
Repository-Level Prompt Generation for Large Language Models of Code

Disha Shrivastava 1 2 Hugo Larochelle 1 2 3 4 Daniel Tarlow 1 5 3

Abstract
With the success of large language models
(LLMs) of code and their use as code assistants
(e.g. Codex (Chen et al., 2021) used in GitHub
Copilot), techniques for introducing domain-
specific knowledge in the prompt design process
become important. In this work, we propose a
framework called Repo-Level Prompt Generator
that learns to generate example-specific prompts
using prompt proposals. The prompt proposals
take context from the entire repository, thereby
incorporating both the structure of the repository
and the context from other relevant files (e.g.
imports, parent class files). Our technique doesn’t
require any access to the weights of the LLM,
making it applicable in cases where we only
have black-box access to the LLM. We conduct
experiments on the task of single-line code
auto-completion using code repositories taken
from Google Code archives. We demonstrate
that an oracle constructed from our prompt
proposals gives a relative improvement of
36% over Codex, showing the quality of these
proposals. Further, we show that when we
train a model to predict a prompt proposal, we
can achieve significant performance gains over
Codex and other baselines. We release our
code, data, and trained checkpoints at https:
//github.com/shrivastavadisha/
repo_level_prompt_generation.

1. Introduction
Large Language Models (LLMs) have demonstrated re-
markable performance in natural language processing
tasks (Brown et al., 2020; Chowdhery et al., 2022), text-
to-image generation (Ramesh et al., 2022; Rombach et al.,
2021) and even as a generalized agent (Reed et al., 2022).
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As opposed to the pretrain-finetune paradigm, prompting
these LLMs have been found to yield good performance
even with few-examples (Liu et al., 2021a). Besides pro-
viding a mechanism to control and evaluate a LM, prompts
have been shown to elicit emergent behaviour as well. Ex-
amples of this behavior include GPT-3 (Brown et al., 2020)
doing better in tasks it has never seen during training and
improved reasoning capabilities with few-shot (Wei et al.,
2022) and zero-shot (Kojima et al., 2022) prompts that en-
courage a chain of thoughts. These factors highlight the
importance of designing an effective task-specific prompt.
However, currently we have a limited understanding of how
to do this (Reynolds & McDonell, 2021). LLMs have also
been used for modeling source code with impressive re-
sults (Austin et al., 2021; Fried et al., 2022; Xu et al., 2022a).
In particular, one of the best performing LLM, Codex (Chen
et al., 2021), has been deployed as part of GitHub Copilot 1,
a state-of-the-art in-IDE code assistant. Despite the growing
popularity of LLMs of code, there is no work that system-
atically tackles different aspects of prompt generation in
relation to source code. One such aspect is that when it
comes to code, the relevant context to be put in the prompt
can come from not just the current file, but also from out-
side, such as imports, parent classes, files within the same
directory, and API documentation. Also, depending on the
scenario, the relevant context can be scattered across multi-
ple locations. Since the LLMs have a limited context length
available for the prompt, it becomes increasingly crucial for
our domain-specific understanding to guide the selection
of relevant context. Currently, it is not clear how to inte-
grate this domain knowledge of what constitutes a relevant
context, into the generation of prompts. Addressing this
question has potential benefits in other domains such as
question answering (Liu et al., 2022) and multi-document
summarization (Xiao et al., 2022), where domain-specific
structured retrieval of context can be useful.

In this work, we address this problem by proposing Repo-
Level Prompt Generator (RLPG), a framework that while
generating the prompt, incorporates both the structure of the
repository as well as the relevant context in the files in the
repository. In RLPG, the choice of where from and what
to take from the repository is specified by a set of prompt
proposals. For example, one of the prompt proposals can be

1https://copilot.github.com/
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Figure 1. Repo-Level Prompt Generator: Given a list of prompt proposals and the target hole position along with the associated
repository as input, the prompt proposal classifier predicts a prompt proposal. The context from the predicted prompt proposal p = 14,
i.e., method names and bodies from the imported file (highlighted in violet) is then combined with the default Codex context or context
prior to the position of the hole in the current file (highlighted in gray) to compose a prompt. Prompting Codex with the generated prompt
produces a prediction for the target hole (highlighted in dark red).

to take all the identifiers used in the first import file. These
prompt proposals allow the prompt engineers to induce their
domain expertise in the prompt-designing process. With
the increasing use of LLMs as assistive agents to humans,
the demand for transparency, and the desire of software en-
gineers to tailor prompts to suit their requirements (Jiang
et al., 2022; Sun et al., 2022), this capability becomes im-
portant. Similar to some previous works in NLP (Shin
et al., 2020; Schick & Schütze, 2021), our prompt propos-
als are discrete. However, rather than fixing one particular
prompt proposal for each example, we instead predict the
best prompt proposal conditioned on the example. We do
this by coming up with a neural network called Prompt
Proposal Classifier (PPC) that learns to select a prompt pro-
posal such that the resulting prompt is likely to produce the
desired output. Therefore, RLPG allows the introduction of
domain expertise, and at the same time facilitates automatic
example-specific prompt generation via a learned neural
network. Note that there are some techniques for automatic
prompt generation in NLP (Li & Liang, 2021; Shin et al.,
2020; Lester et al., 2021) that require updating some or all
of the weights of the LLM. However, the strongest LLMs
are not publicly available (e.g. OpenAI provides access only
to the generated output from Codex via an API https:

//openai.com/blog/openai-codex/ and no ac-
cess to model weights and data is provided), making these
techniques less useful under this scenario. RLPG addresses
this limitation by generating prompts assuming only black-
box access to the LLM. Even for cases where we have access
to the model weights, RLPG provides a way to adapt to the
repository-level context without having the need to fine-
tune the model repeatedly. This can be particularly useful
when adapting to a repository that contains proprietary or
niche software, that the model has limited chances of seeing
during training.

We focus on the task of single-line code autocompletion
in an IDE, where the objective is to predict the blanked-
out portion (or target hole) starting from the position of
an imagined cursor to the end of the line (highlighted in
blue in Figure 1). We operate under the line-level main-
tenance setting (Shrivastava et al., 2020; Hellendoorn &
Devanbu, 2017) that reflects the scenario where a user is
editing an existing file. This means that there can be code
following the line. Figure 1 provides an illustration of our
approach. The prompt proposal classifier takes in the hole
position (position of the cursor) in the current file, the repos-
itory to which the current file belongs, and a set of repo-
level prompt proposals as input, and predicts a prompt pro-
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posal. In our illustrated example, the predicted prompt pro-
posal corresponds to taking the method names and bodies
from MaximizingGibbsSampler.java (mg.before
the hole position indicates that a method from the imported
file is likely to be invoked). The Prompt Composer uses the
context from the predicted prompt proposal and combines it
with the default Codex context, i.e., code prior to the position
of the hole in the current file. The resulting prompt con-
sists of the method name InitializeToAssignment
(from the prompt proposal context) and the method
CurrentAssignments() (from the default Codex con-
text), resulting in a successful prediction (brown box on the
top) of the target hole. Our key contributions are as follows:

• We propose a framework called the Repo-Level Prompt
Generator (RLPG) that learns to generate prompts con-
ditioned on the example, without requiring access to the
weights of the LLM.

• RLPG allows us to use both the structure of the reposi-
tory as well as the relevant context from all files in the
repository, thereby providing a mechanism to incorporate
domain knowledge in the prompt generation process.

• On the task of single-line code-autocompletion, we show
that an oracle constructed from our proposed prompt pro-
posals gives up to 36% relative improvement over Codex.
This improvement is pleasantly surprising as Codex has
never seen prompts made from these prompt proposals
during training. Further, we show that when we use our
prompt proposal classifier to predict the best prompt pro-
posal, we can achieve up to 17% relative improvement
over Codex, as well as improve over other baselines.

2. Repo-Level Prompt Generator (RLPG)
In this section, we provide details of our framework. We
start by describing our prompt proposals and then discuss
our prompt proposal classifier which is followed by a de-
scription of the prompt composer.

2.1. Repo-Level Prompt Proposals

The core idea of RLPG consists of substituting part of the de-
fault context used by Codex with context coming from some-
where else in the repository. The decision of what to take
and from where in the repository to take from is governed
by a set of prompt proposals. These prompt proposals were
decided based on manual inspection of our training data
and intend to capture common coding patterns (but more
generally can also include project/organization-specific cod-
ing practices). A prompt proposal can be thought of as a
function that takes as input a target hole’s position and the
repository that the hole is a part of, and that returns the
prompt proposal context (a string constituted by the context
from the prompt proposal). A prompt proposal is specified

by a prompt source and a prompt context type. We mention
each of these along with their motivation below.

Prompt Source: For a target hole position, a prompt source
determines from where should we take code that will be part
of the prompt proposal context. We propose ten different
prompt sources:

1. Current: take code from the current file excluding the
contents of the target hole. The current file is the file
that contains the target hole. The code in the current
file (e.g. the lines after the hole position) can be very
useful in predicting the target hole.

2. Parent Class: take code from the file that contains
the parent of the class to which the target hole belongs.
The intuition behind this is to account for cases where
a method present in the parent class is invoked in the
current file (i.e. the child class).

3. Import: take code from the import files used in the
current file. The dependencies specified via imports
can provide useful cues to predict the target hole.

4. Sibling: take code from the files that are in the same
directory as the current file. Files in the same directory
tend to share code variables (e.g. identifiers).

5. Similar Name: take code from files that have a similar
name as the current file. Similar names are determined
by splitting the file name based on underscore or camel-
case formatting and then matching parts of the filename.
If one or more parts matches, two files are considered
to have similar names. The intuition behind this is that
software developers tend to name files based on the
functionality of the code written in that file. Therefore,
a similar name file might contain some portion of the
code that is common with the current file and hence
might be useful for predicting the target hole.

6. Child Class: take code from files that have the current
file as their parent class file.

7. Import of Parent Class: take code from the import
files used in the parent class files.

8. Import of Sibling: take code from the import files
used in the sibling files.

9. Import of Similar Name: take code from the import
files used in the similar name files.

10. Import of Child Class: take code from the import
files used in the child class files.

The last four prompt sources are useful when the target
hole occurs at the very beginning of the current file. In
these cases, there would be less context coming from other
prompt sources. For each prompt source, we can get either
a single file or a ranked list of files (see Appendix B.1). In
the latter case, we will take context from these files until
we exhaust the maximum context length allocated to the
prompt proposal.
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Prompt Context Type: The prompt context type deter-
mines what code to take from the prompt source. We pro-
pose seven different prompt context types (Appendix B.2
has examples of each type):

1. Post Lines (PL): Take all the lines after the target hole
line till the end of the current file 2.

2. Identifiers (I): Take all the identifiers used in the
prompt source.

3. Type Identifiers (TI): Take all the type identifiers used
in the prompt source.

4. Field Declarations (FD): Take all the field declara-
tions used in the prompt source.

5. String Literals (SL): Take all the string literals used
in the prompt source.

6. Method Names (MN): Take all the method names
along with their signatures used in the prompt source.

7. Method Names and Bodies (MNB): Take all the
method names along with their signatures and corre-
sponding bodies used in the prompt source.

By combining prompt sources with prompt context types,
we get a total of 63 prompt proposals (see Appendix B.4
for details). Note that depending on the target hole, not
all prompt proposals would be applicable (e.g. if there are
no parent classes in the current file, prompt proposals with
prompt source as parent class file won’t be applicable). In
Figure 1, the predicted prompt proposal corresponds to tak-
ing prompt source Import and prompt context type MNB.
We aimed for a set of prompt proposals that offer more diver-
sity rather than a set of prompt proposals that are all good.
This in turn ensures that for any hole position, a significant
number of prompt proposals are applicable.

2.2. Prompt Proposal Classifier (PPC)

Given a hole position, the goal of the prompt proposal clas-
sifier is to predict the prompt proposal p that will lead to
success, where success happens when the predicted hole ĥ
exactly matches the target hole h. This task is formulated
as a multi-label binary classification problem since for a
given target hole, more than one prompt proposals can lead
to success. In this formulation, we treat the default Codex
context as one of the prompt proposals. Next, we describe
the training procedure for PPC.

Training: For each target hole h, we generate a ground-
truth vector Y h = [yhp ]

M
p=1 which is a multi-hot vector of

size M , where M is the total number of prompt proposals.
This vector is obtained by feeding the prompt generated
from prompt proposal p into Codex and then seeing whether
ĥ = h. If there is a match, we say that the prompt proposal p
is successful. For hole h, if a prompt proposal p is applicable

2We also conducted experiments (Appendix D.3) where we
take lines starting from the 4th line after the hole.

and leads to success, yhp = 1 and will be zero otherwise.
For each hole h, we obtain a mask Th where Th

p = 1 when
p is applicable or zero otherwise. The overall training loss
L can be expressed as the sum of individual hole losses Lh:

L =
1

N

N∑
h=1

Lh =
1

N

N∑
h=1

1

Mh

Mh∑
p=1

BCE(ŷhp , y
h
p ) ∗ Th

p

In the above equation, Mh =
∑

p T
h
p denotes the total num-

ber of applicable prompt proposals for h, N is the total
number of holes encountered while training and BCE cor-
responds to the binary cross entropy loss. Masking ensures
that we consider only the prompt proposals that are applica-
ble. Next, we describe our two variants of PPC that can be
used to obtain the prediction ŷhp .

RLPG-H: Let Hh be the hole window that includes code
present around the hole h excluding the hole itself. In our
work, we take two lines before the hole position, the code up
to the hole position and two lines after the hole position. We
use a pretrained model Fϕ to obtain a context representation
vector of size Z, where Z is the dimension of the hidden
state of the model. Specifically, we take the hidden state
at the first position, i.e. the representation of the [CLS]
token. To make training of PPC computationally efficient,
the parameters ϕ are frozen during training. The RLPG-H
model takes the context representation of the hole window
and projects it to the prompt proposal space of size M
via two dense layers with a non-linearity in between (see
Equation 1). Taking the sigmoid of this output gives the
prediction of the prompt proposal.

ŷhp = P (yhp = 1|Hh)

= sigmoid(W 2(relu(W 1(Fϕ(H
h)) + b1)) + b2) (1)

RLPG-R: The motivation behind this variant is to use the
similarity of the hole window and the prompt proposal con-
text to determine which prompt proposal can be useful.
Given a particular hole h, let Ch

p denote the prompt pro-
posal context from prompt proposal p. Intuitively, if the
hole window contains variables (e.g. identifiers) that are
similar to the variables in the prompt proposal context, then
there are chances that h might occur somewhere in Ch

p . The
similarity is modeled using a multiheaded attention mecha-
nism (Vaswani et al., 2017), by treating the projected hole
window representation as a query Qh and the projected
prompt proposal context representation Kh

p as a key. The
value V h

p is the same as the key.

Qh = Fϕ(H
h), Kh

p = Fϕ(C
h
p ), V h

p = Fϕ(C
h
p )

The output from the multi-headed attention module,
MultiHead(Qh,Kh

p , V
h
p ) is fed to module G consisting

of two layers of a feedforward network with relu activation
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in between (see Appendix C for more details). The resulting
output is then linearly projected and a sigmoid is applied to
get the predicted prompt proposal.

ŷhp = P (yhp = 1|Hh, Ch
p )

= sigmoid
(
WpG(MultiHead(Qh,Kh

p , V
h
p )) + bp

)
2.3. Prompt Composer

The prompt composer combines the context from the se-
lected prompt proposal (given by PPC) with the context
normally used by Codex (default Codex context) to generate
the prompt. Since the total length that can be used for a
prompt is fixed, we adopted a dynamic context allocation
strategy where if the prompt proposal context is shorter than
its allocated length, we assign the remaining portion from
the prompt proposal context to the default Codex context.
The prompt proposal context is always added before the
default Codex context. For all prompt proposals, we assign
half of the total context length to the prompt proposal con-
text and the remaining to the default Codex context. For
post lines, in addition, we also assign one-fourth and three-
fourths of the total context length to the prompt proposal
context. If the prompt proposal context or the default Codex
context is greater than the context length allocated to it, we
truncate it (see Appendix B.3 for our truncation strategies).

3. Experiments and Results
In this section, we describe how we created the dataset,
details of experiments along with different methods and
their results, and interesting ablation studies.

3.1. Dataset Creation

To mitigate the effects caused by potential memoriza-
tion of the code present in the dataset used for training
Codex, we avoided code repositories from GitHub (Chen
et al., 2021). Instead, we scraped Google Code https:
//code.google.com/archive/ for repositories in
Java (removing the ones that matched with a repository
on GitHub with the same name). We selected the reposi-
tories that had a permissive license giving us a total of 47
repositories. We divided the repositories into train, valida-
tion, and test splits, where each repository in its entirety is
part of a split. In each file within a repository, we remove
lines that are either blank or part of comments and set the
hole position to be the middle character in the line. All the
characters from the middle position to the end of the line
constitute the target hole.

Since code duplication has been shown to have adverse
effects (Allamanis, 2018), within a repository, we look for
files that are exact replicas of each other but placed in a
different folder. We mark all such copies as duplicates

Table 1. Statistics of our dataset.
Feature Train Val Test Total

# Repositories 19 14 14 47
# Files 2655 1060 1308 4757
# Holes 92721 48548 48288 189557

and omit all of them when creating target holes for our
dataset. Further, we found that the repositories were quite
uneven in terms of their size. To avoid large repositories
dominating the training of PPC, we capped the maximum
contribution of holes from a repository to 10000, i.e. if the
total number of holes in the repository exceeded 10000, we
selected 10000 holes randomly from the total holes. Please
see Table 1 for statistics of our dataset. The #Holes represent
the holes after deduplication and capping. For some of our
prompt proposals, we require semantic information that can
be obtained with a parse tree. We used the tree-sitter API for
Java 3 that enables us to get the AST of a file and query it.
Since our prompt proposals need information at a repository
level, we stored some extra information that allowed us to
collate the information from individual files according to the
directory structure inside the repository (see Appendix A
for more details).

3.2. Experimental Details

Prompt Generation: We used the OpenAI Codex Comple-
tions API for generating the predicted hole from the Codex
model. In particular, we used the code-davinci-001
engine with the temperature set to 0.0 and stop criteria as a
newline. The completion length was 24 and the maximum
prompt length was 4072. To allow for fast computation,
we used simple models like CodeBERT (Feng et al., 2020)
and GraphCodeBERT (Guo et al., 2020) as our pretrained
models. One of the limitations of these pretrained models
is that the maximum context length that can be taken as
input by these models is much smaller than the maximum
context length allowed by Codex. Therefore, in PPC when
we obtain the representation of the prompt proposal context,
we need to truncate the context. This might lead to omitting
important parts of the prompt proposal context in certain
cases. Using pretrained models that allow larger context
length or models that augment the context (Wu et al., 2022)
offer avenues for future work. See Appendix D.5 for results
when we use a smaller context length with Codex.

Computational Complexity and Scalability of RLPG: To
collect the ground-truth data for training our prompt pro-
posal classifier, we queried the Codex API for each applica-
ble prompt proposal per hole (with batching of 20 queries,
we get a maximum rate limit of 400 holes per minute). This
amounts to ∼150k queries to get the labels for the train-

3https://github.com/tree-sitter/tree-sitter-java
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ing data, ∼ 80k queries to get the labels for the validation
data, making a total of ∼ 230k queries for training, i.e.,
1.63 queries per target hole. The computational complexity
of training our larger RLPG-R variant (3.6M parameters,
141269 holes, and 9.19 minutes per epoch on a single Tesla
V100 GPU) is much smaller than finetuning all or some part
of Codex (175B parameters). During inference, we need to
calculate the repo-level statistics just once and all the subse-
quent hole completions in the repo can utilize this cached
information, incurring no additional computational com-
plexity. Besides training the PPC, all our experiments were
performed on a CPU with 8GB RAM. Our prompt proposals
are based on concepts such as post lines, imports, similar
name files, method names, and identifiers that are quite gen-
eral and applicable to other programming languages. In
addition to the existing prompt proposals, our framework
provides the flexibility to incorporate new prompt propos-
als. Since the cost of retraining RLPG with the extended
prompt proposals is extremely low (much lower than finetun-
ing Codex with the new prompt proposals), our framework
can be used to make interventions on the LLM to address
observed weaknesses as long as the intervention can be ex-
pressed as a prompt proposal that adds the missing context
to the LLM. As opposed to techniques that perform prompt
engineering in the latent space and require access to the
weights of the LLM such as Li & Liang (2021), RLPG fa-
cilitates expressing intent in the form of prompt proposals
that are intuitive for humans, easy to understand, and do not
require access to the weights of the LLM.

Methods: We experimented with the following methods for
generating the prompt:

1. Codex: Using the default context from Codex as the
entire prompt.

2. Oracle: Using the ground-truth vector Y h (mentioned
in Section 2.2). The prompt generated corresponds
to using any of the successful prompt proposals (i.e.,
yhp = 1). Since this information is not available at
inference, the oracle represents an upper bound.

3. Fixed Prompt Proposal: Using the most successful
prompt proposal for all target holes. This was chosen
based on the performance on the validation set and
corresponded to taking 75% of the total context length
from post lines in the current file.

4. RLPG-H and RLPG-R: Using the prompt proposal
predicted by the RLPG-H and RLPG-H variants of
PPC. The selected prompt proposal corresponds to
taking the argmax of the predicted probabilities over
different prompt proposals.

5. RLPG-BM25: Instead of using PPC to rank prompt
proposals, use the scores obtained by BM25 (Jones
et al., 2000) to select the best prompt proposal. The
scores are calculated with the hole window being the
query and prompt proposal contexts being the search

Table 2. Performance of the oracle relative to Codex.
Data
Split

Success Rate
Codex(%)

Success Rate
Oracle(%)

Rel. ↑
over Codex(%)

Train 59.78 80.29 34.31
Val 62.10 79.05 27.28
Test 58.73 79.63 35.58

documents. This serves as a non-learned retrieval
method that makes use of our prompt proposals.

6. File-level BM25: Same as above, except that instead
of using our prompt proposal contexts, search docu-
ments consist of full context from other files in the
repository.

7. Random: For each target hole, select a context ran-
domly from anywhere in the repository.

8. Random NN: Same as Random, except that amongst
the randomly chosen contexts, we take the nearest
neighbours of the hole window in the representation
space of a pretrained model. This is analogous to the
technique used in Liu et al. (2022).

9. Identifier Usage: For each target hole, we take the
closest identifier and take usage windows of that iden-
tifier from everywhere in the repository. The usage
window consists of two lines above and two lines be-
low the usage line, including the usage line. We can
rank the usage windows either randomly (random) or
based on the nearest neighbour distance to the hole
window in the representation space (NN).

The last four methods help us understand the performance
when a context other than the prompt proposal context is
used. To generate a prompt using these methods, we take
50% of the context from these followed by the default Codex
context that takes up the remaining context length. For the
NN baselines, we use CodeBERT (Feng et al., 2020) as the
pretrained model. The contexts are taken in the increasing
order of the nearest neighbour distances until we exhaust the
allocated context length. RLPG-BM25 helps us understand
the role of PPC. See Appendix C.3 for more details on the
implementation of these methods.

Evaluation Metric: As mentioned in Section 2.2, to mea-
sure success, we use an exact match between the predicted
hole string generated by Codex and the target hole string.
In our experiments, we report the percentage of successful
holes divided by the total number of holes for each split. We
will call this success rate (SR) going forward.

3.3. Results

In this section, we present the results of the following two
research questions explored in the paper:
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Table 3. Success Rate (SR) of different methods on the test data
when averaged across all holes.

Method Success Rate(%) Rel. ↑(%)

Codex (Chen et al., 2021) 58.73 -

Oracle 79.63 35.58

Random 58.13 -1.02
Random NN 58.98 0.43

File-level BM25 63.14 7.51
Identifier Usage (Random) 64.93 10.55

Identifier Usage (NN) 64.91 10.52

Fixed Prompt Proposal 65.78 12.00
RLPG-BM25 66.41 13.07

RLPG-H 68.51 16.65
RLPG-R 67.80 15.44

[RQ1]- Is it useful to generate a prompt that is composed
of code context that is different from the default Codex
context? If yes, what context can be useful?
[RQ2]- For each target hole, is there a way of automati-
cally selecting the prompt? If yes, how does this system
perform relative to Codex?

RQ1 - Performance of Prompt Proposals: We found that
combining the prompt proposal context (context from other
files in the repository) with the default Codex context led
to substantial improvement in performance. Table 2 shows
the performance of an oracle constructed from our prompt
proposals. We see that across all data splits, the prompt
proposals contribute to significantly large improvements
over Codex (upto 36% for test split). These results might
seem surprising as Codex has not been trained on prompts
that consist of context other than the default Codex context.
What makes this result more surprising is that in most of
the cases, the prompt consists of mashed-up context without
logical ordering that may not even look like a semantically
meaningful chunk of code (e.g. list of string literals from
a sibling file followed by the default Codex context or post
lines placed before the default Codex context as opposed
to after). These results might suggest that as long as the
relevant context (in our case repo-level knowledge in the
form of prompt proposals) is present in any form in the
prompt, it can be quite effective.

RQ2 - Performance of PPC: Having seen promise in our
prompt proposals, next, we present the results of RLPG. Ta-
ble 3 presents the success rates along with the percentage of
relative improvements for the test data. The success rate is
calculated by averaging across all holes in the test data (hole-
wise). As can be seen from the table, all the RLPG variants
as well as the fixed prompt proposal improve the perfor-
mance significantly over Codex. The random baselines are
either worse or on par with Codex. Identifier usage is a
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Figure 2. (Top) Variation of RLPG and Fixed Prompt Proposal
with #attempts (k), when averaged over individual repositories
(repo-wise) and all holes (hole-wise); (Bottom) Mean success rates
of different prompt sources when they are applicable.

good baseline but still performs worse than either the fixed
prompt proposal or RLPG. We see that File-level BM25
shows that even though better than Codex, it performs infe-
rior to the methods that use some semantically meaningful
notion of context (e.g. method bodies or field declarations).
However, when we combine BM25 with prompt proposal
contexts (RLPG-BM25), the performance improves a lot.
All RLPG-based methods are better than fixed prompt pro-
posal, showing the value of generating example-specific
prompts using RLPG. However, both the learned variants of
RLPG, i.e., RLPG-H and RLPG-R outperform the RLPG-
BM25, highlighting the importance of learning PPC. See
Appendix D.1 and Appendix D.7 for the performance of
all methods across individual repositories. Note that even
though we consider identifier usage as a separate baseline,
one could consider it as one of the prompt proposals leading
to further improved performance of RLPG.

Despite our efforts of avoiding overlap, since the training
data for Codex is not exactly known, there might be a pos-
sibility that part of our Google Code data is part of the
training data for Codex. Even if there were an overlap, we
want to point out that since Codex has been trained with
the default Codex context, during inference, it would be
more beneficial for it to use the default Codex context in the
prompt (rather than the context from the prompt proposals
or any other context from other methods). This means that
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under this scenario, our evaluation would be more generous
to the Codex baseline, leading to results more in favor of
the Codex baseline than other methods we have used.

Variation with #attempts: Imagine a scenario where we
have a human-in-the-loop who has been given k attempts to
prompt the LLM and then choose one of the k predictions.
We wanted to see how the performance of our framework
varies with #attempts under this setting. This corresponds to
using k prompts generated with top-k prompt proposals (one
prompt per proposal) and marking success if any of the k
prompts lead to success. The top part of Figure 2 shows the
variation of SR over the validation data with the value of k.
For RLPG, the top-k prompt proposals were chosen based
on the decreasing order of probabilities given by PPC. For
the fixed prompt proposal, the top-k prompt proposals were
decided based on decreasing order of success rate of the
individual prompt proposals on the validation dataset. From
the figure, we notice that as we increase the value of k, the
performance increases gradually at first and then saturates
towards the oracle performance (79.05% for val data). This
behaviour is observed for both fixed prompt proposal as
well as RLPG. However, we see that for the same value of
k, the success rate for RLPG is higher indicating that PPC
learns a useful ranking of the prompt proposal contexts that
can scale well with the #attempts.

Performance based on Prompt Proposals: The bottom
part of Figure 2 shows the mean success rate of prompt
sources, where success is counted only when the corre-
sponding prompt source is applicable. From the figure, we
see that the current file is the most important prompt source.
Closely following are sibling files and similar name files.
We see that all prompt sources have non-zero chances of
success, highlighting the usefulness of each prompt source.
See Appendix D.2 for a similar breakdown based on prompt
context type and Appendix E for analysis of sample cases
that lead to success and failure for RLPG.

Table 4. Edit distance based performance evaluation.

Method Normalized Edit Distance(%) Rel. ↑(%)

Codex 30.73 -

RLPG-H 22.55 26.62
RLPG-R 23.00 25.14

Edit Distance as a Metric: In addition to measuring string
exact match, we also assess the performance of RLPG using
the character-level edit distance 4 as a metric. Table 4 reports
the average character-level edit distance normalized by the
total number of characters in the target hole (lower is better).
We see that both RLPG variants show significant relative
improvements over Codex with RLPG-H getting as high as

4https://pypi.org/project/editdistance/

26.62% relative improvement.

Experiments with code-cushman-001: To investigate
whether the improvements achieved with RLPG are appli-
cable to a different code model, we conducted experiments
on the code-cushman-001 model from OpenAI 5. This
model supports a context length of up to 2048 tokens, which
is half the context length of code-davinci-001 and
is expected to be relatively smaller (see Appendix A.2 of
Rajkumar et al., 2022).

For evaluating RLPG, we choose the prompt pro-
posal contexts based on the predictions from our
trained RLPG models (trained on labels obtained from
code-davinci-001). These contexts are then used
as prompts for code-cushman-001 in order to get the
completions. As shown in Table 5, on the test set, RLPG-
H gets a relative improvement of 10.87% and RLPG-R
gets a relative improvement of 10.95% over using the prior
context in the file. These results suggest that RLPG has
the potential to show improvements across different code
completion models. We expect that having RLPG mod-
els trained on labels from code-cushman-001 would
improve the results even further. However, in our opin-
ion, the fact that we can use a single RLPG model (trained
on code-davinci-001) to get improvements for two
different code completion models (code-cushman-001
and code-davinci-001) is quite interesting.

Table 5. Success Rate (SR) with code-cushman-001.
Method Success Rate(%) Rel. ↑(%)

code-cushman-001 58.40 -

RLPG-H 64.74 10.87
RLPG-R 64.79 10.95

4. Related Work
LLMs for Code: Recently, there has been a lot of work
around large language models of code. Decoder-only mod-
els correspond to generating code from left to right (Chen
et al., 2021; Austin et al., 2021; Wang & Komatsuzaki, 2021;
Black et al., 2021b;a; Tunstall et al., 2022; Xu et al., 2022a;
Fried et al., 2022). Encoder-only models use a masked lan-
guage modeling objective (Feng et al., 2020; Guo et al.,
2020; Kanade et al., 2020). We also have encoder-decoder
models that generally use a bidirectional encoding of a con-
text to decode a series of masked tokens (Wang et al., 2021b;
Li et al., 2022).

Repo-Level Info: Hellendoorn & Devanbu (2017) propose
a nested n-gram model that utilizes a locality-based cache
where the locality consists of all directories from the root of

5https://platform.openai.com/docs/models/codex
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the project (inclusive of the current file). Zhang et al. (2021)
uses the parent class to generate the comments for the child
class. Pashakhanloo et al. (2022b;a) convert the reposi-
tory into a relational database and propose a graph-walk
based mechanism for pruning the unrelated context whereas
Wang et al. (2021a) proposes a multi-relational graph neu-
ral network that uses inter-class and intra-class contexts to
obtain code summaries. Lyu et al. (2021) incorporates the
API-dependency graph in a LSTM-based Seq2Seq model to
assist in code generation whereas, Zhou et al. (2022) trains a
model to augment code documentation to a natural language
intent. Xu et al. (2022b) incorporate three types of structural
locality features while training the kNN-LM (Khandelwal
et al., 2020). These features are binary variables that cor-
respond to the presence or absence of a similar hierarchy.
The three levels of hierarchy are (a) sibling file, (b) file in
the same repo (c) no hierarchy. In contrast, we have a much
richer set of prompt proposals incorporating the semantics
and structure of the repository. Also, we assume black-box
access to the model and generate a prompt for the LLM
without performing any finetuning of the LLM.

Prompt Generation: There have been promising works
around prompt generation techniques in NLP. Broadly, there
are two categories of automatic prompt generation tech-
niques. The first category corresponds to producing con-
tinuous/soft prompts where the prompt is described in the
latent space of a language model (Li & Liang, 2021; Qin
& Eisner, 2021; Bragg et al., 2021; Lester et al., 2021; Liu
et al., 2021b). For example, Prefix-Tuning (Li & Liang,
2021) adds a prefix to the LM that can be learned by fine-
tuning on examples from the downstream task. The second
category produces discrete prompts where the prompt is a
text string that can be interpreted by a human (Shin et al.,
2020; Gao et al., 2021; Schick & Schütze, 2021). For ex-
ample, Autoprompt (Shin et al., 2020) generates prompt
using a fixed template consisting of trigger tokens. The trig-
ger tokens are shared across all inputs and determined by
a gradient-guided search involving the LM. Our work falls
in the category of discrete prompt generation techniques
as we produce a prompt consisting of code tokens that can
be easily interpreted by a human. However, in contrast to
prior works that use a set of fixed templates for all examples,
we learn to produce prompts conditioned on each example.
Another important distinction is that we do not require ac-
cess to the weights of the LM. A concurrent work as ours,
(Wang et al., 2022) studies the role of prompt-tuning when
compared to fine-tuning for code translation, defect local-
ization, and code summarization. However, their technique
requires access to the weights of the LLM and they perform
experiments over models that are much smaller in scale than
Codex. To the best of our knowledge, our work is the first to
explore automatic prompt generation in a black-box access
setting in the domain of source code.

5. Discussion
We note that code-completion systems used in conjunction
with LLM should be deployed with caution (Chen et al.,
2021). Blind trust in these systems may lead to potential
negative impact, as there might be cases where the generated
code is insecure (Perry et al., 2022) or contains sensitive
information. After the submission of this paper, LLMs with
larger input context lengths have been introduced, such as
GPT-4 6 which supports 32k tokens. With this expanded
context length, one might consider including the entire con-
tent of the repository in the prompt. However, in practice,
software repositories are often much longer. In our dataset
(after deduplication), we observed that 70.22% of reposito-
ries contain more than 32k tokens. It is worth noting that
apart from the current repository, there are other sources
of relevant context, such as API documentation, tutorials,
or related repositories, that can aid in code autocompletion.
RLPG offers a mechanism to incorporate these additional
sources of context through new prompt proposals. There-
fore, regardless of the context length of the code-generating
model, RLPG provides a valuable approach to determining
which contexts are relevant to include in the prompt. With
the increased context length in GPT-4, we anticipate less
truncation of prompt proposal contexts, potentially leading
to even greater improvements with RLPG.

In conclusion, we present RLPG, a framework that learns
to automatically generate prompts conditioned on the ex-
ample, without requiring access to the weights of the LLM.
RLPG utilizes the structure of the repository as well as the
context from other files in the repository using a set of easy-
to-understand prompt proposals. In this work, we are taking
context from only one prompt proposal. For future work,
we want to learn a model that can automatically compose a
prompt from multiple prompt proposals (see Appendix D.4
for promising initial results). Other interesting directions
include incorporating the user’s feedback in RLPG and ex-
tending RLPG to multi-line code auto-completion.
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A. Dataset Creation Details
A.1. Creation of Hole Completion Data

To collect the hole completion data, we scraped Google Code 7 for repositories tagged with the language “Java”. Then we
deduplicated repositories by searching for a matching repository with the same name on GitHub. For those repositories
with zero matching names on GitHub, we downloaded the archive and extracted the source code (preserving the directory
structure). Next, we tried to determine the licenses of all repositories by either looking for a LICENSE file or matching with
keywords "license", "copyright", "mit", etc. For repos for which our process was able to come up with a known license, we
selected the ones having a permissive license, i.e., MIT, ApacheV2 and BSD. This was followed by removing files that are
exact duplicates of each other within a repo. One of the reasons we found this inter-repository duplication may be because
sometimes developers adopt lousy practises where instead of declaring a package and importing functions, they simply
copy-paste the desired file into the current folder. The target holes coming from any of the duplicate files do not form part of
the hole completion dataset. However, these files might be used to contribute to prompt proposal context for completing a
target hole in a non-duplicate file. We felt comfortable with this choice since we wouldn’t want to predict a target hole in a
duplicate file, but we can still use the context from the duplicate file to predict the hole in a file that is not its duplicate (e.g.
in a sibling file). For the remaining files, we took each line that is not a blanked line or a comment and chose the middle
character as the hole position, i.e., all the characters from the middle of the line to the end of the line form the target hole. To
avoid large repos having strong bias on our prompt proposal classifier, we capped the contribution from each repo to be a
maximum of 10000 holes. If the number of holes in the repo exceeds 10000, we randomly select 10000 holes. Tokenization
was done using the suggested tokenizer from OpenAI 8.

A.2. Creation of Data for Repo-Level Prompt Proposals

We used the tree-sitter API for Java 9 to get the parse-tree of an individual file in a repo. To get information at a repo-level,
for each file in the repo, we stored the following information:

1. list of all class names in the file. This helped us to get the parent or child class file corresponding to a given parent or
child class.

2. the file corresponding to each import statement.
3. for each import statement in the file, the position in the file where the import is used. This is used for ranking the files

based on the heuristics mentioned in Table 6.
4. list of sibling files
5. list of similar name files. This was done by splitting the filenames based on either camel-case or underscore. If the

sub-parts of two files match, then they are said to have similar name.

The above meta-data was calculated only once for each repo. The subsequent hole completions can use the same cached
information. In practise, we can use a hash to store and retrieve this info efficiently. For a prompt proposal, given the prompt
source, we first obtain a single file or ranked list of files (see Table 6) using the info in the parse tree in conjugation with
the above repo-level meta-data. All the prompt proposal context type information (MN, MNB, SL, I, TI, FD) can then be
obtained by querying the parse tree of the selected file.

B. Prompt Proposal Details
B.1. Ranking of files based on prompt source

In Table 6, we provide details of how we select files for a given prompt source. Depending on the prompt proposal, we get
either a single file or a list of files ranked based on some criteria. For example, if the prompt source is Import, we take all the
import statements used in the current file and identify the location in the current file where the corresponding imports have
been used. According to our heuristic, the closer is the import usage to the hole position, the more likely it is for the prompt
proposal context coming from the corresponding import file to be more relevant (to predict the target hole). We get a ranked
list of import files sorted based on increasing order of distance (i.e., number of lines ) between the import usage and the hole

7https://code.google.com/archive/
8https://huggingface.co/docs/transformers/model_doc/gpt2#transformers.GPT2TokenizerFast
9https://github.com/tree-sitter/tree-sitter-java
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position. We start by taking all of the prompt proposal context from the first file in the ranked list and then keep iterating the
ranked list until either the total context length allocated to the prompt proposal gets exhausted or we reach the end of the
ranked list.

Table 6. Selecting files for a prompt source

Prompt Source File Ranking

Current file with the target hole. Returns a single file.
Parent Class file that contains the parent class that occurs closest to the target hole. Returns a single

file.
Import files with the corresponding import usage ranked based on the proximity to the hole.

Returns a ranked list of files.
Sibling files with import usage common to the current file and the sibling file, ranked based on

the proximity to the hole. The total number of common imports between the current and
the sibling file is used as a tie-breaker. Returns a ranked list of files.

Similar Name files with import usage common to the current file and the similar name file, ranked based
on the proximity to the hole. The total number of common imports between the current
and the similar name file is used as a tie-breaker. Returns a ranked list of files.

Child Class files with import usage common to the current file and the child file, ranked based on the
proximity to the hole. The total number of common imports between the current and the
child class file is used as a tie-breaker. Returns a ranked list of files.

Import of Sibling import files ranked based on the frequency of usage in all the sibling files. Returns a
ranked list of files.

Import of Similar Name import file ranked on the basis of frequency of usage in all the similar name files. Returns
a ranked list of files.

Import of Parent Class import file ranked on the basis of frequency of usage in all the parent class files. Returns
a ranked list of files.

Import of Child Class import file ranked on the basis of frequency of usage in all the child class files. Returns a
ranked list of files.

B.2. Examples of Prompt Context Type

We provide examples of each of our prompt context type below:

1. Post Lines (PL) : For the example shown in Figure 1 of the main paper, post lines will take all the lines af-
ter the line mg.InitializeToAssignment(CurrentAssignments()) till we reach the end of the file
(AffinityPropagation.java).

2. Identifiers (I): Identifiers are the names of variables used in the code. For example, for the prompt proposal
context taken from the imported file shown in Figure 1 in the main paper (highlighted in violet), identifiers are
InitializeToAssignment (line 1), a (line 1), currentAssignment_ (line 2), a ( line 2), clone (line

2), alreadyInitialized_ (line 3), justOneRound_ (line 4).
3. Type Identifiers (TI): Type Identifiers define the type of an identifier. For example, in the code snippet class

DPAffinityPropagation extends AffinityPropagation , [ AffinityPropagation is la-
beled as a type identifier. Similarly in the snippet DPAPParameters parameters_;, DPAPParameters is a
type identifier.

4. Field Declarations (FD): The variables of a class type are introduced by field declarations. For example,
double[][] mHijMujT_; and MessageValuePair[][] sortedMHijMujTs_; are examples of

field declarations.
5. String Literals (SL): A string literal is the sequence of characters enclosed in double-quotes. For

example, in the code snippet, System.err.println("DPAP load Warning: unknown
parameter " + entries[0] + ", value = " + entries[1]);, we have two string literals:
(a) "DPAP load Warning: unknown parameter " ; (b) ", value = " .

6. Method Names (MN): For the example shown in Figure 1 of the main paper,
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public void InitializeToAssignment(int[] a) is the method name prompt context type.
7. Method Names and Bodies (MNB): For the example shown in Figure 1 of the main paper, the part highlighted in violet

represents the method names and bodies.

B.3. Truncation Strategies for Prompt Proposal Context

If the prompt proposal context is greater than the context length allocated to it, then we need to truncate the prompt proposal
context. We followed the below two schemes for truncating context:

• front: We truncate the context from the front. This is used for all prompt sources except Parent Class and when we take
PL from Current.

• back: We truncate the context from the back. This is used when the prompt source is Parent Class and when we take
prompt context types other than PL from Current.

The truncation strategies for each case were selected based on results on a small validation set. For the prompt source
Current, except when the prompt context type is PL, we always start by taking code of prompt context type from after the
hole position. This makes sense as the default Codex context will anyways contain code before the hole. Only if this turns
out to be blank, we will use the code of context type from before the hole.

B.4. List of Prompt Proposals

Table 7. List of our proposed repo-level prompt proposals

Prompt Proposal ID Prompt Source Prompt Context Type

0, 1, 2, 3, 4 Current MN, I, TI, SL, FD
5, 6, 7 Current PL (taking 25%, 50% and 75% contribution to the total context length)

8, 9, 10, 11, 12, 13 Parent Class MNB, MN, I, TI, SL, FD
14, 15, 16, 17, 18, 19 Import MNB, MN, I, TI, SL, FD
20, 21, 22, 23, 24, 25 Sibling MNB, MN, I, TI, SL, FD
26, 27, 28, 29, 30, 31 Similar Name MNB, MN, I, TI, SL, FD
32, 33, 34, 35, 36, 37 Child Class MNB, MN, I, TI, SL, FD
38, 39, 40, 41, 42, 43 Import of Sibling MNB, MN, I, TI, SL, FD
44, 45, 46, 47, 48, 49 Import of Similar Name MNB, MN, I, TI, SL, FD
50, 51, 52, 53, 54, 55 Import of Parent Class MNB, MN, I, TI, SL, FD
56, 57, 58, 59, 60, 61 Import of Child Class MNB, MN, I, TI, SL, FD

62 Codex -

B.5. Other Prompt Proposal Variations

We experimented with other variations that include: (a) appending class names at the beginning of the prompt proposal
context, (b) using newline or space to join the prompt proposal context and the default Codex context, (c) taking all or the
top-k of the prompt context types, (d) ordering of top-k.

• Context Separator: This defines how we join the prompt proposal context string to the default Codex context string. We
experimented with space and newline as context separators.

• Prompt Proposal Context Formatting: We can format the prompt proposal context before giving it to the Prompt
Composer. We experimented with the following options:

1. class_name: append [class name of the file] at the beginning of the prompt proposal context taken from each file that
is part of the prompt source. For example, if we are taking prompt proposal context from two import files f1 and f2,
the prompt proposal context will be formatted as: [class name of f1] prompt proposal context from f1 + space +
[class name of f2] prompt proposal context from f2. We use this when the prompt proposal context types are MN, I,
TI, FD and SL.
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2. class_method_name: we apply this only when the prompt proposal context type is MNB. We append method names
at the beginning of each of the corresponding method bodies. We also append the prompt proposal context from a
file with the name of the class as described in the previous item.

3. comment: Adding in the prompt proposal context as a comment, i.e., formatting it as: /** prompt proposal context */.
This wasn’t found to be much useful.

4. none: passing the prompt proposal context as it is. We use this when the prompt proposal context type is PL.
• Top-k Type: For each of the prompt proposal context types, except PL, we experimented with taking the (a) first (b) last

and (c) all of the prompt proposal context types, i.e., we can take first-10 identifiers. We found ’all’ to be the best among
all.

• Top-k: We experiment with k values of (a) 10 (b) 20 and (c) all. We found ’all’ to work best for all prompt context types.

C. Implementation Details
C.1. RLPG-H

We used Adam (Kingma & Ba, 2015) optimizer with a learning rate of 3e-4 and batch size of 64. We used CodeBERT (Feng
et al., 2020) as our pretrained model Fϕ to obtain the representation of hole window. The size of the representation
(corresponding to the hidden dimension of the [CLS] token) is 768. W 1 ∈ R512×768, b1 = 512,W 2 ∈ R63×512, b2 = 63.

C.2. RLPG-R

We used Adam (Kingma & Ba, 2015) optimizer with a learning rate of 3e-4 and batch size of 64. We used CodeBERT (Feng
et al., 2020) as our pretrained model Fϕ to obtain the representation of hole window and prompt proposal context. The size of
the representation (corresponding to the hidden dimension of the [CLS] token) is 768. The multiheaded attention (Vaswani
et al., 2017) is modeled as follows:

Qh = Fϕ(H
h), Kh

p = Fϕ(C
h
p ), V h

p = Fϕ(C
h
p )

Att(Qh,Kh
p , V

h
p ) = V h

p softmax
(Qh⊤Kh

p√
dk

)
MultiHead(Qh,Kh

p , V
h
p ) = WOconcat(head1, . . . headτ )

where headi = Att(WQ
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i Kh
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i V h

p )

In the above equations, dk is the dimension of the key, WQ
i ,WK

i ,WV
i are the query, key and value projection matrices, τ is

the number of heads and WO is the linear projection that combines the heads. The projection matrices WQ
i ∈ Rdq×dmodel ,

WK
i ∈ Rdk×dmodel , WV

i ∈ Rdv×dmodel , WO ∈ Rdmodel×τdv . For the multihead attention, we used dk = dq = dv = 32,
τ = 4 and dmodel = 768, Wr ∈ R63×768 and bp = 63. For each head, we perform a scaled dot-product attention
(Equation ??). G module consists of a dropout (Srivastava et al., 2014) layer, a residual connection (He et al., 2016), a
layernorm (Ba et al., 2016), followed by a sequence of (a) dense layer of weights=2048× 768, bias=768, (b) relu activation,
(c) dense layer of weights=768 × 2048, bias=2048, (d) dropout layer, (e) residual connection, (f) layernorm. A dropout
value of 0.25 was used while training. Our model resembles one layer of the transformer encoder block (Vaswani et al.,
2017).

C.3. Baselines

Random baseline first selects a file randomly from the current repository followed by selecting a random line within that file.
We choose all the lines starting from that line to the end line of the chosen file as context (excluding the hole window if the
chosen file is the current file). The nearest neighbour similarity is based on the dot product between the representation of the
hole window and the representation of the context, where we use a pretrained CodeBERT (Feng et al., 2020) model to obtain
the representations. For the Identifier Usage baseline, if the nearest identifier to the hole doesn’t return any usage window,
we proceed to the next nearest identifier. For faster computation and to avoid memory issues when running on our hardware,
for NN baselines, we collect 64 random neighbours and then rank based on the nearest neighbour distance. The BM25-based
baselines use the Okapi BM25 implementation with default parameters given by the pip package rank-bm25 0.2.2 10.

10https://pypi.org/project/rank-bm25/
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For file-level BM25, if the file context exceeds the allocated context length, we truncate from the back.

D. Additional Results
D.1. Hole-wise and Repo-wise results

Table 3 shows the performance of all methods when averaged across all holes (hole-wise) and across individual repositories
(repo-wise). Note that the latter metric is independent of the size of the repository.

Table 8. Hole-wise and Repo-wise Success Rate (SR) of different methods on the test data.

Method Success Rate(%)
(hole-wise)

Rel. ↑(%)
(hole-wise)

Success Rate(%)
(repo-wise)

Rel. ↑(%)
(repo-wise)

Codex (Chen et al., 2021) 58.73 - 60.64 -

Oracle 79.63 35.58 80.24 32.31

Random 58.13 -1.02 58.95 -2.79
Random NN 58.98 0.43 60.04 -0.99

File-level BM25 63.14 7.51 64.28 6.00
Identifier Usage (Random) 64.93 10.55 67.83 11.85

Identifier Usage (NN) 64.91 10.52 67.94 12.03

Fixed Prompt Proposal 65.78 12.00 68.01 12.15
RLPG-BM25 66.41 13.07 68.15 12.39

RLPG-H 68.51 16.65 69.26 14.21
RLPG-R 67.80 15.44 69.28 14.26

D.2. Ablation on Performance based on Prompt Proposal

Figure 3 shows the mean success rate of prompt context types when success is counted only for the cases when these prompt
contexts are applicable. As can be seen from the figure, post lines is the most useful prompt context type on an average. The
contribution from other prompt context types though smaller than post lines is still significant highlighting the importance of
each prompt context type.
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Figure 3. Mean success rate on validation data based on prompt context type when they are applicable.
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Figure 4. (Left) Normalized success rate of prompt sources when applicable, (Right) Normalized success rate of prompt context types
when applicable

Figure 4 shows the normalized success rates where the normalization is performed across the prompt proposals. This helps
us understand the relative performance of prompt proposal sources and context types. The left part of the figure breaks
down the performance based on prompt sources and the right part breaks down based on prompt context types. One thing to
note from the plot of prompt context types is that when we consider relative performance, post lines is no longer the most
dominant context type. This is because post lines is tied to only when the prompt source corresponds to the current file,
thereby contributing to lower numbers when compared to most of the other context types that are tied to all prompt sources.

D.3. Performance on non-immediate Post Lines

Table 9 shows the performance of post lines when starting from the fourth line after the target hole line (i.e., skipping three
lines after the target hole) as opposed to starting from the line that immediately follows the target hole. This experiment
helps us understand the performance when we are interested in doing a much harder task of multi-line code autocompletion,
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wherein the objective is to predict not just the blanked out portion in the current line but also the next three lines which can
correspond to completing a block of code like a function body. From the table, we see that when starting from the fourth
line, a slight deterioration in performance occurs. This is expected because the farther away we move from the target hole,
the less relevant the post lines context would be. However, the performance drop is not significant suggesting that post lines
is still a very useful prompt context type that can be used under the setting of multi-line code-autocompletion. Equivalently,
we can include this as one of the prompt proposals in our framework along with the current version of post lines.

Table 9. Success Rate (SR) when taking different versions of post lines.

Method Success Rate(%)
(hole-wise)

Rel. ↑(%)
(hole-wise)

Success Rate(%)
(repo-wise)

Rel. ↑(%)
(repo-wise)

Codex (Chen et al., 2021) 58.73 - 60.64 -
Post Lines (immediate line after the hole) 65.78 12.00 68.01 12.15

Post Lines (skipping three lines after the hole) 65.11 10.86 66.42 9.53

D.4. Composition of prompt proposals

Table 10 shows the performance of the two versions of RLPG when we compose the prompt proposal context from l prompt
proposals. We take the top-l prompt proposals given by RLPG based on decreasing order of probability. To decide how
much context should be used for each prompt proposal, we divide the total context length in proportion to the normalized
probabilities of the top-l prompt proposals. As can be seen from the table, even though PPC is not explicitly trained to
perform composition (both the ground-truth vector and the representation of prompt proposal context involve a single
prompt proposal), all the compositions lead to significant improvements over Codex. However, as expected the best results
correspond to taking context from a single prompt proposal (i.e., the training setting). The drop in success rate with l = 2
and l = 5 is not that significant, which suggests that explicitly training RLPG to learn to compose contexts from different
prompt proposals can lead to promising results and hence offers an interesting future direction.

Table 10. Success Rate (SR) of different compositions of the prompt proposals on the test set.

Method Success Rate(%)
(hole-wise)

Rel. ↑(%)
(hole-wise)

Success Rate(%)
(repo-wise)

Rel. ↑(%)
(repo-wise)

Codex (Chen et al., 2021) 58.73 - 60.64 -
RLPG-H (l = 1) 68.51 16.65 69.26 14.21
RLPG-R (l = 1) 67.80 15.44 69.28 14.26
RLPG-H (l = 2) 67.07 14.20 67.87 11.91
RLPG-R (l = 2) 66.57 13.35 67.88 11.94
RLPG-H (l = 5) 66.60 13.40 67.91 11.98
RLPG-R (l = 5) 65.78 12.01 67.69 11.62

RLPG-H (l = 10) 65.53 11.58 67.24 10.88
RLPG-R (l = 10) 63.59 8.27 65.98 8.79

D.5. Effect of Context Length

To understand the effect of context length on the performance of our prompt proposals, we took half of the context length
available for a prompt in Codex and observed the performance of the oracle and fixed prompt proposal. As before, we saw
that an oracle constructed from our prompt proposals shows remarkable improvement over Codex highlighting the value of
our prompt proposals. However, when compared to a larger context length, the relative gains are smaller. This is expected as
a smaller context length means that the relevant context coming from a prompt proposal needs to be truncated to make it fit
inside the prompt, thereby leading to loss of information.
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Table 11. Success Rate (SR) of Codex and oracle over the test set when the total context length = 2048.

Method Success Rate(%)
(hole-wise)

Rel. ↑(%)
(hole-wise)

Success Rate(%)
(repo-wise)

Rel. ↑(%)
(repo-wise)

Codex (Chen et al., 2021) 57.77 - 58.90 -
Oracle 61.90 7.15 67.18 14.07

D.6. Effect of Truncation

We calculated the percentage of times the context included in the prompt gets truncated. In Table 12, the second, third,
fourth, and fifth columns represent the percentage truncation with the default codex context, the prompt proposal context,
with either of them and with both of them, respectively. The truncation numbers suggest that a code completion model that
allows a longer context length can be useful. We do not explicitly encourage the syntactic correctness of the included code
snippet. Since the context length is limited, it is quite possible that the included context in the prompt is not syntactically
correct as a whole. However, on plotting the repository-wise numbers, we didn’t observe any particular correlation between
the amount of truncation and performance. This makes us believe that the content of the included context (whether it comes
from a selected prompt proposal) is what matters more rather than whether it is syntactically correct or not.

Table 12. Percentage truncation when using different contexts in the prompt.

Method Default Codex
Context

Prompt Proposal
Context Either Both Success Rate

RLPG-H 26.95 30.95 39.22 18.68 68.51
RLPG-R 26.82 31.31 38.88 19.24 67.80

D.7. Performance on individual repositories

Table 13. Success Rate of different methods on training data

Repo name #Total Holes Oracle Codex Fixed prompt proposal RLPG-H RLPG-R

largemail 1653 75.38 55.11 62.73 63.94 63.28
ftpserverremoteadmin 7323 86.44 66.11 76.09 76.21 76.76

myt5lib 838 91.65 53.58 61.34 73.51 74.46
seamlets 4890 92.74 62.25 62.72 71.55 74.27
gloodb 10000 91.07 57.50 57.50 70.32 72.31
jjskit 9043 80.36 65.61 72.18 72.00 72.44

mobileexpensetracker 2298 75.94 57.88 67.28 66.84 66.97
gfsfa 10000 80.55 57.33 57.33 59.28 65.24

swe574-group3 2029 76.79 54.46 66.19 65.16 64.91
strudem-sicsa 6131 77.83 64.96 72.55 73.25 73.32

soap-dtc 1370 81.24 64.82 70.73 71.61 72.70
openprocesslogger 7191 81.06 62.19 71.77 72.22 72.62

tapestry-sesame 397 72.54 45.84 61.21 60.71 63.98
exogdx 735 84.76 63.81 75.51 75.92 76.60

designpatternjavapedro 1069 78.30 54.82 64.36 63.99 68.57
quidsee 3020 81.66 60.79 69.50 70.36 70.26

healpix-rangeset 4734 63.54 48.71 54.67 54.94 55.07
sol-agent-platform 10000 73.76 58.22 65.72 65.65 65.94
rsbotownversion 10000 75.23 57.89 65.58 66.22 66.31
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Table 14. Success Rate of different methods on validation data
Repo name #Total Holes Oracle Codex Fixed prompt proposal RLPG-H RLPG-R

tyrond 721 83.91 60.33 71.15 71.57 72.68
math-mech-eshop 2225 83.46 62.20 72.76 73.53 73.17

infinispan-storage-service 373 82.31 71.85 78.55 76.94 77.75
teammates-shakthi 7665 82.02 63.74 72.38 72.47 72.46

javasummerframework 10000 79.27 55.92 65.30 65.74 65.55
tinwiki 10000 73.67 69.27 69.27 69.12 69.58
jloogle 3145 84.55 73.16 77.87 77.17 77.36

jcontenedor 5464 81.26 58.99 67.77 67.95 68.32
sohocms 772 76.68 57.90 67.10 67.49 67.62

affinity_propagation_java 1466 79.54 59.14 70.33 70.26 70.26
jata4test 1921 71.06 44.09 54.92 55.91 57.47

swinagile 2595 79.69 63.01 72.29 72.49 72.68
navigablep2p 1322 75.72 59.76 65.43 65.13 65.28

springlime 879 83.50 62.34 74.18 74.86 74.40

Table 15. Success Rate of different methods on test data
Repo
Name

#Total
Holes Oracle Codex Fixed

PP RLPG-H RLPG-R Random Random
NN

Iden Usage
(Random)

Iden Usage
(NN)

File-Level
BM25

RLPG-
BM25

dovetaildb 10000 76.89 57.12 66.45 66.06 66.25 57.45 57.58 61.39 60.77 59.39 66.09
project-pt-diaoc 10000 82.01 52.67 52.81 65.08 61.25 51.58 52.93 55.54 56.21 57.04 58.29

realtimegc 2513 77.64 57.58 67.01 67.85 68.48 57.78 58.89 63.51 63.99 61.84 66.69
fswuniceubtemplates 2070 77.44 55.7 58.89 66.81 65.8 55.22 55.89 65.7 66.43 59.28 66.71

qwikioffice-java 1138 76.45 70.21 70.21 69.86 70.56 46.13 48.15 60.37 62.92 64.41 58.17
glperaudsimon 1766 78.65 53.57 62.51 62.4 61.66 55.66 57.76 69.42 68.4 69.14 61.55

xiaonei-java-api 839 73.42 57.57 62.1 62.69 63.29 57.09 57.21 71.28 72.35 63.77 63.29
ircrpgbot 6591 83.67 69.67 77.24 76.71 76.65 69.55 70.54 74.68 74.43 69.32 75.75

robotsimulator2009w 7514 75.63 56.28 67.55 67.53 67.55 56.4 56.18 64.61 64.71 62.96 66.12
gwt-plugindetect 73 84.93 60.27 68.49 65.75 68.49 58.9 57.53 63.01 63.01 50.68 75.34

apiitfriends 1385 85.05 65.05 74.8 75.67 75.31 65.7 68.59 70.25 70.11 66.93 73.57
wicketbits 754 83.02 59.81 72.94 72.81 73.08 60.21 61.94 81.96 79.31 84.48 73.47
hucourses 590 84.41 70.68 77.46 77.63 77.97 70 72.2 70.68 72.54 53.39 75.08

xfuze 3055 84.09 62.82 73.62 72.73 73.62 63.67 65.17 77.25 75.97 77.32 74.01

Table 13, Table 14 and Table 15 present the success rates of different methods over individual repositories in the training,
validation and test splits, respectively. The repo-wise averages in Table 2 in the main paper were calculated by taking
the average of numbers corresponding to each column. The hole-wise averages correspond to multiplying the repo-wise
numbers of each method by the total holes in the repo to get the total number of successful holes by that method for that
repo. We then add the total number of successful holes across repos and divide it by the total number of holes in the entire
data split to get the hole-wise averages.

E. Analysis of Sample Cases
In Figure 1, RLPG selects the prompt proposal that corresponds to taking method names and bodies from the imported
file (i.e. MaximizingGibbsSampler.java ). Note that mg. before the hole position indicates that a method used
in the imported file is likely to be invoked. In this case, the prompt proposal context (highlighted in violet) contains the
method name InitializeToAssignment (part of target hole). This in conjunction with the default Codex context
which contains the method CurrentAssignments() (part of target hole) leads to generation of a successful prompt.
On the other hand, the prompt created from the default Codex context fails to predict the target hole in this case. In general,
we observed that in the absence of a strong signal, Codex has a tendency to give preference to natural language comments
occurring before the hole position, e.g. naming the method based on the comment. This in certain cases might hurt. We
provide insatnces of positive and negative samples cases for RLPG below:
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E.1. Positive Cases

We provide some examples of cases where RLPG led to the correct prediction and Codex failed.

1. Cases where part of the target hole is found exactly in the prompt proposal context.
• RLPG = Propagation(int numVars) vs Codex = Propagation()

• RLPG = tersFromFile(String filename) { vs Codex = ters(String filename) {

• RLPG = als("dampingFactor")) { vs Codex = als("numVars")) {

• RLPG = ] + ", value = " + entries[1]); vs Codex = ]);

• RLPG = stem.exit(1); vs Codex = stem.err.println("DPAP load error: " + ex.get

2. Cases where Codex takes strong hint from the preceding natural language comment, thereby producing incorrect
predictions.
• RLPG = d PassMessages() vs Codex = d DoOneRoundOfMessagePassing()

• RLPG = teger> CurrentExemplars() { vs Codex = teger> ChooseExemplars() {

• RLPG = ring FileName() { vs Codex = ring GetAlgorithmFilename() {

E.2. Negative Cases

In certain cases, extra information from prompt proposal-context might lead to confusion and produce incorrect predictions.

• RLPG = an hasConverged_; vs Codex = an converged_;

• RLPG = _[i][j] = -Double.MAX_VALUE; vs Codex = _[i][j] = 0;
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