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Abstract
We show that deep belief networks with binary
hidden units can approximate any multivariate
probability density under very mild integrability
requirements on the parental density of the visi-
ble nodes. The approximation is measured in the
Lq-norm for q ∈ [1,∞] (q = ∞ correspond-
ing to the supremum norm) and in Kullback-
Leibler divergence. Furthermore, we establish
sharp quantitative bounds on the approximation
error in terms of the number of hidden units.

1. Introduction
Deep belief networks (DBNs) are a class of generative
probabilistic models obtained by stacking restricted Boltz-
mann machines (RBMs, (Smolensky, 1986)). For a brief
introduction to RBMs and DBNs we refer the reader to
the survey articles (Fischer & Igel, 2012; 2014; Montúfar,
2016; Ghojogh et al., 2021). Since their introduction,
see (Hinton et al., 2006; Hinton & Salakhutdinov, 2006),
DBNs have been successfully applied to a variety of prob-
lems in the domains of natural language processing (Hin-
ton, 2009; Jiang et al., 2018), bioinformatics (Wang &
Zeng, 2013; Liang et al., 2014; Cao et al., 2016; Luo et al.,
2019), financial markets (Shen et al., 2015) and computer
vision (Abdel-Zaher & Eldeib, 2016; Kamada & Ichimura,
2016; 2019; Huang et al., 2019). However, our theoreti-
cal understanding of these models is limited. The ability
to approximate a broad class of probability distributions—
usually referred to as universal approximation property—
is still an open problem for DBNs with real-valued visible
units, let alone a quantitative understanding of the approx-
imation error in terms of the number of hidden neurons.
As a measure of proximity between two real-valued prob-
ability density functions, one typically considers the Lq-
distance or the Kullback-Leibler divergence.
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Contributions. In this article we study the approxima-
tion properties of deep belief networks for multivariate
continuous probability distributions which have a density
with respect to the Lebesgue measure. We show that, as
m → ∞, the universal approximation property holds for
binary-binary DBNs with two hidden layers of sizes m and
m + 1, respectively. Furthermore, we provide an explicit
quantitative bound on the approximation error in terms of
m. We also present similar estimates for deep narrow net-
works. More specifically, the main contributions of this
article are:

• For each q ∈ [1,∞) we show that DBNs with two bi-
nary hidden layers and parental density ϕ : Rd → R+

can approximate any probability density f : Rd →
R+ in the Lq-norm, solely under the condition that
ϕ ∈ Lq(Rd) and f ∈W 1,q(Rd), where

Lq(Rd) =

{
f : Rd → R :

‖f‖Lq =

(∫
Rd

∣∣f(x)
∣∣q dx) 1

q

<∞

}
and

W 1,q(Rd) =
{
f ∈ Lq(Rd) : f weakly differentiable

and ‖∇f‖Lq <∞
}
.

In addition, we prove that the error admits a bound

of order O
(
m−
(

1− 1
min(q,2)

)
q

d(q−1)+q
)

for each q ∈
(1,∞), where m is the number of hidden neurons. A
similar estimate is shown for deep narrow networks.
In particular, we observe that the expected curse of di-
mensionality effect gets exacerbated due to a curse of
moments effect for high values of q.

• If the target density f is uniformly continuous and the
parental density ϕ is bounded, we provide an approx-
imation result in the L∞-norm (also known as supre-
mum or uniform norm), where

L∞(Rd) =

{
f : Rd → R :

‖f‖L∞ = sup
x∈Rd

∣∣f(x)
∣∣ <∞}.
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• Finally, we show that continuous target densities sup-
ported on a compact subset of Rd and uniformly
bounded away from zero can be approximated by
deep belief networks with bounded parental density
in Kullback-Leibler divergence. The approximation
error in this case is of order O

(
m−

2
d+2
)
.

Related works. One of the first approximation results for
deep belief networks is due to (Sutskever & Hinton, 2008)
and states that any probability distribution on {0, 1}d can
be learnt by a DBN with 3× 2d hidden layers of size d+ 1
each. This result was improved by reducing the required
number of layers to

⌈
2d−1

d−log(d)

⌉
with d hidden units each,

see (Le Roux & Bengio, 2010; Montúfar & Ay, 2011).
These results, however, are limited to discrete probability
distributions. Since most applications involve continuous
probability distributions, (Krause et al., 2013) considered
Gaussian-binary DBNs and analyzed their approximation
capabilities in Kullback-Leibler divergence, albeit without
a rate. In addition, they only allow for target densities that
can be written as an infinite mixture of a set of probability
densities satisfying certain conditions, which appear to be
hard to check in practice.

Similar questions have been studied for a variety of neu-
ral network architectures: The famous results of (Cybenko,
1989; Hornik et al., 1989) state that deterministic multi-
layer feed-forward networks are universal approximators
for a large class of Borel measurable functions, provided
that they have at least one sufficiently large hidden layer.
See also the articles (Leshno et al., 1993; Chen & Chen,
1995; Barron, 1993; Burger & Neubauer, 2001). (Le
Roux & Bengio, 2008) proved the universal approxima-
tion property for RBMs and discrete target distributions.
(Montúfar & Morton, 2015) established the universal ap-
proximation property for discrete restricted Boltzmann ma-
chines. (Montúfar, 2014) showed the universal approx-
imation property for deep narrow Boltzmann machines.
(Montúfar, 2015) showed that Markov kernels can be ap-
proximated by shallow stochastic feed-forward networks
with exponentially many hidden units. (Bengio & Delal-
leau, 2011; Pascanu et al., 2014) studied the approxima-
tion properties of so-called deep architectures. (Merkh &
Montúfar, 2019) investigated the approximation properties
of stochastic feed-forward networks.

The recent work (Johnson, 2018) nicely complements the
aforementioned results by obtaining an illustrative negative
result: Deep narrow networks with hidden layer width at
most equal to the input dimension do not posses the univer-
sal approximation property.

Since our methodology involves an approximation by a
convex combination of probability densities, we refer the
reader to the related works of (Nguyen & McLachlan,

2019; Nguyen et al., 2020) and the references therein for
an overview of the wide range of universal approxima-
tion results in the context of mixture models. See also
(Everitt & Hand, 1981; Titterington et al., 1985; McLach-
lan & Basford, 1988; McLachlan & Peel, 2000; Robert &
Mengersen, 2011; Celeux, 2019) for in-depth treatments of
mixture models.

The recent articles (Bailey & Telgarsky, 2018;
Perekrestenko et al., 2020) in the context of generative
networks show that deep neural networks can transform a
one-dimensional uniform distribution to approximate any
two-dimensional Lipschitz continuous target density.

Another strand of research related to the questions of
this article are works on quantile (or distribution) regres-
sion, see (Koenker, 2005) as well as (Dabney et al., 2018;
Tagasovska & Lopez-Paz, 2019; Fakoor et al., 2021) for
recent methods involving neural networks.

2. Deep Belief Networks
A restricted Boltzmann machine (RBM) is a an undirected,
probabilistic, graphical model with bipartite vertices that
are fully connected with the opposite class. To be more
precise, we consider a simple graph G = (V , E) for which
the vertex set V can be partitioned into sets V and H such
that the edge set is given by E =

{
{s, t} : s ∈ V, t ∈ H

}
.

We call vertices in V visible units; H contains the hidden
units. To each of the visible units we associate the state
space ΩV and to the hidden ones we associate ΩH . We
equip G with a Gibbs probability measure

π(v, h) =
e−H (v,h)

Z , v ∈ (ΩV )V , h ∈ (ΩH)H ,

where H : (ΩV )V ×(ΩH)H → R is chosen such thatZ =∫∫
e−H (v,h) dv dh <∞. Notice that the integral becomes

a sum if ΩV (resp. ΩH ) is a discrete set. It is customary to
identify the RBM with the probability measure π.

An important example are binary-binary RBMs. These are
obtained by choosing ΩV = ΩH = {0, 1} and

H = 〈v,Wh〉+〈v, b〉+〈h, c〉 , v ∈ {0, 1}V , h ∈ {0, 1}H ,
(1)

where b ∈ {0, 1}V and c ∈ {0, 1}H are called biases, and
W ∈ RV×H is called the weight matrix. For m,n ∈ N
we shall denote the set of binary-binary RBMs with these
layer sizes by

B-RBM(m,n) =
{
π is a binary-binary RBM with

m visible and n hidden units
}
.

(2)

The following discrete approximation result is well known,
see also (Montúfar & Ay, 2011):
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Proposition 2.1 ((Le Roux & Bengio, 2008), Theorem 2).
Let m ∈ N and µ be a probability distribution on {0, 1}m.
Let

supp(µ) =
{
v ∈ {0, 1}m : µ(v) > 0

}
be the support of µ. Set n =

∣∣ supp(µ)
∣∣+1. Then, for each

ε > 0, there is a π ∈ B-RBM(m,n) such that∣∣∣∣∣∣µ(v)−
∑

h∈{0,1}n
π(v, h)

∣∣∣∣∣∣ 6 ε ∀ v ∈ {0, 1}m.

A deep belief network (DBN) is constructed by stacking
two RBMs. To be more precise, we now consider a tri-
partite graph with hidden layers H1 and H2 and visible
units V . We assume that the edge set is now given by
E =

{
{s, t1}, {t1, t2} : s ∈ V, t1 ∈ H1, t2 ∈ H2

}
. The

state spaces are now ΩV = R and ΩH1
= ΩH2

= {0, 1}.
We think of edges in the graph as dependence of the neu-
rons (in the probabilistic sense). The topology of the graph
hence shows that the vertices in V and H2 shall be condi-
tionally independent, that is, we require that

p(v, h1, h2) = p(v |h1)p(h1, h2). (3)

The joint density of the hidden units p(h1, h2) will be cho-
sen as binary-binary RBM.

Let D(Rd) =
{
f : Rd → R+ :

∫
Rd f(x) dx = 1

}
be

the set of probability densities on Rd. For ϕ ∈ D(Rd) and
σ > 0 we set

Vσϕ =

{
ϕµ,σ = σ−dϕ

(
x− µ
σ

)
: µ ∈ Rd

}
. (4)

Notice that all elements of Vσϕ are themselves probability
distributions. We fix a parental density ϕ ∈ D(R|V |) and
choose the conditional density in (3) as p(· |h1) ∈ Vσϕ for
each h1 ∈ H1.
Example 2.2. The most popular choice of the parental func-
tionϕ in (4) is the d-dimensional standard Gaussian density

ϕ(x) =
1

(2π)d/2
exp

(
−|x|

2

2

)
, x ∈ Rd. (5)

Another density considered in previous works is the trun-
cated exponential distribution

ϕ(x) =

d∏
i=1

λie
−λixi

1− e−biλi
1[0,bi](xi), x ∈ Rd, (6)

where bi, λi > 0 for each i = 1, . . . , d.

Similar to (2), we collect all DBNs in the set

DBNϕ(d,m, n) =
{
p is a DBN with parental density

ϕ, d visible units, m hidden units on the

first level, and n hidden units on the second level
}
,

(7)

where ϕ ∈ D(Rd) and d,m, n ∈ N. We shall not dis-
tinguish between the whole DBN and the marginal density
of the visible nodes, which is the object we are ultimately
interested in, that is, we write

p(v) =
∑
h1∈H1

∑
h2∈H2

p(v, h1, h2). (8)

In case p ∈ DBNϕ(d,m, n) with ϕ ∈ Lq(R|V |) then also
the marginal (8) belongs to Lq(R|V |).

After their introduction in (Hinton & Salakhutdinov, 2006),
deep belief networks rose to prominence due to a train-
ing algorithm developed in (Hinton et al., 2006) which
addressed the vanishing gradient problem by pre-training
deep networks. Instead of naı̈vely stacking two RBMs the
authors considered several such stacked layers and greedily
pre-trained the weights over the layers on a contrastive di-
vergence loss. To be more precise, first, the visible and the
first hidden layer are considered as a classical RBM and the
weights of the first hidden layer are learnt. In the next step,
the weights of the second hidden layer are learnt based on
the first hidden layer using Gibbs sampling. This proce-
dure repeats iteratively until all hidden layers are trained.
For more details we refer to (Fischer & Igel, 2014; Gho-
jogh et al., 2021).

3. Main Results
To state the results of this article, we need to introduce two
bits of additional notation: Let q ∈ [1,∞]. We declare
Dq(Rd) = D(Rd) ∩ Lq(Rd). Finally, for q ∈ [1,∞), let
us abbreviate the constant

Υq = max

(
1,

1√
2π

∫ ∞
−∞
|x|qe− x

2

2 dx

) 1
q

(9)

=


1, q 6 2,
√

2

π
1
2q

Γ

(
q + 1

2

) 1
q

, q > 2,

with the Gamma function Γ(x) =
∫∞

0
tx−1e−t dt, x > 0.

The main results of this paper are stated in the following
two theorems:
Theorem 3.1. Let q ∈ [1,∞) and f, ϕ ∈ Dq(Rd). Sup-
pose that f ∈W 1,q(Rd) andMϕ =

∫
Rd |x|ϕ(x) dx <∞.

Then, for each m ∈ N, the following quantitative bound
holds:

inf
p∈DBNϕ(d,m,m+1)

‖f − p‖Lq

6

(
d− d

q
+ 1

)(
Mϕ‖∇f‖Lq
d
(
1− 1

q

) ) d(q−1)
d(q−1)+q

×
(

2Υq‖ϕ‖Lq
m1− 1

min(q,2)

) 1

d− d
q
+1

,

(10)
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where the constant Υq is defined in (9).

While this bound becomes trivial if q = 1, the following
qualitative approximation result still holds in that case: For
any ε > 0, there is an M ∈ N such that, for each m >M ,
we can find a p ∈ DBNϕ(d,m,m+ 1) satisfying

‖f − p‖Lq 6 ε.

Remark 3.2. Returning to Example 2.2, we find that
‖ϕ‖Lq = q−

d
2q for the d-dimensional standard normal dis-

tribution (5) and

‖ϕ‖Lq =

d∏
i=1

λ
1− 1

q

i

q
1
q
(
1− e−biλi

) (1− e−qλibi) 1
q

for the truncated exponential distribution (6). Our bound
(10) thus shows that deep belief networks with truncated
exponential parental density (for suitable choice of the pa-
rameters b and λ) better approximate the target density f .
This is especially prevalent for small q, which is the pri-
mary case of interest, see Corollary 3.5 below. For a de-
tailed review of the exponential family’s properties we refer
to (Brown, 1986).

To state the approximation in the L∞-norm, we need to
introduce the space of bounded and uniformly continuous
functions:

Cu(Rd) =

{
f ∈ L∞(Rd) :

lim
δ↓0

sup
|x−y|6δ

∣∣f(x)− f(y)
∣∣ = 0

}
.

Notice that any probability density f ∈ D(Rd), which
is differentiable and has a bounded derivative, belongs
to Cu(Rd) since any uniformly continuous and integrable
function is bounded.

Theorem 3.3. Let f ∈ D(Rd)∩Cu(Rd) andϕ ∈ D∞(Rd).
Then, for any ε > 0, there is an M ∈ N such that, for each
m >M , we can find a p ∈ DBNϕ(d,m,m+ 1) satisfying

‖f − p‖L∞ 6 ε.

Remark 3.4. The uniform continuity requirement on f in
Theorem 3.3 can actually be relaxed to essential uniform
continuity, that is, f is uniformly continuous except on a set
with zero Lebesgue measure. The most notable example of
such a function is the uniform distribution f = 1[0,1].

Another important metric between between probability
densities p, q : Rd → R+ is the Kullback-Leibler diver-
gence (or relative entropy) defined by

KL(f‖g) =

∫
Rd
f(x) log

(
f(x)

g(x)

)
dx,

if {x ∈ Rd : g(x) = 0} ⊂ {x ∈ Rd : f(x) = 0} and
KL(f‖g) =∞ otherwise. From Theorems 3.1 and 3.3 we
can deduce the following quantitative approximation bound
in the Kullback-Leibler divergence:

Corollary 3.5. Let ϕ ∈ D∞(Rd). Let Ω ⊂ Rd be a com-
pact set and f : Ω→ R+ be a continuous probability den-
sity. Suppose that there is an η > 0 such that both f > η
and ϕ > η on Ω. Then there is a constant M > 0 such
that, for each m ∈ N, it holds that

inf
p∈DBNϕ(d,m,m+1)

KL(f‖p)

6
M

2
d+2

ηm
2
d+2

(
2(d+ 2)2

(
Mϕ‖∇f‖L2

d

) 2d
d+2

×
(
Υ2‖ϕ‖L2

) 4
d+2 + ‖f − ϕ‖2L2(Ω)

)
, (11)

where ‖f − ϕ‖2L2(Ω) =
∫

Ω

∣∣f(x)− ϕ(x)
∣∣2 dx.

Let us note that any ϕ ∈ D∞(Rd) is square-integrable so
that the right-hand side of the bound (11) is actually finite.
This follows from the interpolation inequality

‖ϕ‖L2 6
√
‖ϕ‖L1‖ϕ‖L∞ =

√
‖ϕ‖L∞ , (12)

see (Brezis, 2011), Exercise 4.4.

Corollary 3.5 considerably generalizes the results of
(Krause et al., 2013), Theorem 7. There, the authors only
prove that deep belief networks can approximate any den-
sity in the closure of the convex hull of a set of probability
densities satisfying certain conditions, which appear to be
difficult to check in practice. That work also does not con-
tain a convergence rate. In comparison, our results directly
describe the class of admissible target densities and do not
rely on the indirect description through the convex hull. Fi-
nally, there is an unjustified step in the argument of Krause
et al., which appears hard to reconcile, see Remark 4.9 be-
low for details.
Remark 3.6. The results of Theorems 3.1 and 3.3
and Corollary 3.5 also hold for narrow deep belief networks
with multiple hidden layers. In fact, our proofs below only
use that the second hidden layer of size m+ 1 can approxi-
mate a probability distribution on {1, 2, . . . ,m} by appeal-
ing to Proposition 2.1. Applying the results of (Montúfar &
Ay, 2011), this transfers to narrow multi-layer deep belief
networks as we detail in Section 5.

4. Proofs
This section presents the proofs of Theorems 3.1, 3.3 and
Corollary 3.5. As a first step, we shall establish a couple of
preliminary results in the next two subsections.
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4.1. Lq-Approximation of Finite Mixtures

Given a set A ⊂ Lq(Rd), the convex hull of A is by def-
inition the smallest convex set containing A; in symbols
conv(A). It can be shown that

conv(A) =

{ n∑
i=1

αiai : α = (α1, . . . , αn) ∈ 4n,

a1, . . . , an ∈ A,n ∈ N
}

with 4n =
{
x ∈ [0, 1]n :

∑n
i=1 xi = 1

}
, the n-

dimensional standard simplex. It is also convenient to in-
troduce the truncated convex hull

convm(A) =

{ m∑
i=1

αiai : α = (α1, . . . , αm) ∈ 4m,

a1, . . . , am ∈ A
}

for m ∈ N so that conv(A) =
⋃
m∈N convm(A). The

closed convex hull conv(A) is the smallest closed convex
set containing A and it is straight-forward to check that it
coincides with the closure of conv(A) in the topology of
Lq(Rd).

The next result shows that we can approximate any prob-
ability density in the truncated convex hull of the set (4)
arbitrarily well by a DBN with a fixed number of hidden
units:
Lemma 4.1. Let q ∈ [1,∞], ϕ ∈ Dq(Rd), σ > 0, and
m ∈ N. Then, for every f ∈ convm(Vσϕ) and every ε > 0,
there is a deep belief network p ∈ DBNϕ(d,m,m+1) such
that

‖f − p‖Lq 6 ε.

Proof. Since f ∈ convm(Vσϕ), there are by definition
(α1, . . . , αm) ∈ 4m and (µ1, . . . , µm) ∈

(
Rd
)m

such that

f =

m∑
i=1

αiϕµi,σ.

We can think of α = (α1, . . . , αm) as a probability distri-
bution α̃ on {0, 1}m by declaring

α̃(h1) =

{
αi, if h1 = ei,

0, else,
h1 ∈ {0, 1}m,

where (ei)j = δi,j , j = 1, . . . ,m, is the ith unit vector.

Let us fix q ∈ [1,∞] and σ > 0. By Proposition 2.1 there is
a π ∈ B-RBM(m,m+1) such that for every , h1 ∈ {0, 1}m∣∣∣∣∣∣α̃(h1)−

∑
h2∈{0,1}m+1

π(h1, h2)

∣∣∣∣∣∣ 6 ε

mσ−d+ d
p ‖ϕ‖Lq

.

(13)

We set

p(v |h1) =

{
ϕµi,σ(v), h1 = ei,

0, else,

and

p(v, h1, h2) = p(v |h1)π(h1, h2) ∈ DBNϕ(d,m,m+ 1).

This is the desired approximation since

‖f − p‖Lq 6
m∑
i=1

∣∣∣∣∣∣αi −
∑

h2∈{0,1}m+1

π(ei, h2)

∣∣∣∣∣∣ ∥∥ϕµi,σ∥∥Lq
6 ε,

where we used that ‖ϕµ,σ‖Lq = σ−d+ d
q ‖ϕ‖Lq for each

µ ∈ Rd and each σ > 0.

4.2. Approximation by Convolution

Let f ∈ Lq(Rd), q ∈ [1,∞], and ϕ ∈ D(Rd). We denote
the convolution of f and ϕσ = ϕ0,σ by(

f ? ϕσ
)
(x) =

∫
Rd
f(µ)ϕσ(x− µ) dµ

=

∫
Rd
f(µ)ϕµ,σ(x) dµ.

Young’s convolution inequality (Young, 1912) implies that
f ?ϕσ ∈ Lq(Rd). In addition, the following approximation
result holds, see Appendix A.1 for the proof:
Proposition 4.2. Let ϕ ∈ D(Rd). Then all of the following
hold true:

1. For each q ∈ [1,∞) and each f ∈ W 1,q(Rd), we
have

‖f − ϕσ ? f‖Lq 6Mϕ‖∇f‖Lqσ ∀σ > 0.

2. If f ∈ L∞(Rd) ∩ Cu(Rd), then

lim
σ↓0
‖f − f ? ϕσ‖L∞ = 0.

4.3. Approximation Theory in Banach Spaces

The second ingredient needed in the proof of Theorem 3.1
is an abstract result from the geometric theory of Banach
spaces. To formulate it, we need to introduce the following
notion: The Rademacher type of a Banach space

(
X , ‖·‖X

)
the largest number t > 1 for which there is a constant C >
0 such that, for each k ∈ N and each f1, . . . , fk ∈ X ,

E

[∥∥∥∥ k∑
i=1

εifi

∥∥∥∥t
X

]
6 C

k∑
i=1

‖fi‖tX

holds, where ε1, . . . , εk are i.i.d. Rademacher random vari-
ables, that is, P

(
ε1 = ±1

)
= 1

2 . It can be shown that t 6 2
for every Banach space.
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Example 4.3. The space Lq(Rd) has Rademacher type t =
min(q, 2) for q ∈ [1,∞). The space L∞(Rd) on the other
hand has only trivial type t = 1.

A good reference for the above results on the Rademacher
type is (Ledoux & Talagrand, 1991), Section 9.2. The next
approximation result and its application to Lq(Rd) will be
important below:
Proposition 4.4 ((Donahue et al., 1997), Theorem 2.5). Let(
X , ‖ · ‖X

)
be a Banach space of Rademacher type t ∈

[1, 2]. Let A ⊂ X and f ∈ conv(A). Suppose that ξ =
supg∈A ‖f − g‖X < ∞. Then there is a constant C > 0

only depending on the Banach space
(
X , ‖ · ‖X

)
such that,

for each m ∈ N, we can find an element h ∈ convm(A)
satisfying

‖f − h‖X 6
Cξ

m1− 1
t

. (14)

Notice that the bound (14) is of course trivial for t = 1.
Moreover, in Appendix A.2 we provide an example which
shows that the convergence rate m

1
t−1 is optimal.

Corollary 4.5. LetA ⊂ Lq(Rd), 1 6 q <∞, and suppose
that f ∈ conv(A). If ξ = supg∈A ‖f − g‖X <∞, then for
all m ∈ N, there is a h ∈ convm(A) such that

‖f − h‖Lq 6
Υqξ

m1− 1
min(q,2)

,

where Υq is the constant defined in (9).

Proof. Owing to Example 4.3, we are in the regime of
Proposition 4.4. The sharp constant C = Υq was derived
in (Haagerup, 1981).

4.4. Proof of Theorems 3.1 and 3.3

Before giving the technical details of the proofs, let us pro-
vide an overview of the strategy:

1. By Proposition 4.2 we can approximate the density
f ∈ Dq(Rd) with f ?ϕσ up to an error which vanishes
as σ ↓ 0.

2. Upon showing that f ? ϕσ ∈ conv(Vσϕ), Proposi-
tion 4.5 allows us to show that for each ε > 0 and
each m ∈ N, we can pick σ > 0 such that

inf
g∈convm(Vσϕ)

‖f − g‖Lq 6 ε+
2Υq‖ϕ‖Lq
m1− 1

min(q,2)

.

3. Finally, we employ Lemma 4.1 to conclude the de-
sired estimate (10).

Lemma 4.6. Let q ∈ [1,∞], f ∈ Dq(Rd), and ϕ ∈
D(Rd). Then, for each σ > 0, we have

f ? ϕσ ∈ conv(Vσϕ),

with the closure understood with respect to the norm ‖·‖Lq .

Proof. Let us abbreviate g = f ? ϕσ . We argue by contra-
diction. Suppose that g /∈ conv(Vσϕ). As a consequence of
the Hahn-Banach theorem, g is separated from conv(Vσϕ)
by a hyperplane. More precisely, there is a continuous lin-
ear function ρ : Lq(Rd)→ R such that ρ(h) < ρ(g) for all
h ∈ conv(Vσϕ), see (Brezis, 2011), Theorem 1.7. On the
other hand, we however have

ρ(g) = ρ

(∫
Rd
f(µ)ϕµ,σ dµ

)
=

∫
Rd
f(µ)ρ

(
ϕµ,σ

)
dµ < ρ(g)

∫
Rd
f(µ) dµ

= ρ(g),

which is the desired contradiction.

We also need the following estimate, which can be shown
by another application of the Hahn-Banach theorem:

Lemma 4.7. Let g : Rd ×Rd → R. Then for any measure
ν on Rd it holds that∥∥∥∥∫

Rd
g(·, y) dν(y)

∥∥∥∥
Lq

6
∫
Rd

∥∥g(·, y)
∥∥
Lq
dν(y), (15)

where we understand that theLq-norm is taken with respect
to the first argument of g.

We can now establish the main results of this article:

Proof of Theorems 3.1 and 3.3. Let us first assume that
q ∈ (1,∞) and prove the quantitative bound (10). To this
end fix ε > 0 and m ∈ N. We first observe that, by Propo-
sition 4.2, we have∥∥f − f ? ϕσ∥∥Lq 6Mϕ‖∇f‖Lqσ.

Employing Lemma 4.6 and Corollary 4.5 withA = Vσϕ, we
can find a gm ∈ convm(Vσϕ) such that

‖f − gm‖Lq 6
∥∥f − f ? ϕσ∥∥Lq +

∥∥f ? ϕσ − gm∥∥Lq
6Mϕ‖∇f‖Lqσ

+
Υq

m1− 1
min(q,2)

sup
µ∈Rd

∥∥f ? ϕσ − ϕµ,σ∥∥Lq .
(16)

For the last term we use Lemma 4.7 to estimate

sup
µ∈Rd

∥∥f ? ϕσ − ϕµ,σ∥∥Lq
= sup
µ∈Rd

∥∥∥∥∫
Rd
f(y)

(
ϕσ(· − y)− ϕσ(· − µ)

)
dy

∥∥∥∥
Lq

6
∫
Rd
f(y) sup

µ∈Rd

∥∥ϕσ(· − y)− ϕσ(· − µ)
∥∥
Lq
dy

6 2‖ϕσ‖Lq =
2‖ϕ‖Lq
σd(1− 1

q )
,
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where the final step follows by a change of variables. In-
serting this back into (16), we arrive at

‖f − gm‖Lq 6Mϕ‖∇f‖Lqσ +
2Υq‖ϕ‖Lq

σd(1− 1
q )m1− 1

min(q,2)

.

The right-hand side is minimized for

σ? =

(
2
(
d− d

q

)
Υq‖ϕ‖Lq

Mϕ‖∇f‖Lqm1− 1
min(q,2)

) q
d(q−1)+q

, (17)

which leads to the bound

‖f − gm‖Lq 6
(
d− d

q
+ 1

)(
Mϕ‖∇f‖Lq
d
(
1− 1

q

) ) d(q−1)
d(q−1)+q

×
(

2Υq‖ϕ‖Lq
m1− 1

min(q,2)

) 1

d− d
q
+1

.

(18)

We present the details of this computation in Ap-
pendix A.3. Finally, Lemma 4.1 allows us to choose p ∈
DBNϕ(d,m,m+1) such that ‖gm−p‖Lq 6 ε. Therefore,
we conclude

‖f − p‖Lq 6 ε+ ‖f − gm‖Lq .

Since ε > 0 was arbitrary, the bound (10) follows.

If q = 1 or q =∞, we use the fact that

conv(A) =
⋃
m∈N

convm(A)

for any subsetA of either L1(Rd) or L∞(Rd), respectively.
This implies that, for each ε > 0, we can find m ∈ N and
gm ∈ convm(Vσϕ) such that

∥∥f ? ϕσ − gm
∥∥
Lq

6 ε
3 . If

q =∞, we note that a uniformly continuous and integrable
function is always bounded. Hence, in any case we can
apply Proposition 4.2 to find a σ > 0 for which

∥∥f − f ?
ϕσ
∥∥
Lq

6 ε
3 . Finally employing Lemma 4.1 as above, there

is a p ∈ DBNϕ(d,m,m+ 1) such that

‖f − p‖Lq
6
∥∥f − f ? ϕσ∥∥Lq +

∥∥f ? ϕσ − gm∥∥Lq +
∥∥gm − p∥∥Lq

6 ε.

4.5. Kullback-Leibler Approximation on Compacts

Let us begin by bounding the Kullback-Leibler divergence
in terms of the L2-norm:
Lemma 4.8 ((Zeevi & Meir, 1997), Lemma 3.3). Let Ω ⊂
Rd, f : Ω → R+, and g : Rd → R+ be probability den-
sities. If there is an η > 0 such that both f, g > η on Ω,
then

KL(f‖g) 6
1

η
‖f − g‖2L2(Ω).

Proof. We use Jensen’s inequality and the elementary fact
log x 6 x− 1, x > 0, to obtain

KL(f‖g) =

∫
Ω

log

(
f(x)

g(x)

)
f(x) dx

6 log

(∫
Ω

f(x)2

g(x)
dx

)
6
∫

Ω

f(x)2

g(x)
dx− 1 =

∫
Ω

(f(x)− g(x))2

g(x)
dx

6
1

η
‖f − g‖2L2 ,

which is the required estimate.

Finally, we can prove the approximation bound in
Kullback-Leibler divergence:

Proof of Corollary 3.5. Extending the target density f by
zero on Rd \ Ω, the corollary follows from Theorem 3.1
upon showing that, for each m ∈ N, we can choose the
approximation p ∈ DBNϕ(d,m,m+ 1) in such a way that
p > η

2 on Ω.

To see this, we notice that f is uniformly continuous since
Ω is compact. Hence, Theorem 3.3 allows us to pick an
M ∈ N such that, for each m > M , there is a pm ∈
DBNϕ(d,m,m+ 1) with ‖f − pm‖L∞ 6 η

2 . In particular,
each of these DBNs satisfies pm > η

2 on Ω. Consequently,
by Lemma 4.8 we obtain

inf
p∈DBNϕ(d,m,m+1)

KL(f‖p)

6 2(d+ 2)2

(
Mϕ‖∇f‖L2

d

) 2d
d+2 (

Υ2‖ϕ‖L2

) 4
d+2m−

2
d+2

(19)

for all m > M . An upper bound on
infp∈DBNϕ(d,m,m+1) KL(f‖p) for m < M can be
obtained choosing both zero weights and biases in (1) as
well as p(v |h1) = ϕ for each h1 ∈ {0, 1}m in (3). Hence,
the visible units of the DBN have density ϕ. Applying
Lemma 4.8 once more gives

inf
p∈DBNϕ(d,m,m+1)

KL(f‖p) 6 KL(f‖ϕ) 6
1

η
‖f−ϕ‖2L2(Ω)

(20)
for allm = 1, . . . ,M−1. Finally, combining (19) and (20)
we get the required estimate:

inf
p∈DBNϕ(d,m,m+1)

KL(f‖p)

6
M

2
d+2

ηm
2
d+2

(
2(d+ 2)2

(
Mϕ‖∇f‖L2

d

) 2d
d+2 (

Υ2‖ϕ‖L2

) 4
d+2

+ ‖f − ϕ‖2L2(Ω)

)
.

7
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This concludes the proof.

Remark 4.9. Our strategy of the proof of the Kullback-
Leibler approximation in Corollary 3.5 through Lemma 4.8
differs from the one employed in (Krause et al., 2013), The-
orem 7. There, the authors built on the results of (Li &
Barron, 1999) and in the course of their argument claim
that the following statement holds true:

Let fm, f : Ω→ R+, m ∈ N, be probability densities on a
compact set Ω ⊂ Rd with fm, f > η > 0. If KL(f‖fm)→
0 as m→∞, then fm → f in the norm ‖ · ‖L∞ .

This, however, does not hold as we illustrate by a simple
counterexample in Appendix A.4.

5. Extension to Narrow DBNs With Multiple
Hidden Layers

As we have noted in Remark 3.6, the results of Theo-
rems 3.1 and 3.3 and Corollary 3.5 naturally extend to nar-
row DBNs with multiple hidden layers. More specifically,
a DBN with L > 2 hidden layers is defined by generalizing
(3) to a graphical model with probability distribution

p(v, h1, . . . , hL)

=p(v |h1)p(h2 |h3) · · · p(hL−2 |hL−1)p(hL−1, hL),

(21)

where p(hL−1, hL) is a binary-binary RBM.

For these models there exists a discrete approximation re-
sult similar to Proposition 2.1 proven by (Montúfar & Ay,
2011) building on ideas of (Le Roux & Bengio, 2010):

Proposition 5.1 ((Montúfar & Ay, 2011), Theorem 3). Let
m ∈ N and µ be a probability distribution on {0, 1}m.
Let b = min{k ∈ N : m 6 2k−1 + k}. Then, for each
ε > 0, there is a DBN p with m binary visible units and
L =

⌈
2m−1

m−b
⌉

binary hidden layers with m units each such
that ∣∣∣∣∣∣µ(v)−

∑
h1,...,hL∈{0,1}m

p(v, h1, . . . , hL)

∣∣∣∣∣∣ 6 ε

for all v ∈ {0, 1}m.

This proposition allows us to extend the central discrete
approximation result of Lemma 4.1 to multi-layer DBNs.
To state this result it is convenient to introduce the mapping
b : N→ N,

b(m) =

⌈
2m−1

m−min
{
k ∈ N : dlog2(m)e 6 2k−1 + k

}⌉ .
Notice that b grows exponentially as m→∞.

Henceforth, we shall assume that there is a parental density
ϕ and a σ > 0 such that we have p(· |h1) ∈ Vσϕ for all
h1 ∈ H1 in the defining identity (21). Furthermore, we
restrict to multi-layer DBNs whose hidden layers all have
the same dimension m. The set of DBNs with d visible
real-valued units, parental density ϕ ∈ D(Rd), L hidden
layers of size m each is denoted by DBNLϕ(d,m). Notice
that DBN2

ϕ(d,m) = DBNϕ(d,m,m) for the previously
used notation introduced in (7).

Lemma 5.2. Let q ∈ [1,∞], ϕ ∈ Dq(Rd), σ > 0, and
m ∈ N. Then, for every f ∈ convm(Vσϕ) and every ε > 0,
there is a deep belief network p ∈ DBNb(m)

ϕ

(
d, dlog2(m)e

)
such that

‖f − p‖Lq 6 ε.

Proof. Recall that we can write

f =

m∑
i=1

αiϕµi,σ.

for some (α1, . . . , αm) ∈ 4m and (µ1, . . . , µm) ∈(
Rd
)m

. By fixing an injective mapping {1, . . . ,m} →
{0, 1}dlog2(m)e, we can interpret (α1, . . . , αm) as a prob-
ability distribution on {0, 1}dlog2(m)e and the proof is com-
pleted similarly to Lemma 4.1.

Finally, the remaining parts of the proofs of Theorems 3.1
and 3.3 and Corollary 3.5 hold mutatis mutandis for narrow
multi-layer DBNs leading to the following result:

Corollary 5.3. The statements of Theorems 3.1 and 3.3
and Corollary 3.5 hold for p ∈ DBNϕ(d,m,m + 1) re-
placed by

p ∈ DBNb(m)
ϕ

(
d, dlog2(m)e

)
.

6. Conclusion
We investigated the approximation capabilities of deep be-
lief networks with two binary hidden layers of sizes m
and m + 1, respectively, and real-valued visible units. We
showed that, under minimal regularity requirements on the
parental density ϕ as well as the target density f , these
networks are universal approximators in the strong Lq and
Kullback-Leibler distances asm→∞. Moreover, we gave
sharp quantitative bounds on the approximation error. We
emphasize that the convergence rate in the number of hid-
den units is independent of the choice of the parental den-
sity. These bounds were also extended to narrow DBNs
with multiple hidden layers whose width only grows loga-
rithmically in the approximation parameter m at the price
of an exponentially growing number of them.

Our results apply to virtually all practically relevant ex-
amples thereby theoretically underpinning the tremendous

8
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empirical success of DBN architectures we have seen over
the last couple of years. As we alluded to in Remark 3.2,
the frequently made choice of a Gaussian parental den-
sity does not provide the theoretically optimal DBN ap-
proximation of a given target density. Since, in practice,
the choice of parental density cannot solely be determined
from an approximation standpoint, but also the difficulty
of the training of the resulting networks needs to be con-
sidered, it is interesting to further empirically study the
choice of parental density on both artificial and real-world
datasets.
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G. Montúfar. Deep narrow Boltzmann machines are uni-
versal approximators. 2014.
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G. Montúfar and N. Ay. Refinements of universal approx-
imation results for deep belief networks and restricted
Boltzmann machines. Neural computation, 23(5):1306–
1319, 2011.
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A. Details of the Mathematical Results
This appendix provides further details of the mathematical results used in the main text. More specifically, we provide

1. the proof of Proposition 4.2,

2. a detailed proof of Proposition 4.4 for Hilbert spaces as well as an example showing that its approximation rate is
optimal in general,

3. the computational details for equations (17) and (18), and

4. the construction of an explicit counterexample to the statement discussed in Remark 4.9.

A.1. Proof of Proposition 4.2

Proof. 1. Observe that

f(x)−
(
ϕσ ? f

)
(x) =

∫
Rd
ϕσ(y)

(
f(x)− f(x− y)

)
dy

= −
∫
Rd
ϕσ(y)

(∫ 1

0

d

dt
f(x− ty) dt

)
dy

=

∫
Rd
ϕσ(y)

(∫ 1

0

∇f(x− ty) · y dt
)
dy (22)

for all x ∈ Rd. Applying Lemma 4.7 first with the measure dνσ(y) = ϕσ(y) dy and then with the standard Lebesgue in
the identity (22), we get ∥∥f − ϕσ ? f∥∥Lq =

∥∥∥∥∫
Rd
ϕσ(y)

(∫ 1

0

∇f(· − ty) · y dt
)
dy

∥∥∥∥
Lq

6
∫
Rd
ϕσ(y)

∥∥∥∥∫ 1

0

∇f(· − ty) · y dt
∥∥∥∥
Lq

dy

6
∫
Rd

∫
Rd
ϕσ(y)

(∫ 1

0

∥∥∇f(· − ty) · y
∥∥
Lq
dt

)
dy dx

6
∫
Rd
|y|ϕσ(y)

(∫ 1

0

∥∥∇f(· − ty)
∥∥
Lq
dt

)
dy

=Mϕ‖∇f‖Lqσ,

as required.

2. Fix ε > 0. By uniform continuity of f , we can find a δ > 0 such that

sup
|µ|6δ

∣∣f(x)− f(x− µ)
∣∣ 6 ε ∀x ∈ Rd. (23)

In particular, we obtain∣∣∣f(x)−
(
f ? ϕσ

)
(x)
∣∣∣ 6 ∫

Rd
ϕσ(µ)

∣∣f(x)− f(x− µ)
∣∣ dµ

6
∫
{|µ|>δ}

ϕσ(µ)
∣∣f(x)− f(x− µ)

∣∣ dµ+

∫
{|µ|6δ}

ϕσ(µ)
∣∣f(x)− f(x− µ)

∣∣ dµ
6 2‖f‖L∞

∫
{|µ|>δ}

ϕσ(µ) dµ+ ε, (24)

where we applied the uniform continuity estimate (23) to the second integral. By substituting µ̄ = µ/σ in the first integral,
we get ∫

{|µ|>δ}
ϕσ(µ) dµ =

∫
{|µ̄|> δ

σ }
ϕ(µ̄) dµ̄

σ↓0−−→ 0,

12
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so that (24) implies

lim
σ↓0

∥∥f − f ? ϕσ∥∥L∞ = lim
σ↓0

sup
x∈Rd

∣∣∣f(x)−
(
f ? ϕσ

)
(x)
∣∣∣ 6 2‖f‖L∞ lim

σ↓0

∫
{|µ|>δ}

ϕσ(µ) dµ+ ε = ε.

Since ε > 0 was arbitrary, the proof is complete.

A.2. Details on Proposition 4.4

While the proof of Proposition 4.4 for a general Banach space is rather technical, we find it instructive to present the
simplified argument for a Hilbert space. Our proof is inspired by (Jones, 1992), see also (Barron, 1994).
Proposition A.1. Let

(
X , ‖·‖X

)
be a Hilbert space. LetA ⊂ X and f ∈ conv(A). Suppose that ξ = supg∈A ‖f−g‖X <

∞. Then, for each m ∈ N, we can find an element g ∈ convm(A) satisfying

‖f − g‖X 6
ξ√
m
. (25)

Proof. We proceed by induction on m ∈ N. The base m = 1 is trivial, so we can assume that the statement holds for
m > 1. Let us declare

Ξm+1 = inf
g∈convm+1(A)

‖f − g‖X .

By the induction hypothesis, we may assume that Ξm 6 ξ√
m

and we can find h ∈ convm(A) attaining this bound.
Consequently, we get

Ξ2
m+1

6 inf
λ∈[0,1]
g∈A

∥∥∥λ(f − g) + (1− λ)(f − h)
∥∥∥2

X

= inf
λ∈[0,1]
g∈A

[
λ2‖f − g‖2X + 2λ(1− λ) 〈f − g, f − h〉X

+ (1− λ)2‖f − h‖2X
]

6 inf
λ∈[0,1]

[
λ2ξ2 + 2λ(1− λ) inf

g∈A
〈f − g, f − h〉X

+ (1− λ)2Ξ2
m

]
.

(26)

We claim that
inf
g∈A
〈f − g, f − h〉X = 0. (27)

To see this, let us fix an ε > 0 and observe that, since f ∈ conv(A), the Cauchy-Schwarz inequality implies that there
must be a finite convex combination of elements in A satisfying

k∑
i=1

αi 〈f − ai, f − h〉 =

〈
f −

k∑
i=1

αiai, f − h

〉
6 ε.

In particular, the inequality 〈f − ai, f − h〉 6 ε holds for at least one vector ai ∈ A. Since ε > 0 was arbitrary, we have
established (27).

Inserting (27) in (26), we arrive at

Ξ2
m+1 6 inf

λ∈[0,1]

[
λ2ξ2 + (1− λ)2Ξ2

m

]
6

ξ2Ξ2
m

ξ2 + Ξ2
m

,

where the last step follows by chosing λ =
Ξ2
m

Ξ2
m+ξ2 ∈ [0, 1]. Finally, recalling the induction hypothesis Ξm 6 ξ√

m
, we

conclude

Ξ2
m+1 6 ξ2

ξ2

m

ξ2 + ξ2

m

=
ξ2

m+ 1
.

13
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This establishes (25) for m+ 1 and the induction is complete.

Returning to the original statement of Proposition 4.4 for a general Banach space, the next example shows that its conver-
gence rate is optimal in general:
Example A.2. For p ∈ (1, 2] let us consider the Banach space `p(R) of p-summable real-valued sequences, that is,
(an)n∈N ⊂ R belongs to `p(R) iff

‖a‖`p =

( ∞∑
n=1

|an|p
) 1
p

<∞.

It can be shown that this Banach space has Rademacher type t = p. Let A be the set formed of the standard basis vectors:

A =
{

(1, 0, 0, 0, . . . ), (0, 1, 0, 0, . . . ), (0, 0, 1, 0, . . . ), . . .
}
.

Choosing f ≡ 0, we find that

inf
h∈convm(A)

‖f − h‖`p = inf
(α1,...,αm)∈4m

(
m∑
i=1

αpi

) 1
p

.

The optimum on the right-hand side is attained by choosing α1 = · · · = αm = 1
m so that

inf
h∈convm(A)

‖f − h‖`p =
1

m1− 1
p

=
1

m1− 1
t

.

A.3. Details of the Computation for Equations (17) and (18)

We begin with a calculus lemma:

Lemma A.3. Let α,A,B > 0. The function f : (0,∞)→ R+,

f(σ) = Aσ +
B

σα
,

is minimized for

σ? =

(
αB

A

) 1
α+1

(28)

with function value

f(σ?) = (α+ 1)

(
A

α

) α
α+1

B
1

α+1 . (29)

Proof. We have f ′(σ) = A− αBσ−(α+1), whence the minimizer is given by

σ? =

(
αB

A

) 1
α+1

.

Inserting this into the function expression we find

f(σ?) = A
α
α+1 (αB)

1
α+1 +B

1
α+1

(
A

α

) α
α+1

= A
α
α+1B

1
α+1

(
α

1
α+1 + α−

α
α+1

)
= (α+ 1)

(
A

α

) α
α+1

B
1

α+1 ,

as required.

We now apply Lemma A.3 with

A =Mϕ‖∇‖Lq , B =
2Υq‖ϕq‖Lq
m1− 1

min(q,2)

, α = d− d

q
.

14
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Since 1
α+1 = q

d(q−1)+q , (28) immediately gives (17). Similarly, we have α
α+1 = d(q−1)

d(q−1)+q so that (29) gives

‖f − gm‖Lq 6
(
d− d

q
+ 1

)(
Mϕ‖∇‖Lq
d− d

q

) d(q−1)
d(q−1)+q (

2Υq‖ϕq‖Lq
m1− 1

min(q,2)

) 1

d− d
q
+1

,

which is the estimate (18).

A.4. Construction of the Counterexample in Remark 4.9

Let Ω = [0, 1] and consider the sequence of probability densities given by

fm(x) = Cm

(
1 ∧

(
mx+

1

2

))
, m ∈ N,

where Cm = (1− 1/(8m))−1 is chosen such that
∫ 1

0
fm(x) dx = 1. Then we have fm(x)→ 1[0,1](x) = f(x) pointwise

on (0, 1]. On the other hand, it holds that

sup
x∈[0,1]

∣∣fm(x)− f(x)
∣∣ =

∣∣fm(0)− f(0)
∣∣ =

1

2
∀m ∈ N.

Consequently, fm does not converge uniformly to f .

Nevertheless, it is straight-forward to check that
∥∥fm−1[0,1]

∥∥
L2 → 0 and since fm, f > 1/2 on Ω, we have KL(fm‖f)→

0 as m→∞ by Lemma 4.8.
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