
EXPHORMER: Sparse Transformers for Graphs

Hamed Shirzad * 1 Ameya Velingker * 2 Balaji Venkatachalam * 3 Danica J. Sutherland 1 4 Ali Kemal Sinop 2

Abstract

Graph transformers have emerged as a promis-
ing architecture for a variety of graph learning
and representation tasks. Despite their successes,
though, it remains challenging to scale graph
transformers to large graphs while maintaining
accuracy competitive with message-passing net-
works. In this paper, we introduce EXPHORMER,
a framework for building powerful and scalable
graph transformers. EXPHORMER consists of a
sparse attention mechanism based on two mecha-
nisms: virtual global nodes and expander graphs,
whose mathematical characteristics, such as spec-
tral expansion, pseduorandomness, and sparsity,
yield graph transformers with complexity only
linear in the size of the graph, while allow-
ing us to prove desirable theoretical properties
of the resulting transformer models. We show
that incorporating EXPHORMER into the recently-
proposed GraphGPS framework produces models
with competitive empirical results on a wide va-
riety of graph datasets, including state-of-the-art
results on three datasets. We also show that EX-
PHORMER can scale to datasets on larger graphs
than shown in previous graph transformer ar-
chitectures. Codes can be found at https:
//github.com/hamed1375/Exphormer.

1. Introduction
Graph learning has become an important and popular area
of study that has yielded impressive results on a wide va-
riety of graphs and tasks, including molecular graphs, so-

*Equal contribution 1Department of Computer Science,
University of British Columbia, Vancouver, BC, Canada
2Google Research, Mountain View, California, USA 3Google,
Mountain View, California, USA 4Alberta Machine Intelli-
gence Institute, Edmonton, Alberta, Canada. Correspon-
dence to: Hamed Shirzad <shirzad@cs.ubc.ca>, Ameya
Velingker <ameyav@google.com>, Balaji Venkatachalam
<bave@google.com>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

cial network graphs, knowledge graphs, and more. While
much research around graph learning has focused on graph
neural networks (GNNs), which are based on local message-
passing, a more recent approach to graph learning that has
garnered much interest involves the use of graph transform-
ers (GTs). Graph transformers largely operate by encoding
graph structure in the form of a soft inductive bias. These
can be viewed as a graph adaptation of the Transformer
architecture (Vaswani et al., 2017) that are successful in
modeling sequential data in applications such as natural
language processing.

Graph transformers allow nodes to attend to all other nodes
in a graph, allowing for direct modeling of long-range in-
teractions, in contrast to GNNs. This allows them to avoid
several limitations associated with local message passing
GNNs, such as oversmoothing (Oono & Suzuki, 2020), over-
squashing (Alon & Yahav, 2021; Topping et al., 2022), and
limited expressivity (Morris et al., 2019; Xu et al., 2018).
The promise of graph transformers has led to a large number
of different graph transformer models that have been pro-
posed in recent years (Dwivedi & Bresson, 2020; Kreuzer
et al., 2021; Ying et al., 2021; Mialon et al., 2021).

One major challenge for graph transformers is their poor
scalability, as the standard global attention mechanism in-
curs time and memory complexity of O(|V |2), quadratic
in the number of nodes in the graph. While this cost is
often acceptable for datasets with small graphs (e.g., molec-
ular graphs), it can be prohibitively expensive for datasets
containing larger graphs, where graph transformer models
often do not fit in memory even for high-memory GPUs,
and hence would require much more complex and slower
schemes to apply. Moreover, despite the expressivity advan-
tages of graph transformer networks (Kreuzer et al., 2021),
these architectures have often lagged message-passing coun-
terparts in accuracy in many practical settings.

A recent breakthrough came with the advent of
GraphGPS (Rampásek et al., 2022), a modular framework
for constructing networks by combining local message pass-
ing and a global attention mechanism together with a choice
of various positional and structural encodings. To attempt
to overcome the quadratic complexity of the “dense” full
transformer and improve scalability, the architecture allows
for “sparse” attention mechanisms, like Performer (Choro-

1

https://github.com/hamed1375/Exphormer
https://github.com/hamed1375/Exphormer

EXPHORMER: Sparse Transformers for Graphs

manski et al., 2021) or Big Bird (Zaheer et al., 2020). This
combination of Transformers and GNNs achieves state-of-
the-art performance on a wide variety of datasets.

In almost all cases, however, the best results of Rampásek
et al. were obtained by combining a message-passing net-
work with a full transformer; their sparse transformers per-
formed relatively poorly by comparison, and indeed their
ablation studies showed that on a number of datasets it is
better to avoid using attention at all than to use their imple-
mentation of BigBird. This may be related to the fact that
sparse attention mechanisms like BigBird have largely been
designed for sequences; this is natural for language tasks,
but graphs behave quite differently. Thus, it is natural to ask
whether one can design sparse attention mechanisms more
tailored to learning interactions on general graphs.

Another major question concerns graph transformers’ scal-
ability. While BigBird and Performer are linear attention
mechanisms, they still incur computational overhead that
dominates the per-epoch computation time for moderately-
sized graphs. The GraphGPS work tackles datasets with
graphs of up to 5,000 nodes, a regime in which the full-
attention transformer is in fact computationally faster than
many sparse linear-attention mechanisms. Perhaps more
suitable sparse attention mechanisms could enable their
framework to operate on even larger graphs. Additionally,
for smaller graphs, they may require a much smaller batch
size to fit into the GPU memory, resulting in slower training,
or the need for high-end GPUs. For instance, on the MalNet-
Tiny dataset, GraphGPS with a full transformer runs out of
memory (on a 40GB NVIDIA A100 GPU) with a batch size
of just 16; as we shall see, our techniques allow us to extend
the batch size to 256 without any memory issues.

Our contributions. We propose sparse attention mech-
anisms with computational cost linear in the number of
nodes and edges. We introduce EXPHORMER that combines
the two techniques for creating sparse overlay graphs. The
first sparse attention mechanism is to use global nodes —
nodes that are connected to all other nodes of the graph.
The number of additional edges added to the graph is lin-
ear in the number of nodes. We also introduce expander
graphs as a powerful primitive in designing scalable graph
transformer architectures. The expander graph as an overlay
graph has edges linear in the number of nodes. Expander
graphs have several desirable properties – small diameter,
spectral approximation of a complete graph, good mixing
properties – which make them a suitable ingredient in a
sparse attention mechanism. We are able to show that EX-
PHORMER, which combines expander graphs with global
nodes and local neighborhoods, spectrally approximates the
full attention mechanism with only a small number of layers,
and has universal approximation properties. Its attention
scheme provides good inductive bias for places the model

“should look,” in addition to being more efficient and less
memory-intensive.

We show that EXPHORMER are a powerful Transformer
that produces results comparable to GraphGPS with a full
transformer. Moreover, when combined with MPNNs in
the GraphGPS framework, we can achieve SOTA or close
to SOTA. EXPHORMER (1) produces better results than
other sparse transformers on all datasets we evaluate; (2)
has results comparable to and in some cases better than
the full transformer, despite having fewer parameters; (3)
achieves state-of-the-art results on many datasets, better
than MPNNs, including on Long Range Graph Benchmark
(LRGB; Dwivedi et al., 2022) datasets that require long-
range dependencies between nodes; and (4) can scale to
larger graphs than previously shown.

2. Related Work
Graph Neural Networks (GNNs). Early works in the
area of graph learning and GNNs include the development
of a number of architectures such as GCN (Defferrard et al.,
2016; Kipf & Welling, 2017), GraphSage (Hamilton et al.,
2017), GIN (Xu et al., 2018), GAT (Veličković et al., 2018),
GatedGCN (Bresson & Laurent, 2017), and more. GNNs
are based on a message-passing architecture that generally
confines their expressivity to the limits of the 1-Weisfeiler-
Lehman (1-WL) isomorphism test (Xu et al., 2018).

A number of recent papers have sought to augment GNNs
to improve their expressivity. For instance, one approach
has been to use additional features that allow nodes to be
distinguished – such as using a one-hot encoding of the
node (Murphy et al., 2019) or a random scalar feature (Sato
et al., 2021) – or to encode positional or structural informa-
tion of the graph – e.g., skip-gram based network embed-
dings (Qiu et al., 2018), substructure counts (Bouritsas et al.,
2020), or Laplacian eigenvectors (Dwivedi et al., 2021). An-
other direction has been to modify the message passing rule
to allow the network to take further advantage of the graph
structure – including directional graph networks (DGN;
Beaini et al., 2021) that use Laplacian eigenvectors to define
directional flows for anisotropic message aggregation – or
to modify the underlying graph over which message passing
occurs with higher-order GNNs (Morris et al., 2019) or the
use of substructures such as junction trees (Fey et al., 2020)
and simplicial complexes (Bodnar et al., 2021).1

Graph transformer architectures. Attention mecha-
nisms have been extremely successful in sequence mod-

1Deac et al. (2022), in work concurrent to and independent of
ours, propose an expander-based graph learning mechanism for
message-passing networks, alternating between layers based on the
input graph with ones based on an auxiliary expander graph. This
scheme is rather different from ours; we do not compare further.

2

EXPHORMER: Sparse Transformers for Graphs

eling since the seminal work of Vaswani et al. (2017). The
GAT architecture (Veličković et al., 2018) proposed using
an attention mechanism to determine how a node aggregates
information from its neighbors; it does not use a positional
encoding for nodes, limiting its ability to exploit global
structural information. GraphBert (Zhang et al., 2020) uses
the graph structure to determine an encoding of the nodes,
but not for the underlying attention mechanism.

Graph transformer models typically operate on a fully-
connected graph in which every pair of nodes is connected,
regardless of the connectivity structure of the original graph.
Spectral Attention Networks (SAN) (Kreuzer et al., 2021)
make use of two attention mechanisms, one on the fully-
connected graph and one on the original edges of the input
graph, while using Laplacian positional encodings for the
nodes. Graphormer (Ying et al., 2021) uses a single dense at-
tention mechanism but adds structural features in the form of
centrality and spatial encodings. Meanwhile, GraphiT (Mi-
alon et al., 2021) incorporates relative positional encodings
based on diffusion kernels.

GraphGPS (Rampásek et al., 2022) proposed a general
framework for combining message-passing networks with
attention mechanisms, while allowing for the mixing and
matching of positional and structural embeddings. Specifi-
cally, the framework also allows for sparse transformer mod-
els like BigBird (Zaheer et al., 2020) and Performer (Choro-
manski et al., 2021).

Moreover, recent works have proposed sampling-based scal-
able graph transformers, e.g., Gophormer (Zhao et al., 2021),
NAGphormer (Chen et al., 2022b). Another line of work
aims to learn data dependencies beyond the given graph
structure using linear time transformers. For instance, Node-
former (Wu et al., 2022) is inspired by Performer (Choro-
manski et al., 2021) and leverages the kernelized Gumbel-
Softmax operator to enable the propagation of information
among all pairs of nodes in a computationally efficient man-
ner. Another work is Difformer (Wu et al., 2023), which, on
the other hand, is a continuous time diffusion-based Trans-
former model. Even though these models can scale up to
millions of nodes, both of them use a random subset of a
maximum of 100K nodes as mini-batches, and the attention
mechanism takes place only over the nodes in the batch.
Transformers are also applied on the spectral GNNs (Bo
et al., 2023).

Sparse Transformers. Standard (dense) transformers
have quadratic complexity in the number of tokens, which
limits their scalability to extremely long sequences. By
contrast, sparse transformer models improve computational
and memory efficiency by restricting the attention pattern,
i.e., the pairs of nodes that can interact with each other. In
addition to BigBird and Performer, there have been a num-

ber of other proposals for sparse transformers; Tay et al.
(2020) provide a survey.

3. Sparse Attention on Graphs
This section describes three sparse patterns that can be used
in transformers in individual layers of a graph transformer
architecture. We begin by describing graph attention mech-
anisms in general.

3.1. Attention mechanism on graphs

An attention mechanism on n tokens can be modeled by a
directed graph H on [n] = {1, 2, . . . , n}, where a directed
edge from i to j indicates a direct interaction between tokens
i and j, i.e., an inner product that will be computed by the
attention mechanism. More precisely, a transformer block
can be viewed as a function on the d-dimensional embed-
dings for each of n tokens, mapping from Rd×n to Rd×n.
Let X = (x1,x2, . . . ,xn) ∈ Rd×n. A generalized (dot-
product) attention mechanism ATTNH : Rd×n → Rd×n

with attention pattern given by H is defined by

ATTNH(X):,i = xi+

h∑
j=1

Wj
OW

j
V XNH(i)·σ

((
Wj

KXNH(i)

)T (
Wj

Qxi

))
,

where h is the number of heads and m is the head size,
while Wj

K ,Wj
Q,W

j
V ∈ Rm×d and Wj

O ∈ Rd×m. (The
subscript K is for “keys,” Q for “queries,” V for “values,”
and O for “output.”) Here XNH(i) denotes the submatrix of
X obtained by picking out only those columns correspond-
ing to elements of NH(i), the neighbors of i in H . We can
see that the total number of inner product computations for
all i ∈ [n] is given by the number of edges of H . A (gener-
alized) transformer block consists of ATTNH followed by a
feedforward layer:

FF(X) = ATTNH(X)

+W2 · ReLU(W1 · ATTNH

(
X) + b11

T
n

)
+ b21

T
n ,

where W1 ∈ Rr×d, W2 ∈ Rd×r, b1 ∈ Rr, and b2 ∈ Rd.

In the standard setting, the n tokens are part of a sequence
(e.g., language applications). However, we are concerned
with the graph transformer setting in which the tokens are
nodes of some underlying graph G = (V,E) with V = [n].
The attention computation is nearly identical, except that
one can also optionally augment it with edge features, as is

3

EXPHORMER: Sparse Transformers for Graphs

done in SAN (Kreuzer et al., 2021):

ATTNH(X):,i = xi +

h∑
j=1

Wj
OW

j
V XNH(i)·

σ

((
Wj

EENH(i) ⊙Wj
KXNH(i)

)T (
Wj

Qxi

))
,

where Wj
E ∈ Rm×dE , ENH(i) is the dE × |NH(i)| matrix

whose columns are dE-dimensional edge features for the
edges connected to node i, and ⊙ denotes element-wise
multiplications.

The most typical cases of graph transformers use full (dense)
attention, where every token attends to every other node:
H is the fully-connected directed graph. As this results in
computational complexity O(n2) for the transformer block,
which is prohibitively expensive for large graphs, we wish
to replace full attention with a sparse attention mechanism,
where H has o(n2) edges – ideally, O(n).

A number of sparse attention mechanisms have been pro-
posed to address the aforementioned issue (see Tay et al.,
2020), but the vast majority are designed specifically for
functions on sequences. EXPHORMER, on the other hand,
is a graph-centric sparse attention mechanism that makes
use of the underlying structure of the input graph G. We
introduce three sparse patterns: expander graphs, global
connectors, and local neighborhoods as three patterns that
can be used in transformers. They can combine together to
make an EXPHORMER layer, but it is not necessary to have
all components in each layer.

GraphGPS (Rampásek et al., 2022) shows an effective way
to include the transformer layers beside an MPNN model.
We use the same architecture as GraphGPS, replacing only
the transformer part with an EXPHORMER layer. We will
show that sparse transformers can get comparable and even
better results on many benchmarks compared to full trans-
formers, or sparse transformer variants originally designed
for sequences.

3.2. The EXPHORMER Architecture

We now describe the details of the construction of EX-
PHORMER, an expander-based sparse attention mechanism
for graph transformers with O(|V | + |E|) computation,
where G = (V,E) is the underlying input graph. The
EXPHORMER architecture constructs an interaction graph
H that consists of three main components, as shown in Fig-
ure 1. The construction always has bidirectional edges, and
so H can be viewed as an undirected graph. The mechanism
uses three types of edges:

1. Expander graph attention: Edges from a random ex-
pander graph can be used as attention patterns. These

(a) (b)

(c) (d)

Figure 1. The components of EXPHORMER: (a) shows local neigh-
borhood attention, i.e., edges of the input graph. (b) shows an
expander graph with degree 3. (c) shows global attention with
a single virtual node. (d) All of the aforementioned components
are combined into a single interaction graph that determines the
attention pattern of EXPHORMER.

graphs have several useful theoretical properties related
to spectral approximation and random walk mixing
(see Section 4), which allow propagating information
between pairs of nodes that are distant in the input
graph G without connecting all pairs of nodes. They
introduce many alternative short paths between the
nodes and avoid the information bottleneck that can
be caused by the virtual nodes. In particular, we use
a regular expander graph of constant degree, which
allows the number of edges to be just O(|V |). The
process we use to construct a random expander graph
is described below.

2. Global attention: The next component is global at-
tention, whereby a small number of virtual nodes are
added to the interaction graph, and each such node is
connected to all the non-virtual nodes. These nodes
enable a global “storage sink” and they have universal
approximator functions for full transformers. We will
generally add a constant number of virtual nodes, in
which case the total number of edges due to global
attention will be O(|V |).

3. Local neighborhood attention: Another desirable
property to capture is locality. Graphs carry much
more topological structure than sequences, and the
neighborhoods of individual nodes carry a lot of in-
formation about connectivity. Thus, we model local
interactions by allowing each node v to attend to every
other node that is an immediate neighbor of v in G:
that is, H includes the input graph edges E as well
as their reverses, introducing O(|E|) interaction edges.
One generalization would be to allow direct attention

4

EXPHORMER: Sparse Transformers for Graphs

Table 1. Comparison of EXPHORMER with baselines on various datasets. Best results are colored in first, second, third.
Model CIFAR10 MalNet-Tiny MNIST CLUSTER PATTERN

Accuracy ↑ Accuracy ↑ Accuracy ↑ Accuracy ↑ Accuracy ↑
GCN (Kipf & Welling, 2017) 55.71±0.381 81.0 90.71±0.218 68.50 ± 0.976 71.89 ± 0.334
GIN (Xu et al., 2018) 55.26±1.527 88.98±0.557 96.49±0.252 64.72 ± 1.553 85.39 ± 0.136
GAT (Veličković et al., 2018) 64.22±0.455 92.1 ±0.242 95.54±0.205 70.59 ± 0.447 78.27 ± 0.186
GatedGCN (Bresson & Laurent, 2017;

Dwivedi et al., 2020)
67.31±0.311 92.23±0.65 97.34±0.143 73.84 ± 0.326 85.57 ± 0.088

PNA (Corso et al., 2020) 70.35±0.63 – 97.94±0.12 – –
DGN (Beaini et al., 2021) 72.84±0.417 – – – 86.68±0.034

CRaWl (Toenshoff et al., 2021) 69.01±0.259 – 97.94±0.050 – –
GIN-AK+ (Zhao et al., 2022b) 72.19±0.13 – – – 86.85±0.057
SAN (Kreuzer et al., 2021) – – – 76.69±0.65 86.58±0.037
K-Subgraph SAT (Chen et al., 2022a) – – – 77.86±0.104 86.85±0.037
EGT (Hussain et al., 2021) 68.70±0.409 98.17±0.087 79.23±0.348 86.82±0.020
GraphGPS (Rampásek et al., 2022) 72.30±0.356 93.50±0.41 98.05±0.126 78.02±0.180 86.69±0.059

EXPHORMER (ours) 74.69±0.125 94.02 ± 0.209 98.55 ± 0.039 78.07 ± 0.037 86.74±0.015

within k-hop neighborhoods, but this might introduce
a superlinear number of interactions on general graphs.

We use learnable embeddings for expander and global con-
nection edge features, and virtual nodes’ features. Dataset
edge features are used for the local neighborhood edge fea-
tures. We always use local neighborhoods in EXPHORMER
layers, but expander graphs and global attention are not al-
ways helpful; depending on the dataset, we may use both, or
only one or the other. We discuss this further in Appendix D.

Some previous graph-oriented transformers, such as the
SAN architecture (Kreuzer et al., 2021), use separate atten-
tion mechanisms for different sources of edges. By using a
single attention mechanism, EXPHORMER achieves a more
compact model that can still distinguish the “types” of at-
tention edges based on edge features.

Generating a Random Regular Expander We now de-
scribe the means by which we generate a random regular
expander. Let G = (V,E) be the original graph, where
V = {1, 2, . . . , n}. For the purposes of experimentation (in
Tables 1 to 5), we use the random graph process analyzed
in Friedman (2003) (see Theorem C.2 in Appendix C) to
generate a random d-regular graph G′ = (V,E′) on the
same node set V as follows:

• Pick d/2 permutations π1, π2, . . . , πd/2 on V , each
πi chosen independently and uniformly among all n
permutations.

• Then, choose

E′ =
{
(i, πj(i)), (i, π

−1
j (i)) : j ∈ [d/2], i ∈ [n]

}
,

where [k] denotes {1, 2, . . . , k}.

The above process works for even d, and Theorem C.2
shows that the resulting graph will be a d-regular near-
Ramanujan graph with high probability. In practice, we
will generate expander graphs using this process and throw

out any graphs that fail to be near-Ramanujan, according to
a desired threshold (this is a low probability event).

We provide further details in Appendix C, where we also
discuss other algorithms for generating expander graphs.

4. Theoretical Properties of EXPHORMER

EXPHORMER is based on expander graphs, which have a
number of properties that make them suitable as a key build-
ing block of our approach. In this section, we describe
relevant properties of expander graphs along with their im-
plications for EXPHORMERs.

4.1. Expander Graphs Approximate Complete Graphs

For simplicity, let us consider d-regular graphs (where every
node has d neighbors). Suppose G is a d-regular undirected
graph on n vertices. Let AG be the n× n adjacency matrix
of G. It is known that AG has n real eigenvalues d =
λ1 ≥ λ2 ≥ · · · ≥ λn ≥ −d. The graph G is said to be an
ϵ-expander if max{|λ2|, |λn|} ≤ ϵd (Hoory et al., 2006).

Expander graphs are sparse approximations of complete
graphs. As we discuss, expander graphs with only O(n)
edges exist that can preserve certain desirable properties of
the complete graph with Θ(n2) edges.

4.1.1. SPECTRAL PROPERTIES

A useful tool to study expanders is the Laplacian matrix of a
graph, which captures several important spectral properties.
Letting DG denote the n × n diagonal matrix whose i-th
diagonal entry is the degree of the i-th node, we define
LG = DG − AG to be the Laplacian of G. The following
theorem is well-known in spectral graph theory.

Theorem 4.1. (Spielman, 2019, Section 27.2) A d-regular
ϵ-expander G on n vertices spectrally approximates the

5

EXPHORMER: Sparse Transformers for Graphs

complete graph Kn on n vertices:2

(1− ϵ)
1

n
LK ⪯ 1

d
LG ⪯ (1 + ϵ)

1

n
LK .

Spectral approximation is known to preserve the cut struc-
ture in graphs. As a result, a sparse attention mechanism
based on expander edges retains spectral properties of the
full attention mechanism: cuts, vertex expansion, and so on.

4.1.2. MIXING PROPERTIES

Another property of expanders is that random walks mix
well. Let G = (V,E) be a d-regular ϵ-expander. Consider
a random walk v0, v1, v2, . . . on G, where v0 ∼ π(0), and
then each subsequent vt+1 is one of the d neighbors of
vt chosen uniformly at random. We then have vt ∼ π(t),
given recursively by π(t+1) = D−1

G AGπ
(t). It turns out that

after a logarithmic number of steps, a random walk from a
starting probability distribution on the vertices is close to
uniformly distributed along all nodes of the graph.

Lemma 4.2. (Hoory et al., 2006, Theorem 3.2) Let G =
(V,E) be a d-regular ϵ-expander graph on n = |V | nodes.
For any initial distribution π(0) : V → R+ and any δ > 0,
π(t) satisfies

∥π(t) − 1
n∥1 ≤ δ

as long as t ≥ 1
2(1−ε) log(n/δ

2).

In an attention mechanism of a transformer, one can consider
the graph of pairwise interactions (i.e., i is connected to j if
i and j attend to each other). If the attention mechanism is
dense, then each node is connected to every other node and
it is trivial to see that every pair of nodes interacts with each
other in a single transformer layer. In a sparse attention
mechanism, on the other hand, some pairs of nodes are
not directly connected, meaning that a single transformer
layer will not model interactions between all pairs of nodes.
However, if we stack transformer layers on top of each other,
the stack will be able to model longer range interactions. In
particular, a consequence of the above lemma is that if our
sparse attention mechanism is modeled after an ϵ-expander
graph, then stacking at least t = 1

2(1−ϵ) log(n/δ
2) layers

will model “most” pairwise interactions between nodes.

Relatedly, the diameter of expander graphs is asymptotically
logarithmic in the number of nodes.

Theorem 4.3. (Hoory et al., 2006, Section 2.4) Suppose
G = (V,E) is a d-regular ϵ-expander graph on n vertices.
Then, for every vertex v and k ≥ 0, the k-hop neighborhood
B(v, r) = {w ∈ V : dist(v, w) ≤ k} has

|B(v, r)| ≥ min{(1 + c)k, n}
2For matrices A and B, we say that A ⪯ B if B − A is a

positive semi-definite matrix.

for some constant c > 0 depending on d, ϵ. In particular,
we have that diam(G) = Od,ϵ(log n).

As a consequence, we obtain the following, which shows
that using logarithmically many successive transformer lay-
ers allows each node to propagate information to every node.

Corollary 4.4. If a sparse attention mechanism on n nodes
is a d-regular ϵ-expander graph, then stacking Od,ϵ(log n)
transformer layers models all pairwise node interactions.

4.2. Universal Approximability of EXPHORMER Models

The expander graph attention and global attention compo-
nents of EXPHORMER ensure that a sublinear number of
graph transformer layers is sufficient to allow each node
to interact (directly or indirectly) with every other node,
alleviating potential underreaching issues (even in the ab-
sence of global nodes, O(log n) layers are sufficient, by
Corollary 4.4). Nevertheless, a natural question is whether
a sparse transformer model based on EXPHORMER allows
universal approximation of functions.

Dense transformer models are known to be universal approx-
imators, i.e., with the use of positional encodings, they can
approximate any continuous sequence-to-sequence function
on a compact domain arbitrarily closely (Yun et al., 2020a).
In the realm of graph learning, this provides a compelling
motivation for considering graph transformers over standard
MPNNs, which are known to be limited in expressive power
by the Weisfeiler-Lehman (WL) hierarchy.

Universal approximation properties for dense transformers
do not automatically hold for sparse transformers, but we
show every continuous function f : [0, 1]d×|V | → Rd×|V |

can be approximated to any desired accuracy by an EX-
PHORMER network using either global attention or a suitable
version of expander attention. Details are in Appendix E.

5. Experiments
In this section, we evaluate the empirical performance of
graph transformer models based on EXPHORMER on a wide
variety of graph datasets with graph prediction and node
prediction tasks (Dwivedi et al., 2020; Hu et al., 2020;
Freitas et al., 2021; Shchur et al., 2018; Namata et al.,
2012). In particular, we present experiments on fifteen
benchmark datasets, including image-based graph datasets
(CIFAR10, MNIST, PascalVOC-SP, COCO-SP), synthetic
SBM datasets (PATTERN, CLUSTER), code graph datasets
(MalNet-Tiny), and molecular datasets (Peptides-Func,
Peptides-Struct, PCQM-Contact). Moreover, we demon-
strate the ability of EXPHORMER to allow graph transform-
ers to scale to larger graphs (with more than 5,000 nodes)
by including results on five transductive graph datasets con-
sisting of citation networks (CS, Physics, ogbn-arxiv) and

6

EXPHORMER: Sparse Transformers for Graphs

Table 2. Comparison of attention mechanisms in GPS. EXPHORMER outperforms other sparse transformer architectures (BigBird and
Performer) while also beating the full transformer GPS models on three of four datasets. Best results are colored in first, second, third.

Model/Dataset Cifar10 MalNet-Tiny PascalVOC-SP Peptides-Func
Accuracy ↑ Accuracy ↑ F1 score ↑ AP ↑

GPS (MPNN-only) 69.948 ± 0.499 92.23 ± 0.65 0.3016 ± 0.0031 0.6159 ± 0.0048

GPS-BigBird 70.480 ± 0.106 92.34 ± 0.34 0.2762 ± 0.0069 0.5854 ± 0.0079
GPS-Performer 70.670 ± 0.338 92.64 ± 0.78 0.3724 ± 0.0131 0.6475 ± 0.0056
GPS-Transformer 72.305 ± 0.344 93.50 ± 0.41 0.3736 ± 0.0158 0.6535 ± 0.0041

EXPHORMER 74.69±0.125 94.02 ± 0.21 0.3975 ± 0.0037 0.6527 ± 0.0043

co-purchasing networks (Computer, Photo).

For the experimental setup, we combine EXPHORMER
together with MPNNs in the GraphGPS frame-
work (Rampásek et al., 2022), which constructs graph
transformer models by composing attention mechanisms
with message-passing schemes, together with an appropriate
choice of positional and structural encodings.

In addition to comparisons with baselines on the aforemen-
tioned datasets, we also run ablation studies on the various
attention components of EXPHORMER (from Section 3.2).

In summary, our experiments show that: (a) EXPHORMER
achieves SOTA performance on a variety of datasets, (b)
EXPHORMER consistently outperforms other sparse atten-
tion mechanisms while often surpassing dense transformers
using fewer parameters, and (c) EXPHORMER successfully
allows GraphGPS to overcome memory bottlenecks and
scale to larger graphs (on > 10, 000 nodes) while still pro-
viding competitive performance.

5.1. Comparison to Sparse Attention Mechanisms

We first discuss a comparison of our EXPHORMER-based
models with other sparse transformer architectures, which
are a natural first point of comparison. In particular, we
perform a series of experiments that compare EXPHORMER-
based architectures with sparse transformer baselines in the
GraphGPS framework. More specifically, for each dataset,
we compare our best EXPHORMER model with GraphGPS
models that use BigBird and Performer for the underlying
attention mechanism.

The results are shown in Table 2. Note that on each of
the four highlighted datasets, an EXPHORMER model out-
performs the sparse attention models GPS-BigBird and
GPS-Performer. Furthermore, it even outperforms the full
(dense) transformer model (GPS-Transformer) on three of
the datasets while performing competitively on the fourth.
Since GraphGPS models make use of both attention (trans-
former) and message passing components, we additionally
point out that the EXPHORMER-based sparse attention com-
ponent is, indeed, providing lift over a standard MPNN
baseline that does not make use of attention at all.

5.2. Benchmarking GNNs Datasets

We have showed in Section 5.1 that EXPHORMER consis-
tently outperforms relevant sparse attention baselines. The
natural next question is how EXPHORMER performs relative
to a wider range of baselines, including not just graph trans-
former models but also other architectures such as MPNNs.

Table 1 shows results on five datasets, including four from
the Benchmarking GNNs collection (Dwivedi et al., 2020)
as well as the code graph dataset MalNet-Tiny (Freitas et al.,
2021). We note that an EXPHORMER-based graph trans-
former with message-passing in the GraphGPS framework
yields state-of-the-art (SOTA) performance on three of the
datasets and is competitive with the best single model accu-
racies on the remaining datasets.

Observe that on all five datasets, our EXPHORMER models
provide better accuracy than GraphGPS models based on
full (dense) transformers. Additionally, the EXPHORMER
models outperform the full transformer-based SAN model
as well as a variety of MPNN baselines.
Remark 5.1. Our EXPHORMER models often outperform
full transformer models with a much smaller number of pa-
rameters. For instance, on PATTERN, our results reported in
Table 1 are obtained from an EXPHORMER model with just
90,000 parameters, compared to 340,000 parameters in the
comparable full transformer GraphGPS model! Similarly,
on CLUSTER, our EXPHORMER model uses just 280,000
parameters, as compared to 500,000 parameters for the full
transformer GraphGPS model. This results in simpler mod-
els with time and memory advantages. For further details
on hyperparameters, see Table 7 in the appendix.
Remark 5.2. EXPHORMER models often enable larger batch
sizes during training. On MalNet-Tiny, which contains
some graphs with around 5,000 nodes, the full transformer
GraphGPS model runs out of memory on a 40GB NVIDIA
A100 GPU when using a batch size of just 16, while our
sparse EXPHORMER models handle a batch size of 256.

5.3. Long-Range Graph Benchmark

We have additionally conducted a set of experiments on
the Long-Range Graph Benchmark (LRGB, Dwivedi et al.,

7

EXPHORMER: Sparse Transformers for Graphs

Table 3. Comparison of EXPHORMER with baselines from the Long-Range Graph Benchmarks (LRGB, Dwivedi et al., 2022). Best results
are colored in first, second, third.

Model PascalVOC-SP COCO-SP Peptides-Func Peptides-Struct PCQM-Contact
F1 score ↑ F1 score ↑ AP ↑ MAE ↓ MRR ↑

GCN 0.1268 ± 0.0060 0.0841 ± 0.0010 0.5930 ± 0.0023 0.3496 ± 0.0013 0.3234 ± 0.0006
GINE 0.1265 ± 0.0076 0.1339 ± 0.0044 0.5498 ± 0.0079 0.3547 ± 0.0045 0.3180 ± 0.0027
GatedGCN 0.2873 ± 0.0219 0.2641 ± 0.0045 0.5864 ± 0.0077 0.3420 ± 0.0013 0.3218 ± 0.0011
GatedGCN+RWSE 0.2860 ± 0.0085 0.2574 ± 0.0034 0.6069 ± 0.0035 0.3357 ± 0.0006 0.3242 ± 0.0008

Transformer+LapPE 0.2694 ± 0.0098 0.2618 ± 0.0031 0.6326 ± 0.0126 0.2529 ± 0.0016 0.3174 ± 0.0020
SAN+LapPE 0.3230 ± 0.0039 0.2592 ± 0.0158* 0.6384 ± 0.0121 0.2683 ± 0.0043 0.3350 ± 0.0003
SAN+RWSE 0.3216 ± 0.0027 0.2434 ± 0.0156* 0.6439 ± 0.0075 0.2545 ± 0.0012 0.3341 ± 0.0006
GraphGPS 0.3748 ± 0.0109 0.3412 ± 0.0044 0.6535 ± 0.0041 0.2500 ± 0.0005 0.3337 ± 0.0006

Exphormer (ours) 0.3975 ± 0.0037 0.3455 ± 0.0009 0.6527 ± 0.0043 0.2481 ± 0.0007 0.3637 ± 0.0020

Table 4. Accuracy of models with different attention mechanisms on transductive graph datasets (numbers in top rows, other than arXiv,
are from Chen et al., 2022b). Chen et al. did not report NAGphormer results on this dataset.

Model ogbn-arxiv Computer Photo CS Physics

SAN OOM 89.83 ± 0.16 94.86 ± 0.10 94.51 ± 0.15 OOM
GraphGPS OOM OOM 95.06 ± 0.13 93.93 ± 0.12 OOM
NAGphormer NA 91.22 ± 0.14 95.49 ± 0.11 95.75 ± 0.09 97.34 ± 0.03

EXPHORMER 72.44 ± 0.28 91.59 ± 0.31 95.27 ± 0.42 95.77 ± 0.15 97.16 ± 0.13

Table 5. Results for the full model versus removing each of the components. For the Peptides-Struct dataset, lower is better; for all the
others, higher is better.

Dataset No Local Edges No Expander Edges No Global Nodes All Components

Cifar10 74.62± 0.12 74.53± 0.19 74.68± 0.19 74.69± 0.13

Malnet-Tiny 92.64± 0.55 94.02± 0.21 92.48± 0.33 92.06± 0.18

Pattern 86.59± 0.03 86.70± 0.02 86.14± 0.08 86.74± 0.02

PascalVOC-SP 0.3708± 0.0039 0.3588± 0.0013 0.3975± 0.0037 0.3682± 0.0042

Peptides-Struct 0.2631± 0.0007 0.2481± 0.0007 0.2655± 0.0003 0.2643± 0.0008

Computer 90.34± 0.45 91.48± 0.41 91.59± 0.31 91.43± 0.53

2022), which consists of five challenging datasets that test
a model’s ability to learn long-range dependencies in in-
put graphs. The results are presented in Table 3, which
shows that our EXPHORMER-based sparse attention mod-
els are able to outperform GraphGPS on three of the five
datasets, achieving SOTA performance. Furthermore, on the
remaining two datasets in the LRGB suite, EXPHORMER is
competitive with the best single model results, obtained by
full attention GraphGPS models.

5.4. Scaling to Larger Graphs

One of the shortcomings of graph transformer architectures
has been their poor scalability to larger graphs on thou-
sands of nodes. Dense attention mechanisms (e.g., SAN and
Graphormer) have quadratic memory complexity and time
complexity, which restrict their applicability to datasets on
graphs with relatively few nodes, such as molecular graphs.

GraphGPS has made use of sparse attention mechanisms,
but even so, the architecture handles graphs of up to about

5,000 nodes (e.g., MalNet-Tiny, Freitas et al., 2021), often
with very small batch size (see Remark 5.2).

A natural question is whether the sparse attention mech-
anism of EXPHORMER models allows us to extend graph
transformer architectures to significantly larger graphs while
providing competitive performance. Indeed, we show this is
the case by training EXPHORMER models on larger datasets,
including Amazon Computer, Amazon Photo, Coauthor
CS, Coauthor Physics (Shchur et al., 2018), which has up
to 35K nodes and 250K edges. We also show the use of
EXPHORMER on ogbn-arxiv, which has 169K nodes and
1.1M edges. The results are shown in Table 4. Standard
GraphGPS models suffer from Out Of Memory (OOM)
issues on a number of these datasets, demonstrating the util-
ity of EXPHORMER. To provide meaningful comparisons
to other transformer architectures, we thus include NAG-
phormer (Chen et al., 2022b), a scalable sampling-based
graph transformer architecture, as a baseline. EXPHORMER
performs competitively and, in fact, achieves SOTA accu-
racy on Computer: the best non-transformer method has an

8

EXPHORMER: Sparse Transformers for Graphs

accuracy of 90.74 (Luo et al., 2022).

We would also like to highlight that EXPHORMER can be
used for even larger graphs, with hundreds of thousands of
nodes. In particular, we provide results on ogbn-arxiv (Hu
et al., 2020), a challenging transductive dataset consisting
of a single large graph of the citation network of over 160K
arXiv papers, containing over a million edges. Specifically,
we achieve a test accuracy of 0.7244 using the EXPHORMER
architectures. At the time of writing, a relevant leader-
board (ogb) shows 0.7966 as the highest reported test accu-
racy (Zhao et al., 2022a). Table 15 compares EXPHORMER
to other MPNNs and sparse transformers. A dense full trans-
former does not even fit in memory on a 40GB NVIDIA
A100 GPU (even for a tiny network of only 2 layers and
32 hidden dimensions). We then fixed the network size
to 3 hidden layers and 96 hidden dimensions to be able
to fit the sparse models in memory. Notice that BigBird
and Performer have significantly longer epoch times and
worse performance than with just a MPNN. EXPHORMER
with virtual nodes only (without expander edges) improves
on the MPNN and provides an accuracy of 0.7222. EX-
PHORMER with expander edges further improves the accu-
racy to 0.7244.

5.5. Ablation Studies

Here we analyze the effect of each of the components of
the model. Our EXPHORMER model has three main com-
ponents: local neighborhood, expander edges, and virtual
nodes. In Table 5, we analyze which parts of the model have
been useful, and which parts can be removed without reduc-
ing the performance. In all of these experiments, the MPNN
part is fixed, so it gives a baseline number for the results, and
the transformer part boosts over the MPNN part. Through
these experiments we can see that local neighborhood have
been always a good option to add to the Exphormer, but
between virtual nodes and expander graphs, sometimes one
of them causes reduction in the performance. This issue is
discussed further in Appendix D.

6. Conclusion
EXPHORMER is a new class of sparse graph transformer
architectures. We introduced two types of sparse networks
with virtual nodes and using expander graphs. We have
shown that the mathematical properties of our architecture
make EXPHORMER a suitable choice for graph learning.
Our sparse architecture uses fewer training parameters, is
faster to train and has memory complexity linear in the size
of the graph. These properties help us scale to larger graphs
which were typically elusive to other Transformer-based
methods. EXPHORMER outperforms other sparse transform-
ers and performs comparably or better than full transformers.
We have shown the applicability of EXPHORMER on a wide

variety of graph learning datasets. Combining EXPHORMER
with MPNN in the GraphGPS framework allows us to obtain
state-of-the-art empirical results on a number of datasets.

Acknowledgements
This work was supported in part by the Natural Sciences
and Engineering Resource Council of Canada, the Canada
CIFAR AI Chairs program, the BC DRI Group, Compute
Ontario, Calcul Québec, and the Digital Resource Alliance
of Canada.

References
OGB leaderboard for arxiv dataset. https:
//ogb.stanford.edu/docs/leader_
nodeprop/#ogbn-arxiv. Accessed: 2023-01-26.

Alon, N. Explicit expanders of every degree and size. Com-
binatorics, 41(4):447–463, 2021.

Alon, U. and Yahav, E. On the bottleneck of graph neural
networks and its practical implications. In 9th Interna-
tional Conference on Learning Representations, ICLR
2021, Virtual Event, Austria, May 3-7, 2021, 2021.

Beaini, D., Passaro, S., Létourneau, V., Hamilton, W., Corso,
G., and Liò, P. Directional graph networks. In Inter-
national Conference on Machine Learning (ICML), pp.
748–758. PMLR, 2021.

Bo, D., Shi, C., Wang, L., and Liao, R. Specformer: Spectral
graph neural networks meet transformers. arXiv preprint
arXiv:2303.01028, 2023.

Bodnar, C., Frasca, F., Otter, N., Wang, Y. G., Liò, P., Mont-
ufar, G. F., and Bronstein, M. Weisfeiler and lehman go
cellular: Cw networks. Advances in Neural Information
Processing Systems, 34, 2021.

Bouritsas, G., Frasca, F., Zafeiriou, S., and Bronstein,
M. M. Improving graph neural network expressivity
via subgraph isomorphism counting. arXiv preprint
arXiv:2006.09252, 2020.

Bresson, X. and Laurent, T. Residual gated graph convnets.
arXiv preprint arXiv:1711.07553, 2017.

Chen, D., O’Bray, L., and Borgwardt, K. Structure-
aware transformer for graph representation learning.
arXiv:2202.03036, 2022a.

Chen, J., Gao, K., Li, G., and He, K. Nagphormer: Neigh-
borhood aggregation graph transformer for node classifi-
cation in large graphs. CoRR, abs/2206.04910, 2022b.

9

https://ogb.stanford.edu/docs/leader_nodeprop/#ogbn-arxiv
https://ogb.stanford.edu/docs/leader_nodeprop/#ogbn-arxiv
https://ogb.stanford.edu/docs/leader_nodeprop/#ogbn-arxiv

EXPHORMER: Sparse Transformers for Graphs

Choromanski, K. M., Likhosherstov, V., Dohan, D., Song,
X., Gane, A., Sarlós, T., Hawkins, P., Davis, J. Q., Mo-
hiuddin, A., Kaiser, L., Belanger, D. B., Colwell, L. J.,
and Weller, A. Rethinking attention with performers. In
ICLR, 2021.

Corso, G., Cavalleri, L., Beaini, D., Liò, P., and Veličković,
P. Principal neighbourhood aggregation for graph nets.
Advances in Neural Information Processing Systems
(NeurIPS), 33, 2020.

Deac, A., Lackenby, M., and Veličković, P. Expander graph
propagation. In Learning on Graphs 2022, 2022. URL
https://arxiv.org/abs/2210.02997.

Defferrard, M., Bresson, X., and Vandergheynst, P. Con-
volutional neural networks on graphs with fast localized
spectral filtering. Advances in neural information pro-
cessing systems, 29:3844–3852, 2016.

Dwivedi, V. P. and Bresson, X. A generalization of trans-
former networks to graphs. CoRR, abs/2012.09699, 2020.

Dwivedi, V. P., Joshi, C. K., Laurent, T., Bengio, Y., and
Bresson, X. Benchmarking graph neural networks. CoRR,
abs/2003.00982, 2020. URL https://arxiv.org/
abs/2003.00982.

Dwivedi, V. P., Luu, A. T., Laurent, T., Bengio, Y., and
Bresson, X. Graph neural networks with learnable
structural and positional representations. arXiv preprint
arXiv:2110.07875, 2021.

Dwivedi, V. P., Rampásek, L., Galkin, M., Parviz, A., Wolf,
G., Luu, A. T., and Beaini, D. Long range graph bench-
mark. CoRR, abs/2206.08164, 2022.

Fey, M., Yuen, J.-G., and Weichert, F. Hierarchical inter-
message passing for learning on molecular graphs. arXiv
preprint arXiv:2006.12179, 2020.

Freitas, S., Dong, Y., Neil, J., and Chau, D. H. A large-
scale database for graph representation learning. In Van-
schoren, J. and Yeung, S. (eds.), Proceedings of the Neu-
ral Information Processing Systems Track on Datasets
and Benchmarks 1, NeurIPS Datasets and Benchmarks
2021, December 2021, virtual, 2021.

Friedman, J. A proof of Alon’s second eigenvalue con-
jecture. In Larmore, L. L. and Goemans, M. X. (eds.),
Proceedings of the 35th Annual ACM Symposium on The-
ory of Computing, June 9-11, 2003, San Diego, CA, USA,
pp. 720–724. ACM, 2003.

Hamilton, W. L., Ying, R., and Leskovec, J. Inductive
representation learning on large graphs. In Proceedings of
the 31st International Conference on Neural Information
Processing Systems, pp. 1025–1035, 2017.

Hoory, S., Linial, N., and Wigderson, A. Expander graphs
and their applications. Bull. Amer. Math. Soc., 43(04):
439–562, August 2006. ISSN 0273-0979.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B.,
Catasta, M., and Leskovec, J. Open graph benchmark:
Datasets for machine learning on graphs. In Larochelle,
H., Ranzato, M., Hadsell, R., Balcan, M., and Lin, H.
(eds.), Advances in Neural Information Processing Sys-
tems 33: Annual Conference on Neural Information Pro-
cessing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020.

Hu, W., Fey, M., Ren, H., Nakata, M., Dong, Y., and
Leskovec, J. OGB-LSC: A large-scale challenge for ma-
chine learning on graphs. CoRR, abs/2103.09430, 2021.

Hussain, M. S., Zaki, M. J., and Subramanian, D. Edge-
augmented graph transformers: Global self-attention is
enough for graphs. arXiv preprint arXiv:2108.03348,
2021.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. In International
Conference on Learning Representations (ICLR), 2017.

Kreuzer, D., Beaini, D., Hamilton, W. L., Létourneau, V.,
and Tossou, P. Rethinking graph transformers with spec-
tral attention. arXiv preprint arXiv:2106.03893, 2021.

Lubotzky, A., Phillips, R., and Sarnak, P. Ramanujan graphs.
Comb., 8(3):261–277, 1988.

Luo, Y., Luo, G., Yan, K., and Chen, A. Inferring from
references with differences for semi-supervised node clas-
sification on graphs. Mathematics, 10(8), 2022. ISSN
2227-7390. doi: 10.3390/math10081262. URL https:
//www.mdpi.com/2227-7390/10/8/1262.

Margulis, G. A. Explicit group-theoretic constructions
of combinatorial schemes and their applications in the
construction of expanders and concentrators. Problemy
Peredachi Informatsii, 24(1):51–60, 1988. ISSN 0555-
2923.

Mialon, G., Chen, D., Selosse, M., and Mairal, J. Graphit:
Encoding graph structure in transformers. CoRR,
abs/2106.05667, 2021.

Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen,
J. E., Rattan, G., and Grohe, M. Weisfeiler and leman go
neural: Higher-order graph neural networks. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 33, pp. 4602–4609, 2019.

Murphy, R., Srinivasan, B., Rao, V., and Ribeiro, B. Re-
lational pooling for graph representations. In Interna-
tional Conference on Machine Learning, pp. 4663–4673.
PMLR, 2019.

10

https://arxiv.org/abs/2210.02997
https://arxiv.org/abs/2003.00982
https://arxiv.org/abs/2003.00982
https://www.mdpi.com/2227-7390/10/8/1262
https://www.mdpi.com/2227-7390/10/8/1262

EXPHORMER: Sparse Transformers for Graphs

Namata, G. M., London, B., Getoor, L., and Huang, B.
Query-driven active surveying for collective classifi-
cation. In Workshop on Mining and Learning with
Graphs, 2012. URL http://linqs.cs.umd.edu/
basilic/web/Publications/2012/namata:
mlg12-wkshp/namata-mlg12.pdf.

Oono, K. and Suzuki, T. Graph neural networks exponen-
tially lose expressive power for node classification. In 8th
International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020,
2020.

Qiu, J., Dong, Y., Ma, H., Li, J., Wang, K., and Tang, J.
Network embedding as matrix factorization: Unifying
deepwalk, line, pte, and node2vec. In Proceedings of the
eleventh ACM international conference on web search
and data mining, pp. 459–467, 2018.

Rampásek, L., Galkin, M., Dwivedi, V. P., Luu, A. T., Wolf,
G., and Beaini, D. Recipe for a general, powerful, scal-
able graph transformer. CoRR, abs/2205.12454, 2022.

Sato, R., Yamada, M., and Kashima, H. Random features
strengthen graph neural networks. In Proceedings of the
2021 SIAM International Conference on Data Mining
(SDM), pp. 333–341. SIAM, 2021.

Shchur, O., Mumme, M., Bojchevski, A., and Günnemann,
S. Pitfalls of graph neural network evaluation. CoRR,
abs/1811.05868, 2018.

Spielman, D. A. Spectral and algebraic graph the-
ory, 2019. URL http://cs-www.cs.yale.edu/
homes/spielman/sagt. Version dated December
19, 2019.

Tay, Y., Dehghani, M., Bahri, D., and Metzler, D. Efficient
transformers: A survey. CoRR, abs/2009.06732, 2020.
URL https://arxiv.org/abs/2009.06732.

Toenshoff, J., Ritzert, M., Wolf, H., and Grohe, M.
Graph learning with 1d convolutions on random walks.
arXiv:2102.08786, 2021.

Topping, J., Giovanni, F. D., Chamberlain, B. P., Dong,
X., and Bronstein, M. M. Understanding over-squashing
and bottlenecks on graphs via curvature. In The Tenth
International Conference on Learning Representations,
ICLR 2022, Virtual Event, April 25-29, 2022, 2022.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is all you need. In Guyon, I., von Luxburg, U., Bengio,
S., Wallach, H. M., Fergus, R., Vishwanathan, S. V. N.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pp. 5998–6008, 2017.

Veličković, P., Cucurull, G., Casanova, A., Romero, A.,
Lio, P., and Bengio, Y. Graph attention networks. In
International Conference on Learning Representations
(ICLR), 2018.

Wu, Q., Zhao, W., Li, Z., Wipf, D. P., and Yan, J. Node-
former: A scalable graph structure learning transformer
for node classification. Advances in Neural Information
Processing Systems, 35:27387–27401, 2022.

Wu, Q., Yang, C., Zhao, W., He, Y., Wipf, D., and
Yan, J. Difformer: Scalable (graph) transformers in-
duced by energy constrained diffusion. arXiv preprint
arXiv:2301.09474, 2023.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful
are graph neural networks? In International Conference
on Learning Representations, 2018.

Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen,
Y., and Liu, T.-Y. Do transformers really perform bad for
graph representation? ArXiv, abs/2106.05234, 2021.

Yun, C., Bhojanapalli, S., Rawat, A. S., Reddi, S. J., and
Kumar, S. Are transformers universal approximators of
sequence-to-sequence functions? In 8th International
Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020, 2020a.

Yun, C., Chang, Y., Bhojanapalli, S., Rawat, A. S., Reddi,
S. J., and Kumar, S. O(n) connections are expressive
enough: Universal approximability of sparse transform-
ers. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan,
M., and Lin, H. (eds.), Advances in Neural Information
Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, De-
cember 6-12, 2020, virtual, 2020b.

Zaheer, M., Guruganesh, G., Dubey, K. A., Ainslie, J., Al-
berti, C., Ontañón, S., Pham, P., Ravula, A., Wang, Q.,
Yang, L., and Ahmed, A. Big bird: Transformers for
longer sequences. In Larochelle, H., Ranzato, M., Had-
sell, R., Balcan, M., and Lin, H. (eds.), NeurIPS, 2020.

Zhang, J., Zhang, H., Xia, C., and Sun, L. Graph-bert: Only
attention is needed for learning graph representations.
CoRR, abs/2001.05140, 2020.

Zhao, J., Li, C., Wen, Q., Wang, Y., Liu, Y., Sun, H., Xie,
X., and Ye, Y. Gophormer: Ego-graph transformer for
node classification. CoRR, abs/2110.13094, 2021.

Zhao, J., Qu, M., Li, C., Yan, H., Liu, Q., Li, R., Xie,
X., and Tang, J. Learning on large-scale text-attributed
graphs via variational inference, 2022a. URL https:
//arxiv.org/abs/2210.14709.

11

http://linqs.cs.umd.edu/basilic/web/Publications/2012/namata:mlg12-wkshp/namata-mlg12.pdf
http://linqs.cs.umd.edu/basilic/web/Publications/2012/namata:mlg12-wkshp/namata-mlg12.pdf
http://linqs.cs.umd.edu/basilic/web/Publications/2012/namata:mlg12-wkshp/namata-mlg12.pdf
http://cs-www.cs.yale.edu/homes/spielman/sagt
http://cs-www.cs.yale.edu/homes/spielman/sagt
https://arxiv.org/abs/2009.06732
https://arxiv.org/abs/2210.14709
https://arxiv.org/abs/2210.14709

EXPHORMER: Sparse Transformers for Graphs

Zhao, L., Jin, W., Akoglu, L., and Shah, N. From stars
to subgraphs: Uplifting any GNN with local structure
awareness. In International Conference on Learning
Representations, 2022b.

12

EXPHORMER: Sparse Transformers for Graphs

A. Dataset Descriptions
Below, we provide descriptions of the datasets on which we conduct experiments.

CIFAR10 and MNIST (Dwivedi et al., 2020) CIFAR10 and MNIST are the graph equivalents of the image classification
datasets of the same name. A graph is created by constructing the 8-nearest neighbor graph of the SLIC superpixels of the
image. These are both 10-class graph classification problems.

PascalVOC-SP and COCO-SP (Dwivedi et al., 2021) These are similar graph versions of image datasets, but they are
larger images and the task is to perform node classification, i.e. semantic segmentation of superpixels. These graphs are
larger, and the task more complex, than CIFAR10 and MNIST.

CLUSTER and PATTERN (Dwivedi et al., 2020) PATTERN and CLUSTER are node classification problems. Both
are synthetic datasets that are sampled from a Stochastic Block Model (SBM), is a popular way to model communities. In
PATTERN, the prediction task is to identify if a node belongs to one of the 100 possible predetermined subgraph patterns.
In CLUSTER, the goal is to classify nodes into six different clusters with the same distribution.

MalNet-Tiny (Freitas et al., 2021) Malnet-Tiny is a smaller dataset generated from a larger dataset for identifying malware
based on function call graphs from Android APKs. The tiny dataset contains 5000 graphs, each with up to 5000 nodes. The
task is to predict the graph as being benign or from one of four types of malware.

ogbn-arxiv (Hu et al., 2021) The ogbn-arxiv dataset consists of one large directed graph of 169343 nodes and 1,166,243
edges representing a citation network between all computer science papers on arXiv that were indexed by the Microsoft
academic graph. Nodes in the graph represent papers, while a directed edge indicates that a paper cites another. Each node
has an 128-dimensional feature vector derived from embeddings of words in the title and abstract of the underlying paper.
The prediction task is a 40-class node classification problem — to identify the primary category of each arXiv paper, as
listed by the authors. Moreover, the nodes of the citation graph are split into 90K training nodes, 30K validation notes, and
48K test nodes.

Coauthor datasets Coauthor CS and Physics are co-authorship graphs from Microsoft Academic Graph. The nodes
represent the authors and two authors who share a paper are connected by an edge. The node features are from the keywords
in the papers. The class represent the active area of study for the author.

Amazon datasets Amazon Computers and Amazon photo are Amazon co-purchase graphs. Nodes represents products
purchased an edges indicate pairs of products purchased together. Node features are bag-of-words encoded reiews of the
products. Class labels are the product category.

Peptides-Func, Peptides-Struct, and PCQM-Contact (Dwivedi et al., 2021) These datasets are molecular graphs
introduced as a part of the Long Range Graph Benchmark (LRGB). Graphs in these datasets have relatively large diameters:
the average diameter for PCQM-Contact is 9.86±1.79, and for the Peptides datasets 56.99±28.72. Average shortest path
lengths are 4.63±0.63 and 20.89±9.79 accordingly. On PCQM-Contact the task is edge-level, and we need to rank the
edges. Peptides-Func is a multi-label graph classification task, with 10 labels. Peptides-Struct is graph-level regression of 11
structural properties of the molecules.

Table 6 shows a summary of the statistics of the aforementioned datasets.

B. More Experimental Results
B.1. Hyperparameters

Our hyperparameter choices, including the optimizer, positional encodings, and structural encodings, were guided by the
instructions in GraphGPS (Rampásek et al., 2022). There were some cases, however, when more layers with smaller
dimensions gave better results in EXPHORMER. This may be due to the fact that each node gets fewer inputs for each layer,
but EXPHORME requires more layers in order to propagate well. Additionally, we observed that Equivstable Laplacian
Positional Encoding (ESLapPE) performed better than normal Laplacian Positional Encoding (LapPE) in some cases, in

13

EXPHORMER: Sparse Transformers for Graphs

Table 6. Dataset statistics
Dataset Graphs Avg. nodes Avg. edges Prediction Level No. Classes Metric
MNIST 70,000 70.6 564.5 graph 10 Accuracy
CIFAR10 60,000 117.6 941.1 graph 10 Accuracy
PATTERN 14,000 118.9 3,039.3 inductive node 2 Accuracy
CLUSTER 12,000 117.2 2,150.9 inductive node 6 Accuracy
MalNet-Tiny 5,000 1,410.3 2,859.9 graph 5 Accuracy

PascalVOC-SP 11,355 479.4 2,710.5 inductive node 21 F1
COCO-SP 123,286 476.9 2,693.7 inductive node 81 F1
PCQM-Contact 529,434 30.1 61.0 inductive link (link ranking) MRR
Peptides-func 15,535 150.9 307.3 graph 10 Average Precision
Peptides-struct 15,535 150.9 307.3 graph 11 (regression) Mean Absolute Error

ogbn-arxiv 1 169,343 1,166,243 node 40 Accuracy
Amazon Computer 1 13381 245778 node 10 Accuracy
Amazon Photo 2 7487 119043 node 8 Accuracy
Coauthor CS 1 18333 81894 node 15 Accuracy
Coauthor Physics 1 34493 247962 node 5 Accuracy

cases we replaced you can see ESLapPE version of GraphGPS results in Tables 10, 11, 13 and 14. Except for the large scale
graphs, which we use GCN, we have used CustomGatedGCN beside the Exphormer in all of the experiments.

Through our model, some extra hyperparameters are introduced — the degree of the graph expander and the number of
virtual nodes. For these hyperparameters, we used linear search and found that expander degree 6-22 was the most effective.
Depending on the graph size, we used 1-6 virtual nodes. As the number of hyperparameters is large, grid search was not
feasible on all the parameters. As a result, for other hyperparameters, we did a linear search for each parameter to find out
which parameters work better.

To make fair comparisons, we used a similar parameter-budget to GraphGPS. For PATTERN and CLUSTER, we used a
parameter-budget of 500K, and for CIFAR and MNIST, we used a parameter-budget of around 100K. See details in Tables 7
to 9.

Table 7. Hyperparameters used for EXPHORMER for datasets: CIFAR10, MNIST, MalNet-Tiny, PATTERN, CLUSTER.

Hyperparameter CIFAR10 MNIST MalNet-Tiny PATTERN CLUSTER
Num Layers 5 5 5 4 20
Hidden Dim 40 40 64 40 32
Num Heads 4 4 4 4 8
Dropout 0.1 0.1 0 0.0 0.0
PE ESLapPE ESLapPE None ESLapPE ESLapPE

Batch Size 16 16 16 32 16
Learning Rate 0.001 0.001 0.0005 0.0002 0.0002
Num Epochs 150 150 150 120 150

Expander Degree 10 10 - 14 6
Num Virtual Nodes 1 1 4 4 3
Num parameters 111,095 111,015 286,277 91,045 282,970

B.2. Full Comparison of Attention Mechanisms

Remark B.1. EXPHORMER has some conceptual similarities with BigBird, as mentioned previously. For instance, we also
make use of virtual global attention nodes, corresponding to BIGBIRD-ETC.

However, our approach departs from that of BigBird in some important ways. While BigBird uses w-width “window
attention” to capture locality of reference, we use local neighborhood attention to capture locality and graph topology. In
particular, the interaction graph due to window attention in BigBird can be viewed as a Cayley graph on Zn, which is
sequence-centric, while EXPHORMER is graph-centric and, therefore, uses the structure of the input graph itself to capture
locality. BigBird, as implemented for graphs by Rampásek et al. (2022), instead simply orders the graph nodes in an arbitrary

14

EXPHORMER: Sparse Transformers for Graphs

Table 8. Hyperparameters used for EXPHORMER for LRGB datasets.

Hyperparameter PascalVOC-SP COCO-SP Peptides-Func Peptides-Struct PCQM-Contact
Num Layers 4 7 8 4 7
Hidden Dim 96 72 64 88 64
Num Heads 8 4 4 4 4
Dropout 0.15 0 0.12 0.12 0
PE LapPE LapPE LapPE LapPE LapPE
Batch Size 32 32 128 128 128
Learning Rate 0.0005 0.0005 0.0003 0.0003 0.0003
Num Epochs 300 300 200 200 200
Expander Degree 14 22 - - -
Num Virtual Nodes 0 0 1 6 6
Num parameters 509,301 498,993 445,866 426,427 395,936

Table 9. Hyperparameters used for EXPHORMER for large transductive graph datasets.

Hyperparameter OGBN-Arxiv Computer Photo CS Physics
Num Layers 3 4 4 4 4
Hidden Dim 96 80 64 72 72
Num Heads 2 2 2 2 2
Dropout 0.3 0.4 0.4 0.4 0.4
PE - - - - -
Learning Rate 0.01 0.001 0.001 0.001 0.001
Num Epochs 600 150 100 70 70
Expander Degree 6 6 6 6 6
Num Virtual Nodes 0 0 0 0 0
Num parameters 268,264 302,570 202,632 686,103 801,293

sequence and uses windows within that sequence.

Both BigBird and EXPHORMER also make use of a random attention model. While BigBird uses an Erdős-Rényi graph on
|V | nodes, our approach is to use a d-regular expander for fixed constant d. The astute reader may recall that a Erdős-Rényi
graph G(n, p) has spectral expansion properties for large enough p. However, it is known that p = logn

n is the connectivity
threshold, i.e., for p < (1 − ϵ) logn

n , G(n, p) is almost surely a disconnected graph. Therefore, in order to obtain even a

connected graph in the Erdős-Rényi model – let alone one with expansion properties – one would need p = Ω
(

logn
n

)
,

giving superlinear complexity for the number of edges. BigBird uses p = Θ(1/n), keeping a linear number of edges but
losing expansion properties. Our expander graphs, by contrast, allow both a linear number of edges and guaranteed spectral
expansion properties.

We will see in the practical experiments of Section 5 that EXPHORMER-based models often substantially outperform
BigBird-based equivalents, with fewer parameters.

In Section 5.1, we presented two approaches for the comparison of models trained using different attention mechanisms
— fixing the hyperparameters and fixing a budget on the total number of trainable parameters. The results showed the
advantage of EXPHORMER over other attention mechanisms for CIFAR10 (Table 10) and PATTERN (Table 13). Here, we
present similar results for the remaining datasets — MNIST in Table 11; MalNet-Tiny in Table 12; PATTERN in Table 13;
and CLUSTER in Table 14.

C. Details of Expander Graph Construction
A major component of EXPHORMER is the use of the edges of an expander graph. In this section, we provide details of the
specific expander graphs we use as well and quantify their spectral expansion properties.

15

EXPHORMER: Sparse Transformers for Graphs

Table 10. Results with varying attention and MPNNs on CIFAR10. EXPHORMER with MPNN provides the highest accuracy. Also, pure
transformer models based on EXPHORMER (without the use of MPNNs) are comparable.

Model #Layers Hidden #Positional Expander #Parameters Time Accuracy
layers encoding degree Epch/Total

GPS-MPNN: GatedGCN 3 52 LapPE - 79,654 43s/1.18h 69.95± 0.499
GPS: Transformer 3 52 LapPE - 70,762 40s/1.11h 68.86± 1.138
GPS: Transformer + MPNN 5 40 ESLapPE - 111,735 104s/2.89h 73.53± 0.238
GPS: Transformer + MPNN 3 52 LapPE - 112,726 62s/1.72h 72.31± 0.344
GPS: Performer + MPNN 5 40 ESLapPE - 283,935 132s/3.65h 70.18± 0.095
GPS: Performer + MPNN 3 52 LapPE - 239,554 77s/2.14h 70.67± 0.338
GPS: BigBird + MPNN 5 40 ESLapPE - 128,335 243s/6.75h 70.51± 0.256
GPS: BigBird + MPNN 3 52 LapPE - 129,418 145s/4h 70.48± 0.106

EXPHORMER w/o MPNN 5 44 ESLapPE 10 84,134 64s/1.78h 72.33± 0.155
EXPHORMER w/o MPNN 7 44 ESLapPE 10 119,022 80s/2.23h 72.88± 0.166
EXPHORMER 5 40 ESLapPE 10 111,095 115s/3.21h 74.75± 0.194
EXPHORMER 5 44 ESLapPE 10 133,819 114s/3.19h 75.03 ± 0.186

Table 11. Ablation studies results for MNIST
Model #Layers Hidden #Positional Expander #Parameters Time Accuracy

layers encoding degree Epoch/Total

GPS: Transformer + MPNN 5 40 ESLapPE - 111,655 131s/5.45h 98.336± 0.0189
GPS: Transformer + MPNN 3 52 LapPE - 115,394 76s/2.13h 98.051± 0.126
GPS: Performer + MPNN 5 40 ESLapPE - 283,855 156s/6.52h 98.34± 0.0349
GPS: BigBird + MPNN 5 40 ESLapPE - 128,255 267s/11.11h 98.176± 0.0146

EXPHORMER w/o MPNN 5 44 ESLapPE 10 92,146 75s/3.14h 98.08± 0.051
EXPHORMER w/o MPNN 7 44 ESLapPE 10 127,698 93s/3.87h 98.238± 0.0387
EXPHORMER 5 40 ESLapPE 10 111,015 132s/5.49h 98.414± 0.035
EXPHORMER 5 44 ESLapPE 10 133,731 137s/5.72h 98.424 ± 0.018

C.1. Ramanujan Graphs

A natural question is how strong the spectral expansion properties of a d-regular graph can be, i.e., for how large an ϵ > 0
does a d-regular ϵ-expander exist. The following theorem gives a bound on how large the spectral gap can be.

Theorem C.1 (Alon-Boppana). Let d > 0. The eigenvalues of the adjacency matrix of a d-regular graph on n nodes satisfy

max{|λ2|, |λn|} ≥ 2
√
d− 1− on(1).

In other words, a d-regular ϵ-expander graph can exist only for ϵ ≥ 2
√
d−1
d − on(1).

As it turns out, there exist ϵ-expander graphs with ϵ achieving this bound. In fact, a d-regular ϵ-expander graph satisfying
ϵ ≤ 2

√
d−1
d is known as a Ramanujan graph. Ramanujan graphs are essentially the best possible spectral expanders, and

several constructions have been considered over the years (Lubotzky et al., 1988; Margulis, 1988).

C.2. Random Regular Graphs

While there exist deterministic constructions of Ramanujan graphs, they are often algebraic/number theoretic in nature and
therefore exist only for specific choices of d (e.g., the constructions of Lubotzky et al. (1988) as well as independently of
Margulis (1988), for which one requires d ≡ 2 (mod 4) and d−1 to be a prime). Recently, the work of Alon (2021) showed
a construction of strongly explicit near-Ramanujan graphs of every degree, but it should be noted that the construction
needs the number of nodes to be sufficiently large. It is, therefore, often convenient to use a probabilistic construction of an
expander.

A natural choice for an expander graph is a random d-regular graph on n vertices, formed by taking d/2 independent
uniform permutations on {1, 2, . . . , n}. Friedman (2003) proved a conjecture of Alon, establishing that random regular
graphs are weakly-Ramanujan.

Theorem C.2. (Friedman, 2003, Theorem 1.1) Fix ϵ > 0 and an even integer d > 2. Then, suppose G = (V,E) is a
random graph generated by taking d/2 independent uniformly random permutations π1, π2, . . . , πd/2 on V = {1, 2, . . . , n}

16

EXPHORMER: Sparse Transformers for Graphs

Table 12. Ablation studies results for MalNet-Tiny. We want to remark that these results are based on one virtual node. For the best result
reported in the main paper, we have used 4 virtual nodes, which led to much better numbers. The model marked with * did not fit in
memory with batch size 16, and was trained with batch size 8.

Model #Layers Hidden #Positional Expander #Parameters Time Accuracy
layers encoding degree Epoch/Total

GPS-MPNN: GatedGCN 5 64 - - 199,237 6s/0.25h 92.23± 0.65
GPS: Performer 5 64 - - 421,957 41s/1.73h 73.90± 0.58
GPS: Transformer + MPNN* 5 64 - - 282,437 94s/3.94h 93.50 ± 0.41
GPS: Performer + MPNN 5 64 - - 527,237 46s/1.90h 92.64± 0.78
GPS: BigBird + MPNN 5 64 - - 324,357 130s/5.43h 92.34± 0.34

EXPHORMER w/o MPNN 5 80 - 10 283,173 25.2s/1.05h 92.18± 0.292
EXPHORMER w/o MPNN 8 64 - 10 296,325 35.2s/1.47h 92.24± 0.291
EXPHORMER 5 64 - 10 286,277 25.1s/1.05h 94.02± 0.209

Table 13. Ablation studies results for PATTERN
Model #Layers Hidden #Positional Expander #Parameters Time Accuracy

dimension encoding degree Epoch/Total

GPS: Transformer + MPNN 4 40 ESLapPE - 91,165 18s/0.59h 86.114± 0.103
GPS: Transformer + MPNN 6 64 LapPE-16 - 337,201 32s/0.89h 86.685± 0.059
GPS: Performer + MPNN 4 40 ESLapPE - 228,925 20s/0.68h 83.342± 0.294
GPS: BigBird + MPNN 4 40 ESLapPE - 104,445 29s/0.97h 86.005± 0.148

EXPHORMER w/o MPNN 4 40 ESLapPE 14 56,801 13s/0.44h 85.622± 0.007
EXPHORMER w/o MPNN 4 56 ESLapPE 14 109,985
EXPHORMER 4 40 ESLapPE 14 91,045 21s/0.71h 86.734 ± 0.008

and then choosing the edge set as

E =
{
(i, πj(i)), (i, π

−1
j (i)) : 1 ≤ j ≤ d, 1 ≤ i ≤ n

}
.

Then, with probability 1−O(n−Ω(
√
d)), G satisfies λj(G) ≤ 2

√
d− 1+ ϵ for j = 2, . . . , n, where d = λ1(G) ≥ λ2(G) ≥

· · · ≥ λn(G) ≥ −d are the eigenvalues of the adjacency matrix of G.

In the experiments reported in Tables 1 to 5, we use graphs generated according to the random process described above,
with self loops removed, to instantiate the expander graph component of EXPHORMER.

A simple variant. A simple variant of the aforementioned random process is to instead choose a single permutation on
nd/2 elements formed by taking d/2 copies of 1, 2, . . . , n. More precisely, given an input graph (V,E), one can generate
an expander graph (V,E′) as follows:

• Let s = (1, . . . , 1︸ ︷︷ ︸
d/2

, 2, . . . , 2︸ ︷︷ ︸
d/2

, . . . , n, . . . , n︸ ︷︷ ︸
d/2

).

• Pick a permutation π on {1, 2, . . . , nd/2} uniformly at random from the (nd/2)! possible permutations.

• Let E′ be the multiset {(si, sπ(i)), (sπ(i), si) : 1 ≤ i ≤ nd/2}.

Table 14. Ablation studies results for CLUSTER
Model #Layers Hidden #Positional Expander #Parameters Time Accuracy

dimension encoding degree Epoch/Total

GPS: Transformer + MPNN 20 32 ESLapPE - 285,210 91s/3.79h 78.053± 0.044
GPS: Transformer + MPNN 16 48 LapPE-10 - 502,054 86s/2.40h 78.016± 0.180
GPS: Performer + MPNN 20 32 ESLapPE - 1,512,090 120s/5.01h 78.292 ± 0.046
GPS: BigBird + MPNN 20 32 ESLapPE - 328,090 224s/9.32h 77.468± 0.023

EXPHORMER w/o MPNN 20 32 ESLapPE 6 171,590 49s/2.03h 76.922± 0.044
EXPHORMER 20 32 ESLapPE 6 282,970 91s/3.78h 78.22± 0.045

17

EXPHORMER: Sparse Transformers for Graphs

Table 15. Comparison of attention mechanisms on the ogbn-arxiv dataset by fixing the network size.
Model Accuracy Epoch times #Parameters
GCN+EXPHORMER with expander edges 72.44 ± 0.28 1.72 268,552
GCN+EXPHORMER with virtual nodes 72.22 ± 0.13 1.76 269,704
GCN only 71.35 ± 0.31 0.21 74,152
GCN+BigBird 71.16 ± 0.19 17.85 325,480
GCN+Performer 70.92 ± 0.04 5.77 452,776

For the ablation studies in Tables 10 to 14, we use the above variant to generate the expander graph component of
EXPHORMER (once again removing self loops). We find that, in practice, the above variant produces near-Ramanujan
graphs most of the time.

Hamiltonian cycle variant. Another interesting variant of the random graph process analyzed in Theorem C.2 is the
one in which one once again takes d/2 independent random permutations, except that the permutations must be one of the
(n− 1)! permutations consisting of a single cycle of length n. In other words, one chooses d/2 independent Hamiltonian
cycles on V and takes all edges from each of the Hamiltonian cycles. The work of Friedman (2003), in fact, analyzes this
modified process:

Theorem C.3. (Friedman, 2003, Theorem 1.2) Fix ϵ > 0 and an even integer d > 2. Then, suppose G = (V,E) is a
random graph generated as follows: Take independent permutations π1, π2, . . . , πd/2 on V = {1, 2, . . . , n}, where each πi

is chosen uniformly at random from the (n− 1)! permutations whose cyclic decomposition consists of a single cycle. Then
choose the edge set as

E =
{
(i, πj(i)), (i, π

−1
j (i)) : 1 ≤ j ≤ d, 1 ≤ i ≤ n

}
.

Then, with probability 1−O(n−Ω(
√
d)), G satisfies λj(G) ≤ 2

√
d− 1+ ϵ for j = 2, . . . , n, where d = λ1(G) ≥ λ2(G) ≥

· · · ≥ λn(G) ≥ −d are the eigenvalues of the adjacency matrix of G.

The advantage of using this random process for generating an expander graph is that it automatically satisfies the universal
approximation property outlined in Appendix E (see Theorem E.3).

D. On Expander Graphs versus Global Connectors
From ablation studies in Section 5.5, we can see that sometimes only having expander graphs leads to the best results,
sometimes virtual nodes only, and sometimes using a combination of both. Although this is a hyperparameter to tune, we
can have a general understanding from the datasets on which cases virtual nodes work better and vice versa. Here we remark
on some of these patterns.

Graph diameter: Using virtual nodes, the diameter of the graph becomes exactly 2 (unless the original graph was already
complete, with diameter 1). Expander graphs also help to reduce the diameter of the graph, but only achieve a (probabilistic)
diameter guarantee of O(log n).

Information Bottleneck: Virtual nodes serve as a global sink, and so even a single node should be able to keep all the
information flowing from the whole graph. In case the graphs are large or many nodes rely on the virtual nodes to pass
information, though, virtual nodes are likely to cause information bottleneck, and may even reduce the performance of the
model. Expander graphs, to the contrary, introduce many new paths; as they rely on the local information storage of the
nodes, they do not have this same problem.

Interference with the local structure: Virtual nodes introduce a new node, through which all of their new connections
pass. Expander edges, on the other hand, are much easier to confuse with the actual edges of the graph; this can make it
more difficult for the model to use the graph structure appropriately. As our model uses shared weights among the types of
activations, which substantially helps with model size, the only way to understand the edges are different is through the edge
embeddings. For datasets like MalNet-Tiny which rely heavily on the structure, while node and edge features are less useful,
expander edges can interfere with the information propagation.

We observed that on molecular datasets, virtual nodes generally help substantially, while expander edges don’t help much or
can even hurt. The situation for image-based graphs is the opposite, where especially on Pascal-VOC, expander graphs are
highly useful to the model, but virtual nodes can cause information bottleneck.

18

EXPHORMER: Sparse Transformers for Graphs

Virtual nodes can also make incorporating ideas like the batching mechanism used in GraphSAGE (Hamilton et al., 2017)
more difficult, where having virtual nodes means every batch includes the whole graph. Expander edges can still be used
with batching techniques.

E. Universality of EXPHORMER

In this section, we detail the universal approximation properties of EXPHORMER-based graph transformers.

The work of Yun et al. (2020a) showed that for sequences, transformers are universal approximators, i.e., they can
approximate any permutation equivariant function mapping one sequence to another arbitrarily closely when provided
with enough parameters. A function f : Rd×n → Rd×n is said to be permutation equivariant if f(XP) = f(X)P, i.e., if
permuting the columns of an input X ∈ Rd×n results in the columns of f(X) being permuted the same way.
Theorem E.1 (Yun et al., 2020a). Let 1 ≤ p < ∞ and ϵ > 0. For any function f : Rd×n → Rd×n that is permutation
equivariant, there exists a transformer network g such that ℓp(f, g) < ϵ.

The same work shows an extension to all (not necessarily permutation equivariant) sequence-to-sequence functions that
are defined on a compact domain, say, [0, 1]d×n provided that one uses a positional encoding. More specifically, for any
transformer g : Rd×n → Rd×n, one can define a transformer with positional encoding gp : Rd×n → Rd×n such that
gp(X) = g(X+E). The following results shows that trainable positional encodings allow a transformer to approximate
any sequence-to-sequence continuous function on the compact domain.
Theorem E.2 (Yun et al., 2020a). Let 1 ≤ p < ∞ and ϵ > 0. For any continuous function f : [0, 1]d×n → Rd×n that is
permutation equivariant, there exists a transformer with positional encoding, gP , such that ℓp(f, g) < ϵ.

Note that the above theorems hold for full (dense) transformers. However, under certain conditions about the sparsity pattern,
one can obtain similar universality for sparse attention mechanisms (Yun et al., 2020b).

One important consideration is that the aforementioned results hold for functions on sequences. Since we are concerned
with functions on graphs, it is interesting to ask what the implications are for graph transformers.

We follow the approach of Kreuzer et al. (2021): Given a graph G, we can view a node transformer as a function from
Rn×n → Rn×n which uses the padded adjacency matrix of G as a positional encoding. Similarly, an edge transformer
takes as input a sequence ((i, j), σi,j) with i, j ∈ [n] and i ≤ j such that σi,j = 1 if i and j are connected in G or σi,j = 0
otherwise. Any ordering of these vectors corresponds to the same graph. Moreover, we can capture the relevant functions
going from RN(N−1)/2×2 → RN(N−1)/2×2 with permutation equivariance. Ideally, they can be approximated as closely as
desired by suitable transformers on the edge input.

Now, simply observe (see Kreuzer et al. 2021) that one can choose a function (in either the node transformer or edge
transformer case) that is (a.) invariant under node permutations and (b.) maps non-isomorphic graphs to distinct values. We
would like to apply one of the above thoerems to such a function.

However, we cannot quite apply Theorem E.1 or Theorem E.2, as it is specifically for full transformers in which all nodes
are pairwise connected in the attention interaction graph.

Therefore, we provide the following theorem, which shows that a slight modification of EXPHORMER is able to provide
universal approximation properties using just O(n) edges.
Theorem E.3. Suppose H is the attention graph of a modified EXPHORMER, which contains the n graph nodes and
potentially more virtual nodes. If H contains self loops and either

1. H contains at least one node which is connected to all n graph nodes (e.g. at least one virtual node is included), or

2. H uses expander graph attention augmented by a Hamiltonian path.

Then, it follows that a sparse transformer model, with positional encodings and an attention mechanism following H , can
universally approximate continuous functions f : [0, 1]d×n → Rd×n. That is, for any 1 < p < ∞ and ϵ > 0, there exists a
sparse transformer network g, which uses the attention graph H and some positional encodings, such that ℓp(f, g) < ϵ.

Note that in the above theorem, only one of the enumerated conditions needs to be satisfied; in other words, one does
not need to use both global attention and expander graph attention components (see Section 5.1). This is relevant, as for

19

EXPHORMER: Sparse Transformers for Graphs

certain datasets, it may be desirable to use one of these attention components but not both (see Appendix D), but universal
approximation properties do not depend on this choice.

Proof of Theorem E.3. Let H be the attention graph of a modified sparse EXPHORMER attention mechanism satisfying the
conditions in Theorem E.3.

First, assume that condition (1) is satisfied. This implies that there is a subgraph of H which forms a star graph on the
[n] graph nodes (plus, potentially, the virtual node). In this case, the existence of our desired g is directly implied by the
following universal approximation result of Zaheer et al. (2020):

Theorem E.4 (Zaheer et al., 2020). Let 1 < p < ∞ and ϵ > 0. For any graph H on [n] that contains the star graph,
we have that if f ∈ [0, 1]n×d → Rn×d is a continuous function, then there exists a sparse transformer network g (with
trainable positional encodings) such that ℓp(f, g) < ϵ.

Otherwise, assume that instead condition (2) holds. Then, we can apply Theorem 1 of Yun et al. (2020b). In particular,
we note that since (a.) H contains self-loops, (b.) H contains a Hamiltonian path, and (c.) diam(H) = O(log n) due to
Corollary 4.4, it follows that the assumptions of the theorem of Yun et al. (2020b) are satisfied. (Note that in our setup, ρ is
the softmax function, which satisfies their Assumption 2.) Hence, the desired g exists for any f, p, ε.

This completes the proof.

This result implies that there exist sparse transformers based on the variant of EXPHORMER in Theorem E.3 which can
solve graph isomorphism problems. This does not, however, imply the existence of an efficient algorithm for solving graph
isomorphism problems, as we have not shown these networks can be efficiently identified; see further discussion by Kreuzer
et al. (2021).

20

