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Abstract
We consider the problem of computing bounds for
causal queries on quasi-Markovian graphs with
unobserved confounders and discrete valued ob-
served variables, where identifiability does not
hold. Existing non-parametric approaches for
computing such bounds use multilinear program-
ming (MP) formulations that are often intractable
for existing solvers when the degree of the polyno-
mial objective is greater than two. Hence, one of-
ten has to resort to either fast approximate heuris-
tics which are not guaranteed to contain the true
query value, or more accurate but computationally
intensive procedures. We show how to construct
an equivalent MP with a polynomial objective of
lower degree. In particular, the degree of the ob-
jective in the new MP is equal to only the number
of C-components that are intervened upon, instead
of the total number of C-components. As a result,
we can compute exact bounds for significantly
larger causal inference problems as compared to
what is possible using existing techniques. We
also propose a very efficient Frank-Wolfe heuris-
tic that produces very high quality bounds, and
scales to large multilinear problems of higher de-
gree.

1. Introduction
Many practical applications of causal inference involve vari-
ables that are important for the identification of causal ef-
fects, but are either unknown or unmeasured, i.e. unob-
served confounders (Imbens & Rubin, 2015; Pearl, 2009).
It is impossible to accurately identify causal effects in the
presence of unobserved confounders. However, it is possible
to obtain bounds on such effects.

There have been multiple such attempts to bound causal
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effects in small graphs with special properties. To bound the
causal effect of a treatment on a target variable, Richardson
et al. (2014) invoke additional (untestable) assumptions and
assess how inference about the treatment effect changes as
these assumptions are modified. In small graphs where any
two observed variables are neither adjacent in the graph,
nor share a latent parent, Evans (2012) present a graphical
approach to bound causal effects. Geiger & Meek (2013)
leverage Tarski’s procedure for quantifier elimination in the
first order theory of real numbers to bound causal effects
in a model under specific parametric assumptions. Kilber-
tus et al. (2020) and Zhang & Bareinboim (2021) develop
procedures for computing causal bounds in extensions of
the instrumental variable model to the continuous setting.
Finkelstein & Shpitser (2020) develop a method for obtain-
ing bounds on causal queries using probability rules and the
conditions on counterfactuals implied by causal graphs.

While fewer in number, there have also been attempts to
bound causal effects in large general graphs. Poderini et al.
(2020) propose a technique, originally developed in the field
of quantum foundations, to compute bounds in large graphs
with multiple instruments and observed variables. Finkel-
stein et al. (2021) propose a method for partial identification
in a class of measurement error models. Sachs et al. (2020;
2022) identify a large problem class for which linear pro-
gramming (LP) can be used to compute causal bounds, and
develop an algorithm for formulating the objective function
and the constraints of the corresponding LP. However, such
LP formulations quickly become intractable for existing
solvers because the size of the LP grows exponentially in
the number of edges in the underlying causal graph. Shrid-
haran & Iyengar (2022) extend this work by showing that
this LP can be significantly pruned by carefully considering
the structure of the causal query, and show how to compute
bounds for significantly larger causal inference problems
as compared to what is possible using existing techniques.
Zhang et al. (2022) and Duarte et al. (2021) propose general
polynomial programming based approaches to solve general
causal inference problems, but their procedures are either
computationally intensive, or are complex to implement.

In this work, we extend the class of large graphs for which
causal effects can be efficiently bounded. In particular, we
focus on a class of causal graphs known as quasi-markovian
causal graphs, where every variable has only a single unob-
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served confounder as parent. Although this assumption may
seem restrictive, we choose to focus on this setting for the
following reasons:

• Quasi-Markovian models, both large and small, are ap-
plicable in multiple important applications: the family
of graphs which generalize the instrumental variable
setting, see e.g. (Sachs et al., 2022), the well-studied
setting where multiple confounded treatments influ-
ence an outcome (Ranganath & Perotte, 2019; Janz-
ing & Schölkopf, 2018; D’Amour, 2019; Tran & Blei,
2017) and Markov Decision Processes (Kallus & Zhou,
2020).

• Removing the quasi-Markovian assumption puts us in
the general setting with discrete variables which re-
quires polynomial programming (Zhang et al., 2022;
Duarte et al., 2021). As shown in our experiments
in Section 5.2.2, existing algorithms for the general
setting like that in Duarte et al. (2021) are computation-
ally inefficient even for small graphs. These problems
are indeed very challenging to solve, and developing
efficient algorithms for this setting is a promising di-
rection of future research. Developing better heuristics
for the quasi-Markovian case as we have done is a step
in this direction.

Similar to Zaffalon et al. (2020a), we assume that the input
data given is such that bounds for causal queries on the quasi-
markovian graph can be computed using disjoint multilinear
programming i.e. optimization problems with a polynomial
objective and separable linear constraints (De Campos et al.,
1994; Zhang et al., 2022; de Campos & Cozman, 2004). The
construction of the multilinear program relies on a type of
clustering of variables in the causal graph, known as con-
founded components, or C-components (Tian & Pearl, 2002).
In particular, the degree of the polynomial objective is the
number of C-components in the causal graph. However,
even the disjoint bilinear programming problem is NP-hard
in general, and NP-hard to even approximate within any
finite factor (Chen et al., 2009; Housni et al., 2022). Hence,
techniques which leverage problem structure to reduce the
complexity of the problem, and efficient heuristics to obtain
effective approximate solutions are critical in our context.

Recently, Zaffalon et al. (2020a) showed that causal bounds
can be obtained in small quasi-markovian graphs by ap-
plying variable elimination in credal networks. In their
experiments on large quasi-markovian graphs, they apply
the ApproxLP algorithm on the multilinear programming
formulations to obtain approximate solutions (Antonucci
et al., 2015). However, these bounds are non-exact, even
for graphs with only one variable in the intervention set. In
this work, we show that exact bounds for queries in quasi-
markovian graphs can be computed by solving simpler mul-

tilinear programs where the degree of the multilinear objec-
tive function is equal to the number of C-components that
are intervened upon, not the total number of C-components
in the causal graph. In particular, bounds for causal queries
where only one C-component is intervened upon (like the
examples in Zaffalon et al. (2020a)) can, in fact, be com-
puted exactly by formulating and solving an appropriate
linear program. Similarly, bounds for causal queries where
two C-components are intervened upon can be computed
exactly by formulating and solving an appropriate quadratic
program via readily available solvers.

For bounds of causal queries where three or more C-
components are intervened upon, de Campos & Cozman
(2004) transformed the multilinear program into a quadratic
program by grouping terms and introducing new variables
and equalities. However, such quadratic programs are still
innately complex and cannot be solved by off-the-shelf
solvers in reasonable time frames. Several variations of
branch-and-bound techniques have been proposed as well;
unfortunately they all suffer from serious memory and com-
putational efficiency issues unless the multilinear program
is very simple (Duarte et al., 2021; de Campos & Cozman,
2004; Cano et al., 2007).

Approaches like that in (Zhang et al., 2022) compute approx-
imate bounds by avoiding solving the optimization problem
altogether. They posit a model for the data generating pro-
cess of the causal graph and use Collapsed Gibbs Sampling
to sample from the posterior of the query given observation
samples. However, the collapsed Gibbs Sampling procedure
proposed is prone to model misspecification, is complex
to implement in practice, and requires computation of sev-
eral complete conditionals and the development of methods
to sample from them. Furthermore, extensive empirical
evaluations are missing, so it is unclear how accurate the
approximation is on different sets of samples or how long
Gibbs Sampling takes to converge in practice.

Hence, novel heuristics which exploit problem structure are
required for higher degree multilinear programs. Utilizing a
previously established result regarding vertex optimality in
multilinear programs, we develop a heuristic based on the
Frank Wolfe algorithm which is both fast and valid, always
containing the true query value in empirical experiments. In
each iteration of the heuristic, we decompose the multilinear
program into multiple smaller linear programs which can be
solved in parallel. Furthermore, each of these smaller linear
programs can be further pruned by applying techniques
in (Shridharan & Iyengar, 2022). As a consequence, we
significantly increase the size of quasi-markovian graphs for
which the multilinear program method remains tractable.

Our heuristic is perhaps most similar to the ApproxLP algo-
rithm proposed in (Antonucci et al., 2015). This algorithm
iteratively minimizes blocks of variables in the multilin-
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ear program while holding others fixed until convergence,
which is equivalent to a popular heuristic in nonlinear pro-
gramming known as Block Coordinate Descent (BCD) (Lyu,
2020). Antonucci et al. (2015) discuss two methods to select
the block of variables to minimize in each iteration. The
first selects the first block (according to some random order)
which improves the objective (Random ApproxLP), while
the second greedily selects the block which leads to the best
improvement in objective value (Greedy ApproxLP). How-
ever, convergence to a stationary point is not guaranteed in
either version of BCD, and there are examples known to cy-
cle (Powell, 1973). On the other hand, our heurtistic has bet-
ter theoretical guarantees and is guaranteed to converge to a
stationary point, including local minimums. Our heuristic
consistently computes valid bounds i.e. the bounds always
contain the true value of the query. While the ApproxLP
heuristic updates only a single block of variables in each
iteration, multiple blocks of variables are simultaneously
updated in our heuristic. Hence, we show that on average,
our heuristic converges close to the bounds computed by
both variations of ApproxLP for all examples, but is signif-
icantly faster than both. The difference in speed between
these algorithms is most pronounced for large graphs.

To summarize, our main contributions are:

(i) In Section 4, we show that the multilinear program for
computing bounds in quasi-markovian graphs can be
reduced to a simpler multilinear program with a poly-
nomial objective of lower degree. In particular, the de-
gree of the objective in the new multilinear program is
equal to only the number of C-components which are
intervened upon in the causal inference problem, in-
stead of the total number of C-components. As a result,
any causal inference problem on a quasi-Markovian
graph with at most two variables in the intervention
set can be solved via a simple linear or quadratic pro-
gram using readily available optimization solvers like
Gurobi (Gurobi Optimization, LLC, 2023).

(ii) In Section 5, we present a method to obtain causal
bounds when three or more C-components are inter-
vened upon, and the simplified multilinear program
has a polynomial objective of degree at least three. In
Section 5.1, we utilize a previous result on vertex opti-
mality in multilinear programs to develop a heuristic
based on the Frank Wolfe algorithm which is fast, scal-
able to large graphs, always contains the true query
value in empirical experiments and is guaranteed to
converge to a stationary point. Furthermore, while
the ApproxLP heuristic updates only a single block
of variables in each iteration, multiple blocks of vari-
ables are simultaneously updated in our heuristic. In
Sections 5.2.2 and 5.2.1, we benchmark our heuristic
against the most recent alternatives proposed in litera-

ture to our knowledge: both variations of Approx LP
and the branch-and-bound algorithm in Duarte et al.
(2021). On average, our heuristic converges to bounds
close to that of both versions of ApproxLP for all ex-
amples, but is significantly faster, especially for large
graphs. Furthermore, our heuristic outperforms our
best-case interpretation of the algorithm presented in
Duarte et al. (2021) in that it computes bounds of much
higher quality in the same time.

The organization of the rest of this paper is as follows. In
Sections 2 and 3 we introduce the formalism in Zaffalon et al.
(2020a;b). In Section 4 we introduce our main structural
result for reducing the degree of the polynomial objective
in the multilinear program. In Section 5 we present the
Frank Wolfe heuristic and benchmark it against the most
recent alternatives proposed in literature to our knowledge.
Section 6 discusses possible extensions.

2. Causal Inference Problems in
Quasi-Markovian Graphs

Let G denote the causal graph. Let V1, . . . , Vn denote
the variables in G in topologically sorted order, and N =
{1, . . . , n} denote the set of indices of the variables. We
assume that each variable Vi ∈ {0, 1}. Later in Section 3
we discuss why our proposed techniques automatically ap-
ply to the case where Vi takes discrete values. We use
lower case letters for the values of the variables, and the
notation Vi = vi denotes that the value of variable Vi is
vi ∈ {0, 1}. For any subset of indices S ⊆ N , we define
VS := {Vi : i ∈ S}. The notation VS = vS denotes that the
variable Vi = vi, for all i ∈ S, for some v ∈ {0, 1}|N |. Let
U1, . . . , Um denote the mutually independent unobserved
confounders inG. We consider the following class of causal
graphs, known as Quasi-Markovian causal graphs. (Zaf-
falon et al., 2020a;b).

Definition 2.1 (Quasi-Markovian Causal Graphs (Zaffalon
et al., 2020a)). For i ∈ N , let pa(Vi) denote all parents of
Vi in the causal graph, and let pa(Vi) denote only parents
which are observed. A Quasi-Markovian Causal Graph
is a causal graph where each variable has only a single
unobserved confounder as parent. That is, for every i ∈ N ,

pa(Vi) = (Uk, pa(Vi))

where k ∈ {1, . . . ,m}.

We present examples of quasi-markovian causal graphs in
Figure 1 (Zaffalon et al., 2020a).

Our framework relies on a type of clustering of observed
variables in the causal graph, known as confounded com-
ponents (Tian & Pearl, 2002). Let a bi-directed arrow
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(a)

X1 X2

U1 U2

(b)

X1

X2

X3U1

U2

Figure 1: Examples of Quasi-Markovian Causal Graphs

Vi ↔ Vj between variables Vi, Vj represent the sequence
Vi ← Uk → Vj where Uk is a unobserved confounder par-
ent shared by Vi, Vj . A consequetive sequence of bi-directed
arrows is known as a bi-directed path.

Definition 2.2 (Confounded Components (Tian & Pearl,
2002)). For a causal graph G, a subset C ⊆ N is a C-
component if any pair Vi, Vj , i, j ∈ C is connected by a
bi-directed path in G.

A C-component C is maximal if there does not exist any
other C-component in the causal diagram G containing
C. Let C1, . . . Cm ⊆ {1 . . . n} denote the maximal C-
components in G corresponding to U1, . . . Um i.e. Ck de-
notes the indices of the observed children of Uk in G.

Like Zaffalon et al. (2020a), we assume that the input data
is of form P(VCk

|pa(VCk
)). Our goal is to compute bounds

for the causal query Q = P(VO = qO|do(VI = qI)), i.e.
the probability of the output event VO = qO given an in-
tervention do(VI = qI). We show how to use this data to
construct an optimization problem with a polynomial objec-
tive and linear constraints (i.e. a multilinear program) to
compute causal bounds for the query.

3. Formulating the multilinear program
Each unobserved confounder Uk can potentially be very
high dimensional with an unknown structure and dimen-
sion. As in (Balke & Pearl, 1994), we can circumvent this
difficulty by modeling the impact of the confounder rather
than the confounder directly via response function variables.
For i ∈ Ck the variable Vi = f(pa(Vi), Uk) for some un-
known but fixed function f : {0, 1}|pa(Vi)|×Uk 7→ {0, 1}.
Therefore, the confounder Uk impacts the relationship be-
tween pa(Vi) and Vi by selecting a function fi ∈ Fi =
{f : f is a function from pa(Vi) 7→ Vi}. Since each vari-
able Vj ∈ pa(Vi) takes values in {0, 1} and Vi ∈ {0, 1},
the cardinality of the set |Fi| = 22

|pa(Vi)| . Therefore, the el-
ements of Fi can be indexed by rVi ∈ RVi = {1, . . . , |Fi|}
i.e. frVi

denotes the rVi -th function from Fi.

Let the set RCk
=
∏
i∈Ck

RVi
index all possible mappings

from pa(Vi) 7→ Vi for all i ∈ Ck. Thus, the response
function variable rCk

∈ RCk
can be used to model the

impact of Uk by denoting the function from all possible
functions mapping pa(VCk

) to VCk
selected by Uk. Hence,

the unknown distribution over the high dimensional Uk can
be equivalently modeled via the distribution qrCk

∈ R|RCk
|

+

over the set RCk
.

Note that although we work with causal graphs with bi-
nary variables in this paper, generalizing all subsequent re-
sults to categorical variables is straightforward. The critical
property that we exploit is that the set of response function
variables index possible mappings between variables. There-
fore, our approach can be extended to general categorical
variables by suitably defining response function variables.
For example, suppose in Figure 1(a), X1, X2 ∈ {0, . . . ,m}.
Then the response function variable rX2

∈ {0, . . . ,mm−1}.
All subsequent results generalize.

Note that pa(VCk
) and rCk

uniquely determine the values
of variables VCk

. For rCk
∈ RCk

, let F kT (VS = vS , rCk
)

denote the value of VT ⊆ VCk
when VS = vS provided

it is well defined. For S ⊆ N , let PS ⊆ N denote the
indices of pa(VS). As discussed, setting pa(VCk

) = vPCk

and choosing rCk
∈ RCk

completely defines the values for
VCk

, i.e. F kCk
(pa(VCk

) = vPCk
, rCk

) is well defined.

Let RvCk
.vPCk

:= {rCk
: F kCk

(VPCk
= vPCk

, rCk
) =

vCk
} and pvCk

.vPCk

:= P(VCk
= vCk

|VPCk
= vPCk

).
Then, for each unobserved confounder Uk, we have

pvCk
.vPCk

=
∑

rCk
∈RvCk

.vPCk

qrCk

Let R = Πm
k=1RCk

. For r ∈ R, let FT (VS = vS , r) denote
the value of VT ⊆ VN when VS = vS provided it is well
defined. The set

RQ = {r ∈ R : FO(VI = qI , r) = qO} (1)

denotes the set of r values consistent with the query Q =
P(VO = qO|do(VI = qI)). Hence,

P(VO = qO|do(VI = qI)) =
∑
r∈RQ

qr

=
∑
r∈RQ

Πm
k=1qrCk

(2)

where (2) follows from mutual independence of unobserved
confounders.

Lower and upper bounds for the causal query can then be ob-
tained by solving the following pair of multilinear programs
with polynomial objectives and linear constraints:

min /maxq g(q) :=
∑
r∈RQ Πm

k=1qrCk

s.t.
∑
rCk
∈RvCk

.vPCk

qrCk

= pvCk
.vPCk

,∀k, vPCk
, vCk

q ≥ 0.

(3)
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Fix k ∈ {1, . . . ,m}. Recall for VPCk
= vPCk

,
rCk

∈ RCk
uniquely determines the value of VCk

.
Hence, for fixed vPCk

, ∪vCk
RvCk

.vPCk
is a partition

of RCk
. Thus, the constraint

∑
rCk
∈RCk

qrCk
=∑

vCk

∑
rCk
∈RvCk

.vPCk

qrCk
=
∑
vCk

pvCk
.vPCk

= 1 is

implied by the other constraints in the multilinear program,
and therefore, is not explicitly added to the multilinear pro-
gram.

In Appendix C, we present the intuition behind response
function variables and the formulation of the multilinear
program via an example.

4. Simplifying the Multilinear Program
The degree of the polynomial objective in (3) is the number
of C-components in the causal graph. The main result in this
section is Theorem 4.1, which shows that this multilinear
program is equivalent to a simpler one with polynomial
objective of the same degree as the number of C-components
which are intervened upon in the causal inference problem.

Theorem 4.1 (Simplifying the Multilinear Program). Con-
sider a causal inference problem with query P(VO|do(VI))
on a quasi-markovian graph with m C-components. Let
` be the number of C-components which contains at least
one variable in the intervention set I . Then, the problem
of computing bounds is an optimization problem with lin-
ear constraints involving the given ` C-components and an
objective that is a polynomial of degree `.

Proof Sketch. Let Z = N \ (I ∪ O) i.e. the indices of
variables in the graph which are neither intervened upon
nor observed in the query. Therefore N = Z ∪ O ∪ I is a
partition of N . We can rewrite the query as

P
(
VO | do(VI)

)
=
∑
vZ

P
(
VO, VZ = vZ | do(VI)

)
For fixed vZ , we show via induction that

P
(
VO, VZ = vZ | do(VI)

)
=

m∏
k=1

P

 VO∩Ck
,

VZ∩Ck
= vZ∩Ck

∣∣∣∣∣∣
do(VI∩pa(VCk

), VI∩Ck
),

VZ∩pa(VCk
) = vZ∩pa(VCk

),

VO∩pa(VCk
)

(4)

The result is a special case of the C-component factorization
result first shown in (Tian, 2002).

Suppose VI∩Ck
= ∅ i.e. no variable in the k-th C-

component is in the intervention set. Then, it follows that

(VO∩Ck
, VZ∩Ck

) = VCk
,

(VI∩pa(VCk
), VZ∩pa(VCk

), VO∩pa(VCk
)) = Vpa(VCk

).

Therefore, the term

P

VO∩Ck
, VZ∩Ck

∣∣∣∣∣∣
do(VI∩pa(VCk

)),

VZ∩pa(VCk
),

VO∩pa(VCk
)


= P(VCk

|Vpa(VCk
))

is a constant completely defined by the data.

Fix k ∈ {1, . . . ,m} such that VI∩Ck
6= ∅. Consider every

term of form

P

VO∩Ck
, VZ∩Ck

∣∣∣∣∣∣
do(VI∩pa(VCk

), VI∩Ck
),

VZ∩pa(VCk
),

VO∩pa(VCk
)

 (5)

We can rewrite this term as:

P

VO∩Ck
, VZ∩Ck

∣∣∣∣∣∣
do(VI∩pa(VCk

), VI∩Ck
),

VZ∩pa(VCk
),

VO∩pa(VCk
)


=
∑
rCk

P

 VO∩Ck
,

VZ∩Ck

∣∣∣∣∣∣
do(VI∩pa(VCk

), VI∩Ck
),

VZ∩pa(VCk
),

VO∩pa(VCk
), rCk

P(rCk
)

=
∑
rCk

P

 VO∩Ck
,

VZ∩Ck

∣∣∣∣∣∣
do(VI∩pa(VCk

), VI∩Ck
),

VZ∩pa(VCk
),

VO∩pa(VCk
), rCk

 qrCk

Fix rCk
. Every variable in pa(VCk

) is either in I, Z or O.
Hence, in the term

P

VO∩Ck
, VZ∩Ck

∣∣∣∣∣∣
do(VI∩pa(VCk

), VI∩Ck
),

VZ∩pa(VCk
),

VO∩pa(VCk
), rCk


every variable in pa(VCk

) is either intervened upon or con-
ditioned on. Since rCk

is also conditioned on, each term
of this form is a deterministic constant. Hence, (5) is lin-
ear in qrCk

. Now, the result follows from (4) and the two
observations above.

Corollary 4.2. The following results follow from Theo-
rem 4.1:

(a) A causal inference problem with only one variable in
the intervention set can be solved by a linear program
with linear constraints involving only the C-component
containing that variable.
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(b) A causal inference problem with two variables in the
intervention set can be solved either by a linear program
(if both are in the same C-component), or a quadratic
program (if both are in different C-components).

The impact of Corollary 4.2 is that any causal inference
problem on a quasi-markovian graph can be solved via
a simple linear or quadratic program using readily avail-
able optimization solvers like Gurobi (Gurobi Optimization,
LLC, 2023), as long as it contains at most two variables in
the intervention set.

5. Higher Degree Multilinear Programs
We now present methods to obtain causal bounds when
three or more C-components are intervened upon, and the
simplified multilinear program has a polynomial objective
of degree at least three. It has been previously established
that there always exists an extreme point of the constraint
polyhedron which is optimal in the multilinear program, as
implied by Lemma 5.1 and Theorem 5.2 (see Appendix for
proofs).
Lemma 5.1 ((Falk & Hoffman, 1976)). The minimum value
of a real-valued continuous concave function f(x) over a
bounded closed convex set P is achieved at an extreme point
of P .

Theorem 5.2 (Vertex Optimal (Lukatskii & Shapot, 2001)).
Suppose Pi is a bounded closed convex set for all i =
1, . . . ,m. Let P = ×mi=1Pi and ext(P ) = ×mi=1ext(Pi).
Let f : P 7→ R be component-wise concave, i.e. f(qi, q−i) :
Pi 7→ R is a concave function of qi for every fixed value of
q−i. Then

min
q∈P

f(q) = min
q∈ext(P )

f(q).

We utilize this result to develop a heuristic based on the
Frank Wolfe algorithm which is fast, scalable to large graphs
and always contains the true query value in empirical exper-
iments.

5.1. Frank Wolfe Heuristic

The Frank-Wolfe (FW) optimization algorithm proposed in
(Frank & Wolfe, 1956) (also known as conditional gradient
method (Demianov & Rubinov, 1970)), is a popular first-
order method to solve constrained optimization problems of
form

min
x∈M

f(x)

where f : Rd → R is a continuously differentiable convex
function over the domainM that is convex and compact.
However, the algorithm is known to provide good solutions
even on non-convex objectives with a Lipschitz continuous
gradient, with Lacoste-Julien (2016) showing that it is guar-
anteed to converge to a stationary point at a rate of O( 1√

t
).

Its speed and scalability in machine learning applications
has led to a surge in popularity, see (Jaggi, 2013; Lacoste-
Julien & Jaggi, 2015) and references therein. See also (Lan,
2013) for a related survey.

In each iteration, the Frank–Wolfe algorithm considers a
linear approximation of the objective function, and moves
towards a minimizer of this linear function (taken over the
same domain), and hence only requires access to a linear
minimization oracle over the feasible set. Let q(t) denote
the iterate at iteration t, and Ak denote the polyhedron
represented by constraints corresponding to Ck i.e.

Ak =


qrCk

:
∑
rCk
∈RvCk

.vPCk

qrCk

= pvCk
.vPCk

,∀vPCk
, vCk

qrCk
≥ 0


We discuss the algorithm for the minimization problem
which computes lower bounds, but the implementation of
the algorithm for the maximization problem is analogous.
The procedure is initialized by generating a random feasible
solution q(0). In each iteration t, we compute:

s(t) := argmins∈
⋂m

k=1 Ak
s>∇g(q(t))

Equivalently, since the constraints are separable, for every
k = 1 . . . ,m, we have

s(t)rCk
=

argminsrCk
∈Ak

g(q(t)
rC1

, . . . , s, . . . , q(t)
rCm

) (6)

Note that for each k = 1 . . . ,m, (6) is a linear program.
Hence, to compute the vertex to move towards in each it-
eration, we decompose the optimization problem in each
step into m linear programs which can be solved in par-
allel. Furthermore, each linear program can be further
pruned using techniques for computing bounds in a single
C-component. We refer the interested reader to Shridharan
& Iyengar (2022) for details. Note that while the ApproxLP
heuristic updates only a single block of variables in each
iteration, multiple blocks of variables are simultaneously
updated in our heuristic (Antonucci et al., 2015).

A popular technique used to determine step sizes in the
Frank Wolfe algorithm is line search, where the step size at
iteration t, γt, is given by:

γt := argminγ∈[0,1] g(q(t) + γ(s(t) − q(t)))

Since g is coordinate-wise concave on the line segment, the
optimal solution must lie on one of the two vertices. Hence,

γt = argminγ∈{0,1} g(q(t) + γ(s(t) − q(t)))

That is, in each iteration, we either stay at the current vertex
q(t) or take the full step to the new vertex s(t) if it improves
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the objective value. Iterations are repeated until conver-
gence, and the entire procedure is repeated T times, each
with a random initialization of the first iterate q(0).

Algorithm 1 presents our complete heuristic. In each iter-
ation, q(t,n−1) and g(t)n−1 denote the solution and objective
value from the previous iteration, while q(t,n) and g(t)n de-
note the solution and objective value from the current itera-
tion. When we can no longer improve the objective value
i.e. g(t)n−1 = g

(t)
n , the algorithm terminates.

Algorithm 1 Frank Wolfe Heuristic for Lower Bound
for t = 1, . . . , T do

Initialize g(t)n−1 = 1.1.
for k = 1, . . . ,m do

Randomly initialize q
(t,n−1)
rCk

∈ Ak

Initialize g(t)n := g(q(t,n−1)).
while g(t)n < g

(t)
n−1 do

g
(t)
n−1 := g

(t)
n

for k = 1, . . . ,m do
Compute s

(n)
rCk

:=

mins∈Pk
g(q

(t,n−1)
rC1

, . . . , s, . . . , q
(t,n−1)
rCm

)

if g(s(n)) < g(q(t,n−1)) then
g
(t)
n := g(s(n))
q(t,n) := s(n)

else
g
(t)
n := g(q(t,n−1))
q(t,n) := q(t,n−1)

return mint=1,...,T g
(t)
n

Although the interval produced by the heuristic will lie
inside the true tight interval, we show that in empirical
experiments, the interval produced by our heuristic always
contains the true query value of the causal inference problem.
Furthermore, Theorems 5.3 and 5.4 show that our objective
function has a Lipschitz continuous gradient, and as a result,
our heuristic is guaranteed to converge to a stationary point.
This offers a compelling alternative to other branch-and-
bound methods which are guaranteed to contain the true
query value, but are computationally intensive and non-
scalable.

Theorem 5.3 (Lipschitz Continuous Gradient). There exists
L < ∞ such that ∇g(q) is L-Lipschitz continuous on the
feasible set

⋂m
k=1Ak.

Proof. See Appendix B.

Theorem 5.4 (Convergence of Frank-Wolfe (Lacoste-Julien,
2016)). Let f : Rd → R denote a continuously differ-

entiable function that is potentially non-convex, but is L-
Lipschitz continuous over the compact convex domainM.
Then the Frank Wolfe Algorithm with exact line search con-
verges to an approximate stationary point with gap at most
ε in O( 1

ε2 ) iterations, where the gap g(x) of a stationary
point x is defined as:

g(x) := max
s∈M
〈s− x,−∇f(x)〉

5.2. Numerical Experiments

We evaluate our heuristic on queries for the quasi-markovian
graphs in Figure 1g, 1h and 1j in Zaffalon et al. (2020a).
We selected these graphs since they are the largest among
the family of graphs in Figure 1 in Zaffalon et al. (2020a),
hence showing that the algorithm is scalable to large causal
graphs and outputs valid bounds despite their complexity.
We evaluate our heuristic on queries with 3, 6 and 10 C-
components intervened upon. Note that we appropriately
modify the graphs in (Zaffalon et al., 2020a) by adding extra
edges to ensure that the graphs remain connected after per-
forming the intervention in the query. Overall, we evaluate
our heuristic on 9 causal inference problems. The details of
the problems are in the appendix.

We evaluate the performance of our heuristic on each causal
inference problem as follows. For each problem, we ran-
domly generate 50 values of q as our ground truth. Then
for each value, we compute the corresponding true value
of the query, and input data distribution P(VCk

|VPCk
), k =

1, . . . ,m. We then run Algorithm 1 on the input data distri-
bution with T = 10, and check if the output bounds contain
the true value of the query . We find that for every causal
inference problem, and every ground truth q generated for
each problem, the bounds computed by Algorithm 1 was
always valid i.e. always contained the true query value.
In Sections 5.2.2 and 5.2.1, we benchmark Algorithm 1
against the most recent alternatives proposed in literature
to our knowledge: both variations of Approx LP and the
branch-and-bound algorithm in Duarte et al. (2021).

5.2.1. BENCHMARKING AGAINST APPROX LP

We compare the speed and accuracy of Algorithm 1 with
both variations of ApproxLP, and found that for the same
number of random restarts (T = 10), Algorithm 1 converges
to bounds close to that of both versions of ApproxLP on
average for all examples, but is significantly faster, espe-
cially for large graphs. Table 1 compares the runtime of the
Frank Wolfe Heuristic with both versions of the ApproxLP
algorithm where m denotes the number of C-components
intervened on in the example, and tFW , tGAP , tRAP denote
the average runtime of each heuristic in seconds.

Let αFWL , αGAPL , αRAPL denote the lower bounds computed
by the Frank Wolfe, Greedy ApproxLP (GAP), and Ran-
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Figure m tFW (s) tRAP (s) tGAP (s)

2 (a) 3 0.2 0.2 0.3
2 (b) 3 0.18 0.23 0.26
2 (c) 3 0.19 0.25 0.29
3 (a) 6 3.5 4.1 5.2
3 (b) 6 0.7 1.1 1.2
3 (c) 6 1.3 2.1 2.1
4 (a) 10 45.3 60.7 69.2
4 (b) 10 17.5 37.8 31.2
4 (c) 10 39.5 75.3 72.7

Extension
of 4 (b) 16 1921 5032 3929

Table 1: Average runtime of the Frank Wolfe vs Ap-
prox LP Heuristics in each example. m denotes the
number of C-components intervened upon in the exam-
ple. tFW , tGAP , tRAP denote the average runtime of each
heuristic in seconds. We evaluated our heuristic on causal
inference problems with 3, 6 and 10 C-components, and
their details are in the appendix. We also computed average
runtimes on 20 ground truth values in an extension of the
graph and query in Figure 4 (b) to 16 C-components with
T = 1.

dom ApproxLP (RAP) heuristics. Let αFWU , αGAPU , αRAPU

denote the upper bounds computed by the Frank Wolfe,
Greedy ApproxLP, and Random ApproxLP heuristics. Then
εGAPL =

αGAP
L −αFW

L

αGAP
L

and εRAPL =
αRAP

L −αFW
L

αRAP
L

i.e. the rel-
ative improvement in the lower bound of Frank Wolfe com-
pared to GAP and RAP. Similarly, εGAPU =

αFW
U −αGAP

U

αRAP
U

and εRAPL =
αFW

U −αRAP
U

αRAP
U

. Note that positive values of
relative improvements indicate that Frank Wolfe outper-
formed the Approx LP heuristic, and vice versa. Table
2 reports the mean and 95-percent confidence interval of
εRAPL , εRAPU , εGAPL and εGAPU over 50 ground truth sam-
ples.

On average, the bounds computed by Frank Wolfe are close
to those computed by the Approx LP heuristics for all exam-
ples. Recall further that in every sample, Frank Wolfe com-
puted valid bounds which contained the true query value.

5.2.2. BENCHMARKING AGAINST DUARTE ET AL.
(2021)

Algorithm 2 in Duarte et al. (2021) is guaranteed to compute
valid bounds on termination at any point. However, it is also
computationally inefficient even for small graphs. In this
section, we benchmark Algorithm 1 against our best-case
interpretation of Algorithm 2 in Duarte et al. (2021) by ter-
minating the algorithm at the time Algorithm 1 terminates.

Note that it is not clear how certain critical sub-procedures in

Figure
mean
εRAP
L

mean
εRAPU

mean
εGAPL

mean
εGAPU

2(a)
0.0000
±0.0000

0.0000
±0.0000

0.0000
±0.0000

0.0000
±0.0000

2(b)
0.0000
±0.0000

-0.0002
±0.0004

0.0000
±0.0000

0.0075
±0.0073

2(c)
0.0000
±0.0000

-0.0002
±0.0004

0.0000
±0.0000

0.0001
±0.0002

3(a)
0.0000
±0.0000

0.0000
±0.0000

0.0000
±0.0000

0.0000
±0.0000

3(b)
-0.0071
±0.0128

-0.0005
±0.0007

-0.0071
±0.0128

0.0121
±0.0069

3(c)
0.0000
±0.0000

0.0000
±0.0000

0.0000
±0.0000

0.0005
±0.0007

4(a)
0.0000
±0.0000

0.0000
±0.0001

0.0000
±0.0001

0.0000
±0.0001

4(b)
-0.0091
±0.0070

-0.0024
±0.0025

-0.0091
±0.0070

0.0173
±0.0179

4(c)
0.0000
±0.0000

-0.0003
±0.0005

0.0000
±0.0000

0.0000
±0.0007

Extension
of 4 (b)

-0.0031
±0.0047

-0.0018
±0.0037

-0.0031
±0.0047

0.0115
±0.0228

Table 2: Mean relative improvements of Frank Wolfe
over the Approx LP heuristic in each example. εGAPL =
αGAP

L −αFW
L

αGAP
L

and εRAPL =
αRAP

L −αFW
L

αRAP
L

denote the relative
improvement in the lower bound of Frank Wolfe compared
to GAP and RAP. Similarly, εGAPU =

αFW
U −αGAP

U

αRAP
U

and

εRAPL =
αFW

U −αRAP
U

αRAP
U

. Note that positive values of rela-
tive improvements indicate that Frank Wolfe outperformed
the Approx LP heuristic, and vice versa.

Algorithm 2 in Duarte et al. (2021) were implemented (e.g.
how the branch b chosen in the sub-procedure is partitioned,
how the LP relaxation Db′ is obtained for each subpartition
of the branch, etc). Since the authors mention that they

“employ a variation of the spatial branch-and-bound method,
combined with a piecewise linear envelope, implemented
using a variety of optimization frameworks that include
SCIP”, we benchmark our heuristic against the SCIP solver
for nonlinear programming. Furthermore, in order to ensure
that any difference in performance is not due to the choice
of solver, we solved the linear programming sub-procedures
of our heuristic using SCIP.

Tables 3 and 4 list the difference in bounds computed by
Algorithm 1 and the SCIP solver at the time when Algo-
rithm 1 terminates. tFW denotes the runtime in seconds
of Algorithm 1 averaged over 50 ground truth samples for
figures 2(a), 2(b) and 2(c). Recall our query is a probability,
and so, is guaranteed to lie in [0, 1]. Algorithm 1 almost
always produces informative bounds (i.e. in almost 100%
of samples, αFWL > 0 and αFWU < 1). However, the SCIP
primal lower bound αPL was finite in approximately 90% of
samples for 2(b) and 2(c), and in none of the samples for
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Figure tFW (s)
finite
αP
U (%)

average
εL

finite
αP
U (%)

average
εU

2 (a) 3.58 0 − 0 −

2 (b) 1.62 84
0.05
±0.06 36

0.01
±0.02

2 (c) 2.33 88
0.04
±0.04 34

0.01
±0.03

Table 3: Difference in bounds computed by Algorithm 1 and
the primal bounds computed by the SCIP solver at the time
Algorithm 1 terminates. tFW (s) is the runtime in seconds
of the FW heuristic averaged over samples for figures 2(a),
2(b) and 2(c). Note that the SCIP primal lower bound was
finite in approximately 90% of samples for 2(b) and 2(c),
and in none of the samples for 2(a). Let εL denote the
relative improvement of Algorithm 1 compared to the SCIP
primal lower bound. The average relative improvement
of Algorithm 1 on those samples with finite SCIP primal
lower bound was positive. The SCIP primal upper bound
αPU was finite in only approximately 40 percent of samples
for 2(b) and 2(c), and none for 2(a). The average relative
improvement of Algorithm 1 over the SCIP primal upper
bound on samples with finite upper bound was also positive.

2(a). Let εPL =
αP

L−α
FW
L

αP
L

denote the relative improvement
of the lower bound computed by Algorithm 1 compared
to the SCIP primal lower bound. The average relative im-
provement of Algorithm 1 on those samples with finite SCIP
primal lower bound was positive. The SCIP primal upper
bound αPU was finite in only approximately 40 percent of
samples for 2(b) and 2(c), and none for 2(a). The average
relative improvement of Algorithm 1 over the SCIP primal
upper bound on samples with finite upper bound was also
positive. For every sample of examples 2(a)-(c) the SCIP
dual bounds αDL ≤ 0 and αDU ≥ 1 in the alotted time. This
is completely uninformative for our setting.

Thus, in summary, it is clear that our Algorithm 1 outper-
forms the SCIP solver (our best-case interpretation of the
algorithm presented in Duarte et al. (2021)) in that it com-
putes bounds of much higher quality in the same time. This
confirms the fact that although Duarte et al. (2021) flexibly
accommodates a variety of simple models, their algorithm
does not scale to large graphs with multiple C-components.
Indeed, developing algorithms that can scalably compute
bounds which are guaranteed to be valid in large graphs is
challenging; our work offers a step in this direction.

6. Conclusion
We show that the multilinear program for computing bounds
for causal queries in quasi-markovian graphs can be reduced
to a simpler multilinear program with a polynomial objec-
tive of lower degree. In particular, the degree of the ob-

Figure
tFW

(s)
αD
L

> 0 (%)
αD
U

< 1(%)
αFW
L

> 0 (%)
αFW
U

< 1 (%)

2 (a) 3.58 0 0 100 100
2 (b) 1.62 0 0 98 98
2 (c) 2.33 0 0 100 100

Table 4: Difference in bounds computed by Algorithm 1 and
the dual bounds computed by the SCIP solver at the time
Algorithm 1 terminates. tFW (s) is the runtime in seconds
of the FW heuristic averaged over samples for figures 2(a),
2(b) and 2(c). Recall our query is a probability, and so, is
guaranteed to lie in [0, 1]. Algorithm 1 almost always pro-
duces informative bounds (i.e. in almost 100% of samples,
αFWL > 0 and αFWU < 1). However, for every sample
of examples 2(a)-(c) the SCIP dual bounds αDL ≤ 0 and
αDU ≥ 1 in the alotted time.

jective in the new multilinear program is equal to only the
number of C-components which are intervened upon in the
causal inference problem, instead of the total number of C-
components. As a result, any causal inference problem on a
quasi-Markovian graph with at most two variables in the in-
tervention set can be solved via a simple linear or quadratic
program using readily available optimization solvers.

We also present a method to obtain causal bounds when
three or more C-components are intervened upon, and the
simplified multilinear program has a polynomial objective
of degree at least three. We utilize a previous result on ver-
tex optimality in multilinear programs to develop a heuristic
based on the Frank Wolfe algorithm which is fast, scalable
to large graphs, always contains the true query value in
empirical experiments and is guaranteed to converge to a
stationary point. Furthermore, while the ApproxLP heuris-
tic updates only a single block of variables in each iteration,
multiple blocks of variables are simultaneously updated in
our heuristic. We benchmark our heuristic against the most
recent alternatives proposed in literature to our knowledge:
both variations of Approx LP and the branch-and-bound
algorithm in Duarte et al. (2021). On average, our heuris-
tic converges to bounds close to that of both versions of
ApproxLP for all examples, but is significantly faster, espe-
cially for large graphs. Furthermore, our heuristic outper-
forms our best-case interpretation of the algorithm presented
in Duarte et al. (2021) in that it computes bounds of much
higher quality in the same time.
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Cano, A., Gómez, M., Moral, S., and Abellán, J.
Hill-climbing and branch-and-bound algorithms
for exact and approximate inference in credal
networks. International Journal of Approximate
Reasoning, 44(3):261–280, 2007. ISSN 0888-
613X. doi: https://doi.org/10.1016/j.ijar.2006.07.020.
URL https://www.sciencedirect.com/
science/article/pii/S0888613X06000971.
Reasoning with Imprecise Probabilities.

Chen, X., Deng, X., and Teng, S.-H. Settling the complexity
of computing two-player nash equilibria. Journal of the
ACM (JACM), 56(3):1–57, 2009.

D’Amour, A. On multi-cause approaches to causal inference
with unobserved counfounding: Two cautionary failure
cases and a promising alternative. In Chaudhuri, K. and
Sugiyama, M. (eds.), Proceedings of the Twenty-Second
International Conference on Artificial Intelligence and
Statistics, volume 89 of Proceedings of Machine Learn-
ing Research, pp. 3478–3486. PMLR, 16–18 Apr 2019.
URL https://proceedings.mlr.press/v89/
d-amour19a.html.

de Campos, C. P. and Cozman, F. G. Inference in credal
networks using multilinear programming. In Proceedings
of the Second Starting AI Researcher Symposium, pp.
50–61, 2004.

De Campos, L. M., Huete, J. F., and Moral, S. International
journal of uncertainty, fuzziness and knowledge-based
ºy***** vol. 2, no. 2 (1994) 167–196. World, 2(2):167–
196, 1994.

Demianov, V. F. and Rubinov, A. M. Approximate methods
in optimization problems. Number 32. Elsevier Publish-
ing Company, 1970.

Duarte, G., Finkelstein, N., Knox, D., Mummolo, J., and
Shpitser, I. An automated approach to causal inference in
discrete settings. arXiv preprint arXiv:2109.13471, 2021.

Evans, R. J. Graphical methods for inequality constraints in
marginalized DAGs. In 2012 IEEE International Work-
shop on Machine Learning for Signal Processing, pp.
1–6, 2012. doi: 10.1109/MLSP.2012.6349796.

Falk, J. E. and Hoffman, K. R. A successive underestimation
method for concave minimization problems. Mathematics
of operations research, 1(3):251–259, 1976.

Finkelstein, N. and Shpitser, I. Deriving bounds and in-
equality constraints using logical relations among coun-
terfactuals. In Conference on Uncertainty in Artificial
Intelligence, pp. 1348–1357. PMLR, 2020.

Finkelstein, N., Adams, R., Saria, S., and Shpitser, I. Partial
identifiability in discrete data with measurement error. In
de Campos, C. and Maathuis, M. H. (eds.), Proceedings
of the Thirty-Seventh Conference on Uncertainty in Artifi-
cial Intelligence, volume 161 of Proceedings of Machine
Learning Research, pp. 1798–1808. PMLR, 27–30 Jul
2021. URL https://proceedings.mlr.press/
v161/finkelstein21b.html.

Frank, M. and Wolfe, P. An algorithm for quadratic pro-
gramming. Naval research logistics quarterly, 3(1-2):
95–110, 1956.

Geiger, D. and Meek, C. Quantifier elimination for statistical
problems, 2013. URL https://arxiv.org/abs/
1301.6698.

Gurobi Optimization, LLC. Gurobi Optimizer Reference
Manual, 2023. URL https://www.gurobi.com.

Housni, O. E., Foussoul, A., and Goyal, V. Lp-based approx-
imations for disjoint bilinear and two-stage adjustable
robust optimization. In Aardal, K. and Sanità, L. (eds.),
Integer Programming and Combinatorial Optimization,
pp. 223–236, Cham, 2022. Springer International Pub-
lishing. ISBN 978-3-031-06901-7.

Imbens, G. W. and Rubin, D. B. Causal inference in statis-
tics, social, and biomedical sciences. Cambridge Univer-
sity Press, 2015.

Jaggi, M. Revisiting frank-wolfe: Projection-free sparse
convex optimization. In International Conference on
Machine Learning, pp. 427–435. PMLR, 2013.

Janzing, D. and Schölkopf, B. Detecting confounding in
multivariate linear models via spectral analysis. Journal
of Causal Inference, 6(1):20170013, 2018. doi: doi:10.
1515/jci-2017-0013. URL https://doi.org/10.
1515/jci-2017-0013.

Kallus, N. and Zhou, A. Confounding-robust policy eval-
uation in infinite-horizon reinforcement learning, 2020.
URL https://arxiv.org/abs/2002.04518.

10

https://www.sciencedirect.com/science/article/pii/S0888613X06000971
https://www.sciencedirect.com/science/article/pii/S0888613X06000971
https://proceedings.mlr.press/v89/d-amour19a.html
https://proceedings.mlr.press/v89/d-amour19a.html
https://proceedings.mlr.press/v161/finkelstein21b.html
https://proceedings.mlr.press/v161/finkelstein21b.html
https://arxiv.org/abs/1301.6698
https://arxiv.org/abs/1301.6698
https://www.gurobi.com
https://doi.org/10.1515/jci-2017-0013
https://doi.org/10.1515/jci-2017-0013
https://arxiv.org/abs/2002.04518


Causal Bounds in Quasi-Markovian Graphs

Kilbertus, N., Kusner, M. J., and Silva, R. A class of
algorithms for general instrumental variable models. In
Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and
Lin, H. (eds.), Advances in Neural Information Process-
ing Systems, volume 33, pp. 20108–20119. Curran As-
sociates, Inc., 2020. URL https://proceedings.
neurips.cc/paper/2020/file/
e8b1cbd05f6e6a358a81dee52493dd06-Paper.
pdf.

Lacoste-Julien, S. Convergence rate of frank-wolfe for non-
convex objectives, 2016.

Lacoste-Julien, S. and Jaggi, M. On the global linear con-
vergence of frank-wolfe optimization variants. Advances
in neural information processing systems, 28, 2015.

Lan, G. The complexity of large-scale convex program-
ming under a linear optimization oracle. arXiv preprint
arXiv:1309.5550, 2013.

Lukatskii, A. and Shapot, D. Problems in multilinear pro-
gramming. Computational Mathematics and Mathemati-
cal Physics, 41(5):638–648, 2001.

Lyu, H. Convergence and complexity of block coordinate
descent with diminishing radius for nonconvex optimiza-
tion, 2020. URL https://arxiv.org/abs/2012.
03503.

Pearl, J. Causality: Models, Reasoning and Inference. Cam-
bridge University Press, USA, 2nd edition, 2009. ISBN
052189560X.

Poderini, D., Chaves, R., Agresti, I., Carvacho, G., and
Sciarrino, F. Exclusivity graph approach to instrumen-
tal inequalities. In Adams, R. P. and Gogate, V. (eds.),
Proceedings of The 35th Uncertainty in Artificial Intel-
ligence Conference, volume 115 of Proceedings of Ma-
chine Learning Research, pp. 1274–1283. PMLR, 22–
25 Jul 2020. URL https://proceedings.mlr.
press/v115/poderini20a.html.

Powell, M. J. On search directions for minimization al-
gorithms. Mathematical programming, 4(1):193–201,
1973.

Ranganath, R. and Perotte, A. Multiple causal inference
with latent confounding, 2019.

Richardson, A., Hudgens, M. G., Gilbert, P., and Fine,
J. Nonparametric bounds and sensitivity analysis of
treatment effects. Stat Sci, 29(4):596–618, 2014. doi:
10.1214/14-STS499.

Sachs, M. C., Gabriel, E. E., and Sjolander, A. Symbolic
computation of tight causal bounds. Biometrika, 103(1):
1–19, 2020.
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Causal Bounds in Quasi-Markovian Graphs

A. Causal Inference Problems in Experiments
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Figure 2: Quasi-Markovian Graphs with 3 C-components, of which all 3 C-components were intervened upon in our
evaluation of Algorithm 1. The corresponding query for each graph was (a) P(Y = 1|do(X1 = 1, X2 = 1, X3 = 1)) (b)
P(Y = 1|do(X1 = 1, X3 = 1, X5 = 1)) (c) P(Y = 1|do(X1 = 1, X2 = 1, X5 = 1)).
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Figure 3: Quasi-Markovian Graphs with 6 C-components, of which all 6 C-components were intervened upon in our
evaluation of Algorithm 1. The corresponding query for each graph was (a) P(Y = 1|do(X1 = 1, X2 = 1, X3 = 1, X4 =
1, X9 = 1, X10 = 1))(b) P(Y = 1|do(X1 = 1, X3 = 1, X5 = 1, X7 = 1, X9 = 1, X11 = 1)) (c) P(Y = 1|do(X1 =
1, X2 = 1, X5 = 1, X6 = 1, X9 = 1, X10 = 1)).
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Figure 4: Quasi-Markovian Graphs with 10 C-components, of which all 10 C-components were intervened upon in our
evaluation of Algorithm 1. The corresponding query for each graph was (a) P(Y = 1|do(X1 = 1, X2 = 1, X3 = 1, X4 =
1, X9 = 1, X10 = 1, X11 = 1, X12 = 1, X17 = 1, X18 = 1))(b) P(Y = 1|do(X1 = 1, X3 = 1, X5 = 1, X7 = 1, X9 =
1, X11 = 1, X13 = 1, X15 = 1, X17 = 1, X19 = 1)) (c) P(Y = 1|do(X1 = 1, X5 = 1, X9 = 1, X13 = 1, X17 = 1, X2 =
1, X6 = 1, X10 = 1, X14 = 1, X18 = 1)).
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B. Proof of Results
Theorem 4.1 (Simplifying the Multilinear Program). Consider a causal inference problem with query P(VO|do(VI)) on a
quasi-markovian graph with m C-components. Let ` be the number of C-components which contains at least one variable in
the intervention set I . Then, the problem of computing bounds is an optimization problem with linear constraints involving
the given ` C-components and an objective that is a polynomial of degree `.

Proof. Let Z = N \ (I ∪O) i.e. the indices of variables in the graph which are neither intervened upon nor observed in the
query. Therefore N = Z ∪O ∪ I is a partition of N . We can rewrite the query as

P
(
VO | do(VI)

)
=
∑
vZ

P
(
VO, VZ = vZ | do(VI)

)
For fixed vZ , we claim

P
(
VO, vZ | do(VI)

)
=

m∏
k=1

P
(
VO∩Ck

, vZ∩Ck
| do(VI∩pa(VCk

), VI∩Ck
), vZ∩pa(VCk

), VO∩pa(VCk
)

)
(7)

First consider the base case of m = 1. Since pa(VCk
) = ∅ and Ck = N , (7) holds.

Suppose the result holds for a m C-component problem. Next, we show that the result holds for a m + 1 C-component
problem:

P
(
VO, vZ | do(VI)

)
(a)
= P(VO∩Cm+1

, vZ∩Cm+1
|do(VI∩pa(Cm+1), VI∩Cm+1

), vZ∩pa(Cm+1), VO∩pa(Cm+1))

P(VO\Cm+1
, vZ\Cm+1

, vZ∩pa(Cm+1), VO∩pa(Cm+1)|do(VI\Cm+1
))

(b)
= P(VO∩Cm+1

, vZ∩Cm+1
|do(VI∩pa(Cm+1), VI∩Cm+1

), vZ∩pa(Cm+1), VO∩pa(Cm+1))

P(VO\Cm+1
, vZ\Cm+1

|do(VI\Cm+1
))

(c)
= P(VO∩Cm+1

, vZ∩Cm+1
|do(VI∩pa(Cm+1), VI∩Cm+1

), vZ∩pa(Cm+1), VO∩pa(Cm+1))

Πm
k=1P

(
VO∩Ck

, vZ∩Ck
| do(VI∩pa(VCk

), VI∩Ck
), vZ∩pa(VCk

), VO∩pa(VCk
)

)
= Πm+1

k=1 P
(
VO∩Ck

, vZ∩Ck
| do(VI∩pa(VCk

), VI∩Ck
), vZ∩pa(VCk

), VO∩pa(VCk
)

)
where (a) follows from the conditional independence of VCm+1 from other variables in G given pa(VCm+1), and (c) follows
from the induction hypothesis. The result is a special case of the C-component factorization result first shown in (Tian,
2002).

Suppose VI∩Ck
= ∅ i.e. no variable in the k-th C-component is in the intervention set. Then, it follows that

(VO∩Ck
, VZ∩Ck

) = VCk
,

(VI∩pa(VCk
), VZ∩pa(VCk

), VO∩pa(VCk
)) = Vpa(VCk

).

Therefore, every term of form

P(VO∩Ck
, VZ∩Ck

|do(VI∩pa(VCk
)), VZ∩pa(VCk

), VO∩pa(VCk
)) = P(VCk

|Vpa(VCk
))

is a constant completely defined by the data.

Fix k ∈ {1, . . . ,m} such that VI∩Ck
6= ∅. Consider every term of form

P(VO∩Ck
, VZ∩Ck

|do(VI∩pa(VCk
), VI∩Ck

), VZ∩pa(VCk
), VO∩pa(VCk

)). (8)

We can rewrite this term as:
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P(VO∩Ck
, VZ∩Ck

|do(VI∩pa(VCk
), VI∩Ck

), VZ∩pa(VCk
), VO∩pa(VCk

))

=
∑
rCk

P(VO∩Ck
, VZ∩Ck

|do(VI∩pa(VCk
), VI∩Ck

), VZ∩pa(VCk
), VO∩pa(VCk

), rCk
)P(rCk

)

=
∑
rCk

P(VO∩Ck
, VZ∩Ck

|do(VI∩pa(VCk
), VI∩Ck

), VZ∩pa(VCk
), VO∩pa(VCk

), rCk
)qrCk

Fix rCk
. Every variable in pa(VCk

) is either in I, Z or O. Hence, in the term

P(VO∩Ck
, VZ∩Ck

|do(VI∩pa(VCk
), VI∩Ck

), VZ∩pa(VCk
), VO∩pa(VCk

), rCk
)

every variable in pa(VCk
) is either intervened upon or conditioned on. Since rCk

is also conditioned on, each term of this
form is a deterministic constant. Hence, (8) is linear in qrCk

. Now, the result follows from (7) and the two observations
above.

Lemma B.1 ((Falk & Hoffman, 1976)). The minimum value of a real-valued continuous concave function f(x) over a
bounded closed convex set P is achieved at an extreme point of P .

Proof. Since P is a bounded closed set and f(x) is a continuous function, the minimum min{f(x) : x ∈ P} is achieved at
some point x∗. Suppose x∗ is not an extreme point. Then, x∗ =

∑M
i=1 λivi where λ ≥ 0,

∑
i λ = 1, and vi ∈ ext(P ) for

all i = 1, . . . ,M . Then we have that

f(x∗) = f
( M∑
i=1

λivi
)
≥

M∑
i=1

λif(vi) ≥ min{f(vi) : i = 1, . . . ,M}

where the first inequality follows from the concavity of f , and the second from the properties of convex combinations. Thus,
it follows that v∗ = argmin{f(vi) : i = 1, . . . ,M} is an extreme point with f(v∗) ≤ f(x∗), and hence f(v∗) = f(x∗).

Theorem 5.2 (Vertex Optimal (Lukatskii & Shapot, 2001)). Suppose Pi is a bounded closed convex set for all i = 1, . . . ,m.
Let P = ×mi=1Pi and ext(P ) = ×mi=1ext(Pi). Let f : P 7→ R be component-wise concave, i.e. f(qi, q−i) : Pi 7→ R is a
concave function of qi for every fixed value of q−i. Then

min
q∈P

f(q) = min
q∈ext(P )

f(q).

Proof. First consider the base case of m = 1. Lemma 5.1 establishes the result for this case.

Suppose the result holds for a m component problem. Next, we show that the result holds for the m+ 1 component problem:

min(q−(m+1),qm+1)∈P f(q−(m+1), qm+1)

= minq−(m+1)∈×m
i=1Pi

{
minqm+1∈Pm+1 f(q−(m+1), qm+1)

}
,

(a)
= minq−(m+1)∈×m

i=1Pi

{
minqm+1∈ext(Pm+1) f(q−(m+1), qm+1)

}
,

(b)
= minqm+1∈ext(Pm+1)

{
minq−(m+1)∈×m

i=1Pi
f(q−(m+1), qm+1)

}
,

(c)
= minqm+1∈ext(Pm+1)

{
minq−(m+1)∈ext(×m

i=1Pi) f(q−(m+1), qm+1)
}
,

where (a) follows from Lemma 5.1 applied to the concave function f(q−(m+1), qm+1) as a function of qm+1, (b)
follows from rearranging the order of the minimization, and (c) from the induction hypothesis.
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Theorem 5.3 (Lipschitz Continuous Gradient). There exists L < ∞ such that ∇g(q) is L-Lipschitz continuous on the
feasible set

⋂m
k=1Ak.

Proof. We show that the hessian ∇2g(q) has a bounded spectral norm over the feasible set i.e. there exists L <∞ such
that ‖∇2g(q)‖2 ≤ L for q ∈

⋂m
k=1Ak. This implies that∇g is L-Lipschitz continuous on

⋂m
k=1Ak (Boyd et al., 2004).

Since 0 ≤ q ≤ 1 for all q ∈ ∩mk=1Ak, it follows that for each element∇2g(q)ij , the Hessian staisfies 0 ≤ ∇2g(q)ij ≤ |R|.

Let M =
∑m
k=1 |RCk

| i.e. the dimension of q. For fixed q ∈
⋂m
k=1Ak, let λ ∈ R denote any eigenvalue of ∇2g(q), and

x 6= 0 ∈ RM denote the corresponding eigenvector. We have∇2g(q)x = λx, therefore, for all elements i = 1, . . . ,M , we
have that

|λxi| =
∣∣∣ M∑
j=1

∇2g(q)ijxj

∣∣∣
≤

 M∑
j=1

∇2g(q)ij

 max
j∈{1,...,M}

|xj |

≤ M |R| max
j∈{1,...,M}

|xj |

Since |λxi| = |λ||xi|, the above inequality implies that

|λ| max
i∈{1,...,M}

|xi| ≤M |R| max
j∈{1,...,M}

|xj |

Hence, the spectral norm of∇2g(q) is bounded by L = M |R|.

C. Example for Section 3
Consider the following causal graph with X,Y, Z ∈ {0, 1}:

X YZ U

(U1, U2) are unobserved (potentially high dimensional and continuous) confounders. Suppose the input data consists
of the distributions P(Z = z) and P(X = x, Y = y|Z = z), and the goal is to compute bounds for the causal query
P(Y = 1|do(X = 1)).

We circumvent the difficulty of modeling the unobserved confounders by modeling the impact of these variables on the
observed variables via response function variables.

• Confounder U1 selects one value for the variable Z ∈ {0, 1}: Let rZ denote the value for Z chosen by U1.

• For each fixed value for the unknown confounder, the variable X is some function of Z; thus, confounder U2 selects
one function from the set F = {f : f is a function Z → X} with |F| = 22 = 4: Let rX ∈ {0, . . . , 3} index the
elements of F , and let frX denote the rX -th function from F .

• Similarly, U2 selects one function from the set G = {g : g is a function X → Y } with |G| = 4: Let rY ∈ {0, . . . , 3}
index the elements of G and let grY denote the rY -th function from G.

Thus, it is clear that the response function variables rX , rY and rZ can be used to model the impact of U1 and U2. In
particular, the unknown distributions over U1 and U2 can be equivalently modeled via the distributions q1

rZ = P(rZ)
and q2

rXrY = P(rX , rY ).

For fixed z ∈ {0, 1}, (rX , rY ) maps Z = z to X = frX (z) and Y = grY (frX (z)) i.e. (rX , rY ) uniquely determines the
realization of X and Y . Let

Rxy.z = {(rX , rY ) : frX (z) = x, grY (x) = y}
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denote the set of (rX , rY ) values which map Z = z to X = x, Y = y. Then we have

P(X = x, Y = y|Z = z) =
∑

(rX ,rY )∈Rxy.z

q2
rXrY , P(Z = z) = q1

rZ (z)

Let

RQ = {(rX , rY , rZ) : grY (1) = 1}

denote the set of response function variable values consistent with the query Q = P(Y = 1|do(X = 1)). Hence, from the
independence of rZ and (rX , rY ), it follows that

P(Y = 1|do(X = 1)) =
∑

(rX ,rY ,rZ)∈RQ

q1
rZq

2
rXrY ,

Thus, we have that the following multilinear programs give bounds on the query:

maxq /minq
∑

(rX ,rY ,rZ)∈RQ q1
rZq

2
rXrY

s.t.
∑

(rX ,rY )∈Rxy.z
q2
rXrY = P(X = x, Y = y|Z = z),∀x, y, z ∈ {0, 1}

q1
z = P(Z = z),∀z ∈ {0, 1}

q1, q2 ≥ 0,

(9)

Note that the constraints P(Z = 0) = q1
0 and P(Z = 1) = q1

1 together imply q1
0 + q1

1 = P(Z = 0) + P(Z = 1) = 1, and
so the constraint q1

0 + q1
1 = 1 is not explicitly added to the multilinear program.

Similarly, the constraint
∑

(rX ,rY )∈{0,...,3}2 q
2
rXrY = 1 is also implied by other constraints in the multilinear program. Fix

Z = 0. Then, summing up the constraints

∑
(rX ,rY )∈Rxy.0

q2
rXrY = P(X = x, Y = y|Z = 0),

for all x, y ∈ {0, 1}, we have ∑
x,y

∑
(rX ,rY )∈Rxy.0

q2
rXrY =

∑
x,y

P(X = x, Y = y|Z = 0) = 1

Now recall that fixing Z = 0, (rX , rY ) uniquely determine the value of (X,Y ). Hence,
⋃
x,y Rxy.0 is a partition of

{0, . . . , 3}2, the set of all possible values of (rX , rY ). Hence

∑
x,y

∑
(rX ,rY )∈Rxy.0

q2
rXrY =

∑
(rX ,rY )∈{0,...,3}2

q2
rXrY

Therefore, it follows that
∑

(rX ,rY )∈{0,...,3}2 q
2
rXrY = 1.
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