
Understanding and Generalizing Contrastive Learning from the Inverse Optimal
Transport Perspective

Liangliang Shi 1 Gu Zhang 1 Haoyu Zhen 1 Jintao Fan 1 Junchi Yan 1

Abstract
Previous research on contrastive learning (CL)
has primarily focused on pairwise views to learn
representations by attracting positive samples and
repelling negative ones. In this work, we aim to
understand and generalize CL from a point set
matching perspective, instead of the comparison
between two points. Specifically, we formulate
CL as a form of inverse optimal transport (IOT),
which involves a bilevel optimization procedure
for learning where the outter minimization aims
to learn the representations and the inner is to
learn the coupling (i.e. the probability of match-
ing matrix) between the point sets. Specifically,
by adjusting the relaxation degree of constraints
in the inner minimization, we obtain three con-
trastive losses and show that the dominant con-
trastive loss in literature InfoNCE falls into one of
these losses. This reveals a new and more general
algorithmic framework for CL. Additionally, the
soft matching scheme in IOT induces a uniformity
penalty to enhance representation learning which
is akin to the CL’s uniformity. Results on vision
benchmarks show the effectiveness of our derived
loss family and the new uniformity term.

1. Introduction
Unsupervised/self-supervised learning of representation (Hu
et al., 2021; Grill et al., 2020) has garnered increasing at-
tention. With contrastive learning (CL) (Chen et al., 2020;
Gao et al., 2021), representation is learned by selecting an
anchor and then identifying its positive/negative samples.
The contrastive loss based on feature similarity is then used
to distinguish between positive and negative pairs. However,
the comparison of positive and negative pairs is often em-
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pirical, and popular contrastive losses like InfoNCE (Oord
et al., 2018) have some inconsistencies in interpreting the
lower bound of mutual information (Tschannen et al., 2019).
Maximizing a tighter bound can also lead to worse perfor-
mance for downstream tasks, leaving the full understanding
of CL still open.

In this paper, we aim to understand CL with a collective
point set matching perspective, which differs from main-
stream pairwise contrasting practices. As shown in Fig. 1,
traditional methods (Chen et al., 2020; He et al., 2020) focus
on improving the similarity for positive pairs and decreas-
ing it for negative pairs, by considering only one anchor
at a time to form positive/negative pairs in isolation. This
approach can easily ignore the relationships and influences
among different anchors.

In contrast to this pairwise view, we consider the set of mini-
batch samples as a whole and learn the representations by
matching between two point sets, where each sample feature
is regarded as a point as shown in Fig. 1(b). With this point
set matching view, we propose to learn the representations
with Inverse Optimal Transport (IOT) (Li et al., 2019; Stuart
& Wolfram, 2020), which aims to learn the cost matrix
instead of the coupling (i.e. the probability of matching
matrix) in OT. In this paper, for solving the IOT problem,
we view it with a bilevel optimization problem, where the
inner minimization aims to learn the coupling matrix by
varying the constraint relaxation and the outer minimization
is to learn the representations by supervising the coupling
calculated in inner minimization. Under this formulation,
we can get some findings such as the equivalence between
temperature coefficient in InfoCNE and the coefficient of
entropic regularization in OT.

Furthermore, we propose a new penalty term based on the
coupling matrix within our IOT framework, which encour-
ages uniform matching probabilities among negative pairs.
This is consistent with previous works (Wang & Isola, 2020;
Wang & Liu, 2021) that have shown the importance of uni-
formity in contrastive learning. The contribution of the
paper can be summarized as follows:

1) We propose a novel set matching view for contrastive
learning, which jointly involves a collection matching of

1



Understanding and Generalizing Contrastive Learning from the Inverse Optimal Transport Perspective

(a) pairwise contrasting (b) collective matching

Figure 1. Illustrative comparison between traditional contrastive learning and our point set matching framework. (a) In the traditional
pairwise contrasting protocol, mainstream methods learn to attract the positive samples and repel the negative ones given one anchor z1.
(b) In our point set matching protocol, we consider the mini-batch features as a whole and learn the representations by improving the
matching between two feature sets from different encoders/augmentations with the same mini-batch data.

points, rather than anchor-based pairwise comparison (i.e.
positive/negative pairs) as done in previous CL works.

2) Based on the above perspective, we propose IOT-CL,
which involves a bilevel optimization. It can be proved that
the objective of minimization is a family of new contrastive
loss functions by varying the degree of constraint relaxation
in the coupling set: i) the equivalence between our loss and
InfoNCE with a specified coupling set, which represents
a new interpretation of InfoNCE in addition to the lower
bound of mutual information. ii) Other two kinds of con-
trastive losses are proposed by loosening and tightening
the degree of constraint relaxation compared with the con-
straints of InfoNCE. The former loss enjoys a closed-form
result and the latter one need iterative computing of the
coupling to get the final loss.

3) We give a new understanding of uniformity for CL, that
is, the matching probabilities of negative pairs remain low
and even. With this idea, we propose the uniformity penalty
on the coupling. Experiments show the effectiveness of the
penalty term. The experimental results verify the effective-
ness of our approach.

2. Background and Related Works
2.1. Optimal Transport and Entropic Regularization

As originally introduced by (Kantorovich, 1942), the dis-
crete (in the sense of the matching target e.g. a point set)
Kantorovich’s Optimal Transport is to solve a linear pro-
gram, which is widely used for many classical problems
such as matching (Wang et al., 2013). Specifically, given
the cost matrix C, Kantorovich’s OT involves solving the
coupling P (i.e. the joint probability matrix):

min
P∈U(a,b)

< C,P >=

n∑
i=1

m∑
j=1

CijPij , (1)

where a ∈ Rn, b ∈ Rm are histograms (probability vec-
tors), and U(a,b) is the set of the couplings:

U(a,b) = {P ∈ Rn×m
+ |P1m = a,P⊤1n = b}, (2)

which is bounded and defined by n+m equality constraints.
When n = m and a = b = 1/n for each i = 1, ..., n, j =
1, ...,m, the OT is equivalent to solving a balanced matching
problem, while unbalanced matching is formulated with OT
by setting n ̸= m and a = 1/n,b = 1/m.

A lot of methods (Bertsimas & Tsitsiklis, 1997; Benamou &
Brenier, 2000) are proposed to solve the Kantorovitch OT
problem and relaxing with the entropic regularization (Wil-
son, 1969) is one of the simple but efficient methods, whose
objective reads:

min
P∈U(a,b)

< C,P > −ϵH(P), (3)

where ϵ > 0 is the coefficient for entropic regularization
H(P) and the H(P), which can be specified as

H(P) = −
∑
i,j

Pij(log(Pij)− 1). (4)

The objective in Eq. 3 is an ϵ-strongly convex function,
and thus the optimization has a unique solution, which
can be solved with iterative methods e.g. the Sinkorn
method (Sinkhorn, 1967). If we use this entropic regular-
ized OT to solve the matching problem, the hard matching
problem may convert to soft matching.

2.2. Inverse Optimal Transport

Inverse Optimal Transport (IOT) has been studied (Dupuy
et al., 2016; Li et al., 2019; Stuart & Wolfram, 2020) which
aims to infer the unknown cost C that gives rise to an obser-
vation on the coupling. (Stuart & Wolfram, 2020) proposes
a systematic approach to infer unknown costs and (Chiu

2



Understanding and Generalizing Contrastive Learning from the Inverse Optimal Transport Perspective

et al., 2022) develops the mathematical theory behind IOT.
(Li et al., 2019) shows that IOT can not only predict po-
tential matching, but is also able to explain what leads to
empirical matching and quantifies the impact of changes in
matching factors. The IOT problem can be formulated as:

min
θ

KL(P̃|Pθ)

where Pθ = arg min
P∈U(a,b)

< Cθ,P > −ϵH(P).
(5)

Indeed in many previous IOT works, they directly optimize
over Cθ which usually only involves a learnable distance
between samples rather than the sample features. In the
context of CL, it is more aimed to learn the feature repre-
sentation hence the implication is different and the resulting
method is also different.

2.3. Contrastive Learning Loss

Recently, self-supervised methods based on contrastive
learning have drawn increasing attention (Logeswaran &
Lee, 2018), which enables effective label-free pretrain-
ing. (Wu et al., 2018) proposes an instance discrimina-
tion method and adopts a contrastive loss (called NCE loss)
to improve the discrimination for positive/negative pairs.
CPC (Oord et al., 2018) learns context-invariant representa-
tions and proposes the InfoNCE loss to maximize the mutual
information between different levels of features. We revisit
typical contrastive losses to better position our matching
based methods especially for its ability for understanding
and rethinking the following two main classes of CL forms.

InfoNCE Loss and Mutual Information Maximization
View. Given two unlabeled data point sets {xi}mi=1 and
{yj}nj=1 where (xi,yi) is semantically related e.g. the raw
image and its rotated version, the popular InfoNCE loss for
CL is specified as (Oord et al., 2018):

L InfoNCE = −
n∑

i=1

log

(
exp(sii/τ)∑

k ̸=i exp(sik/τ) + exp(sii/τ)

)
,

(6)
Here sij = s(zi, z

′
j) is a similarity (e.g. cosine) between

the feature zi and z′j , where zi = f(xi) and z′j = g(yj)
with two feature extractors f(·) and g(·) mapping the (aug-
mented) raw samples from raw space (e.g. image pixel) to
the latent space. Previous works (Oord et al., 2018; Zbontar
et al., 2021; Tian et al., 2020) mainly understand the In-
foNCE from the perspective of maximizing the lower bound
of mutual information between different levels of features.
(Chen et al., 2021a) also generalized the InfoNCE loss by
adding alignment and distribution losses, and employed the
sliced Wasserstein distance to support diverse prior distri-
butions. However, it still interprets the contrastive loss with

mutual information, and some works, such as (Tschannen
et al., 2019), disagree with the lower bound interpretation.
It has been empirically observed that maximizing a tighter
bound can lead to worse performance in downstream tasks.

We will give a new interpretation with the matching view
in this paper, which in fact also well fits with our empirical
study.

Contrastive Loss based on Alignment and Uniformity.
(Wang & Isola, 2020) views CL as enforcing two properties:
alignment and uniformity of feature distributions on the
output unit hypersphere:

Lalign =
∑
i

||zi−z′i||22 and Luniform = log
∑
i,j

e2||zi−z′
j ||

2
2 .

(7)
where all features {zi} and {z′i} are ℓ2 normalized (i.e.
||zi||2 = ||z′i||2 = 1). Note Luniform is designed with Gaus-
sian potential kernel, which tries to learn the uniformity
among negative pairs. (Wang & Isola, 2020) tries to learn
with Lalign + Luniform for restricting the output space to the
unit hypersphere. In this paper, instead of reducing their L2
norm, alignment in our approach refers to improving the
chance of matching of the positive pairs while uniformity
refers to guiding the probability values of all negative pairs
to be close to each other, which generalizes the implication
of alignment and uniformity from the probablistic matching
perspective.

3. Set Matching with IOT for Deriving New
Family of Contrastive Learning Losses

Overview. We give an overview to our loss family. By
varying the relaxation in U of Eq. 8 in Sec. 3.1, we can get
different contrastive losses. When U = U(a) in Sec. 3.2,
our loss from Eq. 8 can be simplified to InfoNCE as shown
in Eq. 13 or Eq. 18. While setting U = U(1) or U =
U(a,b) in Sec. 3.3, we can get the new losses as shown in
Eq. 20 and Eq. 23, respectively. At last, akin to the CL’s
uniformity in (Wang & Liu, 2021), a new uniformity penalty
is devised with probabilistic matching by Eq. 24 in Sec. 3.4

3.1. Formulating IOT induced CL as Set Matching

We propose a point set matching approach with Inverse Op-
timal Transport for CL (IOT-CL), which studies contrastive
learning by matching two feature point sets {zi}ni=1 and
{z′j}mj=1 where zi = f(zi) and z′j = g(yj). Different from
previous formulation of IOT, we do two generalizations: 1)
cost parameterization with two feature point sets to learn the
feature extractor; 2) constraint relaxation of the coupling in
IOT. The cost matrix Cθ ∈ Rn×m

+ is designed with features
{zi}ni=1 and {z′j}mj=1 with parameters θ from the networks
f and g. Without loss of generality, we set Cθ

ij as the cosine
distance between the vectors zi and z′j , then the IOT-CL
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Figure 2. The overview of our approach for CL. The regularized OT is used to analyze and estimate the coupling (matching), which
is supervised with ground truth matching for representation learning. Given a minibatch samples, features {zi}ni=1 and {z′j}mj=1 are
extracted from the neural networks f(·) and g(·) and the cost matrix Cθ can be calculated to evaluate the distance among features. Then
under different constraints in U , we can get the coupling with Eq. 19, Eq. 12 or Eq. 22 and supervise the coupling with KL divergence (i.e.
cross-entropy loss). Besides, the uniformity penalty is also used here to improve the contrastive learning.

involves bilevel optimization as:

min
θ

KL(P̃|Pθ)

where Pθ = arg min
P∈U

< Cθ,P > −ϵH(P).
(8)

Here H(P) is the entropic regularization as defined in Eq. 4.
Different from previous works setting U = U(a,b), we
think U can be designed according to the specific circum-
stances of the problem, especially in the case of CL. We
will discuss it in detail in the next subsection. In the outer
minimization, the coupling Pθ is calculated by OT’s inner
minimization and P̃ is the ground truth for supervision de-
pending on the positive/negative pairs. For example, we
can set P̃ij = 1 when zi and z′j are positive pairs and 0
otherwise.

The aim of outer minimization is to supervise the soft match-
ing with the ground truth to learn the feature extractor (i.e.
representation learning) parameterized by θ. In the inner
minimization, the soft matching problem is formulated with
the entropic regularized Optimal Transport. Our goal is to
solve the coupling Pθ with the cost matrix Cθ. In addition
to setting U = U(a,b) where a = 1/n and b = 1/m, we
can relax the constraints in U as:

U(a) = {P ∈ Rn×m
+ |P1m = a}, (9)

which only contains half of constraints in U(a,b) and we

can also further relax the constraints as

U(1) = {P ∈ Rn×m
+ |

∑
i,j

Pij = 1}, (10)

which involves basic probability requirements for coupling.
In practical sense, U(a,b) asks the equal contribution of
each sample in a and b. And U(a) only makes the sample
equality in a, while the contribution in b can be different.
And when U = U(a,b), we do not ask for any contribution
equality in a and b, and it depends on the training of neural
networks. By varying the degree of constraint relaxation,
we can get different contrastive losses of IOT-CL. In the
following subsections, we will analyze the contrastive loss
by setting U = U(1), U(a) and U(a,b) in detail and show
the generality of our contrastive loss.

3.2. InfoNCE is a Special Case under U(a)

We first perform the analysis of contrastive loss when U =
U(a), which can be proven equivalent to the InfoNCE loss.
We begin with rewriting the inner minimization for solving
the coupling Pθ:

Pθ = arg min
P∈U(a)

< Cθ,P > −ϵH(P), (11)
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Figure 3. Results of couplings Pθ by varying ϵ given 64 trained features on CIFAR-10 based on the SimCLR framework (Chen et al.,
2020). When ϵ → 0, Pθ becomes sharper for probability prediction. With the increment of ϵ, Pθ becomes more uniform and when
ϵ → +∞, Pθ approximates to a uniform distribution, which has nothing to do with the quality of the learned features.

which can be easily solved in an analytical form with the
Lagrangian method:

Pθ
ij =

exp(−Cθ
ij/ϵ)

n
∑m

k=1 exp (−Cθ
ik/ϵ)

. (12)

The proof is given in Appendix B.1. So the solution of
coupling is in the Softmax form under U(a) for inner mini-
mization. Then in the outer minimization, if we set P̃ii =

1
n

for each i and P̃ij = 0 when i ̸= j, under U(a) the outer
minimization in fact leads to the following contrastive loss
which we introduce in this paper as our IOT-CL loss (in fact
a family of losses as will be shown later):

LU(a)
IOT-CL = − 1

n

n∑
i=1

log

(
exp(−Cθ

ii/ϵ)∑m
j=1 exp(−Cθ

ij/ϵ))

)
+ con.

(13)
where con is a constant. We can easily find the equivalence
between Eq. 13 and the InfoNCE loss in Eq. 6 if we set
Cθ

ij = c − sij (given c is large enough). It shows that we
can understand the InfoNCE with the OT-based soft match-
ing view and existing well-established theoretical results in
entropic regularized OT may help better understand CL.

Regularization Coefficient ϵ. With the equivalence be-
tween InfoNCE and our loss in Eq. 13, we can also find
that the temperature τ in InfoNCE exactly equals to the
regularization coefficient ϵ (i.e. τ = ϵ). This finding is
new and interesting to our best knowledge. Specially, when
τ → 0, (Wang & Liu, 2021) proves that the InfoNCE will
be converted to triplet loss:

Ltriplet = lim
τ→0

LInfoNCE = lim
τ→0

1

τ

∑
i

max[simax − sii, 0],

(14)
where simax is the maximum of {si,:} with the anchor fea-
ture zi. In our matching understandings, ϵ → 0 means the
hard matching without entropic regularization. In this view,
it satisfies the matching requirement by making sii be the

largest in the set {si,:}. On the other hand, when ϵ → ∞,
the coupling will become more uniform as shown in Fig. 3.
However, the uniformity for negative pairs is what we need
to learn instead of conversion results with a very large ϵ.
Thus too large ϵ is not conducive to the uniformity learning.

Connecting to Softmax Cross-Entropy Loss with IOT.
We can also view the classification under our point set match-
ing perspective based on entropic regularized OT. Assume
that the feature zi = f(xi) can be the logit vector for
sample xi and yi is the corresponding one-hot label for
m− classification with n samples in a mini-batch. Then by
defining Cθ

ij = c− zioj = c− zij where c is large enough
and oj is one-hot vector with one value on index j , then we
can‘ obtain:

L = − 1

n

n∑
i=1

m∑
j=1

yij log
ezij∑m
k=1 e

zik
, (15)

where yij ∈ {0, 1} (resp. zij) is the j-th dimension value
of one-hot vector yi (resp. logits zi). The above loss is ex-
actly the cross-entropy loss. This verifies that classification
can also be viewed as a (soft) matching problem. Besides,
InfoNCE and Softmax cross-entropy loss can be understood
under this matching view with aid of regularized OT.

Learning with Matching. A popular way is to select
the negative samples from their own minibatch samples
or corresponding augmentations e.g. InvaSpread (Ye et al.,
2019) and SimCLR (Chen et al., 2020), and in this case,
we can find m = n which means the balanced match-
ing. We take SimCLR framework as an example with the
matching view. Given N minibatch samples, the two point
sets are in the same space within 2N data points and in
this case, the matching is balanced as shown in Fig. 6(b).
Specifically, with features {zi}Ni=1 and {z′j}Nj=1, we can
reset the features as z̃2k−1 = zk and z̃2k = z′k when
k = 1, 2, . . . , N . The new cosine similarity is specified
as z̃ij = z̃i · z̃j/(||z̃i|| · ||z̃j ||). In this SimCLR case, the
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Figure 4. Comparison of different losses proposed in the paper, with the coupling by varying the degree of constraint relaxation. With
different degree of constraints of the coupling, we can get a family of contrastive loss uder U = U(1), U(a) and U(a,b).

cost matrix Cθ and ground truth P̃ read

Cθ
ij =

{
+∞, i = j,

1− z̃ij , else.
and P̃ij =


1

n
, (i, j) ∈ S,

0, else.
(16)

where S is the contrasting set for positive pairs with S =
S1 ∪ S2. Here S1 and S2 are specified as

S1 = {(i, j)|i = 2k, j = 2k − 1, k = 1, . . . , N},
S2 = {(i, j)|i = 2k − 1, j = 2k, k = 1, . . . , N}.

(17)

When i = j, we set Cθ
ij → +∞, to disallow self matching.

Then we can get exp(−Cθ
ii/ϵ) → 0. Then from Eq. 8, our

IOT-CL based contrastive loss becomes:

LSimCLR
IOT-CL = − 1

2N

∑
(i,j)∈S

log

(
exp(−Cθ

ij/ϵ)∑2N
s=1 1i ̸=s exp(−Cθ

is/ϵ))

)
,

(18)
which is exactly the contrastive loss in SimCLR (Chen et al.,
2020). Thus SimCLR can be interpreted by the above bal-
anced matching view as further illustrated in Fig. 6(b) in
Appendix. When m ̸= n, we discuss the unbalanced match-
ing case in Appendix C. Note MoCo (He et al., 2020) can
also be interpreted by the unbalanced matching view.

3.3. New Contrastive Losses under U(1) and U(a,b)

As shown above, our IOT-CL loss can be viewed as InfoNCE
under U = U(a). In this subsection, we give the results of
contrastive loss when U = U(1) and U(a,b). Fig. 4 shows
the difference of calculating operations for the coupling.

Contrastive Loss under U(1): Analytical Solution. To
propose the new contrastive loss, we first relax the con-

straints by setting U = U(1). Then we get the coupling
Pθ

Pθ
ij =

exp(−Cθ
ij/ϵ)∑n

t=1

∑m
s=1 exp(−Cθ

ts/ϵ))
, (19)

Different from the coupling in Eq. 12 under U(a), this new
coupling matrix is symmetric if Cθ is a symmetric matrix.
Then we can get the loss under U(1) as

LU(1)
IOT-CL = − 1

n

n∑
i=1

log

(
exp(−Cθ

ii/ϵ)∑n
t=1

∑m
s=1 exp(−Cθ

ts/ϵ))

)
,

(20)
Proof of Eq. 19, Eq. 20 are given in Appendix B.2. The
main difference between these losses and InfoNCE is that
Pθ

ij is only determined by the i-th row of cost matrix Cθ,
while the above coupling involves all the elements in Cθ.
Contrastive Loss under U(a,b): Numerical Solution.
We propose another new loss for IOT-CL by tightening
the constraint relaxation (i.e. fulfilling full constraints of
matching in U ). Similarly in Sec. C, we first solve the inner
minimization in Eq. 8. As discussed in (Cuturi, 2013), the
closed-form coupling may not exist, which differs from the
couplings under U(1) and U(a). By setting:(

Pθ
)0

= exp (−Cθ/ϵ), (21)

we adopt the popular Sinkhorn algorithm (Adams & Zemel,
2011; Cuturi, 2013; Wang et al., 2019b) to approximate:(

Pθ
)k

temp =
1

n

(
Pθ
)k−1 ⊘

((
Pθ
)k−1

1m×m

)
,(

Pθ
)k

=
1

m

(
Pθ
)k

temp ⊘
((

1n×nP
θ
)k

temp

)
.

(22)

where ⊘ means element-wise division, and 1m×m and
1n×n are the matrices whose elements are all ones. Ex-
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(a) without uniformity penalty (b) with uniformity penalty (c) matching results with penalty

Figure 5. (a) and (b) are T-SNE visualizations of the embedding without and with the uniformity penalty on the coupling on CIFAR-10.
(c) is the matching result based on the uniformity penalty on coupling Pθ . In detail, given 5 original images of CIFAR-10 and their
augmentation, we visualize the matching by SimCLR. The thickness of lines is proportional to the value in Pθ .

Algorithm 1 Computing the IOT induced Contrastive loss
(IOT-CL) under U(a,b) (under the framework of SimCLR)

Input: mini-batch features {zi}Ni=1 and {z′j}Nj=1 (see
Sec. 3.2), regularization coefficient ϵ, iterative number K

Output: IOT-CL loss value under U(a, b)
z = Cat({zi}, {z′j})
Cost = 1−CosSim(z, z⊤)
diags = C * Eye(Sim.shape[0]) #C is large enough
diagsoff = (1−eye) * Cost
Cost = diags + diagsoff
Probs = Exp(−Cost/ϵ) #initialization of Pθ

for i = 1, . . . ,K do
Probs = Div(Probs,Sum(Probs, dim=0)).T #row
normalization
Probs = Div(Probs, Sum(Probs, dim=0)).T #column
normalization

end for
Probi = Diag(Probs, N )
Probj = Diag(Probs, −N ) #Selecting the positive pairs
Prob+ = Cat((Probi, Probj), dim=0)
Loss = −log(Prob+).sum()/2N
return Loss

actly the Sinkhorn algorithm works iteratively by taking
1/n weighted row normalization and 1/m weighted column
normalization according to Eq. 22 alternatively. By iter-
ating over Eq. 22 for K rounds, we can get the coupling
results. When K = 1, the intermediate matrix

(
Pθ
)1

temp
equals the coupling under U(a), which has the loosen re-
laxation for constraints. When K → ∞,

(
Pθ
)K

will con-
verge to optimal solution under U(a,b). Thus increasing
K is tightening the constraint relaxation in U . Besides,
this Sinkhorn operation is fully differentiable because only

element-wise division and matrix multiplication are used
in iterations. Thus it can be efficiently implemented by Py-
Torch’s automatic differentiation functions. Finally, we can
get the contrastive loss under U(a,b):

LU(a,b)
IOT-CL = −

m∑
i=1

n∑
j=1

P̃ij log
(
Pθ

ij

)K
(23)

where K is iterative number and P̃ is the ground truth. With
SimCLR structure, Algorithm 1 shows computing the IOT
induced Contrastive loss (IOT-CL) under U(a,b).

3.4. Enhancing Uniformity for IOT-CL

Following (Wang & Isola, 2020; Wang & Liu, 2021) em-
phasizing alignment and uniformity on the hypersphere for
CL, we can rethink these two properties from the match-
ing perspective. The alignment requires similar samples to
have similar features (Wang & Isola, 2020), which must
have a high probability for matching. While uniformity
prefers a uniform distribution for features on the unit hyper-
sphere (Wang & Isola, 2020), which can be understood as
uniformly matching among negative pairs. Thus with the
coupling Pθ, the alignment and uniformity loss is:

min
θ

Luniform
IOT-CL = LIOT-CL + λpKL(Q̄θ|Pθ), (24)

where LIOT-CL can take any form of the aforementioned
contrastive loss in our loss family, λp is the uniformity
penalty coefficient and Q̄θ reads:

Q̄θ
ij =

 Pθ
ij , (i, j) ∈ S,

mean
(i′,j′)/∈S

{Pθ
i′j′}, (i, j) /∈ S.

(25)

The first term in Eq. 24 represents the matching alignment,
which increases the probability of positive pair matching.
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Table 1. Top-1 classification accuracy (%) of using the proposed IOT-CL loss (without uniformity penalty) evaluated by linear networks
when varying the relaxation of constraints in U with 100/200 epochs of training. Here U is set to U(1), U(a), and U(a,b) (using
Sinkhorn Algorithm with K = 1, 2, 4, 8 instead) to get different degrees of constraint relaxation (see Sec. 3.3).

Variants of LIOT-CL
CIFAR-10 CIFAR-100 SVHN

100 200 100 200 100 200
U(1) 90.53 90.49 67.15 66.97 91.50 91.70
U(a) 90.61 90.57 66.34 66.75 91.64 91.85

U(a,b) w/ K = 1 90.55 90.56 66.74 66.91 91.56 91.77
U(a,b) w/ K = 2 91.06 90.99 66.75 67.23 91.19 91.26
U(a,b) w/ K = 4 90.66 90.49 66.87 67.07 91.12 91.33
U(a,b) w/ K = 8 90.98 91.02 66.61 66.73 91.14 91.28

Table 2. Top-1 accuracy (%) by linear classifier network/k-NN based on 100 training epochs for different contrastive losses.

CL loss form CIFAR-10 CIFAR-100 SVHN
Lin. k-NN Lin. k-NN Lin. k-NN

Triplet (Schroff et al., 2015) 70.97 64.83 40.58 30.75 71.62 53.57
InvaSpread (Ye et al., 2019) 90.80 86.68 66.71 53.25 91.72 77.33
InfoNCE (Chen et al., 2020) 90.61 86.79 66.34 52.98 91.64 75.25

Lalign + Luniform (Wang & Isola, 2020) 90.84 86.53 66.28 55.10 91.90 82.56
HNSampling (Wang & Liu, 2021) 90.26 86.88 65.81 52.84 92.37 80.47

LIOT-CL (w/o penalty) 91.06 87.07 67.15 53.76 91.64 77.66
Luniform

IOT-CL (U − U(a)) 90.98 87.58 67.59 55.72 93.22 84.15

The second term encourages the uniformity, where Q̄θ
ij is

the mean of matching probability for negative pairs when
(i, j) /∈ S. We let Pθ approximate Q̄θ by using KL diver-
gence, which decreases the volatility as well as uniformity.

3.5. Potential Impact to IOT Itself

Beyond contrastive learning, we show that one can relax
the constraints (or its relaxation degree by varying K) for
learning the cost matrix in IOT. The rationale behind our
relaxation scheme is that we find it can reduce the need for
large iteration number K and still achieves even better re-
sults than large K with full convergence. This is empirically
supported by Table 1 with U(1), U(a) i.e. with constraint
relaxation and different K values from 1 to 8 with U(a,b).

We also try to connect OT and Softmax-based losses. We
think it is helpful for the application of IOT and one can
naturally link OT with the research direction corresponding
to Softmax such as classification, long-tailed recognition,
adversarial training etc, which we leave for future work.

4. Experiments
4.1. Evaluation Protocols

Experiments run on a single RTX-3090 (24GB) GPU and
128G memory, 24 physical CPU with 3.50GHz.

Datasets and Pretraining. We test our loss on CIFAR-
10, CIFAR-100 (Krizhevsky et al., 2009), SVHN (Netzer
et al., 2011) and ImageNet-100 (Deng et al., 2009). The
label selection of ImageNet-100 is in line with (Wang & Liu,
2021). In pretraining, we adopt Resnet50 (He et al., 2016) as
the backbone. The augmentations follow (Chen et al., 2020)
with random color distortions, Gaussian blur, and cropping.
For model architecture, we mainly follow the framework of
SimCLR (Chen et al., 2020), which uses an encoder network
and a projector head to maximize agreement for different
contrastive losses. All the models are pretrained on CIFAR-
10/200 and SVHN with Adam (Kingma & Ba, 2014) for
500 epochs by 3e-4 learning rate with a mini-batch size
of 1281, while the pretraining epoch is reduced to 100 for
ImageNet-100. We set τ = 0.5 for Softmax-based methods.

Evaluation With all convolutional layers frozen, we first
validate the performance of the pretrained models on linear
classification. Specifically, we train the linear layer for
200 epochs with 256 mini-batch sizes. We also compare
a k-nearest neighbors classifier (k-NN, k = 5 here) with
our linear evaluation. k-NN does not require additional
parameters, which is applicable without training.

Compared Methods. In addition to the contrastive losses
in Sec. 2.3 (i.e. InfoNCE (Oord et al., 2018), HNSamp-

1Exception is made to Triplet (Schroff et al., 2015) which only
takes 200 epochs in Table 2 and more training hurts performance.
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Table 3. Top-1 accuracy (%) of IOT-CL loss (U − U(a)) with
uniformity penalty by linear networks with different uniformity
coefficient λp and different training epochs.

λp
CIFAR-10 CIFAR-100 SVHN

100 200 100 200 100 200
0 90.61 90.57 66.34 66.75 91.64 91.85

0.1 90.80 90.47 67.47 67.21 91.15 91.33
0.5 90.98 90.99 67.56 67.17 92.49 92.39
1 90.56 90.68 67.59 67.09 93.22 93.05
5 90.84 90.66 67.03 66.67 92.93 92.91
10 90.99 90.96 66.01 65.64 92.34 92.38

ing (Wang & Liu, 2021), and Lalign+Luniform (Wang & Isola,
2020)), we compare our losses of IOT-CL with the triplet
loss (Schroff et al., 2015) and the loss in InvaSpread (Ye
et al., 2019). The triplet loss can be understood as a special
case of InfoNCE when the temperature τ → 0, while the
loss in InvaSpread is similar with the perturbation loss of
graph matching (Wang et al., 2019b), which learns the prob-
ability of positive/negative pairs with Bernoulli distribution.

4.2. Main Results

Impact of Constraint Relaxation. Table 1 show the results
as evaluated by liner network on CIFAR-10, CIFAR100
and SVHN. To align the experimental setting for fairness,
we re-run the compared methods and obtain their results
in Table 2. We can find that the loss of IOT-CL (without
uniformity penalty) can increase the performance as show
in Table 2 under the simclr framework.

Results with Uniformity Penalty on coupling. Fig. 5
shows the embedding distribution on CIFAR-10 without
penalty (i.e. the loss of IOT-CL with K = 1), with Gaussian
Potential Kernal penalty (Wang & Isola, 2020) (Lalign +
Luniform) and with our penalty on the coupling (i.e. Eq. 24).
The embedding is based on the logits of linear classification
network. We can find a similar performance between ours
and the work in (Wang & Isola, 2020), and outperform
the results without penalty. Table 2 shows the results for
CIFAR-10, CIFAR-100, and SVHN based on the SimCLR
framework. At first, we can find the uniformity penalty can
improve the performance both in Linear classification (Lin.)
and K-NN. Compared with InfoNCE and its variants, the
accuracy gets improved in all the datasets for our method
with uniformity penalty on coupling. Thus, our method
outperforms state-of-the-art methods in most cases.

Besides, as shown in Fig. 5, by adding uniformity penalty
based on the loss of IOT-CL, the representation will be
clearer and features between different classes will be more
separated. Table 3 shows the sensitivity for uniformity
penalty by varying λp with running 100 and 200 epochs.

Table 4. Top-1 classification accuracy of linear classifier and k-NN
for ImageNet-100 with 100 pre-training epochs.

Method Lin. k-NN
InfoNCE (Chen et al., 2020) 67.35 53.50

HNSampling (Wang & Liu, 2021) 65.89 51.95
InvaSpread (Ye et al., 2019) 67.78 53.64

Luniform
IOT-CL (U − U(a)) 68.32 55.28

Besides, more experiments are presented in Appendix, in-
cluding those based on the MoCo framework which further
verify the wide effectiveness of our methods in Appendix C.

Experiments on ImageNet-100. We further test our model
on ImageNet-100 and using Resnet50 as the backbone. The
pretraining protocol is given in Sec. 4.1. Table 4 shows
that our model with uniformity penalty (λp = 0.5) greatly
improves the performance.

5. Conclusion and Outlook
We have presented a set matching-based framework to in-
terpret the contrastive loss widely used in (self-supervised)
representation learning. Under this framework, we develop
a family of new losses by introducing inverse optimal trans-
port techniques. In particular, the existing popular loss e.g.
InfoNCE can be viewed as a special case. New space for im-
provement has been shown in our designed new algorithms,
with verified effectiveness on public vision datasets.

Many directions can be further studied based on the match-
ing perspective: 1) Consider the non-entropic regularization
in OT, and we may get another family of new contrastive
loss for CL; 2) Consider the matching on the unit hyper-
sphere. Some works of optimal transport on sphere (McRae
et al., 2018; Hamfeldt & Turnquist, 2021; Cui et al., 2019)
or hypersphere (Tu et al., 2020) may enhance the theoretical
study of CL under hypersphere space.

It is also interesting to observe that the cross-entropy loss has
been well adopted in the graph matching literature (Wang
et al., 2019a) beyond the regression loss as adopted in ear-
lier literature (Zanfir & Sminchisescu, 2018), including both
matching with two explicit graphs (Wang et al., 2022) and
the more general Lawler’s QAP (Wang et al., 2023), as well
as the self-supervised setting (Liu et al., 2022). We be-
lieve these works may also bear some connection to optimal
transport, which we leave for future work.
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A. Description of Other Peer CL Methods
Hard Negative Sampling (HNSampling). Based on InfoNCE, (Wang & Liu, 2021) gives a more straightforward hard
negative sampling strategy which truncates the gradients with respect to the uninformative negative samples. The contrastive
loss with hard negative sampling is specified as

Lhard = −
n∑

i=1

log

(
exp(sii/τ)∑

k:sik>siα
exp(sik/τ) + exp(sii/τ)

)
(26)

where siα is the upper α quantile of the similarities si,:, which samples the negative pairs with high similarity ones. It is
believed that with the selection of hard negative samples, the learned features will behave more uniformity. We will compare
it with our method for uniformity learning.

Triplet loss. The triplet loss is a famous and popular for contrastive learning (Schroff et al., 2015). We use the triplet loss in
both MoCo and SimCLR framework to compare with our methods.

B. Lagrangian for Regularized OT
Our proof is as follows, which is technically akin to (Cuturi, 2013) in terms of using Lagrangian duals for Regularized OT,
which in fact has been well adopted in OT literature.

B.1. Lagrangian under U(a)

Now we show the point set matching framework for CL with the simplified constraints:

U(a) = {P ∈ Rn×m
+ |P1m = a} (27)

where a = 1/m and 1m is the m-dimensional column vector whose elements are all ones. With the objective of the
regularized OT:

Pθ = arg min
P∈U(a)

< Cθ,P > −ϵH(P), (28)

We introduce the dual variable f ∈ Rn. The Lagrangian of the above equation is:

L(P, f) =< Cθ,P > −ϵH(P)−
n∑

i=1

fi ·

 m∑
j=1

Pij −
1

n

 (29)

The first order conditions then yield by:

∂L(P, f)

∂Pij
= Cθ

ij + ϵ logPij − fi = 0 (30)

Thus we have Pij = e(fi−Cθ
ij)/ϵ for every i and j, for optimal P coupling to the regularized problem. Due to

∑
j Pij = 1/n

for every i, we can calculate the Lagrangian parameter fi and the solution of the coupling is given by:

Pij =
exp (−Cθ

ij/ϵ)

n
∑m

t=1 exp (−Cθ
it/ϵ)

(31)

Then in outer minimization, if we set P̃ii =
1
n for each i and P̃ij = 0 when i ̸= j, we get the contrastive loss under U(a)

LIOT-CL = − 1

n

n∑
i=1

log

(
exp(−Cθ

ii/ϵ)∑m
j=1 exp(−Cθ

ij/ϵ))

)
+ Constant (32)

We have therefore got the loss of IOT-CL under U(a).
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(a) Unbalanced Matching (b) Balanced Matching in one Space

Figure 6. Interpreting MoCo and SimCLR by point set matching. (a) the left part is extracted by f , while the right is extracted by the
moment encoder g. In MoCo, in addition to the representations from minibatch (brown points), representations from moment queue are
also in the right part, which is an unbalanced matching problem in our matching view (n < m); (b) the space is extracted by f (note
f = g in SimCLR) with two augmentations. Viewing the SimCLR framework from our perspective, it is more than a simple matching
between two sets but a balanced matching in the same space, and the feature points try to match their neighbors with minimal total cost.

B.2. Lagrangian under U(1)

If the relaxation in U is further loosen by setting U = U(1):

Ũ(1) = {P ∈ Rn×m
+ |

∑
i,j

P = 1}

The objective in inner optimization can be specified as

Pθ = arg min
P∈U(1)

< Cθ,P > −ϵH(P), (33)

Introducing dual variable λ ∈ R, the Lagrangian of the above equation reads:

L(P, λ) =< Cθ,P > −ϵH(P)− λ(
∑
i,j

Pij − 1) (34)

First order conditions then yield by:
∂L(P, λ)

∂Pij
= Cθ

ij + ϵ logPij − λ = 0 (35)

which result, for an optimal P coupling to the regularized problem, in the expression Pij = e(λ−Cij)/ϵ. Due to
∑

ij Pij = 1,
we can calculate λ and the coupling solution is written as:

Pij =
exp (−Cθ

ij/ϵ)∑
st exp (−Cθ

st/ϵ)
(36)

Then in outer minimization, if we set P̃ii =
1
n for each i and P̃ij = 0 when i ̸= j, we get the contrastive loss under U(1):

LIOT-CL = − 1

n

n∑
i=1

log

(
exp(−Cθ

ii/ϵ)∑n
t=1

∑m
s=1 exp(−Cθ

ts/ϵ))

)
(37)

We have therefore obtained the loss of IOT-CL under U(1).

C. Unbalanced Matching for CL.
In memory bank based methods such as MoCo (He et al., 2020), negative samples are selected from the stored sample
features. In this case, the matching is usually unbalanced. Specifically, assume that {zi}ni=1 and {z′j}nj=1 are features
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Table 5. ACC (%) by Linear network (Lin.) and k-NN for CIFAR-10/100 with 100 epochs of training, under the MoCo framework.

CL loss form CIFAR-10 CIFAR-100
Lin. k-NN Lin. k-NN

InfoNCE (Oord et al., 2018) (i.e. MoCo (He et al., 2020)) 72.11 61.66 47.71 28.23
HNSampling (Wang & Liu, 2021) 72.18 60.73 47.88 28.06

Luniform
IOT-CL (using LU(a,b)

IOT-CL with K = 1) 73.28 61.97 48.21 29.64

extracted by encoder f and momentum encoder g from the same mini-batch samples, while {z′j}mj=n+1 are features extracted
by g from the memory bank. Then we can get two feature sets {zi}ni=1 and {z′j}mj=1 where m is usually much larger than n.
We can find the unbalanced matching for the memory bank based methods as shown in Fig. 6(a). Since MoCo selects the
negative samples in the memory bank, which contains the features of previous mini-bath data instead of the same mini-batch
samples, the cost matrix is designed as

Cθ
ij =

{
+∞, i ̸= j and 1 ≤ j ≤ n

1− zij , else
(38)

where zij is a similarity (e.g. cosine) between feature zi and z′j . Here Cθ
ij → +∞ implies exp(−Cθ

ij/ϵ) → 0, which
means that Pθ

ij → 0 and the features zi and z′j will not be matched. The condition i ̸= j and 1 ≤ j ≤ n represents that
(zi, z

′
j) are negative pairs from the same mini-batch, which is not adopted as negative pair in memory based methods.

With the cost matrix Cθ, the ground truth can be simply set as P̃ii =
1
n for i = 1, . . . , n and P̃ij = 0 when i ̸= j. Then we

can find that our IOT-CL does not contradict the memory bank based frameworks e.g. MoCo, which can be interpreted from
our perspective as shown in Fig. 6(a).

Experiments under MoCo-based framework In addition to the SimCLR framework, we also test the loss of our model
in Memory based framework (i.e. MoCo), which can be understood as an unbalanced matching in this paper. For the
pretraining stage, all models are trained with SGD for 100 epochs by 0.03 learning rate with batch size being 128, the
momentum and weight decay of SGD are 0.9 and 1e − 4 respectively. And the temperature τ is set to 0.07 for softmax
based methods. We set the size of memory bank to 4096. The feature dimension is 128 and the momentum of updating the
key encoder is 0.999. For Linear evaluation, we train for 100 epochs still with SGD except that the learning rate is 30 and
weight decay is set to 0. Batch size for linear evaluation is 256. As shown in Table 5, We can find that the model with our
loss works efficiently in MoCo-based framework.

C.1. Remarks on the Limitation of Our Approach

Note that in our SimCLR-based version (results in the main paper), both IOT and SimCLR share the similar computational
overhead in terms of the feature dimension. In another word, our new formulation does not increase the complexity.

While in a Moco-based version which involves memory bank (results in Table 5), there would incur a skewed setting:
few-matching-many e.g. 256-vs-1024 in contrast to the 256-vs-256 matching in the SimCLR-based version. In our
experiments for Table 5, we enforce the uniform penalty to mitigate this issue. In theory our method is less suitable for the
Moco framework due the memory bank scheme. Fortunately, moco v3 (Chen et al., 2021b) has dismissed the memory bank
scheme.
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