
Gradient Descent in Neural Networks as Sequential Learning in
Reproducing Kernel Banach Space

Alistair Shilton 1 Sunil Gupta 1 Santu Rana 1 Svetha Venkatesh 1

Abstract
The study of Neural Tangent Kernels (NTKs)
has provided much needed insight into conver-
gence and generalization properties of neural net-
works in the over-parametrized (wide) limit by ap-
proximating the network using a first-order Tay-
lor expansion with respect to its weights in the
neighborhood of their initialization values. This
allows neural network training to be analyzed
from the perspective of reproducing kernel Hilbert
spaces (RKHS), which is informative in the over-
parametrized regime, but a poor approximation
for narrower networks as the weights change more
during training. Our goal is to extend beyond the
limits of NTK toward a more general theory. We
construct an exact power-series representation of
the neural network in a finite neighborhood of
the initial weights as an inner product of two fea-
ture maps, respectively from data and weight-step
space, to feature space, allowing neural network
training to be analyzed from the perspective of
reproducing kernel Banach space (RKBS). We
prove that, regardless of width, the training se-
quence produced by gradient descent can be ex-
actly replicated by regularized sequential learning
in RKBS. Using this, we present novel bound on
uniform convergence where the iterations count
and learning rate play a central role, giving new
theoretical insight into neural network training.

1. Introduction
The remarkable progress made in neural networks in recent
decades has led to an explosion in their adoption in a wide
swathe of applications. However this widespread success
has also left unanswered questions, the most obvious of

1Applied Artificial Intelligence Institute (A2I2), Deakin Uni-
versity, Geelong, Australia. Correspondence to: Alistair Shilton
<alistair.shilton@deakin.edu.au>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

which is why non-convex, massively over-parameterized
networks are able to perform so much better than predicted
by traditional machine learning theory.

Neural tangent kernels represent an attempt to answer this
question. As per (Jacot et al., 2018; Arora et al., 2019b), dur-
ing training, the evolution of an over-parameterized neural
network follows the kernel gradient of the functional cost
with respect to a neural tangent kernel (NTK). It was shown
that, for a sufficiently wide network with random weight ini-
tialization, the NTK is effectively fixed, and results from ma-
chine learning in reproducing kernel Hilbert space (RKHS)
can thus be brought to bear on the problem. This has led to
a plethora of results analysing the convergence (Du et al.,
2019b; Allen-Zhu et al., 2019; Du et al., 2019a; Zou et al.,
2020; Zou & Gu, 2019) and generalization (Arora et al.,
2019b;a; Cao & Gu, 2019) properties of neural networks.

Despite their successes, NTK models are not without prob-
lems. As noted in (Bai & Lee, 2019), the expressive power
of the linear approximation used by NTK is limited to that
of the corresponding, randomized feature space or RKHS,
as evidenced by the observed gap between NTK predictions
and actual performance. To break out of this regime, (Bai &
Lee, 2019) proposed using a second or higher-order approx-
imation of the network. Moreover it is natural to ask how
well a linear approximation of the behaviour, constructed
on the assumption of small weight-steps, will scale to larger
weight steps in narrower networks.

To overcome these difficulties we replace the Taylor approx-
imation used in NTK with an exact power series representa-
tion of the neural network in a finite neighbourhood around
the initial weights. We demonstrate that this leads to a rep-
resentation as an inner product between two feature maps,
from data and weight-step space, respectively. This struc-
ture underlies the construction of reproducing kernel Banach
spaces (RKBS, (Lin et al., 2022)), allowing us to go on to
show an equivalence between back-propagation and sequen-
tial learning in RKBS, which is similar to NTK but without
the constraints of linearity, allowing us to derive new bounds
on uniform convergence for networks of arbitrary width.

1

Gradient Descent in Neural Networks as Sequential Learning in RKBS

2. Related Work
There has been a significant amount of work looking at uni-
form convergence behaviour of networks of different types
using variety of assumptions during training (Neyshabur
et al., 2015; 2018; 2019; 2017; Harvey et al., 2017; Bartlett
et al., 2017; Golowich et al., 2018; Arora et al., 2018; Allen-
Zhu et al., 2018; Dräxler et al., 2018; Li & Liang, 2018; Na-
garajan & Kolter, 2019a;b; Zhou et al., 2019).

The study of the connection between kernel methods and
neural networks has a long history. (Neal, 1996) demon-
strated that, in the infinite-width limit, iid randomly initial-
ized single-layer networks converge to draws from a Gaus-
sian process. This was extended to multi-layered neural
networks in (Lee et al., 2018; Matthews et al., 2018) by as-
suming random weights up to (but not including) the output
layer. Other works deriving approximate kernels by assum-
ing random weights include (Rahimi & Benjamin, 2009;
Bach, 2014; 2017; Daniely et al., 2016; Daniely, 2017).

Neural tangent kernels (Jacot et al., 2018; Arora et al.,
2019b) are a more recent development. The basis of NTK
is to approximate the behaviour of neural network (for a
given input x) as the weights and biases vary about some
initial values using a first-order Taylor approximation. This
approximation is linear in the change in weights, and the co-
efficients of this approximation are functions of x and may
therefore be treated as a feature map, making the model
amenable to the kernel trick and subsequent analysis in
terms of RKHS theory. This approach may be generalized
to higher order approximations (Bai & Lee, 2019), but the
size of change in the weights that can be approximated re-
mains limited except in the over-parametrized limit, where
the variation of the weights becomes small.

Arc-cosine kernels (Cho & Saul, 2009) work on a similar
premise. For activation functions of the form τ(ξ) = (ξ)p+,
p ∈ N, in the infinite-width limit, arc-cosine kernels cap-
ture the feature map of the network. Depth is achieved by
composition of kernels. However once again this approach
is restricted to networks of infinite width, whereas our ap-
proach works for arbitrary networks.

Finally there has been some very recent work (Bartolucci
et al., 2021; Sanders, 2020; Parhi & Nowak, 2021; Unser,
2021; 2019) in a similar vein to the current work, seeking
to connect neural networks to RKBS theory. However (Bar-
tolucci et al., 2021; Sanders, 2020; Parhi & Nowak, 2021;
Unser, 2021) consider only 1 and 2 layer networks (we con-
sider networks of arbitrary depth), and more generally no
equivalence is established between the weight-steps found
by back-propagation and those found by regularized learn-
ing in RKBS.

3. Notations
Let N = {0, 1, 2, . . .}, Nn = {0, 1, . . . , n−1}. Vectors and
matrices are denoted a and A, respectively, with elements
ai, Ai,i′ , and columns A:i indexed by i, i′ ∈ N. We define:

‖x‖p = (
∑
i |xi|p)1/p, ‖A‖p,q = ‖[‖A:i‖p]i‖q

‖x‖∞ = maxi{|xi|}, ‖x‖−∞ = mini{|xi|}

∀p, q ∈ [−∞, 0)∪ (0,∞], which are norms if p, q ∈ [1,∞].
The Frobenius norm and inner product are ‖ · ‖F = ‖ · ‖2,2,
〈A,B〉F = Tr(ATB). The Kronecker and Hadamard
product are a ⊗ b, a � b. The Kronecker and Hadamard
powers are a⊗c = a ⊗ a ⊗ c times. . . ⊗ a, a�c = a �
a � c times. . . � a. The elementwise absolute and sign are
|a|, sgn(a). Finally, for vectors a,b we let %(a,b) =
[a0(b⊗1)T, a1(b⊗2)T, . . .]T. diag(A) is a vector contain-
ing the diagonal elements of A, and conversely diag(a) is
a diagonal matrix with diagonal elements from a.

We study fully connected D-layer neural networks f : (X ⊂
Rn)→ (Y ⊂ Rm) with layer widths H [j] (and H [−1] = n)
trained on a training set {(x{k},y{k}) ∈ X×Y : k ∈ NN}.
We use index range conventions k ∈ NN , j ∈ ND and
ij+1 ∈ NH[j] , and for clarity we write:

Relating to: Training vector k Layer j The rth derivative
↘ ↓ ↙
X{k}[j](r)......

↗ ↖
Variable name Variable indices

so for example W[j] is the weight matrix for layer j, x{k}[j]

is the input (image) to layer j of the network given network
input x{k}, and f (2)(z) is the 2nd derivative of f(z). With
regard to training, XO means “value of variable X before
iteration” and X∆ means “change in X due to iteration”.
Finally, where relevant, we use a superscript X� to indicate
that X relates to gradient descent (back-propagation), and
X• if X relates to RKBS regularized risk minimization.

4. Background
4.1. Reproducing Kernel Banach Space

A reproducing kernel Hilbert space (RKHS) (Aronszajn,
1950) is a Hilbert space H of functions f : X → Y for
which the point evaluation functionals δx(f) = f(x) are
continuous. Thus, applying the Riesz representor theorem,
there exists a kernel K such that:

f (x) = 〈f (·) ,K (x, ·)〉H ∀f ∈ H

Subsequently K(x,x′) = 〈K(x, ·),K(x′, ·)〉 and, by the
Moore-Aronszajn theorem, K is uniquely defined byH and
vice-versa. K is called the reproducing kernel, and the cor-
responding RKHS is denotedHK . RKHS based approaches

2

Gradient Descent in Neural Networks as Sequential Learning in RKBS

Table 1: Summary of the construction of reproducing kernel Banach space as per (Lin et al., 2022).

Notation in present Paper Notation used in (Lin et al., 2022)
Data space: X ⊂ Rn Ω1 (input space)
Weight-step space: WO ⊂

∏
j∈ND RH[j−1]×H[j] × RH[j]

Ω2 (weight space)
Data Feature map: ΦO : X→ XO ⊂ R∞×m Φ1 : Ω1 →W1

Weight-step feature map: ΨO : WO →WO ⊂ R∞×m Φ2 : Ω2 →W2

Data Banach space: XO = span(ΦO(X)), ‖ · ‖XO = ‖ · ‖F W1 with norm ‖ · ‖W1

Weight-step Banach space: WO = span(ΨO(WO)), ‖ · ‖WO = ‖ · ‖F W2 with norm ‖ · ‖W2

Bilinear form: 〈Ω,Ξ〉XO×WO = diag
(
ΩTΞ

)
〈·, ·〉W1×W2

:W1 ×W2 → Y

have gained popularity as they are well suited to many as-
pects of machine learning (Steinwart & Christman, 2008;
Shawe-Taylor & Cristianini, 2004). The inner product struc-
ture enables the kernel trick, and the kernel is readily under-
stood as a similarity measure. Furthermore, the structure of
RKHSs has led to a rich framework of complexity analysis
and generalization bounds (Steinwart & Christman, 2008;
Shawe-Taylor & Cristianini, 2004). More recently neural
tangent kernels were introduced (Jacot et al., 2018), allow-
ing RKHS theory to be applied to the neural network train-
ing in the over-parametrized regime.

In an effort to introduce a richer set of geometrical struc-
tures into RKHS theory, reproducing kernel Banach spaces
(RKBSs) generalize RKHSs by starting with a Banach space
of functions (Der & Lee, 2007; Zhang et al., 2009; Song
et al., 2013; Xu & Ye, 2014; Lin et al., 2022) etc. Precisely:

Definition 1 (Reproducing kernel Banach space (RKBS -
(Lin et al., 2022))). A reproducing kernel Banach space B
on a set X is a Banach space of functions f : X→ Y such
that every point evaluation δx : B → Y, x ∈ X, on B is
continuous (so ∀x ∈ X ∃Cx ∈ R+ such that |δx(f)| =
|f(x)| ≤ Cx‖f‖B ∀f ∈ B).

There are several distinct approaches to RKBS construction.
In the present context however we find the approach of
(Lin et al., 2022, Theorem 2.1) most convenient. Given the
components outlined in Table 1, and assuming that ΦO(X)
is dense in XO and that ΨO(WO) is dense in WO, we
define the reproducing kernel Banach space BO on X as:

BO =
{
〈ΦO (·) ,Ω〉XO×WO

∣∣Ω ∈ WO}
where

∥∥〈ΦO (·) ,Ω〉XO×WO
∥∥
BO

= ‖Ω‖WO
(1)

with reproducing Banach kernel:

KO (x,W∆) = 〈ΦO (x) ,ΨO (W∆)〉XO×WO (2)

5. Setup and Assumptions
We assume a fully-connected, D-layer feedforward neural
network f : (X ⊆ Rn)→ (Y ⊆ Rm) with layers of widths
H [0], H [1], . . . ,H [D−1], where H [D−1] = m and we define

H [−1] = n. We assume layer j ∈ ND (j ∈ ND throughout)
contains only neurons with activation function τ [j] : R→ R.
The network is defined recursively ∀j ∈ ND:

f (x) = x[D] ∈ RH[D−1]

x[j+1] = τ [j](x̃[j]) ∈ RH[j]

x̃[j] = 1√
H[j]

W[j]Tx[j] + α[j]b[j] ∈ RH[j]

x[0] = x ∈ X ⊂ RH[−1]

(H [−1] = n)

(3)

where W[j] ∈ RH[j−1]×H[j]

and b[j] ∈ RH[j]

are weights
and biases, which we summarise as W ∈W, and α[j] ∈ R+

are fixed. The set of functions of this form is denoted F .

We assume the goal of training is to take a training set and
find weights and biases to minimize the empirical risk:

W? = argmin
W∈W

RE (W,D)

RE (W,D) =
∑
k E

(
x{k},y{k}, fW

(
x{k}

)) (4)

where fW is a network of the form (3) with weights and
biases W, D = {(x{k},y{k}) ∈ X × Y : k ∈ NN} is a
training set (k ∈ NN throughout), andE : X×Y×Rm → R
is an error function defining the purpose of the network.

We make the following technical assumptions:

1. Input space: X = [−1, 1]n.

2. Error function: E : X× Y× Rm → R is C1 and LE-
Lipschitz in its third argument.

3. Activation functions: for all j ∈ ND, τ [j] : R →
[−1, 1] is bounded, C∞, and has a power-series repre-
sentations with region of convergence (ROC) at least
ρ[j] ∈ R+ around all z ∈ R.

4. Weight non-triviality: for all j ∈ ND, W[j] 6= 0 at all
times during training.1

1Networks that do not meet this requirement have a constant
output independent of input x. We do not consider this a restrictive
assumption as it is highly unlikely that a randomly initialized
network trained with a typical training set will ever reach this state.

3

Gradient Descent in Neural Networks as Sequential Learning in RKBS

5. Weight initialization: we assume LeCun initialization,
so for all j ∈ ND, W [j]

ij ,ij+1
, b

[j]
ij+1
∼ N (0, 1).

6. Training: we assume training is gradient descent (back-
propagation) with learning rate η ∈ R+.

These assumptions are necessary to make our analysis pos-
sible. In practice we may extend our analysis to unbounded
activation functions by relaxing assumption 3 to τ [j] : R→
[−M [j],M [j]], where M [j] exceeds the largest possible in-
put to neurons in layer j (for example assuming weights
are bounded in prior layers and using the maximum output
M [j−1] of the previous layer). Note, however, that this will
restrict the size of weight step (due to one iteration of back-
propagation) that can be modelled by our method, which
will scale inversely with M [j] - see appendix for full de-
tails. The continuity assumption in assumption 3 is more
difficult to overcome, as this is fundamental for our analy-
sis. Thus our method cannot be applied to e.g. ReLU (it
may be possible to overcome this restriction by using an (ar-
bitrarily accurate) polynomial approximation, but it is un-
clear whether this is mathematically reasonable, particularly
when a weight-step traverses the point of non-smoothness).

5.1. Back-Propagation Training

As stated above, we assume the network is trained us-
ing back-propagation (gradient descent) (Goodfellow et al.,
2016). This is an iterative approach. An iteration starts with
initial weights and biases WO ∈W. A weight-step:

W�
∆ = −η ∂

∂W

∑
k E

(
x{k},y{k}, fW

(
x{k}

))∣∣
W=WO

is calculated, and weights and biases are updated as W =
WO + W�

∆. Our notational convention for activations be-
fore an iteration, and the subsequent change due to a weight
step, are given in figure 1. The weight-step is (Goodfellow
et al., 2016) (see appendix B for a derivation):

W
[j]�
∆:ij+1

= − η√
H[D−1]H[D−2]...H[j+1]

∑
k

γ
{k}[j]
Oij+1

x
{k}[j]
O√
H[j]

b
[j]�
∆:ij+1

= − η√
H[D−1]H[D−2]...H[j+1]

∑
k

γ
{k}[j]
Oij+1

α[j]
(5)

for all j ∈ ND, ij+1 where, recursively ∀j ∈ ND−1:

γ
{k}[j−1]
Oij =

∑
ij+1

γ
{k}[j]
Oij+1

W
[j]
Oij ,i′j+1

τ [j−1](1)
(
x̃
{k}[j−1]
Oij

)
γ
{k}[D−1]
OiD = ∇iDE

(
. . .{k}

)
τ [D−1](1)

(
x̃
{k}[D−1]
OiD

)
Note that the change in bias b

[j]
∆ is proportional to α[j].

6. Analysis of a Single Iteration
In the first phase of our analysis we consider the change in
neural network behaviour resulting from a small in weights

and biases (a weight-step). The overall training sequence is
readily extrapolated from this as per section 7. Our first goal
is to rewrite the neural network after a training iteration as:

f (x) = fO (x) + f∆ (x) (6)

where fO = fWO : (X ⊂ Rn) → (Y ⊂ Rm) is the neural
network before the iteration and f∆ : (X ⊂ Rn) → Rm is
the change in network behaviour due to the change W =
WO → W = WO + W∆ in weights and biases for this
iteration, as detailed in Figure 1, so that:

f∆ (x) = 〈ΦO (x) ,ΨO (W∆)〉XO×WO (7)

where:

ΦO : X→ XO = span (ΦO (X)) ⊂ R∞×m
ΨO : WO →WO = span (ΨO (WO)) ⊂ R∞×m

(8)

are feature maps determined entirely by the structure
of the network (number and width of layers, activation
functions) and the initial weights and biases WO; and
〈Ξ,Ω〉XO×WO = diag

(
ΞTΩ

)
is a bilinear form. Sub-

sequently our second goal is to derive kernels and norms
from these feature maps to allow us to study their conver-
gence properties, and we finish by proving an equivalence
between the weight-step W�

∆ due to a single step of back-
propagation and the analogous weight-step W•

∆ that mini-
mizes the (RKBS) regularized risk.

6.1. Contribution 1: Feature-Map Expansion

In this section we derive appropriate feature maps to express
the change in neural network behaviour for a finite weight-
step. Our approach is simple in principle but technical, so
details are reserved for appendix B. Roughly speaking how-
ever, we begin by noting that, for a smooth activation func-
tion τ [j] : R → R, z ∈ R and finite-dimensional vectors
c, c′ whose inner product lies in the radius of convergence
ρ[j] (so that | 〈c, c〉 | < ρ[j]), the power-series representa-
tion of τ [j] about z can be written

τ [j] (z + 〈c, c〉) = τ [j] (z) +
〈
%
(
g[j] (z) , c

)
,% (1∞, c

′)
〉

where:

%(a,d) =
[
a0d

⊗1T a1d
⊗2T a2d

⊗3T . . .
]T

g[j](z) =
[

1
1!τ

[j](1)(z) 1
2!τ

[j](2)(z) 1
3!τ

[j](3)(z) . . .
]T

Given an input x, starting at layer 0 and working forward,
and with reference to Figure 1, we can write the change x

[1]
∆

in the output of layer 0 due to the weight-step W∆ as:

x
[1]
∆ =

[〈
Φ

[0]
O:i1

(x) ,Ψ
[0]
O:i1

(W∆)
〉]

i1
where:

Φ
[0]
O:i1

(x) =%

(
g[0]
(
x̃

[0]
Oi1

)
, µ

[0]
i1

[
1√
2
α[0]

1√
2H[0]

xO

])

Ψ
[0]
O:i1

(W∆) =%

(
1∞,

1

µ
[0]
i1

[√
2b

[0]
∆i1√

2W
[0]
∆:i1

]) (9)

4

Gradient Descent in Neural Networks as Sequential Learning in RKBS

Before Iteration
fO (x) = x

[D]
O ∈ Y

x
[j+1]
O = τ [j]

(
x̃

[j]
O

)
x̃

[j]
O = 1√

H[j]
W

[j]T
O x

[j]
O + α[j]b

[j]
O

x
[0]
O = x ∈ X

 +

Weight-step Change

f∆ (x) = f (x)− fO (x)

x
[j+1]
∆ = x[j+1] − x

[j+1]
O

x̃
[j]
∆ = x̃[j] − x̃

[j]
O

x
[0]
∆ = x ∈ 0n

 =

After Iteration

f(x) = x[D] ∈ Y
x[j+1] = τ [j]

(
x̃[j]
)

x̃[j] = 1√
H[j]

W[j]Tx[j] + α[j]b[j]

x[0] = x ∈ X

Figure 1: Definition of terms for neural network before and after an iteration.

where we note that both feature maps have a finite radius
of convergence. The feature maps are parameterised by the
scale factors µ[0]

i1
∈ R+ whose role is mainly technical, inso-

far as they will allow us to show equivalence between RKBS
regularized risk minimization and back-propagation.2 Their
exact value (beyond existence) is unimportant here.

The process is repeated for subsequent layers (see appendix
B for details). After working through all layers:

f∆ (x) = 〈ΦO (x) ,ΨO (W∆)〉XO×WO (10)

where ΦO = Φ
[D−1]
O , ΨO = Ψ

[D−1]
O , and ∀j ∈ ND\{0}:

Φ
[j]
O:ij+1

(x)=%

g[j]
(̃
x

[j]
Oij+1

)
, µ

[j]
ij+1

[
1√
2
α[j]

1√
H[j]

x
[j]
O

]
[
ω

[j]
ij
W

[j]
Oij,ij+1

ω̃
[j]
ij,ij+1

√
H[j]

Φ
[j−1]
O:ij

(x)

]
ij[

ω
[j]
ij√
H[j]

Φ
[j−1]
O:ij

(x)

]
ij

Ψ
[j]
O:ij+1

(W∆)=%

1∞,

1

µ
[j]
ij+1

[√
2b

[j]
∆ij+1

W
[j]
∆:ij+1

]
[
ω̃

[j]
ij,ij+1

ω
[j]
ij

Ψ
[j−1]
O:ij

(W∆)

]
ij[

W
[j]

∆ij,ij+1

ω
[j]
ij

Ψ
[j−1]
O:ij

(W∆)

]
ij

(11)

recursively ∀j ∈ ND\{0} which are parameterised by scale
factors µ[j]

ij+1
∈ R+ and shadow weights ω[j]

ij
, ω̃

[j]
ij ,ij+1

∈
R+, which play a role in the equivalence between RKBS
regularized risk minimization and back-propagation (other-
wise their exact values are unimportant).

6.2. Contribution 2: Induced Kernels and Norms

In the previous section we established that, as a result of a
single weight-step W∆, we can write:

f (x) = fO (x) + f∆ (x)
f∆ (x) = 〈ΦO (x) ,ΨO (W∆)〉XO×WO

2See appendix for more discussion.

where fO : X→ Y is the neural network pre-iteration and
the feature maps ΦO, ΨO are feature maps (9-11). Using
these, we induce kernels on X, WO using the kernel trick:

KXO (x,x′) = 〈ΦO (x) ,ΦO (x′)〉XO×XO
= ΦT

O (x) ΦO (x′)
KWO (W∆,W

′
∆) = 〈ΨO (W∆) ,ΨO (W′

∆)〉WO×WO
= ΨT

O (W∆) ΨO (W′
∆)

We call these kernels neural neighbourhood kernels (NNK)
as they describe the similarity structure in the finite neigh-
bourhood of the WO (c/f NTK, which is the behaviour
tangent to, or in the infinitesimal neighbourhood of, WO).
These matrix-valued kernels are symmetric and positive def-
inite by construction, and could potentially be used (trans-
fered) in support vector machines (SVMs) or similar kernel-
based methods, measuring similarity on X and WO, respec-
tively. Similarly, we induce a Banach kernel:

KO (x,W′
∆) = 〈ΦO (x) ,ΨO (W′

∆)〉XO×WO
= diag (f∆ (x))

(12)

which is trivially the change in the network output f∆(x)
under weight-step W∆ for input vector x, diagonalised.

The precise form of the neural neighbourhood kernels is
rather complicated (the derivation is straightforward but
resulting recursive equation is very long). The NNK is the
(un-approximated) analogue of the NTK. However while
neural networks evolve - to first order - in the RKHS defined
by the NTK, the same is not true of the NNK. Indeed, it is
not difficult to see that RKHS regularization using the NNK
will always result in a weight vector that is not the image
of a weight-step under ΨO (i.e. RKHS theory is insufficient,
and we need RKBS theory to proceed). Thus, as the NNK is
not the main focus of our paper will not reproduce them in
the body of the paper - the interested reader can find them
in appendix C. Using these induced kernels we may obtain
expressions for the norms of the images of X and WO in
feature space:

‖ΦO (x)‖2XO =
∥∥∥Φ[D−1]
O (x)

∥∥∥2

F
= Tr (KXO (x,x))

‖ΨO (W∆)‖2WO =
∥∥∥Ψ[D−1]
O (W∆)

∥∥∥2

F
= Tr (KWO (W∆,W∆))

(13)

5

Gradient Descent in Neural Networks as Sequential Learning in RKBS

Once again, the precise form of these expressions is com-
plicated (the derivation is straightforward but the answer is
very long - details can be found in appendix C). The impor-
tance of these norms lies in deriving conditions on conver-
gence of the feature maps. Defining the helper function:

σ[j] (ζ) = max
z∈R+∪{0}

{∞∑
l=1

(
1
l!

)2
τ [j](l) (z) τ [j](l) (z) ζl

}
(14)

and the constants:

s[j]2 =

{
1
2α

[j]2 + 1
2
H[−1]

H[0] if j = 0
1
2α

[j]2 + H[j−1]

H[j] otherwise

t
[j]2
∆ij+1

=

[
2b

[0]2
∆i1

+ 2
∥∥∥W[0]

∆:i1

∥∥∥2

2

]
i1

if j = 0[
2b

[j]2
∆ij+1

+
∥∥∥W[j]

∆:ij+1

∥∥∥2

2

]
ij+1

otherwise

(15)

which are, loosely speaking, surrogates for, respectively, the
expansion/contraction (fanout) in width from layer j to layer
j − 1 and the size of the weight-step at layer j; in appendix
C.6 we derive the following Lemmas (see corresponding
proofs of Theorems 5 and 6 in the appendix):

Lemma 1. Let ε[j]φ ∈ (0, 1) ∀j ∈ ND. For a given neural

network and initial weights WO define φ[j]

H[j] = σ[j]((1 −
ε
[j]
φ)
√
ρ[j]) ∀j ∈ ND. If the scale factors satisfy:

µ
[j]2
ij+1
≤

1

s[j]2

(1−ε[j]φ)ρ[j]
1
2

+ 1

H[j]

∑
ij

ω
[j]2
ij

W [j]2
Oij,ij+1

ω̃
[j]2
ij,ij+1

+1

 φ[j−1]

H[j−1]

(1−ε[j]φ)ρ[j]
1
2

if j>0

1 s[0]2

(1−ε[0]
φ)
√
ρ[0]

 if j=0

∀j ∈ ND, ij+1 then
∥∥∥Φ[j]
O (x)

∥∥∥2

F
≤ φ[j] ∀x ∈ X.

Lemma 2. Let ε[j]ψ ∈ (0, 1) ∀j ∈ ND. For a given neural
network and initial weights WO and weight-step W∆, if:

t
[0]2
∆i1
≤
(

1− ε[0]
ψ

)
µ

[0]2
i1

t
[j]2
∆ij+1

+
∑
ij

∥∥∥Ψ[j−1]
O:ij

(W∆)
∥∥∥2

2

ω
[j]2
ij

(̃
ω

[j]2
ij ,ij+1

+W
[j]2
∆ij ,ij+1

)
≤
(
1−ε[j]ψ

)
µ

[j]2
ij+1

∀j ∈ ND, ij′+1 then
∥∥∥Ψ[j]
O (W∆)

∥∥∥2

F
≤ H [j] 1−ε[j]ψ

ε
[j]
ψ

.

Lemma 1 allows us to place bounds on the scale factors to
ensure that the feature map Φ

[j]
O : X → XO is finite (well

defined) for all x ∈ X. Lemma 2 is similar, but rather than
bounding the scale factors it takes these as given (by Lemma
1) and places bounds on the size of the weight-step W∆ for
which the feature map is Ψ

[j]
O : W → WO is finite (well

defined). Taken together, therefore, they give some bound
on the size of weight-step that can be modelled for a give
neural network structure and initial weights WO. However
they say nothing directly about the shadow weights. In
the next section we use these Lemmas to establish a link
between the weight-step generated by gradient descent and
learning in RKBS, as well as clarifying the size of weight-
step which we can model using our construct.

6.3. Contribution 3: Equivalence of Gradient Descent
and regularized Risk Minimization in RKBS

In our previous contributions we showed that the change
f∆ in neural network behaviour can be represented as by
the form (10) with feature maps (9,11), derived kernels
from these feature maps and gave bounds on the size of the
weight-step for which this representation is valid. In this
section we use these results to establish a link between gradi-
ent descent learning in neural networks and regularized risk
minimization in reproducing kernel Banach space (RKBS).

To begin, it is not difficult to see that the feature maps
ΦO : X→ XO and ΨO : WO →WO define a RKBS BO
imbued with ‖ · ‖BO = ‖ · ‖F using (1) with the reproducing
Banach kernel (12) deriving from (2):3

KO (x,W′
∆) = 〈ΦO (x) ,ΨO (W′

∆)〉XO×WO
= diag (f∆ (x))

in terms of which the change f�
∆ in the network’s behaviour

due to a back-progation iteration may be written:

f�
∆ (·) = KO

(
·,W�

∆

)
1

For a given neural network with initial weights WO, we as-
sume that the weight-step is chosen using gradient descent.4

An alternative approach might be to select a weight-step to
minimize the regularized risk in RKBS, specifically:

W•
∆ = argmin

W∆∈WO
Rλ (W∆)

Rλ (W∆)=λ ‖ΨO(W∆)‖WO+RE(W∆+WO,D)

(16)

where we call λ the trade-off coefficient. Larger trade-off co-
efficients favour smaller weight-steps, and vice-versa. The
advantage of this form over the back-propagation derived
weight-step is that we can directly apply complexity bounds
etc. from RKBS theory, and then extend to the complete
training process. This motivates us to ask:

For a given neural network with initial weights

3In the appendix we prove that these maps satisfy the relevant
density requirements.

4Note that the training set D here is for this iteration only and
may be a random subset of a larger training set.

6

Gradient Descent in Neural Networks as Sequential Learning in RKBS

and biases WO, let W�
∆ be the back-propagation

weight-step (gradient descent with learning rate
η) defined by (5), and let W•

∆ be a weight-step
solving the regularized risk minimization problem
(16). Given the gradient-descent derived weight-
step W�

∆, can we select scale factors, shadow
weights and trade-off parameter λ (as a function
of W�

∆) that would guarantee that W•
∆ = W�

∆?

If the answer is yes (which we demonstrate) then we can
gain understanding of back-propagation by analysing (16).
Now, the solution to (16) must satisfy first-order optimality
conditions (assuming differentiability for simplicity), so:

∂
∂W∆

‖ΨO (W•
∆)‖WO = −1

λ
∂

∂W∆
RE(W•

∆+WO,D)

Note that if the gradient of the regularization term satisfies:

∂
∂W∆

∥∥ΨO (W�
∆

)∥∥
WO

= νW�
∆

for some ν ∈ R+, and 1
λ = ην, then W•

∆ = W�
∆. Thus

the question of whether there exists scaling factors, shadow
weights and λ such that the regularized risk minimization
weight-step corresponds to the gradient-descent weight-step
for a specified learning rate η can be answered in the affirma-
tive by proving the existence of canonical scalings, which
we define as follows:

Definition 2 (Canonical Scaling). For a given neural net-
work, initial weights WO and weight step W�

∆ gener-
ated by back-propagation, we define a canonical scaling
to be a set of scaling factors and shadow weights for
which ∂

∂W∆

∥∥ΨO (W�
∆

)∥∥
WO

= νW�
∆ for ν ∈ R+, and∥∥ΨO(W�

∆)
∥∥
WO

, ‖ΦO(x)‖XO <∞ ∀x ∈ X.

To prove the existence of canonical scaling and thus the key
connection between gradient descent (back-propagation)
and learning in RKBS, using (15), defining:

t
[j]�2
∆ij+1

=

2b

[0]�2
∆i1

+ 2
∥∥∥W[0]�

∆:i1

∥∥∥2

2
if j = 0

2b
[j]�2
∆ij+1

+ 2
∥∥∥W[j]�

∆:ij+1

∥∥∥2

2
otherwise

∀j ∈ ND, ij+1, in the appendix we prove the following key
result based on Lemmas 1 and 2:

Theorem 1. Let ε, χ ∈ (0, 1). For a given neural network
with initial weights WO, let W�

∆ be the weight-step for
this derived from back-propagation, assuming wlog that
α[j] ∈ R+ is chosen such that ∀j ∈ ND−1:5

∥∥∥W[j+1]�
∆

∥∥∥2

F
= χ

∥∥∥t[j]�
∆

∥∥∥2

∞

5Note that b[j]�∆ij+1
is proportional to α[j], so we can always

increase t[j]�2
∆ij+1

to ensure the condition holds by adjusting α[j].

Let εψ = 1− 1
1−χ

s[D−1]2

(1−ε)
√
ρ[D−1]

‖t[D−1]�
∆ ‖2∞ and:6

ε
[j]
φ = 1− 1√

ρ[j]
σ[j]−1

(
. . .

. . .

1
1−χ

χD−1−jεψ(1−ε[j+1]
φ)

√
ρ[j+1]

‖t[j+1]�
∆ ‖2∞

−
χD−1−jεψ

1−χD−1−jεψ
s[j+1]2

max
ij+2

1

H[j+1]

∥∥∥∥W[j+1]
O:ij+2

∥∥∥∥2
2∥∥∥∥W[j+1]�

∆:ij+2

∥∥∥∥2
2
−
∥∥∥∥W[j+1]�

∆:ij+2

∥∥∥∥2
∞

+ H[j]

H[j+1]

∀j ∈ ND−1, where ε[D−1]

φ = ε. If the weight-step satisfies

‖t[j]�
∆ ‖2∞ < B[j]2 ∀j ∈ ND, where:

B[j]2 =

(1−χ)2(
s[D−1]2

(1−ε)
√
ρ[D−1]

) if j = D − 1

(1−χ)2(1−χD−j−1εψ) s[j]2

(1−ε[j]
φ)
√
ρ[j]

 if j < D − 1
(17)

then there exists of a canonical scaling:

∂
∂W∆

‖ΨO (W∆)‖WO
∣∣∣
W∆=W�

∆

= νW�
∆

ν = 4∥∥∥t[D−1]�
∆

∥∥∥2

∞

(1−εψ)(1−χ)

(εψ−χ)2 <∞

where ‖ΦO(x)‖2F ≤ H [D−1]σ[D−1]((1 − ε)
√
ρ[D−1])

∀x ∈ X and ‖ΨO(W∆)‖2F ≤ H [D−1] 1−εψ
εψ

.

This is proven as corollary 10 in the appendix. This theo-
rem tells us that, for any set of initial weights WO, for a
sufficiently small weight-step W�

∆ generated by back prop-
agation, there exists a canonical scaling - i.e. a set of scaling
factors and shadow weights such that the gradient-descent
weight-step is exactly equivalent to the step generated by
regularized RKBS learning using an appropriate trade-off
parameter λ. Note that:

• The maximum step-size B[j] in layer j (up to near-
identity scaling terms) is determined by the inverse
fanout 1/s[j] (which scales roughly as H [j]/H [j−1])
and the scaled radius of convergence (1 − ε[j]φ)

√
ρ[j]

(which scales roughly inverse the the weight-step in
subsequent layers). This bound will tend to get smaller
as we move from the output layer back toward the
input, but so too will the weight-steps in many cases
due to the problem of vanishing gradients.

• The trade-off coefficient (degree of regularization) re-
quired by this canonical scaling is:

λ = 1
ην = B[D−1]2

4η

1−

(∥∥∥t[j]�
∆

∥∥∥
∞

B[D−1]

)2
2

6The positivity of εψ is due to the constraints on ‖t[D−1]�
∆ ‖2∞.

7

Gradient Descent in Neural Networks as Sequential Learning in RKBS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

λ'

Normalised step-size

Figure 2: Normalized Canonical trade-off coefficient λ′ =
4η

B[D−1]2λ vs normalized gradient-descent step-size ‖t
[j]�
∆ ‖∞
B[D−1] .

as shown in figure 2. Note that (a) the degree of reg-
ularization required to generate an equivalent RKBS
weight-step is inversely proportional to the learning
rate used to generate the original back-propagation
weight-step and (b) larger gradient-descent weight-
steps are equivalent to less regularized RKBS weight-
steps, as might be expected.

7. Application - Rademacher Complexity
Having established an exact representation of neural net-
works in finite neighbourhoods of weights and biases, estab-
lished the link with RKBS theory and demonstrated that a
gradient descent step is equivalent to a regularized step in
RKBS by appropriate, a-posterior selection of scale factors
and shadow weights (canonical scaling), we now consider
an application of this framework to uniform convergence
analysis using Rademacher complexity. The Rademacher
complexity of a set G of real-valued functions is a mea-
sure of its capacity. Assuming training vectors xi ∼
ν and Rademacher random variables εi ∈ {−1, 1}, the
Rademacher complexity of G is (Mendelson, 2003):

RN (G) = Eν,ε
[
supf∈G

∣∣ 1
N

∑
iεif (xi)

∣∣]
This may be used in uniform convergence analysis to bound
how quickly the empirical risk converges to the expected
risk, typically of the form:∣∣R (g)−RE (g)

∣∣ ≤ cRN (G) + excess risk

The following theorem demonstrates how our framework
may be used to bound Rademacher complexity for a scalar-
output neural network:

Theorem 2. Let ε, χ ∈ (0, 1) and for a given neural net-
work with initial weights WO, and let W�

∆ be the weight-
step for this derived from back-propagation satisfying the
conditions set out in corollary 10. Then f�

∆ ∈ F•, where

the Rademacher complexity of F• is bounded as:

RN (F•)
H[D−1] ≤

√
σ[D−1]

(
(1−ε)
√
ρ[D−1]

)
N

∥∥∥t[D−1]�
∆

∥∥∥2

∞
1

1−χB
[D−1]2−

∥∥∥t[D−1]�
∆

∥∥∥2

∞

The proof of this theorem is a straightforward application
of theorem 1 (see proof of theorem 11 in the appendix for
details). Apart from the usual 1

N scaling this theorem is very
different from typical bounds on Rademacher complexity,
as it directly bounds the complexity using the size of the
weight-step for a single iteration of gradient descent. To gain
more insight into this bound we take the following steps:

1. By the properties of Rademacher complexity (Bartlett
& Mendelson, 2002, Theorem 12) the complexity of
the trained neural network after T iterations may be
bounded by a simple summation of the bounds on each
step, so, assuming training is stopped at T iterations:

RN (F•)
H[D−1] ≤T

√
σ[D−1]

(
(1−ε)
√
ρ[D−1]

)
1

1−χN

∥∥∥t[D−1]�
∆

∥∥∥2

∞

B[D−1]2−
∥∥∥t[D−1]�

∆

∥∥∥2

∞

This supports the practice of using early-stopping to
prevent overfitting in neural networks.7

2. The size of the back-propagation weight-step scales
proportionally with the learning rate, so for sufficiently
small learning rates we find, using (17):8

RN (F•)
H[D−1] /T

√
1
N

σ[D−1]
(

(1−ε)
√
ρ[D−1]

)
(1−χ)(1−ε)

√
ρ[D−1]

∥∥∥t[D−1]�
∆

∥∥∥
∞
s[D−1]

However as the learning rate increases the bound will
increase at an accelerating rate.9 This supports the idea
that lower learning rates act as a form of regularization
in neural network training.

3. Assuming τ [D−1] is Lτ -Lipchitz, recalling the form of
the back-propagation step (5) and using the assumption
that the error function is LE-Lipschitz, we see:∥∥∥W[D−1]�

∆:iD

∥∥∥2

2
≤ η2L2

EL
2
τN

2H[D−2]

H[D−1]∣∣∣b[D−1]�
∆:iD

∣∣∣2 ≤ ηL2
EL

2
τN

2α[D−1]2

and hence:
s[D−1]2 = α[D−1]2 + H[D−2]

H[D−1]∥∥∥t[j]�
∆

∥∥∥2

∞
≤ 2ηL2

EL
2
τN

2
(

2α[D−1]2 + H[D−2]

H[D−1]

)
Thus, assuming H[D−2]

H[D−1]�max{1,α[D−1]2}, by (15):

7We suspect that a more careful analysis accounting for the
overlap between the RKBSs for each step may give sub-linear
dependence on T , but this is beyond the scope of the present work.

8We use the approximation x
a+x
≈ x

a
for 0 < x� a here.

9Eventually the bound will become meaningless as the step-
size exceeds the size we can model using an RKBS.

8

Gradient Descent in Neural Networks as Sequential Learning in RKBS

RN (F•)
H[D−1] /T

√
2
N

σ[D−1]
(

(1−ε)
√
ρ[D−1]

)
(1−χ)(1−ε)

√
ρ[D−1]

ηLELτN
H[D−2]

H[D−1]

4. Finally, following standard practice and scaling the
learning rate as η = s

N
√
H[D−2]

, 0 < s� 1, we obtain:

RN (F•)/sT

√
2H[D−2]

N

σ[D−1]
(

(1−ε)
√
ρ[D−1]

)
(1−χ)(1−ε)

√
ρ[D−1]

LELτ

Thus the complexity bound scales approximately as

O(
√

H[D−2]

N) in the small learning rate limit. The impact of
layer widths preceding this and the depth of the network are
not apparent in the bound, which is perhaps unsurprising as
we may view these layers are essentially a feature map feed-
ing into the output layer, and hence, provided this map is
sufficiently complex ((Kidger & Lyons, 2020) would appear
to suggest that non-polynomial should suffice, but the ex-
tension to here is speculative), we would expect that the out-
put dimension of the feature map should play a pivotal role
compared to the internal details of the feature map itself.
It is possible that the widths of earlier layers and network
depth would be indirectly present as bounding the learning
rate (s in our assumptions) for which this analysis holds, as
may be glimpsed in theorem 1, but it is not clear how such
factors could be formally brought forward in our bound.

Finally, the role of the helper function σ[D−1] here depends
explicitly on the form of the activation function τ [D−1] in
the output layer. We finish by considering two special cases:

• Linear output neuron: if we let ρ[D−1] be sufficiently
large that it exceeds the output of the network for any
training input then the linear activation τ [D−1](ζ) = ζ
satisfies our assumptions in the relaxed case discussed
in section 5.10 Moreover for this choice σ[D−1](ζ) = ζ
and Lτ = 1, and hence:

RlinN (F•) / sT
√

2
1−χ

H[D−2]

N LE (18)

• Tanh output neuron: if τ [D−1] = tanh then ρ[D−1] =
π
2 and Lτ = 1. The form of σ[D−1]

z,z′ is non-trivial (see
appendix F for details), but it is not difficult to see that
σ[D−1] = σ

[D−1]
0,0 and, using the power-series about 0:

σ
[D−1]
tanh (ζ) =

∞∑
m=1

(
22m(22m−1)B2m

(2m)!

)2

ζ2m−1

where B2m are the Bernoulli numbers. Hence:

RtanhN (F•) / sT

√
2

1−χ
H[D−2]

N

σ
[D−1]
tanh ((1−ε)

√
π
2)

(1−ε)
√

π
2

LE

10Note that the output layer of the network does not feed in to
subsequent layers, so the range of output from this layer can vary
arbitrarily without pushing the power-series expansion of neurons
in the subsequent layer outside of their ROC. Thus we can let the
input and output of linear output layer neuron be arbitrarily large
without compromising the requirements of our model.

We note that in general the Rademacher complexity bound
will simply be the bound for linear output neurons (18) mul-
tiplied by an activation-function dependent scaling factor.
Thus asymptotically these bounds are independent of the
output layer activation function.

8. Conclusions and Future Directions
In this paper we have established a connection between neu-
ral network training using gradient descent and regularized
learning in reproducing kernel Banach space. We have intro-
duced an exact representation of the behaviour of neural net-
works as the weights and biases are varied in a finite neigh-
bourhood of some initial weights and biases in terms of an
inner product of two feature maps, one from data space to
feature space, the other from weight-step space to feature
space. Using this, we showed that the change in neural net-
work behaviour due to a single iteration of back-propagation
lies in a reproducing kernel Banach space, and moreover
that the weight-step found by back-propagation can be ex-
actly replicated through regularized risk minimization in
RKBS. Subsequently we presented an upper bound on the
Rademacher complexity of neural networks applicable to
both the over- and under-parametrized regimes, and dis-
cussed how this bound depends on learning rate, dataset size,
network width and the number of training iterations used.

With regard to future work we foresee a number of useful
directions. First, the analysis should be extended to non-
smooth activation functions such as ReLU, presumably by
modifying the feature map using a representation other than
a power series expansion. Second, the precise influence of
the learning rate needs to be further explicated, along with
other details of Theorem 1. With regard to the neural neigh-
bourhood kernels themselves, it would be helpful if these
could be reduced to closed form to allow them to be used in
practice.11 Finally, more work is needed to understand the
impact of the depth of the network on this theory.

Acknowledgement:

This research was partially funded by the Australian Gov-
ernment through the Australian Research Council (ARC).
Prof Venkatesh is the recipient of an ARC Australian Laure-
ate Fellowship (FL170100006).

This research was partially supported by the Australian Gov-
ernment through the Australian Research Council’s Discov-
ery Projects funding scheme (project DP210102798). The
views expressed herein are those of the authors and are
not necessarily those of the Australian Government or Aus-
tralian Research Council.

11A Taylor approximation the NNKs is readily obtained, but it is
difficult to say how accurate this may be without further analysis.

9

Gradient Descent in Neural Networks as Sequential Learning in RKBS

References
Allen-Zhu, Z., Li, Y., and Liang, Y. Learning and general-

ization in overparameterized neural networks, going be-
yond two layers. arXiv preprint arXiv:1811.04918, 2018.

Allen-Zhu, Z., Li, Y., and Song, Z. A convergence theory for
deep learning via over-parameterization. In International
Conference on Machine Learning, pp. 242–252. PMLR,
2019.

Aronszajn, N. Theory of reproducing kernels. Transactions
of the American Mathematical Society, 68:337–404, Jan–
Jun 1950.

Arora, S., Ge, R., Neyshabur, B., and Zhang, Y. Stronger
generalization bounds for deep nets via a compression
approach. In Proceedings of ICML, 2018.

Arora, S., Du, S., Hu, W., Li, Z., and Wang, R. Fine-grained
analysis of optimization and generalization for overpa-
rameterized two-layer neural networks. In International
Conference on Machine Learning, pp. 322–332. PMLR,
2019a.

Arora, S., Du, S. S., Hu, W., Li, Z., Salakhutdinov, R. R.,
and Wang, R. On exact computation with an infinitely
wide neural net. In Advances in Neural Information Pro-
cessing Systems, pp. 8139–8148, 2019b.

Bach, F. On the equivalence between kernel quadrature rules
and random feature expansions. The Journal of Machine
Learning Research, 18(1):714–751, 2017.

Bach, F. R. Breaking the curse of dimensionality with
convex neural networks. CoRR, abs/1412.8690, 2014.
URL http://arxiv.org/abs/1412.8690.

Bai, Y. and Lee, J. D. Beyond linearization: On quadratic
and higher-order approximation of wide neural networks.
arXiv preprint arXiv:1910.01619, 2019.

Bartlett, P. L. and Mendelson, S. Rademacher and gaussian
complexities: Risk bounds and structural results. Journal
of Machine Learning Research, 3:463–482, 2002.

Bartlett, P. L., Foster, D. J., and Telgarsky, M. J. Spectrally-
normalized margin bounds for neural networks. In Ad-
vances in Neural Information Processing Systems, pp.
6240–6249, 2017.

Bartolucci, F., De Vito, E., Rosasco, L., and Vigogna, S.
Understanding neural networks with reproducing kernel
banach spaces. arXiv preprint arXiv:2109.09710, 2021.

Cao, Y. and Gu, Q. Generalization bounds of stochastic
gradient descent for wide and deep neural networks. In
Advances in neural information processing systems, vol-
ume 32, 2019.

Cho, Y. and Saul, L. K. Kernel methods for deep learning.
In Y., B., D., S., D., L. J., Williams, C. K. I., and Culotta,
A. (eds.), Advances in Neural Information Processing
Systems 22, pp. 342–350. Curran Associates, Inc., 2009.
URL http://papers.nips.cc/paper/3628-
kernel-methods-for-deep-learning.pdf.

Chowdhury, S. R. and Gopalan, A. On kernelized multi-
armed bandits. In Precup, D. and Teh, Y. W. (eds.), Pro-
ceedings of the 34th International Conference on Ma-
chine Learning, volume 70 of Proceedings of Machine
Learning Research, pp. 844–853, International Conven-
tion Centre, Sydney, Australia, Aug 2017. PMLR.

Cortes, C. and Vapnik, V. Support vector networks. Machine
Learning, 20(3):273–297, 1995.

Cristianini, N. and Shawe-Taylor, J. An Introductino to Sup-
port Vector Machines and other Kernel-Based Learning
Methods. Cambridge University Press, Cambridge, UK,
2005.

Daniely, A. Sgd learns the conjugate kernel class of the net-
work. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach,
H., Fergus, R., Vishwanathan, S., and Garnett, R. (eds.),
Advances in Neural Information Processing Systems 30,
pp. 2422–2430. Curran Associates, Inc., 2017. URL
http://papers.nips.cc/paper/6836-sgd-
learns-the-conjugate-kernel-class-of-
the-network.pdf.

Daniely, A., Frostig, R., and Singer, Y. Toward deeper under-
standing of neural networks: The power of initialization
and a dual view on expressivity. In Lee, D. D., Sugiyama,
M., Luxburg, U. V., Guyon, I., and Garnett, R. (eds.), Ad-
vances in Neural Information Processing Systems 29, pp.
2253–2261. Curran Associates, Inc., 2016. URL http:
//papers.nips.cc/paper/6427-toward-
deeper-understanding-of-neural-
networks-the-power-of-initialization-
and-a-dual-view-on-expressivity.pdf.

D‘Aurizio, J. Taylor series expansion of tanh
x. Mathematics Stack Exchange https://
math.stackexchange.com/q/1052926 (version:
2014-12-05), 2014.

Der, R. and Lee, D. Large-margin classification in banach
spaces. In Proceedings of the JMLR Workshop and Con-
ference 2: AISTATS2007, pp. 91–98, 2007.

Dräxler, F., Veschgini, K., Salmhofer, M., and Hamprecht,
F. A. Essentially no barriers in neural network energy
landscape. In Proceedings of the 35th International Con-
ference on Machine Learning, ICML 2018, 2018.

10

Gradient Descent in Neural Networks as Sequential Learning in RKBS

Du, S., Lee, J., Li, H., Wang, L., and Zhai, X. Gradient
descent finds global minima of deep neural networks. In
International conference on machine learning, pp. 1675–
1685. PMLR, 2019a.

Du, S. S., Zhai, X., Poczos, B., and Singh, A. Gradient
descent provably optimizes over-parameterized neural
networks. In Conference on Learning Representations,
2019b.

Genton, M. G. Classes of kernels for machine learning:
A statistics perspective. Journal of Machine Learning
Research, 2:299–312, 2001.

Golowich, N., Rakhlin, A., and Shamir, O. Size-independent
sample complexity of neural networks. In COLT, 2018.

Gönen, M. and Alpaydin, E. Multiple kernel learning algo-
rithms. Journal of Machine Learning Research, 12:2211–
2268, 2011.

Goodfellow, I., Bengio, Y., and Courville, A.
Deep Learning. MIT Press, 2016. http://
www.deeplearningbook.org.

Gradshteyn, I. S. and Ryzhik, I. M. Table of Integrals, Series,
and Products. Academic Press, London, 2000.

Harvey, N., Liaw, C., and Mehrabian, A. Nearly-tight VC-
dimension bounds for piecewise linear neural networks.
In Proceedings of the 30th Conference on Learning The-
ory, COLT 2017, 2017.

Herbrich, R. Learning Kernel Classifiers: Theory and Algo-
rithms. MIT Press, 2002.

Jacot, A., Gabriel, F., and Hongler, C. Neural tangent kernel:
Convergence and generalization in neural networks. In
Advances in neural information processing systems, pp.
8571–8580, 2018.

Kidger, P. and Lyons, T. Universal approximation with deep
narrow networks. In Conference on learning theory, pp.
2306–2327. PMLR, 2020.

Knapp, M. P. Sines and cosines of angles in arithmetic
progression. Mathematics magazine, 82(5):371, 2009.

Lee, J., Sohl-dickstein, J., Pennington, J., Novak, R.,
Schoenholz, S., and Bahri, Y. Deep neural networks as
gaussian processes. In In International Conference on
Learning Representations, 2018.

Li, C., Venturi, L., and Xu, R. Learning the kernel for classi-
fication and regression. arXiv preprint arXiv:1712.08597,
2017.

Li, Y. and Liang, Y. Learning overparameterized neural
networks via stochastic gradient descent on structured
data. In Advances in Neural Information Processing
Systems 31: Annual Conference on Neural Information
Processing Systems, 2018.

Lin, R., Zhang, H., and Zhang, J. On reproducing kernel ba-
nach spaces: Generic definitions and unified framework
of constructions. Acta Mathematica Sinica, English Se-
ries, 2022.

Matthews, A. G. d. G., Rowland, M., Hron, J., Turner, R. E.,
and Ghahramani, Z. Gaussian process behaviour in wide
deep neural networks. arXiv e-prints, 2018.

Mendelson, S. A few notes on statistical learning theory. In
Mendelson, S. and Smola, A. J. (eds.), Advanced Lectures
on Machine Learning: Machine Learning Summer School
2002 Canberra, Australia, February 11–22, 2002 Revised
Lectures, pp. 1–40. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2003.

Müller, K.-R., Mika, S., Rätsch, G., Tsuda, K., and
Schölkopf, B. An introduction to kernel-based learning
algorithms. IEEE Transactions on Neural Networks, 12
(2):181–198, March 2001.

Nagarajan, V. and Kolter, J. Z. Uniform convergence
may be unable to explain generalization in deep learn-
ing. In Wallach, H., Larochelle, H., Beygelzimer, A.,
dé Buc, F., Fox, E., and Garnett, R. (eds.), Advances in
Neural Information Processing Systems 32, pp. 11615–
11626. Curran Associates, Inc., 2019a. URL http:
//papers.nips.cc/paper/9336-uniform-
convergence-may-be-unable-to-explain-
generalization-in-deep-learning.pdf.

Nagarajan, V. and Kolter, Z. Deterministic PAC-Bayesian
generalization bounds for deep networks via generalizing
noise-resilience. In International Conference on Learning
Representations (ICLR), 2019b.

Neal, R. M. Priors for infinite networks, pp. 29–53. Springer,
1996.

Neyshabur, B., Tomioka, R., and Srebro, N. Norm-based
capacity control in neural networks. In Proceedings of
Conference on Learning Theory, pp. 1376–1401, 2015.

Neyshabur, B., Bhojanapalli, S., McAllester, D., and Sre-
bro, N. Exploring generalization in deep learning. In Pro-
ceedings of the 31st International Conference on Neural
Information Processing Systems, pp. 5949–5958, 2017.

Neyshabur, B., Bhojanapalli, S., and Srebro, N. A
PAC-bayesian approach to spectrally-normalized margin
bounds for neural networks. In Proceedings of ICLR,
2018.

11

Gradient Descent in Neural Networks as Sequential Learning in RKBS

Neyshabur, B., Li, Z., Bhojanapalli, S., LeCun, Y., and Sre-
bro, N. The role of over-parametrization in generaliza-
tion of neural networks. In Proceedings of ICLR, 2019.

Parhi, R. and Nowak, R. D. Banach space representer the-
orems for neural networks and ridge splines. J. Mach.
Learn. Res., 22(43):1–40, 2021.

Rahimi, A. and Benjamin, R. Weighted sums of random
kitchen sinks: Replacing minimization with randomiza-
tion in learning. In Koller, D., Schuurmans, D., Bengio,
Y., and Bottou, L. (eds.), Advances in Neural Informa-
tion Processing Systems 21, pp. 1313–1320. Curran As-
sociates, Inc., 2009.

Sanders, K. Neural networks as functions parameterized
by measures: Representer theorems and approximation
benefits. Master’s thesis, Eindhoven University of Tech-
nology, 2020.

Shawe-Taylor, J. and Cristianini, N. Kernel Methods for
Pattern Analysis. Cambridge University Press, 2004.

Smola, A. J. and Schölkopf, B. On a kernel-based method
for pattern recognition, regression, approximation and op-
erator inversion. Algorithmica, 22:211–231, 1998. Tech-
nical Report 1064, GMD First, April 1997.

Song, G., Zhang, H., and Hickernell, F. J. Reproducing
kernel banach spaces with the `1 norm. Applied and
Computational Harmonic Analysis, 34(1):96–116, Jan
2013.

Sriperumbudur, B. K., Fukumizu, K., and Lanckriet, G. R.
Learning in hilbert vs. banach spaces: A measure embed-
ding viewpoint. In Advances in Neural Information Pro-
cessing Systems, pp. 1773–1781, 2011.

Steinwart, I. and Christman, A. Support Vector Machines.
Springer, 2008.

Unser, M. A representer theorem for deep neural networks.
J. Mach. Learn. Res., 20(110):1–30, 2019.

Unser, M. A unifying representer theorem for inverse prob-
lems and machine learning. Foundations of Computa-
tional Mathematics, 21(4):941–960, 2021.

Xu, Y. and Ye, Q. Generalized mercer kernels and
reproducing kernel banach spaces. arXiv preprint
arXiv:1412.8663, 2014.

Zhang, H. and Zhang, J. Regularized learning in banach
spaces as an optimization problem: representer theo-
rems. Journal of Global Optimization, 54(2):235–250,
Oct 2012.

Zhang, H., Xu, Y., and Zhang, J. Reproducing kernel ba-
nach spaces for machine learning. Journal of Machine
Learning Research, 10:2741–2775, 2009.

Zhou, W., Veitch, V., Austern, M., Adams, R. P., and Or-
banz, P. Nonvacuous generalization bounds at the ima-
genet scale: a PAC-Bayesian compression approach. In
International Conference on Learning Representations
(ICLR), 2019.

Zou, D. and Gu, Q. An improved analysis of training over-
parameterized deep neural networks. In Advances in
neural information processing systems, volume 32, 2019.

Zou, D., Cao, Y., Zhou, D., and Gu, Q. Gradient descent op-
timizes over-parameterized deep relu networks. Machine
learning, 109(3):467–492, 2020.

12

Gradient Descent in Neural Networks as Sequential Learning in RKBS

A. Derivations and Proofs.
Our goal in this supplement is to present all derivations and proofs relevant to our paper, and also any additional material
and description that may be useful.

We assume a fully-connected, D-layer feedforward neural network f : (X ⊆ Rn) → (Y ⊆ Rm) with layers of widths
H [0], H [1], . . . ,H [D−1], where H [D−1] = m and we define H [−1] = n. We assume layer j ∈ ND (we use the convention
j ∈ ND throughout) is made up of neurons with the same activation function τ [j] : R → R. The network is defined
recursively:

f (x) = x[D] ∈ RH[D−1]

x[j+1] = τ [j]
(
x̃[j]
)
∈ RH[j]

x̃[j] = 1√
H[j]

W[j]Tx[j] + α[j]b[j] ∈ RH[j] ∀j ∈ ND

x[0] = x ∈ X ⊂ RH[−1]

(H [−1] = n)

(19)

where W[j] ∈ RH[j−1]×H[j]

and b[j] ∈ RH[j]

are weights and biases, and α[j] ∈ R+ is a constant we will use later. We
define the set of neural networks taking the form (19) as:

F = { f : Rn → Rm| f has form (19) given W ∈W} (20)

where W summarises the weights and biases in (19):

W =
((

W[j],b[j]
)∣∣ j ∈ ND

)
∈W =

∏
j∈ND

(
RH[j−1]×H[j] × RH[j]

)

Typically, the goal in neural network training is to take a training set and find weights and biases to minimise some measure
of mismatch between the true training labels and the network’s predictions. For simplicity let us assume we wish to minimise:

f? = argmin
f∈F

∑
k E

(
x{k},y{k}, f

(
x{k}

))
(21)

or, equivalently:

W? = argmin
W∈W

∑
k E

(
x{k},y{k}, fW

(
x{k}

))
(22)

where fW is a network of the form (19) with weights and biases W, D = {(x{k},y{k}) ∈ X× Y : k ∈ NN} is a training
set (we use the convention k ∈ NN throughout), and E : X× Y× Rm → R is an error function defining the purpose of the
network.

We make the following assumptions:

1. Input space: we assume X = [−M [−1],M [−1]]n.

2. Error function: we assume the error function E : X× Y× Rm → R is C1 and LE-Lipschitz in its third argument.

3. Activation functions: we assume the activation functions τ [j] : R→ [−M [j],M [j]] are bounded and C∞, and that τ [j]

has a power-series representations with region of convergence (ROC) at least ρ[j] ∈ R+ around z for all z ∈ R, j ∈ ND.

4. Weight non-triviality: we assume W[j] 6= 0 for all j ∈ ND at all times during training.12

5. Weight initialization: we assume that initially W [j]
ij ,ij+1

, b
[j]
ij+1
∼ N (0, 1) (LeCun initialization).

6. Training: we assume the network is trained using the back-propagation with learning rate η ∈ R+.
12Note that networks that do not meet this requirement have a constant output independent of input x. We do not consider this a

restrictive assumption as it is highly unlikely that a randomly initialised network trained with a typical training set will ever reach this state.

13

Gradient Descent in Neural Networks as Sequential Learning in RKBS

A.1. Review of Back-propagation

We now give a brief review of back-propagation training, which is a systematic implementation of gradient descent on the
weights and biases W to solve (22). Let us consider a single training iteration, where we start with initial weights and biases
WO ∈W and calculate a weight-step W�

∆ so that, after this iteration, W = WO + W�
∆, where:

W�
∆ = −η ∂

∂W

∑
k E

(
x{k},y{k}, fW

(
x{k}

))∣∣
W=WO

Denote the network activation prior to the iteration given input x as:

fO (x) = x
[D]
O

x
[j+1]
O = τ [j]

(
x̃

[j]
O

)
x̃

[j]
O = 1√

H[j]
W

[j]T
O x

[j]
O + α[j]b

[j]
O

x
[0]
O = x ∈ X

(23)

for all layers j ∈ ND. The back-propagation iteration for layer D− 1 is a gradient descent step with learning rate η, namely:

W
[D−1]�
∆iD−1,iD

= −η ∂

∂W
[D−1]
iD−1,iD

∑
k E

(
x{k},y{k}, fW

(
x{k}

))∣∣∣∣W = WO

= −η
∑
k,i′D
∇i′DE

(
x{k},y{k}, fW

(
x{k}

))
∂

∂W
[D−1]
iD−1,iD

fi′D
(
x{k}

)∣∣∣∣W = WO

= −η
∑
k,i′D
∇i′DE

(
x{k},y{k}, fW

(
x{k}

))
∂

∂W
[D−1]
iD−1,iD

x
{k}[D]
i′D

∣∣∣∣W = WO

= −η
∑
k,i′D
∇i′DE

(
x{k},y{k}, fW

(
x{k}

))
∂

∂W
[D−1]
iD−1,iD

τ [D−1]
(
x̃
{k}[D−1]
i′D

)∣∣∣∣W = WO

= −η
∑
k,i′D
∇i′DE

(
x{k},y{k}, fW

(
x{k}

))
τ [D−1](1)

(
x̃
{k}[D−1]
i′D

)
∂

∂W
[D−1]
iD−1,iD

x̃
{k}[D−1]
i′D

∣∣∣∣W = WO

= −η 1√
H[D−1]

∑
k γ
{k}[D−1]
OiD x

{k}[D−1]
OiD−1

where τ (r)(z) = ∂r

∂rz τ(z) and:

γ
{k}[D−1]
OiD = ∇iDE

(
x{k},y{k}, fW

(
x{k}

))
τ [D−1](1)

(
x̃
{k}[D−1]
OiD

)
Subsequently:

W
[D−2]�
∆iD−2,iD−1

= −η ∂

∂W
[D−2]
iD−2,iD−1

∑
k E

(
x{k},y{k}, f

(
x{k}

))∣∣∣∣W = WO

= −η
∑
k,i′D

γ
{k}[D−1]
Oi′D

∂

∂W
[D−2]
iD−2,iD−1

x̃
{k}[D−1]
i′D

∣∣∣∣W = WO

= −η 1√
H[D−1]

∑
k,i′D,i

′
D−1

γ
{k}[D−1]
Oi′D

W
[D−1]
Oi′D−1,i

′
D

∂

∂W
[D−2]
iD−2,iD−1

x
{k}[D−1]
i′D−1

∣∣∣∣W = WO

= −η 1√
H[D−1]

∑
k,i′D,i

′
D−1

γ
{k}[D−1]
Oi′D

W
[D−1]
Oi′D−1,i

′
D

∂

∂W
[D−2]
iD−2,iD−1

τ [D−2]
(
x̃
{k}[D−2]
i′D−1

)∣∣∣∣W = WO

= −η 1√
H[D−1]

∑
k,i′D,i

′
D−1

γ
{k}[D−1]
Oi′D

W
[D−1]
Oi′D−1,i

′
D
τ [D−2](1)

(
x̃
{k}[D−2]
i′D−1

)
∂

∂W
[D−2]
iD−2,iD−1

x̃
{k}[D−2]
i′D−1

∣∣∣∣W = WO

= −η 1√
H[D−1]

∑
k,i′D−1

γ
{k}[D−2]
Oi′D−1

∂

∂W
[D−2]
iD−2,iD−1

x̃
{k}[D−2]
i′D−1

∣∣∣∣W = WO

= −η 1√
H[D−1]H[D−2]

∑
k γ
{k}[D−2]
OiD−1

x
{k}[D−2]
OiD−2

where:
γ
{k}[D−2]
OiD−1

=
∑
iD
γ
{k}[D−1]
OiD W

{k}[D−1]
OiD−1,iD

τ [D−2](1)
(
x̃
{k}[D−2]
OiD−1

)
and so on through all layers. Summarising, for all j ∈ ND (and using the MATLAB notation A:i for column i of matrix A):

W
[j]�
∆:ij+1

= −η 1√
H[D−1]H[D−2]...H[j+1]

∑
k γ
{k}[j]
Oij+1

1√
H[j]

x
{k}[j]
O

b
[j]�
∆:ij+1

= −η 1√
H[D−1]H[D−2]...H[j+1]

∑
k γ
{k}[j]
Oij+1

α[j]
(24)

14

Gradient Descent in Neural Networks as Sequential Learning in RKBS

where, recursively:
γ
{k}[j−1]
Oij =

∑
ij+1

γ
{k}[j]
Oij+1

W
[j]
Oij ,i′j+1

τ [j−1](1)
(
x̃
{k}[j−1]
Oij

)
γ
{k}[D−1]
OiD = ∇iDE

(
x{k},y{k}, f

(
x{k}

))
τ [D−1](1)

(
x̃
{k}[D−1]
OiD

) (25)

B. Dual Form of a Neural Network Step
Our first goal is to rewrite the neural network after a training iteration as:

f (x) = fO (x) + f∆ (x)

where fO : (X ⊂ Rn)→ (Y ⊂ Rm) is the neural network before the iteration and f∆ : (X ⊂ Rn)→ Rm is the change in
network behaviour due to the change W∆ ∈WO in weights and biases for this iteration, so that:

f∆ (x) = 〈ΦO (x) ,ΨO (W∆)〉XO×WO
where:

ΦO : X→ XO = span (ΦO (X)) ⊂ R∞×m
ΨO : WO →WO = span (ΨO (WO)) ⊂ R∞×m

are feature maps;
WO ⊂

∏
j∈ND

(
RH[j−1]×H[j] × RH[j]

)
and 〈·, ·〉XO×WO : XO ×WO → Rm is the bilinear form:

〈Ξ,Ω〉XO×WO = diag
(
ΞTΩ

)
Moreover we aim to show that the feature maps are entirely defined by:

1. The structure of the network - that is, the number of layers, their widths and activation functions.

2. The weights and biases WO ∈W before the iteration.

We will then use this to construct appropriate norms for the weight feature spaceWO and data feature space XO, which will
allow us to prove that f∆ lies in a reproducing kernel Banach space, and analyse the complexity and convergence of the
neural network.

B.1. Preliminary: Power Series Notation

The approach taken here is direct - we construct a power series expansion of the network without truncation and rearrange
the terms to separate the resulting summation into the desired form. To make the process easier we define:

% (a,d) =

 a0d
⊗1

a1d
⊗2

...

noting that this is linear in the elementwise (Hadamard) product, so:

% (a,d)� % (a′,d′) = % (a� a′,d� d′)

Using this notation it is straightforward to obtain the following useful shorthand for the multi-dimensional Taylor expansion
(using the smoothness assumption) of τ [j] : R→ R about z ∈ R for c, c′ ∈ Rp, |〈c, c′〉| ≤ ρ[j]:

τ [j] (z + 〈c, c′〉) = τ [j] (z) +
〈
%
(
g[j] (z) , c

)
,% (1∞, c

′) ,
〉

(26)

where the derivatives of τ [j] at z are encoded as:

g[j] (z) =

1
1!τ

[j](1) (z)
1
2!τ

[j](2) (z)
1
3!τ

[j](3) (z)
...

and τ [j](r)(z) = ∂r

∂zr τ
[j](z).

15

Gradient Descent in Neural Networks as Sequential Learning in RKBS

B.2. Feature Maps for Neural Networks

We represent the operation before and after the iteration, as well as the change due to the iteration, as:

Before Iteration
fO (x) = x

[D]
O ∈ Y

x
[j+1]
O = τ [j]

(
x̃

[j]
O

)
x̃

[j]
O = 1√

H[j]
W

[j]T
O x

[j]
O + α[j]b

[j]
O

x
[0]
O = x ∈ X

 +

Weight-step Change

f∆ (x) = f (x)− fO (x)

x
[j+1]
∆ = x[j+1] − x

[j+1]
O

x̃
[j]
∆ = x̃[j] − x̃

[j]
O

x
[0]
∆ = x ∈ 0n

 =

After Iteration

f (x) = x[D] ∈ Y

x[j+1] = τ [j]
(
x̃[j]
)

x̃[j] = 1√
H[j]

W[j]Tx[j] + α[j]b[j]

x[0] = x ∈ X

⇑ x

[j+1]
∆ = τ [j]

(
x̃

[j]
O + x̃

[j]
∆

)
− τ [j]

(
x̃

[j]
O

)
x̃

[j]
∆ = 1√

H[j]
W

[j]T
∆

(
x

[j]
O + x

[j]
∆

)
+ 1√

H[j]
W

[j]T
O x

[j]
∆ + α[j]b

[j]
∆

(27)

Our goal is to write f∆ : X→ Rm as:

f∆ (x) = 〈ΦO (x) ,ΨO (W∆)〉XO×WO

where ΦO : X→ XO and ΨO : WO →WO are feature maps and 〈Ξ,Ω〉XO×WO = diag(ΞTΩ) is a bilinear form.

Starting with the first layer of the network, it is not difficult to see that:

x̃
[0]
i1

= x̃
[0]
Oi1 + x̃

[0]
∆i1

x̃
[0]
Oi1 = 1√

H[0]
W

[0]T
O:i1

xO + α[0]b
[0]
Oi1

x̃
[0]
∆i1

= 1√
H[0]

W
[0]T
∆:i1

xO + α[0]b
[0]
∆i1

=

〈
µ

[0]
i1

[
1√
2
α[0]

1√
H[0]

1√
2
xO

]
, 1

µ
[0]
i1

[√
2b

[0]
∆i1√

2W
[0]
∆:i1

]〉

where µ[0]
i1
∈ R+ are parameters we call scale factors, and A:l for column l of matrix A. The scale factors will always

cancel out in our representation of f , but will be important later when we place norms on feature space. Using a power
series expansion as per (26), if ‖x̃[0]

∆ ‖∞ ≤ ρ[0]:

x[1] =
[
τ [0]

(
x̃

[0]
i1

)]
i1

=
[
τ [0]

(
x̃

[0]
Oi1 + x̃

[0]
∆i1

)]
i1

= x
[1]
O +

[〈
%

(
g[0]

(
x̃

[0]
Oi1

)
, µ

[0]
i1

[
1√
2
α[0]

1√
H[0]

1√
2
xO

])
,%

(
1∞,

1

µ
[0]
i1

[√
2b

[0]
∆i1√

2W
[0]
∆:i1

])〉]
i1

and hence:

x
[1]
∆ =

[〈
Φ

[0]
O:i1

(x) ,Ψ
[0]
O:i1

(W∆)
〉]

i1

where:

Φ
[0]
O:i1

(x) = %

(
g[0]

(
x̃

[0]
Oi1

)
, µ

[0]
i1

[
1√
2
α[0]

1√
H[0]

1√
2
xO

])

Ψ
[0]
O:i1

(W∆) = %

(
1∞,

1

µ
[0]
i1

[√
2b

[0]
∆i1√

2W
[0]
∆:i1

])

16

Gradient Descent in Neural Networks as Sequential Learning in RKBS

Moving to the second layer, we see that:

x̃
[1]
i2

= x̃
[1]
Oi2 + x̃

[1]
∆i2

x̃
[1]
Oi2 = 1√

H[1]
W

[1]T
O:i2

x
[1]
O + α[1]b

[1]
Oi2

x̃
[1]
∆i2

= 1√
H[1]

W
[1]T
∆:i2

x
[1]
O + 1√

H[1]

(
W

[1]T
∆:i2

+ W
[1]T
O:i2

)
x

[1]
∆ + α[1]b

[1]
∆i2

= 1√
H[1]

W
[1]T
∆:i2

x
[1]
O + 1√

H[1]

∑
i1

(
W

[1]
Oi1,i2 +W

[1]
∆i1,i2

)〈
Φ

[0]
O:i1

(x) ,Ψ
[0]
O:i1

(W∆)
〉

+ α[1]b
[1]
∆i2

=

〈
µ

[1]
i2

[
1√
2
α[1]

1√
H[1]

x
[1]
O

]
[

1

ω̃
[1]
i1,i2

ω
[1]
i1
W

[1]
Oi1,i2√
H[1]

Φ
[0]
O:i1

(x)

]
i1[

ω
[1]
i1√
H[1]

Φ
[0]
O:i1

(x)

]
i1

 ,
1

µ
[1]
i2

[√
2b

[1]
∆i2

W
[1]
∆:i2

]
[
ω̃

[1]
i1,i2

1

ω
[1]
i1

Ψ
[0]
O:i1

(W∆)
]
i1[

W
[1]
∆i1,i2

ω
[1]
i1

Ψ
[0]
O:i1

(W∆)

]
i1

〉

where µ[1]
i2
∈ R+ are scale factors and ω[1]

i1
, ω̃

[1]
i1,i2
∈ R+ are shadow weights (note that both the shadow weights and scale

factors cancel in the inner product). Taking the Taylor expansion and using the properties of % we see that, provided
‖x̃[1]

∆ ‖∞ ≤ ρ[1]:

x
[2]
∆ =

[〈
Φ

[1]
O:i2

(x) ,Ψ
[1]
O:i2

(W∆)
〉]

i2

where:

Φ
[1]
O:i2

(x) = %

g[1]
(
x̃

[1]
Oi2

)
, µ

[1]
i2

[
1√
2
α[1]

1√
H[1]

x
[1]
O

]
[

1

ω̃
[1]
i1,i2

ω
[1]
i1
W

[1]
Oi1,i2√
H[1]

Φ
[0]
O:i1

(x)

]
i1[

ω
[1]
i1√
H[1]

Φ
[0]
O:i1

(x)

]
i1

Ψ
[1]
O:i2

(W∆) = %

1∞,
1

µ
[1]
i2

[√
2b

[1]
∆i2

W
[1]
∆:i2

]
[
ω̃

[1]
i1,i2

1

ω
[1]
i1

Ψ
[0]
O:i1

(W∆)
]
i1[

W
[1]
∆i1,i2

ω
[1]
i1

Ψ
[0]
O:i1

(W∆)

]
i1

Continuing, it is not difficult to see that, for any j ∈ ND, if:

x
[j]
∆ =

[〈
Φ

[j−1]
O:ij

(x) ,Ψ
[j−1]
O:ij

(W∆)
〉]

ij

then, with scale factors µ[j]
ij+1
∈ R+ and shadow weights ω[j]

ij
, ω̃

[j]
ij ,ij+1

∈ R+:

x̃
[j]
ij+1

= x̃
[j]
Oij+1

+ x̃
[j]
∆ij+1

x̃
[j]
Oij+1

= 1√
H[j]

W
[j]T
O:ij+1

x
[j]
O + α[j]b

[j]
Oij+1

x̃
[j]
∆ij+1

= 1√
H[j]

W
[j]T
∆:ij+1

x
[j]
O + 1√

H[j]

(
W

[j]T
∆:ij+1

+ W
[j]T
O:ij+1

)
x

[j]
∆ + α[j]b

[j]
∆ij+1

= 1√
H[j]

W
[j]T
∆:ij+1

x
[j]
O + 1√

H[j]

∑
ij

(
W

[j]
Oijij+1

+W
[j]
∆ijij+1

)〈
Φ

[j−1]
O:ij

(x) ,Ψ
[j−1]
O:ij

(W∆)
〉

+ α[j]b
[j]
∆ij+1

=

〈
µ

[j]
ij+1

[
1√
2
α[j]

1√
H[j]

x
[j]
O

]
[

1

ω̃
[j]
ij ,ij+1

ω
[j]
ij
W

[j]
Oij ,ij+1√
H[j]

Φ
[j−1]
O:ij

(x)

]
ij[

ω
[j]
ij√
H[j]

Φ
[j−1]
O:ij

(x)

]
ij

, 1

µ
[j]
ij+1

[√
2b

[j]
∆ij+1

W
[j]
∆:ij+1

]
[
ω̃

[j]
ij ,ij+1

1

ω
[j]
ij

Ψ
[j−1]
O:ij

(W∆)
]
ij[

W
[j]
∆ij ,ij+1

ω
[j]
ij

Ψ
[j−1]
O:ij

(W∆)

]
ij

〉

17

Gradient Descent in Neural Networks as Sequential Learning in RKBS

so, provided ‖x̃[j]
∆ ‖∞ ≤ ρ[j], we have:

x
[j+1]
∆ =

[〈
Φ

[j]
O:ij+1

(x) ,Ψ
[j]
O:ij+1

(W∆)
〉]

ij+1

where:

Φ
[j]
O:ij+1

(x) = %

g[j]

(
x̃

[j]
Oij+1

)
, µ

[j]
ij+1

[
1√
2
α[j]

1√
H[j]

x
[j]
O

]
[

1

ω̃
[j]
ij ,ij+1

ω
[j]
ij
W

[j]
Oij ,ij+1√
H[j]

Φ
[j−1]
O:ij

(x)

]
ij[

ω
[j]
ij√
H[j]

Φ
[j−1]
O:ij

(x)

]
ij

Ψ
[j]
O:ij+1

(W∆) = %

1∞,

1

µ
[j]
ij+1

[√
2b

[j]
∆ij+1

W
[j]
∆:ij+1

]
[
ω̃

[j]
ij ,ij+1

1

ω
[j]
ij

Ψ
[j−1]
O:ij

(W∆)
]
ij[

W
[j]
∆ij ,ij+1

ω
[j]
ij

Ψ
[j−1]
O:ij

(W∆)

]
ij

Thus, by induction, so long as ‖x̃[j]

∆ ‖∞ ≤ ρ[j] ∀j:

f (x) = fO (x) + f∆ (x)
f∆ (x) = 〈ΦO (x) ,ΨO (W∆)〉XO×WO

(28)

where:
ΦO (x) = Φ

[D−1]
O (x)

ΨO (W∆) = Ψ
[D−1]
O (W∆)

and, working recursively:

Φ
[j]
O:ij+1

(x) =

%

g[j]

(
x̃

[j]
Oij+1

)
, µ

[j]
ij+1

[
1√
2
α[j]

1√
H[j]

x
[j]
O

]
[

1

ω̃
[j]
ijij+1

ω
[j]
ij
W

[j]
Oij ,ij+1√
H[j]

Φ
[j−1]
O:ij

(x)

]
ij[

ω
[j]
ij√
H[j]

Φ
[j−1]
O:ij

(x)

]
ij

if j > 0

%

(
g[0]

(
x̃

[0]
Oi1

)
, µ

[0]
i1

[
1√
2
α[0]

1√
H[0]

1√
2
xO

])
if j = 0

Ψ
[j]
O:ij+1

(W∆) =

%

1∞,

1

µ
[j]
ij+1

[√
2b

[j]
∆ij+1

W
[j]
∆:ij+1

]
[
ω̃

[j]
ij ,ij+1

1

ω
[j]
ij

Ψ
[j−1]
O:ij

(W∆)
]
ij[

W
[j]
∆ij ,ij+1

ω
[j]
ij

Ψ
[j−1]
O:ij

(W∆)

]
ij

if j > 0

%

(
1∞,

1

µ
[0]
i1

[√
2b

[0]
∆i1√

2W
[0]
∆:i1

])
if j = 0

(29)
∀j ∈ ND, with scale factors µ[j]

ij+1
∈ R+ and shadow weights ω[j]

ij
, ω̃

[j]
ij ,ij+1

∈ R+, ∀j ∈ ND.

To summarise, we have decomposed the neural network into the desired form (28) with the following components:

• A term fO (x) which is the network prior to the iteration evaluated on x.

18

Gradient Descent in Neural Networks as Sequential Learning in RKBS

• A feature map ΦO : X→ XO = span(ΦO(X)) ⊂ R∞×m from data input space to data feature space that is dependent
only on the structure of the network (number of layers, their widths and the neuron types) and the weights and biases
WO prior to the iteration.

• A feature map ΨO : WO →WO = span(ΨO(WO)) ⊂ R∞×m from weight-step input space to weight-step feature
space that is dependent only on the structure of the network (number of layers and their widths).

B.3. Density of Feature Maps

In this section we prove a key property of the feature maps that will be required to prove that f∆ lies in the reproducing
kernel Banach space. As a preliminary we show a consequence of the non-triviality assumption, namely:

Lemma 3. Let fO ∈ F be a neural network satisfying the non-triviality assumption. Then f∆(x) varies non-trivially with x
(that is, it is non-constant).

Proof. Recall that:

x̃
[j]
∆ = 1√

H[j]
W

[j]T
∆ x

[j]
O + 1√

H[j]

(
W

[j]
O + W

[j]
∆

)T

x
[j]
∆ + α[j]b

[j]
∆

= 1√
H[j]

W
[j]T
∆

(
x

[j]
O + x

[j]
∆

)
+ 1√

H[j]
W

[j]T
O x

[j]
∆ + α[j]b

[j]
∆

we want to know the conditions under which x̃
[D−1]
∆ (and hence f∆(x)) is a constant, independent of x. Considering instead

x̃
[j]
∆ , the only component in the above expression that depends on x is x

[j]
∆ , so x̃

[j]
∆ is constant if either W

[j]
∆ = −W

[j]
O or

x
[j]
∆ is constant independent of x. So, recursing, we find that x̃

[D−1]
∆ is constant (independent of x) iff W

[j]
∆ = −W

[j]
O for

some j ∈ ND. However, recall that our non-triviality assumption explicitly rules out this case (which corresponds to trivial
neural network post iteration), so W

[j]
∆ 6= −W

[j]
O for all j ∈ ND, which suffices to demonstrate the desired result.

Having addressed this preliminary, we now move to the main result for this section:13

Lemma 4 (Density of Feature Maps). The linear span of ΦO(X) is dense in XO with respect to 〈·, ·〉XO×WO ; and the
linear span of ΨO(WO) is dense inWO with respect to 〈·, ·〉WO×XO , where 〈Ω,Ξ〉WO×XO = 〈Ξ,Ω〉TXO×WO .

Proof. By definition (Lin et al., 2022), the linear span span(ΦO(X)) of ΦO(X) is dense in XO with respect to 〈·, ·〉XO×WO
if for any Ω∆ ∈ WO, the statement:

〈ΦO (x) ,Ω∆〉XO×WO = 0 ∀x ∈ X

implies that Ω∆ = 0. By definitionWO = span(ΨO(WO)) so that Ω∆ =
∑
l α̃
{l}W

{l}
∆ for some α̃{0}, α̃{1}, . . . ∈ R,

W
{0}
∆ ,W

{1}
∆ , . . . ∈WO, and hence:

〈ΦO (x) ,Ω∆〉XO×WO =
∑
l α̃
{l}
〈
ΦO (x) ,ΨO

(
W
{l}
∆

)〉
XO×WO

=
∑
l α̃
{l}f
{l}
∆ (x)

where we denote by f
{l}
∆ the change in f due to weight-step W

{l}
∆ . By our preliminary this is 0 for all x ∈ X iff

α̃{0} = α̃{l} = . . . = 0, so Ω∆ = 0, which proves the required density property. Similarly, span(ΨO(WO)) is dense in
WO with respect to 〈·, ·〉WO×XO if for any Ξ∆ ∈ XO, the observation that:

〈Ξ∆,ΨO (W∆)〉XO×WO = 0 ∀W∆ ∈W

implies Ξ∆ = 0. By definition XO = span(ΦO(X)) so that Ξ∆ =
∑
l β̃
{l}x{l} for some β̃{0}, β̃{1}, . . . ∈ R,

x{0},x{1}, . . . ∈ X, and hence:

〈Ξ∆,ΨO (W∆)〉XO×WO =
∑
l β̃
{l} 〈ΦO (x{l}) ,ΨO (W∆)

〉
XO×WO

=
∑
l β̃
{l}f∆

(
x{l}

)
But again, by our preliminary, this is 0 for all W∆ ∈WO iff β̃{0} = β̃{1} = . . . = 0, so Ξ∆ = 0, completing the proof.

13See (Lin et al., 2022) for discussion of density used here.

19

Gradient Descent in Neural Networks as Sequential Learning in RKBS

Remark 1. An objection may be raised that the non-triviality assumption is arbitrary and in any case not guaranteed to
hold, bringing the above result into doubt. However, considering that neural networks are usually initialised with non-trivial
weights and biases (or, to be precise, the chance that any one layer has all zero weights and biases drawn from e,g. a uniform
or normal distribution is 0), and that training data is usually non-trivial itself (that is, the targets vary and not just the inputs,
so that the trivial case has no special significance in terms of potential optimality giving a fixed output), it seems highly
unlikely that the weights and biases would return to a trivial (all weights and biases 0 in at least one layer) state over any finite
number of back-propagation iterations - indeed we conjecture that a result saying that the probability of encountering trivial
networks weights and biases during training is precisely 0 given random weight initialization and noise-affected data drawn
from a distribution should exist, but unfortunately we have been unable to obtain a proof, so this remains speculative for now.

C. Induced Kernels and Induced Norms
In the previous section we established that, as a result of a single iteration (step-change in weights and biases), the operation
of the neural network can be written:

f (x) = fO (x) + f∆ (x)

where fO : X→ Y is the neural network before the iteration and f∆ : X→ YO is the change in network behaviour due to
the change W∆ ∈WO in weights and biases for this iteration. Moreover we showed that:

f∆ (x) = 〈ΦO (x) ,ΨO (W∆)〉XO×WO

where:
ΦO : X → XO = span (ΦO (X)) ⊂ R∞×m
ΨO : WO →WO = span (ΨO (WO)) ⊂ R∞×m

are feature maps, and 〈·, ·〉XO×WO : XO ×WO → Rm is the bilinear form:

〈Ξ,Ω〉XO×WO = diag
(
ΞTΩ

)
In this section we will place (induce) kernels and norms on XO and WO, which will in turn allow us to constrain the space
of changes in neural network behaviour:

FO = { f∆ : X→ YO| f∆ as above}

using Hölder’s inequality:
‖f∆ (x)‖2 ≤ ‖ΦO (x)‖XO ‖ΨO (W∆)‖WO

C.1. Induced Kernels

We begin by using the feature maps and the kernel trick to induce kernels on X and WO, specifically:

KXO (x,x′) = 〈ΦO (x) ,ΦO (x′)〉XO×XO
KWO (W∆,W

′
∆) = 〈ΨO (W∆) ,ΨO (W′

∆)〉WO×WO

where we define the bilinear forms:
〈Ξ,Ξ′〉XO×XO = ΞTΞ′

〈Ω,Ω′〉WO×WO = ΩTΩ′

The matrix-valued kernels KXO and KWO are positive-definite (Mercer) by construction. Apart from their theoretical use,
these could potentially be used (transfered) for support vector machines (SVMs), Gaussian Processes (GP) or similar kernel-
based methods, measuring similarity on X and WO, respectively.

For all layers j ∈ ND we define:

K
[j]
XO (x,x′) =

〈
Φ

[j]
O (x) ,Φ

[j]
O (x′)

〉
XO×XO

K
[j]
WO (W∆,W

′
∆) =

〈
Ψ

[j]
O (W∆) ,Ψ

[j]
O (W′

∆)
〉
WO×WO

20

Gradient Descent in Neural Networks as Sequential Learning in RKBS

Recalling (29) we see that, for all j ∈ ND\{0}:

K
[j]
XOij+1,i′j+1

(x,x′) =
∑
l

%l

(
g[j]

(
x̃

[j]
Oij+1

)
� g[j]

(
x̃
′[j]
Oi′j+1

)
, . . .

. . . µ
[j]
ij+1

µ
[j]
i′j+1

[
1
2α

[j]2

1
H[j] x

[j]
O � x

[j]
O

]
[

ω
[j]2
ij

W
[j]
Oij ,ij+1

W
[j]

Oij ,i′j+1

ω̃
[j]
ij ,ij+1

ω̃
[j]

ij ,i
′
j+1

H[j]
Φ

[j−1]
O:ij

(x)�Φ
[j−1]
O:ij

(x′)

]
ij[

ω
[j]2
ij

H[j] Φ
[j−1]
O:ij

(x)�Φ
[j−1]
O:ij

(x′)

]
ij

)

K
[j]
WOij+1,i′j+1

(W∆,W
′
∆) =

∑
l

%l

(
1∞, . . .

. . . 1

µ
[j]
ij+1

µ
[j]

i′
j+1

 2b
[j]
∆ij+1

b
′[j]
∆i′j+1

W
[j]
∆:ij+1

�W
′[j]
∆:i′j+1

[
ω̃

[j]
ij ,ij+1

ω̃
[j]

ij ,i
′
j+1

ω
[j]2
ij

Ψ
[j−1]
O:ij

(W∆)�Ψ
[j−1]
O:ij

(W′
∆)

]
ij[

W
[j]
∆ij ,ij+1

W
′[j]
∆ij ,i

′
j+1

ω
[j]2
ij

Ψ
[j−1]
O:ij

(W∆)�Ψ
[j−1]
O:ij

(W′
∆)

]
ij

)

and:

K
[0]
XOi1,i′1

(x,x′) =
∑
l

%l

(
g[0]

(
x̃

[0]
Oi1

)
� g[0]

(
x̃
′[0]
Oi′1

)
, µ

[0]
i1
µ

[0]
i′1

[
1
2α

[0]2

1
H[0]

1
2x

[0]
O � x

[0]
O

])

K
[0]
WOi1,i′1

(W∆,W
′
∆) =

∑
l

%l

(
1∞,

1

µ
[0]
i1
µ

[0]

i′1

[
2b

[0]
∆i1

b
′[0]
∆i′1

2W
[0]
∆:i1
�W

′[0]
∆:i′1

])
Subsequently ∀j ∈ ND\{0}:

K
[j]
XOij+1,i′j+1

(x,x′)=
∞∑
l=1

(
1
l!

)2
τ [j](l)

(
x̃

[j]
Oij+1

)
τ [j](l)

(
x̃
′[j]
Oi′j+1

)(
µ

[j]
ij+1

µ
[j]
i′j+1

((
1
2α

[j]2 + 1
H[j]

〈
x

[j]
O ,x

′[j]
O

〉)
+ . . .

∑
ij

1

ω̃
[j]
ij ,ij+1

ω̃
[j]

ij ,i
′
j+1

ω
[j]2
ij

W
[j]
Oij ,ij+1

W
[j]

Oij ,i′j+1

H[j] K
[j−1]
XOij ,ij (x,x′) +

∑
ij

ω
[j]2
ij

H[j] K
[j−1]
XOij ,ij (x,x′)

))l
K

[j]
WOij+1,i′j+1

(W∆,W
′
∆) =

∞∑
l=1

(
1

µ
[j]
ij+1

µ
[j]

i′
j+1

((
2b

[j]
∆ij+1

b
′[j]
∆i′j+1

+
〈
W

[j]
∆:ij+1

,W
′[j]
∆:i′j+1

〉)
+ . . .

∑
ij

ω̃
[j]
ij ,ij+1

ω̃
[j]
ij ,i′j+1

1

ω
[j]2
ij

K
[j−1]
WOij ,ij (W∆,W

′
∆) +

∑
ij

W
[j]
∆ij ,ij+1

W
′[j]
∆ij ,i

′
j+1

ω
[j]2
ij

K
[j−1]
WOij ,ij (W∆,W

′
∆)

))l
and:

K
[0]
XOi1,i′1

(x,x′) =
∞∑
l=1

(
1
l!

)2
τ [0](l)

(
x̃

[0]
Oi1

)
τ [0](l)

(
x̃
′[0]
Oi′1

)(
µ

[0]
i1
µ

[0]
i′1

(
1
2α

[0]2 + 1
2

1
H[0]

〈
x

[0]
O ,x

′[0]
O

〉))l
K

[0]
WOi1,i′1

(W∆,W
′
∆) =

∞∑
l=1

(
1

µ
[0]
i1
µ

[0]

i′1

(
2b

[0]
∆i1

b
′[0]
∆i′1

+ 2
〈
W

[0]
∆:i1

,W
′[0]
∆:i′1

〉))l

We define:
θ (ζ) =

∞∑
l=1

ζl = ζ
1−ζ ∀ζ ∈ (−1, 1)

σ
[j]
z,z′ (ζ) =

∞∑
l=1

(
1
l!

)2
τ [j](l) (z) τ [j](l) (z′) ζl

(30)

21

Gradient Descent in Neural Networks as Sequential Learning in RKBS

∀j ∈ ND, z ∈ R, noting that:

θ−1 (ζ) = ζ
1+ζ ∀ζ ∈ (1,∞) (31)

Note that σ[j]
z,z′ are derived from the power-series representation of the activation functions about z in such a manner that the

constant term is removed, and, if z = z′, so too are all signs, making σ[j]
z,z an increasing function.14 Using this definition and

observation, provided the argument remains in the ROC of all relevant series, we see that:

KXO (x,x′) = K
[D−1]
XO (x,x′)

KWO (W∆,W
′
∆) = K

[D−1]
WO (W∆,W

′
∆)

(32)

where, recursively ∀j ∈ ND:

K
[j]
XOij+1,i′j+1

(x,x′) = . . .

. . .

σ

[j]

x̃
[j]
Oij+1

,x̃
′[j]
Oi′
j+1

µ[j]
ij+1

µ
[j]
i′j+1

(
1
2α

[j]2 + 1
H[j]

〈
x

[j]
O ,x

′[j]
O

〉)
+ . . .

. . .
∑
ij

(
W

[j]
Oij ,ij+1

W
[j]

Oij ,i′j+1

ω̃
[j]
ij ,ij+1

ω̃
[j]

ij ,i
′
j+1

+ 1

)
. . .

. . .
ω

[j]2
ij

H[j] K
[j−1]
XOij ,ij (x,x′)

 if j > 0

σ
[0]

x̃
[0]
Oi1

,x̃
′[0]

Oi′1

(
µ

[0]
i1
µ

[0]
i′1

(
1
2α

[0]2 + 1
2

1
H[0]

〈
x

[0]
O ,x

′[0]
O

〉))
if j = 0

K
[j]
WOij+1,i′j+1

(W∆,W
′
∆) = . . .

. . .

θ

 1

µ
[j]
ij+1

µ
[j]

i′
j+1

(
2b

[j]
∆ij+1

b
′[j]
∆i′j+1

+
〈
W

[j]
∆:ij+1

,W
′[j]
∆:i′j+1

〉)
+ . . .

. . .
∑
ij

(
ω̃

[j]
ij ,ij+1

ω̃
[j]
ij ,i′j+1

+W
[j]
∆ij ,ij+1

W
′[j]
∆ij ,i′j+1

)
. . .

. . .
K

[j−1]
WOij ,ij (W∆,W

′
∆)

ω
[j]2
ij

 if j > 0

θ

(
1

µ
[0]
i1
µ

[0]

i′1

(
2b

[0]
∆i1

b
′[0]
∆i′1

+ 2
〈
W

[0]
∆:i1

,W
′[0]
∆:i′1

〉))
if j = 0

(33)

C.2. Induced Kernel Gradients

Later in the paper we will require the gradients of induced kernels. Recalling (32), (33) and applying the chain rule we see
that:

∇xKXO (x,x′) =

[[
∂

∂xi′′1
∇xK

[D−1]
XOij+1,i′j+1

(x,x′)
]
i′′1

]
ij+1,i′j+1

∇
W

[j′]
∆

KWO (W∆,W
′
∆) =

[[
∂

∂W
[j′]
∆i′′
j′
,i′′
j′+1

K
[D−1]
WOij+1,i′j+1

(W∆,W
′
∆)

]
i′′
j′ ,i
′′
j′+1

]
ij+1,i′j+1

∇
b

[j′]
∆

KWO (W∆,W
′
∆) =

[[
∂

∂b
[j′]
∆i′′
j′+1

K
[D−1]
WOij+1,i′j+1

(W∆,W
′
∆)

]
i′′
j′+1

]
ij+1,i′j+1

(34)

14As an aside, we note that the power series representations of the activation functions τ [j] about any z represent the same underlying
function, minus τ [j](0), and so in principle we can start with a single such representation and use analytic continuation and reconstruct
τ [j] everywhere. Unfortunately the same is not true of σ[j]

z,z′ , which is perhaps unfortunate in this context.

22

Gradient Descent in Neural Networks as Sequential Learning in RKBS

where, recursively ∀j ∈ ND:

∂
∂xi′′1

K
[j]
XOij+1,i′j+1

(x,x′) = . . .

. . .

σ
[j](1)

x̃
[j]
Oij+1

,x̃
′[j]
Oi′
j+1

µ[j]
ij+1

µ
[j]
i′j+1

(
1
2α

[j]2 + 1
H[j]

〈
x

[j]
O ,x

′[j]
O

〉)
+ . . .

. . .
∑
ij

(
W

[j]
Oij ,ij+1

W
[j]

Oij ,i′j+1

ω̃
[j]
ij ,ij+1

ω̃
[j]

ij ,i
′
j+1

+ 1

)
. . .

. . .
ω

[j]2
ij

H[j] K
[j−1]
XOij ,ij (x,x′)

 . . .

. . . µ
[j]
ij+1

µ
[j]
i′j+1

∑
ij

(
W

[j]
Oij ,ij+1

W
[j]

Oij ,i′j+1

ω̃
[j]
ij ,ij+1

ω̃
[j]

ij ,i
′
j+1

+ 1

)
ω

[j]2
ij

H[j]
∂

∂xi′′1
K

[j−1]
XOij ,ij (x,x′)

if j > 0

σ
[0](1)

x̃
[0]
Oi1

,x̃
′[0]

Oi′1

(
µ

[0]
i1
µ

[0]
i′1

(
1
2α

[0]2 + 1
2

1
H[0] 〈x,x′〉

))
µ

[0]
i1
µ

[0]
i′1

1
H[0] δi1,i′′1

1
2x
′
i′1

if j = 0

(35)

∂

∂W
[j′]
∆i′′
j′
,i′′
j′+1

K
[j]
WOij+1,i′j+1

(W∆,W
′
∆) = . . .

. . .

θ(1)

 1

µ
[j]
ij+1

µ
[j]

i′
j+1

(
2b

[j]
∆ij+1

b
′[j]
∆i′j+1

+
〈
W

[j]
∆:ij+1

,W
′[j]
∆:i′j+1

〉)
+ . . .

. . .
∑
ij

(
ω̃

[j]
ij ,ij+1

ω̃
[j]
ij ,i′j+1

+W
[j]
∆ij ,ij+1

W
′[j]
∆ij ,i′j+1

)
. . .

. . .
K

[j−1]
WOij ,ij(W∆,W

′
∆)

ω
[j]2
ij

 . . .

. . . 1

µ
[j]
ij+1

µ
[j]

i′
j+1

∑
ij

(
ω̃

[j]
ij ,ij+1

ω̃
[j]
ij ,i′j+1

+W
[j]
∆ij ,ij+1

W
′[j]
∆ij ,i′j+1

)
. . .

. . . 1

ω
[j]2
ij

∂

∂W
[j′]
∆i′′
j′
,i′′
j′+1

K
[j−1]
WOij ,ij(W∆,W

′
∆)

if j > j′

θ(1)

 1

µ
[j]
ij+1

µ
[j]

i′
j+1

(
2b

[j]
∆ij+1

b
′[j]
∆i′j+1

+
〈
W

[j]
∆:ij+1

,W
′[j]
∆:i′j+1

〉)
+ . . .

. . .
∑
ij

(
ω̃

[j]
ij ,ij+1

ω̃
[j]
ij ,i′j+1

+W
[j]
∆ij ,ij+1

W
′[j]
∆ij ,i′j+1

)
. . .

. . .
K

[j−1]
WOij ,ij(W∆,W

′
∆)

ω
[j]2
ij

 . . .

. . . 1

µ
[j]

i′′
j+1

µ
[j]

i′
j+1

δij+1,i′′j+1

(
1 +

K
[j−1]

WOi
′′
j
,i′′
j
(W∆,W

′
∆)

ω
[j]2

i′′
j

)
W
′[j]
∆i′′j ,i

′
j+1

if j = j′ > 0

θ(1)

(
1

µ
[0]
i1
µ

[0]

i′1

(
2b

[0]
∆i1

b
′[0]
∆i′1

+ 2
〈
W

[0]
∆:i1

,W
′[0]
∆:i′1

〉))
1

µ
[0]

i′′1
µ

[0]

i′1

δi1,i′′1 2W
′[0]
∆i′′0 ,i

′
1

if j = j′ = 0

(36)

23

Gradient Descent in Neural Networks as Sequential Learning in RKBS

∂

∂b
[j′]
∆i′′
j′+1

K
[j]
WOij+1,i′j+1

(W∆,W
′
∆) = . . .

. . .

θ(1)

 1

µ
[j]
ij+1

µ
[j]

i′
j+1

(
2b

[j]
∆ij+1

b
′[j]
∆i′j+1

+
〈
W

[j]
∆:ij+1

,W
′[j]
∆:i′j+1

〉)
+ . . .

. . .
∑
ij

(
ω̃

[j]
ij ,ij+1

ω̃
[j]
ij ,i′j+1

+W
[j]
∆ij ,ij+1

W
′[j]
∆ij ,i′j+1

)
. . .

. . .
K

[j−1]
WOij ,ij(W∆,W

′
∆)

ω
[j]2
ij

 . . .

. . . 1

µ
[j]
ij+1

µ
[j]

i′
j+1

∑
ij

(
ω̃

[j]
ij ,ij+1

ω̃
[j]
ij ,i′j+1

+W
[j]
∆ij ,ij+1

W
′[j]
∆ij ,i′j+1

)
1

ω
[j]2
ij

. . .

. . . ∂

∂b
[j′]
∆i′′
j′+1

K
[j−1]
WOij ,ij(W∆,W

′
∆)

if j > j′

θ(1)

 1

µ
[j]
ij+1

µ
[j]

i′
j+1

(
2b

[j]
∆ij+1

b
′[j]
∆i′j+1

+
〈
W

[j]
∆:ij+1

,W
′[j]
∆:i′j+1

〉)
+ . . .

. . .
∑
ij

(
ω̃

[j]
ij ,ij+1

ω̃
[j]
ij ,i′j+1

+W
[j]
∆ij ,ij+1

W
′[j]
∆ij ,i′j+1

)
. . .

. . .
K

[j−1]
WOij ,ij(W∆,W

′
∆)

ω
[j]2
ij

 . . .

. . . 1

µ
[j]

i′′
j+1

µ
[j]

i′
j+1

δij+1,i′′j+1
2b
′[j]
∆i′j+1

if j = j′ > 0

θ(1)

(
1

µ
[0]
i1
µ

[0]

i′1

(
2b

[0]
∆i1

b
′[0]
∆i′1

+ 2
〈
W

[0]
∆:i1

,W
′[0]
∆:i′1

〉))
1

µ
[0]

i′′1
µ

[0]

i′1

δi1,i′′1 2b
′[0]
∆i′1

if j = j′ = 0

(37)

C.3. Induced Norms

We now consider the norms induced by the feature maps. Precisely, we wish to impose norms on XO ⊂ R∞×m and
WO ⊂ R∞×m and calculate ‖ΦO(x)‖XO , ‖ΨO(W∆)‖WO from this, which will subsequently provide the induced norms
we will require when constructing the reproducing kernel Banach space for f∆. In principle we could apply an arbitrary
norm to these spaces. However, recall that:

f∆ (x) = 〈ΦO (x) ,ΨO (W∆)〉XO×WO

and hence:

‖f∆ (x)‖2 = 〈ΦO (x) ,ΨO (W∆)〉F

so a natural choice is a pair of dual norms - that is, a pair of norms ‖ · ‖XO and ‖ · ‖WO such that:

‖Ξ‖XO = sup
Ω∈WO

{
〈Ξ,Ω〉F | ‖Ω‖WO ≤ 1

}
and hence by Hölder’s inequality:

‖f∆ (x)‖2 ≤ ‖ΦO (x)‖XO ‖ΨO (W∆)‖WO

In the present context we find it convenient to use the Frobenius (elementwise Euclidean) norms:

‖Ξ‖2XO = ‖Ξ‖2F =
∑
iD
‖Ξ:iD‖

2
2

‖Ω‖2WO = ‖Ω‖2F =
∑
iD
‖Ω:iD‖

2
2

and so:
‖ΦO (x)‖2XO = Tr (KXO (x,x))

‖ΨO (W∆)‖2WO = Tr (KWO (W∆,W∆))

24

Gradient Descent in Neural Networks as Sequential Learning in RKBS

Before proceeding we define:

s[j]2 =

{
1
2α

[0]2 + 1
2
H[−1]

H[0] M
[−1]2 if j = 0

1
2α

[j]2 + H[j−1]

H[j] M
[j−1]2 otherwise

t
[j]2
∆ij+1

=

[
2b

[0]2
∆i1

+ 2
∥∥∥W[0]

∆:i1

∥∥∥2

2

]
i1

if j = 0[
2b

[j]2
∆ij+1

+
∥∥∥W[j]

∆:ij+1

∥∥∥2

2

]
ij+1

otherwise

∀j ∈ ND, ij+1

where, roughly speaking, t[j−1]2 represents the magnitude of the weight-step for layer j and s[j]2 represents the upper bound
on the image of a vector x ∈ X at the input to layer j. Using this notation:

‖ΦO (x)‖2XO =
∑
iD

∥∥∥Φ[D−1]
O:iD

(x)
∥∥∥2

2

‖ΨO (W∆)‖2WO =
∑
iD

∥∥∥Ψ[D−1]
O:iD

(W∆)
∥∥∥2

2

(38)

where, recursively ∀j ∈ ND:

∥∥∥Φ[j]
O:ij+1

(x)
∥∥∥2

2
=

σ

[j]

x̃
[j]
Oij+1

,x̃
[j]
Oij+1

µ[j]2
ij+1

(

1
2α

[j]2 + 1
H[j]

∥∥∥x[j]
O

∥∥∥2

2

)
+ . . .

. . .
∑
ij

(
1 +

W
[j]2
Oij ,ij+1

ω̃
[j]2
ij ,ij+1

)
ω

[j]2
ij

H[j]

∥∥∥Φ[j−1]
O:ij

(x)
∥∥∥2

2

 if j > 0

σ
[0]

x̃
[0]
Oi1

,x̃
[0]
Oi1

(
µ

[0]2
i1

(
1
2α

[0]2 + 1
2

1
H[0]

∥∥∥x[0]
O

∥∥∥2

2

))
if j = 0

∥∥∥Ψ[j]
O:ij+1

(W∆)
∥∥∥2

2
=

θ

(
1

µ
[j]2
ij+1

(
t
[j]2
∆ij+1

+
∑
ij

(
ω̃

[j]2
ij ,ij+1

+W
[j]2
∆ij ,ij+1

) ∥∥∥Ψ[j−1]
O:ij

(W∆)
∥∥∥2

2

ω
[j]2
ij

))
if j > 0

θ

(
1

µ
[0]2
i1

t
[0]2
∆i1

)
if j = 0

(39)

C.4. Induced Norm Gradients

Later in the paper we will require the gradients of induced norms. Recalling (38), (39) and applying the chain rule we see that:

∇x ‖ΦO (x)‖2XO =
∑
iD

[
∂

∂xi′′1

∥∥∥Φ[D−1]
O:iD

(x)
∥∥∥2

2

]
i′′1

∇
W

[j′]
∆

‖ΨO (W∆)‖2WO =
∑
iD

[
∂

∂W
[j′]
∆i′′
j′
,i′′
j′+1

∥∥∥Ψ[D−1]
O:iD

(W∆)
∥∥∥2

2

]
i′′
j′ ,i
′′
j′+1

∇
b

[j′]
∆

‖ΨO (W∆)‖2WO =
∑
iD

[
∂

∂b
[j′]
∆i′′
j′

∥∥∥Ψ[D−1]
O:iD

(W∆)
∥∥∥2

2

]
i′′
j′+1

(40)

where, recursively ∀j ∈ ND:

∂
∂xi′1

∥∥∥Φ[j]
O:ij+1

(x)
∥∥∥2

2
= . . .

. . .

σ
[j](1)

x̃
[j]
Oij+1

,x̃
[j]
Oij+1

µ[j]2
ij+1

(

1
2α

[j]2 + 1
H[j]

∥∥∥x[j]
O

∥∥∥2

2

)
+ . . .

. . .
∑
ij

(
W

[j]2
Oij ,ij+1

ω̃
[j]2
ij ,ij+1

+ 1

)
ω

[j]2
ij

H[j]

∥∥∥Φ[j−1]
O:ij

(x)
∥∥∥2

2

 . . .

. . . µ
[j]2
ij+1

∑
ij

(
W

[j]2
Oij ,ij+1

ω̃
[j]2
ij ,ij+1

+ 1

)
ω

[j]2
ij

H[j]
∂

∂xi′1

∥∥∥Φ[j−1]
O:ij

(x)
∥∥∥2

2

if j > 0

σ
[0](1)

x̃
[0]
Oi1

,x̃
[0]
Oi1

(
µ

[0]2
i1

(
1
2α

[0]2 + 1
2

1
H[0] ‖x‖

2
2

))
µ

[0]2
i1

1
H[0] δi1,i′1xi′1 if j = 0

(41)

25

Gradient Descent in Neural Networks as Sequential Learning in RKBS

∂

∂W
[j′]
∆i′
j′
,i′
j′+1

∥∥∥Ψ[j]
O:ij+1

(W∆)
∥∥∥2

2
= . . .

. . .

θ(1)

(
1

µ
[j]2
ij+1

(
t
[j]
∆ij+1

+
∑
ij

(
ω̃

[j]2
ij ,ij+1

+W
[j]2
∆ij ,ij+1

) ∥∥∥Ψ[j−1]
O:ij

(W∆)
∥∥∥2

2

ω
[j]2
ij

))
. . .

. . . 1

µ
[j]2
ij+1

∑
ij

(
ω̃

[j]2
ij ,ij+1

+W
[j]2
∆ij ,ij+1

)
1

ω
[j]2
ij

∂

∂W
[j′]
∆i′
j′
,i′
j′+1

∥∥∥Ψ[j−1]
O:ij

(W∆)
∥∥∥2

2

if j > j′

θ(1)

(
1

µ
[j]2
ij+1

(
t
[j]
∆ij+1

+
∑
ij

(
ω̃

[j]2
ij ,ij+1

+W
[j]2
∆ij ,ij+1

) ∥∥∥Ψ[j−1]
O:ij

(W∆)
∥∥∥2

2

ω
[j]2
ij

))
. . .

. . . 1

µ
[j]2

i′
j+1

δij+1,i′j+1
2

1 +

∥∥∥∥Ψ[j−1]

O:i′
j

(W∆)

∥∥∥∥2

2

ω
[j]2

i′
j

W
[j]
∆i′j ,ij+1

if j = j′ > 0

θ(1)

(
1

µ
[0]2
i1

t
[0]
∆i1

)
1

µ
[0]2

i′1

δi1,i′14W
[0]
∆i′0,i1

if j = j′ = 0

(42)

∂

∂b
[j′]
∆i′
j′+1

∥∥∥Ψ[j]
O:ij+1

(W∆)
∥∥∥2

2
= . . .

. . .

θ(1)

(
1

µ
[j]2
ij+1

(
t
[j]
∆ij+1

+
∑
ij

(
ω̃

[j]2
ij ,ij+1

+W
[j]2
∆ij ,ij+1

) ∥∥∥Ψ[j−1]
O:ij

(W∆)
∥∥∥2

2

ω
[j]2
ij

))
. . .

. . . 1

µ
[j]2
ij+1

∑
ij

(
ω̃

[j]2
ij ,ij+1

+W
[j]2
∆ij ,ij+1

)
1

ω
[j]2
ij

∂

∂b
[j′]
∆i′
j′+1

∥∥∥Ψ[j−1]
O:ij

(W∆)
∥∥∥2

2

if j > j′

θ(1)

(
1

µ
[j]2
ij+1

(
t
[j]
∆ij+1

+
∑
ij

(
ω̃

[j]2
ij ,ij+1

+W
[j]2
∆ij ,ij+1

) ∥∥∥Ψ[j−1]
O:ij

(W∆)
∥∥∥2

2

ω
[j]2
ij

))
. . .

. . . 1

µ
[j]2

i′
j+1

δij+1,i′j+1
4b

[j]
∆ij+1

if j = j′ > 0

θ(1)

(
1

µ
[0]2
i1

t
[0]
∆i1

)
1

µ
[0]2

i′1

δi1,i′14b
[0]
∆i1 if j = j′ = 0

(43)

C.5. Properties of θ and σ

Here we present an important preliminary property of the θ and and σz,z′ functions. Recall that:

θ (ζ) =
∞∑
l=1

ζl = ζ
1−ζ ∀ζ ∈ (−1, 1)

σ
[j]
z,z′ (ζ) =

∞∑
l=1

(
1
l!

)2
τ [j](l) (z) τ [j](l) (z′) ζl

where:
θ−1 (ζ) = ζ

1+ζ

θ(1) (ζ) = 1
(1−ζ)2

θ(1)−1 (ζ) =
√
ζ−1√
ζ

We note that, for z ∈ R, j ∈ ND:

• σ[j]
z,z : (−

√
ρ[j],

√
ρ[j])→ R is, in general, unbounded, smooth and non-Lipchitz.

• σ[j]
z,z : [0,

√
ρ[j])→ R+ is, in general, unbounded, smooth, strictly increasing and non-Lipschitz.

• θ : (−1, 1)→ R is unbounded, smooth and non-Lipchitz.

26

Gradient Descent in Neural Networks as Sequential Learning in RKBS

• θ : [0, 1)→ [0,∞) is unbounded, smooth, strictly increasing and non-Lipschitz.

• θ−1 : [0,∞)→ [0, 1) is bounded, smooth, strictly increasing and Lipschitz.

• θ(1) : [0, 1)→ [1,∞) is unbounded, smooth, strictly increasing and non-Lipschitz.

• θ(1)−1 : [1,∞)→ [0, 1) is bounded, smooth, strictly increasing and Lipschitz.

The unbounded, non-Lipschitz nature of σ[j]
z,z and θ function is problematic when analysing the convergence properties of

our feature maps. However if we restrict the domains of σ[j]
z,z and θ by defining ε[j]ψ , ε

[j]
φ ∈ (0, 1) ∀j ∈ ND and:

σ[j] (ζ) = max
z∈R+∪{0}

{
σ

[j]
z,z (ζ)

}
then:

• σ[j] : [0, (1− ε[j]φ)
√
ρ[j]]→ [0, φ

[j]

H[j]] ⊂ R+ is bounded, smooth, strictly increasing and L[j]
φ -Lipschitz, where:

φ[j]

H[j] = σ[j]
(

(1− ε[j]φ)
√
ρ[j]
)

L
[j]
φ = ∇+1σ

[j]
((

1− ε[j]φ
)

)
√
ρ[j]
)

and we note that φ[j]

H[j] →∞ as ε[j]φ → 0.

• σ[j]−1 : [0, φ
[j]

H[j]]→ [0, (1− ε[j]φ)
√
ρ[j]] is bounded, smooth and strictly increasing.

• θ : [0, 1− ε[j]ψ]→ [0, ψ
[j]

H[j]] ⊂ R+ is bounded, smooth, strictly increasing and L[j]
ψ -Lipschitz, where:

ψ[j]

H[j] = θ
(

1− ε[j]ψ
)

=
1−ε[j]ψ
ε
[j]
ψ

L
[j]
ψ = ∂

∂ζ θ
(

1− ε[j]ψ
)

= 1

ε
[j]2
ψ

and we note that ψ[j]

H[j] →∞ as ε[j]ψ → 0.

• θ−1 : [0, ψ
[j]

H[j]]→ [0, 1− ε[j]ψ] is bounded, smooth and strictly increasing.

This restriction in domain will be used in the following section when we analyse the convergence and finiteness of our
induced norms. We also find it useful to define the related functions:

κ (ζ) = ζθ(1) (ζ) = ζ
(1−ζ)2

κ−1 (ζ) = 2ζ+1−
√

4ζ+1
2ζ

λ−1 (ζ) = 1
ζκ
−1 (ζ) = 2ζ+1−

√
4ζ+1

2ζ2

λ (ζ) =
1−√y
y

where we note that:

• κ : [0, 1)→ [0,∞) is strictly increasing.

• κ−1 : [0,∞)→ [0, 1) is strictly increasing.

• λ : (0, 1]→ [0,∞) is strictly decreasing.

• λ−1 : [0,∞)→ (0, 1] is strictly decreasing.

27

Gradient Descent in Neural Networks as Sequential Learning in RKBS

C.6. Convergence Conditions

We finish this section by considering the issue of the convergence of the induced norms, noting that these results also apply
to the induced kernels as:

det (KXO (x,x′)) ≤
(

Tr(KXO (x,x′))
m

)m
≤
(
〈ΦO(x),ΦO(x′)〉

F

m

)m
≤
(
‖ΦO(x)‖XO‖ΦO(x′)‖XO

m

)m
det (KWO (W∆,W

′
∆)) ≤

(
Tr(KWO (W∆,W

′
∆))

m

)m
≤
(
〈ΨO(W∆),ΨO(W′

∆)〉
F

m

)m
≤ . . .

. . .

(
‖ΨO(W∆)‖WO‖ΨO(W′

∆)‖WO
m

)m
and using the positive definiteness of the induced kernels. Whereas for the feature representation of f∆ it sufficed to ensure
that ‖x̃[j]

∆ ‖∞ ≤ ρ[j] for all ij+1, j, we cannot use this directly here as we the feature map Φ does not have access to W∆

(which is indeterminant in this context in any case), and likewise the feature map Ψ does not have access to x.

Recall our definition:

s[j]2 =

{
1
2α

[0]2 + 1
2
H[−1]

H[0] M
[−1]2 if j = 0

1
2α

[j]2 + H[j−1]

H[j] M
[j−1]2 otherwise

t
[j]2
∆ij+1

=

[
2b

[0]2
∆i1

+ 2
∥∥∥W[0]

∆:i1

∥∥∥2

2

]
i1

if j = 0[
2b

[j]2
∆ij+1

+
∥∥∥W[j]

∆:ij+1

∥∥∥2

2

]
ij+1

otherwise

∀j ∈ ND, ij+1

Using this notation, the following theorems present conditions for the convergence (finiteness) of the induced norms for all
x ∈ X and given weight-step W∆:

Theorem 5. Let ε[j]φ ∈ (0, 1) ∀j ∈ ND and for a given neural network and initial weights WO define:

φ[j]

H[j] = σ[j]
((

1− ε[j]φ
)√

ρ[j]
)
∀j ∈ ND

If the scale factors satisfy:

µ
[0]2
i1
≤ 1 s[0]2

(1−ε[0]
φ)
√
ρ[0]

 ∀i1

µ
[j]2
ij+1
≤ 1

s[j]2

(1−ε[j]
φ)
√
ρ[j]

+ 1

H[j]

∑
ij
ω

[j]2
ij

W
[j]2
Oijij+1

ω̃
[j]2
ij ,ij+1

+1

 φ[j−1]

H[j−1]

(1−ε[j]
φ)
√
ρ[j]

∀j ∈ ND\ {0} , ij+1

then
∥∥∥Φ[j]
O (x)

∥∥∥2

F
≤ φ[j] ∀x ∈ X, j ∈ ND.

Proof. Recalling (38), (39), we have that:∥∥∥Φ[j]
O:ij+1

(x)
∥∥∥2

2
= . . .

. . .

σ

[j]

x̃
[j]
Oij+1

,x̃
[j]
Oij+1

(
µ

[j]2
ij+1

((
α[j]2 + 2

H[j]

∥∥∥x[j]
O

∥∥∥2

2

)
+
∑
ij

ω
[j]2
ij

H[j]

(
W

[j]2
Oijij+1

ω̃
[j]2
ij ,ij+1

+ 1

)∥∥∥Φ[j−1]
O:ij

(x)
∥∥∥2

2

))
if j > 0

σ
[0]

x̃
[0]
Oi1

,x̃
[0]
Oi1

(
µ

[0]2
i1

(
α[0]2 + 1

H[0]

∥∥∥x[0]
O

∥∥∥2

2

))
if j = 0

where as discussed in section C.5 on the restricted range σ[j]
z,z : [0, (1− ε[j]φ)

√
ρ[j]]→ [0, φ[j]] is bounded, increasing and

Lipschitz for all z ∈ R. By our assumptions we have that:

α[0]2 + 1
H[0]

∥∥∥x[0]
O

∥∥∥2

2
≤ s[0]2

α[j]2 + 2
H[j]

∥∥∥x[j]
O

∥∥∥2

2
≤ s[j]2 ∀j ∈ ND\ {0}

28

Gradient Descent in Neural Networks as Sequential Learning in RKBS

and hence:

∥∥∥Φ[j]
O:ij+1

(x)
∥∥∥2

2
≤

σ

[j]

x̃
[j]
Oij+1

,x̃
[j]
Oij+1

(
µ

[j]2
ij+1

(
s[j]2 +

∑
ij

ω
[j]2
ij

H[j]

(
W

[j]2
Oijij+1

ω̃
[j]2
ij ,ij+1

+ 1

)∥∥∥Φ[j−1]
O:ij

(x)
∥∥∥2

2

))
if j > 0

σ
[0]

x̃
[0]
Oi1

,x̃
[0]
Oi1

(
µ

[0]2
i1
s[0]2

)
if j = 0

We will construct sufficient conditions for convergence by bounding this bound. Starting with the input layer, the convergence
of ‖Φ[0]

O:i1
(x)‖22 is assured if the argument of σ[0]

x̃
[0]
Oi1

,x̃
[0]
Oi1

lies in the restricted ROC, i.e.:

µ
[0]2
i1
s[0]2 ≤

(
1− ε[0]

φ

)√
ρ[0] ∀i1 (44)

and moreover if this condition is met then: ∥∥∥Φ[0]
O:i1

(x)
∥∥∥2

2
≤ φ[0]

H[0] ∀i1 (45)

For layer j ∈ ND\{0}, convergence of ‖Φ[j]
O:ij+1

(x)‖22 is assured if the argument of σ[j]

x̃
[j]
Oij+1

,x̃
[j]
Oij+1

lies in the restricted

ROC:

µ
[j]2
ij+1

(
s[j]2 +

∑
ij

ω
[j]2
ij

H[j]

(
W

[j]2
Oijij+1

ω̃
[j]2
ij ,ij+1

+ 1

)∥∥∥Φ[j−1]
O:ij

(x)
∥∥∥2

2

)
≤
(

1− ε[j]φ
)√

ρ[j] ∀ij+1 (46)

and moreover if this condition is met then: ∥∥∥Φ[j]
O:ij+1

(x)
∥∥∥2

2
≤ φ[j]

H[j] ∀ij+1

Assuming layers j′ < j satisfy (44), (46) then convergence of ‖Φ[j]
O:ij+1

(x)‖22 is assured if:

µ
[j]2
ij+1

(
s[j]2 +

∑
ij

ω
[j]2
ij

H[j]

(
W

[j]2
Oijij+1

ω̃
[j]2
ij ,ij+1

+ 1

)
φ[j−1]

H[j−1]

)
≤
(

1− ε[j]φ
)√

ρ[j] ∀ij+1

or, sufficiently:

µ
[j]2
ij+1
≤

(
1−ε[j]φ

)√
ρ[j]

s[j]2+ 1

H[j]

∑
ij
ω

[j]2
ij

W
[j]2
Oijij+1

ω̃
[j]2
ij ,ij+1

+1

 φ[j−1]

H[j−1]

∀j ∈ ND\ {0} , ij+1

which completes the proof.

Theorem 6. Let ε[j]ψ ∈ (0, 1) ∀j ∈ ND and for a given neural network and initial weights WO define:

ψ[j]

H[j] = θ
(

1− ε[j]ψ
)

=
1−ε[j]ψ
ε
[j]
ψ

For a weight-step W∆, if:

t
[0]2
∆i1
≤
(

1− ε[0]
ψ

)
µ

[0]2
i1

∀i1

t
[j]2
∆ij+1

+
∑
ij

∥∥∥Ψ[j−1]
O:ij

(W∆)
∥∥∥2

2

ω
[j]2
ij

(
ω̃

[j]2
ij ,ij+1

+W
[j]2
∆ij ,ij+1

)
≤
(

1− ε[j]ψ
)
µ

[j]2
ij+1

∀j ∈ ND\ {0} , ij+1

then
∥∥∥Ψ[j]
O (W∆)

∥∥∥2

F
≤ ψ[j] for all j ∈ ND.

Proof. Recalling (38), (39), we have that:∥∥∥Ψ[j]
O:ij+1

(W∆)
∥∥∥2

2
= . . .

. . .

θ

(
1

µ
[j]2
ij+1

(
t
[j]2
∆ij+1

+
∑
ij

1

ω
[j]2
ij

(
ω̃

[j]2
ij ,ij+1

+W
[j]2
∆ij ,ij+1

)∥∥∥Ψ[j−1]
O:ij

(W∆)
∥∥∥2

2

))
if j > 0

θ

(
1

µ
[0]2
i1

t
[0]2
∆i1

)
if j = 0

29

Gradient Descent in Neural Networks as Sequential Learning in RKBS

where as discussed in section C.5 on the restricted range θ : [0, (1 − ε[j]ψ)] → [0, ψ[j]] is bounded, increasing and 1

ε
[j]2
ψ

-

Lipschitz. Starting at layer 0 we see that if:
t
[0]2
∆i1

µ
[0]2
i1

≤ 1− ε[0]
ψ

Then: ∥∥∥Ψ[0]
O:i1

(W∆)
∥∥∥2

2
≤ ψ[0]

H[0] ∀i1

Moreover for layer j, if:

1

µ
[j]2
ij+1

(
t
[j]2
∆ij+1

+
∑
ij

∥∥∥Ψ[j−1]
O:ij

(W∆)
∥∥∥2

2

ω
[j]2
ij

(
ω̃

[j]2
ij ,ij+1

+W
[j]2
∆ij ,ij+1

))
≤ 1− ε[j]ψ ∀ij+1

Then: ∥∥∥Ψ[1]
O:i2

(W∆)
∥∥∥2

2
≤ ψ[j]

H[j] ∀i2

which gives our sufficient conditions in the general case:

µ
[0]2
i1
≥

t
[0]2
∆i1

1−ε[0]
ψ

∀i1

µ
[j]2
ij+1
≥ 1

1−ε[j]ψ

(
t
[j]2
∆ij+1

+
∑
ij

∥∥∥Ψ[j−1]
O:ij

(W∆)
∥∥∥2

2

ω
[j]2
ij

(
ω̃

[j]2
ij ,ij+1

+W
[j]2
∆ij ,ij+1

))
∀j ∈ ND\ {0} , ij+1

which completes the proof.

Note that this theorem may be equivalently stated using a bound on the scale factors:

µ
[0]2
i1
≥ 1

1−ε[0]
ψ

t
[0]2
∆i1

∀i1

µ
[j]2
ij+1
≥ 1

1−ε[j]ψ

(
t
[j]2
∆ij+1

+
∑
ij

∥∥∥Ψ[j−1]
O:ij

(W∆)
∥∥∥2

2

ω
[j]2
ij

(
ω̃

[j]2
ij ,ij+1

+W
[j]2
∆ij ,ij+1

))
∀j ∈ ND\ {0} , ij+1

rather than as a bound on the weight-step. Thus theorems 5 and 6 give some insight into the role of the scale factors in our
scheme. Loosely speaking, the scale factors must be chosen as a tradeoff between the convergence of the feature maps ΦO
and ΨO, and these theorems how this trade-off may be tuned, and to what extent. In particular:

• The upper bounds on the scale factors given in theorem 5 get larger (less strict) as the “size” of X and and the range
of outputs of all layers of the network, as measured by s[j], gets smaller, diverging to∞ (unbounded) in the limit
s[j] → 0+. Of course the factors s[j] are determined by the structure of the network, the range of the dataset X and our
choice of α, so in a practice this upper bound on the scale factors is fixed.

• The lower bounds on the scale factors given in theorem 6 get smaller (less strict) as the size of the weight-step, plus a
factor dependent on ω̃[j]

ij ,ij+1
, gets smaller, decreasing to 0 (unbounded) as these go to zero. Thus we see that the scale

factors are effectively bounded below by the convergence conditions on the feature map ΨO, with the bound being
determined by the size of the weight-step. Unlike the upper bound given in theorem 5, we can make the lower bound
arbitrarily small by requiring that the weight-step and offset be sufficiently small.

The interaction of these two observations - the upper and lower bounds on the scale factors - determines what weight-steps
we can model over the set of all inputs X. Furthermore, the presence of the scale factors in the lower bounds in theorem 6,
gives an indication of how they may be chosen. To be precise, for the bounds to make sense we need that:

• The shadow weights ω̃[j]
ij ,ij+1

must be of the same (or lower) order (scale) as the weight-step to ensure that, for a
sufficiently small weight-step, the lower bound on the scale factors becomes lower than the upper bound on the scale
factors.

30

Gradient Descent in Neural Networks as Sequential Learning in RKBS

• The shadow weights ω[j]
ij

must be of the same (or greater) order (scale) as the norm ‖Ψ[j−1]
O:ij

(W∆)‖22 to cancel out its
influence on the lower bound on the scale factors.

We make this intuition concrete by combining these theorems to obtain sufficient conditions on the size of the weight-step,
the shadow weights and the scale factors to ensure that both ΦO and ΨO are convergent for all x ∈ X:

Theorem 7. Let ε̃, ε[j]φ , εψ ∈ (0, 1) ∀j ∈ ND and for a given neural network and initial weights WO define:

ε
[j]
ψ =

(1− ε̃) 1−ε[j+1]

ψ

H[j]

H[j+1]
φ[j]

H[j]

‖W[j+1]
O ‖2

2,∞

(1−ε[j+1]
φ)

√
ρ[j+1]

+(1−ε̃)
(

1−ε[j+1]
ψ

) ∥∥∥∥ω̃[j+1]
:ij+2

∥∥∥∥2
−∞∥∥∥∥ω̃[j+1]

:ij+2

∥∥∥∥2
∞

∥∥∥ω̃[j+1]
:ij+2

∥∥∥2

−∞∥∥∥ω̃[j+1]
:ij+2

∥∥∥2

∞

if j < D − 1

εψ otherwise

∀j ∈ ND

recursively, and subsequently:

φ[j]

H[j] = σ[j]
((

1− ε[j]φ
)√

ρ[j]
)

ψ[j]

H[j] = θ
(

1− ε[j]ψ
)

=
1−ε[j]ψ
ε
[j]
ψ

∀j ∈ ND Equivalently:
ψ[j]

H[j] = (1− ε̃) 1−ε[j+1]
ψ

H[j]

H[j+1]
φ[j]

H[j]

‖W[j+1]
O ‖2

2,∞

(1−ε[j+1]
φ)

√
ρ[j+1]

∥∥∥ω̃[j+1]
:ij+2

∥∥∥2

−∞∥∥∥ω̃[j+1]
:ij+2

∥∥∥2

∞
∀j ∈ ND−1

For a weight-step W∆, if the shadow weights satisfy:

ω
[j]2
ij
∈
[∥∥∥Ψ[j−1]

O:ij
(W∆)

∥∥∥2

2
, ψ

[j−1]

H[j−1]

]
∀j ∈ ND, ij∥∥∥ω̃[j]

:ij+1

∥∥∥2

∞
≤ ε̃ 1−ε[j]ψ

H[j−1]

 s[j]2

(1−ε[j]
φ)
√
ρ[j]

+
(1−ε̃)(1−ε[j]

ψ)
‖W[j]
O ‖

2

2,∞

 ∀j ∈ ND\ {0} , ij+1

and the weight-step satisfies:

t
[0]2
∆i1
≤ 1−ε[0]

ψ s[0]2

(1−ε[0]
φ)
√
ρ[0]

 ∀i1

t
[j]2
∆ij+1

+
∑
ij

∥∥∥Ψ[j−1]
O:ij

(W∆)
∥∥∥2

2

ω
[j]2
ij

(
ω̃

[j]2
ij ,ij+1

+W
[j]2
∆ij ,ij+1

)
≤ 1−ε[j]ψ

s[j]2

(1−ε[j]
φ)
√
ρ[j]

+

∥∥∥∥W[j]
O:ij+1

∥∥∥∥2
2

H[j−1]
∥∥∥∥ω̃[j]

:ij+1

∥∥∥∥2
−∞

+1

 (1−ε̃)(1−ε[j]
ψ)

‖W[j]
O ‖

2

2,∞

∀j ∈ ND\ {0} , ij+1, and the scale factors satisfy:

µ
[0]2
i1
∈

 1

1−ε[0]
ψ

t
[0]2
∆i1

, 1 s[0]2

(1−ε[0]
φ)
√
ρ[0]

 ∀i1

µ
[j]2
ij+1
∈

[
1

1−ε[j]ψ

(
t
[j]2
∆ij+1

+
∑
ij

∥∥∥Ψ[j−1]
O:ij

(W∆)
∥∥∥2

2

ω
[j]2
ij

(
ω̃

[j]2
ij ,ij+1

+W
[j]2
∆ij ,ij+1

))
, . . .

. . . 1

s[j]2

(1−ε[j]
φ)
√
ρ[j]

+

∥∥∥∥W[j]
O:ij+1

∥∥∥∥2
2

H[j−1]
∥∥∥∥ω̃[j]

:ij+1

∥∥∥∥2
−∞

+1

 (1−ε̃)(1−ε[j]
ψ)

‖W[j]
O ‖

2

2,∞

 ∀j ∈ ND\ {0} , ij+1

then
∥∥∥Φ[j]
O (x)

∥∥∥2

F
≤ φ[j] ∀x ∈ X, j ∈ ND and

∥∥∥Ψ[j]
O (W∆)

∥∥∥2

F
≤ ψ[j] for all j ∈ ND.

31

Gradient Descent in Neural Networks as Sequential Learning in RKBS

Proof. Combining theorems 5 and 6, we see that for convergence in both ΦO, ΨO we require that:

t
[0]2
∆i1
≤
(

1−ε[0]
ψ

)(
1−ε[0]

φ

)√
ρ[0]

s[0]2 ∀i1

t
[j]2
∆ij+1

+
∑
ij

∥∥∥Ψ[j−1]
O:ij

(W∆)
∥∥∥2

2

ω
[j]2
ij

(
ω̃

[j]2
ij ,ij+1

+W
[j]2
∆ij ,ij+1

)
≤

(
1−ε[j]ψ

)(
1−ε[j]φ

)√
ρ[j]

s[j]2+ 1

H[j]

∑
ij
ω

[j]2
ij

W
[j]2
Oijij+1

ω̃
[j]2
ij ,ij+1

+1

 φ[j−1]

H[j−1]

∀j ∈ ND\ {0} , ij+1

Using our condition ω[j]2
ij
∈
[
‖Ψ[j−1]
O:ij

(W∆)‖22,
ψ[j−1]

H[j−1]

]
then it suffices that:

t
[0]2
∆i1
≤
(

1−ε[0]
ψ

)(
1−ε[0]

φ

)√
ρ[0]

s[0]2 ∀i1

t
[j]2
∆ij+1

+H [j−1]
∥∥∥ω̃[j]

:ij+1

∥∥∥2

∞
+
∥∥∥W[j]

∆:ij+1

∥∥∥2

2
≤

(
1−ε[j]ψ

)(
1−ε[j]φ

)√
ρ[j]

s[j]2+ 1

H[j]

∑
ij

W
[j]2
Oijij+1

ω̃
[j]2
ij ,ij+1

+H[j−1]

 ψ[j−1]

H[j−1]
φ[j−1]

H[j−1]

∀j ∈ ND\ {0} , ij+1

We require that this may be satisfied for a sufficiently small weight step, so ∀j ∈ ND\ {0} , ij+1:

H [j−1]
∥∥∥ω̃[j]

:ij+1

∥∥∥2

∞
≤

(
1−ε[j]ψ

)(
1−ε[j]φ

)√
ρ[j]

s[j]2+ 1

H[j]

∑
ij

W
[j]2
Oijij+1

ω̃
[j]2
ij ,ij+1

+H[j−1]

 ψ[j−1]

H[j−1]
φ[j−1]

H[j−1]

⇒ H [j−1] ≤
(

1−ε[j]ψ
)(

1−ε[j]φ
)√

ρ[j]

s[j]2
∥∥∥ω̃[j]

:ij+1

∥∥∥2

∞
+ 1

H[j]

 1

χ
[j]
ij+1

∥∥∥W[j]
O:ij+1

∥∥∥2

2
+H[j−1]

∥∥∥ω̃[j]
:ij+1

∥∥∥2

∞

 ψ[j−1]

H[j−1]
φ[j−1]

H[j−1]

⇒ H [j−1]s[j]2
∥∥∥ω̃[j]

:ij+1

∥∥∥2

∞
+ H[j−1]

H[j]

(
1

χ
[j]
ij+1

∥∥∥W[j]
O:ij+1

∥∥∥2

2
+H [j−1]

∥∥∥ω̃[j]
:ij+1

∥∥∥2

∞

)
ψ[j−1]

H[j−1]

φ[j−1]

H[j−1] ≤ . . .

. . .
(

1− ε[j]ψ
)(

1− ε[j]φ
)√

ρ[j]

⇒ H [j−1]
(
s[j]2 + H[j−1]

H[j]

ψ[j−1]

H[j−1]

φ[j−1]

H[j−1]

)∥∥∥ω̃[j]
:ij+1

∥∥∥2

∞
≤ . . .

. . .
(

1− ε[j]ψ
)(

1− ε[j]φ
)√

ρ[j] − H[j−1]

H[j]
1

χ
[j]
ij+1

∥∥∥W[j]
O:ij+1

∥∥∥2

2

ψ[j−1]

H[j−1]

φ[j−1]

H[j−1]

⇒
∥∥∥ω̃[j]

:ij+1

∥∥∥2

∞
≤

(
1−ε[j]ψ

)(
1−ε[j]φ

)√
ρ[j]−H[j−1]

H[j]
1

χ
[j]
ij+1

∥∥∥W[j]
O:ij+1

∥∥∥2

2

ψ[j−1]

H[j−1]
φ[j−1]

H[j−1]

H[j−1]

(
s[j]2+H[j−1]

H[j]
ψ[j−1]

H[j−1]
φ[j−1]

H[j−1]

)

⇒ (suff.)
∥∥∥ω̃[j]

:ij+1

∥∥∥2

∞
≤

(
1−ε[j]ψ

)(
1−ε[j]φ

)√
ρ[j]−H[j−1]

H[j]
1

χ
[j]
ij+1

∥∥∥W[j]
O

∥∥∥2

2,∞
ψ[j−1]

H[j−1]
φ[j−1]

H[j−1]

H[j−1]

(
s[j]2+H[j−1]

H[j]
ψ[j−1]

H[j−1]
φ[j−1]

H[j−1]

)

where:

χ
[j]
ij+1

=

∥∥∥ω̃[j]
:ij+1

∥∥∥2

−∞∥∥∥ω̃[j]
:ij+1

∥∥∥2

∞

To be well-defined, we require that the right-hand-side is positive, for which it suffices that:

ψ[j−1]

H[j−1] = (1− ε̃)
(

1− ε[j]ψ
)(

1− ε[j]φ
)√

ρ[j] H[j]

H[j−1]

χ
[j]
ij+1∥∥∥W[j]
O

∥∥∥2

2,∞

H[j−1]

φ[j−1]

which we may rewrite in terms of ε[j−1]
ψ :

ε
[j−1]
ψ = θ−1

(
(1− ε̃)

(
1− ε[j]ψ

)(
1− ε[j]φ

)√
ρ[j] H[j]

H[j−1]

χ
[j]
ij+1∥∥∥W[j]
O

∥∥∥2

2,∞

H[j−1]

φ[j−1]

)
=

(1−ε̃)
(

1−ε[j]ψ
)(

1−ε[j]φ
)√

ρ[j]

H[j−1]

H[j]

‖W[j]
O ‖

2

2,∞

χ
[j]
ij+1

φ[j−1]

H[j−1]
+(1−ε̃)

(
1−ε[j]ψ

)(
1−ε[j]φ

)√
ρ[j]

32

Gradient Descent in Neural Networks as Sequential Learning in RKBS

in which case our sufficient conditions become:∥∥∥ω̃[j]
:ij+1

∥∥∥2

∞
≤ ε̃

(
1−ε[j]ψ

)
H[j−1]

 s[j]2

(1−ε[j]
φ)
√
ρ[j]

+(1−ε̃)
(

1−ε[j]ψ
) χ

[j]
ij+1

‖W[j]
O ‖

2

2,∞

and:

t
[0]2
∆i1
≤

(
1−ε[0]

ψ

)
 s[0]2

(1−ε[0]
φ)
√
ρ[0]

 ∀i1

t
[j]2
∆ij+1

+
∑
ij

∥∥∥Ψ[j−1]
O:ij

(W∆)
∥∥∥2

2

ω
[j]2
ij

(
ω̃

[j]2
ij ,ij+1

+W
[j]2
∆ij ,ij+1

)
≤

(
1−ε[j]ψ

)
s[j]2

(1−ε[j]
φ)
√
ρ[j]

+

∥∥∥∥W[j]
O:ij+1

∥∥∥∥2
2

H[j−1]
∥∥∥∥ω̃[j]

:ij+1

∥∥∥∥2
−∞

+1

 (1−ε̃)(1−ε[j]
ψ)χ[j]

ij+1

‖W[j]
O ‖

2

2,∞

∀j ∈ ND\ {0} , ij+1. In terms of the scale factors, recalling theorems 5 and 6, we require that (sufficiently):

µ
[0]2
i1
∈

 1

1−ε[0]
ψ

t
[0]2
∆i1

, 1 s[0]2

(1−ε[0]
φ)
√
ρ[0]

 ∀i1

µ
[j]2
ij+1
∈

[
1

1−ε[j]ψ

(
t
[j]2
∆ij+1

+
∑
ij

∥∥∥Ψ[j−1]
O:ij

(W∆)
∥∥∥2

2

ω
[j]2
ij

(
ω̃

[j]2
ij ,ij+1

+W
[j]2
∆ij ,ij+1

))
, . . .

. . . 1

s[j]2

(1−ε[j]
φ)
√
ρ[j]

+

∥∥∥∥W[j]
O:ij+1

∥∥∥∥2
2

H[j−1]
∥∥∥∥ω̃[j]

:ij+1

∥∥∥∥2
−∞

+1

 (1−ε̃)(1−ε[j]
ψ)χ[j]

ij+1

‖W[j]
O ‖

2

2,∞

 ∀j ∈ ND\ {0} , ij+1

Noting that χ[j]
ij+1
≤ 1, we can further tighten our constraints to get sufficient conditions:∥∥∥ω̃[j]

:ij+1

∥∥∥2

∞
≤ ε̃ 1−ε[j]ψ

H[j−1]

 s[j]2

(1−ε[j]
φ)
√
ρ[j]

+
(1−ε̃)(1−ε[j]

ψ)
‖W[j]
O ‖

2

2,∞

t
[0]2
∆i1
≤ 1−ε[0]

ψ s[0]2

(1−ε[0]
φ)
√
ρ[0]

 ∀i1

t
[j]2
∆ij+1

+
∑
ij

∥∥∥Ψ[j−1]
O:ij

(W∆)
∥∥∥2

2

ω
[j]2
ij

(
ω̃

[j]2
ij ,ij+1

+W
[j]2
∆ij ,ij+1

)
≤ 1−ε[j]ψ

s[j]2

(1−ε[j]
φ)
√
ρ[j]

+

∥∥∥∥W[j]
O:ij+1

∥∥∥∥2
2

H[j−1]
∥∥∥∥ω̃[j]

:ij+1

∥∥∥∥2
−∞

+1

 (1−ε̃)(1−ε[j]
ψ)

‖W[j]
O ‖

2

2,∞

∀j ∈ ND\ {0} , ij+1 and

µ
[0]2
i1
∈

 1

1−ε[0]
ψ

t
[0]2
∆i1

, 1 s[0]2

(1−ε[0]
φ)
√
ρ[0]

 ∀i1

µ
[j]2
ij+1
∈

[
1

1−ε[j]ψ

(
t
[j]2
∆ij+1

+
∑
ij

∥∥∥Ψ[j−1]
O:ij

(W∆)
∥∥∥2

2

ω
[j]2
ij

(
ω̃

[j]2
ij ,ij+1

+W
[j]2
∆ij ,ij+1

))
, . . .

. . . 1

s[j]2

(1−ε[j]
φ)
√
ρ[j]

+

∥∥∥∥W[j]
O:ij+1

∥∥∥∥2
2

H[j−1]
∥∥∥∥ω̃[j]

:ij+1

∥∥∥∥2
−∞

+1

 (1−ε̃)(1−ε[j]
ψ)

‖W[j]
O ‖

2

2,∞

 ∀j ∈ ND\ {0} , ij+1

33

Gradient Descent in Neural Networks as Sequential Learning in RKBS

which completes the proof.

We finish this section by considering a special case that will be important shortly:

Theorem 8. Let ε[j]φ , ε
[j]
ψ , δ ∈ (0, 1) ∀j ∈ ND and for a given neural network with initial weights WO and weight-step

W∆, using the shadow weights:

ω
[j]2
ij

=
∥∥∥Ψ[j−1]
O:ij

(W∆)
∥∥∥2

2

ω̃
[j]2
ij ,ij+1

= 1
1−δ

∥∥∥W[j]
∆:ij+1

∥∥∥2

2
−W [j]2

∆ij ,ij+1
if j > 0

∀j ∈ ND, ij , ij+1

where:
φ[j]

H[j] = σ[j]
((

1− ε[j]φ
)√

ρ[j]
)

ψ[j]

H[j] = θ
(

1− ε[j]ψ
)

=
1−ε[j]ψ
ε
[j]
ψ

∀j ∈ ND

If the weight-step satisfies:

t
[0]2
∆i1
≤

(
1−ε[0]

ψ

)
 s[0]2

(1−ε[0]
φ)
√
ρ[0]

 ∀i1

t
[j]2
∆ij+1

+ 1
1−δ

∥∥∥W[j]
∆:ij+1

∥∥∥2

2
≤

(
1−ε[j]ψ

)
s[j]2

(1−ε[j]
φ)
√
ρ[j]

+ 1

H[j]

∥∥∥∥W[j]
O:ij+1

∥∥∥∥2
2

1
1−δ

∥∥∥∥W[j]
∆:ij+1

∥∥∥∥2
2
−
∥∥∥∥W[j]

∆:ij+1

∥∥∥∥2
∞

+H[j−1]

 ψ[j−1]

H[j−1]
φ[j−1]

H[j−1]

(1−ε[j]
φ)
√
ρ[j]

∀j ∈ ND\ {0} , ij+1 and the scale factors satisfy:

µ
[0]2
i1
∈

 1

1−ε[0]
ψ

t
[0]2
∆i1

, 1 s[0]2

(1−ε[0]
φ)
√
ρ[0]

 ∀i1

µ
[j]2
ij+1
∈
[

1

1−ε[j]ψ

(
t
[j]2
∆ij+1

+ 1
1−δ

∥∥∥W[j]
∆:ij+1

∥∥∥2

2

)
, . . .

. . . 1

s[j]2

(1−ε[j]
φ)
√
ρ[j]

+ 1

H[j]

∥∥∥∥W[j]
O:ij+1

∥∥∥∥2
2

1
1−δ

∥∥∥∥W[j]
∆:ij+1

∥∥∥∥2
2
−
∥∥∥∥W[j]

∆:ij+1

∥∥∥∥2
∞

+H[j−1]

 ψ[j−1]

H[j−1]
φ[j−1]

H[j−1]

(1−ε[j]
φ)
√
ρ[j]

 ∀j ∈ ND\ {0} , ij+1

then
∥∥∥Φ[j]
O (x)

∥∥∥2

F
≤ φ[j] ∀x ∈ X, j ∈ ND and

∥∥∥Ψ[j]
O (W∆)

∥∥∥2

F
≤ ψ[j] for all j ∈ ND.

Proof. Our proof is a simple analogue of the proof of theorem refth:convergephipsi with adjustments for our pre-defined
scale factors. Combining theorems 5 and 6, we see that for convergence in both ΦO, ΨO we require that, using our
definitions of the scale factors:

t
[0]2
∆i1
≤
(

1−ε[0]
ψ

)(
1−ε[0]

φ

)√
ρ[0]

s[0]2 ∀i1

t
[j]2
∆ij+1

+ 1
1−δ

∥∥∥W[j]
∆:ij+1

∥∥∥2

2
≤

(
1−ε[j]ψ

)(
1−ε[j]φ

)√
ρ[j]

s[j]2+ 1

H[j]

∑
ij

∥∥∥Ψ[j−1]
O:ij

(W∆)
∥∥∥2

2

 W
[j]2
Oijij+1

1
1−δ

∥∥∥∥W[j]
∆:ij+1

∥∥∥∥2
2
−W [j]2

∆ij ,ij+1

+1

 φ[j−1]

H[j−1]

∀j ∈ ND\ {0} , ij+1

34

Gradient Descent in Neural Networks as Sequential Learning in RKBS

and so it suffices that:

t
[0]2
∆i1
≤

(
1−ε[0]

ψ

)
 s[0]2

(1−ε[0]
φ)
√
ρ[0]

 ∀i1

t
[j]2
∆ij+1

+ 1
1−δ

∥∥∥W[j]
∆:ij+1

∥∥∥2

2
≤

(
1−ε[j]ψ

)
s[j]2

(1−ε[j]
φ)
√
ρ[j]

+ 1

H[j]

∥∥∥∥W[j]
O:ij+1

∥∥∥∥2
2

1
1−δ

∥∥∥∥W[j]
∆:ij+1

∥∥∥∥2
F
−
∥∥∥∥W[j]

∆:ij+1

∥∥∥∥2
∞

+H[j−1]

 ψ[j−1]

H[j−1]
φ[j−1]

H[j−1]

(1−ε[j]
φ)
√
ρ[j]

∀j ∈ ND\ {0} , ij+1. In terms of the scale factors, recalling theorems 5 and 6, we require that (sufficiently):

µ
[0]2
i1
∈

 1

1−ε[0]
ψ

t
[0]2
∆i1

, 1 s[0]2

(1−ε[0]
φ)
√
ρ[0]

 ∀i1

µ
[j]2
ij+1
∈

 1

1−ε[j]ψ

(
t
[j]2
∆ij+1

+ 1
1−δ

∥∥∥W[j]
∆ij+1

∥∥∥2

2

)
, 1

s[j]2

(1−ε[j]
φ)
√
ρ[j]

+ 1

H[j]

∥∥∥∥W[j]
O:ij+1

∥∥∥∥2
2

1
1−δ

∥∥∥∥W[j]
∆:ij+1

∥∥∥∥2
F
−
∥∥∥∥W[j]

∆:ij+1

∥∥∥∥2
∞

+H[j−1]

 ψ[j−1]

H[j−1]
φ[j−1]

H[j−1]

(1−ε[j]
φ)
√
ρ[j]

∀j ∈ ND\ {0} , ij+1 which completes the proof.

D. Canonical Scaling
In the next section we will be considering regularised risk minimization problems of the form:

W•
∆ = argmin

W∆∈WO
Rλ (W∆)

Rλ (W∆) = λh
(
‖ΨO (W∆)‖WO

)
+
∑
k E

(
x{k},y{k}, fO

(
x{k}

)
+
〈
ΦO

(
x{k}

)
,ΨO (W∆)

〉
XO×WO

) (47)

The question we will be addressing is:

For a given neural network with initial weights and biases WO, let W�
∆ be the back-propagation weight-step

(gradient descent with learning rate η) defined by (24), and let W•
∆ be a weight-step solving the regularised risk

minimization problem (47). Given the gradient-descent derived weight-step W�
∆, is there a selection shadow

weights and scaling factors, possibly dependent on W�
∆, and regularization parameter λ that would ensure that

W•
∆ = W�

∆?

If the answer is yes (which we demonstrate) then we can gain understanding of back-propagation by analysing (47). Now,
the solution to (47) must satisfy first-order optimality conditions (we assume differentiability for simplicity here):

∂
∂W∆

‖ΨO (W∆)‖WO
∣∣∣
W∆=W•

∆

= − 1
λ

1

h(1)
(
‖ΨO(W∆)‖WO

) . . .
. . . ∂

∂W∆

∑
k E

(
x{k},y{k}, fO

(
x{k}

)
+
〈
ΦO

(
x{k}

)
,ΨO (W∆)

〉
XO×WO

)∣∣∣
W∆=W•

∆

Now, noting that the derivative of the second term in (47) corresponds to the gradient in back-propagation, if the gradient of
the first (regularization) term satisfies:

∂
∂W∆

‖ΨO (W∆)‖WO
∣∣∣
W∆=W�

∆

= νW�
∆

for some ν ∈ R+, and:
λ = 1

ηνh(1)

(
‖ΨO(W�

∆)‖WO
)

35

Gradient Descent in Neural Networks as Sequential Learning in RKBS

then:

W•
∆ = W�

∆ = −η ∂
∂W∆

∑
k E

(
x{k},y{k}, fO

(
x{k}

)
+
〈
ΦO

(
x{k}

)
,ΨO (W∆)

〉
XO×WO

)∣∣∣
W∆=W�

∆

Thus the question whether there exists scaling factors, shadow weights and λ such that the regularised risk minimization
weight-step corresponds to the gradient-descent weight-step for a specified learning rate η can be answered in the affirmative
by proving the existence of canonical scalings, which we define as follows:

Definition 3 (Canonical Scaling). For a given neural network, initial weights WO and weight step W�
∆ generated by back-

propagation, we define a canonical scaling to be a set of shadow weights and scaling factors for which:

∂
∂W∆

‖ΨO (W∆)‖WO
∣∣∣
W∆=W�

∆

= νW�
∆

for some ν ∈ R+, and
∥∥ΨO(W�

∆)
∥∥
WO

<∞, ‖ΦO(x)‖XO <∞ ∀x ∈ X. We call the kernels and norms induced using a
canonical scaling canonical induced kernels and canonical induced norms, respectively.

With regard to existence we have the following theorem that sets out sufficient conditions for the weight-step for a canonical
scaling to exist. Defining δ ∈ (0, 1) and:

t
[j]�2
∆ij+1

=

2b

[0]�2
∆i1

+ 2
∥∥∥W[0]�

∆:i1

∥∥∥2

2
if j = 0

2b
[j]�2
∆ij+1

+ 2−δ
1−δ

∥∥∥W[j]�
∆:ij+1

∥∥∥2

2
otherwise

∀j ∈ ND, ij+1

our central result is as follows:

Theorem 9. Let εφ, εψ, δ, χ ∈ (0, 1) and for a given neural network with initial weights WO, and let W�
∆ be the weight-

step for this derived from back-propagation. Let:

0 ≤ ε[j]ψ ≤

1− s[D−1]2

(1−εφ)
√
ρ[D−1]

∥∥∥t[D−1]�
∆

∥∥∥2

∞
if j = D − 1

1
1−δ

∥∥∥W[j+1]�
∆

∥∥∥2

F∥∥∥t[j]�
∆

∥∥∥2

∞

otherwise

ψ[j]

H[j] = θ
(

1− ε[j]ψ
)

=
1−ε[j]ψ
ε
[j]
ψ

∀j ∈ ND, and:

1≥ε[j]φ ≥

εφ if j=D−1

1− 1√
ρ[D−2]

σ[D−2]−1

1

1−χ
1−ε[D−1]

ψ

‖t[D−1]�
∆ ‖2∞

− s[D−1]2

(1−ε[D−1]
φ)

√
ρ[D−1]

1

H[D−1]
max
iD

∥∥∥∥W[D−1]
O:iD

∥∥∥∥2
2

1
1−δ

∥∥∥∥W[D−1]�
∆:iD

∥∥∥∥2
2
−
∥∥∥∥W[D−1]�

∆:iD

∥∥∥∥2
∞

+H[D−2]

ψ[D−2]

H[D−2]

(1−ε[D−1]
φ)

√
ρ[D−1]

 if j=D−2

1− 1√
ρ[j]

σ[j]−1

1

‖t[j+1]�
∆ ‖2∞

1− 1
1−δ
‖W[j+2]�

∆ ‖2
F

‖t[j+1]�
∆ ‖2∞

− s[j+1]2

(1−ε[j+1]
φ)

√
ρ[j+1]

1

H[j+1]
max
ij+2

∥∥∥∥W[j+1]
O:ij+2

∥∥∥∥2
2

1
1−δ

∥∥∥∥W[j+1]�
∆:ij+2

∥∥∥∥2
2
−
∥∥∥∥W[j+1]�

∆:ij+2

∥∥∥∥2
∞

+H[j]

ψ[j]

H[j]

(1−ε[j+1]
φ)

√
ρ[j+1]

 otherwise

φ[j]

H[j] = σ[j]
((

1− ε[j]φ
)√

ρ[j]
)

∀j ∈ ND. For some α[j] ∈ R+ there exists $[j] ∈ (0, 1) ∀j ∈ ND\{0} such that:15∥∥∥W[j+1]�
∆

∥∥∥2

F
= (1− δ)

(
1−$[j+1]

) ∥∥∥t[j]�
∆

∥∥∥2

∞

15Note that b[j]�∆ij+1
is proportional to α[j], so we can always increase t[j]�2

∆ij+1
to ensure the condition holds by increasing α[j] sufficiently.

36

Gradient Descent in Neural Networks as Sequential Learning in RKBS

If the weight-step satisfies:

∥∥∥t[j]�
∆

∥∥∥2

∞
<

(1−χ)
(

1−ε[D−1]
ψ

)
 s[D−1]2

(1−ε[D−1]
φ)

√
ρ[D−1]

 if j = D − 1

$[j+1]
(

1−ε[j]ψ
)

 s[j]2

(1−ε[j]
φ)
√
ρ[j]

 otherwise
∀j ∈ ND

then there exists a canonical scaling:

∂
∂W∆

‖ΨO (W∆)‖WO
∣∣∣
W∆=W�

∆

= νW�
∆

where:

ν = 4∥∥∥t[D−1]�
∆

∥∥∥2

∞

κ

(
1−ε[D−1]

ψ

1−χ

)
and

∥∥∥Φ[j]
O (x)

∥∥∥2

F
≤ φ[j] ∀x ∈ X, j ∈ ND and

∥∥∥Ψ[j]
O (W∆)

∥∥∥2

F
≤ ψ[j] for all j ∈ ND.

Proof. We aim to derive a canonical scalings for general, a-priori weight-steps W�
∆. Recall from (40), (42) and (43) that:

∂

∂W
[j′]
∆

‖ΨO (W∆)‖2WO

∣∣∣∣
W∆=W�

∆

=
∑
iD

 ∂

∂W
[j′]
∆i′
j′
,i′
j′+1

∥∥∥Ψ[D−1]
O:iD

(W∆)
∥∥∥2

2

∣∣∣∣∣
W∆=W�

∆

i′
j′ ,i
′
j′+1

∂

∂b
[j′]
∆

‖ΨO (W∆)‖2WO

∣∣∣∣
W∆=W�

∆

=
∑
iD

 ∂

∂b
[j′]
∆i′
j′+1

∥∥∥Ψ[D−1]
O:iD

(W∆)
∥∥∥2

2

∣∣∣∣∣
W∆=W�

∆

i′
j′+1

where, recursively ∀j ∈ ND:

∂

∂W
[j′]
∆i′
j′
,i′
j′+1

∥∥∥Ψ[j]
O:ij+1

(W∆)
∥∥∥2

2

∣∣∣∣∣
W∆=W�

∆

= . . .

. . .

1

µ
[j]2
ij+1

θ(1)

(
t
[j]�2
∆ij+1

µ
[j]2
ij+1

)∑
ij

ω̃
[j]2
ij ,ij+1

+W
[j]�2
∆ij ,ij+1

ω
[j]2
ij

 ∂

∂W
[j′]
∆i′
j′
,i′
j′+1

∥∥∥Ψ[j−1]
O:ij

(W∆)
∥∥∥2

2

∣∣∣∣∣
W∆=W�

∆

 if j > j′

1

µ
[j]2

i′
j+1

θ(1)

(
t
[j]�2
∆ij+1

µ
[j]2
ij+1

)
δij+1,i′j+1

2

1 +

∥∥∥∥Ψ[j−1]

O:i′
j

(W�
∆)
∥∥∥∥2

2

ω
[j]2

i′
j

W
[j]�
∆i′j ,ij+1

if j = j′ > 0

1

µ
[0]2

i′1

θ(1)

(
t
[0]�2
∆i1

µ
[0]2
i1

)
δi1,i′14W

[0]�
∆i′0,i1

if j = j′ = 0

∂

∂b
[j′]
∆i′
j′+1

∥∥∥Ψ[j]
O:ij+1

(W∆)
∥∥∥2

2

∣∣∣∣∣
W∆=W�

∆

= . . .

. . .

1

µ
[j]2
ij+1

θ(1)

(
t
[j]�2
∆ij+1

µ
[j]2
ij+1

)∑
ij

ω̃
[j]2
ij ,ij+1

+W
[j]�2
∆ij ,ij+1

ω
[j]2
ij

 ∂

∂b
[j′]
∆i′
j′+1

∥∥∥Ψ[j−1]
O:ij

(W∆)
∥∥∥2

2

∣∣∣∣∣
W∆=W�

∆

 if j > j′

1

µ
[j]2

i′
j+1

θ(1)

(
t
[j]�2
∆ij+1

µ
[j]2
ij+1

)
δij+1,i′j+1

4b
[j]�
∆ij+1

if j = j′

37

Gradient Descent in Neural Networks as Sequential Learning in RKBS

and we have defined:

t
[j]�2
∆ij+1

=

[
2b

[0]�2
∆i1

+ 2
∥∥∥W[0]�

∆:i1

∥∥∥2

2

]
i1

if j = 0[
2b

[j]�2
∆ij+1

+
∥∥∥W[j]�

∆:ij+1

∥∥∥2

2
+
∑
ij

(
ω̃

[j]2
ij ,ij+1

+W
[j]�2
∆ij ,ij+1

) ∥∥∥Ψ[j−1]
O:ij

(W�
∆)
∥∥∥2

2

ω
[j]2
ij

]
ij+1

otherwise

∀j ∈ ND, ij+1, so that: ∥∥∥Ψ[j]
Oij+1

(
W�

∆

)∥∥∥2

2
= θ

(
1

µ
[j]
ij+1

t
[j]�2
∆ij+1

)
=

t
[j]�2
∆ij+1

µ
[j]2
ij+1
−t[j]�2

∆ij+1

Note that the recursive fomula for the norm gradient with respect to a specific weight W [j′]
∆i′

j′ ,i
′
j′+1

or bias b[j
′]

∆i′
j′+1

precisely

mirrors the structure of the network, where the calculation begins at the ouput layer and recurses backwards along all
possible paths to the neuron i′j′+1 in layer j′. Indeed, if we define the set of all paths from any neuron in the output layer to
neural i′j′+1 in layer j′ as:

P [j′]
i′
j′+1

=
{
i = (iD, iD−1, . . . , ij′+1) : ij+1 ∈ NH[j]∀j ∈ ND\Nj′+1, ij′+1 = i′j′+1

}
then we can re-write the norm gradient as a pathwise sum:

∂

∂W
[j′]
∆i′
j′
,i′
j′+1

‖ΨO (W∆)‖2WO

∣∣∣∣∣
W∆=W�

∆

= . . .

. . .

 ∑
i∈P[j′]

i′
j′+1

g
[j′]�
ij′+1

D−1∏
j′′=j′+1

g
[j′′]�
ij′′+1

h
[j′′−1,j′′]�
ij′′ ,ij′′+1

2

1 +

∥∥∥∥Ψ[j−1]

O:i′
j

(W�
∆)
∥∥∥∥2

2

ω
[j]2

i′
j

W
[j]�
∆i′j ,ij+1

if j′ > 0

4W
[0]�
∆i′0,i1

otherwise

∂

∂b
[j′]
∆i′
j′+1

‖ΨO (W∆)‖2WO

∣∣∣∣∣
W∆=W�

∆

=

 ∑
i∈P[j′]

i′
j′+1

g
[j′]�
ij′+1

D−1∏
j′′=j′+1

g
[j′′]�
ij′′+1

h
[j′′−1,j′′]�
ij′′ ,ij′′+1

 4b
[j]�
∆ij+1

where each term in the sum of paths is the product of neuron costs:

g
[j]�
ij+1

=

1

µ
[D−1]2
iD

θ(1)

(
t
[D−1]�2
∆iD

µ
[D−1]2
iD

)
if j = D − 1

1

ω
[j+1]2
ij+1

1

µ
[j]2
ij+1

θ(1)

(
t
[j]�2
∆ij+1

µ
[j]2
ij+1

)
otherwise

and link costs:
h

[j−1,j]�
ij ,ij+1

= ω̃
[j]2
ij ,ij+1

+W
[j]�2
∆ij ,ij+1

for all neurons and links between neurons on that path from the output layer back to neuron i′j′+1 in layer j′..

Ignoring for the moment the question of convergence, we see that to obtain a canonical scaling we must use the scaling
factors and shadow weights to “even out” the path-dependence of the neuron and link costs and flatten the dependence on
the feature-map norm at the terminating neuron ij+1 in layer j. To this end it is straightforward to see that, if we select:

ω
[j]2
ij

=
∥∥∥Ψ[j−1]
O:ij

(
W�

∆

)∥∥∥2

2

ω̃
[j]2
ij ,ij+1

= 1
1−δ

∥∥∥W[j]�
∆:ij+1

∥∥∥2

2
−W [j]�2

∆ij ,ij+1

∀j ∈ ND, ij , ij+1 (48)

where δ ∈ (0, 1) (remember that we are assuming the back-propagation weight-step W�
∆ is calculated a-priori and then

38

Gradient Descent in Neural Networks as Sequential Learning in RKBS

attempting to make the regularization-based weight-step W•
∆ correspond to this) then:

∂

∂W
[j′]
∆i′
j′
,i′
j′+1

‖ΨO (W∆)‖2WO

∣∣∣∣∣
W∆=W�

∆

=

 ∑
i∈P[j′]

i′
j′+1

g
[j′]�
ij′+1

D−1∏
j′′=j′+1

g
[j′′]�
ij′′+1

h
[j′′−1,j′′]�
ij′′ ,ij′′+1

 4W
[j]�
∆i′j ,ij+1

∂

∂b
[j′]
∆i′
j′+1

‖ΨO (W∆)‖2WO

∣∣∣∣∣
W∆=W�

∆

=

 ∑
i∈P[j′]

i′
j′+1

g
[j′]�
ij′+1

D−1∏
j′′=j′+1

g
[j′′]�
ij′′+1

h
[j′′−1,j′′]�
ij′′ ,ij′′+1

 4b
[j]�
∆ij+1

and:

g
[j]�
ij+1

=

1

µ
[D−1]2
iD

θ(1)

(
t
[D−1]�2
∆iD

µ
[D−1]2
iD

)
if j = D − 1

1∥∥∥Ψ[j]
O:ij+1

(W�
∆)
∥∥∥2

2

1

µ
[j]2
ij+1

θ(1)

(
t
[j]�2
∆ij+1

µ
[j]2
ij+1

)
otherwise

h
[j−1,j]�
ij ,ij+1

= 1
1−δ

∥∥∥W[j]�
∆:ij+1

∥∥∥2

2

Using (39), we see that ∥∥∥Ψ[j]
Oij+1

(
W�

∆

)∥∥∥2

2
= θ

(
1

µ
[j]2
ij+1

t
[j]�2
∆ij+1

)
=

t
[j]�2
∆ij+1

µ
[j]2
ij+1
−t[j]�2

∆ij+1

g
[j]�
ij+1

=

1

µ
[D−1]2
iD

θ(1)

(
t
[D−1]�2
∆iD

µ
[D−1]2
iD

)
if j = D − 1

µ
[j]2
ij+1
−t[j]�2

∆ij+1

t
[j]�2
∆ij+1

1

µ
[j]2
ij+1

θ(1)

(
t
[j]�2
∆ij+1

µ
[j]2
ij+1

)
otherwise

t
[j]�2
∆ij+1

=

[
2b

[0]�2
∆i1

+ 2
∥∥∥W[0]�

∆:i1

∥∥∥2

2

]
i1

if j = 0[
2b

[j]�2
∆ij+1

+ 2−δ
1−δ

∥∥∥W[j]�
∆:ij+1

∥∥∥2

2

]
ij+1

otherwise
∀j ∈ ND, ij+1

Take as given than the scale factors (48) are used from here on. Having used our scale factors to even out the link costs in
the norm gradient, our next task is to use the scale factors to even out the neuron costs and obtain a canonical scaling. Again
neglecting (for the moment) the question of convergence, consider the gradients of the weights and biases in the output layer,
which take the particularly simple form:

∂

∂W
[D−1]

∆i′
D−1

,i′
D

‖ΨO (W∆)‖2WO

∣∣∣∣∣
W∆=W�

∆

= g
[D−1]�
i′D

4W
[D−1]�
∆i′D−1,iD

∂

∂b
[D−1]

∆i′
D

‖ΨO (W∆)‖2WO

∣∣∣∣∣
W∆=W�

∆

= g
[D−1]�
i′D

4b
[D−1]�
∆iD

For canonical scaling, we must have that:

4

µ
[D−1]2
iD

θ(1)

(
t
[D−1]�2
∆iD

µ
[D−1]2
iD

)
= 4

t
[D−1]�2
∆iD

κ

(
t
[D−1]�2
∆iD

µ
[D−1]2
iD

)
= ν

where we recall that:
κ (ζ) = ζθ(1) (ζ) = ζ

(1−ζ)2

κ−1 (ζ) = 2ζ+1−
√

4ζ+1
2ζ

and hence:

µ
[D−1]2
iD

=
t
[D−1]�2
∆iD

κ−1

(
t
[D−1]�2
∆iD

ν

4

) =
2
νt

[D−1]�2
∆iD

4

2
νt

[D−1]�2
∆iD

4 +1−

√
4
νt

[D−1]�2
∆iD

4 +1

t
[D−1]�2
∆iD

39

Gradient Descent in Neural Networks as Sequential Learning in RKBS

Letting µ[D−1]2
iD

take this value, consder the gradients of the weights and biases for layer D − 2, which simplify to:

∂

∂W
[D−2]

∆i′
D−2

,i′
D−1

‖ΨO (W∆)‖2WO

∣∣∣∣∣
W∆=W�

∆

= ν
∥∥W[D−1]

∥∥2

F
g

[D−2]�
iD−1

W
[D−2]�
∆i′D−2,iD−1

∂

∂b
[D−2]

∆i′
D−1

‖ΨO (W∆)‖2WO

∣∣∣∣∣
W∆=W�

∆

= ν
∥∥W[D−1]

∥∥2

F
g

[D−2]�
iD−1

b
[D−2]�
∆iD−1

and we see that, for a canonical scaling, we must have that:

1
1−δ

∥∥∥W[D−1]�
∆

∥∥∥2

F

µ
[D−2]2
iD−1

−t[D−2]2
∆iD−1

t
[D−2]2
∆iD−1

1

µ
[D−2]2
iD−1

11−
t
[D−2]�2
∆iD−1

µ
[D−2]2
iD−1

2 = 1

⇒ 1
1−δ

∥∥∥W[D−1]�
∆

∥∥∥2

F

µ
[D−2]2
iD−1

−t[D−2]2
∆iD−1

t
[D−2]2
∆iD−1

µ
[D−2]2
iD−1(

µ
[D−2]2
iD−1

−t[D−2]�2
∆iD−1

)2 = 1

⇒ 1
1−δ

∥∥∥W[D−1]�
∆

∥∥∥2

F
µ

[D−2]2
iD−1

= t
[D−2]2
∆iD−1

µ
[D−2]2
iD−1

− t[D−2]�4
∆iD−1

⇒
(
t
[D−2]2
∆iD−1

− 1
1−δ

∥∥∥W[D−1]�
∆

∥∥∥2

F

)
µ

[D−2]2
iD−1

= t
[D−2]�4
∆iD−1

⇒ µ
[D−2]2
iD−1

=
t
[D−2]�2
∆iD−1

t
[D−2]2
∆iD−1

− 1
1−δ

∥∥∥W[D−1]�
∆

∥∥∥2

F

t
[D−2]�2
∆iD−1

For layer D − 3, using the scale factors derived thus far:

∂

∂W
[D−3]

∆i′
D−3

,i′
D−2

‖ΨO (W∆)‖2WO

∣∣∣∣∣
W∆=W�

∆

= ν
∥∥W[D−2]

∥∥2

F
g

[D−3]�
iD−2

W
[D−3]�
∆i′D−3,iD−2

∂

∂b
[D−3]

∆i′
D−2

‖ΨO (W∆)‖2WO

∣∣∣∣∣
W∆=W�

∆

= ν
∥∥W[D−2]

∥∥2

F
g

[D−3]�
iD−2

b
[D−3]�
∆iD−2

and so on. Working back through all layers, therefore, we find that canonical scaling is attained if we select shadow weights:

ω
[j]2
ij

=
∥∥∥Ψ[j−1]
O:ij

(
W�

∆

)∥∥∥2

2
∀j ∈ ND, ij

ω̃
[j]2
ij ,ij+1

= 1
1−δ

∥∥∥W[j]�
∆:ij+1

∥∥∥2

F
−W [j]�2

∆ij ,ij+1
∀j ∈ ND\ {0} , ij , ij+1

(49)

and scale factors:

µ
[D−1]2
iD

=
t
[D−1]�2
∆iD

κ−1

(
t
[D−1]�2
∆iD

ν

4

) =
2
νt

[D−1]�2
∆iD

4

2
νt

[D−1]�2
∆iD

4 +1−

√
4
νt

[D−1]�2
∆iD

4 +1

t
[D−1]�2
∆iD

∀iD

µ
[j]2
ij+1

=
t
[j]�2
∆ij+1

t
[j]�2
∆ij+1

− 1
1−δ

∥∥∥W[j+1]�
∆

∥∥∥2

F

t
[j]�2
∆ij+1

∀j ∈ ND−1, ij+1

(50)

We also obtain our first additional constraint on the weight-step, namely, using the requisit positivity of µ[j]2
ij+1

:

1
1−δ

∥∥∥W[j+1]�
∆

∥∥∥2

F
≤
(
1−$[j+1]

) ∥∥∥t[j]�
∆

∥∥∥2

∞
(51)

Finally we must consider the question of convergence given scale factors and shadow weights (49), (50). Recall from
theorem 8 that, given scale factors (49), using the definitions therein, if:

t
[0]2
∆i1
≤

(
1−ε[0]

ψ

)
 s[0]2

(1−ε[0]
φ)
√
ρ[0]

 ∀i1

t
[j]2
∆ij+1

+ 1
1−δ

∥∥∥W[j]
∆:ij+1

∥∥∥2

2
≤

(
1−ε[j]ψ

)
s[j]2

(1−ε[j]
φ)
√
ρ[j]

+ 1

H[j]

∥∥∥∥W[j]
O:ij+1

∥∥∥∥2
2

1
1−δ

∥∥∥∥W[j]
∆:ij+1

∥∥∥∥2
2
−
∥∥∥∥W[j]

∆:ij+1

∥∥∥∥2
∞

+H[j−1]

 ψ[j−1]

H[j−1]
φ[j−1]

H[j−1]

(1−ε[j]
φ)
√
ρ[j]

(52)

40

Gradient Descent in Neural Networks as Sequential Learning in RKBS

∀j ∈ ND\ {0} , ij+1, which we take as given, and:

µ
[0]2
i1
∈

 1

1−ε[0]
ψ

t
[0]2
∆i1

, 1 s[0]2

(1−ε[0]
φ)
√
ρ[0]

 ∀i1

µ
[j]2
ij+1
∈

 1

1−ε[j]ψ

(
t
[j]2
∆ij+1

+ 1
1−δ

∥∥∥W[j]
∆:ij+1

∥∥∥2

2

)
, 1

s[j]2

(1−ε[j]
φ)
√
ρ[j]

+ 1

H[j]

∥∥∥∥W[j]
O:ij+1

∥∥∥∥2
2

1
1−δ

∥∥∥∥W[j]
∆:ij+1

∥∥∥∥2
2
−
∥∥∥∥W[j]

∆:ij+1

∥∥∥∥2
∞

+H[j−1]

 ψ[j−1]

H[j−1]
φ[j−1]

H[j−1]

(1−ε[j]
φ)
√
ρ[j]

(53)

∀j ∈ ND\ {0} , ij+1 then the norms will convergence. We must show that the scale factors for our canonical scaling satisfy
the bounds required for convergence. Consider first µ[D−1]2

iD
. In this case we require that, using (50):

t
[D−1]�2
∆iD

κ−1

(
t
[D−1]�2
∆iD

ν

4

) ≥ 1

1−ε[D−1]
ψ

t
[D−1]�2
∆iD

∀iD

⇒
∥∥∥t[D−1]�

∆iD

∥∥∥2

∞
4 ν ≤ κ

(
1− ε[D−1]

ψ

)
=

1−ε[D−1]
ψ

ε
[D−1]2
ψ

= 1

ε
[D−1]
ψ

ψ[D−1]

H[D−1]

and:

t
[D−1]�2
∆iD

κ−1

(
t
[D−1]�2
∆iD

ν

4

) ≤ 1

s[D−1]2

(1−ε[D−1]
φ)

√
ρ[D−1]

+ 1

H[D−1]

∥∥∥∥W[D−1]
O:iD

∥∥∥∥2
2

1
1−δ

∥∥∥∥W[D−1]�
∆:iD

∥∥∥∥2
2
−
∥∥∥∥W[D−1]�

∆:iD

∥∥∥∥2
∞

+H[D−2]

 ψ[D−2]

H[D−2]
φ[D−2]

H[D−2]

(1−ε[D−1]
φ)

√
ρ[D−1]

∀iD

⇒ 1
H[D−1]

(∥∥∥W[D−1]
O:iD

∥∥∥2

2

1
1−δ

∥∥∥W[D−1]�
∆:iD

∥∥∥2

2
−
∥∥∥W[D−1]�

∆:iD

∥∥∥2

∞

+H [D−2]

)
ψ[D−2]

H[D−2]
φ[D−2]

H[D−2](
1−ε[D−1]

φ

)√
ρ[D−1]

≤ . . .

. . . 1

t
[D−1]�2
∆iD

κ−1

(
t
[D−1]�2
∆iD

ν

4

)
− s[D−1]2(

1−ε[D−1]
φ

)√
ρ[D−1]

∀iD

⇒ 1
H[D−1]

(∥∥∥W[D−1]
O:iD

∥∥∥2

2

1
1−δ

∥∥∥W[D−1]�
∆:iD

∥∥∥2

2
−
∥∥∥W[D−1]�

∆:iD

∥∥∥2

∞

+H [D−2]

)
ψ[D−2]

H[D−2]
φ[D−2]

H[D−2](
1−ε[D−1]

φ

)√
ρ[D−1]

≤ . . .

. . . 1∥∥∥t[D−1]�
∆

∥∥∥2

∞

κ−1

(∥∥∥t[D−1]�
∆

∥∥∥2

∞
ν

4

)
− s[D−1]2(

1−ε[D−1]
φ

)√
ρ[D−1]

∀iD

we maximise the right-side of this bound while satisfying the first bound by selecting:

ν = 4∥∥∥t[D−1]�
∆

∥∥∥2

∞

κ

(
1−ε[D−1]

ψ

1−χ

)

so the conditions become (the first condition is the positivity of the right-side of the above, the second enforces the inequality):

ε
[D−1]
ψ < 1− (1− χ) s[D−1]2(

1−ε[D−1]
φ

)√
ρ[D−1]

∥∥∥t[D−1]�
∆

∥∥∥2

∞

φ[D−2]

H[D−2] ≤
1

1−χ
1−ε[D−1]

ψ

‖t[D−1]�
∆ ‖2∞

− s[D−1]2

(1−ε[D−1]
φ)

√
ρ[D−1]

1

H[D−1]
max
iD

∥∥∥∥W[D−1]
O:iD

∥∥∥∥2
2

1
1−δ

∥∥∥∥W[D−1]�
∆:iD

∥∥∥∥2
2
−
∥∥∥∥W[D−1]�

∆:iD

∥∥∥∥2
∞

+H[D−2]

ψ[D−2]

H[D−2]

(1−ε[D−1]
φ)

√
ρ[D−1]

41

Gradient Descent in Neural Networks as Sequential Learning in RKBS

or, equivalently:

ν = 4∥∥∥t[D−1]�
∆

∥∥∥2

∞

κ

(
1−ε[D−1]

ψ

1−χ

)
ε
[D−1]
ψ ∈

(
0, 1− (1− χ) s[D−1]2(

1−ε[D−1]
φ

)√
ρ[D−1]

∥∥∥t[D−1]�
∆

∥∥∥2

∞

)

ε
[D−2]
φ ∈

1− 1√
ρ[D−2]

σ[D−2]−1

1

1−χ
1−ε[D−1]

ψ

‖t[D−1]�
∆ ‖2∞

− s[D−1]2

(1−ε[D−1]
φ)

√
ρ[D−1]

1

H[D−1]
max
iD

∥∥∥∥W[D−1]
O:iD

∥∥∥∥2
2

1
1−δ

∥∥∥∥W[D−1]�
∆:iD

∥∥∥∥2
2
−
∥∥∥∥W[D−1]�

∆:iD

∥∥∥∥2
∞

+H[D−2]

ψ[D−2]

H[D−2]

(1−ε[D−1]
φ)

√
ρ[D−1]

 , 1

(54)

and we obtain our second additional constraint:∥∥∥t[D−1]�
∆

∥∥∥2

∞
<

(1−χ)
(

1−ε[D−1]
ψ

)
 s[D−1]2

(1−ε[D−1]
φ)

√
ρ[D−1]

Next we consider layer 0 < j < D − 1. We require that, to satisfy (53), using (50):

t
[j]�2
∆ij+1

t
[j]�2
∆ij+1

− 1
1−δ

∥∥∥W[j+1]�
∆

∥∥∥2

F

t
[j]�2
∆ij+1

≥ 1

1−ε[j]ψ
t
[j]�2
∆ij+1

∀ij+1

⇒ t
[j]�2
∆ij+1

≥ 1

1−ε[j]ψ

(
t
[j]�2
∆ij+1

− 1
1−δ

∥∥∥W[j+1]�
∆

∥∥∥2

F

)
∀ij+1

⇒
(

1

1−ε[j]ψ
− 1

)
t
[j]�2
∆ij+1

≤ 1

1−ε[j]ψ
1

1−δ

∥∥∥W[j+1]�
∆

∥∥∥2

F
∀ij+1

⇒ ε
[j]
ψ ≤

1
1−δ

∥∥∥W[j+1]�
∆

∥∥∥2

F

t
[j]�2
∆ij+1

∀ij+1

and it suffices that:

t
[j]�2
∆ij+1

t
[j]�2
∆ij+1

− 1
1−δ

∥∥∥W[j+1]�
∆

∥∥∥2

F

t
[j]�2
∆ij+1

≤ 1

s[j]2

(1−ε[j]
φ)
√
ρ[j]

+ 1

H[j]

∥∥∥∥W[j]
O:ij+1

∥∥∥∥2
2

1
1−δ

∥∥∥∥W[j]�
∆:ij+1

∥∥∥∥2
2
−
∥∥∥∥W[j]�

∆:ij+1

∥∥∥∥2
∞

+H[j−1]

 ψ[j−1]

H[j−1]
φ[j−1]

H[j−1]

(1−ε[j]
φ)
√
ρ[j]

∀ij+1

⇒ s[j]2(
1−ε[j]φ

)√
ρ[j]

+ 1
H[j]

(∥∥∥W[j]
O:ij+1

∥∥∥2

2

1
1−δ

∥∥∥W[j]�
∆:ij+1

∥∥∥2

2
−
∥∥∥W[j]�

∆:ij+1

∥∥∥2

∞

+H [j−1]

)
ψ[j−1]

H[j−1]
φ[j−1]

H[j−1](
1−ε[j]φ

)√
ρ[j]
≤

t
[j]�2
∆ij+1

− 1
1−δ

∥∥∥W[j+1]�
∆

∥∥∥2

F

t
[j]�4
∆ij+1

∀ij+1

⇒ φ[j−1]

H[j−1] ≤

t
[j]�2
∆ij+1

− 1
1−δ‖W[j+1]�

∆ ‖2
F

t
[j]�4
∆ij+1

− s[j]2

(1−ε[j]
φ)
√
ρ[j]

1

H[j]

∥∥∥∥W[j]
O:ij+1

∥∥∥∥2
2

1
1−δ

∥∥∥∥W[j]�
∆:ij+1

∥∥∥∥2
2
−
∥∥∥∥W[j]�

∆:ij+1

∥∥∥∥2
∞

+H[j−1]

 ψ[j−1]

H[j−1]

(1−ε[j]
φ)
√
ρ[j]

∀ij+1

so it suffices to let:16

ε
[j]
ψ ≤

1
1−δ

∥∥∥W[j+1]�
∆

∥∥∥2

F∥∥∥t[j]�
∆

∥∥∥2

∞

φ[j−1]

H[j−1] ≤
1

‖t[j]�∆ ‖2∞

1− 1
1−δ
‖W[j+1]�

∆ ‖2
F

‖t[j]�∆ ‖2∞

− s[j]2

(1−ε[j]
φ)
√
ρ[j]

1

H[j]
max
ij+1

∥∥∥∥W[j]
O:ij+1

∥∥∥∥2
2

1
1−δ

∥∥∥∥W[j]�
∆:ij+1

∥∥∥∥2
2
−
∥∥∥∥W[j]�

∆:ij+1

∥∥∥∥2
∞

+H[j−1]

ψ[j−1]

H[j−1]

(1−ε[j]
φ)
√
ρ[j]

16Note that if 0 < a < xmin ≤ x then x−a
x2 is minimised by setting x = xmin.

42

Gradient Descent in Neural Networks as Sequential Learning in RKBS

or, equivalently:

ε
[j]
ψ ∈

(
0, 1

1−δ

∥∥∥W[j+1]�
∆

∥∥∥2

F∥∥∥t[j]�
∆

∥∥∥2

∞

)

ε
[j−1]
φ ∈

1− 1√
ρ[j−1]

σ[j−1]−1

1

‖t[j]�∆ ‖2∞

1− 1
1−δ
‖W[j+1]�

∆ ‖2
F

‖t[j]�∆ ‖2∞

− s[j]2

(1−ε[j]
φ)
√
ρ[j]

1

H[j]
max
ij+1

∥∥∥∥W[j]
O:ij+1

∥∥∥∥2
2

1
1−δ

∥∥∥∥W[j]�
∆:ij+1

∥∥∥∥2
2
−
∥∥∥∥W[j]�

∆:ij+1

∥∥∥∥2
∞

+H[j−1]

ψ[j−1]

H[j−1]

(1−ε[j]
φ)
√
ρ[j]

 , 1

where positivity compels us to further constrain the weight-step to ensure this is positive. Using (51), positivity requires our
third additional constraint: ∥∥∥t[j]�

∆

∥∥∥2

∞
<

$[j+1]
(

1−ε[j]ψ
)

 s[j]2

(1−ε[j]
φ)
√
ρ[j]

Finally we consider the case j = 0. We require that:

t
[0]�2
∆i1

t
[0]�2
∆i1

− 1
1−δ

∥∥∥W[1]�
∆

∥∥∥2

F

t
[0]�2
∆i1

≥ 1

1−ε[0]
ψ

t
[0]�2
∆i1

∀i1

⇒ ε
[0]
ψ ≤

1
1−δ

∥∥∥W[1]�
∆

∥∥∥2

F

t
[0]�2
∆i1

∀i1

and:
t
[0]�2
∆i1

t
[0]�2
∆i1

− 1
1−δ

∥∥∥W[1]�
∆

∥∥∥2

F

t
[0]�2
∆i1

≤ 1 s[0]2

(1−ε[0]
φ)
√
ρ[0]

 ∀i1

⇒ s[0]2(
1−ε[0]

φ

)√
ρ[0]
≤

1− 1
1−δ
‖W[1]�

∆ ‖2
F

t
[0]�2
∆i1

t
[0]�2
∆i1

∀i1

⇒
∥∥∥t[0]�

∆

∥∥∥2

∞
≤

1− 1
1−δ
‖W[1]�

∆ ‖2
F

‖t[0]�
∆ ‖2∞ s[0]2

(1−ε[0]
φ)
√
ρ[0]

so it suffices to let:

ε
[0]
ψ ≤

1
1−δ

∥∥∥W[1]�
∆

∥∥∥2

F∥∥∥t[0]�
∆

∥∥∥2

∞

or, equivalently:

ε
[0]
ψ ∈

(
0, 1

1−δ

∥∥∥W[1]�
∆

∥∥∥2

F∥∥∥t[0]�
∆

∥∥∥2

∞

)
and our fourth additional constraint: ∥∥∥t[0]�

∆

∥∥∥2

∞
≤

$[1]
(

1−ε[0]
ψ

)
 s[0]2

(1−ε[0]
φ)
√
ρ[0]

There is one last technicality. Selecting

ε
[D−1]
ψ ↑ 1− (1− χ) s[D−1]2(

1−ε[D−1]
φ

)√
ρ[D−1]

∥∥∥t[D−1]�
∆

∥∥∥2

∞

will result in:
ε
[D−2]
φ ↑ 1

43

Gradient Descent in Neural Networks as Sequential Learning in RKBS

which is not allowed as ε[D−2]
φ < 1 (that is, the range of ε[D−2]

φ becomes the empty set in the limit. Thus we tighten our

contraints on ε[D−1]
ψ to:

ε
[D−1]
ψ ∈

(
0, 1− s[D−1]2(

1−ε[D−1]
φ

)√
ρ[D−1]

∥∥∥t[D−1]�
∆

∥∥∥2

∞

)
which completes the proof after some minor refactoring.

From which we arrive at the corollary used in the main body of the paper:

Corollary 10. Let ε, χ ∈ (0, 1) and for a given neural network with initial weights WO, and let W�
∆ be the weight-step

for this derived from back-propagation. Let:

εψ =

(
1− 1

1−χ
s[D−1]2

(1−ε)
√
ρ[D−1]

∥∥∥t[D−1]�
∆

∥∥∥2

∞

)

ε
[j]
φ =

ε if j = D − 1

1− 1√
ρ[j]

σ[j]−1

1

1−χ
χD−1−jεψ(1−ε[j+1]

φ)
√
ρ[j+1]

‖t[j+1]�
∆ ‖2∞

−
χD−1−jεψ

1−χD−1−jεψ
s[j+1]2

max
ij+2

1

H[j+1]

∥∥∥∥W[j+1]
O:ij+2

∥∥∥∥2
2

1
1−δ

∥∥∥∥W[j+1]�
∆:ij+2

∥∥∥∥2
2
−
∥∥∥∥W[j+1]�

∆:ij+2

∥∥∥∥2
∞

+ H[j]

H[j+1]

 otherwise

∀j ∈ ND

For some α[j] ∈ R+: ∥∥∥W[j+1]�
∆

∥∥∥2

F
= (1− δ)χ

∥∥∥t[j]�
∆

∥∥∥2

∞

If the weight-step satisfies: ∥∥∥t[j]�
∆

∥∥∥2

∞
<

(1−χ)2(1−χD−j−111j<D−1εψ) s[j]2

(1−ε[j]
φ)
√
ρ[j]

 ∀j ∈ ND

then there exists of a canonical scaling:

∂
∂W∆

‖ΨO (W∆)‖WO
∣∣∣
W∆=W�

∆

= νW�
∆

where:
ν = 4∥∥∥t[D−1]�

∆

∥∥∥2

∞

κ
(

1−εψ
1−χ

)
satisfying ‖ΦO(x)‖2F ≤ H [D−1]σ[D−1](

(
1− ε)

√
ρ[D−1]

)
∀x ∈ X, ‖ΨO(W∆)‖2F ≤ H [D−1] 1−εψ

εψ
.

Proof. We begin with theorem 9. Let $[j] = 1− χ and ε[D−1]
φ = εφ. The definitions in theorem 9 become:

0 ≤ ε[j]ψ ≤ χD−1−j
(

1− s[D−1]2

(1−εφ)
√
ρ[D−1]

∥∥∥t[D−1]�
∆

∥∥∥2

∞

)

1 ≥ ε[j]φ ≥

εφ if j = D − 1

1− 1√
ρ[j]

σ[j]−1

1

1−χ
1−ε[j+1]

ψ

‖t[j+1]�
∆ ‖2∞

− s[j+1]2

(1−ε[j+1]
φ)

√
ρ[j+1]

max
ij+2

1

H[j+1]

∥∥∥∥W[j+1]
O:ij+2

∥∥∥∥2
2

1
1−δ

∥∥∥∥W[j+1]�
∆:ij+2

∥∥∥∥2
2
−
∥∥∥∥W[j+1]�

∆:ij+2

∥∥∥∥2
∞

+ H[j]

H[j+1]

ψ[j]

H[j]

(1−ε[j+1]
φ)

√
ρ[j+1]

 otherwise

∀j ∈ ND, and:
ψ[j]

H[j] = θ
(

1− ε[j]ψ
)

=
1−ε[j]ψ
ε
[j]
ψ

φ[j]

H[j] = σ[j]
((

1− ε[j]φ
)√

ρ[j]
) ∀j ∈ ND

44

Gradient Descent in Neural Networks as Sequential Learning in RKBS

and subsequently for some α[j] ∈ R+: ∥∥∥W[j+1]�
∆

∥∥∥2

F
= (1− δ)χ

∥∥∥t[j]�
∆

∥∥∥2

∞

The condition on the weight-step satisfies:∥∥∥t[j]�
∆

∥∥∥2

∞
<

(1−χ)
(

1−ε[j]ψ
)

 s[j]2

(1−ε[j]
φ)
√
ρ[j]

 ∀j ∈ ND

implying the existence of a canonical scaling:

∂
∂W∆

‖ΨO (W∆)‖WO
∣∣∣
W∆=W�

∆

= νW�
∆

where:

ν = 4∥∥∥t[D−1]�
∆

∥∥∥2

∞

κ

(
1−ε[D−1]

ψ

1−χ

)
satisfying ‖ΦO(x)‖2F ≤ φ[D−1], ‖ΨO(W∆)‖2F ≤ ψ[D−1]. To further simplify the constraints, note that:

1− ε[j]ψ = 1− χD−1−j + χD−1−j s[D−1]2

(1−εφ)
√
ρ[D−1]

∥∥∥t[D−1]�
∆

∥∥∥2

∞
> 1− χD−1−j

ψ[j]

H[j] =
1−ε[j]ψ
ε
[j]
ψ

< 1

ε
[j]
ψ

= 1
χD−1−j

1

1− s[D−1]2

(1−εφ)
√
ρ[D−1]

∥∥∥t[D−1]�
∆

∥∥∥2

∞

so we can tighten the constraints on ε[j]φ and ‖t[j]�
∆ ‖2∞ to:

1 ≥ ε[j]φ ≥

εφ if j = D − 1

1− 1√
ρ[j]

σ[j]−1

1

1−χ
ε
[j]
ψ (1−ε[j+1]

φ)
√
ρ[j+1]

‖t[j+1]�
∆ ‖2∞

−
ε
[j]
ψ

1−ε[j]
ψ

s[j+1]2

max
ij+2

1

H[j+1]

∥∥∥∥W[j+1]
O:ij+2

∥∥∥∥2
2

1
1−δ

∥∥∥∥W[j+1]�
∆:ij+2

∥∥∥∥2
2
−
∥∥∥∥W[j+1]�

∆:ij+2

∥∥∥∥2
∞

+ H[j]

H[j+1]

 otherwise

∥∥∥t[j]�
∆

∥∥∥2

∞
<

(1−χ)

1−χD−1−j

1− s[D−1]2

(1−εφ)
√
ρ[D−1]

∥∥∥t[D−1]�
∆

∥∥∥2

∞

 s[j]2

(1−ε[j]
φ)
√
ρ[j]

 ∀j ∈ ND

Subsequently the definitions in theorem 9 can be tightened to, being careful to ensure that
∥∥∥t[j]�

∆

∥∥∥2

∞
is not overconstrained:

εψ =

(
1− 1

1−χ
s[D−1]2

(1−εφ)
√
ρ[D−1]

∥∥∥t[D−1]�
∆

∥∥∥2

∞

)

ε
[j]
φ =

εφ if j = D − 1

1− 1√
ρ[j]

σ[j]−1

1

1−χ
χD−1−jεψ(1−ε[j+1]

φ)
√
ρ[j+1]

‖t[j+1]�
∆ ‖2∞

−
χD−1−jεψ

1−χD−1−jεψ
s[j+1]2

max
ij+2

1

H[j+1]

∥∥∥∥W[j+1]
O:ij+2

∥∥∥∥2
2

1
1−δ

∥∥∥∥W[j+1]�
∆:ij+2

∥∥∥∥2
2
−
∥∥∥∥W[j+1]�

∆:ij+2

∥∥∥∥2
∞

+ H[j]

H[j+1]

 otherwise

∀j ∈ ND

and subsequently for some α[j] ∈ R+: ∥∥∥W[j+1]�
∆

∥∥∥2

F
= (1− δ)χ

∥∥∥t[j]�
∆

∥∥∥2

∞

45

Gradient Descent in Neural Networks as Sequential Learning in RKBS

The condition on the weight-step satisfies (the first constraint is required to ensure that εψ > 0):

∥∥∥t[j]�
∆

∥∥∥2

∞
< 1−χ s[j]2

(1−ε[j]
φ)
√
ρ[j]

 1 if j = D − 1(

1− χD−1−jεψ
)

otherwise
∀j ∈ ND

implying the existence of a canonical scaling:

∂
∂W∆

‖ΨO (W∆)‖WO
∣∣∣
W∆=W�

∆

= νW�
∆

where:
ν = 4∥∥∥t[D−1]�

∆

∥∥∥2

∞

κ
(

1−εψ
1−χ

)
satisfying ‖ΦO(x)‖2F ≤ H [D−1]σ[D−1](

(
1− εφ)

√
ρ[D−1]

)
, ‖ΨO(W∆)‖2F ≤ H [D−1] 1−εψ

εψ
.

At this point we have enough leeway in our construct to let δ → 0, and tidy up with εφ = ε, so our constraints become:

εψ =

(
1− 1

1−χ
s[D−1]2

(1−ε)
√
ρ[D−1]

∥∥∥t[D−1]�
∆

∥∥∥2

∞

)

ε
[j]
φ =

ε if j = D − 1

1− 1√
ρ[j]

σ[j]−1

1

1−χ
χD−1−jεψ(1−ε[j+1]

φ)
√
ρ[j+1]

‖t[j+1]�
∆ ‖2∞

−
χD−1−jεψ

1−χD−1−jεψ
s[j+1]2

max
ij+2

1

H[j+1]

∥∥∥∥W[j+1]
O:ij+2

∥∥∥∥2
2

1
1−δ

∥∥∥∥W[j+1]�
∆:ij+2

∥∥∥∥2
2
−
∥∥∥∥W[j+1]�

∆:ij+2

∥∥∥∥2
∞

+ H[j]

H[j+1]

 otherwise

∀j ∈ ND

and subsequently for some α[j] ∈ R+: ∥∥∥W[j+1]�
∆

∥∥∥2

F
= (1− δ)χ

∥∥∥t[j]�
∆

∥∥∥2

∞

The condition on the weight-step satisfies (the first constraint is required to ensure that εψ > 0):

∥∥∥t[j]�
∆

∥∥∥2

∞
< 1−χ s[j]2

(1−ε[j]
φ)
√
ρ[j]

 1 if j = D − 1(

1− χD−1−jεψ
)

otherwise
∀j ∈ ND

implying the existence of a canonical scaling:

∂
∂W∆

‖ΨO (W∆)‖WO
∣∣∣
W∆=W�

∆

= νW�
∆

where:
ν = 4∥∥∥t[D−1]�

∆

∥∥∥2

∞

κ
(

1−εψ
1−χ

)
satisfying ‖ΦO(x)‖2F ≤ H [D−1]σ[D−1](

(
1− ε)

√
ρ[D−1]

)
, ‖ΨO(W∆)‖2F ≤ H [D−1] 1−εψ

εψ
.

Finally, we need to ensure that ν is well defined, for which we require that 1− εψ < 1− χ or, equivalently, εψ > χ. For
This is suffices that: ∥∥∥t[D−1]�

∆

∥∥∥2

∞
< 1−χ s[D−1]2

(1−ε[D−1]
φ)

√
ρ[D−1]

46

Gradient Descent in Neural Networks as Sequential Learning in RKBS

and so, tightening bounds slightly:

∥∥∥t[j]�
∆

∥∥∥2

∞
< 1−χ s[j]2

(1−ε[j]
φ)
√
ρ[j]

 (1− χ) if j = D − 1(

1− χD−1−jεψ
)

otherwise
∀j ∈ ND

which completes the proof.

Subsequently we obtain a bound on Rademacher complexity:

Theorem 11. Let ε, χ ∈ (0, 1) and for a given neural network with initial weights WO, and let W�
∆ be the weight-step for

this derived from back-propagation satisfying the conditions set out in corollary 10. Then f�
∆ ∈ F•, where the Rademacher

complexity of F• is bounded as:

RN (F•) ≤ H [D−1]

√√√√√√ 1
N

∥∥∥t[D−1]�
∆

∥∥∥2

∞
1

1−χ
(1−χ)2 s[D−1]2

(1−ε)
√
ρ[D−1]

−
∥∥∥t[D−1]�

∆

∥∥∥2

∞

σ̄[D−1]
(

(1− ε)
√
ρ[D−1]

)

Proof. By corollary 10 we know that, subject to assumptions on the size of the weight-step, there must exist scale
factors, shadow weighs and regularization parameter λ such that the change in neural network operation f�

∆ due to
back-propagation and the change in neural network operation f•∆ resulting from minimization of the regularised risk Rλ
will coincide, so f�

∆ = f•∆ ∈ BO. Fixing these parameters, moreover, we know from corollary 10 that ‖ΦO(x)‖2F ≤
H [D−1]σ[D−1](

(
1− ε)

√
ρ[D−1]

)
∀x ∈ X, ‖ΨO(W∆)‖2F ≤ H [D−1] 1−εψ

εψ
, so:

f•∆ ∈ F• =
{
〈ΦO (·) ,Ω〉| ‖Ω‖2F ≤ H [D−1] 1−εψ

εψ

}
Hence for a Rademacher random variable ε the Rademacher complexity is bounded as follows:

RN (F•) = EνEε

[
sup

f∆∈F•

∣∣ 1
N

∑
i εif (xi)

∣∣]

= EνEε

[
sup

f∆∈F•

∣∣ 1
N

∑
i εi
〈
ΦO (xi) ,Ψ

(
W�

∆

)〉∣∣]

≤C.S. Eν

[
1
NEε

[
sup

f∆∈F•
‖
∑
i εiΦO (xi)‖F

∥∥Ψ (W�
∆

)∥∥
F

]]
≤ Eν

[√
1
N

√
H [D−1] 1−εψ

εψ
Eε
[∥∥ 1

N

∑
i εiΦO (xi)

∥∥2

F

]]
≤Jensen Eν

[√
1
NH

[D−1] 1−εψ
εψ

√
1
N

∑
i ‖ΦO (xi)‖2F

]
≤ H [D−1]

√
1
N

1−εψ
εψ

σ̄[j]
(

(1− ε)
√
ρ[D−1]

)
independent of the data distribution ν.

Next recall the definitions from corollary 10:

εψ = 1− 1
1−χ

s[D−1]2

(1−ε)
√
ρ[D−1]

∥∥∥t[D−1]�
∆

∥∥∥2

∞

so that:
1−εψ
εψ

=

∥∥∥t[D−1]�
∆

∥∥∥2

∞
1

1−χ
(1−χ)2 s[D−1]2

(1−ε)
√
ρ[D−1]

−
∥∥∥t[D−1]�

∆

∥∥∥2

∞

47

Gradient Descent in Neural Networks as Sequential Learning in RKBS

Notation in present Paper Notation used in (Lin et al., 2022)
Data space: X ⊂ Rn Ω1 (input space)
Weight-step space: WO ⊂

∏
j∈ND RH[j−1]×H[j] × RH[j]

Ω2 (weight space)
Data Feature map: ΦO : X→ XO ⊂ R∞×m Φ1 : Ω1 →W1

Weight-step feature map: ΨO : WO →WO ⊂ R∞×m Φ2 : Ω2 →W2

Data Banach space: XO = span(ΦO(X)) ⊂ R∞×m, where W1 with norm ‖ · ‖W1

‖ · ‖XO = ‖ · ‖F
Weight-step Banach space: WO = span(ΨO(WO)) ⊂ R∞×m, where W2 with norm ‖ · ‖W2

‖ · ‖WO = ‖ · ‖F
Bilinear form: 〈·, ·〉XO×WO : R∞×m × R∞×m → Rm, 〈·, ·〉W1×W2

:W1 ×W2 → Y
〈Ω,Ξ〉XO×WO = diag

(
ΩTΞ

)
Figure 3: Summary of the construction of reproducing kernel Banach space as per (Lin et al., 2022).

and hence:

RN (F•) ≤ H [D−1]

√√√√√√ 1
N

∥∥∥t[D−1]�
∆

∥∥∥2

∞
1

1−χ
(1−χ)2 s[D−1]2

(1−ε)
√
ρ[D−1]

−
∥∥∥t[D−1]�

∆

∥∥∥2

∞

σ̄[j]
(

(1− ε)
√
ρ[D−1]

)

E. Neural Networks and Reproducing Kernel Banach Spaces
A reproducing kernel Hilbert space (RKHS) (Aronszajn, 1950) is a Hilbert spacesH of functions f : X→ Y for which the
point evaluation functions are continuous. Thus, applying the Riesz representor theorem, there exists a kernel K such that:

f (x) = 〈f (·) ,K (x, ·)〉H

for all f ∈ H. Subsequently K(x,x′) = 〈K(x, ·),K(x′, ·)〉 and, by the Moore-Aronszajn theorem, K is uniquely defined
by H and vice-versa. K is called the reproducing kernel, and the corresponding RKHS is denoted HK . RKHSs have
gained popularity in machine learning because they are well suited to many aspects of machine learning (Steinwart &
Christman, 2008; Shawe-Taylor & Cristianini, 2004; Cortes & Vapnik, 1995; Chowdhury & Gopalan, 2017; Cristianini &
Shawe-Taylor, 2005; Genton, 2001; Gönen & Alpaydin, 2011; Herbrich, 2002; Li et al., 2017; Müller et al., 2001; Smola &
Schölkopf, 1998). The inner product structure enables the kernel trick, which is of great practical use, and the kernel itself is
readily understood as a similarity measure. More importantly here, the structure of RKHSs has led to a rich framework of
complexity analysis and generalization bounds (Steinwart & Christman, 2008; Shawe-Taylor & Cristianini, 2004) that form
a foundation for this branch of machine learning, which more recently has been extended to neural networks through the
theory of neural tangent kernels (Jacot et al., 2018).

Reproducing kernel Banach spaces (RKBSs) are a generalizationn of RKHSs which start with a Banach space of functions
rather than a Hilbert space (Der & Lee, 2007; Lin et al., 2022; Zhang et al., 2009; Zhang & Zhang, 2012; Song et al., 2013;
Sriperumbudur et al., 2011; Xu & Ye, 2014). Precisely:

Definition 4 (Reproducing kernel Banach space (RKBS, (Lin et al., 2022))). A reproducing kernel Banach space B on a set
X is a Banach space of functions f : X→ Y such that every point evaluation δx : B → Y, x ∈ X, on B is continuous. That
is, ∃Cx ∈ R+ such that:

|δx (f)| = |f (x)| ≤ Cx ‖f‖B
for all f ∈ B.

This introduces a richer set of geometrical structures and allows for new and exciting extensions to the usual kernel framework,
such as asymmetric kernels, sparse learning in Feature space, lasso in statistics and m-kernels. In the present context it
allows us to extend NTKs from a first-order approximation in the overparametrised regime to an exact representation without
the need for infinite width approximations. There are many approaches to RKBS theory in the literature, but in the present
context we find the method of (Lin et al., 2022) most helpful.

48

Gradient Descent in Neural Networks as Sequential Learning in RKBS

In this formulation, reproducing kernels may be constructed from a set of basic ingredients that closely mirror our construction
of f∆ in the preceding sections. In particular, as per (Lin et al., 2022), and in light of lemma 4, we can construct RKBS BO
containing f∆ using the ingredients defined in Figure 3. This gives us the reproducing kernel Banach space BO on X:

BO =
{
〈ΦO (·) ,Ω〉XO×WO

∣∣Ω ∈ WO}, where
∥∥〈ΦO (·) ,Ω〉XO×WO

∥∥
BO

= ‖Ω‖WO (55)

the elements of BO include the functions f∆ : Rn → Rm - that is, the change in the neural network behaviour due to
a change W∆ ∈ WO in weights and biases during one iteration, subject to convergence conditions - as well all linear
combinations thereof (recalling thatWO = span(ΨO(WO))). This has the reproducing kernel KO : X×WO → Rm×m:

KO (x,W∆) = diag
(
〈ΦO (x) ,ΨO (W∆)〉XO×WO

)
= diag (f∆ (x)) (56)

We also obtain the corresponding reproducing kernel Banach space B∗O on WO:

B∗O =
{
〈Ξ,ΨO (·)〉XO×WO

∣∣Ξ ∈ XO}, where
∥∥〈Ξ,ΨO (·)〉XO×WO

∥∥
B∗O

= ‖Ξ‖XO (57)

whose members are the evaluation functionals for BO, which has the reproducing kernel K∗O : WO ×X→ Rm×m given by:

K∗O (W∆,x) = KO (x,W∆) = diag (f∆ (x))

F. Case study - The tanh Activation Function
Let us consider the activation function:

τ [j] (ζ) = tanh (ζ) (58)

We wish to construct the corresponding σ[j]
z,z′ for arbitrary z, z′ ∈ R. As we shown in section F.1, the Taylor expansion of

tanh about an arbitrary z ∈ R is:

tanh (z + ζ) = tanh (z) +
∞∑
m=1

atanh
(z)mζ

m

where:

atanh
(z)m = 2 (− sgn (z))

m
∞∑
n=0

(
1√

z2+((n+ 1
2)π)

2

)m+1

cos

(
(m+ 1) atan

(
(n+ 1

2)π
z

))
which is valid for all z, ζ ∈ R such that |ζ| ≤ π

2 . Hence, by our definition (30), using this expansion:

σ
[j]
(z,z′) (ζ) =

∞∑
m=1

atanh
(z)ma

tanh
(z′)mζ

m (59)

In the case z = z′ = 0 this simplifies to:

atanh
(0)m =

22m(22m−1)B2m

(2m)!

where B2m are the Bernoulli numbers. So:

σ
[j]
(0,0) (ζ) =

∞∑
m=1

(
22m(22m−1)B2m

(2m)!

)2

ζm

F.1. The Taylor Expansions of tanh About an Arbitrary Point

The Taylor expansion of tanh about 0 is well-known, specifically:

tanh (ξ) =
∑∞
m=1

22m(22m−1)B2m

(2m)! ξ2m−1

where B2n is the Bernoulli number, which is valid for |ξ| ≤ π
2 . However in this paper we require the Taylor expansion of

tanh about an arbitrary point z - however we have been unable to find such an expansion in the literature. In this section we
obtain such an expansion using a method inspired by the approach given in the post (D‘Aurizio, 2014).

49

Gradient Descent in Neural Networks as Sequential Learning in RKBS

We know that the Weierstrass product expansion of cosh is:

cosh (z + ξ) =
∞∏
n=0

(
1 + (z+ξ)2

(n+ 1
2)

2
π2

)
=
∞∏
n=0

(
1 + (|z|+sgn(z)ξ)2

(n+ 1
2)

2
π2

)

for all z, ξ ∈ R (the “sign absorption” here will be important later in our derivation). Hence:

log (cosh (z + ξ)) =
∞∑
n=0

log

(
1 + (|z|+sgn(z)ξ)2

(n+ 1
2)

2
π2

)

and so, taking the derivative ∂
∂ξ on both sides:

sgn (z) tanh (z + ξ) = 2 (|z|+ sgn (z) ξ)
∞∑
n=0

1

(n+ 1
2)

2
π2

1+
(|z|+sgn(z)ξ)2

(n+ 1
2)

2
π2

= 2 (|z|+ sgn (z) ξ)
∞∑
n=0

1

(n+ 1
2)

2
π2+z2+2|z| sgn(z)ξ+ξ2

= 2 (|z|+ sgn (z) ξ)
∞∑
n=0

1

|z|+i(n+ 1
2)π+sgn(z)ξ

1

|z|−i(n+ 1
2)π+sgn(z)ξ

= 2 (|z|+ sgn (z) ξ)
∞∑
n=0

1

|z|+i(n+ 1
2)π

1

|z|−i(n+ 1
2)π

1
1+ 1

|z|+i(n+ 1
2)π

sgn(z)ξ
1

1+ 1

|z|−i(n+ 1
2)π

sgn(z)ξ

where i =
√
−1. Thus, for all ξ2 ≤ z2 + (π2)2:

sgn (z) tanh (z + ξ) = 2 (|z|+ sgn (z) ξ)
∞∑
n=0

1

|z|+i(n+ 1
2)π

1

|z|−i(n+ 1
2)π

∞∑
p,q=0

(− sgn (z))
p+q

. . .

. . .

(
1

|z|+i(n+ 1
2)π

)p(
1

|z|−i(n+ 1
2)π

)q
ξp+q

= 2 (|z|+ sgn (z) ξ)
∞∑
n=0

1

z2+(n+ 1
2)

2
π2

∞∑
p,q=0

(− sgn (z))
p+q

. . .

. . .

(
1

z2+(n+ 1
2)

2
π2

) p+q
2

e
i(p−q)atan

(
(n+ 1

2)π
|z|

)
ξp+q

= 2 (|z|+ sgn (z) ξ)
∞∑
n=0

1

z2+(n+ 1
2)

2
π2

∞∑
p,q=0

(−sgn (z))
p+q

. . .

. . .

(
1

z2+(n+ 1
2)

2
π2

) p+q
2

cos

(
(p− q) atan

(
(n+ 1

2)π
|z|

))
ξp+q

50

Gradient Descent in Neural Networks as Sequential Learning in RKBS

and so, re-arranging our indexing:

sgn (z) tanh (z + ξ) = 2 (|z|+ sgn (z) ξ)
∞∑
m=0

(− sgn (z))
m
. . .

. . .

(
∞∑
n=0

(
1

z2+(n+ 1
2)

2
π2

)m
2 +1

(∑
j=−m,−m+2,...,m−2,m

cos

(
jatan

(
(n+ 1

2)π
|z|

))))
ξm

= 2 (|z|+ sgn (z) ξ)
∞∑
m=0

(− sgn (z))
m
. . .

. . .

 ∞∑
n=0

(
1

z2+(n+ 1
2)

2
π2

)m
2 +1

2
∑

j=0,2,...,m

cos

(
jatan

(
(n+ 1

2)π
|z|

))
− 1 if m even

2
∑

j=1,3,...,m

cos

(
jatan

(
(n+ 1

2)π
|z|

))
if m odd

 ξm

= 2 (|z|+ sgn (z) ξ)
∞∑
m=0

(− sgn (z))
m
. . .

. . .

 ∞∑
n=0

(
1

z2+(n+ 1
2)

2
π2

)m
2 +1

2

m
2∑
j=0

cos

(
2jatan

(
(n+ 1

2)π
|z|

))
− 1 if m even

2

m−1
2∑
j=0

cos

(
(2j + 1) atan

(
(n+ 1

2)π
|z|

))
if m odd

 ξm

Using the result (Knapp, 2009):

N−1∑
j=0

cos (a+ jd) =
sin(Nd2)
sin(d2)

cos
(
a+ (N−1)d

2

)
and the usual results for (co)sines of sums and differences, we have that:

m
2∑
j=0

cos

(
2jatan

(
(n+ 1

2)π
|z|

))
=

sin

(
(m2 +1)atan

(
(n+ 1

2)π
|z|

))

sin

(
atan

(
(n+ 1

2)π
|z|

)) cos

(
m
2 atan

(
(n+ 1

2)π
|z|

))

=

√
z2+(n+ 1

2)
2
π2

(n+ 1
2)π

sin

(
m+2

2 atan

(
(n+ 1

2)π
|z|

))
cos

(
m
2 atan

(
(n+ 1

2)π
|z|

))
=

√
z2+(n+ 1

2)
2
π2

(n+ 1
2)π

sin

(
m+1

2 atan

(
(n+ 1

2)π
|z|

))
cos

(
m+1

2 atan

(
(n+ 1

2)π
|z|

))
+

√
z2+(n+ 1

2)
2
π2

(n+ 1
2)π

sin

(
1
2atan

(
(n+ 1

2)π
|z|

))
cos

(
1
2atan

(
(n+ 1

2)π
|z|

))
= 1

2

√
z2+(n+ 1

2)
2
π2

(n+ 1
2)π

sin

(
(m+ 1) atan

(
(n+ 1

2)π
|z|

))
. . .

. . .+ 1
2

√
z2+(n+ 1

2)
2
π2

(n+ 1
2)π

sin

(
atan

(
(n+ 1

2)π
|z|

))
= 1

2

√
z2+(n+ 1

2)
2
π2

(n+ 1
2)π

sin

(
(m+ 1) atan

(
(n+ 1

2)π
|z|

))
+ 1

2

and:

m−1
2∑
j=0

cos

(
(2j + 1) atan

(
(n+ 1

2)π
|z|

))
=

sin

(
(m−1

2 +1)atan

(
(n+ 1

2)π
|z|

))

sin

(
atan

(
(n+ 1

2)π
|z|

)) cos

(
atan

(
(n+ 1

2)π
|z|

)
+ m−1

2 atan

(
(n+ 1

2)π
|z|

))

=

√
z2+(n+ 1

2)
2
π2

(n+ 1
2)π

sin

(
m+1

2 atan

(
(n+ 1

2)π
|z|

))
cos

(
m+1

2 atan

(
(n+ 1

2)π
|z|

))
= 1

2

√
z2+(n+ 1

2)
2
π2

(n+ 1
2)π

sin

(
(m+ 1) atan

(
(n+ 1

2)π
|z|

))
51

Gradient Descent in Neural Networks as Sequential Learning in RKBS

so that:

sgn (z) tanh (z + ξ) = 2 (|z|+ sgn (z) ξ)
∞∑
m=0

(− sgn (z))
m
. . .

. . .

(
∞∑
n=0

(
1

z2+(n+ 1
2)

2
π2

)m
2 +1 √

z2+(n+ 1
2)

2
π2

(n+ 1
2)π

sin

(
(m+ 1) atan

(
(n+ 1

2)π
|z|

)))
ξm

= 2 (|z|+ sgn (z) ξ)
∞∑
m=0

(− sgn (z))
m

(
∞∑
n=0

1

(n+ 1
2)π

(
1

z2+(n+ 1
2)

2
π2

)m+1
2

sin

(
(m+ 1) atan

(
(n+ 1

2)π
|z|

)))
ξm

= 2 |z|
∞∑
m=0

(− sgn (z))
m

(
∞∑
n=0

1

(n+ 1
2)π

(
1

z2+(n+ 1
2)

2
π2

)m+1
2

sin

(
(m+ 1) atan

(
(n+ 1

2)π
|z|

)))
ξm

+2
∞∑
m=0

(− sgn (z))
m+1

(
−
∞∑
n=0

1

(n+ 1
2)π

(
1

z2+(n+ 1
2)

2
π2

)m+2
2
(

1

z2+(n+ 1
2)

2
π2

)− 1
2

. . .

. . . sin

(
(m+ 2) atan

(
(n+ 1

2)π
|z|

)
− atan

(
(n+ 1

2)π
|z|

)))
ξm+1

= 2 |z|
∞∑
n=0

1

(n+ 1
2)π

(
1

z2+(n+ 1
2)

2
π2

) 1
2

sin

(
atan

(
(n+ 1

2)π
|z|

))
+2 |z|

∞∑
m=1

(− sgn (z))
m

(
∞∑
n=0

1

(n+ 1
2)π

(
1

z2+(n+ 1
2)

2
π2

)m+1
2

sin

(
(m+ 1) atan

(
(n+ 1

2)π
|z|

)))
ξm

+2
∞∑
m=1

(− sgn (z))
m

(
−
∞∑
n=0

1

(n+ 1
2)π

(
1

z2+(n+ 1
2)

2
π2

)m+1
2
(

1

z2+(n+ 1
2)

2
π2

)− 1
2

. . .

. . . sin

(
(m+ 1) atan

(
(n+ 1

2)π
|z|

)
− atan

(
(n+ 1

2)π
|z|

)))
ξm

= 2 |z|
∞∑
n=0

1

(n+ 1
2)π

(
1

z2+(n+ 1
2)

2
π2

) 1
2

sin

(
atan

(
(n+ 1

2)π
|z|

))
+2 |z|

∞∑
m=1

(− sgn (z))
m

(
∞∑
n=0

1

(n+ 1
2)π

(
1

z2+(n+ 1
2)

2
π2

)m+1
2

sin

(
(m+ 1) atan

(
(n+ 1

2)π
|z|

)))
ξm

−2
∞∑
m=1

(− sgn (z))
m

(
∞∑
n=0

1

(n+ 1
2)π

(
1

z2+(n+ 1
2)

2
π2

)m+1
2

. . .

. . . sin

(
(m+ 1) atan

(
(n+ 1

2)π
|z|

))(
1

z2+(n+ 1
2)

2
π2

)− 1
2

cos

(
atan

(
(n+ 1

2)π
|z|

)))
ξm

+2
∞∑
m=1

(− sgn (z))
m

(
∞∑
n=0

1

(n+ 1
2)π

(
1

z2+(n+ 1
2)

2
π2

)m+1
2

. . .

. . . cos

(
(m+ 1) atan

(
(n+ 1

2)π
|z|

))(
1

z2+(n+ 1
2)

2
π2

)− 1
2

sin

(
atan

(
(n+ 1

2)π
|z|

)))
ξm

= continued next page . . .

52

Gradient Descent in Neural Networks as Sequential Learning in RKBS

. . . from previous page = 2 |z|
∞∑
n=0

1

(n+ 1
2)π

(
1

z2+(n+ 1
2)

2
π2

) 1
2

sin

(
atan

(
(n+ 1

2)π
|z|

))
+2 |z|

∞∑
m=1

(− sgn (z))
m

(
∞∑
n=0

1

(n+ 1
2)π

(
1

z2+(n+ 1
2)

2
π2

)m+1
2

sin

(
(m+ 1) atan

(
(n+ 1

2)π
|z|

)))
ξm

−2
∞∑
m=1

(− sgn (z))
m

(
∞∑
n=0

1

(n+ 1
2)π

(
1

z2+(n+ 1
2)

2
π2

)m+1
2

. . .

. . . sin

(
(m+ 1) atan

(
(n+ 1

2)π
|z|

))(
1

z2+(n+ 1
2)

2
π2

)− 1
2
(

1

z2+(n+ 1
2)

2
π2

) 1
2

|z|

)
ξm

+2
∞∑
m=1

(− sgn (z))
m

(
∞∑
n=0

1

(n+ 1
2)π

(
1

z2+(n+ 1
2)

2
π2

)m+1
2

. . .

. . . cos

(
(m+ 1) atan

(
(n+ 1

2)π
z

))(
1

z2+(n+ 1
2)

2
π2

)− 1
2
(

1

z2+(n+ 1
2)

2
π2

) 1
2 (
n+ 1

2

)
π

)
ξm

= 2 |z|
∞∑
n=0

1

z2+(n+ 1
2)

2
π2

+2 |z|
∞∑
m=1

(− sgn (z))
m

(
∞∑
n=0

1

(n+ 1
2)π

(
1

z2+(n+ 1
2)

2
π2

)m+1
2

sin

(
(m+ 1) atan

(
(n+ 1

2)π
|z|

)))
ξm

−2 |z|
∞∑
m=1

(− sgn (z))
m

(
∞∑
n=0

1

(n+ 1
2)π

(
1

z2+(n+ 1
2)

2
π2

)m+1
2

sin

(
(m+ 1) atan

(
(n+ 1

2)π
|z|

)))
ξm

+2
∞∑
m=1

(− sgn (z))
m

(
∞∑
n=0

(
1

z2+(n+ 1
2)

2
π2

)m+1
2

cos

(
(m+ 1) atan

(
(n+ 1

2)π
|z|

)))
ξm

= 2 |z|
∞∑
n=0

1

z2+(n+ 1
2)

2
π2

+ 2
∞∑
m=1

(− sgn (z))
m

(
∞∑
n=0

(
1

z2+(n+ 1
2)

2
π2

)m+1
2

cos

(
(m+ 1) atan

(
(n+ 1

2)π
|z|

)))
ξm

and so:

tanh (z + ξ) = 2z
∞∑
n=0

1

z2+(n+ 1
2)

2
π2

+ 2sgn (z)
∞∑
m=1

(− sgn (z))
m

(
∞∑
n=0

(
1

z2+(n+ 1
2)

2
π2

)m+1
2

. . .

. . . cos

(
(m+ 1) atan

(
(n+ 1

2)π
|z|

)))
ξm

(As a quick sanity check, let z → 0±, so atan(
(n+ 1

2)π

|z|)→ π
2 and sgn(z) = ±1:

tanh (ξ) = ±2
∞∑
m=1

(∓1)
m

(
∞∑
n=0

(
1

(n+ 1
2)

2
π2

)m+1
2

cos
(
(m+ 1) π2

))
ξm

= −2
∑

m odd

(
∞∑
n=0

(
1

(n+ 1
2)

2
π2

)m+1
2

cos
(
(m+ 1) π2

))
ξm

= −2
∞∑
m=0

(
∞∑
n=0

(
1

(n+ 1
2)

2
π2

) 2m+2
2

cos ((m+ 1)π)

)
ξ2m+1

= 2
∞∑
m=0

(−1)m22m+2

π2m+2

(∞∑
n=0

1
(2n+1)2m+2

)
ξ2m+1

= 2
∞∑
m=0

(−1)m22m+2

π2m+2

(∞∑
n=1

1
n2m+2 −

∞∑
n=1

1
(2n)2m+2

)
ξ2m+1

= 2
∞∑
m=0

(−1)m22m+2

π2m+2

(
1− 1

4m+1

)
ζ (2 (m+ 1)) ξ2m+1

=
∞∑
m=1

22m(22m−1)B2m

(2m)! ξ2m−1

53

Gradient Descent in Neural Networks as Sequential Learning in RKBS

where ζ is the Reimann-zeta function and B2n the Bernoulli number, which is the usual Taylor expansion of tanh about 0).

Continuing, using (Gradshteyn & Ryzhik, 2000, (1.421.2)):

sgn (z) tanh (z + ξ) = 8|z|
π2

∞∑
n=0

1

(2z
π)

2
+(2n+1)2

+ . . .

. . .+ 2
∞∑
m=1

(
(− sgn (z))

m (2
π

)m+1 ∞∑
n=0

(
1

(2z
π)

2
+(2n+1)2

)m+1
2

cos

(
(m+ 1) atan

(
(n+ 1

2)π
|z|

)))
ξm

= 8|z|
π2

∞∑
n=1

1

(2n−1)2+(2z
π)

2 + 2
∞∑
m=1

(
(− sgn (z))

m
∞∑
n=0

(
1

z2+((n+ 1
2)π)

2

)m+1
2

cos

(
(m+ 1) atan

(
(n+ 1

2)π
|z|

)))
ξm

= tanh (|z|) + 2
∞∑
m=1

(− sgn (z))
m
∞∑
n=0

(
1√

z2+((n+ 1
2)π)

2

)m+1

cos

(
(m+ 1) atan

(
(n+ 1

2)π
|z|

)) ξm

and hence, using the fact that tanh is an odd function:

tanh (z + ξ) = tanh (z) +
∑∞
m=1 a

tanh
(z)mξ

m (60)

where, using that cos and atan are odd:

atanh
(z)m = 2

(− sgn (z))
m
∞∑
n=0

(
1√

z2+((n+ 1
2)π)

2

)m+1

cos

(
(m+ 1) atan

(
(n+ 1

2)π
z

)) (61)

Thus we can write the helper function (59) for the tanh neuron as:

σ
[j]
(z,z′) (ζ) =

∞∑
m=1

atanh
(z,z′)mζ

m (62)

where:

atanh
(z,z′)m = 4 sgnm (zz′)

∞∑
n,n′=0

(
1√

z2+((n+ 1
2)π)

2

1√
z′2+((n′+ 1

2)π)
2

)m+1

. . .

. . . cos

(
(m+ 1) atan

(
(n+ 1

2)π
z

))
cos

(
(m+ 1) atan

(
(n′+ 1

2)π
z′

)) (63)

54

