(x, 1 | x, 0), which would be zero otherwise. Initial population levels are sampled uniformly random from [5, 20]× [5, 20].

As in Appendix J, we sample 5000 LV trajectories and observe them at three observation grids of length 50. We use 70
batches of size 64 for training and leave the remaining time series for test and validation. For prediction, we generate 100
additional time series of length 100, just as in Appendix J. The observed population levels are corrupted with samples from
N (0, 1). These observations are loosely bounded from above by 60.

L.2. Modelling and Results

We follow Opper & Sanguinetti (2007) and use a mean-field approach by training NeuralMJP with two posterior MJPs with
60 states each. Each MJP is a birth-death process and transitions out of lower and upper bounds are impossible.

The prior is constrained to a LV process and parametrized as above, but transition rates for transitions out of the boundary
are set to 0. We use a gaussian emission model, where the sampled latent state are the gaussian mean and only the diagonal
covariance matrix is learned. Thus, each species is linked to one posterior process, which is in accordance with (Opper &
Sanguinetti, 2007).

We summarize the losses of our models on test sets and the inferred LV parameters in Table 11 and the RMSE on a
prediction set in Table 12. The inferred parameters are close to the ground-truth values and consistent across multiple runs
of NeuralMJP with different initializations.

In Figure 7 we see that the posterior MJP follows the underlying dynamics closely and learns a reasonable standard deviation.
Moreover, prediction with the prior process captures the trend of the continued sample path.

24

Neural Markov Jump Processes

Table 12. Reconstruction RMSE in test and prediction sets at a single observation for NeuralMJPs trained on LV datasets. For prediction,
we consider the RMSE at the 1st, 5th and 10th observation in the prediction set. Values are reported as mean and standard deviation of 5
runs of NeuralMJP. Values for Opper & Sanguinetti (2007) are calculated based on their Figure 1.

RMSE TEST RMSE PREDICTION AT OBSERVATION
1 5 10

OPPER & SANGUINETTI (2007) 2.672 3.000 9.487 11.402

IRREGULAR GRID 1.87± 0.04 2.67± 0.17 3.1± 0.1 3.3± 0.1
SHARED GRID 1.67± 0.04 2.33± 0.08 2.8± 0.2 3.1± 0.2

REGULAR GRID 1.80± 0.08 1.75± 0.14 2.4± 0.2 2.7± 0.2
SINGLE TRAJECTORY 2.02± 0.04 5.69± 2.66 9.2± 3.6 10.6± 4.3

L.3. Single Lotka-Volterra Time Series

We also experiment with the single, short Lotka-Volterra time series from Figure 1 of Opper & Sanguinetti (2007).

They simulated the trajectory with parameters α, β, δ, γ from above and chose initial states x = 19 and y = 7. Observations
at 16 equidistant times in [0, 1500] were then corrupted by a two-sided, discrete exponential noise.

They also provide the continuation of the trajectory up to time 3000. We use this continuation to create a prediction set by
observing it at 15 equidistant times in [1600, 3000]. Note that we do not add any noise these additional observations.

We train NeuralMJP with the setup from above on this single trajectory. The results in Table 11 show that our model predicts
parameters closer to the ground truth, compared to Opper & Sanguinetti (2007), although there is a lot of variance in γ. This
translates to more accurate predictions, as depicted in Figure 8.

0 1000 2000 3000

Time [a.u.]

5

10

15

20

P
re

y
P

o
p

u
la

ti
o

n

True path

Observations

Reconstruction

Opper reconstruction

0 1000 2000 3000

Time [a.u.]

5

10

15

20

P
re

d
a

to
r

P
o

p
u

la
ti

o
n

Figure 8. Lotka-Volterra single time series from (Opper & Sanguinetti, 2007). The training part of the trajectory is on the white background
to the left, while the prediction part of the trajectory is on the grey background to the right. Reconstruction and prediction with NeuralMJP
trained on this single trajectory (blue crosses). Comparison to the results from (Opper & Sanguinetti, 2007) (red diamonds), where their
learned master equation was solved for prediction, with initial value approximated from Figure 1 (Opper & Sanguinetti, 2007).

25

Neural Markov Jump Processes

Figure 9. Heavy atoms of the Alanine Dipeptide Protein with locations of Ramachandran angles ψ and ϕ.

M. Alanine Dipeptide Protein
M.1. Data Description and Pre-Processing

The Alanine Dipeptide Protein (ADP) data used in Section 5.4 is a 106 step all atoms molecular dynamics simulation with
stepsize 1 picosecond (ps). The system is in equilibrium and the data has been aligned to the first frame, removing global
translations and rotations of the protein.

We first transform the observations into Ramachandran angles, which are dihedral angles of two backbone atom sequences.
The dihedral angles for atom sequences N1−Cα−C2−N2 and C1−N1−Cα−C2 are denoted by ψ and ϕ respectively.
Their locations in the atom are depicted in Figure 9. Partially following (Varolgünes et al., 2019), we use sinψ, cosψ, sinϕ
and cosϕ as features, which take the periodicity of the angles into consideration.

For prediction, we first extract 100 non-overlapping time series of length 200 from this trajectory. Afterwards, the remaining
trajectory is cut up into time series of length 100. We create 140 batches of size 64 for training and leave the other time
series for test and validation.

The observation time for the first observation in each time series is set to 0 and subsequent observation times are adjusted
accordingly, retaining the stepsize from the original trajectory. We normalize observation times to lie in [0, 1].

Table 13. Mean first-passage times in nanoseconds of the six-state NeuralMJP trained on APD data with standard deviation from sampling
the generative prior. These results are depicted in Table 6 without standard deviation. Entry j in row i is the mean first-passage time of
transitions i→ j.

τij/ns I II III IV V VI

I 0.000± 0.000 0.028± 0.002 0.290± 0.030 0.107± 0.006 14.000± 4.000 16.000± 4.000
II 0.032± 0.003 0.000± 0.000 0.290± 0.030 0.103± 0.006 14.000± 4.000 16.000± 4.000
III 0.130± 0.010 0.130± 0.010 0.000± 0.000 0.063± 0.005 14.000± 4.000 16.000± 4.000
IV 0.073± 0.008 0.070± 0.010 0.190± 0.020 0.000± 0.000 14.000± 4.000 16.000± 4.000
V 0.920± 0.220 0.910± 0.220 1.100± 0.240 0.900± 0.200 0.000± 0.000 4.000± 1.000
VI 0.800± 0.210 0.800± 0.210 0.950± 0.210 0.800± 0.200 3.000± 1.000 0.000± 0.000

26

Neural Markov Jump Processes

Table 14. Transition rates from the six-state NeuralMJP trained on ADP data. They are expressed in nanoseconds with standard deviation
from sampling the generative prior. Entry j in row i is the rate of transition i→ j.

i→ j I II III IV V VI

I 0.00± 0.00 53.00± 4.00 0.19± 0.06 7.90± 0.90 0.06± 0.03 0.02± 0.01
II 47.00± 3.00 0.00± 0.00 0.05± 0.03 12.00± 0.90 0.04± 0.02 0.01± 0.01
III 0.28± 0.09 0.13± 0.05 0.00± 0.00 17.00± 1.40 0.02± 0.01 0.04± 0.02
IV 36.00± 3.00 26.90± 2.70 41.00± 4.00 0.00± 0.00 0.30± 0.10 0.01± 0.01
V 0.17± 0.06 0.20± 0.10 0.40± 0.20 0.20± 0.20 0.00± 0.00 3.00± 1.00
VI 1.20± 0.60 1.80± 0.80 0.50± 0.20 0.70± 0.40 19.00± 7.50 0.00± 0.00

M.2. Modelling and Results

We train NeuralMJPs with six, three and two states and unconstrained prior and posterior MJPs. For this dataset, we chose a
gaussian emission model and learn the gaussian mean and the complete covariance matrix.

The separation of states in models with two and three states is depicted in Figure 11. They resemble two slower relaxation
time scales of the protein.

Table 13 contains the mean first-passage times of the six-state model presented in Section 5.4. Note that it contains the
values from Table 6, with additional standard deviation from sampling the prior rates. The learned transition rates of that
model are in Table 14. We remark that the results for that model were discussed thoroughly in Section 5.4.

Figure 10. ADP state separation from another six-state NeuralMJP
run that differs from t he one presented in Figure 4. For each ob-
servation, the intensity of blue in subplot i = I, . . . , VI indicates
the posterior probability mass for state i at that observation.

Figure 11. State separation of three and two-state NeuralMJPs
trained on ADP data. For each observation, the intensity of blue
in subplot i = I, II, III indicates the posterior probability mass for
state i at that observation.

27

Neural Markov Jump Processes

M.3. Model Instabilities

Results across multiple runs of six-state NeuralMJPs on the ADP data are not as stable as the results of multiple runs on
other experiments.

One source of instability is the failure of separating state VI from state V, which can be attributed to its rare occurrence
in the data. The same failure has been reported by Mardt et al. (2017) and Varolgünes et al. (2019), who train end-to-end,
unsupervised Markov models on similar ADP trajectories.

Note that this failure cannot be easily detected based on training dynamics or metrics. In Table 15, we display the results
of 15 runs of NeuralMJP with six states on the ADP data. Only a few of them resolve state VI accurately. However, they
are not immediately discernible from each other based on their reconstruction performance, here represented by RMSE, or
learned dynamics, here represented by the learned time scales.

Another source of instability is the size, shape and position of clusters learned by our model, in particular in the ϕ < 0
region of the Ramachandran plane. By Mironov et al. (2019), this region contains several low energy minima of the protein,
which can be grouped by their proximity in the Ramachandran plane and other configuration properties.

However, unsupervised clustering of that region by NeuralMJP does not produce such consistent clusters. Compare Figures
4 and 10 for two runs of six-state NeuralMJPs. Although both runs produce comparable results on the test set, there is a
noticeable difference in their clusters. In particular, the edges of clusters in Figure 10 are not as well defined as in Figure 4.

The posterior distribution depends significantly on the particular clustering, so these inconsistencies extend to differences in
the learned dynamics. Therefore, comparing models by their transition rates or stationary distributions is only possible, if
their clusters are comparable.

Finally, some prior rates exhibit a large sampling standard deviation, which can lead to considerable uncertainty of
eigenvalues, relaxation times and mean first-passage times, even for a single run. See Table 14, where some of the smaller
rates display considerable standard deviation.

Considering the above, we selected the run presented in Section 5.4 based on its separation of states in the ϕ > 0 region of
the Ramachandran plane and its distinct clusters that we can identify with clusters found, for example, by Mironov et al.
(2019) and Varolgünes et al. (2019).

Table 15. RMSE and relaxation time scales of 15 NeuralMJP with six states on ADP data. Standard deviation in time scales is due to
sampling the generative prior. Standard deviation in RMSE due to the 100 time series in test set. First 5 experiments were handpicked
by their separation of states V and VI. Out of the other 10 non-handpicked experiments, only experiment 7 separated states V and VI.
VAMPNets results are taken from Mardt et al. (2017), GMVAE from Varolgünes et al. (2019).

EXPERIMENT RMSE ORDERED TIME SCALES IN ns

VAMPNETS - 0.008 0.009 0.055 0.065 1.920
GMVAE - 0.003 0.003 0.033 0.065 1.430

1 0.6± 0.1 0.008± 0.000 0.011± 0.001 0.027± 0.005 0.084± 0.005 0.800± 0.200
2 0.7± 0.2 0.021± 0.001 0.048± 0.004 0.055± 0.003 0.500± 0.100 1.000± 0.200
3 0.7± 0.1 0.012± 0.000 0.014± 0.001 0.040± 0.010 0.068± 0.004 1.500± 0.300
4 0.6± 0.1 0.009± 0.000 0.013± 0.001 0.071± 0.005 0.250± 0.030 0.410± 0.070
5 0.6± 0.1 0.009± 0.000 0.009± 0.000 0.040± 0.010 0.069± 0.004 0.800± 0.200

6 0.6± 0.1 0.006± 0.000 0.008± 0.000 0.010± 0.000 0.059± 0.001 0.700± 0.100
7 0.7± 0.1 0.012± 0.000 0.012± 0.000 0.060± 0.001 0.080± 0.004 1.300± 0.200
8 0.6± 0.1 0.008± 0.000 0.010± 0.000 0.013± 0.000 0.073± 0.001 0.800± 0.100
9 0.7± 0.1 0.010± 0.000 0.015± 0.000 0.017± 0.000 0.064± 0.001 0.670± 0.080
10 0.6± 0.1 0.005± 0.000 0.009± 0.000 0.010± 0.000 0.077± 0.001 0.500± 0.050
11 0.7± 0.2 0.010± 0.000 0.011± 0.000 0.018± 0.000 0.053± 0.001 0.800± 0.100
12 0.7± 0.2 0.007± 0.000 0.009± 0.000 0.011± 0.000 0.063± 0.001 0.800± 0.100
13 0.6± 0.1 0.007± 0.000 0.008± 0.000 0.013± 0.000 0.060± 0.000 0.700± 0.100
14 0.6± 0.1 0.007± 0.000 0.008± 0.000 0.011± 0.000 0.063± 0.001 0.610± 0.060
15 0.6± 0.1 0.005± 0.000 0.006± 0.000 0.008± 0.000 0.070± 0.000 0.650± 0.060

28

Neural Markov Jump Processes

LOW STD HIGH STD

MARDT ET AL. (2017) 0.73 0.27

NEURALMJP 0.74± 0.02 0.26± 0.02

Table 16. Stationary distributions of models trained on the dataset.
Values of NeuralMJP are mean and standard deviation over 5 runs.

NEURALMJP

LOW STD → HIGH STD 0.028± 0.007
HIGH STD → LOW STD 0.085± 0.011

Table 17. Transition rates learned by NeuralMJP on the dataset.
Values are mean and standard deviation over 5 runs.

N. A Simple Protein Folding Model
N.1. Data Description and Pre-Processing

Mardt et al. (2017) simulate a 105 time step trajectory of the 5-dimensional Brownian dynamics

dx(t) = −∇U(x(t)) +
√
2dW (t) ,

where U(x) only depends on the norm r(x) = |x| of x:

U(x) =

{
−2.5[r(x)− 3]2 , if r(x) < 3

0.5[r(x)− 3]3 − [r(x)− 3]2 , if r(x) ≥ 3

These dynamics are bistable along the norm r(x) and serve them as a toy protein folding model, representing a folded and
unfolded state.

We follow Mardt et al. (2017) and use the Euler method with ∆t = 0.1 to simulate trajectories of these dynamics. Initial
states are sampled from N (−1, 4I), where 1 = [1, 1, 1, 1, 1] ∈ R5 and I ∈ R5×5 is the identity matrix. The initial
distribution was extracted from the code that accompanies their paper. Its samples are likely to be close to one of the bistable
regions of the dynamics.

We simulate 1000 trajectories with 100 steps after a burn-in period of 1000 steps, for a total of 105 observations. During
training, we normalize observation times to lie in [0, 1]. For training, we use 28 batches of size 32 and leave the remaining
time series for test and validation.

We simulate 100 additional time series for prediction, each with 200 time steps after a burn-in period of 1000 steps.

N.2. Modelling and Results

We trained a NeuralMJP with two-state, unconstrained prior and posterior MJPs to capture the two stable regions along r(x).
For this dataset, we chose a gaussian emission model and learn the gaussian mean and diagonal covariance matrix.

Indeed, NeuralMJP discerns the two stable regions. It learns a mean reconstruction close to 0 for both states, but two
different covariance matrices, one with smaller diagonal entries, representing the folded state, the other with larger diagonal
entries, representing the unfolded state.

The long-term dynamics, represented by the stationary distribution, of our continuous time model agrees with the discrete
time model of Mardt et al. (2017), see Table 16. We provide the learned transition rates of our model in Table 17.

Table 18. Two-Mode Hybrid System transition rates including standard deviation over 5 runs. Note that one run of NeuralMJP suffered
from index collapse (see Appendix F). Learned transition rates from the remaining runs are close to the ground truth.

BOTTOM → TOP TOP → BOTTOM

GROUND TRUTH 0.2 0.2
KÖHS ET AL. (2021) 0.64 0.63

NEURALMJP, 5 RUNS 0.16± 0.02 0.90± 0.90
NEURALMJP, 4 RUNS 0.19± 0.02 0.36± 0.06

29

Neural Markov Jump Processes

O. A Toy Two-Mode Switching System
O.1. Data Description and Pre-Processing

Köhs et al. (2021) generate a time series of length 67 from a trajectory of a switching stochastic differential equation with
two modes. We generate this time series with the code provided by the authors. Here, we only provide a rough outline of the
generation process for convenience and refer to (Köhs et al., 2021) for a detailed description.

They consider a two-state, time-homogeneous MJP with transition rates(
0 0.2
0.2 0

)

as the underlying switching process of their dynamics. A trajectory z of this process defines a switching stochastic differential
equation

dy(t) = αz(t)(βz(t) − y(t)) + 0.5dW (t)

with α1 = α2 = 1.5, β1 = −1 and β2 = 1. This is understood as a system that switches between two Ornstein-Uhlenbeck
processes with different drift terms, based on the state of the underlying switching process z.

Köhs et al. (2021) simulate a single trajectory of these dynamics, observe it at observation times sampled from a Poisson
point process with intensity 1

λ = 0.35 and corrupt the observations with samples from N (0, 0.1).

During training, we normalize observation times and values to lie in [0, 1].

O.2. Modelling and Results

We train a two-state NeuralMJP with a gaussian emission model and learn the gaussian mean and standard deviation.

NeuralMJP reconstructs observations stemming from both processes closely, see Figure 12. Moreover, the posterior process
approximates the true switching dynamics of the observed time series almost perfectly. Learned transition rates are closer to
the ground-truth switching process than the model of Köhs et al. (2021) (see Table 18).

1

2

z

0

1

q
2

0 5 10 15 20

Time

−2

−1

0

1

2

y

True path

q2

Observations

Reconstruction

±1 std

Figure 12. Results on Two-Mode Hybrid System. Bottom: Observations of the Hybrid System and reconstruction by NeuralMJP. Middle:
Posterior probability of latent state corresponding to upper Ornstein-Uhlenbeck process (red solid line) and greedy prediction of that state
(blue dashed line). Top: True underlying switching dynamics.

30

