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Abstract
Training normalizing flow generative models
can be challenging due to the need to calculate
computationally expensive determinants of
Jacobians. This paper studies the likelihood-free
training of flows and proposes the energy
objective, an alternative sample-based loss based
on proper scoring rules. The energy objective
is determinant-free and supports flexible model
architectures that are not easily compatible
with maximum likelihood training, including
semi-autoregressive energy flows, a novel
model family that interpolates between fully
autoregressive and non-autoregressive models.
Energy flows feature competitive sample quality,
posterior inference, and generation speed relative
to likelihood-based flows; this performance is
decorrelated from the quality of log-likelihood
estimates, which are generally very poor. Our
findings question the use of maximum likelihood
as an objective or a metric, and contribute to a
scientific study of its role in generative modeling.

1. Introduction
Normalizing flows form one of the major families of
probabilistic and generative models (Rezende & Mohamed,
2015; Kingma et al., 2016; Papamakarios et al., 2019). They
feature tractable inference and maximum likelihood learning
and have applications in areas, such as image generation
(Kingma & Dhariwal, 2018), anomaly detection (Nalisnick
et al., 2019), and density estimation (Papamakarios et al.,
2017). However, training flows requires calculating
computationally expensive determinants of Jacobians; this
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constrains the range of architectures that can be used to
parameterize flow models.

This paper questions the use of maximum likelihood
for training normalizing flows and shows the existence
of alternative objectives that do not require computing
determinants or performing adversarial training (Grover
et al., 2018). These objectives yield highly performant
models; however, their performance is entirely decorrelated
from competitive log-likelihood scores, which are very
poor. Our findings contribute to the scientific understanding
of generative model objectives and further question the
common practice of training and evaluating models via the
likelihood, hinting at the viability of alternative methods.

Specifically, we introduce the energy objective, a
sample-based multidimensional extension of proper scoring
rules that does not require computing model densities
(Gneiting & Raftery, 2007a). The energy objective extends
the recent autoregressive quantile flow framework of Si et al.
(2022) to flexible non-autoregressive flow architectures. We
complement this objective with efficient estimators based
on random projections and a theoretical analysis that draws
connections to divergence minimization, and that highlights
benefits over maximum likelihood.

The energy objective enables training model architectures
that are more flexible than ones trained using maximum
likelihood (e.g., densely connected networks). These
models feature exact posterior inference (which is useful
in applications such as semi-supervised learning and latent
space manipulation), as well as exact likelihood estimation
(which helps us study log-likelihood as an objective and
a metric). In particular, we propose semi-autoregressive
flows, an architecture that interpolates between fully
autoregressive and non-autoregressive models. From a
practical perspective, energy flows achieve improved sample
quality, posterior inference, and generation speed across
a number of tasks and compared to equivalent model
architectures trained using maximum likelihood. Table 1
compares our approach to existing methods.

Contributions. In summary, this work (1) presents new
results that question the use of maximum likelihood for
training flows and proposes an alternative approach based
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on proper scoring rules and two-sample tests that extends
quantile flows (Si et al., 2022) to multiple dimensions.
We (2) introduce specific two-sample objectives, such
as the energy loss, and derive efficient slice-based
estimators. We also (3) provide a theoretical analysis for
the proposed objectives as they are consistent estimators
and feature unbiased gradients. Finally, we (4) introduce a
semi-autoregressive architecture with high speed and sample
quality on generation and posterior inference tasks. 1

2. Background
Normalizing Flow Models Generative modeling involves
specifying a probabilistic model p(y) ∈ ∆(Rd) over a
high-dimensional y ∈ Rd (Kingma & Welling, 2014;
Goodfellow et al., 2014). A normalizing flow is a generative
model p(y) defined via an invertible mapping f : Rd →
Rd between a noise variable z ∈ Rd sampled from a
prior z ∼ p(z) and the target variable y (Rezende &
Mohamed, 2015; Papamakarios et al., 2019). We may obtain
an analytical expression for the likelihood p(y) via the
change of variables formula p(y) =

∣∣∣∂f(z)−1

∂z

∣∣∣ p(z), where∣∣∣∂f(z)−1

∂z

∣∣∣ denotes the determinant of the inverse Jacobian
of f . Computing this quantity is often expensive, hence we
typically choose f to be in a class of models for which the
determinant is tractable (Rezende & Mohamed, 2015), as in
autoregressive models (Papamakarios et al., 2017).

Proper Scoring Rules Consider a score or a loss
ℓ : ∆(Rd) × Rd → R+ over a probabilistic forecast
F ∈ ∆(Rd) and a sample y ∈ Rd. The loss ℓ is
proper if the true distribution G ∈ argminF Ey∼Gℓ(F,y)
(Gneiting & Raftery, 2007a). A popular proper loss is the
continuous ranked probability score (CRPS), defined for
two cumulative distribution functions (CDFs) F and G as
CRPS(F,G) =

∫
(F (y)−G(y))

2
dy. When we only have

samples from G, we can generalize this score to obtain
the following loss for a single sample y′: CRPSs(F, y

′) =∫
y
(F (y)− I(y − y′))

2
dy. where I denotes the Heaviside

step function. The above CRPS can also be written as an
expectation relative to the distribution F :

CRPS(F, y′) = −1

2
EF |Y − Y ′|+ EF |Y − y′|, (1)

where Y, Y ′ are independent copies of a random variable
distributed according to F . Recently, Si et al. (2022)
proposed autoregressive quantile flows, which are trained
using the CRPS and are determinant-free. We seek to extend
the approach of Si et al. (2022) beyond autoregressive flows.

Two-Sample Tests and Integral Probability Metrics
Two-sample tests compare distributions F,G based on

1Code is available at https://github.com/ps789/SAEF.

their respective sets of samples DF = {y(i)}mi=1 and
DG = {x(i)}ni=1. Specifically, a two-sample test defines a
statistic T : Rd → R, and we determine whether DF ,DG

originate from identical or different distributions F,G based
on differences in T across DF ,DG. Two-sample tests
motivate objectives for generative models such as generative
moment matching networks (GMMNets; (Dziugaite et al.,
2015; Li et al., 2015)) and generative adversarial networks
(GANs; (Goodfellow et al., 2014)). Two-sample tests are
also an attractive training objective for flows because they
are density-free and therefore do not require computing
determinants (Grover et al., 2018).

More modern approaches include integral probability
metrics (IPMs) (Müller, 1997), which take the form
maxT∈T Ey∼F [T (y)]− Ey∼G[T (y)], where T is a family
of functions. A special case of IPMs is maximum mean
discrepancy (MMD) (Gretton et al., 2008), in which T =
{T : ||T ||H ≤ 1} is the set of functions with bounded norm
in a reproducing kernel Hilbert space (RKHS) with norm
|| · ||H; the CRPS objective can be shown to be a form of
MMD (Gretton et al., 2008).

3. Exploring Determinant-Free Training of
Normalizing Flows

‘We propose training normalizing flows using objectives
inspired by two-sample tests, which do not require
computing densities. This idea poses two sets of
challenges: (1) most classical two-sample tests (e.g.,
Kolmogorov-Smirnov) are defined in one dimension and
do not have simple multivariate extensions; (2) modern
two-sample tests (e.g., IPMs) extend to high dimensions,
but typically require solving a costly optimization problem.
Here, we derive two-sample tests that form good learning
objectives, and we use the theory of proper scoring rules to
justify their validity.

3.1. Sample-Based Training of Normalizing Flows and
the Energy Objective

We seek to extend autoregressive quantile flows (Si et al.,
2022) to general architectures without the limitations of
autoregressivity (e.g., slow sampling). Specifically, we
leverage a generalization of the sample-based form of the
CRPS objective (1) to a multi-dimensional version called
the energy score by Székely (2003); Gneiting & Raftery
(2007a):

CRPSe(F,y
′) = −1

2
EF ||Y−Y′||β2+EF ||Y−y′||β2 , (2)

where β ∈ (0, 2), || · ||2 denotes the Euclidean norm, and
Y,Y′ ∈ Rd are independent copies of a vector-valued
random variable distributed according to F . The rightmost
term EF ||Y − y′||β2 promotes samples Y from F that are
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Table 1: Energy Flows and Semi-Autoregressive Energy Flows (SAEFs) are invertible generative models that feature
expressive architectures, exact likelihood and posterior evaluation, and their training does not require computing
log-determinants, in contrast to VAEs (Kingma & Welling, 2014), MAFs (Papamakarios et al., 2017), NAFs (Huang
et al., 2018), AQFs (Si et al., 2022), GMMNets (Li et al., 2015), and CramerGANs (Bellemare et al., 2017).

Method Likelihood / Posterior Sampling Representation Objective
VAE Approx. Feedforward Gaussian ELBO
MAF Exact Autoregressive Gaussian Likelihood
NAF Exact N/A Non-Gaussian Likelihood
AQF Exact Autoregressive Non-Gaussian Quantile Loss
GMMNet N/A Feedforward Non-Gaussian MMD
CramerGAN N/A Feedforward Non-Gaussian Discr.+Energy
Energy Flow (Ours) Exact Feedforward Non-Gaussian Energy Loss
SAEF (Ours) Exact Autoregressive Non-Gaussian Energy Loss

close to the data point y′; the leftmost term 1
2EF ||Y−Y′||β2

encourages the model to produce diverse samples and not
concentrate all probability mass on one y.

The Kernelized Energy Objective As a generalized
extension of the CRPS, the Kernelized Energy Objective
extends the Euclidean norm to a kernel function:

CRPSK(F,y′) = −1

2
EFK(Y,Y′) + EFK(Y,y′), (3)

The kernelized energy loss can be shown to be a proper
loss (Gneiting & Raftery, 2007a) and, thus, represents a
valid training objective for a generative model. The flow
objective consists of Ey′∼D[CRPSK(F,y′)] and reveals the
connection to two-sample tests between F and D.

Two-Sample Baselines In Appendix D.1, we define
two classical statistical tests as baselines and illustrate
examples of alternative methods that can be derived from
our two-sample-based approach. In brief, Hotelling’s
two-sample test uses the statistic H2(DF ,DG) = (mF −
mG)

⊤S−1(mF −mG), where mF ,mG are sample means,
SF , SG are sample variances and S = (SF + SG)/2.
The Fréchet distance uses the objective R(DF ,DG) =
||mF −mG||22 + tr(SF + SG − 2(SFSG)

1/2), where we
are using the same notation.

3.2. Theoretical Properties

Divergence Minimization When the variable y ∈
R is one-dimensional, the objective CRPS(F,G) is
precisely equivalent to the Cramér divergence ℓ22(F,G) =∫∞
−∞(F (y)−G(y)2dy between distributions F,G. Székely

(2003) show that the one-dimensional version of the energy
loss (2) is precisely equivalent to ℓ22. The kernelized version
is a valid divergence between distributions, which directly
follows from the fact that it is a proper loss (Gneiting &
Raftery, 2007a). The connection to divergence minimization
lends additional support to using (2) and (3) as principled

objectives—if G is the data distribution, minimizing (2) or
(3) over a space of models produces an F that is close to G.

Unbiased Gradient Estimation Our objectives have
the property that given a sequence Yn of n samples
y1,y2, ...,yn from G, the gradient of the empirical
distribution over these samples yields an unbiased estimate
of the gradient of the expected loss: ∇θEYnℓ(Fθ, Ĝn) =
∇θℓ(Fθ, G), where ℓ is one of our objective functions, Ĝn

is the empirical distribution over Yn, and Fθ is a model
with parameters θ that we are optimizing. The statement
above follows directly from the fact that both the energy and
the CRPS objectives are proper scoring rules (Bellemare
et al., 2017).

Why Energy Objectives? Consider the set of objectives
ℓpp(F,G) =

∫∞
−∞(F (y)−G(y))pdy for p ≥ 1 over y ∈ R;

these are also known as Wasserstein p-metrics (Kantorovich,
1960). The energy objective corresponds to ℓ22, and it is the
only ℓpp objective to support unbiased gradients (Bellemare
et al., 2017). In high dimensions, IPMs are general-purpose
two-sample tests; popular IPMs include the Kantorovich
metric (Kantorovich & Rubinstein, 1958), Fortet-Mourier
metric (Fortet & Mourier, 1953), the Lipschitz (or Dudley)
metric (Dudley, 1966), and the total variation distance.
In general, IPMs are defined in terms of a potentially
costly optimization problem; out of the aforementioned
IPMs, only the energy objective has a known analytical
(optimization-free) solution, and it also features a faster
statistical convergence rate (Sriperumbudur et al., 2009).

Overall, we summarize the above facts as part of the
following formal result:

Theorem 1. The energy objectives (2) and (3) are consistent
estimators for the data distribution and feature unbiased
gradients.

This follows from properties of proper scoring rules and
MMD; see Appendix B for the full proof.
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3.3. Scaling Sample-Based Flow Objectives Using
Projections

The framework of IPMs provides a wide range of
high-dimensional sample-based objectives (Müller, 1997).
However, most of these objectives involve costly
optimization problems, with the energy loss being a rare
exception. At the same time, there exist many popular
one-dimensional two-sample tests that have appealing
statistical and computational properties and can yield
training objectives.

We propose further improving our objective via random
projections, specifically slicing, which projects data into one
dimension (Kolouri et al., 2019; Song et al., 2019; Nguyen
et al., 2020). Formally, we define a sampling probability
p(v) over one-dimensional vectors v ∈ Rd. We define a
sliced version of a one-dimensional loss function Lp(x, y) :
R× R → R as

Lp(x,y) = Ev∼p(v)

[
L(v⊤x,v⊤y)

]
. (4)

We approximate the expectation with Monte-Carlo samples.

Sliced Energy Objectives The sliced energy objective
applies (1) to the projected data. In practice, we find
that the number of slices needed for good performance
is lower than the dimensionality of the data, resulting in
a favorable computational profile. Furthermore, we can
formally prove that the resulting objective has appealing
statistical properties.
Theorem 2. The sliced versions of the energy objectives (2)
and (3) are consistent estimators for the data distribution
and feature unbiased gradients.

Intuitively, the first part of the theorem is true because
the CRPS objective is related to the MMD. At the same
time, for each v the objective remains a proper score; a
weighted combination of proper scores is also a proper
score, hence the second part holds. See Appendix B for
the full proof. Recall also that in one dimension, the
energy loss reduces to the CRPS, which is equivalent to the
Wasserstein-2 distance. Wasserstein distances have more
favorable convergence properties (Arjovsky et al., 2017)
than maximum likelihood training, which lends further
support to our choice of objective.

Sliced Two-Sample Baselines Slicing also allows us to
use univariate two-sample tests as objectives. We describe
several objectives in Appendix D.2. In brief, these include:
Kolmogorov-Smirnov, a popular statistical test defined for
two CDFs F and G as KS(F,G) = supy |F (y) − G(y)|;
Hotelling’s t2 test Hu(DF ,DG) = (mF−mG)2

s2 , a sliced
version of Hotelling’s objective; the sliced version of the
Fréchet objective Ru(DF ,DG) = (mF −mG)

2 + (s2F −
s2G)

2.

4. Energy Flows
Next, we introduce energy flows, a class of models trained
with our proposed determinant-free objectives. An energy
flow is defined by an invertible mapping between z and y
and is trained using the energy loss. As a result, energy flows
improve over classical flow models by, among other things,
supporting flexible architectures and by simultaneously
providing fast training and sampling.

Previous work on normalizing flows involved constrained
architectures with tractable determinants, such as
autoregressive models. In contrast, our model supports
flexible feedforward architectures, which we outline in
Appendix E. In brief, our loss supports dense invertible
flows (DIFs), sequences of fully connected layers
constrained to be invertible, invertible residual networks
(Behrmann et al., 2019), as well as rectangular flows
(REFs), in which the dimensionality of y and z is not equal
(Nielsen et al., 2020; Cunningham & Fiterau, 2021; Caterini
et al., 2021).

4.1. Motivation for Energy Flows

Energy flows possess the following useful features: (1) exact
posterior inference; (2) fast feed-forward generation; (3) a
stable and effective training objective; (4) implicitly defined
distributions (i.e., p(x | z) is not assumed to be of any
parametric form); (5) flexibility in terms of architecture for
parameterizing the model. Closest in terms of features to
energy flows are Generative Moment Matching Networks
(GMMNets (Dziugaite et al., 2015; Li et al., 2015))—our
work can be seen as introducing a principled way of doing
posterior inference in GMMNets. Also related are VAEs;
however they do not possess property (4), and in our
experiments produce worse samples. Classical flows do not
possess (5). GANs and autoregressive also differ in terms
of training stability and generation speed, respectively.

It may appear that energy flows do not retain a key benefit
of normalizing flows—being able to compare models via
their log-likelihood. We argue that model comparison using
log-likelihood may not be a good idea to being with; also,
we see energy flows as a tool for the scientific study of the
limitations of log-likelihood as a metric. Moreover, energy
flows retain other aforementioned benefits over classical
flows and other models: exact posterior inference, fast
sampling via flexible architectures, and improved generation
and latent space quality.

Grover et al. (2018) introduced adversarial training of flows
and showed that it yields poor log-likelihoods; we propose
alternative objectives that are more stable while retaining
competitive sample quality. Our results contribute to the
above line of work and further question the use of the
likelihood for training flows. See Appendix G for more
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details.

4.2. Semi-Autoregressive Flows

We also introduce semi-autoregressive flows (SAEF;
pronounced “safe”), an architecture trained with the energy
loss that combines the speed of feed-forward architectures
with the sample quality of autoregressive models. The
SAEF model divides d-dimensional data into B blocks and
generates samples blockwise. As a result, sampling time
is reduced by a factor of O(d/B) relative to autoregressive
models.

Formally, SAEFs define an invertible mapping between a
latent variable z and an observed variable y and require
choosing a partition of y, z into B ordered blocks (yb)

B
b=1

and (zb)
B
b=1 (e.g., 4x4 blocks of pixels in an image). They

induce a probabilistic model p(y) over y that factorizes as
p(y) =

∏B
b=1 p(yb|y<b), where each p(yb|y<b) is defined

via an invertible mapping

yb = τ(zb;hb) hb = cb(y<b), (5)

where τ(zb;hb) is an invertible transformer mapping the
b-th latent block zb to the b-th observed block yb, and cb is
the b-th conditioner, which outputs transformer parameters
hb. Any invertible feed-forward energy flow can be used to
parameterize τ—we provide specific examples below. The
entire SAEF is trained via a sum of energy losses applied to
each block Ey∼D

[∑B
b=1 ℓ(Fyb

,yb)
]
, where D is a training

set, y ∼ D is a datapoint sampled from D, Fyb
is the

distribution over yb induced by τ(·,hb(y<b)), and ℓ is one
of our two-sample losses, such as (2) or (3).

When blocks are one-dimensional, this reduces to a standard
autoregressive architecture that features high sampling
quality but slow sampling speed. When blocks are
full-dimensional, this reduces to a non-autoregressive
energy flow with fast sampling but possibly worse quality. In
our experiments, we show that SAEFs can trade-off between
these two regimes and obtain the best of both worlds. Note
also that SAEFs are hard to train using maximum likelihood,
as they require specifying invertible non-autoregressive
mappings τ between possibly high-dimensional blocks
yb, zb—the SAEF architecture is only trainable using
the energy objective. See Appendix F for pseudocode.

5. Experiments
We evaluate our framework on a range of UCI datasets (Dua
& Graff, 2017), datasets of handwritten digits (Pedregosa
et al., 2011; Deng, 2012), and real world images, such as
CIFAR10 (Krizhevsky et al., 2009) and Celeb-A (Liu et al.,
2015).

Baselines We benchmark our models against normalizing
flows trained using either maximum likelihood or quantile
loss (Si et al., 2022) and parameterized by either
autoregressive or non-autoregressive architectures. Our
autoregressive models are based on baselines from earlier
work (Papamakarios et al., 2017; Si et al., 2022) and
include Autoregressive Quantile Flows (AQF) and Masked
Autoregressive Flows (MAF-LL). These models assume
a parameterization p(y|z) =

∏d
j=1 p(yj |y<j , zj), where

each p(yj |y<j) is a probability conditioned on the previous
variables and zj . In MAFs, the p(yj |y<j) are Gaussian; in
AQFs they are parameterized by a flexible quantile flow (Si
et al., 2022). We also compared to models trained with a
Jacobian-free objective. Specifically, we train autoregressive
MAF and AQF models with the quantile loss (Si et al., 2022)
and denote these as MAF-QL and AQF-QL, respectively.

Our non-autoregressive baselines consist of variational
auto-encoders (VAEs) trained using the evidence lower
bound (ELBO) on the maximum likelihood and based on
a fully-connected architecture (see below for details). In
order to understand the benefits of our objective, we fit a
VAE model with the same invertible architecture for the
decoder as the one used by our energy flow models; we refer
to the resulting method as a dense invertible flow trained
using maximum log-likelihood (DIF-LL). We additionally
compare against two state-of-the-art flow models, FFJORD
(Grathwohl et al., 2018) and Invertible Resnets (Behrmann
et al., 2019), using their respective open-source codebases.

Energy Flow Models We constructed flow models using
dense invertible layers, referring to the resulting model
as a Dense Invertible Flow trained with an energy loss
(DIF-E). The DIF-E model consists of three feedforward
invertible layers and Leaky ReLU activation functions and
is trained using the kernelized energy loss (3) with a mixture
of RBF kernels with bandwidth in {2, 5, 10, 20, 40, 80}.
We also use the energy score to train non-invertible
rectangular flows trained with the energy loss (REF-E). In
particular, rectangular flows are parametrized by layers of
size [d/8, d/4, d/2, d] as compared to DIF-E which requires
all layers to be of size d, for invertibility.

Metrics We evaluate the models in terms of log-likelihood
(when available and appropriate) and using variants of
the CRPS metric. For VAE-type models trained using
the ELBO, we report the ELBO as a lower bound on the
log-likelihood. We use two CRPS-style metrics which have
the following structure: the first is a sample-based version as
in (2). The second, marked as univariate CRPS (U-CRPS),
is the sum of one-dimensional CRPS measured for each
output dimension and estimates the quality of marginal
distributions (Si et al., 2022). Both versions use the ℓ1 norm.
See Appendix A.3 for more details. In our image datasets,
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we are also interested in a quantitative estimate of the quality
of the generated samples and their similarity to the data
distribution. We therefore define a metric called the D-loss,
which is measured by the accuracy of a discriminative model
in determining whether an image is generated (see Appendix
A.2 for details).

5.1. Understanding Sample-Based Objectives

We start with experiments that analyze the properties of
the sliced energy objectives and compare them to baseline
two-sample objectives on the UCI and image datasets.

Energy Objective vs. Two-Sample Baselines We claim
that the energy objective is a particularly favorable training
criterion for flows. We empirically establish this fact by
comparing it against the other two-sample objectives, which
we see as strong baselines. We train an invertible flow model
on the Miniboone UCI dataset. Complexity is written where
b denotes the batch size, d denotes the dimension, and n
denotes the number of projections made.

Flows trained using the energy objective achieve the
best performance in Table 2, outperforming the strong
baselines. In subsequent experiments, we focus on the
energy objective.

Improvements in Scalability From Slicing Next, we
seek to understand the scalability improvements from
slicing. We train a projection based model on MNIST using
projected energy loss. The model consists of 4 dense layers
of size 784 with Leaky ReLU activation functions for the
first three layers and a sigmoid activation function for the
last. When we calculate the loss, we take n projections
into a single dimension, which we denote in the top half of
Table 3 as n for the projection parameters. We additionally
conduct slicing experiments on the SAEFs, in particular
the 7x7 block size variant. Slicing is conducted separately
for each block in a similar manner to the fully-feedforward
flow, so we are projecting a 49-dimensional block down to
a single dimension. The number of projections per block
is denoted in Table 3 as Block-n. In general, even for the
block parameterization, CRPS is stable, even when using
fewer projections.

We see in Table 3 that sliced objectives perform
comparably to non-sliced objectives while having improved
computational complexity.

On Likelihood vs. Non-Likelihood Based Losses Our
work questions the use of maximum likelihood for training
flow models. In Table 4, we observe that a Glow model
(Kingma & Dhariwal, 2018) trained with likelihood has low
CRPS, and conversely poor likelihoods when trained with
an energy loss, though samples have high quality for both

(a) FFJORD (64)

(b) SAEF-4
Figure 1: MNIST samples

setups (see Appendix H, Figure 4 for sample generations).

5.2. UCI Experiments: Use of CRPS as a Metric

In the previous sections, we primarily use CRPS as an
evaluation metric for the performance of models trained with
different losses. In this section, we compare CRPS to other
evaluation metrics. Specifically, we implement energy flows
on the Miniboone and Hepmass UCI datasets, which have
been used previously as benchmarks by Papamakarios et al.
(2017) and Si et al. (2022) We use an LSTM architecture
(Hochreiter & Schmidhuber, 1997) for all autoregressive
models. In Table 5, we report Frechet Distance, MMD,
and CRPS and find that they are strongly correlated. See
Appendix L for CRPS-based evaluation on an expanded set
of UCI datasets.

We note that training and evaluating with the same metric is
not uncommon: in fact, most generative models are trained
and evaluated using the log-likelihood.

5.3. MNIST

On MNIST, we train autoregressive models with the
PixelCNN architecture. The architecture has 3 residual
blocks, and each masked convolutional layer has a kernel
size of 7. Our SAEF models use the same general
architecture, but adapted for the corresponding block
sizes and trained using the block energy loss. The
PixelCNN (Oord et al., 2016) maps from a base distribution
(either a normal distribution, PixelMAF, or a uniform
distribution, PixelAQF-QL) to the target distribution. SAEF
models utilize the same architecture but with generation
sectioned off into different blocks. In addition, we train a
rectangular flow model using the ELBO approximation of
the log-likelihood (REF-LL), resulting in a model equivalent
to a VAE. Results are shown in Table 6. Samples for
a state-of-the-art flow model (FFJORD) and SAEF-4 are
presented in Figure 1 (see Appendix K for more models).

Results Though the fully feedforward (DIF-E) and sliced
(DIF-E-Proj) variants demonstrate decent performance with
fast training and generation speed and good CRPS, we
find that introducing a degree of autoregressive modeling,
improves results. In particular, SAEF-4 greatly outperforms
these non-autoregressive energy-based models in terms
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Table 2: CRPS and Complexity for invertible flows trained on Miniboone UCI dataset with various two-sample objectives.
KS stands for Kolmogorov-Smirnov test and FD stands for Fréchet Distance.

Metrics KS 1D Hotelling Hotelling 1D-FD FD 1D-Energy Energy
CRPS 1.53 0.57 0.717 0.558 0.559 0.545 0.548

Complexity n log b n d3 n d3 bn bd

Table 3: Slicing on MNIST.

n 400 200 100 50
U-CRPS 0.088 0.088 0.088 0.091

CRPS 0.191 0.191 0.192 0.195
Block-n 100 20 10 5
U-CRPS 0.084 0.085 0.084 0.084

CRPS 0.086 0.087 0.086 0.087

Table 4: Glow on MNIST.

Models NLL CRPS
Glow-LL 2.57 0.197

Glow-Energy 7.03 0.190

of FID. In addition, SAEF-4 provides an order of
magnitude sampling time speedup compared to some fully
autoregressive models.

Inversion and Interpolation. A key feature of the DIF-E
model is exact posterior inference (despite not being
trained with log-likelihood). To demonstrate this, we
create intermediate representations between pairs of MNIST
samples through which we can smoothly interpolate (Figure
2). Inverting the decoder model, by inverting the activation
functions and weight matrices, allows us to create an
encoder, similar to that of the VAE. Like the VAE, the
energy flow can generate interpolated samples, with the
added advantage of exact posterior inference.

Second, we examine the utility of latent space of DIF-E by
training a logistic regression model to predict the class of
each datapoint based on its latent representation z. We split

Table 5: Various Metrics on the UCI Datasets

Miniboone
Method Frechet Distance MMD CRPS
MAF-LL 3.97 1.392 0.561
MAF-QL 3.14 1.408 0.567
DIF-E 1.62 0.088 0.524
Hepmass
Method Frechet Distance MMD CRPS
MAF-LL 0.532 1.235 0.617
MAF-QL 0.501 1.179 0.614
DIF-E 0.274 0.072 0.58

Figure 2: Interpolated MNIST samples with Energy Flow

the original 10,000 test samples into 8,000 training data and
2,000 evaluation data for the logistic model. Compared to
a standard LL-trained Glow model’s latent representations
which produce 84.7% accuracy, our energy-trained Glow
model yields improved accuracy of 88.3%.

5.4. CIFAR-10

We modify a PixelCNN model (Oord et al., 2016) to (a)
use the energy objective and (b) use a semi-autoregressive
architecture. In Table 7, we see that Energy-based training
of a standard PixelCNN yields equal or slightly better
sample quality. Further modifying the architecture yields
improvements in sampling speeds at a cost of a relatively
small reduction in image quality. Samples are depicted in
Figure 3 (with additional samples in Appendix I).

5.5. Celeb-A

We also include an experiment on the Celeb-A dataset
where we follow the same methodology as in our CIFAR-10
experiment. We can see in Table 8 that switching to the
energy loss for the PixelCNN considerably improves FID.
Even the 2x2 block version shows marked improvements
in generation quality, with a much faster sampling time
(75 seconds compared to 540 seconds for 10k samples)
and improves over other baselines. For comparison, we
also include Glow (Kingma & Dhariwal, 2018) and VAE
(Kingma & Welling, 2013) baselines trained with LL, with
FID values obtained from Xie et al. (2022).

6. Discussion and Related Work
Comparison to Other Generative Model Families We
provide a complete comparison to other models in Table
1. Our approach contrasts against VAE style models
(Kingma & Welling, 2014) by providing exact inference
and likelihood evaluation. Unlike MAFs (Papamakarios
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Table 6: MNIST Generation Experiments

Method U-CRPS CRPS D-Loss FID MMD Training (sec) Sampling (sec)

PixelMAF-LL .128 .279 1.00 100.55 0.296 35 195.38
PixelMAF-QL .099 .215 .983 85.08 0.287 35 195.38
PixelAQF-QL .119 .228 .986 61.27 0.232 29 195.38
REF-LL (VAE) .090 .189 .903 44.55 0.140 8 0.25
DIF-LL (VAE) .089 .190 .855 36.91 0.131 10 0.48
FFJORD (16) .101 .208 .650 24.78 0.103 540 48.88
FFJORD (64) .102 .209 .633 9.69 0.087 3100 155.69
iResNet .100 .206 .642 41.47 0.111 840 2.43
Flow-GAN .085 .187 0.608 43.67 0.068 15 0.40
GLOW .090 .197 0.983 63.06 0.600 1400 190.63

REF-E .085 .187 .778 41.04 0.052 3 0.21
DIF-E .084 .186 .701 22.76 0.051 6 0.40
DIF-E-Proj .085 .186 .819 22.55 0.056 3 0.40

SAEF-2 .085 .188 .675 9.86 0.167 32 31.22
SAEF-4 .085 .187 .567 7.05 0.081 12 8.19
SAEF-7 .085 .187 .608 14.91 0.088 6 2.17
SAEF-14 .085 .187 .650 19.57 0.068 5 0.93

Table 7: CIFAR Generation Experiments

Method FID Sampling (sec)

PixelCNN (Oord et al., 2016) 65.93 489

PixelCNN-Energy-1x 63.95 489
PixelCNN-Energy-2x 74.51 312
PixelCNN-Energy-4x 81.33 98

Table 8: Celeb-A Generation Experiments

Method FID
VAE 38.76
Glow 23.32
PixelCNN 36.17
PixelCNN-Energy-1x 16.23
PixelCNN-Energy-4x 18.73

et al., 2017), our models are neither fully autoregressive in
nature, nor do they make any Gaussianity assumptions. They
instead use a fully neural parameterization of the output
probabilities, which contributes to improved performance
and modeling flexibility. Approaches like AQF (Si et al.,
2022) and NAF (Huang et al., 2018) also provide neural
approximators but use fully autoregressive architectures,
resulting in slow sampling. Closely related feedforward
models include GMMNets (Li et al., 2015; Dziugaite
et al., 2015) and CramerGANs (Bellemare et al., 2017),
but they do not offer likelihood evaluation and posterior
inference. Our framework is also related to the Maximum
Mean Discrepancy (MMD) (Gretton et al., 2008) and its

generalizations ((Li et al., 2015), (Dziugaite et al., 2015)).
However, unlike models optimizing MMD (Li et al., 2015;
Dziugaite et al., 2015), ours provide latent variable inference
and exact density evaluation using the change of variables
formula.

We also draw comparisons to self-normalizing flows (Keller
et al., 2021) and flow matching (Lipman et al., 2022).
Self-normalizing flows (Keller et al., 2021) achieve a
similar goal to ours via two neural networks, parameterizing
the forward and backward directions separately. Unlike
our work, their method yields an approximate inverse
(albeit one that works well in practice) and relies on a
training objective that could be more susceptible to local
optima, e.g., if the two neural networks are imperfect
inverses of each other. Their method has the advantage
of providing good scalability and modularity, as flow
components can be composed to arbitrary depth and the
training objective decomposes per step, while in our
framework all components are trained together, which
might not scale as well with depth. Flow matching
(Lipman et al., 2022) is a concurrent work based on
continuous normalizing flows. It can be seen as an
extension of diffusion models to more general corruption
processes. Thus, it is a determinant-free approach to
flows, similar to stochastic differential equation-based
formulations of diffusion models. It inherits the advantages
of diffusion models, such as high-quality samples and
good log-likelihoods; disadvantages include slow sampling
speeds.
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(a) PixelCNN-Energy-1x

(b) PixelCNN-Energy-2x

(c) PixelCNN-Energy-4x

(d) Gated PixelCNN

Figure 3: CIFAR samples

Comparison to Other Architectures Coupling layers
are an invertible architecture that is an alternative to
autoregressive flows. A coupling layer partitions the
input into two blocks and keeps one block the same
while defining the output of the second block as an
invertible transformation conditioned on the first block.
Our semi-autoregressive architecture sits between the
coupling layers and autoregressive flows: it makes larger
modifications to the input than a coupling layer, but
smaller ones than an autoregressive layer. Crucially, our
semi-autoregressive layer has significantly fewer restrictions
on its parametric form than a classical coupling layer: the
latter typically implements a scale-and-shift operation (e.g.,
in Glow (Kingma & Dhariwal, 2018), RealNVP (Dinh et al.,
2017)), while our semi-autoregressive layer admits much
more expressive transformations when it is trained with the
energy loss.

The Likelihood as an Objective and Metric Our work
explores the benefits and limitations of the likelihood
as an objective and metric for generative models. We
proposed energy flows, a model trained with an alternative
sample-based objective, but whose likelihood is still
tractable. We found that energy flows yield worse
likelihoods while being faster and producing better samples
(as measured by FID). This adds to an existing body of work
on the decorrelation between likelihood and sample quality
(Grover et al., 2018), and extends it to non-adversarial
objectives. We visualized samples from a number of
energy flows; our qualitative examination suggests that

mode collapse plays a role in poor likelihood scores at least
in some settings (e.g., Figure 3). Thus, while our work
provides a more stable likelihood-free objective than that of
Grover et al. (2018), it also suggests that mode collapse is
caused by the fact that an objective is sample-based, not the
fact that it is adversarial. Other sample-based models may
thus also suffer from mode collapse (Dziugaite et al., 2015;
Li et al., 2015).

Our findings add further evidence to the notion that if one
cares about sample quality, the likelihood is not the ideal
objective or metric; however there may be a price to pay for
high quality samples, such as diversity. The right tradeoff
between quality and diversity is a choice that needs to be
made by the user; our work adds tools for making this
choice. More broadly, our work suggests the potential
for further research into alternative training objectives for
generative models; these can include regularization, even
using likelihood as in Grover et al. (2018).

7. Conclusion
In this work, we proposed training normalizing flows using
the energy objective, a proper scoring rule that does not
require computing determinants during training. We then
proposed semi-autoregressive energy flows, which feature
fast sampling and high sample quality. Using an invertible
flow architecture also allows us to retain exact posterior
inference in energy flows. We see our work as questioning
the use of likelihood for training normalizing flows, and a
a further step in exploring determinant-free flows based on
novel learning objectives and architectures.
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A. Additional Experimental Details
A.1. Architecture Details

Abbreviations and Losses In Table 9, we provide a list of abbreviations, where the upper half consists of the abbreviation
for the model names, and the bottom half consists of the abbreviations for losses.

Throughout the text we use loss abbreviations appended to model abbreviations to indicate which the objective used for was
training a particular model (e.g., PixelMAF-LL corresponds to a PixelMAF model trained with log likelihood). For the
remaining baseline models which do not follow this convention (FFJORD, GLOW, and iResNet, in Table 6) we note that
they are trained with log-likelihood, and note that Flow-GAN uses an adversarial loss combined with a log likelihood term.

Table 9: Abbreviations for models (upper) and losses (lower) used throughout the text.

Abbreviation Full Name

Models
AQF Autoregressive Quantile Flow
DIF Dense Invertible Flow
MAF Masked Autoregressive Flow
REF Rectangular Flow
SAEF Semi-Autoregressive Energy Flow
iResNet Invertible Residual Network
Pixel PixelCNN

Losses
E Energy Loss
LL Log Likelihood
QL Quantile Loss

Slicing For our slicing experiments with the various multidimensional and single-dimension losses, the invertible
feedforward model consists of 4 layers of size 43 (to match Miniboone dimension), and each objective is trained for
200 epochs with a learning rate of 1e-3. Each sample is projected onto 200 random normal vectors, and the resulting
two-sample loss is summed across the 200 projections.

UCI Experiments For the MAF and AQF models, the LSTM architectures are composed of two LSTM layers with hidden
size equal to the dimensionality of the data. All models were trained with a batch size of 200 and learning rate of 1e−3 using
the ADAM optimizer (Kingma & Ba, 2014) for 200 epochs for the smaller datasets (Miniboone, Hepmass) and 20 epochs
for the larger ones (Gas, Power, BSDS 300).

Image Generation Experiments For the PixelCNN architecture, we used a receptive field of 7 for digits and a receptive
field of 15 for MNIST. We chose to switch the autoregressive architectures here from LSTM-based models used in the
UCI experiments, which are more sequential, to the convolutional PixelCNN architecture to account for spatial location of
features. The PixelMAF-LL and PixelMAF-QL autoregressively transform pixels from the image into a distribution of the
next pixel, except that PixelMAF-LL uses log likelihood loss while PixelMAF-QL uses quantile loss. The PixelAQF-QL
model takes in samples from a uniform distribution, and predicts the corresponding quantile loss for each pixel.

Our DIF models are parametrized with a layer size of 64 on the digits dataset, and 784 on MNIST, with invertible activation
functions (Leaky ReLU activations up until the last layer and Sigmoid for the final activation). The images are flattened
prior to being passed through the feedforward model. On MNIST, each model was trained for 300 epochs with a learning
rate of 1e−3, while on digits, each model was trained for 2,000 epochs.

The additional baselines are constructed as follows: each model is adapted from the code from their original papers. FFJORD
models use two blocks of stacked CNF layers composed of ODE Nets. We tested with both a hidden size of 64 and a hidden
size of 16, and trained for a total of 100 epochs with a learning rate of 1e−3. The Invertible ResNet (Behrmann et al., 2019)
has three scale blocks, each having 32 Invertible ResNet blocks, consisting of 32 filters with three convolution types with an
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ELU activation function (Clevert et al., 2015). It used an AdaGrad optimizer with a batch size of 128 trained for 70 epochs
at a learning rate of 3e−3. Glow was trained with 3 levels and a depth of 1 on 8 GPUs for 250 epochs.

A.2. D-Loss

The D-Loss is derived from an ensemble of SVM discriminators (with RBF kernels having a bandwidth parameter γ of
0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000, and 10000) used to differentiate the real data versus the sampled data from the
model. The D-Loss for a single discriminator model D : Rn → {0, 1} is measured as the accuracy with which D can discern
the difference between generated samples and true samples, which are labeled 0 and 1, respectively. Given validation set
with m data points and labels Y ∈ {0, 1}, we have that

D-Lossγ =
1

m

m∑
i

Dγ(x
(i))y(i) + (1− Dγ(x

(i)))(1− y(i))

The final D-Loss is measured by the validation accuracy achieved by the best SVM, which is gotten through a 80:20
train-validation split on the 300 real and 300 fake images: D-Loss = maxγ D-Lossγ

A.3. Defining CRPS and U-CRPS

For simulated samples x1, ...,xm and true data y, we define CRPS as

CRPS((x1, ...,xm),y) =
1

m

m∑
i=1

||xi − y||2 − 1

2m2

m∑
i=1

m∑
j=1

||xi − xj||2

and U-CRPS as

U-CRPS((x1, ..., xm), y) =
1

m

m∑
i=1

|xi − y| − 1

2m2

m∑
i=1

m∑
j=1

|xi − xj|

B. Theoretical Analysis and Proofs
Multi-Variate Objectives In this section, we make the assumption that the kernels K used to define our objectives are
measurable and bounded by κ. Under these conditions, when using a kernelized objective with kernel K, each distribution
F can be represented by a mean embedding µF in the reproducing kernel Hilbert space (RKHS) induced by K (Gretton
et al., 2008). We also assume that there exists a unique mapping between µF and F for every F in the class of model
distributions F . Note that this can be satisfied for any Borel probability measure if the kernel K is chosen to be universal or
characteristic (Gretton et al., 2008). Alternatively, we may satisfy this claim by choosing our F to be a restricted set of
distributions for which the above claim is true.

Theorem. The energy objectives (2) and (3) are consistent estimators for the data distribution and feature unbiased
gradients.

Proof. First, we seek to establish the consistency of the minimizer of our objectives as an estimator of the data distribution.
Our argument uses the fact that the (kernelized) energy score is closely connected to the maximum mean discrepancy
(MMD; (Gretton et al., 2008)). Observe that

Ey′∼DCRPSK(F,y′) =
1

2
EFK(Y,Y′)− EF,DK(Y,y′)

= (
1

2
EFK(Y,Y′)− EF,DK(Y,y′)− 1

2
Ey,y′∼DK(y,y′)) +

1

2
Ey,y′∼DK(y,y′)

= −1

2
MMD2

K(F,D) + const.

Hence, by maximizing the CRPS over a set of possible models F , we are minimizing a monotonic transformation of the
MMD. Since (2) is a special case of (3), with the distance kernel (Sejdinovic et al., 2013), the above claim also holds for the
non-kernelized energy objective (2).
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We would like to establish that minimizing objectives (2) and (3) over a data distribution Dn of n samples from the true data
distribution P yields a model Fn that is similar to what we would obtain if we searched for the best F using the full data
distribution P; in other words:

E[L(Fn,P)] ≤ inf
F∈F

L(F,P) + o(n),

where L(F,P) is a metric or pseudo-metric2 that we will instantiate shortly, F is the hypothesis class for the model F ,
Fn is the empirical risk minimization solution (from our method) over a dataset Dn, and the additive o(n) term decays to
zero as we increase n. Note that if the model is well-specified (i.e., P ∈ F), we have E[L(Fn,P)] = o(n), and we have a
consistent estimator.

To establish this fact, we will derive a version of the above identity for a modified version of the MMD, under the assumption
of this section. We will also argue that the kernelized energy estimate satisfies that identity.

First, let L(F,P) = MMD(F,P). By the properties of MMD and kernels, we know that MMD(F,P) = ||µF − µP ||H,
and MMD is a pseudo-metric. Note that we have by the triangle inequality

L(Fn,P) ≤ L(Fn,Dn) + L(Dn,P),

where we overload notation and use Dn to also denote the empirical distribution. Note that because our objective is a
monotonic transformation ( 12MMD2 + const) of the MMD, the Fn minimizes the MMD within F . Thus we can write for
any F ∈ F

L(Fn,P) ≤ L(F,Dn) + L(Dn,P)

≤ L(F,P) + 2L(Dn,P)

where we have used once more the triangle inequality in the last line. Taking expectations on both sides and using the fact
that F ∈ F was arbitrary, we find that

EL(Fn,P) ≤ inf
F∈F

L(F,P) + 2EL(Dn,P)

≤ inf
F∈F

L(F,P) + 2
√

EL(Dn,P)2.

To establish our claim, we need to bound the last term. Let xi denote the i.i.d. samples from Dn, let ϕ denote the embedding
induced by the kernel K in its RKHS H, and note that we have

EL(Dn,P)2 = E|| 1
n

n∑
i=1

ϕ(xi)− Eϕ(x)||H

= Var
( 1

n

n∑
i=1

ϕ(xi)
)

=
1

n
Var(ϕ(x1))

≤ 2

n
E||ϕ(x1)||H

≤ 2κ

n

Thus, our main claim follows with

EL(Fn,P) ≤ inf
F∈F

L(F,P) + 2

√
2κ

n
.

Thus the estimated model Fn satisfies the above inequality and if the data distribution P ∈ F , our consistency claim holds.

2A metric d(x, y) satisfies four properties: (1) symmetry, (2) the triangle inequality, (3) d(x, x) = 0, (4) and d(x, y) = 0 ⇐⇒ x = y.
A pseudo-metric satisfies only the first three properties. The MMD objective is a metric if its kernel is characteristic or universal (or more
generally if there is a one-to-one mapping between µF and F ); otherwise, it is a pseudo-metric.
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We can establish that the gradients are unbiased by leveraging properties of proper scoring rules. Recall from the background
section that a loss L : ∆(Rd)× Rd → R is strictly proper (Gneiting & Raftery, 2007a) if G = argminF Ey∼GL(F,y). In
the context of the CRPS objective L, we have by definition of a proper loss

L(F,G) = Ey′∼GCRPSK(F,y′) = Ey′∼GCRPSK(F,Gy′),

where Gy′ is the empirical distribution derived from y′.

Let P denote the true data distribution, Dn a dataset of size n drawn from P , and Gn the resulting empirical distribution.
Then we have:

∇θEDn∼PL(Fθ, Gn)) = ∇θEDn∼PEy′∼DnL(Fθ,y
′)

= ∇θEy′∼PL(Fθ,y
′)

= ∇θL(Fθ,P),

which is equivalent to the statement that we wanted to prove.

Alternative Approaches to Showing Consistency The fact that consistency holds also follows from properties of the
MMD for general classes F ; for example as shown in Dzuigaite et al. (Dziugaite et al., 2015) (Theorem 1),

E[MMD2(Fn,P)] ≤ inf
F∈F

MMD2(F,P) + o(n),

if F satisfies a fat-shattering condition. The desired consistency claim with L(F,G) being our kernelized energy objective
CRPSK then follows directly from our earlier derivation by applying an affine transformation on each side of the above
equation.

Alternative Approaches to Showing that Gradients are Unbiased Note that a special case of the unbiased gradient
property for the non-kernalized objective (1) has been established using techniques discussed in Bellemare et al. (2017)
(Proposition 3). This result also follows from our aforementioned connection to the MMD and Lemma 6 Gretton et al.
(2008).

Sliced Objectives

Theorem. The sliced versions of the energy objectives (2) and (3) are consistent estimators for the data distribution and
feature unbiased gradients.

Proof. We establish the first part of the claim by observing that the sliced version of the energy objective

CRPS(F,y′) = Ew∼p(w)

[
1

2
EFK(w⊤Y, w⊤Y′)− EFK(w⊤Y, w⊤y′)

]
, (6)

where K is a kernel in 1D, is an affine transformation of squared MMD. Then the first part of the claim follows by the
argument in Theorem 1. To see this, first, define the function Kw : Rd × Rd → R as

Kw(x, y) = K(w⊤x,w⊤y),

where K is the kernel used as part of the sliced energy objective. It is easy to see that Kw(x, y) is a kernel. Consider any
dataset S = {xi}ki=1; then the matrix M defined as Mij = Kw(xi, xj) will be semi-definite because the corresponding
matrix M ′ defined as M ′

ij = K(w⊤xi, w
⊤xj) is also positive definite, because it is the kernel matrix for the set S =

{w⊤xi}ki=1. Hence, by Mercer’s theorem Kw is a kernel.

Next, define the function K̄ : Rd × Rd → R as

K̄(x, y) = Ew∼p(w)Kw(x, y).
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This is also a kernel, because it is a sum of kernels. Next, note that

CRPS(F,y′) = Ew∼p(w))

[
1

2
EFK(w⊤Y, w⊤Y′)− EFK(w⊤Y, w⊤y′)

]
=

1

2
EF K̄(Y,Y′)− EF,DK̄(Y,y′),

which is an instance of the kernelized energy objective that uses a modified kernel. Note that this is both a proper score
and a rescaled version of the squared MMD with a modified kernel. The two claims of this theorem follow directly from
Theorem 1.

C. Expanded Background on Proper Scoring Rules
C.1. Predictive Uncertainty in Machine Learning

Probabilistic machine learning models predict a probability distribution over the target variable—e.g., class membership
probabilities or the parameters of an exponential family distribution. We seek to produce models with accurate probabilistic
outputs that are useful for generation.

Notation. Supervised models predict a target y ∈ Y from an input x ∈ X . , where x, y are realizations of random variables
X,Y ∼ P, and P is the data distribution. We are given a model H : X → ∆Y , which outputs a probability distribution
F (y) : Y → [0, 1] within the set ∆Y of distributions over Y; the probability density function of F is f . We are also given a
training set D = {(xi, yi) ∈ X × Y}ni=1 consisting of i.i.d. realizations of random variables X,Y ∼ P.

C.2. Proper Scoring Rules

Comparing point estimates from supervised learning models is straightforward: we can rely on metrics such as accuracy or
mean squared error. Probabilities, on the other hand, are more complex and require specialized metrics.

In statistics, the standard tool for evaluating the quality of predictive forecasts is a proper scoring rule (Gneiting et al., 2007).
This paper advocates for evaluating the quality of uncertainties using proper scoring rules (Gneiting & Raftery, 2007b).

Formally, let L : ∆Y × Y → R denote a loss between a probabilistic forecast F ∈ ∆Y and a realized outcome y ∈ Y .
Given a distribution G ∈ ∆Y over y, we use L(F,G) to denote the expected loss L(F,G) = Ey∼GL(F, y).

We say that L is a proper loss if it is minimized by G when G is the true distribution for y: L(F,G) ≥ L(G,G) for all F .
One example is the log-likelihood L(F, y) = − log f(y), where f is the probability density or probability mass function of
F . Another example is the check score for τ ∈ [0, 1]:

ρτ (F, y) =

{
τ(y − F−1(τ)) if y ≥ f

(1− τ)(F−1(τ)− y) otherwise.
(7)

See Table 10 for additional examples.

What are the qualities of a good probabilistic prediction, as measured by a proper scoring rule? It can be shown that every
proper loss decomposes into a sum of the following terms (Gneiting et al., 2007):

proper loss = calibration−sharpness + irreducible term︸ ︷︷ ︸
refinement term

.

Thus, there are precisely two qualities that define an ideal forecast: calibration and sharpness.

D. Details on Additional Two-Sample Training Objectives
D.1. Gaussian Two-Sample Baseline Objective Over High-Dimensional Vectors

We use the following classical objectives as baselines for our work and to illustrate examples of alternative methods that can
be derived from our two-sample-based approach; both tests make a Gaussian modeling assumption.
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Table 10: Examples of three proper losses: the log-loss, the continuous ranked probability score (CRPS), and the
quantile loss. A proper loss L(F,G) between distributions F,G—assumed here to be cumulative distribution functions
(CDFs)—decomposes into a calibration loss term Lc(F,Q) (also known as reliability) plus a refinement term Lr(Q) (which
itself decomposes into a sharpness and an uncertainty term). Here, Q(y) denotes the CDF of P(Y = y | FX = F ), and
q(y), f(y) are the probability density functions of Q and F , respectively.

Proper Loss Loss Calibration Refinement
L(F,G) Lc(F,Q) Lr(Q)

Logarithmic Ey∼G log f(y) KL(q||f) H(q)
CRPS Ey∼G (F (y)−G(y))2

∫∞
−∞(F (y)−Q(y))2dy

∫∞
−∞ Q(y)(1−Q(y))dy

Quantile Eτ∈U [0,1]
y∼G ρτ (F, y)

∫ 1

0

∫ F−1(τ)

Q−1(τ)
(Q(y)− τ)dydτ Eτ∈U [0,1]

y∼Q ρτ (Q, y)

Hotelling’s Two-Sample Test Being closely related to Student’s t-test, it uses the following statistic:

H2(DF ,DG) = (mF −mG)
⊤S−1(mF −mG), (8)

where mF = 1
m

∑
y(i)∈DF

y(i), mG = 1
m

∑
y(i)∈DG

y(i) are the sample means, and the matrices SF =
1

m−1

∑
y(i)∈DF

(y(i) −mF )(y
(i) −m)T , SG = 1

m−1

∑
y(i)∈DG

(y(i) −mG)(y
(i) −m)T are sample covariances, while

S = (SF + SG)/2 is their average. This objective encourages the two samples to have similar means.

Fréchet Distance This is another Gaussian-based distance that we use as an objective:

R(DF ,DG) =||mF −mG||22
+ tr(SF + SG − 2(SFSG)

1/2), (9)

where we are using the same notation as above. This objective is encouraging the model to produce data with similar means
and variances. It is derived from the Fréchet distance between two Gaussians.

D.2. Sliced Two-Sample Baselines

Slicing also allows us to use univariate two-sample tests as objectives. We give examples below.

Kolmogorov-Smirnov One of the most popular ways of comparing the similarity between two distributions is via the
quantity

KS(F,G) = sup
y

|F (y)−G(y)|, (10)

the maximum distance between two CDFs F and G. Empirical CDFs can be used for samples. While this test corresponds
to an IPM, it does not have a widely accepted extension to higher dimensions.

Hotelling’s Univariate Objective The sliced version of Hotelling’s objective corresponds to using Hotelling’s t2 univariate
test (which is just the squared version of Student’s t-test) as an objective.

Hu(DF ,DG) =
(mF −mG)

2

s2
, (11)

where mF ,mD, and s2 are respectively the sample mean of DF , the sample mean of DG, and the combined sample
variance, defined as in the multivariate version. Note that this formula is much less computationally expensive than the
multi-dimensional one, which requires performing a matrix inversion (in worst-case O(d3) time), while the sliced version
takes only O(d) time.

Fréchet Univariate Objective Similarly, the sliced version of the Fréchet objective is written as:

Ru(DF ,DG) = (mF −mG)
2 + (s2F − s2G)

2, (12)
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which encourages the sample means mF ,mG and the sample variances sF , sG to be the same. Again, this O(d) formula is
less computationally expensive than in higher-dimensions, where it requires performing multiple matrix multiplications and
a matrix square root (O(d3)).

E. Feed-Forward Architectures for Energy Flows.
Since our objective does not require computing Jacobians, we are able to use flexible classes of invertible models that
are difficult to train using log-likelihood. Previous work on invertible mapping leveraged integration-based transformers
(Wehenkel & Louppe, 2021), spline approximations (Müller et al., 2019; Durkan et al., 2019; Dolatabadi et al., 2020),
piece-wise separable models, and others. Our main requirement on the model architecture is efficient sampling. We describe
several feed-forward flow architectures that are compatible with our objective below.

Dense Invertible Layers The simplest architecture we consider consists of a sequence of small Rd → Rd dense layers
with invertible non-linearities (such as tanh or Leaky ReLUs). We enforce the invertibility of the dense layers by adding a
scaled identity component σId for small σ > 0; other options for inducing invertibility include positivity constraints on
the weights (Huang et al., 2018). Although the tanh non-linearities are invertible, numerical values close to {−1, 1} tend
to introduce numerical instability during inversion. We address this issue via activity regularization (Chollet et al., 2015).
With these two architectural choices, for modestly sized d’s, we were able to compute both z → y and y → z mappings
analytically and in a numerically stable way.

Invertible Residual Networks Recently, residual networks with spectral normalization have been proposed as a flexible
invertible architecture (Behrmann et al., 2019). Although one of the two directions of the flow is not computable analytically,
it may be approximated using a fixed-point iteration algorithm. Invertible residual networks are typically trained using
maximum likelihood; computing the determinant of the Jacobian of each layer requires a sophisticated approximation based
on Taylor series expansion. Interestingly, when training these flows using maximum likelihood, the "fast" direction needs to
be y → z in order to enable fast training, but generation becomes non-analytic. In contrast, when training using an energy
objective, the z → y direction is fast both for training and generation.

Rectangular Flow Architectures Recently, several authors explored rectangular flows, in which the dimensionality of
y and z is not equal (Nielsen et al., 2020; Cunningham & Fiterau, 2021; Caterini et al., 2021). Training with maximum
likelihood involves sophisticated extensions to the change of variables formula. However, these models can be trained
without modification using an energy loss as long as one can sample from them efficiently. At the same time, we may retain
their pseudo-invertibility to perform posterior inference.

F. Pseudocode for Semi-Autoregressive Flows
In this section, we provide the algorithms for training (Algorithm 1) and sampling from (Algorithm 2) SAEFs.

Algorithm 1 Semi-Autoregressive Energy Flow Training

1: Input: x ∼ D
2: for iteration 1, 2, . . . do
3: Generate z from random normal (0, 1)d.
4: for b = 1, 2, . . . , Blocks do
5: hb = cb(x<b)
6: yb = τ(zb;hb)
7: y′

b = τ(z′b;hb)
8: Compute Energy Loss(yb,y

′
b,xb)

9: end for
10: Backpropogate sum of energy loss on τ
11: end for
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Algorithm 2 Semi-Autoregressive Energy Flow Sampling

1: for b = 1, 2, . . . , Blocks do
2: hb = cb(y<b)
3: yb = τ(zb;hb)
4: end for
5: Return (y1, ...,yb)

(a) Energy (b) LL

Figure 4: Glow samples when trained with Energy and LL loss

G. Additional Motivation for Energy Flows
From our experiments in Table 4, flows trained with the energy loss feature poor log-likelihoods. However, the FID and
CRPS metrics in Table 6 are good: these models still generate very good images. We note that previous work has already
shown that models trained with non-likelihood objectives tend to have very weak log-likelihoods, e.g., training normalizing
flows with adversarial losses (Grover et al., 2018). Our work adds additional results to this line of work.

We believe that exact posterior inference is a particularly important feature of flows. Popular papers (RealNVP (Dinh et al.,
2017), Glow (Kingma & Dhariwal, 2018)) use inferred latent z for interpolation, image manipulation, etc., which we have
also done in our interpolation experiments. Though these are not low-dimensional, high-dimensional z are still useful. Many
generative modeling families (GANs (Goodfellow et al., 2014), PixelCNN/WaveNet (van den Oord et al., 2016), GMMNets
(Li et al., 2015)) do not have latent inference, and retaining this feature is an important advantage over many types of models.

H. Glow Samples on MNIST
Samples for a Glow model trained with either the energy or a log-likelihood objective on the MNIST dataset are presented
in Figure 4. As discussed, in Section 5.1, relatively poor log-likelihood values do not translate to meaningful differences in
generated sample quality.

I. Autoregressive Samples on CIFAR10
Additional autoregressive samples for CIFAR10 are added in Figure 5. The blended (PixelCNN-Energy-2x) samples feature
the first half of the image generated by the fully autoregressive SAEF-1, and the second half of the image generated by
SAEF-2, which allows for a 30% reduction in time compared to a fully-autoregressive model.

J. Stability Comparison of MMD and GAN loss.
We study how robust a neural network architecture is to the changes in hyperparameter when it is trained using a adversarial
loss vs MMD loss. The adversarial loss is defined using a convolutional discriminator network which tries to determine
whether the data is a true sample or comes from the generator. First, optimal hyperparameter settings for a generator network
that features 4 fully connected layers of width 784 and Leaky ReLU activation were found: lr = 2e−5 for GAN loss
and lr = 0.0002 for MMD. In Figure 6, we observe that removing 1 extra layer from the generator causes a significant
deterioration in the sample quality for a model trained using the GAN loss. In contrast, when using MMD loss we do not
see this deterioration. For both settings, we train using the optimal hyperparameters for the corresponding loss functions.

K. Additional MNIST Samples
MNIST generated samples for a broader set of comparison models are provided in Figure 7.
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(a) PixelCNN-Energy-1x (b) PixelCNN-Energy-2x

(c) PixelCNN-Energy-4x (d) Gated PixelCNN

Figure 5: CIFAR samples

Figure 6: Stability comparision of the MMD and the GAN loss. A Generator network trained using MMD loss typically
requires the same hyperparameters to train the model when subtle changes are made to the network’s architecture. On the
right column we see that the sample quality deteriorated for a generator that was trained using the GAN loss after removing
layer and used the optimal hyperaparameter configuration for a 4 layered network.
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(a) PixelMAF-LL (b) PixelMAF-QL

(c) DIF-LL (d) DIF-E

(e) FFJORD (64) (f) SAEF-4
Figure 7: MNIST samples from six methods

L. Expanded Results on UCI Evaluated by CRPS
In Section 5.2 we presented results for two UCI datasets. Here, we include CRPS evaluation on an expanded set of
UCI datasets: BSDS 300, Miniboone, Gas, Power, and Hepmass, which have been used previously as benchmarks by
Papamakarios et al. (2017) and Si et al. (2022). The size of the datasets are noted in Table 11. The SAEFs use an appropriate
block size b (listed as a column in the table) which divides the dimension of the data. Miniboone bas been padded to ensure
an even divisibility of the dimension of the dataset by the dimensionality of the block. This would apply to any other
dimensionality for which the appropriate block size would not divide the dimensionality of the data.

Table 11: Model performance on UCI datasets as measured by CRPS.

Dataset d MAF-LL MAF-QL AQF-QL DIF-E DIF-E Proj b SAEF
BSDS 300 63 .044 .036 .033 .039 .040 3 .037
Miniboone 43 .567 .561 .525 .524 .545 2 .521

Gas 8 .645 .565 .513 .548 .551 2 .530
Power 6 .542 .506 .502 .451 .454 2 0.443

Hepmass 21 .617 .614 .523 .589 .587 3 .559

Results. As shown in Table 11, energy flows perform comparably to the neural AQF-QL baseline. Both methods are
trained using variants of the CRPS and obtain top performance across the five datasets. However, the DIF-E model is
non-autoregressive, hence provides advantage in terms of sampling speed. Our experiment illustrate that non-autoregressive
models can match the performance of autoregressive models trained with log-likelihood or versions of the CRPS objective.
SAEFs, which use a variant of the same loss as DIF-E, further improve upon its results, giving slightly better CRPS scores
across the board, while still being reasonable in terms of sampling speed.

M. Image Generation on Digits
We also test our methods on a small-scale generative modeling task: digit generation (Pedregosa et al., 2011), displaying
results in Table 12. We use a PixelCNN architecture for the autoregressive models, which we denote PixelMAF-LL,
PixelMAF-QL, and PixelAQF-QL. The PixelCNN maps from a (N(0, 1))d distribution (PixelMAF) and a (U(0, 1))d
distribution (PixelAQF-QL) to the target distribution. SAEF models also utilize the same PixelCNN architecture, but with
its generation sectioned off into different blocks, each of which is evaluated by our energy loss. We provide the ELBO loss
as an upper bound on the NLL for VAE-type models, and training speed is given by seconds per epoch, while sampling
speed is given by seconds per 1000 samples.

Results. The proposed DIF-E and SAEF models perform comparably on the U-CRPS and CRPS metrics to the AQF
model, although the latter is more discriminable (has a better D-loss). On the other hand the samples generated by the DIF-E
and SAEF outperforms those of any of the other autoregressive architectures, as well as the samples from non-autoregressive
DIF-LL model, which is trained with maximum log likelihood.
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Table 12: Digits Generation Experiments

Method U-CRPS CRPS D-Loss Training (sec) Sampling (sec)

PixelMAF-LL 0.136 0.206 0.974 0.15 14.00
PixelMAF-QL 0.131 0.204 0.883 0.15 14.00
PixelAQF-QL 0.127 0.199 0.681 0.13 14.00
DIF-LL (VAE) 0.138 0.207 0.941 0.07 0.01

REF-E 0.127 0.201 0.823 0.12 0.06
DIF-E 0.126 0.197 0.807 0.14 0.07
DIF-E-Proj 0.127 0.199 0.815 0.06 0.08

SAEF-1 0.126 0.198 0.795 0.12 10.54
SAEF-2 0.126 0.199 0.754 0.07 2.73
SAEF-4 0.127 0.198 0.772 0.05 0.86
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