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Abstract

Real-world data contains a vast amount of multi-
modal information, among which vision and lan-
guage are the two most representative modali-
ties. Moreover, increasingly heavier models, e.g.,
Transformers, have attracted the attention of re-
searchers to model compression. However, how
to compress multimodal models, especially vison-
language Transformers, is still under-explored.
This paper proposes the Unified and Progressive
Pruning (UPop) as a universal vison-language
Transformer compression framework, which in-
corporates 1) unifiedly searching multimodal sub-
nets in a continuous optimization space from
the original model, which enables automatic as-
signment of pruning ratios among compressible
modalities and structures; 2) progressively search-
ing and retraining the subnet, which maintains
convergence between the search and retrain to at-
tain higher compression ratios. Experiments on
various tasks, datasets, and model architectures
demonstrate the effectiveness and versatility of
the proposed UPop framework. The code is avail-
able at https://github.com/sdc17/UPop.

1. Introduction
The number of parameters and FLOPs of deep learning mod-
els (Devlin et al., 2018; Shoeybi et al., 2019; Brown et al.,
2020; Shao et al., 2021; Smith et al., 2022) have proliferated
in recent years, which makes compression exceedingly criti-
cal for deploying the increasingly heavier models on edge
devices. There are lots of approaches for model compres-
sion, such as weight sharing (Lan et al., 2019), low-rank
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Table 1: Overview of experimental results at 2× compression. The
proposed UPop framework is efficient and effective on various
tasks, datasets, and architectures. Bold indicates the best post-
compression performance. Mask-based Pruning is extended from
the SOTA pruning method ViT-Slimming (Chavan et al., 2022).

Method Visual
Reason

Image
Caption

Visual
QA

Retrieval Image Cla-
ssificationCOCO Flickr

Original Model 83.1 23.8 77.5 81.9 96.8 79.9
Mask-based Pruning 76.4↓6.7 21.0↓2.8 71.6↓5.9 61.7↓20 78.9↓18 77.9↓2.0
UPop (Ours) 81.1↓2.0 23.3↓0.5 76.3↓1.2 77.4↓4.5 94.0↓2.8 78.9↓1.0

factorization (Yu et al., 2017), quantization (Tao et al., 2022),
parameter bootstrapping (Chen et al., 2022), knowledge dis-
tillation (Yang et al., 2022), and pruning (Han et al., 2015b).
As the paradigm this paper focuses on, pruning approaches
not only benefit from inheriting well-optimized parameters
of the original model but also provide flexible design space
for various architectures.

Recently, pruning approaches dedicated to the Transformers
(Vaswani et al., 2017) have attracted much attention. Ac-
cording to the pruned components, these approaches can
be summarized into two categories. 1) Token Pruning: By
eliminating the number of input tokens, these approaches
(Goyal et al., 2020; Rao et al., 2021) can reduce the FLOPs
of models. 2) Model Pruning. By reducing the model size,
these approaches (Chen et al., 2021b; Su et al., 2022) can
reduce both the parameters and FLOPs of models. This
paper focuses on model compression so that the parameters
and FLOPs of models can be reduced simultaneously.

In real applications, there are lots of multimodal tasks that
have been extensively studied, including but not limited to
Visual Question Answer (Antol et al., 2015), Image Caption
(Lin et al., 2014), and Image-Text Retrieval (Jia et al., 2015).
To tackle these multimodal tasks, various multimodal mod-
els (Kiros et al., 2014; Karpathy et al., 2014; Antol et al.,
2015; Vinyals et al., 2015; Yang et al., 2016; Huang et al.,
2017) have been proposed accordingly. Furthermore, as
Transformer (Vaswani et al., 2017) has been more and more
popular among deep models, transformer-based models (Tan
& Bansal, 2019; Lu et al., 2019; Zhou et al., 2020; Li et al.,
2020; Kim et al., 2021; Jia et al., 2021; Yu et al., 2022;
Wang et al., 2022a) have also dominated the recent studies
of multimodal models. For example, CLIP (Radford et al.,
2021) and BLIP (Li et al., 2022) are some of the most repre-
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Figure 1: Comparison between the Mask-based Pruning (e.g., extending ViT-Slimming (Chavan et al., 2022) to the multimodal scenario)
and our UPop framework. Mask-based Pruning manually assigns each compressible component with a predefined compression ratio,
which is inefficient and sub-optimal. Moreover, the vanilla pruning paradigm fails when it comes to higher compression ratios. UPop
enables adaptively assigning the pruning ratio to each compressible component, which achieves significant performance improvements at
the same overall compression ratio. Moreover, the progressive pruning paradigm eliminates the weight gap between the searched model
and the pruned subnet to be retrained, therefore gaining better convergence and performance, especially at high compression ratios.

sentative ones. Benefiting from massive image-text pairs as
pre-training datasets, they can learn joint representations of
multiple modalities and can be further used to fine-tune on
downstream tasks.

Although compression on unimodal tasks has been widely
investigated, how to compress multimodal models, espe-
cially vision-language Transformers, is still relatively under-
explored. In this paper, we propose a novel multimodal prun-
ing framework, Unified and Progressive Pruning (UPop).

A straightforward design of multimodal pruning is to com-
press each modality separately via the unimodal pruning
approach. However, there exist two main challenges. One of
the challenges is that we have to manually explore suitable
compression ratios for different components in different
modalities, which is inefficient, especially when the model
has multiple types of modules (these modules may com-
prise Self-Attentions, Cross-Attentions, and Feed-Forward
Nets in both vision and language branches for typical vision-
language Transformers). Moreover, when given a total com-
pression ratio, the optimal compression ratio for different
modalities and modules may vary, and therefore manual
assignment is most likely sub-optimal. To overcome this
shortcoming, we propose to unifiedly search on different
modalities and different structures, which enables our ap-
proach to adaptively assign appropriate compression ratios
among all compressible components given a total compres-
sion ratio. Comparison is illustrated in Figure 1 (Vanilla
Search vs. Unified Search).

The second challenge is that the traditional two-stage prun-
ing paradigm (i.e., retraining after searching) fails when

the compression ratio is high. After the search stage, unim-
portant neurons are going to be removed. However, many
of them have non-zero weights, and suddenly binarizing
them to zero after searching harms the convergence of the
pruned subnet. In other words, the significant gap of param-
eter weights between the searched model (i.e., model after
the searching stage) and the pruned subnet to be retrained
cause it is hard to converge and severely degrades the fi-
nal performance. Consequently, we propose an improved
pruning paradigm that conducts searching and retraining
progressively and simultaneously, which ensures weights of
removed neurons will progressively converge to zero before
the end of the search stage, and therefore effectively elimi-
nate the gap mentioned above. Comparison is illustrated in
Figure 1 (Vanilla Pruning vs. Progressive Pruning).

Our main contributions can be summarized as
• In this paper, we propose a novel and universal mul-

timodal pruning framework UPop for compressing
vision-language Transformers.

• The proposed Unified Pruning enables adaptive com-
pression ratio assignment among all compressible com-
ponents. Progressive Pruning proposes an improved
pruning paradigm that gains better convergence and
supports higher compression ratios.

• As a structured pruning framework, UPop’s effective-
ness and versatility are validated on various multimodal
tasks, datasets, and model architectures (e.g., dual-
stream CLIP (Radford et al., 2021) and mixed-stream
BLIP (Li et al., 2022)), and also evaluated on unimodal
tasks (e.g., image classification and segmentation).
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Table 2: Here we list the notations table. In the later part of the article, superscript {v,l,c} indicates notations for vision, language, and
cross-modality, respectively, subscript {a,m} indicates notations for Attention and MLP structure, respectively.

NOTATION DESCRIPTION NOTATION DESCRIPTION

L Number of layers H Number of heads
N Number of patches / Sequence length D Embedding size
d Embedding size of each head p Total compression ratio
θ Parameters of the original model ζ Parameters of the trainable mask
w Regularization coefficient in searching Fp p% compressed model Fp(x|θ, ζ)
α, β Learning rate during{search, retrain} T{s,r} Iterations in {search, retrain} phase

2. Related Works
Vision-Language Transformer Recently, significant
progress in vision-language tasks has been achieved by var-
ious Vision-Lanauge Transformers (Radford et al., 2021;
Yu et al., 2022; Wang et al., 2022a), among which BLIP
(Li et al., 2022) is one of the most representative models.
BLIP is a pure transformed-based multimodal model, which
employs a Bert (Devlin et al., 2018) and a ViT (Dosovitskiy
et al., 2020) as text encoder and image encoder, respectively.
To allow multimodal interaction, BLIP injects vision infor-
mation from the image encoder into the text encoder by
inserting an additional cross-attention layer after the self-
attention layer of each transformer block in the text encoder.

Transformer Pruning There are several works exploring
Transformers pruning on unimodal tasks. For example,
structured pruning that removes layers (Fan et al., 2019),
heads (Michel et al., 2019), or channels (Zhu et al., 2021),
unstructured pruning (Yang et al., 2021; Chen et al., 2021b;
Sanh et al., 2020; Chen et al., 2020; Liu et al., 2022b) that re-
moves individual weights, and the intersection of structured
and unstructured pruning such as ViT-Slimming (Chavan
et al., 2022) that removes a different number of individual
weights for different heads. UPop is a structured pruning
approach whose minimum granularity is an entire row or
column in the weights of model parameters.

Multimodal Transformer Compression A few works
have investigated the compression of multimodal Transform-
ers. For example, MiniVLM (Wang et al., 2020) suggest
an efficient feature extractor and a compact BERT (Devlin
et al., 2018) as basic components of visual-language models.
DistillVLM (Fang et al., 2021) proposes that knowledge dis-
tillation can be used to mimic attention distributions from
large vision-language models. The prior work (Gan et al.,
2022) directly applies the unimodal pruning method (Han
et al., 2015a) on the multimodal scenario to verify whether
the lottery tickets hypothesis also exists on multimodal mod-
els. The difference between UPop and (Gan et al., 2022)
are 3 aspects: 1) Unified Pruning enables adaptively instead
of manually assigning the appropriate pruning ratio to each
compressible component, 2) Progressive Pruning gains bet-
ter convergence and performance at high compression ratios.
3) UPop is structured and relatively easier to deploy, while

(Gan et al., 2022) is unstructured and harder to deploy.

Supplementary Due to the space constraint, we provide
more related works about global pruning, iterative pruning,
and parameter-efficient tuning in Appendix B.

3. Methodology
We propose Unified and Progressive Pruning as illustrated
in Figure 2. Necessary notations are listed in Table 2.
We start by revisiting Mask-based Pruning and straight-
forwardly extend it to the multimodal scenario.

3.1. Mask-based Pruning

Extended Mask-based Pruning compresses vision and lan-
guage Transformers separately via unimodal Mask-based
Pruning, consisting of a search phase and a retraining phase.
Detailed implementation refers to Algorithm 2 in Appendix.

Search Take searching on Self-Attentions of Vision Trans-
former as an example. Denote the input of Self-Attention
in the lth layer as al ∈ RN×D, and every head h in the
Self-Attention will transform al into query ql,h ∈ RN×d,
key kl,h ∈ RN×d, and value vl,h ∈ RN×d. The trainable
mask ζva ∈ RL×1×d will be initialized to ones and inserted
into Self-Attentions of each layer.1 Then attention map of
each head can be derived from

Al,h = Softmax
(
(ql,h � ζva,l)× (kl,h � ζva,l)>/

√
d
)
. (1)

The output of each head h can be derived from
Ol,h = Al,h × (vl,h � ζva,l) ∈ RN×d. (2)

Search on other structures (e.g., Cross-Attentions, FFNs)
and modalities (e.g., vision, language) can be conducted
similarly. Besides, the `1-norm of masks ζ are added as ad-
ditional loss items to drive the magnitude of masks smaller:

L = LO + wa
∑

ζi∈ζa
‖ζi‖1 + wm

∑
ζi∈ζm

‖ζi‖1 (3)

where LO is the original loss to learn a multimodal model,
and wa and wm are coefficients to balance the magnitude
of loss items. It means that the model parameters θ and
trainable masks ζ are optimized jointly in the search phase.

1More fine-grained mask shape RL×H×d will result in pruned
heads within a layer has different dimensions, and thus matrix com-
putation of attention map becomes unfeasible on regular devices.
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Figure 2: Diagram of Unified and Progressive Pruning (UPop) framework. (1) Trainable masks are initialized to ones and inserted
into Self-Attention, Cross-Attention, and MLP (Feed Forward Network) in each modality. (2) Combine all compressible components
and trainable masks as a unified search space. Then, the current pruning mask is generated based on unified ranking and selecting the
importance metric (i.e., accumulated gradients of the trainable masks). (3) Repeat the cycle consisting of unified search and progressive
pruning until the target total compression ratio is reached. (4) Pruned subnet can be further fine-tuned to achieve better performance.

Retraining After the search, the subnet can be pruned from
the searched model based on mask ζ. The magnitude of
the mask is used as the metric to evaluate the importance of
corresponding neurons. Neurons with the smallest magni-
tude of p% in the mask are removed (i.e., binarized as zero
during retraining) from the searched model. The obtained
subnet is retrained to get the final compressed model.

The major weakness of Mask-based Pruning is two-fold: 1)
the mask ζi ∈ ζ on each module is assigned with a compres-
sion ratio manually, which is inefficient and sub-optimal,
especially when the modules are usually various in a mul-
timodal model; 2) for those neurons to be removed after
search, their corresponding magnitude in the searched mask
is not guaranteed to be zero. There are a lot of non-zero neu-
rons with relatively small mask magnitudes, and suddenly
binarizing them to zero after search harms the convergence
of the pruned subnet. We tackle the aforementioned issues
with Unified Pruning and Progressive Pruning, respectively.

3.2. Unified and Progressive Pruning

3.2.1. UNIFIED PRUNING

The core idea of Unified Pruning is to unifiedly instead
of separately search on different modalities and structures,
which enables adaptively instead of manually assigning the
appropriate pruning ratio to each compressible component.
Detailed implementation refers to Algorithm 3 in Appendix.

Unified Search on Different Modalities Unified Pruning

groups the pruning masks by computation mechanisms. For
typical vision-language Transformers, we divide the masks
ζ = {ζvatt, ζlatt, ζcatt, ζvmlp, ζlmlp} into two groups:

ζa = {ζvatt, ζlatt, ζcatt}, ζm = {ζvmlp, ζlmlp}. (4)
One group ζa for different attention modules and another
ζm for different MLP modules. The ranking and selec-
tion of masks are performed within each group. Instead of
searching on each ζi ∈ ζ separately:

Mi ← TopKMask(ζ
(Ts)
i , p · Size(ζi)) for ζi ∈ ζ, (5)

where Mi is a binary mask used for pruning components
of the subnet from the searched model. Mi is obtained by
ranking and binarizing trainable mask ζi at the final iteration
Ts, which keeps the most important p% parameters. Unified
Pruning searches on different modalities within each group
which ranks weights across different components:

Ma ← TopKMask({ζ(Ts)
i |ζi ∈ ζa}, p · Size(ζa)), (6)

Mm ← TopKMask({ζ(Ts)
i |ζi ∈ ζm}, p · Size(ζm)), (7)

Unified Search on Different Structures We notice that
simply uniting different structures degrades performance,
and the reason is that the magnitude of the learned masks ζi
used for different structures vary greatly.

Intuitively, it is feasible to conduct unified searching af-
ter transforming the magnitudes distributions of different
structures’ masks to have the same mean and standard de-
viation, and thus masks ζi used for different structures can
be comparable. For the simplicity of implementation, we
individually transform the mean and standard deviation of
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Algorithm 1 UPop: Unified and Progressive Pruning
Input: Original model F , parameters of the original model θ, parameters of the trainable mask ζ, total compression ratio p, iterations in

the search stage Ts and retrain stage Tr , learning rate for the search stage α and retrain stage β
Output: Model F? after the search and retrain

1 for t← 0 to Tr − 1 do
2 if t < Ts then
3 # Calculate the loss L, and normally update θ with the original optimizer

4 L ← LO + wa
∑

ζi∈ζa‖ζi‖1 + wm
∑

ζi∈ζm‖ζi‖1, θ(t+1) ← θ(t) − α 1
n

∑n
i=1∇θL(θ(t), ζ(t))

5 # Calculate the gradient of loss L with respect to the trainable mask ζ

6 G(t) ← 1
n

∑n
i=1∇ζL(θ(t), ζ(t))

7 # Conduct z-score standardization to make the current Ga and Gm comparable

8 G
(t)
a ← (G

(t)
a − E[G(t)

a ])/(E[[G(t)
a − E[G(t)

a ]]2])
1
2 , G

(t)
m ← (G

(t)
m − E[G(t)

m ])/(E[[G(t)
m − E[G(t)

m ]]2])
1
2

9 # Generate pruning mask Mt by ranking and selecting on accumulated gradient
∑t
i=0G

(i)

10 pt ← p( 1
2
(1− cos( πt

Ts−1
)))

1
2 , M t ← TopKMask(

∑t
i=0G

(i), pt · Size(ζ))
11 # Progressively compress ζt based on Mt and accordingly progressively compress F
12 ζ(t+1) ← (1−M t) + (1− pt

p
)M t, Fpt+1 ← Fpt(x|θ(t+1), ζ(t+1))

13 else
14 # Optional further finetune the pruned subnet F(x|θ̂, ζ(Ts)) with the original optimizer

15 θ(t+1) ← θ(t) − β 1
n

∑n
i=1∇θLO(θ(t))

16 return F? ← Fp(x|θ(Tr))

magnitudes distributions of different structures’ mask to the
0 and 1 by z-score standardization, respectively:

ζ(Ts)
a ← (ζ(Ts)

a − E[ζ(Ts)
a ])/(E[[ζ(Ts)

a − E[ζ(Ts)
a ]]2])

1
2 , (8)

ζ(Ts)
m ← (ζ(Ts)

m − E[ζ(Ts)
m ])/(E[[ζ(Ts)

m − E[ζ(Ts)
m ]]2])

1
2 . (9)

Then search on different modalities of different structures
can be feasible:

M ← TopKMask({ζ(Ts)
i |ζi ∈ ζ}, p · Size(ζ)), (10)

where M is a binary mask used for pruning all compressible
components, and M is obtained by ranking and binarizing
the whole trainable masks ζ at the final iteration Ts.

3.2.2. PROGRESSIVE PRUNING

Retrain the pruned model after the search is a traditional two-
stage paradigm. However, this paradigm fails when it comes
to high compression ratios, because there is no guarantee
that the magnitude of searched mask ζ(Ts) corresponding
to the eliminated neurons in compressible components will
converge to 0, which makes the pruned subnet with the
parameters θ̂ sliced from θ(Ts) difficult to converge. When
the compression ratio becomes higher, the eliminated non-
zero neurons from the parameters θ(Ts) is more, and the
gap between θ̂ and θ(Ts) is larger, thereby increasing the
difficulty for the pruned subnet F(x|θ̂, ζ(Ts)) to converge.

To address the above issue, we further propose the Progres-
sive Pruning, whose core idea is to ensure each magnitude
of the trainable mask ζ corresponding to the eliminated
neurons in compressible components converges to 0. This
is achieved by updating trainable mask ζ with a customed
optimizer that is a function of the current iteration num-

ber t, instead of updating trainable mask ζ with the same
optimizer as the parameter θ of the original model used.

Specifically, gradients G(t) of ζ in each iteration of the
search phase is first collected:

G(t) ← 1

n

n∑
i=1

∇ζL(θ(t), ζ(t)), (11)

where n is the number of batch size. Then the accumu-
lated gradients

∑t
i=0 G

(i) can be used as a new metric
to evaluate the importance of corresponding neurons. And
the pruning mask M t at this iteration can be generated
accordingly:

M t ← TopKMask(

t∑
i=0

G(i), pt · Size(ζ)), (12)

where pt is the current compression ratio when the iteration
number is t. And the update strategy for optimizing ζ in
each iteration of the search phase can be written as

ζ(t+1) ← (1−M t
i ) + (1− pt

p
)M t

i , (13)

which ensures that as pt progressively increases to p, each
magnitude of mask ζ corresponding to the removed neurons
in compressible components will exactly converge to 0. Pro-
gressive Pruning eliminates the parameter gap between the
searched model and the pruned subnet to be retrained, there-
fore gaining better convergence and performance, especially
at high compression ratios.

The proposed UPop framework combines Unified Pruning
and Progressive Pruning as outlined in Algorithm 1. Line 2
∼ 12 implements the search phase where Line 10 calculates
the current compression ratio pt to be achieved (detailed
discussion is provided in Appendix C.2), and Line 13 ∼ 15
implements an optional retrain phase.
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Table 3: Compression results on the NLVR2. Bold indicates the best performance
at the same compression ratio. Reduce indicates compression times. The marker
3 or 7 indicates whether the model converges at the current compression times.
The units of Params and FLOPs are M and G, respectively.

Approach Reduce Status Dev Acc Test Acc Params FLOPs

Uncompressed 1× 3 82.48 83.08 259.45 132.54

Mask-based
Pruning

2× 3 75.74 76.44 146.18 66.88
3× 7 7 7 7 7

2× 3 79.50 80.32 149.90 95.01
3× 3 71.25 71.66 106.33 68.19

Unified
Pruning
(Ours) 4× 7 7 7 7 7

2× 3 80.33 81.13 150.15↓42% 89.36↓33%
3× 3 76.89 77.61 109.01↓58% 65.29↓51%
4× 3 72.85 73.55 88.61↓66% 50.35↓62%
5× 3 68.71 68.76 76.81↓70% 39.93↓70%

Unified and
Progressive

Pruning
(Ours)

10× 3 57.17 57.79 54.48↓79% 19.08↓86%

Table 4: Performance of the 2× compressed BLIP
model on the NLVR2 while searching only and
without any retraining. The marker 7 indicates
the model fails converging.

Approach w/o Retrain Dev Acc Test Acc

Mask-based Pruning 7 7
Unified Pruning (Ours) 7 7
UPop (Ours) 76.89 77.84

Table 5: Performance of the 2× compressed BLIP
model on the NLVR2 while retraining only one
epoch after searching.

Approach w/ Retrain Dev Acc Test Acc

Mask-based Pruning 62.82 63.35
Unified Pruning (Ours) 75.42 75.30
UPop (Ours) 79.08 80.08

Table 6: Comparisons of the 2 × compressed BLIP model on the NLVR2. The superscript ∗: The original approach is unstructured,
which has the finest compression granularity, and therefore we report the performance at the same granularity as ours to achieve a fair
comparison. The STE †: use straight-through estimator (Bengio et al., 2013) to approximate gradients.

Approach Dev Acc Test Acc Params

Uncompressed (Li et al., 2022) 82.48 83.08 259.45

Iterative Magnitude-based Pruning∗ (Gan et al., 2022) 66.88 67.19 151.86
Mask-based Pruning (Chavan et al., 2022) 75.74 76.44 146.18
Mask-based Pruning (Chavan et al., 2022) w/ Iterative Pruning with STE† (Sanh et al., 2020) 78.05 77.68 146.11

Unified Pruning (Ours) 79.50 80.32 149.90
Unified Pruning (Ours) w/ Iterative Pruning with STE† (Sanh et al., 2020) 80.01 80.54 145.86
Unified Pruning (Ours) w/ Progressive Pruning (Ours) 80.33 81.13 150.15

4. Experiments
We report the performance of UPop on a series of multi-
modal tasks, including Visual Reasoning, Image Captioning,
Visual Question Answer, and Image-Text Retrieval. Due to
the space constraint, we provide more ablation studies and
experiments on unimodal tasks in Appendix C.

4.1. Experiments on the Visual Reasoning Task

NLVR2 is a binary classification visual reasoning task with
two images and a text description as inputs. To quantita-
tively evaluate the proposed UPop, we compress the fine-
tuned BLIP model on this task at a ratio of 2, 3, 4, 5,
and 10 times, respectively.2 The model consists of two
weight-shared ViT as image encoder and a Bert with two
cross-attention as text encoder, therefore the mask ζ corre-

2Note that at N times compression, the total number of param-
eters will not be strictly equal to the 1

N
of the original model. This

is because some modules of the original model are not covered
by the mask ζ, such as the patch embedding module, the word
embedding module, and the classification head. In addition, at the
same compression ratio, different searched masks will also lead to
different structures and FLOPs of the compressed model.

sponding to the compressible components on this model is
ζ = {ζva , ζvm, ζla, ζlm, ζc0a , ζc1a }. As shown in Table 3 and
6, we compress the original model with Mask-based Prun-
ing, Magnitude-based Pruning, Iterative Pruning, Unified
Pruning, their combinations, and UPop, respectively.

4.2. Effect of Unified Pruning

At the 2× compression ratio, Table 3 shows that compared
to the Mask-based Pruning, Unified Pruning gains 3.76%
and 3.88% accuracy improvement on the dev set and test
set, respectively. Furthermore, Unified Pruning converges
successfully at the 3× compression ratio, while Mask-based
Pruning does not. Table 6 shows that Unified Pruning also
outperforms Magnitude-based Pruning under the same set-
ting of the compression ratio and granularity.

Unified Pruning enables the model to adaptively assign ap-
propriate compression ratios among different compressible
components. Table 7 demonstrates that Unified Pruning can
rescue us from the burden of repeated experiments (e.g., do-
ing grid search) for searching the optimal compression ratio
assignment. Furthermore, Figure 3 visualizes the proportion
of all compressible components retained in the compressed
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Table 7: Comparisons between manually and adaptively assigning different compression ratios to different components of different
modalities. Experiments are conducted with the 2 × compressed BLIP model on the NLVR2. The percentages in the table indicate
the remaining parameters. Note that although the total compression ratio is the same for all experiments, the summation of individual
percentages per row is different because the proportion of each component to the total number of model parameters is different.

Assignment Vision Attention Language Attention Cross Attention1 Cross Attention2 Vision FFN Language FFN Test Acc

Maunal 50% 50% 50% 50% 50% 50% 76.44
Maunal 22% 62% 26% 75% 59% 53% 73.75
Maunal 44% 80% 17% 27% 83% 41% 80.01
Maunal 26% 73% 70% 63% 12% 64% 61.31
Maunal 58% 81% 19% 18% 47% 72% 78.80

Adaptive (Ours) 81% 58% 18% 19% 72% 47% 81.13

Original Model

v
att
v
mlp
c0
att
c1
att
l
att
l
mlp

100100100100100100100100100100100100
100100100100100100100100100100100100
100100100100100100100100100100100100
100100100100100100100100100100100100
100100100100100100100100100100100100
100100100100100100100100100100100100

2×Compression

77 9 88 94 97 98 98 95 97 95 86 38
76 70 70 74 76 79 79 78 75 75 69 40
2 2 2 2 58 9 2 73 64 6 2 2
2 2 2 2 59 17 2 73 61 2 2 2
81 53 41 44 52 84 81 81 55 67 38 22
54 57 62 63 64 62 62 57 41 19 15 9

3×Compression

72 3 61 88 91 92 95 92 94 83 55 2
57 55 48 54 52 51 52 48 42 45 36 12
2 2 2 2 34 2 2 69 50 2 2 2
2 2 2 2 25 2 2 69 48 2 2 2
61 30 16 33 14 62 55 62 28 55 30 17
25 26 33 31 34 32 32 21 16 4 2 2

1 2 3 4 5 6 7 8 9 10 11 12
4×Compression

v
att
v
mlp
c0
att
c1
att
l
att
l
mlp

59 2 31 88 94 92 86 83 91 67 31 2
47 45 37 37 33 32 29 26 22 27 21 4
2 2 2 2 11 2 2 64 44 2 2 2
2 2 2 2 3 2 2 66 38 2 2 2
53 5 20 28 12 42 44 53 14 45 30 23
17 16 20 16 20 18 17 12 10 2 0 0

1 2 3 4 5 6 7 8 9 10 11 12
5×Compression

34 2 19 75 80 78 86 84 80 52 20 2
39 39 28 26 20 20 17 17 14 17 14 3
2 2 2 2 3 2 2 62 45 2 2 2
2 2 2 2 2 2 2 64 23 2 2 2
47 8 9 11 2 44 38 48 16 42 25 22
14 12 16 12 14 12 11 7 6 1 0 0

1 2 3 4 5 6 7 8 9 10 11 12
10×Compression

9 2 5 36 61 44 52 38 41 23 9 2
13 16 9 8 7 5 5 4 3 5 6 1
2 2 2 2 2 2 2 47 34 2 2 2
2 2 2 2 2 2 2 55 16 2 2 2
5 6 3 2 3 22 16 25 6 38 19 2
7 7 10 9 9 5 4 3 2 1 0 0

0.0 0.2 0.4 0.6 0.8 1.0

Figure 3: The proportion of all compressible components retained in the compressed BLIP model on the NLVR2. These six subfigures
represent the original model and the compressed model at the 2×, 3×, 4×, 5×, and 10× compression ratio, respectively. In each
subfigure, the horizontal axis represents the layer number, the vertical axis represents the compressible components corresponding to each
ζi, and the number in cells represents the retained proportion of a certain component’s certain layer.

model. It can be observed from the figure that retained pro-
portion of each compressible component has significantly
different trends as the compression ratio increases. More-
over, there are obviously unbalanced compression assign-
ments in different layers at different compression ratios.

4.3. Effect of Progressive Pruning

As shown in Table 3, at the 2× compression ratio, the Uni-
fied and Progressive Pruning (UPop) gains further 0.83%
and 0.81% accuracy improvement on the dev set and test
set compared to the Unified Pruning. Moreover, at the
3× compression, the improvements are extended to 5.64%
and 5.95%, respectively. At the higher 4×, 5×, and 10×
compression ratio, the Progressive Pruning can still enable
the compressed model to converge successfully, while both
Mask-based Pruning and Unified Pruning fail. Furthermore,
Table 6 shows that the proposed Progressive Pruning also
outperforms Iterative Pruning with STE under the same
setting of the compression ratio and granularity.

To further illustrate how Progressive Pruning strengthens
the convergence capability of the compressed model, we
compare the performance of pruned subnets in the situation
that search without any retraining or search with only one
epoch retraining. Table 4 shows that the model compressed
by UPop can converge without any retraining while the
other two compression approaches fail. Furthermore, Table
5 shows that with only one epoch retraining, the model
compressed by UPop converges at significantly superior
performance to the other two approaches. The experiments
in Table 4 and 5 indicate that Progressive Pruning maintains
the convergence capability of the compressed model by
initializing the pruned subnet to be retrained with better
parameter weights.

4.4. Experiments on the Image Caption Task

To validate the versatility of the proposed UPop, we fur-
ther conducted experiments on the Image Caption task. We
compress the fine-tuned BLIP model on the COCO dataset
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Table 8: Compression results on the Image Caption task and the Visual Question Answering task. The CIDEr, SPICE, test-dev, and
test-std are the higher the better. The units of Params and FLOPs are M and G, respectively.

Approach Reduce Image Caption Visual Question Answering

CIDEr SPICE Params FLOPs test-dev test-std Params FLOPs

Uncompressed 1× 133.3 23.8 224.0 65.7 77.4 77.5 361.6 186.1

Mask-based
Pruning

2× 112.9 21.0 124.9 33.2 71.6 71.6 205.8 96.4
4× 60.7 12.8 75.4 17.1 69.2 69.3 128.4 51.7

2× 127.9 23.1 124.7 44.2 75.2 75.4 216.4 118.7Unified Pruning
(Ours) 4× 100.3 19.1 77.5 25.6 73.5 73.6 135.3 77.3

2× 128.9 23.3 127.1↓43% 39.8↓39% 76.3 76.3 211.3↓42% 109.4↓41%UPop
(Ours) 4× 117.4 21.7 76.5↓66% 22.2↓66% 74.5 74.6 133.3↓63% 62.3↓67%

Table 9: Compress BLIP on the COCO and Flickr30K datasets of the Image-Text Retrieval task. The R@1, R@5, and R@10 are the
higher the better. The units of Params and FLOPs are M and G, respectively.

Dataset Approach Reduce Image→ Text Text→ Image Params FLOPs
R@1 R@5 R@10 R@1 R@5 R@10

COCO
(5K test set)

Uncompressed 1× 81.9 95.4 97.8 64.3 85.7 91.5 447.6 153.2

Mask-based
Pruning

2× 61.7 85.0 91.1 46.0 73.2 82.6 249.5 77.3
4× 7 7 7 7 7 7 7 7

Unified Pruning
(Ours)

2× 75.4 92.9 96.3 57.6 81.9 88.7 253.1 103.4
4× 40.3 69.3 80.2 31.3 58.8 70.7 148.7 61.4

UPop
(Ours)

2× 77.4 93.4 97.0 59.8 83.1 89.8 248.9↓44% 88.3↓42%
4× 62.9 86.2 92.3 47.4 74.8 83.9 147.9↓67% 50.2↓67%

Flickr30K
(1K test set)

Uncompressed 1× 96.8 99.9 100.0 86.9 97.3 98.7 447.6 153.2

Mask-based
Pruning

2× 78.9 92.7 95.5 63.8 85.1 90.1 249.3 77.2
4× 7 7 7 7 7 7 7 7

Unified Pruning
(Ours)

2× 92.2 99.0 99.8 78.5 93.7 96.1 252.3 104.1
4× 50.0 76.1 84.3 40.8 68.1 77.0 148.7 60.8

UPop
(Ours)

2× 94.0 99.5 99.7 82.0 95.8 97.6 250.5↓44% 91.0↓41%
4× 85.8 97.4 98.4 71.3 91.0 94.8 147.6↓67% 51.0↓67%

at a ratio of 2 and 4 times, respectively. The model con-
sists of a ViT as the image encoder and a Bert with cross-
attention as the text decoder. Therefore the mask ζ corre-
sponding to the compressible components on this model is
ζ = {ζva , ζvm, ζla, ζlm, ζca}. Table 8 shows that UPop also
achieves superior performance on the Image Caption task.

4.5. Experiments on the Visual QA Task

We compress the fine-tuned BLIP model on the VQA2.0
dataset at a ratio of 2 and 4 times, respectively. The
model consists of a ViT as the image encoder, a Bert with
cross-attention as the text encoder, and a Bert with cross-
attention as the text decoder. Therefore the mask ζ corre-
sponding to the compressible components on this model is
ζ = {ζva , ζvm, ζl,ena , ζl,enm , ζl,dea , ζl,dem }. Table 8 shows
the improved performance of UPop on the VQA task.

4.6. Experiments on the Retrieval Task

We compress the fine-tuned BLIP model on the COCO
and Flickr30K datasets at a ratio of 2 and 4 times, respec-
tively. The model consists of a ViT as the image encoder, a
Bert with cross-attention as the text encoder, an extra ViT
as the momentum image encoder, and an extra Bert with
cross-attention as the momentum text encoder. Since the
momentum models are updated by taking the moving aver-
age of normal models, we do not add the compression mask
into the momentum models. Therefore the mask ζ corre-
sponding to the compressible components on this model is
ζ = {ζva , ζvm, ζla, ζlm, ζca}. Table 9 shows the improved
performance of UPop on the Image-Text Retrieval task.

To further validate the versatility of UPop on different model
architectures, we also compressed the dual-stream architec-
ture, CLIP (Radford et al., 2021), on the Image-Text Re-
trieval task. Table 10 shows that UPop is able to achieve
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Table 10: Compress CLIP on the COCO and Flickr30K datasets of the Image-Text Retrieval task. Notations are the same as in Table 9.

Dataset Approach Reduce Image→ Text Text→ Image Params FLOPs
R@1 R@5 R@10 R@1 R@5 R@10

COCO
(5K test set)

Uncompressed 1× 71.5 90.8 95.4 56.8 80.7 87.6 856.0 395.7

2× 70.8 90.8 95.2 53.1 79.9 87.3 473.7↓45% 196.3↓50%UPop
(Ours) 4× 56.1 82.4 90.2 41.1 71.0 81.4 280.2↓67% 105.9↓73%

Flickr30K
(1K test set)

Uncompressed 1× 96.8 100.0 100.0 86.6 97.8 99.1 856.0 395.7

2× 93.2 99.4 99.8 80.5 95.4 97.6 474.3↓45% 201.1↓49%UPop
(Ours) 4× 82.9 95.7 97.8 67.3 89.5 93.5 278.5↓67% 102.6↓74%
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Figure 4: The left and right subfigures illustrate the Accuracy-FLOPs and Accuracy-Parameter trade-off, respectively. ∗ indicates the
performance of the deployable model if the original model is non-deployable. Two subfigures demonstrate that the proposed UPop
(marked with the blue triangle) achieves better performance on both trade-offs. Note that token-specific compression approaches only
reduce FLOPs and not the number of parameters. Therefore they are vertical lines in the Accuracy-Parameter trade-off figure.

comparable effectiveness to BLIP on CLIP. 3

4.7. Experiments on the Image Classification Task

In addition to the multimodal tasks that UPop mainly fo-
cuses on, UPop can also be adapted to unimodal tasks by
combining Unified Search on different structures and Pro-
gressive Pruning. As illustrated in Figure 4 and reported in
Appendix Table 16, we conduct DeiT (Touvron et al., 2021)
compression on ImageNet dataset (Deng et al., 2009), and
UPop can also achieve competitive performance compared
to other unimodal compression SOTA approaches.

5. Conclusion
This paper proposes a novel multimodal pruning frame-
work, Unified and Progressive Pruning (UPop), for vision-

3Note that we use the momentum distillation to finetune CLIP
on the Image-Text Retrieval task. Due to the introduction of mo-
mentum models, the number of parameters and FLOPs in Table 10
are approximately twice as high as the original CLIP, respectively.

language Transformers. UPop unifiedly searches on all com-
pressible components consisting of Self-Attentions, MLPs,
and Cross-Attentions of all modalities, and thus can adap-
tively assign appropriate compression ratios for all compo-
nents. Moreover, analysis of masks indicates that the im-
portance of components for compression varies. Therefore,
the proposed unified search is a better choice than manu-
ally assigning compression ratios among different compo-
nents, which is inefficient and sub-optimal. Furthermore,
UPop progressively conducts search and retraining, which
effectively strengthens the convergence capability of the
compressed model and enables higher compression ratios.
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A. Implementation Details
A.1. Hyperparameter Settings

Table 11: Training hyperparameters for compressing BLIP-based models.

Hyperparameters

BLIP-NLVR
(Li et al., 2022)

BLIP-Caption
(Li et al., 2022)

BLIP-VQA
(Li et al., 2022)

BLIP-Retrieval
(Li et al., 2022)

NLVR2
(Suhr et al., 2018)

COCO
(Lin et al., 2014)

VQAv2
(Goyal et al., 2017)

COCO
(Lin et al., 2014)

Flickr30K
(Young et al., 2014)

Optimizer AdamW (Loshchilov & Hutter, 2017)
AdamW β (0.9, 0.999)
Weight decay 0.05
Batch size 256
Search epochs 15 5 10 6 12
Search LR 3e-6 1e-5 2e-5 1e-5 1e-5
Retrain epochs 15 5 10 6 12
Retrain LR 3e-6 1e-5 2e-5 1e-5 1e-5
Search LR schedule N/A
Retrain LR schedule CosineLRScheduler (Loshchilov & Hutter, 2016)
Data augmentation RandomAugment (Cubuk et al., 2020)

Table 12: Training hyperparameters for compressing CLIP, DeiT, and Segmenter.

Hyperparameters
CLIP (Radford et al., 2021) DeiT (Touvron et al., 2021) Segmenter (Strudel et al., 2021)

COCO
(Lin et al., 2014)

Flickr30K
(Young et al., 2014)

ImageNet
(Deng et al., 2009)

ADE20k
(Zhou et al., 2017)

Optimizer AdamW (Loshchilov & Hutter, 2017) SGD (Robbins & Monro, 1951)
Optimizer settings AdamW β (0.9, 0.999) SGD momentum 0.9
Weight decay 0.2 0.2 0.05 0
Batch size 256 256 4096 64
Search epochs 6 12 60 16
Search LR 1e-5 1e-5 8e-4 4e-3
Retrain epochs 6 12 300 64
Retrain LR 1e-5 1e-5 8e-4 4e-3
Search LR schedule N/A
Retrain LR schedule CosineLRScheduler (Loshchilov & Hutter, 2016) PolynomialLR (Strudel et al., 2021)

Data augmentation RandomAugment
(Cubuk et al., 2020)

RepeatedAugment
(Touvron et al., 2021)

Standard pipline from
MMSegmentation (Contributors, 2020)

Table 13: Structure hyperparameters for all models used in our experiments. The superscript ∗ indicates 2 Transformers share parameters.
The superscript †: 12 layers for the encoder and 2 layers for the decoder.

Model Input
resolution

Vision Transformer Language Transformer
number layers width heads number layers width heads

BLIP-NLVR (Li et al., 2022) 384×384 2∗ 12 768 12 1 12 768 12
BLIP-Caption (Li et al., 2022) 384×384 1 12 768 12 1 12 768 12
BLIP-VQA (Li et al., 2022) 480×480 1 12 768 12 2 12 768 12
BLIP-Retrieval (Li et al., 2022) 384×384 2 12 768 12 2 12 768 12
CLIP (Radford et al., 2021) 336×336 2 24 1024 16 2 12 768 12
DeiT (Touvron et al., 2021) 224×224 1 12 384 6 0 - - -
Segmenter (Strudel et al., 2021) 512×512 2 (12, 2)† 384 6 0 - - -
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A.2. Scope of Compressible Components

Self-Attentions, Cross-Attentions, and MLPs are widely used components in multimodal transformer layers. Consequently,
the scope of compressible components in our experiments includes Self-Attentions, MLPs, and Cross-Attentions of both
Vision Transformers and Language Transformers. Note that Cross-Attention only needs to be compressed if it exists. In
early multimodal Transformers, e.g., LXMERT (Tan & Bansal, 2019) and ViLBERT (Lu et al., 2019), Cross-Attention
exists within both vision and language Transformers. In some more modern works, Cross-Attention exists in only one of the
modalities, such as CoCa (Yu et al., 2022) and BLIP (Li et al., 2022). In addition, there are also a few models, such as CLIP
(Radford et al., 2021), that do not have explicit Cross-Attention but only conduct cross-modality interaction by maximizing
the cosine similarity of outputs from different modalities.

A.3. Compression Granularity and Deployability

UPop is a structured pruning approach whose minimum granularity is an entire row or column in the weights of model
parameters, and a deployable pruning approach that allows the compressed model to be physically extracted from the
original model. Generally speaking, structured approaches such as UPop are relatively easier to deploy, while unstructured
approaches such as (Gan et al., 2022) are relatively hard to deploy. More specifically, suppose we are going to prune a
fully connected layer with the parameter θ ∈ Rw1×w2 , then unstructured approaches will add a binary mask of the same
shape w1 × w2 on the θ, and every row and column of the mask may have a different amount of 0 after pruning, which
results in difficulty for extracting all the weights with a mask of 1 to constitute a legal and smaller parameter matrix for the
pruned layer. However, UPop will add a binary mask of the shape w1 on the output of the fully connected layer. Hence each
position in the mask of UPop corresponds to an entire row of the parameter matrix θ. It is simple to constitute a legal and
smaller parameter matrix for the pruned layer by physically removing the entire rows from the original parameter matrix θ.

Besides, ViT-Slimming (Chavan et al., 2022) compress heads of Self-Attentions with unrestricted compression ratio, and
thus the compressed model may have different embedding sizes of heads within a layer. However, the matrix computation of
the attention map on regular hardware (e.g., GPU cards) requires the query and key of each head within a layer to have the
same embedding size. By restricting each head within the same layer to have the same compression ratio, UPop frees from
non-deployable matrix computation and becomes structured across heads within individual layers.

A.4. Implentation of Mask-based Pruning

The Mask-based Pruning is outlined in Algorithm 2. Line 1∼ 10 implements the search phase, and Line 11∼ 13 implements
the retrain phase.

Algorithm 2 Mask-based Pruning
Input: Original model F , parameters of the original model θ, parameters of the trainable mask ζ, total compression ratio p,

iterations in the search stage Ts and retrain stage Tr, learning rate for the search stage α and retrain stage β
Output: Model F? after the search and retrain

1 for t← 0 to Ts − 1 do
2 # Calculate the loss L
3 L ← LO + wa

∑
ζi∈ζa

‖ζi‖1 + wm
∑

ζi∈ζm
‖ζi‖1

4 # Normally update both θ and ζ with the original optimizer

5 θ(t+1) ← θ(t) − α 1
n

∑n
i=1∇θL(θ(t), ζ(t)), ζ(t+1) ← ζ(t) − α 1

n

∑n
i=1∇ζL(θ(t), ζ(t))

6 # Individually generate each pruning mask Mi by ranking and selecting on each ζi
7 for ζi ∈ ζ do
8 Mi ← TopKMask(ζ

(Ts)
i , p · Size(ζi))

9 # Compress each θi based on each Mi and accordingly compress F
10 θ̂ ← {θ(Ts)

i |Mi = 1}, Fp ← F(x|θ̂, ζ(Ts))

11 # Further finetune the pruned subnet F(x|θ̂, ζ(Ts)) with the original optimizer
12 for t← 0 to Tr − 1 do
13 θ̂(t+1) ← θ̂(t) − β 1

n

∑n
i=1∇θ̂LO(θ̂

(t))

14 return F? ← Fp(x|θ̂(Tr))
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A.5. Implentation of Unified Pruning

The Unified Pruning is outlined in Algorithm 3. Line 1 ∼ 11 implements the search phase, and Line 12 ∼ 14 implements
the retrain phase.

Algorithm 3 Unified Pruning
Input: Original model F , parameters of the original model θ, parameters of the trainable mask ζ, total compression ratio p,

iterations in the search stage Ts and retrain stage Tr, learning rate for the search stage α and retrain stage β
Output: Model F? after the search and retrain

1 for t← 0 to Ts − 1 do
2 # Calculate the loss L
3 L ← LO + wa

∑
ζi∈ζa

‖ζi‖1 + wm
∑

ζi∈ζm
‖ζi‖1

4 # Normally update both θ and ζ with the original optimizer

5 θ(t+1) ← θ(t) − α 1
n

∑n
i=1∇θL(θ(t), ζ(t)), ζ(t+1) ← ζ(t) − α 1

n

∑n
i=1∇ζL(θ(t), ζ(t))

6 # Conduct z-score standardization to make ζa and ζm after the search comparable

7 ζ
(Ts)
a ← (ζ

(Ts)
a − E[ζ(Ts)

a ])/(E[[ζ(Ts)
a − E[ζ(Ts)

a ]]2])
1
2 , ζ

(Ts)
m ← (ζ

(Ts)
m − E[ζ(Ts)

m ])/(E[[ζ(Ts)
m − E[ζ(Ts)

m ]]2])
1
2

8 # Generate pruning mask M by ranking and selecting on ζ

9 M ← TopKMask(ζ(Ts), p · Size(ζ))
10 # Compress θ based on M and accordingly compress F
11 θ̂ ← {θ(Ts)|M = 1}, Fp ← F(x|θ̂, ζ(Ts))

12 # Further finetune the pruned subnet F(x|θ̂, ζ(Ts)) with the original optimizer
13 for t← 0 to Tr − 1 do
14 θ̂(t+1) ← θ̂(t) − β 1

n

∑n
i=1∇θ̂LO(θ̂

(t))

15 return F? ← Fp(x|θ̂(Tr))

B. Supplementary Related Works
Global pruning Movement Pruning (Sanh et al., 2020) prunes unimodal BERT (Devlin et al., 2018) and investigates the
global pruning, which conducts ranking on the whole model. The differences between it and UPop are: 1) It only prunes
across different structures in unimodality language, while UPop not only prunes across different structures but also prunes
across modalities. Therefore, it and UPop are complementary in terms of scope. 2) It finds local (ranking inside each
weight matrix) and global pruning perform similarly on language tasks. However, UPop finds separate and unified pruning
performs notably differently on multimodal tasks. And the different conclusions may be attributed to the intrinsic properties
of different modalities and could be a meaningful topic for future research. 3) It treats all weights equally when ranks mask
of different structures (i.e., Self-Attentions and MLPs). However, UPop notices that simply unified search space of different
structures fail and proposes a solution based on z-score standardization to tackle this problem.

Iterative pruning Iterative pruning is an existing technique used by some prior works (Sanh et al., 2020; Liu et al., 2022b).
The differences between it and UPop are: 1) It divides weights into multiple groups, and each time only binarizes a smaller
number of non-zero weights to 0. For example, to achieve a 50% total compression ratio, it divides weights into five groups,
and each time only binarizes 10% non-zero weights to 0. On the other hand, UPop prunes each weight to make them from
the original value progressively converge to zero. For example, suppose there is a single weight with an original value of 2.8.
Then UPop will progressively prune this value to 0 (e.g., 2.8 to 2.7 to 2.6 to · · · to 0.1 to 0) while iterative pruning will
directly prune it from 2.8 to 0. 2) Its binary masks take value from the set {0, 1} while real-value masks of UPop take value
from the interval [0, 1]. 3) Iterative pruning in (Sanh et al., 2020; Liu et al., 2022b) has to use the straight-through estimator
(Bengio et al., 2013) to approximate gradients of binary masks to ensure weights can be normally updated, while this is not
needed for real-value masks used by UPop.

Parameter-efficient Tuning Parameter-efficient tuning includes but not limited to low-rank adaptation (Hu et al., 2021;
Hyeon-Woo et al., 2021), prompt tuning (Liu et al., 2022a; 2021a), parameter sharing (Lan et al., 2019; Shi et al., 2021),
adapters (He et al., 2021; Sung et al., 2022), and dropout (Fan et al., 2019; Shi et al., 2022). The difference between them
and UPop is that they are used for reducing learnable parameters during tuning instead of inference. In contrast, UPop is
used for reducing the parameters and FLOPs during inference instead of tuning.
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C. Supplementary Experiments and Analyses
C.1. Variation of Compressible Components and Layers

1× 2× 3× 4× 5× 10×0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
t

Component
v
att
v
mlp
c0
att
c1
att
l
att
l
mlp

1× 2× 3× 4× 5× 10×

Layer
1
2
3
4
5
6
7
8
9
10
11
12

Figure 5: The left subfigure: variation of compressible components as the compression ratio increases. The right subfigure: variation of
layers as the compression ratio increases.

Unified Pruning enables the model to adaptively assign appropriate compression ratios among different compressible
components. Accordingly, we demonstrate the variation of all components and layers as the total compression ratio increases
in Figure 5. The left subfigure shows that the retained percentage of Self-Attention of ViT and Self-Attention of Bert among
all compressible components significantly increases as the compression ratio increases. In contrast, the retained percentage
of MLP of ViT and MLP of Bert decreases. This indicates that Self-Attentions have higher importance than MLPs when the
number of parameters is limited. It can also be observed that vision modality is more important than language modality in
this task. The trend of the retained percentage of Cross-Attention generally decreases and then increases. This phenomenon
indicates that at low compression ratios, the parameters of the visual and language modalities are relatively adequate.
Therefore cross-attention is less important at this time. At high compression ratios, the vision and language modality lacks
sufficient parameters, and cross-attention becomes more critical.

Similarly, the right subfigure of Figure 5 demonstrates the variation of all layers as the total compression ratio increases.
It can be observed that the middle layers occupy an increasing proportion as the total compression ratio increases, which
indicates that the majority of modalities’ information is generated in the middle layers of the model. In the earlier layers, the
information is not detailed enough. In contrast, in the last several layers, the refinement of the information becomes less
critical when the number of parameters is limited.

C.2. Study on Update Strategy of Compression Ratio

Compression ratio pt is a monotonically increasing function of iteration number t, and an intuitive design for updating pt is
to increase pt evenly as t increases, i.e.:

pt = p
t

Ts − 1
(14)

It is worth noting that according to the implementation of Algorithm 1, the current compression ratio pt of tth iteration
means that pt% of embeddings has been compressed by pt

p %. As a consequence, the actual compression ratio at should be
the ratio of the compressed embedding size multiplied by the ratio of each embedding that is compressed:

at = pt ×
pt
p

=
p2t
p

(15)

In addition to the monotonically increasing property, a more appropriate update strategy than a uniform update strategy also
needs to satisfy:

• On the one hand, the actual compression ratio should increase relatively slowly at the beginning of searching. Because
when the iteration number t is small, the cumulative gradients are relatively volatile, and the generated mask is relatively
inaccurate.
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• On the other hand, the actual compression ratio should also increase relatively slowly toward the end of searching.
Because as the current compression ratio gradually increases, the difficulty of compression also increases.

Formally speaking, at is supposed to satisfy:
a0 = 0

aTs−1 = p
dat
dt ≥ 0, ∀t ∈ [0, Ts − 1]

∃ t0 ∈ (0, Ts) s.t.
d2at
dt2 > 0, ∀t ∈ (0, t0), and d2at

dt2 < 0, ∀t ∈ (t0, Ts − 1)

(16)

For example, the integration of trigonometric function f(x) = sin πx
Ts−1 defined on interval [0, Ts − 1] satisfies the latter

two requirements of the Equation 16. To further satisfy the first two properties, we only need to let

p

∫ t
0
sin πx

Ts−1dx∫ Ts−1
0

sin πx
Ts−1dx

=
p

2
(1− cos

πt

Ts − 1
) = at =

p2t
p

(17)

And thus
pt = p(

1

2
(1− cos(

πt

Ts − 1
)))

1
2 (18)

is a function that satisifies all requirements.

Table 14: Study on how the update strategy of compression ratio pt affects the performance. The last one is adopted as our update strategy.

pt Dev Acc Test Acc

p t
Ts−1

79.94 80.84

p (2Ts−t+1)t
((Ts+1)Ts)

80.38 81.13

p( 1
2
(1− cos( πt

Ts−1
)))

1
2 80.33 81.13

Table 14 shows the performance of the 2 × compressed BLIP-NLVR model with different pt update strategies. The first
one is the uniform update, while the last one is the strategy we adopted. There is obvious performance improvement when
replacing the uniform update with p( 12 (1− cos( πt

Ts−1 )))
1
2 . Besides, the last one is not the only feasible strategy, and other

update strategies that satisfy requirements in Equation 16 should also achieve better performance than uniform update. For
example, the second strategy p (2Ts−t+1)t

((Ts+1)Ts)
also satisfies requirements and also achieves comparable performance to the

strategy we adopted.

C.3. Study on the frequency of Updating Compression Mask ζ

We also explore how the frequency of updating mask ζ affects the model performance. Experimental results on the 2×
compressed BLIP-NLVR model are reported in Table 15. Update compression mask ζ at intervals has two benefits:

• On the one hand, it can reduce a small amount of computation during searching.

• On the other hand, it can be observed from Table 15 that updating the ζ too frequently causes the compressed model to
tend to overfit on the validation set.

Table 15: Study on how the frequency of updating compression mask ζ affects the model performance. Frequency 50 is adopted by us.

Frequency Dev Acc Test Acc

1 80.97 80.14

10 80.48 80.86
50 80.33 81.13

The frequency 1 means updating ζ each time the model parameters θ are updated, while frequency 10 means updating
ζ once every 10 times the model parameters θ are updated. Consequently, frequency 50 is adopted by us for the 2×
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compressed BLIP-NLVR model, which mitigates the overfitting in the validation set and improves the performance on
the test set. It is worth noting that the appropriate frequency varies for different models and tasks. Empirically, setting
the frequency to the number of iterations corresponding to the 1% compression ratio is more likely to be appropriate. For
example, if we aim to accomplish 50% compression ratio in 1000 iterations, then a frequency about 1000× 1

50 = 20 should
be recommended.

C.4. Experiments on the Image Classification Task

Table 16: Compress DeiT on the ImageNet dataset. The units of Params and FLOPs are M and G, respectively. The superscript ∗ indicates
the performance of the deployable model if the original model is non-deployable. For fairness of comparison, all reported experimental
results, including UPop, do not use knowledge distillation.

Approach Top-1 (%) Top-5 (%) Params FLOPs

DeiT (Touvron et al., 2021) 79.9 95.0 22.0 4.6
GLiT (Chen et al., 2021a) 80.5 - 24.6 4.4
DynamicViT (Rao et al., 2021) 79.3 - 22.0 2.9
S2ViTE (Chen et al., 2021b) 79.2 - 14.6 3.1
ViTAS (Su et al., 2022) 80.2 95.1 23.0 4.9
ViT-Slimming (Chavan et al., 2022) 77.9 94.1 11.4 2.3
ViT-Slimming∗ (Chavan et al., 2022) 77.1 93.6 11.4 2.3
EViT (Liang et al., 2022) 78.5 94.2 22.0 2.3
A-ViT (Yin et al., 2022) 78.6 - 22.0 3.6

DeiT with UPop1.11× (Ours) 81.1↑1.2 95.4↑0.4 19.9↓10% 4.1↓11%
DeiT with UPop1.25× (Ours) 80.8↑0.9 95.4↑0.4 17.8↓19% 3.7↓20%
DeiT with UPop1.42× (Ours) 80.2↑0.3 95.1↑0.1 15.7↓29% 3.2↓30%
DeiT with UPop1.67× (Ours) 79.6↓0.3 94.8↓0.2 13.5↓39% 2.8↓39%
DeiT with UPop2.00× (Ours) 78.9↓1.0 94.6↓0.4 11.4↓48% 2.3↓50%

C.5. Experiments on the Image Segmentation Task

Table 17: Compress Segmenter on the ADE20k dataset. The units of Params and FLOPs are M and G, respectively. The SS and MS
mean single-scale and multi-scale testing for the mIoU metric, respectively. With and Without superscript ∗ means CNN-based and
Transformer-based models, respectively.

Approach mIoU (SS) mIoU (MS) Params FLOPs

Segmenter (Strudel et al., 2021) 45.3 46.9 26.4 38.6
Swin Transformer (Liu et al., 2021b) 44.5 46.1 60.0 236.0
SenFormer (Bousselham et al., 2021) - 46.0 59.0 179.0
SegFormer (Xie et al., 2021) 46.5 47.5 27.5 62.4
PVT (Wang et al., 2021) 39.8 - 28.2 44.5
PVTv2 (Wang et al., 2022b) 45.2 - 29.1 45.8
DeiT III (Touvron et al., 2022) 45.6 46.8 41.7 -
DeeplabV3+ (ResNet-101)∗ (Chen et al., 2018) 45.5 46.4 63.0 255.0
OCRNet (HRNet-W48)∗ (Yuan et al., 2020) - 45.7 70.5 164.8
ConvNeXt ∗ (Liu et al., 2022c) - 46.7 60.0 -
Segmenter with Mask-based Pruning (Chavan et al., 2022) 38.7 41.0 18.9 27.3

Segmenter with UPop1.10× (Ours) 45.9↑0.6 47.6↑0.7 23.9↓10% 33.7↓13%
Segmenter with UPop1.16× (Ours) 45.5↑0.6 47.3↑0.4 22.7↓14% 32.0↓17%
Segmenter with UPop1.23× (Ours) 45.3↑0.0 47.1↑0.2 21.5↓19% 30.4↓21%
Segmenter with UPop1.39× (Ours) 44.4↓0.9 46.3↓0.6 18.9↓28% 27.6↓29%

We also conduct experiments on the unimodal Segmenter-S model and ADE20k dataset for the semantic segmentation task
as shown in Table 17, where we compare Segmenter pruned by UPop with the uncompressed Segmenter and other models
with similar params/FLOPs to our pruned models. Furthermore, we also compare the performance of UPop on different
unimodal tasks. Experimental results demonstrate:

• When comparing the model pruned by UPop with the uncompressed model, UPop can achieve more than 1.2× loss-free
compression and around 1.4× compression with less than 1% mIoU loss for both single-scale and multi-scale testing.
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• When comparing the model pruned by UPop with other models with similar params/FLOPs, UPop can achieve very
competitive performance under Performance-Parameters and Performance-FLOPs trade-off constraints. For example,
the 1.1× compressed model can outperform all other models on multi-scale testing, and achieve a second place on
single-scale testing by only using 54% FLOPs of the first place model.

• When comparing UPop’s performance on the semantic segmentation task with on the image classification task (refers to
Appendix Table 16), UPop can achieve around 1.5× loss-free compression and 2× compression with no more than 1%
accuracy loss on the image classification task. We believe this ratio gap should be attributed to the intrinsic properties
of different tasks. For example, classification models have more redundancy since many pixels (e.g., background
pixels) are unimportant for classification results, and therefore classification models can be pruned more easily. On
the other hand, segmentation models have less redundancy since the model is expected to output the corresponding
category for each pixel, and therefore pruning segmentation models is more difficult.
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