
Improved Learning-Augmented Algorithms for the Multi-Option Ski Rental
Problem via Best-Possible Competitive Analysis

Yongho Shin 1 Changyeol Lee 1 Gukryeol Lee 1 Hyung-Chan An 1

Abstract
In this paper, we present improved learning-
augmented algorithms for the multi-option ski
rental problem. Learning-augmented algorithms
take ML predictions as an added part of the in-
put and incorporates these predictions in solving
the given problem. Due to their unique strength
that combines the power of ML predictions with
rigorous performance guarantees, they have been
extensively studied in the context of online opti-
mization problems. Even though ski rental prob-
lems are one of the canonical problems in the field
of online optimization, only deterministic algo-
rithms were previously known for multi-option
ski rental, with or without learning augmenta-
tion. We present the first randomized learning-
augmented algorithm for this problem, surpassing
previous performance guarantees given by deter-
ministic algorithms. Our learning-augmented al-
gorithm is based on a new, provably best-possible
randomized competitive algorithm for the prob-
lem. Our results are further complemented by
lower bounds for deterministic and randomized al-
gorithms, and computational experiments evaluat-
ing our algorithms’ performance improvements.

1. Introduction
A learning-augmented algorithm takes an ML prediction as
an added part of the input and incorporates this prediction
in solving the given problem. One major advantage of these
algorithms is that they can benefit from the powerful ML
predictions while yielding provable performance guaran-
tees at the same time. These guarantees often surpass those
given by classical algorithms without predictions, and they
are obtained with no assumptions on how the ML predic-

1Department of Computer Science, Yonsei University, Seoul,
South Korea. Correspondence to: Hyung-Chan An <hyung-
chan.an@yonsei.ac.kr>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

tions are generated, keeping their black-box natures. The
recent success of learning-augmented algorithms is particu-
larly remarkable in the field of online optimization, where
we are given the input in an online manner over multiple
timesteps and forced to make irrevocable decisions at each
timestep. It is not at all surprising that learning-augmented
algorithms are useful in this setting, because the challenge
in designing a classical competitive algorithm is usually
in avoiding the worst-case without any knowledge on the
future input, where ML predictions can serve as a substitute
for this knowledge. The success of learning-augmented al-
gorithms in online optimization is evidenced by the seminal
work of Lykouris and Vassilvitskii (2021) and subsequent
studies including (Kumar et al., 2018; Bamas et al., 2020;
Lattanzi et al., 2020) for example.

Ski rental problems are one of the canonical problems in
online optimization that have been extensively studied, with
or without learning augmentation. They succinctly capture
the key nature of online optimization, and many algorithmic
techniques in online optimization have been devised from
their studies. For learning-augmented algorithms as well, ski
rental problems naturally have been serving as an important
testbed (Kumar et al., 2018; Gollapudi & Panigrahi, 2019;
Bamas et al., 2020; Wei & Zhang, 2020).

Whilst the ski rental problem emerges in a variety of ap-
plications (Fleischer, 2001; Karlin et al., 2001; Meyerson,
2005), it is perhaps easiest to state it as a simple problem
of renting skis (hence the name) as follows. In the multi-
option ski rental problem, we are given a set of n renting
options: for i = 1, · · · , n, we have the option of renting
skis for di ∈ Z+ ∪ {∞} days at cost ci ∈ Q+. Let T be
the number of days we will go skiing, but it depends on,
say, the weather, so we do not know T in advance; we will
learn that a specific day was indeed the last day of skiing
only at the end of that day. The objective of this problem
is to ensure that we rent skis for the whole T days, while
minimizing the total renting cost. Traditionally, the rent-or-
buy case, where we only have two options (d1, c1) = (1, 1)
and (d2, c2) = (∞, B), was extensively studied, both under
the classical competitive analysis setting without learning
augmentation (Karlin et al., 1988; 1994; Buchbinder et al.,
2007) and the learning-augmented settings (Kumar et al.,

1

Improved Learning-Augmented Algorithms for the Multi-Option Ski Rental Problem via Best-Possible Competitive Analysis

2018; Gollapudi & Panigrahi, 2019; Angelopoulos et al.,
2020; Bamas et al., 2020; Banerjee, 2020; Wei & Zhang,
2020). The general multi-option problem has been also
studied in both settings (Zhang et al., 2011; Ai et al., 2014;
Wang et al., 2020; Anand et al., 2021).

In this paper, we present the first randomized learning-
augmented algorithm for the multi-option ski rental prob-
lem. Previously, Anand et al. (2021) gave a deterministic
learning-augmented algorithm for the same problem. The
performance guarantee of their algorithm is stated under the
standard consistency-robustness scheme: their algorithm is
(1+λ)-consistent and (5+5/λ)-robust, where λ is the trade-
off parameter (or the “level of confidence”) that dictates how
much the algorithm would “trust” or “ignore” the predic-
tion and determines the performance guarantees.1 Their
learning-augmented algorithm was obtained by modifying
their classical competitive algorithm to use the given ML
prediction (Anand et al., 2021); hence, in order to attain
an improved learning-augmented algorithm, it is natural
to delve in devising a more competitive algorithm for the
classical problem.

Section 3 is a warm-up where we first consider determin-
istic algorithms. We present a competitive algorithm with-
out learning augmentation in Section 3.1, which is very
similar to Anand et al.’s algorithm and even has the same
competitive ratio. We nonetheless present this algorithm
as the subtle difference turns out to be useful in obtaining
the improved learning-augmented algorithm presented in
Section 3.2. To obtain this improvement, we allow our
learning-augmented algorithm to “ignore” the prediction.
The previous algorithm (Anand et al., 2021) internally com-
putes the optimal solution assuming the (scaled) prediction
is accurate, and insists on including this in the algorithm’s
output as a means of guaranteeing the consistency. On the
other hand, our algorithm is capable of choosing not to do
so when the trade-off parameter says the ML prediction is
not too reliable. While this may sound natural, it is a new
characteristic of our algorithm that leads to the improvement
in the performance trade-off. This characteristic is shared
also by our randomized learning-augmented algorithm.

In Section 4, we show how randomization can improve our
algorithms. Section 4.1 presents an e-competitive algorithm
for the multi-option ski rental problem. In the doubling
scheme employed by Anand et al. (2021), one can adver-
sarially construct a malicious instance by calculating the
doubling budgets the algorithm will use. We can prevent the
adversary from this exploitation by randomizing the budgets;

1Intuitively speaking, consistency is a performance guarantee
that is valid only when the ML prediction is accurate, whereas
robustness is always valid. Both are measured as a worst-case ratio
of the algorithm’s output to the true optimum with hindsight; see
Section 2 for the formal definitions.

1 2 3 4
Consistency

1

3

5

7

9

11

13

15

Ro
bu

st
ne

ss

Our det alg (Theorem 3.2)
Anand et al.'s alg (2021)
LB of det learn-aug algs (Theorem 5.5)
LB of det learn-aug algs (Anand et al., 2021)
LB of det comp algs (Zhang et al., 2011)

Our rand alg (Theorem 4.2)
LB of rand comp algs (Theorem 5.3)

Figure 1. The consistency-robustness trade-off of learning-
augmented algorithms.

our algorithm reveals that only a small amount of random-
ness suffices to obtain an e-competitive algorithm, which is
provably the best possible (cf. Section 5.2). In Section 4.2,
we base on this e-competitive algorithm to improve the per-
formance trade-off of our learning-augmented algorithm.
Our learning-augmented algorithm is χ(λ)-consistent and
(eλ/λ)-robust, where

χ(λ) :=

{
1 + λ, if λ < 1

e ,

(e+ 1)λ− lnλ− 1, if λ ≥ 1
e ,

improving over the previous algorithms.

The parameter λ here governs the trade-off between the
enhancement in the algorithm’s performance when the pre-
diction is accurate and the minimum performance guarantee
independent of the prediction. For example, if we are will-
ing to tolerate (in the unfortunate case when the prediction is
inaccurate) a solution with a cost (in expectation) nearly five
times higher than the optimum, we can set λ = 0.26 so that
we can obtain solutions whose costs are no more than 26%
worse than the optimum when the prediction is accurate. Fig-
ure 1 depicts the trade-off presented by learning-augmented
algorithms.

In Section 5, we present lower bounds. We first propose
an auxiliary problem called the button problem that is more
amenable to lower-bound arguments, which we then reduce
to the multi-option ski rental problem. In Section 5.2, we
show that our algorithm in Section 4.1 is the best possible:
i.e., for all constant ρ < e, there does not exist a randomized
ρ-competitive algorithm for the multi-option ski rental prob-
lem. To prove this, we carefully formulate a linear program
(LP) that bounds the competitive ratio of any randomized

2

Improved Learning-Augmented Algorithms for the Multi-Option Ski Rental Problem via Best-Possible Competitive Analysis

algorithms for a given instance. We then obtain the desired
lower bound by analytically constructing feasible solutions
to the dual of this LP. Section 5.3 then begins with showing
a lower bound of 4 on the competitive ratio of deterministic
algorithms. Although Zhang et al. (2011) already gives the
same lower bound of 4, we still present this proof to extend
it into a lower bound for deterministic learning-augmented
algorithms in Section 5.3.

Lastly, in Section 6, we experimentally evaluate the per-
formance of our learning-augmented algorithms. We con-
duct computational experiments to measure the performance
of our algorithms under a similar setting to (Kumar et al.,
2018), to demonstrate the performance improvements our
algorithms bring.

Related Work Recently, learning-augmented algorithms
have been studied for a broad range of traditional optimiza-
tion problems. Many studies introduce ML predictions
to online optimization problems in particular, including
caching (Rohatgi, 2020; Lykouris & Vassilvitskii, 2021; Im
et al., 2022), matching (Antoniadis et al., 2020b; Lavastida
et al., 2021), and graph/metric problems (Antoniadis et al.,
2020a; Azar et al., 2022; Jiang et al., 2022) for example. We
refer interested readers to the survey of Mitzenmacher and
Vassilvitskii (2022) for a more thorough review.

Being a traditional online optimization problem itself, the
ski rental problem is no exception and is widely studied.
Karlin et al. (1994) presented a randomized (e/(e − 1))-
competitive algorithm for the rent-or-buy problem, which is
the best possible. Zhang et al. (2011) presented a determin-
istic 4-competitive algorithm for the multi-option ski rental
problem under the decreasing marginal cost assumption.
The problem has also been studied in a variety of settings,
including the multi-shop ski rental problem (Ai et al., 2014),
the Banchard problem (Fleischer, 2001), the dynamic TCP
acknowledgement problem (Karlin et al., 2001), and the
parking permit problem (Meyerson, 2005) for example.

2. Preliminaries
In the multi-option ski rental problem without learning aug-
mentation, we are given a set of n renting options: each
option i covers di ∈ Z+ ∪ {∞} days at cost ci ∈ Q+. A
solution to this problem is a sequence of options. In this
problem, at the beginning of each skiing day, if the day is not
yet covered by our solution, we must choose an option and
add it to the “current” output solution. Let T be the (finite)
number of skiing days, which is revealed only at the end of
day T . The goal of the problem is to cover these T days
by a solution of minimum cost. We say an algorithm is γ-
competitive if E[SOL] ≤ γ ·OPT(T), where SOL denotes
the cost of the algorithm’s output and OPT(T) denotes
the cost of an optimal solution that covers T days. Note

that OPT(T) is the offline optimal cost with the omniscient
knowledge of the number of skiing days T .

In the learning-augmented multi-option ski rental problem,
we are additionally given a prediction T̂ on the number of
skiing days T . The performance of a learning-augmented al-
gorithm is measured by the standard consistency-robustness
analysis. That is, we say that an algorithm is χ-consistent
if the algorithm satisfies E[SOL] ≤ χ ·OPT(T) when the
prediction is accurate (i.e., T = T̂), and the algorithm is
ρ-robust if E[SOL] ≤ ρ ·OPT(T) for all T regardless how
accurate the prediction T̂ is.

Given two solutions S1 and S2, we say that we append S2

to S1 when we add the options in S2 to the end of S1. For
example, if S1 is to choose option 1 and S2 is to choose
option 2, option 3, and option 3, adding S2 to S1 yields
a solution that chooses option 1, option 2, option 3, and
option 3.

For each t ∈ Z+, let O(t) be a minimum-cost solution that
covers (at least) t days. Ties are broken arbitrarily. Recall
that OPT(t) denotes the cost of O(t). We will assume that
OPT(1) ≥ 1 without loss of generality: otherwise, we can
divide the cost of every option by OPT(1). In this paper,
algorithms operate by repeatedly appending an optimal solu-
tion O(t) for some t to the “current” solution. Note that this
O(t) can be computed for any t without knowing the true
number of skiing days T : a standard dynamic programming
technique can be used to obtain O(t).

3. Deterministic Algorithms
In this section, we present our deterministic algorithms
for the multi-option ski rental problem. We begin with a
4-competitive algorithm in Section 3.1. Although this algo-
rithm is very similar to Anand et al.’s algorithm (2021), we
still present our algorithm here because it leads to an im-
proved learning-augmented algorithm, as will be presented
in Section 3.2.

For simplicity of presentation, we will describe the algo-
rithm’s execution as if it never terminates, or in other words,
there always comes another new skiing day; however, the
actual algorithm is to terminate as soon as it learns that the
last day has been reached.

For any j ≥ 1, let B(j) be a solution covering the most
number of days among those whose cost does not exceed
j, i.e., B(j) := O(t⋆), where t⋆ := max{t ∈ Z+ ∪ {∞} |
OPT(t) ≤ j}. In other words, B(j) is the “best” thing to
do within a budget of j.

3

Improved Learning-Augmented Algorithms for the Multi-Option Ski Rental Problem via Best-Possible Competitive Analysis

3.1. Competitive Algorithm

The algorithm runs in several iterations. For each iteration i
(for i = 1, 2, · · ·), let SOLi be the total (starting from the
very first iteration) cost of our solution at the end of the
i-th iteration. In the first iteration, we append O(1) to our
solution. We thus have SOL1 := OPT(1). Let τ1 := 1. In
each later iteration i ≥ 2, we append B(SOLi−1) to our
solution. Let τi be the number of days newly covered in
iteration i, or in other words, the number of days covered
by B(SOLi−1). Remark that, if B(SOLi−1) includes a buy
option (i.e., an option j with dj = ∞), τi becomes ∞ and
no further iterations exist.

We note that the difference from Anand et al.’s algo-
rithm (2021) is the fact that we append B(SOLi−1) instead
of B(2OPT(τi−1)) at each iteration i, as is inspired by
Zhang et al. (2011).

Theorem 3.1. This algorithm is 4-competitive.

The proof of the theorem is deferred to Appendix A.

3.2. Learning-Augmented Algorithm

In this subsection, we describe our deterministic learning-
augmented algorithm. We are given the prediction T̂ on
T and the level of confidence λ ∈ [0, 1]. The algorithm
consists of (at most) three phases as follows.

First Ignore Phase We enter this phase at the very begin-
ning if OPT(1) ≤ λOPT(T̂). Otherwise, we directly enter
the respect phase. In this phase, we simply run the previous
4-competitive algorithm. Let i⋆ be the first iteration where
the total cost incurred by the competitive algorithm exceeds
λOPT(T̂), i.e.,

SOLi⋆−1 ≤ λOPT(T̂) < SOLi⋆ . (1)

Note that there always exists such i⋆ ≥ 2 since we enter this
phase only if OPT(1) ≤ λOPT(T̂). After processing the
iteration i⋆, we move on to the respect phase or the second
ignore phase depending on SOLi⋆ . If SOLi⋆ ≤ OPT(T̂),
we enter the respect phase; otherwise, we enter the second
ignore phase.

Respect Phase Intuitively, this phase is where the algo-
rithm respects the prediction. In this phase, we append
O(T̂) and then move on to the second ignore phase.

Second Ignore Phase In this phase, we run the 4-
competitive algorithm with a slight modification as follows.

First, let SOL′
0 be the total price incurred so far. There-

fore, if the preceding phase was the respect phase, we have
SOL′

0 := SOLi⋆ +OPT(T̂) (or SOL′
0 := OPT(T̂) if the

first ignore phase was skipped). On the other hand, if

the preceding phase was the first ignore phase, we have
SOL′

0 := SOLi⋆ .

We then choose τ ′0 so that it becomes a lower bound on the
number of days covered so far. If the preceding phase was
the respect phase, we choose τ ′0 := T̂ . If the immediately
preceding phase was the first ignore phase, we choose τ ′0 :=
τi⋆ .

Now, for each iteration i ≥ 1, we append B(SOL′
i−1) into

our solution and let τ ′i be the number of days covered by
B(SOL′

i−1). This is the end of the algorithm description.

Following is the main theorem for this learning-augmented
algorithm. We defer the proof to Appendix A.

Theorem 3.2. The algorithm is a deterministic max{1 +
2λ, 4λ}-consistent

(
2 + 2

λ

)
-robust algorithm.

4. Randomized Algorithms
In this section, we give randomized algorithms for the multi-
option ski rental problem. We present our e-competitive
algorithm first and then our learning-augmented algorithm
which is, for any given λ ∈ [0, 1], χ(λ)-consistent and
(eλ/λ)-robust, where

χ(λ) :=

{
1 + λ, if λ < 1

e ,

(e+ 1)λ− lnλ− 1, if λ ≥ 1
e .

As in the previous section, we will describe the algorithm’s
execution as if it never terminates. Recall also that, for any
j ≥ 1, B(j) denotes a solution covering the most number
of days among those whose cost does not exceed j. If
j < OPT(1), let B(j) := ∅ be an empty solution.

4.1. Competitive Algorithm

The algorithm begins with sampling α ∈ [1, e) from a distri-
bution whose probability density function is f(α) := 1/α.
The algorithm then runs in phases: in phase i (for i =
0, 1, · · ·), we append B(αei) to our current solution.

Theorem 4.1. The given algorithm is a randomized e-
competitive algorithm.

The proof of this theorem is deferred to Appendix B.1.

4.2. Learning-Augmented Algorithm

Now we present our randomized learning-augmented algo-
rithm. Recall that we are given a prediction T̂ and the level
of confidence λ ∈ [0, 1].

Assumptions We need several assumptions to describe
the algorithm. First, let us assume that OPT(T̂) = ek

for some integer k. This assumption is without loss of
generality since, if we have ek−1 < OPT(T̂) < ek, we

4

Improved Learning-Augmented Algorithms for the Multi-Option Ski Rental Problem via Best-Possible Competitive Analysis

may multiply the cost of every option by ek

OPT(T̂)
. We

also assume λ ∈ (0, 1); we will consider the cases for
λ ∈ {0, 1} at the end of this section. Finally, let us assume
that λOPT(T̂) ≥ e. Observe that we can easily insist this
assumption by multiplying the cost of every option by an
appropriate power of e.

In what follows, we may write λ := e−q−r for some q ∈
{0, 1, 2, · · · , k − 1} and r ∈ (0, 1]. Here we note the range
of r: it is strictly positive. For example, if λ = e−i for some
integer i, we regard this λ as of q = i− 1 and r = 1.

Algorithm Description Let A be the algorithm presented
in Section 4.1. We run A and run the same phases as A. On
each phase i, we append the same solution as A with one
following exception: If αei ∈ [λOPT(T̂),OPT(T̂)) =

[ek−q−r, ek), we append O(T̂) instead of B(αei) at this
phase. If O(T̂) has already been appended in a previous
phase, we simply do nothing instead of appending it once
more.
Theorem 4.2. For λ ∈ (0, 1), this algorithm is χ(λ)-
consistent and (eλ/λ)-robust, where χ is defined as follows:

χ(λ) :=

{
1 + λ, if λ < 1

e ,

(e+ 1)λ− lnλ− 1, if λ ≥ 1
e .

Consistency Analysis Let us begin with showing that our
algorithm is χ(λ)-consistent. Let SOL be the total cost
that our algorithm incurs until the end. For each phase i =
0, 1, · · · , k − q − 2, the algorithm appends B(αei) as the
same as A. Therefore, up to phase (k−q−2), our algorithm
also incurs in expectation at most∫ e

1

(
k−q−2∑
i=0

αei

)
f(α)dα ≤ ek−q−1. (2)

Let us assume for now that λ < e−1, i.e., q ≥ 1. Suppose
the algorithm enters phase (k − q − 1). If αek−q−1 ≥
ek−q−r (or simply α ≥ e1−r), the algorithm appends O(T̂)
and terminates then. Otherwise if α < e1−r, the algorithm
appends B(αek−q−1) and may proceed to the next phase. In
phase (k − q), the algorithm appends O(T̂) and terminates
since αek−q ∈ [ek−q−r, ek). Together with Equation (2),
the total expected cost of our algorithm can be bounded by

E[SOL] ≤ ek−q−1 +

∫ e1−r

1

αek−q−1f(α)dα+ ek

≤ ek−q−r + ek (3)

= (1 + λ) ·OPT(T̂).

We now turn to the case where λ ≤ e−1, i.e., q = 0. Here
we have one distinction from the previous case; when the al-
gorithm enters phase (k−1), if α < e1−r, the algorithm not

only appends B(αek−1), but may also proceed to phase k

and append B(αek) since αek ≥ OPT(T̂). Therefore,
again by Equation (2),

E[SOL] ≤ ek−1 +

∫ e1−r

1

(αek−1 + αek)f(α)dα

+

∫ e

e1−r

ekf(α)dα

≤ ek+1−r + ek−r + ek(r − 1) (4)

= ((e+ 1)λ− lnλ− 1)OPT(T̂),

where the last equality holds since λ = e−r.

Robustness Analysis Let us now show that our algorithm
is (eλ/λ)-robust. Here we break down into several cases as
follows depending on OPT(T).

Case 1. OPT(T) < ek−q−2. Note that, in this case,
the algorithm executes the same as A, yielding E[SOL] ≤
eOPT(T) by Theorem 4.1.

Case 2. ek−q−2 ≤ OPT(T) < ek−q−1. Let OPT(T) =
βek−q−2 for some β ∈ [1, e). Observe that, up to phase (k−
q − 2), the algorithm appends the same solution as A. If
α ≥ β in A, the algorithm terminates at phase (k − q − 2).
Otherwise, the algorithm may proceed to phase (k− q− 1).

Suppose β < e1−r. Observe that, if the algorithm enters
phase (k−q−1), we have αek−q−1 < λOPT(T̂), implying
that the algorithm executes the same as A. We thus have
E[SOL] ≤ eOPT(T) again by Theorem 4.1.

Let us now assume that β ≥ e1−r. Observe that, no matter
whether q ≥ 1 or q = 0, if α < e1−r, the algorithm appends
B(αek−q−1) by following A and terminates; otherwise if
e1−r ≤ α < β, the algorithm appends O(T̂) and terminates.
We therefore have

E[SOL] ≤
∫ e

1

(
k−q−2∑
i=0

αei

)
f(α)dα

+

∫ e1−r

1

αek−q−1f(α)dα

+

∫ β

e1−r

ekf(α)dα

=
(
ek−q−1 − 1

)
+ (e1−r − 1)ek−q−1

+ (lnβ + r − 1)ek

≤ ek−q−r + (lnβ + r − 1)ek.

Now we can upper bound the robustness ratio for this case

5

Improved Learning-Augmented Algorithms for the Multi-Option Ski Rental Problem via Best-Possible Competitive Analysis

as follows:

E[SOL]

OPT(T)
≤ ek−q−r + (lnβ + r − 1)ek

βek−q−2

=
e2−r

β
+

(lnβ + r − 1)eq+2

β

=
e2−r

β
+

(lnβ + r − 1)e2−r

λβ
,

where the last equality comes from the definition of λ =
e−q−r. The following claim completes the proof for this
case.

Claim 4.3. We have h(β) := e2−r

β + (ln β+r−1)e2−r

λβ ≤ eλ

λ
for every β > 0.

The claim can be shown by a simple calculus, which is
deferred to Appendix B.2.

Case 3. ek−q−1 ≤ OPT(T) < λOPT(T̂) = ek−q−r.
Let OPT(T) = βek−q−1 for some β ∈ [1, e1−r). Let us
assume for now that q ≥ 1. Note that the execution of our
algorithm can be described as the following steps.

(a) For each phase i = 0, 1, · · · , k − q − 2, the algorithm
appends the same solution as A.

(b) On phase (k − q − 1), if α < e1−r, the algorithm
follows A by appending B(αek−q−1). Otherwise, the
algorithm appends O(T̂). If α ≥ β, the algorithm
immediately terminates then.

(c) If α < β < e1−r, the algorithm enters phase (k − q)

and appends O(T̂) since αek−q ∈ [ek−q−r, ek) for
q ≥ 1. The algorithm then terminates.

From this description, we can bound the total expected cost
incurred by the algorithm as follows:

E[SOL] ≤
∫ e

1

k−q−2∑
i=0

αeif(α)dα+

∫ e1−r

1

αek−q−1f(α)dα

+

∫ e

e1−r

ekf(α)dα+

∫ β

1

ekf(α)dα

≤ ek−q−r + ek · (lnβ + r),

yielding that the robustness ratio for this case can be
bounded from above by

ek−q−r + ek · (lnβ + r)

β · ek−q−1
=

e1−r

β
+

e1−r(lnβ + r)

λβ
,

where the equality holds since λ = e−q−r by definition. We
claim that the right-hand side can be further bounded by eλ

λ ,
completing the proof for this case. The proof for this claim
can be found in Appendix B.2.

Claim 4.4. We have h(β) := e1−r

β + e1−r(ln β+r)
λβ ≤ eλ

λ for
every β > 0.

Now we turn to the case where q = 0, i.e., OPT(T) = β ·
ek−1 and λ = e−r. Observe that there exists one difference
on the execution from that of the case where q ≥ 1; in Step
(c), the algorithm appends B(α · ek) instead of OPT(T̂)
since the algorithm now enters phase k and hence α · ek ̸∈
[ek−q−r, ek). Note that the total expected price for this case
can be bounded by

E[SOL] ≤
∫ e

1

k−2∑
i=0

αeif(α)dα+

∫ e1−r

1

αek−1f(α)dα

+

∫ e

e1−r

ekf(α)dα+

∫ β

1

α · ekf(α)dα

≤ ek−r + ek · (β + r − 1),

resulting in the following upper bound for the robustness
ratio for this case:

ek−r + ek · (β + r − 1)

β · ek−1
= e·

(
1 +

λ+ r − 1

β

)
≤ e·(λ+r),

where the inequality can be derived from the fact that β ≥
1. The following claim completes the proof for this case.
Recall that λ = e−r, and hence r = − lnλ, for this case.

Claim 4.5. We have e(x− lnx) ≤ ex

x for every x > 0.

We defer the proof of this claim to Appendix B.2.

It remains to show the cases where OPT(T) ≥ λOPT(T̂).
We again defer the proof for these remaining cases to Ap-
pendix B.2.

Final Remark In our analysis, we assume that λ ∈ (0, 1).
However, we can see that Theorem 4.2 still holds when λ =
0 or λ = 1. In fact, if λ = 0, this algorithm may correspond
to appending O(T̂) at the very beginning. Observe that this
is 1-consistent, yet ∞-robust. On the other hand, if λ = 1,
the algorithm is exactly the same as A itself, implying that
the algorithm is e-consistent and e-robust.

5. Lower Bounds
In this section, we present lower bounds for the multi-option
ski rental problem.

5.1. Auxiliary Problem

We define an auxiliary problem which we call the button
problem. In this problem, we are given an ordered list of m
buttons where some buttons are designated as targets. We
know that the “targetness” of the buttons is monotone, i.e.,
there exists some J ≤ m such that buttons 1 to (J − 1) are
not targets, but buttons J to m are all targets. However, we

6

Improved Learning-Augmented Algorithms for the Multi-Option Ski Rental Problem via Best-Possible Competitive Analysis

do not know in advance the first target button (i.e., button
J). To sense whether button j is a target, we must click it
paying bj ∈ Q+ as the price; we then learn whether this
button is a target or not. The prices of the buttons are all
given at the beginning. We also assume that the prices are
nondecreasing, i.e., b1 ≤ b2 ≤ · · · ≤ bm. The algorithm
clicks buttons until it clicks a target button, and the natural
objective is to minimize the total price.

We say that an algorithm for the button problem is γ-
competitive if E[SOL] ≤ γ · bJ , where SOL is the total
price that the algorithm incurs until it clicks a target button.
In the learning-augmented version of the problem, the algo-
rithm is given a prediction Ĵ on the first target button J . We
say that an algorithm for the button problem is χ-consistent
if E[SOL] ≤ χ · bĴ when the prediction is accurate (i.e.,
Ĵ = J), and the algorithm is ρ-robust if E[SOL] ≤ ρ · bJ
for all J regardless how accurate the prediction Ĵ is.

Lemma 5.1 states that a lower bound for the button problem
immediately extends to give (almost) the same lower bound
for the multi-option ski rental problem.
Lemma 5.1. Suppose there exists a randomized χ-
consistent ρ-robust algorithm for the multi-option ski rental
problem with 1 ≤ χ ≤ ρ. Then, for all constant ε ∈ (0, 1),
there exists a randomized (χ+ ε)-consistent (ρ+ ε)-robust
algorithm for the button problem.

Let us present the reduction algorithm from the multi-option
ski rental problem to the button problem. Let A be the
χ-consistent ρ-robust algorithm for the multi-option ski
rental problem. Without loss of generality, we can assume
that the prices {bj}j=1,··· ,m are all integers; otherwise, we
enforce this assumption by simply multiplying the prices by
a common denominator. We thus have b1 ≥ 1.

Consider the following algorithm for the button problem.
Let C := ⌈ρ/ε⌉ · bm. Note that C ≥ 2. The algorithm
constructs an instance for the ski rental problem as follows.
Let the number of rental options n be bm; set (di, ci) :=

(Ci, i) for i = 1, · · · , n, and T̂ := CbĴ . The algorithm
internally runs A on this constructed instance. Whenever
A chooses an option, say, option i, we click the last button
whose cost does not exceed ci = i. (If there does not exist
such a button, we do nothing.) If the clicked button turns
out to be a target button, we report to A that the last skiing
day has been reached and terminate the whole algorithm.

However, we might never be able to click a target button
with only this procedure since A may choose only “cheap”
options. In order to ensure that the algorithm always termi-
nates, we add the following condition. Once the total cost
incurred by A so far becomes at least C, we click the last
button m and terminate. We say the algorithm is forced to
terminate in this case. Let SOL be the cost incurred by the
constructed algorithm. Note that SOL is no greater than

the cost incurred by A unless the constructed algorithm is
forced to terminate. This is the end of the reduction from
the multi-option ski rental problem to the button problem.

The proof of Lemma 5.1 then follows from the next lemma.
We defer its proof to Appendix C.1

Lemma 5.2. This reduction algorithm is a randomized
(χ+ ε)-consistent (ρ+ ε)-robust algorithm for the button
problem.

5.2. Competitive Ratio of Randomized Algorithms

For randomized algorithms, we obtain the following lower
bound on the competitive ratio. Together with Theorem 4.1,
this shows that the algorithm presented in Section 4.1 is
indeed the best possible.

Theorem 5.3. For all constant ε > 0, no randomized algo-
rithm can achieve a competitive ratio of e− ε.

Here we give a proof sketch of this theorem. For any in-
stance {bj}j=1,··· ,m, we can formulate the following LP
whose value constitutes a lower bound on the competitive
ratio for any randomized algorithm for the button problem.

min γ

s.t.
∑m

j=1 xj = 1,∑m
j=t+1 yt,j = xt +

∑t−1
j=1 yj,t,

∀t = 1, · · · ,m− 1∑m
j=1 bj ·

(
xj +

∑min(J,j)−1
t=1 yt,j

)
≤ γ · bJ ,

∀J = 1, · · · ,m,

xj ≥ 0, ∀j = 1, · · · ,m,

yt,j ≥ 0, ∀t = 1, · · · ,m− 1,∀j = t+ 1, · · · ,m.

Next, we carefully construct a family of instances and obtain
the dual of this LP with respect to this family. We then
analytically identify a dual feasible solution whose value
converges to (e − ε). We can then complete the proof of
Theorem 5.3 by the weak duality. The full proof can be
found in Appendix C.2.

5.3. Trade-off Between Consistency and Robustness of
Deterministic Algorithms

For deterministic algorithms, we consider a variant of the
regular button problem, called the (K,β)-continuum button
problem, where the buttons are given as a continuum on
[1,m] with a price function b : [1,m] → R+ satisfying that
b is a nondecreasing K-Lipschitz continuous function and
b(1) = β > 0. The following lemma justifies that we can
instead consider this variant to obtain a trade-off between
consistency and robustness.

7

Improved Learning-Augmented Algorithms for the Multi-Option Ski Rental Problem via Best-Possible Competitive Analysis

0 10 20 30 40 50
1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35
av

er
ag

e
co

m
pe

tit
iv

e
ra

tio

Our-Det (=0.1)
Our-Det (=0.3)
Our-Det (=0.5)
Our-Det (=0.7)

Our-Rand (=0.1)
Our-Rand (=0.3)
Our-Rand (=0.5)
Our-Rand (=0.7)

Anand et al. (=0.1)
Anand et al. (=0.3)
Anand et al. (=0.5)
Anand et al. (=0.7)

Figure 2. Average competitive ratio achieved by Our-Det (dashed line), Our-Rand (solid line), and Anand et al. (dotted line) are shown
as a function of σ. Different colors/markers correspond to different values of the trade-off parameter λ.

Lemma 5.4. Let f : (0, 1) → R+ be a continuous function.
Suppose that, for all ε > 0 and λ ∈ (0, 1), the robustness
of any deterministic (1 + λ)-consistent algorithm for the
(K,β)-continuum button problem must be strictly greater
than f(λ) − ε. Then, for all ε > 0 and λ ∈ (0, 1), the
robustness of any deterministic (1+λ)-consistent algorithm
for the regular button problem must also be strictly greater
than f(λ)− ε.

We first show that no deterministic algorithm for the contin-
uum button problem can achieve a competitive ratio better
than 4; the proof of this statement can be found in Ap-
pendix C.3.1. Indeed, Zhang et al. (2011) provided the same
lower bound on the competitive ratio of deterministic algo-
rithms, but we still present our proof since it is useful in
obtaining the following trade-off between consistency and
robustness for deterministic learning-augmented algorithms.

Theorem 5.5. For all constants λ ∈ (0, 1) and ε > 0, the
robustness of any deterministic (1+λ)-consistent algorithm
must be greater than 2 + λ+ 1/λ− ε.

The full proof of this theorem is deferred to Ap-
pendix C.3.2.

6. Computational Evaluation
Experiment Setup In this section, we computation-
ally measure how the average competitive ratios of three
learning-augmented algorithms—our deterministic algo-

rithm from Section 3.2 (Our-Det), our randomized algo-
rithm from Section 4.2 (Our-Rand), and Anand et al.’s
algorithm (Anand et al.)—behave as the prediction T̂ drifts
away from T . For the rent-or-buy (i.e., two-option) ski rental
problem, Kumar et al. (2018) measured the competitive ratio
of their algorithm by adding to T a Gaussian error in order
to obtain prediction T̂ . They adjust the standard deviation
of the Gaussian distribution to let T̂ drift away from T , and
conduct experiments for different values of the trade-off pa-
rameter λ. Our experiments are organized in a similar way:
we measure each combination of λ ∈ {0.1, 0.3, 0.5, 0.7}
and σ ∈ {0, 1, · · · , 50} for all three algorithms; the average
competitive ratio of each combination is plotted in Figure 2.

For a fixed (λ, σ), we generate 10, 000 independent random
instances. Unlike Kumar et al. (2018), our experiments need
multiple renting options. The rental period and cost of each
option is randomly generated; the number of skiing days
T is randomly chosen with taking the maximum range of
rental period dmax into consideration; the prediction error η
is sampled from N(0, σ), with the appropriate clipping and
rounding operations2.

2The number of renting options is set as n := 15 We sample
n numbers from {1, 2, · · · , dmax := 50} uniformly at random
without replacements; let d1, · · · , dn be the sampled numbers,
ordered so that d1 < · · · < dn. We next sample n values from
(0, 1) uniformly at random independently; let r1, · · · , rn be the
sampled values such that r1 ≤ · · · ≤ rn. We could have just
define ci := ri · di for all i but this can cause cj > cj−1 for
some j which makes option 1 to option j − 1 useless. In order

8

Improved Learning-Augmented Algorithms for the Multi-Option Ski Rental Problem via Best-Possible Competitive Analysis

Discussion As can be seen from Figure 2, Our-Rand gen-
erally outperforms the other two deterministic algorithms.
In particular, when σ is small, Our-Rand performs much
better than the other two. When λ = 0.7, the plotted lines
start to look more “flat”, showing that the behavior of all
three algorithms are less affected by the prediction T̂ . On
the other hand, the impact of good predictions was much
more dramatic when λ = 0.1. An interesting observation
is that Our-Det performs slightly worse than Anand et al.
We believe that this is because Anand et al. tends to be
more aggressive in using longer rental options compared to
Our-Det.

Acknowledgements
The authors would like to thank the anonymous review-
ers for their helpful comments. This work was partly
supported by Institute of Information & communications
Technology Planning & Evaluation (IITP) grant funded by
the Korea government (MSIT) (No. 2021-0-02068, Arti-
ficial Intelligence Innovation Hub). This work was sup-
ported by the National Research Foundation of Korea
(NRF) grant funded by the Korea government (MSIT) (No.
2022R1H1A209312211). This research was supported by
the Yonsei Signature Research Cluster Program of 2023
(2023-22-0008). Part of this work was done while the au-
thors were visiting Cornell University.

References
Ai, L., Wu, X., Huang, L., Huang, L., Tang, P., and Li, J.

The multi-shop ski rental problem. In The 2014 ACM In-
ternational Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS), pp. 463–475, 2014.

Anand, K., Ge, R., Kumar, A., and Panigrahi, D. A regres-
sion approach to learning-augmented online algorithms.
In Advances in Neural Information Processing Systems
(NeurIPS), volume 34, pp. 30504–30517, 2021.

Angelopoulos, S., Dürr, C., Jin, S., Kamali, S., and Renault,
M. P. Online computation with untrusted advice. In 11th
Innovations in Theoretical Computer Science Conference
(ITCS), volume 151, pp. 52:1–52:15. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020.

Antoniadis, A., Coester, C., Elias, M., Polak, A., and Simon,

to prevent this situation, we inductively construct c1, · · · , cn as
follows. Let c1 := r1 · d1. For i = 2, · · · , n, if ri · di < ci−1,
we multiply ri, · · · , rn by ci−1

ri·di
and add a small constant 10−4;

otherwise, we do nothing. We then set ci := ri · di. This ensures
that both {di}i=1,··· ,n and {ci}i=1,··· ,n are nondecreasing. Let
{(di, ci)}i=1,··· ,n be the set of renting options. The number of
skiing days T is sampled from {1, · · · , 10 · dmax} uniformly at
random. Lastly, we sample error η ∼ N(0, σ) and let T̂ :=
max{⌊T + η⌉, 1} be the prediction on T .

B. Online metric algorithms with untrusted predictions. In
International Conference on Machine Learning (ICML),
pp. 345–355. PMLR, 2020a.

Antoniadis, A., Gouleakis, T., Kleer, P., and Kolev, P. Secre-
tary and online matching problems with machine learned
advice. In Advances in Neural Information Processing
Systems (NeurIPS), volume 33, pp. 7933–7944, 2020b.

Azar, Y., Panigrahi, D., and Touitou, N. Online graph
algorithms with predictions. In Proceedings of the 2022
Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 35–66. SIAM, 2022.

Bamas, E., Maggiori, A., and Svensson, O. The primal-dual
method for learning augmented algorithms. In Advances
in Neural Information Processing Systems (NeurIPS),
volume 33, pp. 20083–20094, 2020.

Banerjee, S. Improving online rent-or-buy algorithms
with sequential decision making and ML predictions.
In Advances in Neural Information Processing Systems
(NeurIPS), volume 33, pp. 21072–21080, 2020.

Buchbinder, N., Jain, K., and Naor, J. Online primal-dual
algorithms for maximizing ad-auctions revenue. In 15th
Annual European Symposium on Algorithms (ESA), pp.
253–264. Springer, 2007.

Fleischer, R. On the Bahncard problem. Theoretical Com-
puter Science, 268(1):161–174, 2001.

Gollapudi, S. and Panigrahi, D. Online algorithms for rent-
or-buy with expert advice. In International Conference
on Machine Learning (ICML), pp. 2319–2327. PMLR,
2019.

Im, S., Kumar, R., Petety, A., and Purohit, M. Parsimonious
learning-augmented caching. In International Conference
on Machine Learning (ICML), pp. 9588–9601. PMLR,
2022.

Jiang, S. H., Liu, E., Lyu, Y., Tang, Z. G., and Zhang, Y.
Online facility location with predictions. In The Tenth
International Conference on Learning Representations
(ICLR), 2022.

Karlin, A. R., Manasse, M. S., Rudolph, L., and Sleator,
D. D. Competitive snoopy caching. Algorithmica, 3:
79–119, 1988.

Karlin, A. R., Manasse, M. S., McGeoch, L. A., and Owicki,
S. Competitive randomized algorithms for nonuniform
problems. Algorithmica, 11(6):542–571, 1994.

Karlin, A. R., Kenyon, C., and Randall, D. Dynamic TCP
acknowledgement and other stories about e/(e− 1). In
Proceedings of the 33rd Annual ACM Symposium on
Theory of Computing (STOC), pp. 502–509, 2001.

9

Improved Learning-Augmented Algorithms for the Multi-Option Ski Rental Problem via Best-Possible Competitive Analysis

Kumar, R., Purohit, M., and Svitkina, Z. Improving online
algorithms via ML predictions. In Advances in Neural
Information Processing Systems (NeurIPS), volume 31,
2018.

Lattanzi, S., Lavastida, T., Moseley, B., and Vassilvitskii, S.
Online scheduling via learned weights. In Proceedings
of the 2020 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 1859–1877. SIAM, 2020.

Lavastida, T., Moseley, B., Ravi, R., and Xu, C. Learn-
able and instance-robust predictions for online match-
ing, flows and load balancing. In 29th Annual Euro-
pean Symposium on Algorithms (ESA), volume 204, pp.
59:1–59:17. Schloss Dagstuhl - Leibniz-Zentrum für In-
formatik, 2021.

Lykouris, T. and Vassilvitskii, S. Competitive caching with
machine learned advice. Journal of the ACM (JACM), 68
(4):1–25, 2021.

Meyerson, A. The parking permit problem. In 46th Annual
IEEE Symposium on Foundations of Computer Science
(FOCS), pp. 274–282. IEEE, 2005.

Mitzenmacher, M. and Vassilvitskii, S. Algorithms with
predictions. Communications of the ACM, 65(7):33–35,
2022.

Rohatgi, D. Near-optimal bounds for online caching with
machine learned advice. In Proceedings of the 2020
Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 1834–1845. SIAM, 2020.

Wang, S., Li, J., and Wang, S. Online algorithms for multi-
shop ski rental with machine learned advice. In Advances
in Neural Information Processing Systems (NeurIPS),
volume 33, pp. 8150–8160, 2020.

Wei, A. and Zhang, F. Optimal robustness-consistency
trade-offs for learning-augmented online algorithms. In
Advances in Neural Information Processing Systems
(NeurIPS), volume 33, pp. 8042–8053, 2020.

Zhang, G., Poon, C. K., and Xu, Y. The ski-rental problem
with multiple discount options. Information Processing
Letters, 111(18):903–906, 2011.

10

Improved Learning-Augmented Algorithms for the Multi-Option Ski Rental Problem via Best-Possible Competitive Analysis

A. Deferred Proofs in Section 3
To prove Theorems 3.1 and 3.2, we need the following observation for the deterministic competitive algorithm presented in
Section 3.1.

Observation A.1. For each iteration i ≥ 2, we have OPT(τi) ≤ SOLi−1 ≤ OPT(τi + 1) and SOLi ≤ 2 SOLi−1.

Proof. The first series of inequalities follows from the construction. (Note that the only reason why SOLi−1 ≤ OPT(τi+1)
is not strict is due to the possibility that τi = ∞.) The second series of inequalities follows from the fact that, in iteration
i ≥ 2, the algorithm appends B(SOLi−1) to the solution.

We are now ready to prove the two main theorems.

Theorem A.2 (Theorem 3.1 restated). This algorithm is 4-competitive.

Proof. If T = τ1 = 1, the algorithm runs optimally. If τ1 + 1 ≤ T ≤ τ2, note that SOL2 ≤ 2 SOL1 = 2OPT(1) ≤
2OPT(T). For i ≥ 3, if τi−1 + 1 ≤ T ≤ τi, the algorithm terminates at iteration i or earlier. We have

SOLi ≤ 2 SOLi−1 ≤ 4 SOLi−2 ≤ 4OPT(τi−1 + 1) ≤ 4OPT(T)

from Observation A.1.

Theorem A.3 (Theorem 3.2 restated). The algorithm is a deterministic max{1 + 2λ, 4λ}-consistent
(
2 + 2

λ

)
-robust

algorithm.

Proof. Let us first show the consistency of the algorithm. If the algorithm starts in the respect phase, it is easy to see
that the algorithm is optimal. Thus, we will assume from now on that the algorithm starts in the first ignore phase. If the
algorithm moves on to the respect phase, it will terminate at the respect phase. The total cost is exactly SOLi⋆ +OPT(T̂).
By Observation A.1 and Equation (1), this cost is at most (1 + 2λ)OPT(T̂). If the algorithm terminates during the first
ignore phase, imagine we continue the execution of the algorithm until at least the first phase is completed. The total cost in
this case is at most SOLi⋆ , and the consistency follows from SOLi⋆ ≤ 2λOPT(T̂).

Now consider the case where the algorithm directly enters the second ignore phase after the first ignore phase. This happens
when SOLi⋆ > OPT(T̂). Observe that B(SOL′

0) = B(SOLi⋆) covers at least T̂ days, implying that the algorithm must
terminate after the first iteration, during which we append B(SOL′

0). The total cost therefore can be bounded by

SOL′
1 = 2SOLi⋆ ≤ 4 SOLi⋆−1 ≤ 4λOPT(T̂)

from Observation A.1 and Equation (1).

We now turn to proving the robustness. Note that if the algorithm does not enter the respect phase, the algorithm is 4-robust
since the execution of this algorithm is exactly the same as that of our 4-competitive algorithm from Section 3.1. Therefore,
it suffices to consider the case that the algorithm indeed enters the respect phase.

Let us first consider the case where the algorithm starts in the first ignore phase and terminates in the respect phase. From
our assumption that the algorithm enters the respect phase, we have T > τi⋆ . Observe that

λOPT(T̂) < SOLi⋆ ≤ 2 SOLi⋆−1 ≤ 2OPT(τi⋆ + 1) ≤ 2OPT(T),

where the first inequality follows from Equation (1) and the rest from Observation A.1 and T ≥ τi⋆ + 1. This implies
OPT(T̂) ≤ 2

λ OPT(T). Therefore, the total cost is at most SOLi⋆ +OPT(T̂) ≤
(
2 + 2

λ

)
OPT(T).

We now consider the case where the algorithm starts in the first phase, moves on to the respect phase, and terminates in the
second ignore phase. Suppose that τ ′i−1 + 1 ≤ T ≤ τ ′i for some i ≥ 1. Note that the algorithm terminates at iteration i or
earlier then. Since the algorithm does not terminate in the respect phase, we have T > T̂ = τ ′0. If i = 1, observe that

SOL′
1 ≤ 2 SOL′

0 ≤ 4OPT(T̂) ≤ 4OPT(τ ′0 + 1) ≤ 4OPT(T),

11

Improved Learning-Augmented Algorithms for the Multi-Option Ski Rental Problem via Best-Possible Competitive Analysis

where the second inequality follows from the fact that the algorithm enters the respect phase only if SOLi⋆ ≤ OPT(T̂). If
i ≥ 2, note that

SOL′
i ≤ 4 SOL′

i−2 ≤ 4OPT(τ ′i−1 + 1) ≤ 4OPT(T), (5)

where the first two inequalities follow from Observation A.1.

Finally, consider the case where the algorithm starts in the respect phase. This happens only if OPT(1) > λOPT(T̂). If
T ≤ T̂ , observe that the algorithm terminates in the respect phase and the total cost incurred by the algorithm is at most

OPT(T̂) <
1

λ
OPT(1) ≤ 1

λ
OPT(T).

If T > T̂ , the algorithm terminates in the second ignore phases. Suppose that τ ′i−1 + 1 ≤ T ≤ τ ′i for some i. The algorithm
then terminates at iteration i or earlier. If i = 1, we have

SOL′
1 ≤ 2 SOL′

0 = 2OPT(T̂) ≤ 2OPT(τ ′0 + 1) ≤ 2OPT(T).

If i ≥ 2, Equation (5) again holds, completing the proof.

B. Deferred Proofs in Section 4
B.1. Deferred Proof in Section 4.1

Theorem B.1 (Theorem 4.1 restated). The algorithm is a randomized e-competitive algorithm.

Proof. Let OPT(T) = βei
⋆

for some i⋆ ∈ Z≥0 and β ∈ [1, e). Suppose that the algorithm enters phase i⋆; otherwise, the
algorithm only incurs less. If α ≥ β, observe that the algorithm terminates at this phase since B(αei

⋆

) covers T days by the
definition of B and that αei

⋆ ≥ OPT(T). On the other hand, if we sample α such that α < β, the algorithm may enter the
next phase (i⋆ + 1). Note that the algorithm terminates then since αei

⋆+1 ≥ OPT(T). Recall that, in each phase i, the
algorithm incurs at most αei. We therefore have

E[SOL] ≤
∫ β

1

(
i⋆+1∑
i=0

αei

)
f(α)dα+

∫ e

β

(
i⋆∑
i=0

αei

)
f(α)dα

=

i⋆∑
i=0

ei ·
∫ e

1

αf(α)dα+ ei
⋆+1 ·

∫ β

1

αf(α)dα

=
ei

⋆+1 − 1

e− 1
· (e− 1) + ei

⋆+1 · (β − 1)

= (ei
⋆+1 − 1) + ei

⋆+1 · (β − 1)

= β · ei
⋆+1 − 1 ≤ e ·OPT(T).

B.2. Deferred Proof in Section 4.2

Theorem B.2 (Theorem 4.2 restated). For λ ∈ (0, 1), this algorithm is χ(λ)-consistent and (eλ/λ)-robust, where χ is
defined as follows:

χ(λ) :=

{
1 + λ, if λ < 1

e ,

(e+ 1)λ− lnλ− 1, if λ ≥ 1
e .

Robustness Analysis We continue to prove the robustness of our randomized learning-augmented algorithm. Let us first
prove Claims 4.3, 4.4, and 4.5.
Claim B.3 (Claim 4.3 restated). We have

h(β) :=
e2−r

β
+

(lnβ + r − 1)e2−r

λβ
≤ eλ

λ

for every β > 0.

12

Improved Learning-Augmented Algorithms for the Multi-Option Ski Rental Problem via Best-Possible Competitive Analysis

Proof. Let us obtain the partial derivative of h(β) with respect to β as follows:

∂h(β)

∂β
=

e2−r

λ

(
1− lnβ

β2
− λ+ r − 1

β2

)
=

e2−r

λβ2
· (2− λ− r − lnβ) ,

implying that h(β) achieves the maximum value of eλ

λ at β = e2−λ−r.

Claim B.4 (Claim 4.4 restated). We have

h(β) :=
e1−r

β
+

e1−r(lnβ + r)

λβ
≤ eλ

λ

for every β > 0.

Proof. When we calculate the partial derivative of h(β) with respect to β, we have

∂h(β)

∂β
=

e1−r

λ

(
1− lnβ

β2
− λ+ r

β2

)
=

e1−r

λβ2
· (1− λ− r − lnβ) ,

leading to that h(β) achieves the maximum value of eλ

λ at β = e1−λ−r

Claim B.5 (Claim 4.5 restated). We have

e(x− lnx) ≤ ex

x

for every x > 0.

Proof. Let h(x) := ex

x − ex+ e lnx. It suffices to show that h(x) ≥ 0 for every x > 0. Observe that

h′(x) =
ex(x− 1)

x2
− e+

e

x
=

(x− 1)(ex − ex)

x2
,

implying that h(x) has the minimum value of 0 at x = 1.

It remains to analyze the cases where OPT(T) ≥ ek−q−1.

Case 4. λOPT(T̂) = ek−q−r ≤ OPT(T) < OPT(T̂) = ek. Remark that, in this case, the algorithm incurs in
expectation at most the cost of the case when the prediction is accurate, i.e., T = T̂ . Therefore, the bounds we obtained in
the consistency analysis can be also used in this case. For q ≥ 1, by Equation (3), we can obtain an upper bound for the
robustness ratio for this case as follows:

E[SOL]

OPT(T)
≤ ek + ek−q−r

ek−q−r
= 1 +

1

λ
≤ eλ

λ
,

where the equality comes from the definition of λ = e−q−r and the last inequality holds since 1 + x ≤ ex for every x.

If q = 0, by Equation (4), the robustness ratio can be bounded by

E[SOL]

OPT(T)
≤ ek−r + ek+1−r + ek(r − 1)

ek−r
= 1 + e+

r − 1

λ
,

where we derive the equality by the definition of λ = e−r. Here we claim that the right-hand side can still be bounded by
eλ

λ as desired for λ in this case. Recall that λ ∈
[
1
e , 1
)

and r = − lnλ.

Claim B.6. For x ∈
[
1
e , 1
]
, we have

1 + e− lnx+ 1

x
≤ ex

x
.

13

Improved Learning-Augmented Algorithms for the Multi-Option Ski Rental Problem via Best-Possible Competitive Analysis

Proof. Let h(x) := ex − (1 + e)x+ lnx+ 1. It suffices to show that h(x) ≥ 0 for x ∈
[
1
e , 1
]
. Taking the derivative, we

can obtain

h′(x) = ex − (1 + e) +
1

x
=

(
ex +

1

x

)
− (e+ 1).

Note that h′(x) is also convex over x > 0. Moreover, we have

h′
(
1

e

)
= ee

−1

− 1 > 0,

together with h′(1) = 0. We can thus conclude that the minimum of h(x) over
[
1
e , 1
]

must be either h
(
1
e

)
or h(1). Observe

that h(1) = 0 and

h

(
1

e

)
= ee

−1

− 1 + e

e
+ ln

(
1

e

)
+ 1 = ee

−1

−
(
1 +

1

e

)
≥ 0,

where the inequality follows from that ex ≥ 1 + x for every x.

Case 5. OPT(T) > OPT(T̂) = ek. Let OPT(T) := β · ek+p for some p ∈ Z≥0 and β ∈ [1, e). Let us first consider the
case where q ≥ 1. Observe that, until the algorithm reaches phase k, the algorithm incurs in expectation at most ek+ek−q−r

by Equation (3). Note also that, from phase k, we again follow A. In total, we have

E[SOL] ≤ ek + ek−q−r +

∫ e

1

(
k+p∑
i=k

α · ei
)
f(α)dα+

∫ β

1

α · ek+p+1f(α)dα

= β · ek+p+1 + ek−q−r,

implying that the robustness ratio for this case can be bounded by

β · ek+p+1 + ek−q−r

β · ek+p
= e+

λ

βep
≤ e+ λ,

where the equality follows from the definition of λ = e−q−r and the inequality can be derived by the fact that β ≥ 1 and
p ≥ 0. Now the proof can be completed by the following claim. Recall that λ < 1

e in this case.

Claim B.7. For x ∈
(
0, 1

e

]
, we have

x+ e ≤ ex

x
.

Proof. Note that ex

x is decreasing over x ∈ (0, 1] while x+ e is increasing over x ∈ R. Direct calculation gives

ee
−1

e−1
> e+

1

e

as claimed.

Finally, let us assume that q = 0, i.e., λ = e−r. Observe that, in this case, the algorithm executes almost identical to A
with only exception that, on phase (k − 1), the algorithm appends O(T̂) instead of B(α · ek−1) if α ≥ e1−r. Therefore, by
adjusting the proof of Theorem 4.1 accordingly, we can derive

E[SOL] ≤
∫ e

1

(
k−2∑
i=0

α · ei
)
f(α)dα+

∫ e1−r

1

α · ek−1f(α)dα+

∫ e

e1−r

ekf(α)dα

+

∫ e

1

(
k+p∑
i=k

α · ei
)
f(α)dα+

∫ β

1

α · ek+p+1f(α)dα

≤ ek−r + r · ek + β · ek+p+1 − ek

= β · ek+p+1 + (λ+ r − 1) · ek.

14

Improved Learning-Augmented Algorithms for the Multi-Option Ski Rental Problem via Best-Possible Competitive Analysis

We can thus obtain an upper bound of the robustness ratio for this case as follows:

E[SOL]

OPT(T)
≤ e+

λ+ r − 1

βep
≤ e+ λ+ r − 1,

where the last inequality is due to the fact that β ≥ 1 and p ≥ 0. Note that the next claim completes the proof for this case.
Recall that r = − lnλ.

Claim B.8. We have

x− lnx+ e− 1 ≤ ex

x

for any x > 0.

Proof. Let h(x) := ex

x − x+ lnx. It suffices to show that h(x) ≥ e− 1 for all x > 0. Note that

h′(x) =
ex(x− 1)

x2
− 1 +

1

x
=

(ex − x)(x− 1)

x2
,

implying that the minimum value of h(x) for x > 0 is h(1) = e− 1.

C. Deferred Proofs in Section 5
C.1. Deferred Proof in Section 5.1

Lemma C.1 (Lemma 5.2 restated). This reduction algorithm is a randomized (χ+ ε)-consistent (ρ+ ε)-robust algorithm
for the button problem.

Proof. Let us first show that this algorithm is (ρ+ ε)-robust. Let k be the price of the first target button, i.e., k = bJ . Now
imagine the execution of A with T = Ck. It is easy to see that OPT(T) = k = bJ , where OPT(T) is the cost of an optimal
solution to cover T days. Observe that, if k = 1, the reduction algorithm immediately terminates after A chooses any option.
On the other hand, the first option chosen by A must be of cost at most ρ in expectation, since A must be ρ-competitive
even when T = 1 (and OPT(T) = 1). This implies the ρ-robustness of the constructed algorithm for the button problem.
Thus, we assume from now on that k ≥ 2. This implies n = bm ≥ bJ ≥ 2.

We claim that, if A covers T days only with options 1 to (k − 1), the total cost c(A) incurred by A is at least C. To see this
fact, let ai be the number of times that A chooses option i, for i = 1, · · · , k− 1. As the output of A covers T days, we have

k−1∑
i=1

Ci · ai ≥ T = Ck,

yielding
k−1∑
i=1

k − 1

Ck−1−i
· ai ≥ C · (k − 1).

We can now show our claim as follows:

c(A) =

k−1∑
i=1

i · ai ≥
k−1∑
i=1

k − 1

Ck−1−i
· ai ≥ C · (k − 1) ≥ C,

where the first inequality holds since h(x) := (k − 1)/Ck−1−x is a convex function satisfying h(1) = (k − 1)/Ck−2 ≤ 1
and h(k − 1) = k − 1. Recall that k ≥ 2 and C ≥ 2.

The above claim implies that, if c(A) < C, A chose an option whose cost is at least k = bJ . Therefore, the constructed
algorithm will not be forced to terminate in this case, and we have

SOL ≤ c(A). (6)

15

Improved Learning-Augmented Algorithms for the Multi-Option Ski Rental Problem via Best-Possible Competitive Analysis

On the other hand, if c(A) ≥ C, the constructed algorithm is forced to terminate with an additional price of

bm = n ≤ ε

ρ
· C ≤ ε

ρ
· c(A), (7)

yielding

SOL ≤
(
1 +

ε

ρ

)
c(A). (8)

Equations (6) and (8) together implies that SOL ≤
(
1 + ε

ρ

)
· c(A) holds whether or not c(A) < C. Hence, we have

E[SOL] ≤
(
1 +

ε

ρ

)
· E[c(A)] ≤ (ρ+ ε) · bJ , (9)

where the second inequality is derived from that A is ρ-robust.

To see that the constructed algorithm is (χ+ ε)-consistent, note that bm ≤ (ε/χ) · c(A) from Equation (7) since χ ≤ ρ. By
adjusting Equation (9) with the fact that A is χ-consistent for T̂ = CbĴ , we can obtain E[SOL] ≤ (χ+ ε) · bĴ as desired.

Finally, let us remark that the above argument only holds when ρ is finite. Suppose A is non-robust (i.e., ρ = ∞). In this
case, we do not need to consider the robustness of the constructed algorithm either. By setting C := ⌈χ/ε⌉ · bm, we can see
that the above argument for the consistency still follows.

C.2. Deferred Proof in Section 5.2

Theorem C.2 (Theorem 5.3 restated). For all constant ε > 0, no randomized algorithm can achieve a competitive ratio of
e− ε.

Proof. By Lemma 5.1, it suffices to exhibit a family of instances for the button problem that makes any algorithm have a
competitive ratio at least (e− ε) for the given constant ε > 0.

Now we introduce a set of parameters that define an instance. It is important in which order we choose these parameters, but
we will discuss this at the end of the proof. For now, let δ be a sufficiently large number; intuitively speaking, δ corresponds
to the granularity of button prices. Parameter c satisfies c/δ ≥ − ln(e− ε)− ln ln (e/(e− ε)). An integer m is chosen so
that m > c and m/δ ≥ ln (e/ε). Consider the following instance of the button problem defined by these parameters: the
number of buttons is m and their prices are bj := ej/δ for j = 1, · · · ,m.

Fix any algorithm for the button problem. Without loss of generality, we can assume that the indices of the buttons clicked
by the algorithm strictly increases. That is, if the algorithm clicks a button j at some point, it will click button j′ > j in the
following rounds. Suppose for the moment that only the last button m is a target: i.e, J = m. For j = 1, · · · ,m, let xj be
the marginal probability that the algorithm clicks button j in the first round. For t = 1, · · · ,m− 1 and j = t+1, · · · ,m, let
yt,j be the marginal probability that the algorithm clicks button t in some round and then clicks button j in the immediately
following round.

Observe that xj does not depend on J : the algorithm chooses the first button without any knowledge on J anyways.
Similarly, for all t < J , yt,j does not depend on J either. Intuitively speaking, for any J1 < J2, the “prefix” of the execution
of the algorithm for J = J2 is the same as that for J = J1 due to the algorithm’s lack of knowledge on J .

We now write an LP where these x’s and y’s are variables and the constraints specify the properties that must be satisfied by
the algorithm. We can write these constraints assuming J = m, since we can retrieve the marginal probabilities for the
cases where J ̸= m simply by taking a “prefix”. The value of the following LP is a lower bound on the competitive ratio of

16

Improved Learning-Augmented Algorithms for the Multi-Option Ski Rental Problem via Best-Possible Competitive Analysis

the algorithm.

minimize γ

subject to
m∑
j=1

xj = 1,

m∑
j=t+1

yt,j = xt +

t−1∑
j=1

yj,t, ∀t = 1, · · · ,m− 1

m∑
j=1

bj ·

xj +

min(J,j)−1∑
t=1

yt,j

 ≤ γ · bJ , ∀J = 1, · · · ,m,

xj ≥ 0, ∀j = 1, · · · ,m,

yt,j ≥ 0, ∀t = 1, · · · ,m− 1,∀j = t+ 1, · · · ,m.

Note that the first constraint must be satisfied because x’s must form a probability distribution. Note that both sides of
the second constraint is a way of writing the marginal probability that the algorithm clicks button t (recall that we assume
J = m). Therefore, these equalities must be satisfied. Note that xj +

∑min(J′,j)−1
t=1 yt,j is the marginal probability that

button j is clicked when J = J ′: we use min(J ′, j)− 1 to ensure that we take an appropriate prefix. This shows that the
third constraints must be satisfied as long as γ is no smaller than the true competitive ratio.

In order to compute the worst-case value of this LP, we consider its dual, shown below:

maximize w

subject to
m∑
j=1

bjvj = 1,

w ≤ ut + bt

m∑
j=1

vj , ∀t = 1, · · · ,m− 1

w ≤ bm

m∑
j=1

vj , (D1)

us − ut ≤ bt

m∑
j=s+1

vj , ∀s = 1, · · · ,m− 2,∀t = s+ 1, · · · ,m− 1,

us ≤ bm

m∑
j=s+1

vj , ∀s = 1, · · · ,m− 1,

w ∈ R,
ut ∈ R, ∀t = 1, · · · ,m− 1,

vj ≥ 0, ∀j = 1, · · · ,m.

We want to find a feasible solution to (D1) whose value is close to e− ε. To this end, let us consider the following auxiliary

17

Improved Learning-Augmented Algorithms for the Multi-Option Ski Rental Problem via Best-Possible Competitive Analysis

LP.

maximize w

subject to w ≤ ut + bt

m∑
j=1

vj , ∀t = 1, · · · ,m,

us − ut ≤ bt

m∑
j=s+1

vj , ∀s = 1, · · · ,m− 1,∀t = s+ 1, · · · ,m, (D2)

um = 0,

w ∈ R,
ut ∈ R, ∀t = 1, · · · ,m,

vj ≥ 0, ∀j = 1, · · · ,m.

Observe that, once we obtain a feasible solution to (D2), we can easily construct a feasible solution to (D1) by dividing
every variable by

∑m
j=1 bjvj .

Let us construct a feasible solution to (D2) as follows: for all j = 1, · · · ,m,

vj :=

∫ j/δ

(j−1)/δ

e−zdz,

uj :=
e− ε

δ
(m− c− j)+ , and

w := min
t=1,··· ,m

ut + et/δ
m∑
j=1

vj

 ,

where (·)+ := max{·, 0}. Observe that the first set of constraints of (D2) is satisfied by the choice of w. It is easy to see
that the third and fourth sets are also satisfied. The next lemma shows that the solution satisfies the second set of constraints.

Lemma C.3. If c/δ ≥ − ln(e− ε)− ln ln (e/(e− ε)), we have

us − ut ≤ bt

m∑
j=s+1

vj

for any s < t.

Proof. Let us first consider the case where s < t ≤ m− c. Observe that

us − ut = (e− ε) · t− s

δ
and

bt

m∑
j=s+1

vj = et/δ
∫ m/δ

s/δ

e−zdz = e(t−s)/δ − e(t−m)/δ.

We will show that
(e− ε) · t− s

δ
≤ e(t−s)/δ − e−c/δ ≤ e(t−s)/δ − e(t−m)/δ,

where the last inequality follows from t ≤ m − c, showing the lemma for this case. By substituting z := (t − s)/δ and
rearranging the terms, it suffices to show that, for any z > 0,

ez − (e− ε) · z ≥ e−c/δ.

By taking the derivative of the left-hand side with respect to z, we can easily see that the left-hand side is minimized when
z = ln(e− ε). Observe that

e−c/δ ≤ (e− ε)− (e− ε) ln(e− ε)

18

Improved Learning-Augmented Algorithms for the Multi-Option Ski Rental Problem via Best-Possible Competitive Analysis

due to the condition of the lemma, showing the claim.

For s < m− c ≤ t, we have

us − ut = (e− ε) · m− c− s

δ
and

bt

m∑
j=s+1

vj = et/δ
(
e−s/δ − e−m/δ

)
.

Note that, for a fixed s, bt
∑m

j=s+1 vj is minimized when t = m− c while us − ut is unaffected by t. Therefore, it suffices
to show that the lemma follows when t = m− c. This is already proven by the previous case.

Finally, for m− c ≤ s < t, we have us − ut = 0.

The following lemma gives a lower bound on w.

Lemma C.4. If m/δ ≥ ln (e/ε), we have

h(t) := ut + et/δ
m∑
j=1

vj ≥
e− ε

δ
(m− c)

for any t.

Proof. Recall that, for t ≥ m− c, ut = 0. Hence, it suffices to consider t ≤ m− c. We have

h(t) =
e− ε

δ
(m− c− t) + et/δ

∫ m/δ

0

e−zdz

=
e− ε

δ
(m− c− t) + et/δ

(
1− e−m/δ

)
.

By taking the partial derivative of h(t) with respect to t, we obtain

∂h(t)

∂t
= −e− ε

δ
+

et/δ

δ
·
(
1− e−m/δ

)
.

This implies that h(t) is minimized when t = t⋆, where t⋆ satisfies

et
⋆/δ =

e− ε

1− e−m/δ
≤ e,

where the inequality follows from m/δ ≥ ln (e/ε). Here we can also observe that t⋆ ≤ δ. We now have

h(t⋆) =
e− ε

δ
(m− c− t⋆) + (e− ε) ≥ e− ε

δ
(m− c),

where the inequality can be derived from t⋆ ≤ δ.

By these lemmas, we can conclude that (w, u, v) is a feasible solution to (D2) whose objective value is at least e−ε
δ (m− c).

We have argued that, by normalizing every variable by
∑m

j=1 bjvj , we can derive a feasible solution to (D1). The next
lemma indicates that

∑m
j=1 bjvj is sufficiently small.

Lemma C.5. We have
∑m

j=1 bjvj ≤ (m/δ) · e1/δ .

19

Improved Learning-Augmented Algorithms for the Multi-Option Ski Rental Problem via Best-Possible Competitive Analysis

Proof. Observe that

m∑
j=1

bjvj =

m∑
j=1

ej/δ
∫ j/δ

(j−1)/δ

e−zdz

= e1/δ
m∑
j=1

e(j−1)/δ

∫ j/δ

(j−1)/δ

e−zdz

≤ e1/δ
m∑
j=1

∫ j/δ

(j−1)/δ

ez · e−zdz

=
m

δ
· e1/δ.

Therefore, we can obtain a solution feasible to (D1) whose objective value is at least

(e− ε) · (m/δ − c/δ)

(m/δ) · e1/δ
. (10)

Given ε, we first fix c/δ as some constant satisfying c/δ ≥ − ln(e − ε) − ln ln (e/(e− ε)). Then we choose δ to be
sufficiently large, which in turn determines c. After this, we choose m to be sufficiently large. This shows that Equation (10)
can be made arbitrarily close to (e− ε). Now the desired conclusion follows from the weak duality of LP, completing the
proof of Theorem 5.3.

C.3. Deferred Proofs in Section 5.3

Lemma C.6. Let f : (0, 1) → R+ be a continuous function. Suppose that, for all ε > 0 and λ ∈ (0, 1), the robustness
of any deterministic (1 + λ)-consistent algorithm for the (K,β)-continuum button problem must be strictly greater than
f(λ) − ε. Then, for all ε > 0 and λ ∈ (0, 1), the robustness of any deterministic (1 + λ)-consistent algorithm for the
regular button problem must also be strictly greater than f(λ)− ε.

Proof. Suppose towards contradiction that, for some λ ∈ (0, 1) and ε > 0, there exists a deterministic (1 + λ)-consistent
(f(λ) − ε)-robust algorithm A for the regular button problem. Without loss of generality, assume that ε < f(λ). By
choosing a sufficiently small ε′ > 0, we can satisfy ε′ < ε/3, λ + ε′ ∈ (0, 1), and f(λ + ε′) > f(λ) − ε/3. Let
F := max{2, supλ∈(0,1) f(λ)}. We choose δ ∈ (0, (ε′β)/(FK)] so that (m− 1)/δ becomes an integer.

Now consider the following algorithm for the (K,β)-continuum button problem. Let b be the given price function and
Ĵ ∈ [1,m] be the prediction. The algorithm constructs an instance of the regular button problem by creating ((m−1)/δ+1)
buttons whose values are b((i− 1)δ + 1) for i = 1, · · · , (m− 1)/δ + 1. The algorithm then internally executes A on this
constructed instance, to which a prediction of J̃ :=

⌈
(Ĵ − 1)/δ

⌉
+ 1 is given. Each time A clicks a button, say bk, the

algorithm clicks the corresponding button (k − 1)δ + 1 in the continuum problem. When the algorithm clicks a target, it
reports to A that the last button was a target and terminates. Note that the total cost incurred by the algorithm is exactly
equal to that by A.

We claim that this algorithm is (1+λ+ε′)-consistent and (f(λ)− (2ε)/3)-robust for the (K,β)-continuum button problem.
Since f(λ)− (2ε)/3 < f(λ+ ε′)− ε/3, this leads to contradiction. It remains to verify the consistency and robustness.

Suppose we run the above algorithm when the first target J of the continuum problem is equal to Ĵ . Note that the algorithm
terminates when A clicks a button with index J̃ or higher. This means that the prediction J̃ given to A is also accurate (for
the regular button problem). From the (1 + λ)-consistency of A, the total cost incurred by the algorithm is at most

(1 + λ)bJ̃ = (1 + λ)b
(⌈

(Ĵ − 1)/δ
⌉
· δ + 1

)
≤ (1 + λ)(b(Ĵ) +Kδ)

≤ (1 + λ+ ε′)b(Ĵ),

20

Improved Learning-Augmented Algorithms for the Multi-Option Ski Rental Problem via Best-Possible Competitive Analysis

where the first inequality follows from the K-Lipschitz continuity of b and the second from the monotonicity of b and the
choice of ε′. This shows the (1 + λ+ ε′)-consistency of the algorithm.

Now we verify the robustness. Let J be the first target button of the continuum problem. The algorithm terminates when A
clicks a button with index ⌈(J − 1)/δ⌉+ 1 or higher. Hence, from the (f(λ)− ε)-robustness of A, the total cost incurred
by the algorithm is at most

(f(λ)− ε)b (⌈(J − 1)/δ⌉ · δ + 1) ≤ (f(λ)− ε)(b(J) +Kδ)

≤ (f(λ)− ε+ ε′)b(J),

where the first inequality again follows from the K-Lipschitz continuity of b and the second from the monotonicity of b and
the choice of ε′. Note that f(λ)− ε+ ε′ < f(λ)− (2ε)/3, showing the desired robustness of the algorithm.

C.3.1. LOWER BOUND ON COMPETITIVENSS

Before presenting our trade-off between consistency and robustness for deterministic learning-augmented algorithms, let us
first show that no deterministic algorithm for the (K,β)-continuum button problem can have a competitive ratio strictly
better than 4. Let m be a sufficiently large number and b(j) = j for j ∈ [1,m]. Note that b is 1-Lipschitz continuous with
b(1) = 1 > 0.

Fix any deterministic algorithm for the continuum button problem. Let n be the number of buttons the algorithm clicks; for
any i = 1, · · · , n, let xi be the button that the algorithm clicks in the i-th round. Note that, by the choice of b, the price of
this button is also xi. Moreover, we can without loss of generality assume that x1 < x2 < · · · < xn.

In order for the algorithm to be competitive, it should be competitive for any J ∈ {1, x1 + ε, x2 + ε, · · · , xn−1 + ε},
where ε is an infinitesimal. We therefore have the following infinite sequence of constraints as follows: for any integer
i = 0, 1, 2, · · · , n− 1,

i+1∑
j=1

xj ≤ γxi, (11)

where γ denotes the competitive ratio of the algorithm and x0 := 1.

Let {ai} be an infinite sequence defined recursively as follows:

a1 = γ − 1 and ai = γ − γ

ai−1
for i ≥ 2.

Note that this infinite sequence is depends only on γ.

We show by induction that, for any i = 1, · · · , n− 1, we have

xi+1 ≤ aixi and
i+1∑
j=1

xj ≥
γ

ai
· xi+1. (12)

For i = 1, it is easy to see that x2 ≤ (γ − 1)x1 due to Equation (11) with i = 1. Moreover,

x1 + x2 ≥ 1

γ − 1
· x2 + x2 =

γ

a1
· x2,

where the first inequality comes from x2 ≤ a1x1, showing the second half of the statement. For i ≥ 2, we have

xi+1 ≤ γxi −
i∑

j=1

xj ≤
(
γ − γ

ai−1

)
xi = aixi,

21

Improved Learning-Augmented Algorithms for the Multi-Option Ski Rental Problem via Best-Possible Competitive Analysis

where the first inequality comes from Equation (11) and the second is derived from the induction hypothesis. We also have

i+1∑
j=1

xj ≥
γ

ai−1
· xi + xi+1

≥ γ

ai−1
· 1

ai
· xi+1 + xi+1

=

(
γ

ai−1
· 1

γ − γ
ai−1

+ 1

)
xi+1

=
γ

ai
· xi+1,

from the recurrence relation of {ai}i. This completes the proof of the claim.

The next two lemmas exhibit useful properties of {ai}i. These are crucial in proving the lower bound on competitive ratio
for deterministic algorithms.
Lemma C.7. If the sequence {ai}i is convergent, we have γ ≥ 4.

Proof. Let α := limi→∞ ai. From the recurrence relation, we can obtain

α = γ − γ

α
⇐⇒ α2 − γα+ γ

α
= 0.

In order to have a real solution, we should have γ2 − 4γ = γ(γ − 4) ≥ 0.

Lemma C.8. If 1 ≤ γ < 4, there exists a nonpositive element in the sequence {ai}i.

Proof. Suppose towards contradiction that {ai}i is all positive. Observe that, for any i ≥ 1,

ai − ai+1 = ai −
(
γ − γ

ai

)
=

a2i − γai + γ

ai
> 0,

where the inequality holds since 1 ≤ γ < 4, implying that the sequence is strictly decreasing. This implies that {ai}i,
leading to contradiction from Lemma C.7.

By choosing a sufficiently large m, we can make n be arbitrarily large. By Lemma C.8, if γ < 4, there exists a nonpositive
element in {ai}. However, in that case, the algorithm cannot satisfy Equation (12). Hence, it is required to have γ ≥ 4,
completing the proof.

C.3.2. TRADE-OFF BETWEEN CONSISTENCY AND ROBUSTNESS

We are now ready to prove Theorem 5.5. We are given a constant λ ∈ (0, 1). Let us bring the same instance where m

is a sufficiently large number and b(j) = j for j ∈ [1,m]. Let the prediction Ĵ ≤ m be also sufficiently large. Fix any
deterministic algorithm that utilizes the prediction Ĵ . As we want to guarantee the algorithm to be (1 + λ)-consistent, the
algorithm must have incurred at most λ · Ĵ before it clicks button with index Ĵ or higher. Let n be the number of buttons
the algorithm has clicked before it clicks button with index Ĵ or higher. We thus obtain the following constraint on the
algorithm:

n∑
j=1

xj ≤ λ · Ĵ , (13)

where xj again denotes the price of the button clicked at the j-th round as in the previous section.

Meanwhile, we also want the algorithm to be robust. Therefore, the algorithm should satisfy Equation (11) for i =
1, 2, · · · , n− 1, where γ ≥ 4 now represents the robustness ratio, along with an additional constraint capturing the situation
when J = xn + ε while the algorithm incurs at least Ĵ after clicking button xn. In other words, we have

n∑
i=1

xi + Ĵ ≤ γxn. (14)

22

Improved Learning-Augmented Algorithms for the Multi-Option Ski Rental Problem via Best-Possible Competitive Analysis

Observe that, from Equations (13) and (14), we have(
1 +

1

λ

)
·

n∑
j=1

xj ≤ γxn.

Combining this inequality with Equation (12), we can obtain(
1 +

1

λ

)
· γ

an−1
xn ≤ γxn,

resulting in that

1 +
1

λ
≤ an−1.

When m and Ĵ is sufficiently large, we also have a sufficiently large n. We can thus replace an−1 with α := limi→∞ ai

in the above inequality. From the proof of Lemma C.7, it is easy to see that α =
γ+

√
γ2−4γ

2 . We can thus obtain, for
λ ∈ (0, 1),

1 +
1

λ
≤ γ +

√
γ2 − 4γ

2
=⇒ 2 +

2

λ
− γ ≤

√
γ2 − 4γ

=⇒
(
2 +

2

λ
− γ

)2

≤ γ2 − 4γ

=⇒ 4

λ2
+

4

λ
(2− γ) + 4 ≤ 0

=⇒ γ ≥ 2 + λ+
1

λ
.

Together with Lemma 5.4, this completes the proof of Theorem 5.5.

23

	Introduction
	Preliminaries
	Deterministic Algorithms
	Competitive Algorithm
	Learning-Augmented Algorithm

	Randomized Algorithms
	Competitive Algorithm
	Learning-Augmented Algorithm

	Lower Bounds
	Auxiliary Problem
	Competitive Ratio of Randomized Algorithms
	Trade-off Between Consistency and Robustness of Deterministic Algorithms

	Computational Evaluation
	Deferred Proofs in Section 3
	Deferred Proofs in Section 4
	Deferred Proof in Section 4.1
	Deferred Proof in Section 4.2

	Deferred Proofs in Section 5
	Deferred Proof in Section 5.1
	Deferred Proof in Section 5.2
	Deferred Proofs in Section 5.3
	Lower Bound on Competitivenss
	Trade-off between Consistency and Robustness

