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Abstract
Discovering knowledge about which types of
events influence others, using datasets of event
sequences without time stamps, has several prac-
tical applications. While neural sequence models
are able to capture complex and potentially long-
range historical dependencies, they often lack
the interpretability of simpler models for event
sequence dynamics. We provide a novel neu-
ral framework in such a setting – a probabilistic
attention-to-influence neural model – which not
only captures complex instance-wise interactions
between events but also learns influencers for each
event type of interest. Given event sequence data
and a prior distribution on type-wise influence,
we efficiently learn an approximate posterior for
type-wise influence by an attention-to-influence
transformation using variational inference. Our
method subsequently models the conditional like-
lihood of sequences by sampling the above poste-
rior to focus attention on influencing event types.
We motivate our general framework and show im-
proved performance in experiments compared to
existing baselines on synthetic data as well as real-
world benchmarks, for tasks involving prediction
and influencing set identification.

1. Introduction
Multivariate event sequences are commonplace in a variety
of applications. They involve occurrences of different types
of events from a known event label set; these events are
either observed regularly, i.e. at discrete time units, or occur
without meaningful or reliable time stamps associated with
each event instance. Given a dataset of such sequences, one
may be interested in discovering which event types (rather
than specific instances) have an influence on the occurrence
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of other event types of interest. Consider the following
illustrative examples across different domains:

• In healthcare, patient-level historical insurance data are
commonly aggregated by month (Mavroudeas et al.,
2021). Decision makers at the insurance company are
keen to learn about which prior event types impact the
occurrence of later high-cost events, so as to invest in
better preventative programs.

• Event sequences such as execution traces and error logs
arise naturally in software systems, and have been studied
extensively in data mining and related fields (Mannila
et al., 1997; Ammons et al., 2002; Chandola et al., 2009).
It can be beneficial to analyze such sequences and iden-
tify preceding event types that affect critical events such
as failures (to improve system reliability) or web-based
attacks (to strengthen computer security).

• There are well-known natural language processing (NLP)
approaches for extracting events and event sequences from
textual corpora (Chambers & Jurafsky, 2008). It is easier
to extract sequences and often impossible to obtain time
stamps for events, since they are typically not mentioned
in the source corpora. Identifying how certain event types
are influenced by others using extracted sequences could
be a potential source of information regarding pairwise
causal/entailment relations for knowledge graphs (Sap
et al., 2019; Heindorf et al., 2020; Hassanzadeh, 2021);
this in turn could be beneficial for downstream tasks such
as question answering.

In the above examples as well as in other domains, knowl-
edge discovery about the influence of some types of events
on others can be of great interest to practitioners who engage
with event sequence data. This knowledge could drastically
improve model interpretability and therefore model trust
for important tasks – for instance, when a learned event
sequence model is used for prediction – but it could also
be of direct interest to analysts, scientists, or experts who
wish to gain further insights about sequence dynamics in a
particular domain.

There are however challenges around discovering such
knowledge from multivariate event sequences: A) it is not
sufficient to capture how specific past instances of events
influence an event type, but to aggregate these effects mean-
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ingfully to study type-wise influences, B) one needs to al-
low for learning potentially long-range historical influences
while making minimal modeling assumptions, and C) there
may be complex underlying historical dependencies includ-
ing ones that involve non-linear interactions from prior event
occurrences.

Transformer-based attention models have achieved huge
success for sequence modeling in natural language pro-
cessing (Devlin et al., 2018; Liu et al., 2019) and time
series (Zerveas et al., 2021). Recent theoretical work shows
that transformers are universal approximators of sequence-
to-sequence functions (Yun et al., 2019; Kratsios et al.,
2021), which to some extent explains its wide adoption in
machine translation (Vaswani et al., 2017), language mod-
eling (Radford et al., 2018; 2019) and question answering
(Yang et al., 2020; Liu et al., 2019). These language models
typically only capture instance-wise (or token-wise) effects
via attention mechanism; they cannot be directly applied
to extract meaningful type-type effects. While type-wise
influences have been analyzed through summation (Xiao
et al., 2019) or simple averaging (Zhang et al., 2020) during
post-processing of an attention model, these approaches do
not adequately attend to challenge A mentioned previously
because the learning of each model is entirely driven by
maximizing the respective loglikelihood.

Our setting is related to Granger causality for time se-
ries (Granger, 1969), since we are essentially interested
in finding a subset of the full event label set with predic-
tive power for event types of interest. Prior work focuses on
multivariate time series (Dahlhaus & Eichler, 2003) and mul-
tivariate categorical time series (Tank et al., 2021) (which re-
duces to a Markov chain model for the univariate case). Note
that a multivariate event sequence can be viewed as a uni-
variate categorical time series, since exactly one event can
happen at any position in the sequence. Summary Markov
models (SuMMs) have recently been introduced as a family
of models to capture Granger causality in event sequences,
where the learned subset is referred to as an influencing
set (Bhattacharjya et al., 2022). The specific proposed mod-
els in the family are however intended for small datasets
and unable to adequately handle complex and long-range
historical dependencies, thus falling short on challenges B
and C. Note that classical Markov models have a tabular rep-
resentation whose state-space grows exponentially with the
order of the model, and whose data requirements also grow
exponentially for estimation. To overcome these challenges,
we pursue an attention-based neural version of a summary
Markov model, exploiting a neural function approxima-
tion based compact representation to capture complex and
long-range historical dependencies. We demonstrate its
advantages on a prediction task for many real-world event
sequences as well as around the identification of influencers.

Contributions. In this paper, we propose a neural frame-
work to address all three challenges. Specifically, our pro-
posed probabilistic attention-to-influence neural model aims
to not only capture local dynamics of event sequences but
also extract the underlying influencers for event types of
interest. Our contributions are as follows: 1) we propose
a novel integration of a probabilistic variational inference
approach with a deterministic attention mechanism for mul-
tivariate event sequences; 2) we design a novel attention-
to-influence and influence-to-attention formulation which
captures the conversion from instance-wise effects to type-
wise influence in the neural attentive framework; 3) we
demonstrate that our proposed model exhibits state-of-the-
art results on a probabilistic prediction task; 4) we also high-
light how the model can discover meaningful influencers
for event types of interest, which has far-reaching practical
implications around knowledge discovery in many domains.

2. Related Work
Related Neural Event Models. Recurrent neural net-
works (RNNs) and variants have been the workhorse for
many sequence modeling tasks in NLP and multivariate time
series prior to transformer-based models. “Times” in these
sequences act as the indices or positions of the observed
data. In particular, RNNs have been applied to predict the
next word given a historical sequence in language models
(Mikolov et al., 2010). They are also capable of modeling
complex dynamics in irregular time event streams (Du et al.,
2016; Mei & Eisner, 2016; Omi et al., 2019; Xiao et al.,
2017; Shchur et al., 2019; Gao et al., 2020), where time
stamps associated with the events are modeled as a point
process. Self-attention mechanism has been introduced in
recurrent networks for event sequences (Xiao et al., 2019)
involving both time series and event stream data. Contempo-
rary transformer-based models have famously demonstrated
superior predictive power in language modeling (Radford
et al., 2019) as well as in event streams (Zhang et al., 2020;
Zuo et al., 2020; Gu, 2021), due to their ability to capture
long-range complex dependencies. However, we note that
these neural models are primarily geared towards prediction
tasks and are not directly useful for identifying influencing
sets.

Related Temporal Models. Related work on modeling
multivariate temporal data includes discrete-time graphical
models such as (dynamic) Bayesian networks and related
time series graphs (Pearl, 2014; Murphy, 2012; Dahlhaus &
Eichler, 2003; Eichler et al., 2017), as well as continuous-
time graphical event models that represent process indepen-
dence in a point process (Didelez, 2008; Gunawardana &
Meek, 2016; Bhattacharjya et al., 2018). Due to the discrete
nature of multivariate event sequences, the classic kth-order
Markov chain model can be used to capture the dynam-
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ics. The family of summary Markov models (Bhattacharjya
et al., 2022) enables a generalized notion of state depen-
dence in variable-order Markov models (Begleiter et al.,
2004) and extracts a set of influencers for event types of
interest. Another relevant line of work is to use Granger
causality to model categorical time series with mixture tran-
sition distribution (Tank et al., 2021).

3. Influencing Sets in Event Sequences
In this section, we first introduce basic notation and termi-
nology, and then motivate the feasibility and need for our
probabilistic attention-based neural model towards identi-
fying influencing sets of event types of interest from event
sequence datasets.

3.1. Event Sequences & History-Dependent Dynamics

An event sequence dataset (Mannila et al., 1997) D in-
volves K sequences indexed by k, each of the form Dk =
[li]

Nk
i=1, where event label (or type) li at position i in the

sequence is from a discrete label set, li ∈ L. Thus, our
setting is restricted to marks being categorical. The total
number of events and event types are denoted N and M
respectively, i.e. N =

∑K
k=1Nk and M = |L|. All the

events preceding a label at position i in a sequence comprise
its history, hi = {(j, lj)}i−1

j=1. We denote the restricted
history with respect to label set Z ⊂ L, which only includes
prior occurrences from Z, as hZi = {(j, lj) : j < i, lj ∈ Z}.
Subscript i is omitted when referring to a generic position.

The generating dynamics of an event sequence dataset
can be modeled using history-dependent probabilities θx|h,
which denotes the probability of observing event label
X ∈ L at any position in the sequence given history h.
Parameterization is therefore through probabilities Θ =
{ΘX : X ∈ L}, ΘX = {θx|h} s.t.

∑
X∈L θx|h = 1, since

exactly one event label must occur in any position.

3.2. Neural Summary Markov Models

We wish to model local generating dynamics for a set of
event labels where not all the event labels in history are
relevant. We consider a sequence summary function s(·)
for label set Z that maps any restricted history hZ at any
sequence position to some summary state. Unlike Bhat-
tacharjya et al. (2022) who only consider models where the
summary states sZ belong to some discrete range ΣZ, we
allow for more complex historical summaries. In particular,
we consider a neural network such that any restricted his-
tory can be summarized by state sZ = sϕ(h

Z), where ϕ are
network parameters for the summary function and sZ ∈ Rd
for some vector dimension d. Any history h is consistent
with state sZ if the summary function applied to h restricted
to Z results in sZ, i.e. s(hZ) = sZ.

Example 3.1. Figure 1 shows an example event sequence
with 5 event labels, L = {A,B,C,D,E}. Consider a label
of interest C. An ordinal summary function summarizes
restricted history through a vector specifying the order in
which the restricted labels occur in recent history, after
disregarding repeated occurrences. In this example, with a
look-back of 3 positions, this function maps prior history
restricted to {A,B} to ∅, [B], [B,A], [A] and [A] at the 5
occurrences of C respectively. Here ∅ denotes absence of
both A and B type events. In contrast, an autoregressive
summary function (Tank et al., 2021) summarizes the re-
stricted history by specifying occurrences of labels in each
look-back position. In this example, this maps to [∅, ∅, ∅],
[∅, ∅, B], [B,B,A], [A, ∅, A], [A, ∅, ∅]. Note that event se-
quences in applications such as healthcare may require
more complex summary functions where some combination
of older events that reflect some chronic condition together
with more recent events may represent realistic dynamics.

A neural summary function summarizes any restricted his-
tory into a vector. The generative local dynamics are mod-
eled using a decoder that maps from any summary state to
a multinomial probability distribution. Formally, dynamics
for a subset of the event labels X is modeled using probabil-
ity function θZx = θψ(sZ) such that 0 ≤ θZx ≤ 1, ∀X ∈ X.
Furthermore, when X ⊂ L, there is an additional probabil-
ity for when none of the labels in X occur, denoted θZL\X,
where 0 ≤ θZL\X ≤ 1 and θZL\X = 1 −

∑
x θ

Z
x . If on the

other hand X = L, then
∑
x θ

Z
x = 1. Here ψ are network

parameters for θ(·). The probability of event label X oc-
curring given any history h, with restriction to label set Z,
can be obtained through a composition of the summary and
probability functions: θx|h = θψ(sϕ(h

Z)). The notion of
an influencing set can now be formalized as follows:

Definition 3.2. A label set U is an influencing set for event
labels X under summary function sϕ(·) if for all summary
states sU,

∑
X∈X θx|h =

∑
X∈X θx|h′ for all h, h′ con-

sistent with sU. U is minimal if the condition cannot be
satisfied after removing any label in U.

We generalize a previous result (Bhattacharjya et al., 2022)
and show the existence of a minimal influencing set:

Theorem 3.3. There is a unique minimal influencing set for
any label set X ⊆ L corresponding to any summary func-
tion sϕ(·) and for any event sequence dynamics probability
function θψ(·).

All proofs can be found in section D of the Appendix. We
now propose a generative family of models for local dynam-
ics in event sequences where only historical occurrences of
a subset of event types play a role.

Definition 3.4. A neural summary Markov model for
event label set X ⊆ L includes:
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Figure 1. An illustrative event sequence over labels {A,B,C,D,E} where X = C is of interest. An example of event labels from
healthcare is as follows: A: Medication refill, B: Cardiac event, C: Emergency visit, D: Hypertension diagnosis, E: Anxiety diagnosis.

• A set of labels U that is an influencing set for labels X.
• A summary function sϕ(·) which maps any restricted

history hU to sU ∈ Rd.
• A multinomial probability function θψ(·) which takes any

summary state sU as input.

Since a unique minimal influencing set exists for local dy-
namics for any subset of labels, it may be possible to learn a
model to discover this minimal set from an event sequence
dataset. An important application is around learning a model
for a single label of interest X at a time; here one is inter-
ested in identifying event types that influence whether X
will happen or not, in any sequence position.

We remind readers that an event sequence is a univariate
categorical time series, therefore exactly one event can hap-
pen at any position. This effectively couples all the labels
together as probabilities must sum to one, which can often
result in a situation where the full label set L is the influenc-
ing set for each label individually. The following example
is illustrative in that regard.

Example 3.5. Figure 1 shows an event sequence whose
dynamics generation is topology-based, i.e. driven by some
underlying graph. Specifically, this sequence is generated
from Graph-1 in Figure 3(a), where the un-normalized prob-
ability of a label occurrence depends only on the number of
historical occurrences of its parents in the topology. Due
to the nature of data generation and the coupling of proba-
bilities over labels, the influencing set for each label when
considered individually is L, even though there are two
subgraphs in the underlying graph that are disconnected
({A,B,C} and {D,E}). This is a toy-problem version of
many real-world applications where event sequences are
driven by underlying physical networks in systems.

The above example demonstrates that it could be of practical
importance to identify the extent to which a label influences
another, even when all labels are effectively influencers. In
the next section, we describe a specific neural summary
Markov model that suitably tackles this challenge, and later
show through an experiment how the learned influencers
can help recover the underlying topology in Section 5.2.

4. Probabilistic Attention-to-Influence
We propose a probabilistic attention-to-influence neural
model that helps identify influencers for event types of in-

terest. For simplicity of exposition, we describe the model
when there is a single event type of interest X , but the con-
cepts extend to local dynamics over label set X ⊆ L. The
model consists of two parts: an attention encoder and an
attention-to-influence decoder as shown in Figure 2. The
former leverages the attention mechanism from transformer
architecture to model pairwise interactions of event types
with type X and the latter learns a dynamical model given
an influencing set. Our goal is to provide a probabilistic
estimate of influence given event sequences D as in Figure
1. Let V be a binary random vector which encodes how
various event(s) in U jointly influence X . We aim to find a
good approximation to the posterior p(V|D) given a prior
on p(V). With the aid of variational inference (Zhang et al.,
2018; Zhang & Yan, 2021), this posterior distribution given
sequences D can be approximated by a global mean field
variational distribution qω(V|D) (parametrized by attention
network ω). It is worth highlighting that the true posterior
may contain coupling effects of influencers on X (i.e. the
presence of Y and absence of Z with respect to the restrict
history of {Y,Z} on X); qω(V|D) contains only decou-
pled effects. Naturally, the evidence lower bound (ELBO)
(Hoffman et al., 2013) can be expressed as:

L(ω, ψ;D) = Eqω [log
p(V)

qω(V|D)
]+Eqω [logθψ(D|V)] (1)

The first term in Equation 1 is negative KL diver-
gence between qω(V|D) and p(V). Assuming p(V) =∏
Y p(VXY = 1) for any Y ∈ L, where VXY is an in-

dicator for whether Y is an influencer of X , we obtain a
component-wise analytical form:

Eqω [log
p(V)

qω(V|D)
] =

∑
Y

Eqω(VXY |D)[log
p(VXY )

qω(VXY |D)
]

(2)
The second term is the conditional likelihood of observing
the sequences for a given influencing set which can be ap-
proximated by Monte Carlo sampling in closed-form with
sample Vj :

Eqω logθψ(D|V) ≈
1

J

J∑
j=1

K∑
k=1

Nk∑
i=1

logθψ(li|Vj) (3)

The neural summary function sϕ(·) in our framework is
implicitly embedded as the transformer network which takes
a restricted history and outputs a history representation. It
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Figure 2. Neural architecture of the proposed probabilistic attention-to-influence neural model.

gets absorbed into dynamics probability function θψ(·) in
our attention decoder network ψ. We describe computations
in further detail as follows.

4.1. Encoder

The encoder is designed to infer influences between differ-
ent event types given sequences D. We apply positional
embedding (Vaswani et al., 2017) to the sequences and
combine the embeddings with one-hot encoded vectors
for event types to form the embedded input for the atten-
tion module. The B blocks of multi-head self-attention
are applied to obtain a high level representation of the se-
quences. Attention output A(i)

enc of the ith block is computed
as: A(i)

enc = softmax(Q
(i)(K(i))T√

Mk
)V(i) = S

(i)
encV(i) where

Q(i), K(i), V(i) are query, key and value matrices in the ith

block; they are linear transformations of the embedded in-
put multiplied by trainable weights W(i)

Q , W(i)
K , and W

(i)
V

respectively. Mk is the dimension of the key matrix. We ex-
tract the averaged attention score matrix from theBth block,
namely S

(B)
enc . Each entry (i, j) of S(B)

enc ∈ RNk×Nk
+ signifies

the past influence of event instance lj on event instance li
through dot-product attention mechanism. Our approach in
fact naturally embeds the following assumption: any event
instance li in a sequence Dk only attends to past instance
lj where lj ∈ L. lj and li can be of the same type. This as-
sumption can be justified by the temporal ordering of event
sequences. In practice, it is easily achieved by imposing a
strictly upper triangular attention mask on each sequence.
The same assumption applies to the decoder. For a more
general attention score matrix, we modify with exponential
decay:

S̃(B)
enc = S(B)

enc ⊙ exp−γ∆T , (4)

where ∆T denotes position distances for events in each
sequence Dk and γ is a hyper-parameter which controls
the decay of influence of event lj on li and ⊙ is entry-wise
multiplication. The justification of such decay is the more
recent occurrences of an influencing event should impact an
event of interest more than older occurrences.

Attention-to-Influence. We summarize how an event type
influences another based on our proposed Attention-to-

Influence (A2I) formulation to obtain an unscaled influence
matrix:

A2I(S̃(B)
enc) = P⊤S̃(B)

encP, (5)

where P ∈ {0, 1}Nk×M is a binary indicator matrix which
specifies the type of events occurring in each Dk for the
Nk event instances 1. In particular, each row of P is an M -
dimensional one-hot vector. We emphasize the above equa-
tion captures the transformation from instance-instance in-
teraction to type-type interaction efficiently. We take the row
with respect to event of interest X , i.e. A2IX(S̃

(B)
enc) ∈ RM

from Equation 5, which signifies influences of other event
types on X . We apply a linear transformation and impose a
sigmoidal activation to ensure a probability distribution:

qω(V|D) := σ(Wq A2IX(S̃(B)
enc) + bq) (6)

where Wq and bq are trainable weights and biases. Many
mappings from real values to binary probability distribu-
tions (f : A2IX → [0, 1]M ) are possible. In our case, we
use the sigmoidal function due to its effectiveness in neu-
ral networks. Sampling from qω(V|D) is straightforward,
however since the distribution is discrete, Gumbel-Softmax
(Maddison et al., 2017; Jang et al., 2016) is used to provide
differentiable samples for back-propagation in our neural
network.

4.2. Decoder

The goal of the attention decoder is to model the dynamics
by leveraging the underlying influencing set. In particular,
we incorporate a sampled influencing set into the learning
of the dynamics. We make the following simplifying as-
sumption which describes the relation between attention and
influence:
Assumption 4.1. For any pair of events (li, lj) where i < j
in a sequence Dk, event instance lj attends to event instance
li if and only if the associated event type of li is in the
influencing set of type for lj .

The above assumption is aligned with the Granger causal
related notion in various event models (Didelez, 2008; Bhat-
tacharjya et al., 2018; Yu et al., 2020): only parent processes

1In practice, we add an extra dimension 0 for padded events.
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can affect a child process, and other processes are consid-
ered to be conditionally locally independent from the child
process. This enables us to directly modify the attention
score through a given influencing set for an event type of
interest.

Influence-to-Attention. We propose the learning of
influence-aware attention in the following. For each event
instance in sequence Dk, we check the event type it in-
fluences given a sampled influencing set Vj for X , fill en-
tries related to events of non-interest L \ X with 1’s to
form Ṽj ∈ {0, 1}M×M and construct influence indicator
I ∈ {0, 1}Nk×Nk :

I = PṼjP⊤ (7)

where P is the binary indicator matrix same as in Equation
5. We combine an attention score matrix in the decoder
S
(i)
dec = softmax(Q

(i)(K(i))T√
Mk

) with influence indicator I to
derive the influence-aware attention score:

S̃
(i)
dec = S

(i)
dec ⊙ I (8)

For an h-head influence-aware attention module in the
ith block, we concatenate the above representation from
each head and multiply it by a trainable weight ma-
trix W

(i)
O to form a new representation: Ã

(i)
dec =

[S̃
(i)
dec,1, S̃

(i)
dec,2, ..., S̃

(i)
dec,h]W

(i)
O . In the B-block multi-head

self-attention, the ith block outputs a high level represen-
tation H̃(i) from a feed forward network with trainable
weights and biases W(i)

FC’s and b
(i)
FC’s:

H̃(i) = ReLU(Ã
(i)
decW

(i)
FC,1+b

(i)
FC,1)W

(i)
FC,2+b

(i)
FC,2 (9)

Each H̃(i) is then sequentially fed into i+ 1th block until
the Bth block is reached. It is worth emphasizing that the
high level representation H̃(B)(i) not only summarizes the
history prior to event li, but also the impact of the influenc-
ing set on label of interest over time. The history dependent
log likelihood term in Equation 3 can thus be succinctly
expressed as θψ(li+1|Vj) = θψ(li+1|H̃(B)(i)). 2 The gen-
erated labels can be modeled via a multinomial distribution:

θψ(li+1 = m|H̃(B)(i)) =
exp(Wm,:H̃

(B)(i) + bm)∑M
m=1 exp(Wm,:H̃(B)(i) + bm)

(10)
where Wm,: is the mth row of the corresponding trainable
weight matrix and bm is mth entry of the corresponding
bias term. The Influence-to-Attention mechanism concisely
integrates pairwise influence in the learning of event dynam-
ics by repeatedly modifying the attention score matrix in
B-blocks of multi-head self-attention module.

2θψ(l1|Vj) is obtained by a padded event.

The following theorem shows that our model is more general
for learning type-wise effects than existing instance-based
attention models (Xiao et al., 2019; Zhang et al., 2020),
which are a special case of our method. Furthermore, we
provide some evidence to support the claim that our ap-
proach does not introduce any additional complexity as
stated in Theorem 4.3, and we provide proof sketches for
further reference in the Appendix.

Theorem 4.2. Post-processing by accumulating instance-
wise attention scores to type-wise effects as in (Xiao et al.,
2019; Zhang et al., 2020) is equivalent to considering a full
and deterministic influencing set, U = L, or equivalently,
qω(V = 1|D) = 1 in our model.

Theorem 4.3. Our model achieves the same order of com-
putational complexity, runtime compute and memory re-
quirements compared to other transformer based models
(Vaswani et al., 2017) if the cardinality of event types M is
much smaller than the embedding dimension d, M ≪ d .

Algorithm 1 Topology-based event sequence generator
(with Python pseudo code)
Input: Given label set: L, underlying topology/graph that

guides sequence generation: G, number of events per
sequence: seq len, multiplicative factor: mult factor

Output: A generated event sequence D
hist info dict = {}
D = []
for i← 1 to seq len do

un-normalized prob vec = []
for lab in L do

un-normalized prob = 1
counts = 0
for par of lab in G do

if par in hist info dict then
counts += 1

end
if counts ̸= 0 then

un-normalized prob = mult factor * counts
un-normalized prob vec.append(un-
normalized prob)

end
prob vec = un−normalized prob vec

sum(un−normalized prob vec)
this lab = np.random.choice(L, p=prob vec)
D.append(this lab)
if this lab in hist info dict then

hist info dict[this lab] += 1
else

hist info dict[this lab] = 1
end

end
Return: D
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5. Experiments
We implement the multi-head attention module in the en-
coder and influence-aware attention in the decoder in Py-
Torch, following standard procedure to train the model. De-
tails around implementation and training can be found in
section A of the Appendix. We test the performance of
our model on benchmark real-world datasets on tasks for
prediction as well as identification of influencing sets such
as from data simulated by a topology-based event sequence
generator.

5.1. Prediction

In this set of experiments, we are interested in the local
dynamics for each label of interest X in an event sequence.
Our task is to predict whether X will happen next, based on
prior history.

Models, Baselines & Metric. We test 2 variants of our
probabilistic-attention-to-influence neural models, namely
uniform-2 and uniform-τ . The former means we sample
2 samples Vj (J = 2 in Equation 3) from the posterior
qω(V|D); the latter specifies that instead of sampling, we
manually place pre-specified thresholds τ ’s on the posterior.
The τ values are selected through a separate dev dataset. We
compare our models against existing ones: parametric sum-
mary Markov models (i.e. BSuMM and OSuMM) (Bhat-
tacharjya et al., 2022), kth order Markov chains (MC) for
varying k, logistic regression (LR) with a varying look-back
of k positions, and an LSTM model (Hochreiter & Schmid-
huber, 1997). We train baseline models (MC, SuMMs, LR
and LSTM) according to the exact procedure described in
Appendix B.3 in (Bhattacharjya et al., 2022). Additionally,
we compare 2 state-of-the-art neural models: a modifica-
tion of the transformer Hawkes process (THP) (Zuo et al.,
2020) and transformer for next token (TNT) prediction in
NLP (Devlin et al., 2018). Without time stamps, THP in
our setting utilizes constant timesteps [1,2,3,4,...] for its
temporal encoding, and TNT leverages transformer struc-
ture and maximizes the log-likelihood of event sequences
D: log θψ(D) =

∑K
k=1

∑Nk

i=1 logθψ(li) where θψ is the
predictive multinomial distribution in Equation 13. More
details around THP and TNT are discussed in section B of
the Appendix. Since our task involves binary prediction, i.e.
whether the next event is the event of interestX or not given
prior history, we evaluate based on negative log loss (iden-
tical to log likelihood), a suitable metric for predicting low
probability events (Bishop, 2006) since all models generate
probabilistic predictions.

Datasets. We consider 5 real event datasets in different
domains curated previously (Bhattacharjya et al., 2022).
Each dataset is randomly split into 70%-15%-15% train,
dev, and test set. Models are trained with train set and hyper-

parameters for models are selected using the dev set. Once
training completes, evaluation is conducted on the held-out
test set. We briefly describe each of them here, and give
summary statistics in Table 1.

Table 1. Dataset summary: # of event labels (M ), # of sequences
(K) and # of events (N ).

Dataset M K N

Beige Books 15 349 3271
Diabetes 13 65 20210
LinkedIn 10 1000 2932
Stack Overflow 20 1000 71254
Timelines 337 529 18549

Diabetes (Frank & Asuncion, 2010) contains daily events
around meal intake, exercise activity, insulin dosage and
changes in blood glucose measurements for 67 diabetic pa-
tients. Stack Overflow (Grant & Betts, 2013) is a question-
answering website where users get engaged in the online
community; our dataset contains events for engagement of
1000 users (chosen from (Du et al., 2016)). LinkedIn (Xu
et al., 2017) contains user-level employment-related events
for 1000 LinkedIn users. Beige Books contains sequences
of topics extracted from documents published by the United
States Federal Reserve Board about economic conditions
in the US. Timelines contains sequences of event-related
Wikidata (Vrandecic & Krötzsch, 2014) concepts from
Wikipedia articles.

Results. Table 2 shows negative log loss averaged over
labels of interest for models on a held-out test set. Re-
sults with additional baseline settings are in section B of
the Appendix. For all datasets except Timelines, all labels
are considered to be of interest. The labels of interest in
Timelines are chosen as in prior work (Bhattacharjya et al.,
2022). The proposed models are generally high performing,
achieving best or second best performance on most datasets,
although TNT is a close competitor. The most significant
improvement of our models over non-neural baselines is on

Table 2. Negative log loss, averaged over labels of interest on the
test sets. 3rd order Markov chains (MC) and logistic regression
(LR) with a look-back of 3 are shown. Best results are in bold;
second best are in italics.
Model Beige Books Diabetes LinkedIn Stack Overflow Timelines
3-MC -37.66 -473.96 -119.55 -1435.12 -1343.52
3-LR -36.85 -506.05 -92.23 -1277.84 -160.84
BSuMM -36.11 -497.90 -114.52 -1242.59 -141.42
OSuMM -38.07 -432.89 -115.63 -1246.64 -142.18
LSTM -63.65 -595.57 -135.92 -1246.45 -135.98
TNT -20.38 -453.53 -96.79 -120.41 -136.67
THP -38.41 -433.69 -133.53 -1277.01 -131.53
Uniform-τ -21.54 -448.95 -91.21 -121.12 -125.29
Uniform-2 -21.06 -447.77 -95.96 -134.70 -135.30
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Table 3. Results on topology recovery on Graph-1. Best results are highlighted in bold. Samples of 100 and 900 sequences are generated
for model comparison.

BSuMM OSuMM THP TNT Uniform-τ Uniform-2

Event 100 900 100 900 100 900 100 900 100 900 100 900

B 0.62(0.18) 0.50(0.02) 0.67(0.26) 0.63(0.07) 0.33(0.07) 0.32(0.09) 0.32(0.06) 0.32(0.10) 0.62(0.07) 0.65(0.05) 1.00(0.00) 1.00(0.00)
C 0.56(0.19) 0.66(0.04) 0.51(0.14) 0.65(0.2) 0.56(0.12) 0.51(0.17) 0.57(0.00) 0.52(0.16) 0.57(0.00) 0.57(0.00) 1.00(0.00) 1.00(0.00)
D 0.66(0.07) 0.41(0.03) 0.69(0.12) 0.50(0.00) 0.50(0.26) 0.48(0.25) 0.83(0.27) 0.83(0.32) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)
E 0.65(0.06) 0.41(0.03) 0.67(0.12) 0.50(0.00) 0.47(0.25) 0.50(0.24) 0.75(0.31) 0.84(0.27) 0.47(0.04) 0.44(0.05) 0.80(0.16) 1.00(0.00)

Table 4. Results on Graph-2. Best results are highlighted in bold.
BSuMM OSuMM THP TNT Uniform-τ Uniform-2

Event 100 900 100 900 100 900 100 900 100 900 100 900

B 0.60(0.45) 0.51(0.04) 0.60(0.48) 0.66(0.02) 0.33 (0.05) 0.32(0.07) 0.33(0.03) 0.30(0.11) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)
C 0.32(0.33) 0.76(0.10) 0.35(0.33) 0.56(0.18) 0.56(0.07) 0.57(0.04) 0.57(0.00) 0.57(0.02) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)
D 0.57(0.45) 0.50(0.03) 0.56(0.48) 0.67(0.05) 0.33 (0.03) 0.31(0.08) 0.33(0.00) 0.31(0.10) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)
E 0.33(0.33) 0.78(0.07) 0.31(0.33) 0.57(0.19) 0.53(0.12) 0.56(0.07) 0.57(0.06) 0.57(0.04) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00)

Table 5. Comparison of influencing sets on Stack Overflow and LinkedIn.
Dataset Event BSuMM OSuMM Uniform-τ

Stack Overflow 4 {1, 2, 4, 6, 7, 9} {2, 4, 5, 6} [12, 11, 16, 14, 17, 5, 6, 20, 1, 4]
19 {4, 10, 19} {10, 19} [13, 9, 19, 8, 15, 16, 4, 3, 20, 18]

LinkedIn 1 {1, 2, 3, 7, 9} {1, 3, 7} [ 6, 7, 4, 3, 10, 9, 8, 5, 2, 1]
3 {1, 2, 3, 4, 5} {1, 3, 4} [ 6, 7, 4, 9, 3, 10, 8, 5, 2, 1]

Table 6. Influencing concepts for two Wikidata concepts using Event Registry news snippets.
Event of Interest Influencing Events (in Order of Decreasing Posterior)

protest [murder, arson, explosion, school shooting, aviation accident, disease outbreak, economic crisis
coup d’état, civil disorder, regime change, earthquake, mass shooting, risk factor
fraud, suicide, armed conflict, statutory law, disaster, impeachment, protest, conflict]

economic [earthquake, procession, crime, bomb attack, attack, theft hazard, disaster,
crisis work accident, riot, regime change, infectious disease, disease outbreak

explosion, massacre, scandal, industrial disaster, protest accident ]

Stack Overflow, which is around 10-fold. The success of
transformer models is due to their flexibility in capturing
complex dynamics and historical influence in a data-driven
approach. The inferior performance of THP (particularly on
Stack Overflow) indicates that simply adapting a continuous
time point process model to our setting may not capture lo-
cal dynamics correctly. Our attention-to-influence approach
goes well beyond other neural models such as LSTMs to
exploit essential characteristics of BSuMM and OSuMM
while using the predictive power of transformer models.

5.2. Influencing Set Identification

While many tools exist for next token prediction, our model
surpasses mere prediction capabilities. Instead, we focus on
a more crucial task for knowledge discovery: identifying
influencing sets for event labels. In doing so, we showcase
the unique advantages of our model.

(a) Graph-1 (b) Graph-2

Figure 3. 2 Underlying topological graphs for synthetic event se-
quence generation. (a) is disconnected and (b) is connected.

Synthetic Experiments. To conduct synthetic experi-
ments, we generate 100 simulations of temporal datasets
based on 2 representative topologies, namely Graph-1 (a dis-
connected graph) and Graph-2 (a connected graph) shown
in Figure 3. This is achieved using Algorithm 1. For each
simulated dataset, we generate two sets of event sequences:
one with K = 100 sequences and another with K = 900
sequences. Each sequence consists of 20 events.
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The dynamics of the generated event sequences are deter-
mined by their underlying graphs. The un-normalized prob-
ability of a label occurring in a sequence depends solely
on the historical occurrences of its parents in the topology.
Specifically, we examine the counts of a label’s parents
in the history and multiply those counts by a parameter
‘mult factor’ (set to 10 in our experiments) to obtain the un-
normalized probability. Events are then generated according
to a normalized probability distribution, ensuring that the
sum of probabilities for each label’s occurrence at any posi-
tion is equal to one. Algorithm 1 provides high-level Python
pseudo codes for this generation process.

For experimentation and evaluation, the generated dataset is
randomly split into train, dev, and test sets, with proportions
of 70%, 15%, and 15% respectively. We repeat this entire
process 100 times for both Graph-1 and Graph-2. We report
the mean F1 score and its standard deviation while compar-
ing the most influential events for a specific event of interest
with the underlying parents in the topology. This analysis
is performed on the test data. We individually compare the
recovered influential events with the underlying parents for
each event of interest X , where X ∈ {B,C,D,E}3.

Results. Our model Uniform-2 successfully identifies the
most influencing event type(s) for all labels on Graph-1 and
Graph-2 in Table 3 and 4, a statistically significantly im-
proved result compared to all baselines. Note the weaker
variant Uniform-τ still achieves improved overall perfor-
mance. The influencing events identified by neural mod-
els TNT and THP are averaged attention weights via post-
processing (see (Zhang et al., 2020) for more details). Even
though TNT is powerful for prediction, it is much inferior
for identifying most influencing event types - it only de-
tects the mutual dependence of D and E with reasonable
accuracy in Graph-1 while failing others. This empirically
suggests post-processing is not suitable for influencing event
identification even with state-of-the-art sequence models.
Bhattacharjya et al. (2022) show BSuMM and OSuMM are
powerful for learning influencing sets; however they fail
to distinguish the extent among influencing events in our
setting. The fact that our neural SuMM recovers the under-
lying topology well indicates that it is successfully giving a
higher posterior for parents in the topology. This is useful
in practical applications where it is beneficial to identify the
magnitude of influence.

Stack Overflow & LinkedIn. We select exemplar events
of interest on Stack Overflow and LinkedIn and their influ-
encing sets discovered by BSuMM, OSuMM, and Uniform-
τ 4 in Table 5. The top 10 influencers identified by our model

3F1 scores are not computed for label A since it does not have
any parents.

4Similar results are obtained from Uniform-2.

are displayed in descending order of posterior probability.
The non neural models select a sparse set of influencers for
each label, while the neural model has a larger influencing
set. The ability of the proposed model to capture more
complex historical dependence on larger influencing sets
leads to an order of magnitude improvement in the predic-
tive performance on Stack Overflow, as shown in binary
prediction. As the dataset contains longer sequences, it may
be challenging for BSuMM and OSuMM with a shorter
look-back of 3 positions to capture influences from older
event occurrences.

Event Registry. We show an example of influencing set
discovery by our model Uniform-τ on a dataset derived
from a corpus of news article snippets from Event Reg-
istry (Leban et al., 2014). The corpus consists of 40 months
of snippets where each is turned into a sequence of con-
cepts from Wikidata (Vrandecic & Krötzsch, 2014) using
keyword matching. The listed influencing events (in order
of decreasing posterior) for “protest” and “economic crisis”
in Table 6 show interesting patterns of how socio-political
events have affected one another in recent years. Inter-
estingly, murder is the most influencing event for protest
(potentially for justice) in the US, perhaps a remarkable
reflection of our contemporary society.

6. Conclusion
We have proposed a novel probabilistic attention-to-
influence neural approach for modeling event sequences
and learning influencing sets for a given event label set of
interest. As far as we are aware, ours is the first probabilistic
formulation for attention mechanism that has been applied
for tasks of interest to event sequences without time stamps,
such as label prediction and influencing set discovery. Our
approach is more broadly applicable and could potentially
be extended to multivariate temporal point process data.
Note that pairwise influence could be incorrectly interpreted
as a causal relation in applications, thus we urge appropriate
usage of our proposed model to avoid drawing potentially
harmful conclusions. Future research directions could ex-
plore adapting to memory-efficient transformers (Beltagy
et al., 2020; Kitaev et al., 2019) and applying model variants
to other temporal event data.
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Appendix for Probabilistic Attention-to-Influence Neural Models for
Event Sequences

A. Probabilistic Attention-to-Influence Neural Model
A.1. Training Procedure

Training of the probabilistic attention-to-influence neural model is performed jointly on the encoder and decoder by mini-
batch stochastic gradient descent given K training sequences {Sk}Ki=1 and J dev sequences {Sj}Ji=1 namely (Str and Sdev).
Adam (Kingma & Ba, 2014) optimizer is used to train our model. We modify Sdev to S̃dev so that only 2 types of events are
observed for binary prediction: event of interest X and event of non-interest X̄ . We experiment with 4 variants: the prefix
uniform and sparse represent the difference of prior setting, i.e. p(VXY ) = 0.5 for uniform and p(VXY ) = 0.2 for sparse,
and the postfix means 2 samples Vj from the posterior qϕ(V|D). Empirically we find 2 samples are efficient compared to
other numbers while also achieving good performance. The two variants, uniform-τ and sparse-τ on the other hand, specify
that instead of sampling, we manually place pre-specified thresholds τ ’s on the posterior. The procedure for Uniform-2 is
fully described by Algorithm 1 for event X . For multiple events, we iterate through the list and train each model. In the case
of Uniform-τ , qω(V |S′) > τ is used to assign Vf instead of sampling.

Algorithm 2 Training Pseudocode For Probabilistic Attention-to-Influence Neural Model Uniform-F
Input: Given Training data Str = {Sk}Kk=1, Dev data Sdev = {Sj}Jj=1, Sample size F , prior p(V), mini-batch size b,

Training epochs N , event of interest X , decay-rate γ
Output: Optimal parameters ψ∗, ω∗

for epoch← 1 to N do
for iteration← 1 to ⌈Kb ⌉ do

sample a batch of sequences S′ from Str
compute qω(V|S′) via Equation 6
sample V1, ...,VF ∼ qω(V|S ′)
compute logθψ(S′|Vf ) via Equation 3
compute ELBO L via Equation 1
back-propagate with gradient∇θ,ϕL
update parameters of network ψ, ω

end
evaluate 1

F

∑F
f=1 logθψ(S̃dev|Vf ), stop training if not improving in 5 epochs

end
Return: Optimal parameters ψ∗, ω∗

A.2. Hyperparameters

The multi-head attention modules in the encoder and decoder share the same weights and biases. The experiment setting
for hyperparameters in Uniform-2 and Sparse-2 for binary prediction is given in Table 7. The τ values for Uniform-τ are
{0.4,0.5,0.6} and for Sparse-τ they are {0.1,0.2,0.3}. The best threshold for each model is chosen based on dev set. All our
experiments are performed on a private server (https://idea.rpi.edu/IDEA Cluster Access) with TITAN RTX GPU.
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Table 7. Hyperparameters for Uniform-2 and Sparse-2 for binary prediction. n layers: the number of blocks for multi-headed self-attention
module in both encoder and decoder; d model: the dimension of the value vector after attention has been applied; n head: the number
attention heads; d inner: the dimension of the hidden layer of the feed forward neural network; d v: the dimension of the value vector; d k
: the dimension of the key vector; num samples: the number of samples sampled from the approximate posterior; decay rate: rate of
attention score decay over time.

Parameter Value Beige Books Diabetes LinkedIn Stack Overflow Timelines

batch size 16 16 32 16 16
n head 4 8 8 4 4
n layers 4 4 4 4 4
d model 512 128 256 512 512
d inner 256 64 128 256 256
d v 256 64 128 256 256
d k 256 64 128 256 256
dropout 0.1 0.1 0.1 0.1 0.1
epoch 300 300 300 300 300
num samples 2 2 2 2 2
learning rate 0.0001 0.0002 0.00005 0.0001 0.00005
decay rate 0 0 0 0 0

B. Baselines
B.1. Transformer Hawkes Process (THP)

THP in this study is a straight adaption from (Zuo et al., 2020) 1. The embedding layer includes a time embedding and
event-type embedding. While in our setting where no timestamps are given, we supply with regularly spaced times:
[1,2,3,4,...,n], i.e. tj = j. Time embedding is achieved through:

[z(tj)]i =

{
cos(tj/10000

i−1
d ) if i is odd

sin(tj/10000
i
d ) if i is even

(11)

where tj is a timestamp and d is the dimension of encoding. Time embedding and one-hot encoded types are combined to
form the embedded input X. For sequence S = {ti, yi}Li=1, time embedding zi for each instance is specified in Eq. 11 and
for the entire sequence with length L, the embedding is Z ∈ RM×L . Type embedding are through the product of a trainable
embedding matrix U ∈ RM×K and one hot encoded vectors yi’s for all type instances, i.e. X = (UY + Z)T where
Y = [y1,y2, ...,yL]. Q, K, V are query, key and value matrix; they are linear transformations of X, i.e. Q = XWQ,
K = XWK , V = XWV where WQ, WK , WV are trainable weights. We optimize the same objective as implemented
by the authors. A few recommended sets of hyperparameters are used for training and the best set is selected according to
results on dev. The set of hyperparameters corresponding to the reported results is in Table 8.

Table 8. Hyperparameters for THP.

Parameter Value Beige Books Diabetes LinkedIn Stack Overflow Timelines

batch size 4 4 4 4 4
n head 4 4 8 8 8
n layers 4 4 4 1 2
d model 64 64 64 64 64
d inner 32 32 32 32 32
d v 32 32 32 32 32
d k 32 32 32 32 32
dropout 0.1 0.1 0.1 0.1 0.1
epoch 100 100 100 100 100
learning rate 0.001 0.001 0.0002 0.0005 0.0005

1https://github.com/SimiaoZuo/Transformer-Hawkes-Process
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B.2. Transformer for Next Token (TNT)

We implement with Pytorch a B-block attention-based transformer network to model the dynamics and seek to maximize
the log-likelihood of event sequences D in Equation 12:

logθψ(D) =

K∑
k=1

Nk∑
i=1

logθψ(li) (12)

We use an un-modified history representation H(B) from the Bth block and the generated labels can be modeled via a
multinomial distribution:

θψ(li+1 = m|H(B)(i)) =
exp(Wm,:H

(B)(i) + bm)∑M
m=1 exp(Wm,:H(B)(i) + bm)

(13)

where Wm,: is the mth row of the corresponding trainable weight matrix and bm is mth entry of the corresponding bias
term. We perform prediction experiments and hyperparameters are selected from the best performing model from dev set.
The hyperparameters of TNT model are shown in Table 9.

Table 9. Hyperparameters for TNT.

Parameter Value Beige Books Diabetes LinkedIn Stack Overflow Timelines

batch size 16 16 16 16 16
n head 4 4 4 4 4
n layers 4 4 4 4 4
d model 512 256 256 512 256
d inner 256 128 128 256 128
d v 256 128 128 256 128
d k 256 128 128 256 128
dropout 0.1 0.1 0.1 0.1 0.1
epoch 300 300 300 300 300
learning rate 0.0001 0.0001 0.0001 0.0001 0.0001

B.3. Results for Prediction

We show more comprehensive prediction results in Table 10. We highlight that our model consistently improves over all
baselines on most event datasets.

B.4. Event Registry

Event Registry is a dataset derived from a corpus of news article snippets from Event Registry (Leban et al., 2014). The
corpus consists of 40 months of snippets where each is turned into a sequence of concepts from Wikidata (Vrandecic
& Krötzsch, 2014) using keyword matching. The concepts are 50 event-related classes (event types). We only keep
sequences of length 3 or more, which results in 15,821 sequences. We further split into train and dev set for our probablistic
attention-to-influence neural model to learn. In particular we used Uniform-τ as our learner. We use the following set of
(hyper)parameters batch size = 16, n head = 4, n layers =2, d model = 128, d inner = 64, d v = 64 , d k = 64, dropout = 0.1,
epoch = 300, learning rate = 0.0001 and decay rate = 0. Threshold τ = {0.4,0.5,0.6} are used and the best value is selected
based on highest log-likelihood on dev set.

C. Results on Influencing Set Discovery
The BSuMM and OSuMM parametric models are learned using Algorithm 1 in (Bhattacharjya et al., 2022). The 2 models
are used to identify the influencing events for each label of interest {B,C,D,E} from the synthetic datasets. The learned
influencing sets are compared to the ground truth parents in the underlying topology. We use the following for experiments:
prior (Dirichlet) parameter α = 0.1, penalty weight γ = 1, look-back κ is a hyper-parameter that is chosen using train/dev
from {1, 5, 10} positions.
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Model/Dataset Beige Books Diabetes LinkedIn Stack Overflow Timelines
0-MC -118.46 -543.05 -133.41 -1367.31 -176.31
1-MC -60.91 -513.01 -110.58 -1278.96 -154.47
2-MC -40.37 -488.42 -112.55 -1283.66 -611.78
3-MC -37.66 -473.96 -119.55 -1435.12 -1343.52
4-MC -41.42 -535.66 -122.57 -1895.76 -1656.31
3-LR -36.85 -506.05 -92.23 -1277.84 -160.84
5-LR -36.15 -497.92 -93.37 -1263.54 -184.05
10-LR -36.35 -497.94 -93.37 -1253.04 -200.55
BSuMM -36.11 -497.90 -114.52 -1242.59 -141.42
OSuMM -38.07 -432.89 -115.63 -1246.64 -142.18
LSTM -63.65 -595.57 -135.92 -1246.45 -135.98
THP -38.41 -433.69 -133.53 -1277.01 -131.53
TNT -20.38 -453.53 -96.79 -120.41 -136.67
Uniform-τ -21.54 -448.95 -91.21 -121.12 -125.29
Uniform-2 -21.06 -447.77 -95.96 -134.70 -135.30
Sparse−τ 21.34 -448.18 -91.88 -108.11 -126.68
Sparse-2 -20.89 -464.19 -96.63 -121.83 -128.87

Table 10. Negative log loss (log likelihood), averaged over labels of interest, for various models computed on the test sets. krd order
Markov chains (MC) range from k = 0 to 4, and logistic regression (LR) with a look-back of k = 3, k = 5 and k = 10 are shown. Best
results are highlighted in Bold.

We identify influencing events with TNT models by postprocessing. Specifically we learn a TNT model from training set
and obtain the attention score for instance-wise interaction from the last block in the attention module. Type-wise effects
are obtained through averaging the attention scores over all attention heads and all sequences. An optimal threshold is
obtained from type-wise effects on dev set and then is applied on test set to obtain an F1 score. We use the following set of
(hyper)parameters: batch size = 32, n head = 4, n layers =4, d model = 128, d inner = 64, d v = 64 , d k = 64, dropout =
0.1, epoch = 100 and learning rate = 0.0001.

The proposed probabilistic attention-to-influence neural model estimates the approximate posterior qω(V|D). An optimal
threshold is obtained through dev set and then is applied on test set. The training and (hyper)parameter selection for the
model can be found in Table 11. Uniform-τ uses Default setting for Graph-2 and the setting for event E in Graph-1 for
all events in Graph-1. The results of the 3 models on Graph-2 are shown in Tables 4 and ours show improvements over
baselines.

Table 11. Hyperparameters in Uniform-2 for influencing set recovery. Default Hyperparameters are used for inference on Graph-1 for
event B,C and all events on Graph-2.

Parameter Value Default event D in Graph-1 event E in Graph-1

batch size 32 32 32
n head 4 4 4
n layers 2 3 4
d model 128 128 128
d inner 64 64 64
d v 64 64 64
d k 64 64 64
dropout 0.1 0.1 0.1
epoch 100 100 100
num samples 2 2 2
learning rate 0.0001 0.0001 0.0001
decay rate 5 1 1
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D. Proofs
D.1. Proof of Theorem 3

We follow (Bhattacharjya et al., 2022) in setting up a contradiction, while considering dynamics for event label set X using
summary function sϕ(·). Specifically, we consider two distinct influencing sets U and U′, and show that they cannot be
both distinct and minimal. We use Θ̃X to denote the sum of probabilities over label set X ⊆ L, i.e. Θ̃X = {θ̃x|h} where
θ̃x|h =

∑
X∈X θx|h.

Since U and U′ are influencing sets, for all summary states sU, sU′ ∈ Rd, θ̃x|h = θ̃x|h′ for all h, h′ consistent with sU and
sU′ . Taking the intersection set U∗ = U ∩U′, since the sets are distinct, U∗ ⊂ U and U∗ ⊂ U′. Note that applying the
summary function to the smaller set U∗ (which could potentially be the empty set ∅) instead of U or U′ essentially reduces
elements in the input historical sequence, due to the history restriction. Thus there are at least as many histories h consistent
with a mapping sU∗ = sϕ(h

U∗
) rather than say sU = sϕ(h

U). Furthermore, if there are two histories h, h′ consistent with
some sU, they are consistent with sU∗ , therefore θ̃x|h = θ̃x|h′ for all h, h′ consistent with this sU∗ . Since this is true for all
summary states and U∗ ⊂ U, U cannot be minimal and this sets up a contradiction.

D.2. Proof of Theorem 4.2

Without loss of generality, consider an attention-based transformer model for event sequences, i.e. TNT (see section B.2).
Let the ψ∗

T denote the set of parameters that maximize the log-likelihood function 12. Let S be the typewise effects learned
from the post-processing procedure, which converts instance-wise attention scores to by (summarization (Xiao et al., 2019)
and then) averaging attention scores of Bth block over all sequences (Zhang et al., 2020) from the learned TNT model with
ψ∗
T .

Our model can learn S with the following steps. The approximated conditional log-likelihood in Equation 3 in main text
becomes deterministic, if we use a deterministic posterior qω(V) i.e. qω(V = 1|D) = 1 (with U = L), Eqω logθψ(D|V) =∑K
k=1

∑Nk

i=1 logθψ(li). The deterministic posterior qω(V = 1|D) = 1 also implies we do not modify any attention scores
by our construction of influence-to-attention, i.e. influence indicator I = 1 in Equation 8 in main text. In addition, any prior
p(V) the KL(qω(V)|p(V)) term in Equation 1 in main text will be constant. Hence ψ∗

T also maximizes ELBO L given
qω(V = 1|D) = 1. For example, the same averaging scores S can be achieved by the following: let Wq = 0, bq be a vector
whose entries are very large and let the rest of parameters ω in encoder be arbitrary constants (by freezing during training),
which ensures qω(V = 1|D) = 1. We train our model and the learned optimal parameters ψ∗ in the decoder can be the
same as ψ∗

T , which gives the same post-processing averages S.

D.3. Proof Sketch of Theorem 4.3

The major difference between our model and other transformer based baselines is usage of the attention-to-influence and
influence-to-attention mechanism. The additional complexity is from the computation of equations (4), (5), (6), (7) and
(8). Let n = maxk(Nk), the maximum length of all the sequences and m be total number of labels. The computational
complexities for (4), (5), (6), (7) and (8) respectively are O(n2) , O(mn2 +m2n), O(m) , O(mn2 +m2n) and O(n2).
Hence (5) and (7) dominate over other terms. Consider one layer of attention block. Linearly transforming the rows of
an embedding X to compute the query Q, key K, and value V matrices, each of which has shape (n, d) where d is the
dimension of embedding, amounting to a computational complexity of O(nd2). Computing a typical attention score matrix
and post-multiplying a value matrix (Equation (1) in (Vaswani et al., 2017)) results in a computational complexity ofO(n2d).
Hence a typical layer involves O(nd2 + n2d). m is typical smaller than d or n, as in a typical recurrent multivariate event
sequence as shown in Tables 6, 10, 11 in the Appendix. In addition, our encoder and decoder share weights. Thus our model
roughly has the same computational complexity as other transformer baselines.

The runtime compute from our model is comparable to baseline transformer models. This is due to the fact that the additional
number of FLOPS introduced in our model are dominated by equation (7), since we only need to compute (5) from the last
layer and need to compute for (7) for each layer. Consider a typical dot-product attention (i.e., Equation (1) in (Vaswani
et al., 2017) ). Such a computation requires 4dn2 − nd ≈ 4dn2 FLOPS where d is the hidden dimension; and computing
equation (7) requires 2m2n−mn+ 2mn2 − n2 ≈ 2m2n+ 2mn2. A typical dataset in our case involves m being on the
order of 10, d 100 and n 100, which results in computation of attention values being much more expensive. This should be
true for both forward pass and back-propagation.
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The memory requirements for our model are comparable to any transformer model since a few additional quantities are of
much smaller order of magnitude compared to the transformer model. For example, in practice, we only need to store a
few additional terms: exp−γ∆T (n × n) from equation (4) and P (n × m) matrix from (5), Vj (m × m) and Ṽj (m × m),
and other associated quantities in (4)-(8) can be derived. In practice, for exp−γ∆T we only need to store one row (n× 1),
because such decay pattern is universal to all event instances. Consider a typical n being an order of magnitude larger than
m. Then memory requirement for storing the above items will be dominated by attention matrix (n× n) which is standard
in the transformer models.

E. Brief Discussion on Assumption and Limitation
Our assumptions are clearly described in Sections 4.1 and 4.2, i.e. temporal order of event sequences and relation between
attention and influence. We discuss limitations in Section 6, that our model should not be interpreted to draw causal
conclusion. In this paper we have already mitigated some of the risk by stressing use of the term ”influencers” instead of
”causes” and in practice, we would add even more verbiage and reasonably detailed instructions and caveats to avoid misuse.
To further mitigate the risk of harmful causal conclusions, one should carefully conduct controlled experiment to verify and
validate the causal claims, if possible. A future research direction is to establish a solid framework for causal inference
(definitions of treatment, covariates, outcomes and counterfactual distributions, and etc.) in temporal event sequences
similar to the work proposed in natural language sequences (Feder et al., 2022). Such work could be beneficial for drawing
causal conclusions for temporal event sequences, under some assumptions. To process and model long sequences more
efficiently, our model relies on memory-efficient transformers. Alternatively, to optimize efficiency, we can employ a sparse
(self) attention module. This approach can maintain comparable performance on prediction tasks while also preserving the
performance on influencing set identification. The monotonic nature of the sigmoidal transformation in Equation (6) ensures
the retention of the relative order of influencing events, contributing to the preservation of performance in this aspect.
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