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Abstract
This paper studies the prediction of a target z
from a pair of random variables (x,y), where the
ground-truth predictor is additive E[z | x,y] =
f?(x)+g?(y). We study the performance of em-
pirical risk minimization (ERM) over functions
f + g, f ∈ F and g ∈ G, fit on a given train-
ing distribution, but evaluated on a test distribu-
tion which exhibits covariate shift. We show that,
when the class F is “simpler" than G (measured,
e.g., in terms of its metric entropy), our predictor
is more resilient to heterogenous covariate shifts
in which the shift in x is much greater than that in
y. These results rely on a novel Hölder style in-
equality for the Dudley integral which may be of
independent interest. Moreover, we corroborate
our theoretical findings with experiments demon-
strating improved resilience to shifts in “simpler”
features across numerous domains.

1. Introduction
Modern machine learning systems are routinely deployed
under distribution shift (Taori et al., 2020; Koh et al., 2021).
However, statistical learning theory has primarily focused
on studying the generalization error in the situation where
the test and the training distributions are identical (Bartlett
and Mendelson, 2002; Vapnik, 2006). In the setting of
covariate shift—where only features/covariates change be-
tween training and testing, but the target function remains
fixed—guarantees from statistical learning theory can be
applied via a reweighting argument, leading to the classical
bound involving density ratios depicted in Eq. (3.2). How-
ever, this approach may be overly pessimistic and may not
account for the relative differences in performance degra-
dation between different distribution shift settings.

Well-specified linear regression is perhaps the simplest set-
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ting that admits favorable distribution shift behavior (Lei
et al., 2021). Here, out-of-distribution generalization is
controlled by the alignment between the second moment
matrices of the training and test distribution, rather than
the significantly worse density ratios. Beyond the linear
setting, ML models including neural networks often suf-
fer from spurious correlation (c.f., Arjovsky et al., 2019),
where the model exploits correlations in the training distri-
bution to learn an accurate-but-incorrect predictor that fails
to generalize to a de-correlated distribution. Though this
phenomenon and other related ones are well-documented
experimentally, a general theory of distribution shift—
particularly one that explains the behavior of deep learning
models in practice—has remained undeveloped.

A useful theory of distribution shift should make predic-
tions as to which shifts a learned model is most sensitive to
in possible test environments, given properties of the model
which can be evaluated from training data (Xiao et al.,
2020; Koh et al., 2021; Rahimian and Mehrotra, 2019). We
illustrate this point with the following example.

Example 1.1. Consider a quadruped carrying different
payloads across multiple terrains, with a policy trained via
reinforcement learning. Should one expect more degrada-
tion in performance with new shapes or sizes of payloads?
Or should a policy suffer more from novel terrains? If
our policy requires camera inputs, should we expect that
changes in lighting conditions or times of day have more
of an effect? Or if the policy relies on tactile sensation,
should we expect changes in weather (e.g., rain on the tac-
tile sensors) to present more of an obstacle?

Contributions. This paper gestures towards a richer the-
ory of generalization under covariate shift; one that makes
such actionable predictions about the relative resilience of
a model to the kinds of multifarious shifts illustrated in Ex-
ample 1.1. More specifically, we highlight a setting we call
heterogenous covariate shift, where the distribution of one
feature shifts more than another.

Theoretically, we study supervised prediction from a pair
of (possibly non-independent) random variables (x,y). We
think of x as corresponding to “simple features” and y
to more complex ones. We show greater resilience to
heterogenous distribution shifts in which the shift in the
marginal of y is significantly smaller than that of the joint
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distribution. Specifically, our analysis restricts its atten-
tion to regression functions which decompose additively as
f(x) + g(y). We show that empirical risk minimization
(ERM) over functions of the form f(x) + g(y) leads to
much more favorable generalization guarantees than those
obtained via the naïve covariate shift bound. In the most
favorable setting, we obtain a test error bound that scales
only with the covariate shift in the marginal of the “com-
plex feature” y, so that even though spurious correlations
between x and y are present, they play no role in the gen-
eralization performance of the ERM.

While limited, the additive framework proposes a useful
metric to evaluate relative complexity of the features: the
richness of their associated function classes. This suggests
a more general hypothesis that can be formulated without
the additivity assumption: we can determine resilience to
shifts in a given feature by evaluating the “complexity” of a
model’s dependence on that feature. Using in-distribution
generalization as a proxy for model complexity, we find
that deep learning models are consistenly more resilient to
shifts in simpler features than they are to shifts in complex
features; this finding holds across a range of tasks, includ-
ing synthetic settings, computer vision benchmarks, and
imitation learning. We hope that, taken together, our the-
oretical and experimental results initiate a further dialogue
between the field of statistical learning theory and the study
of distribution shift in machine learning more broadly.

Proof Techniques. The technical challenge to obtaining
favorable distribution shift is correlation between x and y,
which, among other things, leads to unidentifiability of the
generalizing predictor. We show that when G is sufficiently
expressive, the simple predictor f can be learned, up to
a bias arising from identifiability, at a rate that exhibits a
lower order dependence on G. Although this predictor is
affected by distribution shifts in x, the low complexity of
the function class F and the lower order dependence on
G implies that the impact on the overall performance is
rather small. Then ERM can learn a g that corrects for the
bias in f and is unaffected by distribution shifts in x. The
core technical result for this argument is the generalization
bound for F which disentangles the correlations between
x and y; this result relies, among other things, on a novel
Hölder-style inequality for the Dudley integral of products
of function classes, which may be of independent interest.

Related Work. Our results and techniques are very much
in the spirit of classical statistical learning theory (Bartlett
et al., 2005; Bousquet and Elisseeff, 2002; Bartlett and
Mendelson, 2002; Vapnik, 2006), but also have the fla-
vor of more recent work on orthogonal/double machine
learning (Chernozhukov et al., 2017; Foster and Syrgka-
nis, 2019; Mackey et al., 2018). In that parlance, we can
view g as a nuisance parameter for estimating f and our re-

sults show similar (but not quite matching) recovery guar-
antees without explicit double-training interventions. We
discuss comparisons to orthogonal ML in the sequel. Re-
silience to distribution shift has received considerable at-
tention in recent years (Miller et al., 2021; Taori et al.,
2020; Santurkar et al., 2020; Koh et al., 2021; Zhou et al.,
2022), with the vast majority of the work being empiri-
cal. While the present work focuses on studying vanilla
empirical risk minimization, there have been many meth-
ods produced to explicity tackle distribution shift includ-
ing CORAL (Sun and Saenko, 2016), IRM (Arjovsky et al.,
2019), and distributionally robust optimization, the latter
having seen recent advances on both empirical and theoret-
ical fronts (Schmidt et al., 2018; Rahimian and Mehrotra,
2019; Sinha et al., 2018). Though the statistical proper-
ties of distribution shift under empirical risk minimization
has garnered substantially less attention, recent work has
given precise characterizations of the effects of covariate
shift for certain specific function classes, notably kernels
(Ma et al., 2022) and Hölder smooth classes (Pathak et al.,
2022). Our work complements these by considering struc-
tural situations in which interesting generalization phenom-
ena arise for arbitrary function classes. Lastly, (Dong and
Ma, 2023) establish Laplacian-like connectivity conditions
under which test-error of additive predictors f(x) + g(x)
(as in this work) can be bounded in terms of train-error,
focusing on (a) situations where the marginals over x,y
between test- and train-distibutions coincide but joint dis-
tributions differ and (b) discrete- Gaussian-distributed fea-
tures. By contrast, our work allows for changes in both
joint and marginal distributions (albeit with cruder mea-
sures of shift), general feature distributions, and exposes
statistical phenomena not addressed by the former work.

2. Theoretical Setup
We study the prediction of a scalar z ∈ R from two co-
variates x ∈ X ,y ∈ Y under distribution shift. We
postulate a pair of testing and training environments de-
noted e ∈ {test, train}, each of which index laws Pe over
(x,y, z), and whose expectation operators are denoted by
Ee. We assume the environments do not differ in the Bayes
regression function, i.e., they exhibit only covariate shift:

Assumption 2.1 (Covariate Shift). We assume that, for all
x,y, Etrain[z | x,y] = Etest[z | x,y].

Next, we assume that the we have access to a class of func-
tions that capture the conditional expectations Etrain[z |
x,y] via additive structure. Specifically, we assume ac-
cess to classes F : X → R and G : Y → R for which
(x, y) 7→ Etrain[z | x = x,y = x] ∈ F + G. This is
typically referred to as being realizable or well-specified.

Assumption 2.2 (Additive well-specification). For some
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f? ∈ F and g? ∈ G, it holds thats

Ptrain[z | x = x,y = x] ∼ N (f?(x) + g?(y), σ2) (2.1)

Via universality of Gaussian processes, our results can be
extended to general subgaussian noise. Since the model is
well-specified, a natural performance measure of a predic-
tor (f, g) is its excess square-loss risk, denotedRe(f, g):

Re(f, g) := Ee((f − f?)(x) + (g − g?)(y))2.

Empirical Risk Minimization. We study the excess
risk under Ptest of square-loss empirical risk minimizers,
or ERMs, for Ptrain. Given a number n ∈ N, we collect
(xi,yi, zi)i∈[n]

i.i.d∼ Ptrain samples and let (f̂n, ĝn) denote
(any) empirical risk minimizer of the samples: (f̂n, ĝn) ∈
arg min(f,g)∈F×G L̂n(f, g), where

L̂n(f, g) := 1
n

∑n
i=1(f(xi) + g(yi)− zi)

2. (2.2)

Distribution Shift. Although we have samples from
Ptrain, we are primarily interested in the excess square loss
under Ptest. For simplicity, the body of this paper focuses
on when the density ratios between these distributions are
upper bounded; as discussed in Section 3.3, these condi-
tions can be weakened considerably.

Definition 2.1. Define the density ratio coefficients
νx,y, νy ≥ 1 to be the smallest scalars such that for all
measurable sets A ⊂ X × Y and B ⊂ Y ,

Ptest[(x,y) ∈ A] ≤ νx,y Ptrain[(x,y) ∈ A]

Ptest[y ∈ B] ≤ νy Ptrain[y ∈ B].

The interesting regime is where νx,y, νy are finite. A stan-
dard covariate shift argument upper bounds the excess risk
on Ptest by the joint density ratio, νx,y , times the excess
risk on Ptrain. Our aim is to show that much better bounds
are possible. Specifically, if the class F is “smaller” than
the class G, then the excess risk on Ptest is less sensitive to
shifts in the joint distribution (i.e., νx,y) than it is to shifts
in the y-marginal (i.e., νy). Such an improvement is most
interesting in the regime where νx,y � νy , which requires
that x is not a measurable function of y.

Controlling distribution shift via bounded density ratios is
popular in the offline reinforcement learning, where such
terms are called concentrability coefficients (Xie and Jiang,
2020; Xie et al., 2022). We stress that the uniform density
ratio bounds in this section are merely for convenience; we
discuss generalizations at length in Section 3.3.

Conditional Completeness. Notice that (f?, g?) may not
be identifiable in the model Eq. (2.1). The most glaring

counterexample occurs when x = y, and f? + g? ∈ F ∩G.
Then, (f, g) = (f? + g?,0) and (f, g) = (0, f? + g?) are
both optimal pairs of predictors. However, this setting is
uninteresting for our purposes, since x = y implies that
νx,y = νy . On the other hand, when x and y are indepen-
dent, the model is identifiable up to a constant offset, i.e.,
(f? + c, g? − c) is an optimal pair. This line of reasoning
suggests that the indentifiable part of f? in Eq. (2.1) corre-
sponds to the part of x that is orthogonal to y. To capture
this effect, we introduce the conditional bias of f given y
under the training distribution:

βf (·) = Etrain[(f − f?)(x) | y = ·]. (2.3)

Note that this is a function of y, not x. One can check
that Rtrain(f, g) = 0 if and only if (f(x), g(y)) =
(f?(x) +βf (y), g?(y)−βf (y)) with probability one over
(x,y) ∼ Ptrain. Note, in particular, that this requires βf is
almost surely (under Ptrain) equal to a measurable function
of x. This allows, for example, (f, g) = (f? − c, g? + c)
for constants c ∈ R, and, in particular, (f?, g?) meet these
requirements since βf? = 0.

We now introduce our final, and arguably only non-
standard, assumption.
Assumption 2.3 (γ-Conditional Completeness). There ex-
ists some γ > 0 such that, for any (f, g) ∈ F×G satisfying
Rtrain(f, g) ≤ γ2, it holds that g − βf ∈ G.

Conditional completeness is somewhat non-intuitive but it
is satisfied in some natural cases. We list them here infor-
mally, and defer formal exposition to Appendix A.1. First,
as aluded to above, when x ⊥ y, βf (y) is constant in y and
so conditional completeness holds as long as G is closed
under affine translation. Second, it holds when F and G
are linear classes and x and y are jointly Gaussian; this fol-
lows since the conditional distribution Etrain[x | y = y] is
linear in y. The latter example extends to nonparametric
settings: conditional completeness holds if the conditional
expectations x | y are smooth and G contains correspond-
ingly smooth functions.

The restriction to Rtrain(f, g) ≤ γ2 allows us to make the
assumption compatible with the following, standard bound-
edness assumption (for otherwise we would need to have
g − kβf ∈ G for all k ∈ N, see Remark A.1.)
Assumption 2.4 (Boundedness). We assume that for all
f ∈ F and g ∈ G, |f(x)| and |g(y)| are uniformly bounded
by some B > 0. For simplicity, we also assume F and G
contain the zero predictor.

Notation. We use a . b to denote inequality up to uni-
versal constants, and use O (·) and Õ (·) as informal no-
tation suppressing problem-dependent constants and loga-
rithmic factors, respectively. A scalar-valued random vari-
able is standard normal if Z ∼ N (0, 1) and Rademacher
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if Z is uniform on {−1, 1}. For v = (v1, . . . , vn) ∈ Rn
and q ∈ [1,∞), define the normalized q-norms ‖v‖q,n =
( 1
n

∑n
i=1 |vi|q)1/q and ‖v‖∞,n = ‖v‖∞ = maxi∈[n] |vi|.

We letW = X ×Y with elements w ∈ W , so we can view
classes f ∈ F , g ∈ G, and βf as mappings with typeW →
R. Given h ∈ H and a sequence w1:n ∈ Wn, define the
evaluation vector h[w1:n] := (h(w1), . . . , h(wn)) ∈ Rn
and evaluated classH[w1:n] := {h[w1:n] : h ∈ H} ⊂ Rn.

3. Results
All of our results follow from the same schematic: we ar-
gue that if F is simpler than G, it is much easier to recover
f? than it is to recover g?, subject to the identifiability is-
sues introduced by βf . To express this, we introduce the
per-function risks, for e ∈ {train, test}:

Re[f ] := Ee[(f − f? − βf )2].

Re[g; f ] := Ee[(g − g? + βf )2].

Our schematic shows that Rtrain[f̂n] � Rtrain[ĝn; f̂n],
with precise convergence rates. The expression Re[f ] re-
flects that f is identifiable only up to a bias, whileRe[g; f ]
can be thought of as the residual error after accounting for
the bias in f . A straightforward consequence of these defi-
nitions is the following risk decomposition:

Lemma 3.1. Let (f, g) ∈ F × G. Then, under Assms. 2.1
and 2.2, Rtrain(f, g) = Rtrain[f ] +Rtrain[g; f ]. Morever,
Rtest(f, g) ≤ 2(Rtest[f ] +Rtest[g; f ]). Therefore,

Rtest(f, g) ≤ 2(νx,yRtrain[f ] + νyRtrain(f, g)). (3.1)

Eq. (3.1) is the starting point for our results. By compari-
son, the standard distribution shift bound is

Rtest(f, g) ≤ νx,yRtrain(f, g). (3.2)

Hence, Eq. (3.1) leads to sharper estimates for ERM in the
regime where νy � νx,y and Rtrain[f̂n] � Rtest[f̂n, ĝn),
i.e., when the shift in y is less than the shift in the joint dis-
tribution and when the estimate of f? is more accurate than
the estimate of f? + g?. The bulk of the analysis involves
obtaining sharp bounds on Rtrain[f̂n], this is sketched in
Section 4. In the remainder of this section, we describe
implications for various settings of interest.

3.1. Nonparametric Rates

We begin by demonstrating improvements in the non-
parametric regime, where we measure the complexity of
function classes by their metric entropies. Recall that an
ε-cover of a set V in a norm ‖ · ‖ is a set V′ ⊂ V such that,
for any v ∈ V, there exists v′ ∈ V′ for which ‖v− v′‖ ≤ ε.
The covering number of V at scale ε in norm ‖ · ‖ is the
minimal cardinality of an ε-cover, denoted N (V, ‖ · ‖, ε).

Metric entropies of function classes are defined via the log-
arithm of the covering number.
Definition 3.1 (Metric Entropy). We define the q-norm
metric entropy of a function class H : W → R as
Mq(ε,H) := supn supw1:n

log N (H[w1:n], ‖ · ‖q,n, ε).

As in classical results in statistical learning theory, rates of
convergence depend on function class complexity primar-
ily through the growth rate of the metric entropy, i.e., how
Mq(ε,H) scales as a function of ε. We state our first main
result informally, in line with this tradition.
Theorem 1 (Informal). Under Assm. 2.1-Assm. 2.4, with
high probability,Rtest(f̂n, ĝn) is at most

Õ
(
νx,y(raten,2(F) + raten,?(G)2) + νyraten,2(G)

)
with high probability, where we define

raten,q(H) =


d
n Mq(ε,H) = O (d log(1/ε))

n−
2

2+p Mq(ε,H) = O (ε−p) , p ≤ 2

n−
1
p Mq(ε,H) = O (ε−p) , p > 2

,

and raten,?(H) = n−(1/2∧1/p) forM∞(ε,H) = O (ε−p).

A formal statement is given in Appendix E. As a prelimi-
nary point of comparison, the classical analysis would yield
a bound of the form

Rtest(f̂n, ĝn) ≤ Õ (νx,y(raten,2(F) + raten,2(G))) ,

which can be worse than the above bound when νy � νx,y
and raten,?(G)2 � raten,2(G). It is crucial to note that in
our bound, G and νx,y interact via the squared convergence
rate for G, which we expect to be significantly smaller than
raten,2(G). This benign dependence on G is similar in
spirit to results in orthogonal machine learning (c.f., Foster
and Syrgkanis, 2019), where it arises from a similar phe-
nomenon: the ability to recover f? is only weakly impacted
by the presence of g?. We discuss orthogonal ML in more
detail in Section 3.4.

We should also mention one caveat to the bound: the ideal
bound would replace raten,?(G)2 with raten,2(G)2 which
is smaller most notably when G is small. Unfortunately, our
bound departs from this ideal in that raten,?(G) involves
the `∞ metric entropy and also that it does not exploit lo-
calization to go beyond the n−1/2 rate for small classes. It
is not clear if this discrepancy reflects a limitation in our
analysis or is a fundamental limitation of ERM. On the
other hand, localization can only improve the constant fac-
tors but not the dependence on n, since the raten,?(G) term
is squared and since raten,2(F) is always at least 1/n.

3.2. Finite Function Classes

WhenF and G are finite function classes with log |F| ≤ d1

and log |G| ≤ d2, an application of Theorem 1 gives
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the rate of Rtest(f̂n, ĝn) . νx,y · d1+d2
n , which is pre-

cisely what one obtains via naive change of measure argu-
ments. Although direct application of Theorem 1 does not
yield improvements—precisely because of the lack of lo-
calization as discussed above— we can improve upon this
bound with an additional hypercontractivity assumption,
often popular in the statistical learning literature (Mendel-
son, 2015). We defer formal definitions, a formal theorem
statement, and proofs to Appendix D; the following infor-
mal theorem summarizes our findings.

Theorem 2 (Informal). Under certain hypercontractivity
conditions detailed in Appendix D, it holds with high prob-
ability that

Rtest(f̂n, ĝn) .
1

n
(νx,yd1 + νyd2 + νx,yd2 · φn(d1, d2)) ,

where φn(d1, d2) = (d2n )c1 +(d1d2 )c2 , for constants c1, c2 >
0 depending on the hypercontractivity exponents.

When d2 � d1, the bound replaces the dimension term
d2νx,y with d2φ(d1, d2)νx,y + νyd2, a strict improvement
when νy � νx,y and φ(d1, d2) � 1. The above bound
can be extended to function classes with “parametric” met-
ric entropy (Remark D.1). In all cases, φn(d1, d2) ≥ d2

n ,
which is still weaker than an idealized version of Theo-
rem 1 where raten,2(G)2 replaces raten,?(G)2.

3.3. Refined Measures of Distribution Shift

The decomposition in Lemma 3.1 and all subsequent guar-
antees can be refined considerably. First, we can replace
uniform bounds on the density ratios (Definition 2.1) with
the following function-dependent quantities:

ν1 := sup
f∈F

Etest[(f − f? − βf )2]

Etrain[(f − f? − βf )2]
(3.3)

ν2 := sup
f∈F,g∈G

Etest[(g − g? − βf )2]

Etrain[(g − g? − βf )2]
, (3.4)

Corollary 3.1. Immediately from Lemma 3.1, it holds that
Rtest(f, g) ≤ 2(ν1Rtrain[f ] + ν2Rtrain(f, g))

Both Theorem 1 and Theorem 2 continue to hold using ν1

and ν2 instead of νx,y and νy . Note that ν1 ≤ νx,y and ν2 ≤
νy always, but they can be much smaller as demonstrated
by the follow upper bounds on ν1.

Lemma 3.2. Suppose x ⊥ y under Ptrain. Then ν1 ≤
νx := supA⊂X Ptest[x ∈ A]/Ptrain[x ∈ A].

Lemma 3.3. Assume (a) X is a Hilbert space, (b) the
functions f ∈ F are linear in x and (c) there are con-
stants ν lin > 0 such that, with βx(y) := Etrain[x | y],
Etest[(x − βx(y))(x − βx(y))H] � ν lin · Etrain[(x −
βx(y))(x− βx(y))H]. Then, ν1 ≤ ν lin.

Appendix A.2 proves both lemmas. Importantly, ν lin can
be finite even when νx,y is infinite, e.g. if the distribution
over x is discrete under Ptrain, but continuous under Ptest.

Beyond Uniform Ratios. Eqs. (3.3) and (3.4) can be gen-
eralized further to allow for additive error.

Corollary 3.2. Suppose that, for all f ∈ F and g ∈ G,

Etest[(f − f? − βf )2] ≤ ν1Etrain[(f − f? − βf )2] + ∆1

Etest[(g − g? − βf )2] ≤ ν2Etrain[(g − g? − βf )2] + ∆2,

Then, immediately from Lemma 3.1,

Rtest(f, g) ≤ 2(ν1Rtrain[f ] + ν2Rtrain(f, g) + ∆1 + ∆2).

This deceptively simple modification allows for situations
when the density ratios between the test and train distribu-
tions are not uniformly bounded, or possibly even infinite.
Appendix A.3 details the many consequences of this obser-
vation. We highlight a key one here:

Lemma 3.4. Suppose Assm. 2.4 holds. Then, for
Rtrain[f ],Rtrain(f, g) sufficiently small,

Rtest(f, g) ≤ 8B
√
Rtrain[f ] · χ2(Ptest(x,y),Ptrain(x,y))

+ 8B
√
Rtrain(f, g) · χ2(Ptest(y),Ptrain(y)),

where χ2(Ptest(x,y),Ptrain(x,y)) denotes the χ2 diver-
gence (see e.g. Polyanskiy and Wu (2022, Chapter 2)) be-
tween the joint distribution of (x,y) under test and train
distributions, and χ2(Ptest(y),Ptrain(y)) denotes χ2 diver-
gence restricted to the marginals of y.

The above lemma is qualitatively similar to Corollary 3.1
and Lemma 3.1: If Rtrain[f ] � Rtrain(f, g) (as ensured
by our analysis, under appropriate assumptions), then we
ensure more resilience to the χ2 divergence between the
joint distributions of (x,y) than would naively be expected.

3.4. Comparison with Orthogonal ML

The style of our results is similar to those appearing in
the literature on Neyman orthogonalization (also referred
to as Double/Debiased ML or orthogonal statistical learn-
ing) (c.f., Chernozhukov et al., 2017; Mackey et al., 2018;
Foster and Syrgkanis, 2019). At a high level, orthogonal
ML considers a situation with an unknown pair (f?, g?),
where we are primarily interested in learning f?, referring
to g? as a nuisance function. The main difference in set-
ting is that orthogonal ML leverages an auxiliary super-
vision mechanism to learn g?, which helps resolve con-
founding effects. Qualitatively, the rates are similar: as
with our bound, orthogonal ML allows one to learn f? with
a quadratic dependence on the complexity G. However
quantatively the orthogonal ML bound is typically better
in that (a) the complexity of G is measured via the ideal
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raten,2(G)2 compared with our raten,?(G)2, and (b) the
distribution shift coefficient is νx compared with our νx,y .

On the other hand, our bound is somewhat more practical,
as it applies to ERM directly and does not require algorith-
mic modifications or an auxiliary supervision signal. The
key difference here is that whereas orthogonal ML aims for
inference – consistent recovery of f? – we care only about
the prediction error of f? + g?. Thus, we need not address
the identifiability challenges present in orthogonal ML. As
a consequence, we bypass algorithmic modifications that
typically require more precise modeling of the data gener-
ating process, and which typically render orthogonal ML
more susceptible to misspecification issues. Finally, we
should note that in canonical settings for orthogonal learn-
ing, we can show that our main assumption, conditional
completeness, holds. In this sense, our work shows that,
in typically settings for orthogonal learning, one can ob-
tain similar statistical improvements with ERM alone and
without auxiliary supervision.

Please see Appendix A for a detailed discussion.

4. Analysis Overview
We begin this section with a formal precursor to Theorem 1
in terms of Dudley integrals (Dudley, 1967), stated as The-
orem 3. The rest of the section provides an overview of
the proof. Section 4.1 contains the necessary preliminaries,
notably Rademacher and Gaussian complexities and their
associated critical radii. Section 4.2 provides the roadmap
for the proof of Theorem 3, focusing on our novel excess
risk bound for Rtrain[f̂n] in terms of a “cross critical ra-
dius” term. We bound this term in Section 4.3 via a Hölder
style inequality for Rademacher complexity.

For convenience define the centered classes Fcnt := {f −
βf − f? : f ∈ F}, Gcnt := {g − g? + βf : f ∈ F , g ∈ G}
andHcnt := {f + g − (f? + g?) : f ∈ F , g ∈ G}.

Formal Main Result. We define the Dudley functional,
a standard measure of statistical complexity.

Definition 4.1 (Dudley Functional). Let radq(V) :=
supv∈V ‖v‖q,n be the q-norm radius and Mq(V; ·) be the
metric entropy in the induced `q norm (Definition E.1).
Given V ⊂ Rn define Dudley’s chaining functional (in the
q-norm) as

Dn,q(V) := inf
δ≤radq(V)

(
2δ + 4√

n

∫ radq(V)

δ

√
Mq(V; ε/2)dε

)
.

Furthermore, given a function class H and letting
H[r, w1:n] denotes the empirically localized class (Defini-
tion 4.2 below), define the Dudley critical radius

δn,D(H, c) := inf
{
r : supw1:n

Dn,2(H[r, w1:n]) ≤ r2

2c

}
,

We now state the formal version of our main result. We ob-
tain Theorem 1 by bounding the Dudley functionals using
standard statistical learning arguments.

Theorem 3. Suppose Assms. 2.1 to 2.3 hold. Let σB :=
max{B, σ}, let ν1, ν2 be as in Eqs. (3.3) and (3.4), and
let c1 be a sufficiently small universal constant. Then if
δn,D(Hcnt, σB)2 +

σ2
B log(1/δ)

n ≤ c1γ, it holds that proba-
bility at least 1− δ,Rtest(f̂n, ĝn) is at most

. ν1

(
δn,D(Fcnt, σB)2 + supw1:n

Dn,∞(Gcnt[w1:n])2
)

+ ν2 · δn,D(Hcnt, σB)2 +
(ν1 + ν2)σ2

B log(1/δ)

n
.

4.1. Learning-Theoretic Preliminaries

We state all definitions for a general class of functions H
mappingW → R. We define two key notions of localized
and product classes.

Definition 4.2 (Product and Localized Classes). Let
H,H′ : W → R. Define the (Hadamard) product
class H � H′ := {h · h′ : h ∈ H, h ∈ H′}. Given se-
quence w1:n ∈ Wn, define the empirically localized class
H[r, w1:n] := {h ∈ H : 1

n

∑n
i=1 h(wi)

2 ≤ r} and popula-
tion localized classH(r) := {h ∈ H : Etrain[h

2] ≤ r}.

Next, we define the standard Rademacher and Gaussian
complexities and associated quantities (c.f., Rakhlin, 2022;
Wainwright, 2019; Bartlett et al., 2005). For convenience,
we state these quantities for a set of n-length vectors V ⊂
Rn and then instantiate the definition to obtain function
class variants.

Definition 4.3 (Rademacher and Gaussian Complexi-
ties: Sets). Let n ∈ N, and let ε1:n and ξn denote
i.i.d. sequences of Rademacher and standard Normal
random variables, respectively. The Rademacher and
Gaussian complexities of a subset V ⊂ Rn are defined
as Rn(V) := 1

nEε supv∈V
∑n
i=1 εivi and Gn(V) :=

1
nEξ supv∈V

∑n
i=1 ξivi.

Gaussian and Rademacher complexities of function classes
can be defined in terms of Definition 4.3. For example,
we may consider Rn(H[w1:n]), or localized variants like
Rn(H[r, w1:n]). For the latter, we define the critical radius
quantities, which are central to localization arguments in
statistical learning (Bartlett et al., 2005).

Definition 4.4 (Critical Radii). We define the following
worst-case critical radii:
δn,R(H, c) := inf

{
r : supw1:n

Rn(H[r, w1:n]) ≤ r2

2c

}
,

δn,G (H, c) := inf
{
r : supw1:n

Gn(H[r, w1:n]) ≤ r2

2c

}
.

The following lemma verifies that the Rademacher and
Gaussian complexities are upper bounded by the Dudley
functional (the proof is standard, but see also Appendix B.7
for completeness.)

6
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Lemma 4.1. For any V ⊂ Rn, we have Gn(V) ∨
Rn(V) ≤ Dn,2(V), and hence, for all c > 0, δn,R(H, c)∨
δn,G (H, c) ≤ δn,D(H, c).

4.2. Proof Overview of Theorem 3.

We begin with the following generic upper bound on the
joint risk ofRtrain[f̂n, ĝn], proved in Appendix B.2.

Proposition 4.2. With probability at least 1 − δ, we have
that Rtrain[ĝn; f̂n] ≤ Rtrain(f̂n, ĝn) . γn(δ)2, where we
define γn(δ)2 := δn,R(Hcnt, B)2 + δn,G (Hcnt, σ)2 +
(B2+σ2) log(1/δ)

n . Hence, ĝn ∈ Gcnt(γn(δ)).

The localized Gaussian complexity of the class Hcnt,
δn,G (Hcnt, σ)2, appears in the sharpest analyses of ERM.
The dependence on δn,R(Hcnt, B)2 is suboptimal in gen-
eral (see, e.g. Rakhlin (2022, Chapter 21)), but is conve-
nient and essentially sharp in the regime where σ2 & B2.
However, to take advantage of Eq. (3.1), we require sharper
control overRtrain[f̂n]. This involves a novel term, unique
to our setting; the cross-critical radius.

Definition 4.5 (Cross Critical Radii). Given the classes
Fcnt, and another classH, we define δn,cross(Fcnt;H) :=

inf
{
r : supw1:n

Rn(Fcnt[r, w1:n]�H[w1:n]) ≤ r2

2

}
.

The cross-critical radius measures the complexity of prod-
ucts f̃ ·h, where f̃ ∈ Fcnt and h ∈ H, and thus captures the
extent to which h can obfuscate recovery of f?. We invoke
the cross-critical radii withH = Gcnt(γ), for some γ.

It is crucial that the localization r > 0 is only on the class
Fcnt and not on the class H. With the cross-critical radius
in hand, the following is proved in Appendix B.3.

Proposition 4.3. Suppose that (F ,G) satisfy γ-conditional
completeness. Then, whenever Rtrain[ĝn; f̂n] ≤ γ, the fol-
lowing holds with probability at least 1− δ,

Rtrain[f̂n] . δn,cross(Fcnt;Gcnt(γ))2 + δn,R(Fcnt, B)2

+ δn,G (Fcnt, σ)2 +
(σ2 +B2) log(1/δ)

n
.

Upper bounding Rademacher and Gaussian criti-
cal radii by the Dudley radius, and using σB =
max{σ,B}, we have that with probability 1 − δ/2,
Rtrain[ĝn; f̂n] . δn,D(σB ,Hcnt)

2 + σ2
B log(1/δ)/n.

Hence, if δn,D(σB ,Hcnt)
2 + σ2

B log(1/δ)/n ≤ c1γ for
a small enough c1 > 0, Proposition 4.3 yields that with
probability 1− δ/2,Rtrain[f̂n] is at most

. δn,cross(Fcnt;Gcnt(γ))2 + δn,D(Fcnt, σB)2 +
σ2
B log 1

δ

n

≤ δn,cross(Fcnt;Gcnt)2 + δn,D(Fcnt, σB)2 +
σ2
B log 1

δ

n .

Invoking Corollary 3.1 and summing these bounds, with

probability at least 1− δ,Rtest(f̂n, ĝn) is at most

. ν1(δn,cross(Fcnt;Gcnt)2 + δn,D(Fcnt, σB)2)

+ ν2δn,D(σB ,Hcnt)
2 +

(ν1+ν2)σ2
B log(1/δ)
n , (4.1)

The key step is to now apply Corollary 4.1, stated in
the following section, to upper bound the cross criti-
cal radius: δn,cross(Fcnt;Gcnt)2 ≤ δn,D(Fcnt, 2B)2 +
16 supw1:n

Dn,∞(Gcnt[w1:n])2. By Lemma C.4 and the
bound B ≤ σB , δn,D(Fcnt, 2B)2 . δn,D(Fcnt, B)2 ≤
δn,D(Fcnt, σB)2. Combining with Eq. (4.1) concludes the
proof of Theorem 3.

4.3. Controlling Cross Critical Radius via a
Hölder-Inequality for Dudley’s integral

Recall Lemma 4.1, which restates the well-known fact that
the Rademacher and Gaussian complexities of a function
class can be upper bounded by Dudley functional defined
in Definition 4.1 (c.f., Dudley, 1967; Wainwright, 2019,
Chapter 5). We establish a Hölder style generalization of
this upper bound. In what follows, given p, q ∈ [2,∞],
we say (p, q) are square Hölder conjugates if (p/2, q/2)
are regular Hölder conjugates, i.e. 2

p + 2
q = 1. Ex-

amples include (p, q) = (2,∞), (p, q) = (4, 4), and
p, q = (∞, 2). If v, u ∈ Rn are two vectors, then Hölder’s
inequality implies that for any square Hölder conjugates
p, q, ‖v � u‖2,n ≤ ‖v‖2,p · ‖u‖q,n. It may be tempting to
generalize Lemma 4.1 to product classes via

Rn(V� U) . Dn,p(V) ·Dn,q(U), (4.2)

where we recall V�U := {v�u, v ∈ V, u ∈ U}. Our key
result is that Eq. (4.2) can be sharpened considerably. The
following technical result is proved in Appendix B.6.

Proposition 4.4 (Dudley Estimate for Hadamard Products
(Sets)). Let p, q ∈ [2,∞] satisfy 1/p+1/q ≤ 1/2, and (for
simplicitly) suppose 0 ∈ V ∩W. Then,

Rn(V� U) ≤ radq(U)Dn,p(V) + radp(V)Dn,q(U).

The same bound holds for Rn replaced by any process de-
fined where the εi are 1-subGaussian variables (e.g. Gaus-
sian complexity Gn).

Notice that rather than having Dn,p(V) and Dn,q(U) mul-
tiply each other as in Eq. (4.2), each is only multiplied
by the (Hölder square conjugate) radius term. This is
in general considerably sharper, as typically radp(V) �
Dn,p(V) unless V is exceedingly small. By taking U =
{(1, 1, . . . , 1) ∈ Rn}, Proposition 4.4 implies the stan-
dard Dudley bound, Lemma 4.1, as a corollary (see Ap-
pendix B.7). We now use the above proposition to upper
bound the cross-critical radius.
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Corollary 4.1 (Generic Cross-Critical Radius Bound).
For any class H, it holds that δn,cross(Fcnt;H)2 ≤
δn,D(Fcnt, 2B)2 + 16 supw1:n

Dn,∞(H[w1:n])2.

Proof of Corollary 4.1. Recall the defintion of δn,cross

(Definition 4.5) By Proposition 4.4 with (p, q) = (2,∞),

Rn(Fcnt[r, w1:n]�H[w1:n])

≤ rad2(Fcnt[r, w1:n])Dn,∞(H[w1:n])

+ rad∞(H)Dn,2(Fcnt[r, w1:n])

≤ rDn,∞(H[w1:n]) +BDn,2(Fcnt[r, w1:n]),

where we use that rad2(Fcnt[r, w1:n]) ≤ r by
the definition of localization. In particular, if r sat-
isfies r2

4 ≥ B supw1:n
Dn,2(Fcnt[r, w1:n]) and r

4 ≥
supw1:n

Dn,∞(H[w1:n]), then δn,cross(Fcnt;H) ≤ r.
Thus, δn,cross(Fcnt;H) is at most the maximum of
inf{r : supw1:n

Dn,2(Fcnt[r, w1:n]) ≤ r2

4B } and
4 supw1:n

Dn,∞(H[w1:n]), which is at most the maxi-
mum of inf{r : supw1:n

Dn,2(Fcnt[r, w1:n]) ≤ r2

4B } =
δn,D(Fcnt, 2B) and 4 supw1:n

Dn,∞(H[w1:n]). The
bound follows by squaring.

Remark 4.1. Because we consider the∞-norm Dudley in-
tegral of Gcnt, it is hard to take advantage of localization of
Gcnt at Gcnt(γ) in the L2 norm. The absence of localiza-
tion leads to the suboptimal dependence on leading con-
stants compared to what is obtained through Double ML
(Foster and Syrgkanis, 2019). Appendix D shows that, for
finite-function classes, one can take advantage of localiza-
tion with strong hypercontractivity assumptions.

5. Experiments
In this section we present experiments to validate our
theoretical findings and demonstrate how the conceptual
takeaways—that predictive models are more resilient to
distribution shifts in simple features—applies to a broad
range of practical settings. All of our experiments have
a similar form: we (a) identify simple and complex fea-
tures and justify these choices and (b) measure how the per-
formance of a predictive model changes with distribution
shifts in these features. We experiment with neural network
models on tasks ranging from synthetic regression prob-
lems to computer vision benchmarks to imitation learning
in a robotics simulator. We take the following operational
definition of simplicity:

Feature 1 is simpler than feature 2 if the general-
ization error, without distribution shift, on a pre-
dictive task involving feature 1 is smaller than
that for an analogous task involving feature 2.

We believe that this is the correct empirical correlate for
the complexity measures adopted by our theoretical results.
Across domains, we consistently find that predictive mod-
els are more resilient to shifts in simpler features, thus de-
fined. We now summarize the experimental results, de-
ferring details to Appendix F. In all experiments, we report
average performance and standard error across 4 replicates.

Synthetic Regression with Additive Structure. To
closely mirror our theory, we predict z = f?(x) + g?(y)
from an input (x,y), where f? : Rdx → R and g? :
Rdy → R are randomly initialized 2-layered multi-layer
perceptions (MLP) having hidden dimensions df and dg ,
respectively. We sample x and y, respectively, inde-
pendently from Gaussian mixtures px = N (1dx , I) +
(1 − px)N (−1dx , Idx) and py = N (1dy , Idy ) + (1 −
py)N (−1dy , Idy ) where px, py are mixing probabilties,
and 1d ∈ Rd and I ∈ Rd×d are the all ones vector and
identity matrix. To make x simpler, we either have dx < dy
or df < dg: Appendix F.1 shows that the auxiliary task of
predicting f?(x) has lower generalization error than that of
predicting g?(y). We train a predictor ẑ = fθ(x) + gθ(y)
to minimize mean-square error (MSE) under a training dis-
tribution with px = py = .01. We then measure the MSE
on shifted distributions, where we hold the mixing proba-
bility of one of {x,y} fixed, and vary the other in the range
{0.1, 0.2, 0.5, 0.9, 0.99}. Corroborating our theory, MSE
declines less with shift in px than with shift in py (Fig-
ure 1). Appendix F.1 shows similar results with predictor
ẑ = hθ(x, y) (using concatenated features (x,y)) and con-
tains further implementation details.

Waterbird & Functional Map of World datasets. We
next test our hypothesis on the paradigmatic Waterbird
dataset (Sagawa et al., 2019). The predictive task is to clas-
sify images of birds as waterbirds or landbirds, against a
background of either land or water. We consider birdtype
(resp. background) as the complex (resp. simple) fea-
ture. This choice is both intuitive and consistent with our
definition of simplicity: Appendix F.2 shows that, in the
absense of distribution shift, the auxiliary task of predict-
ing background has lower generalization error than that
of predicting birdtype. We then test (Figure 1) the pre-
diction accuracy of birdtype under shifts in the propor-
tions of background and birdtype, finding prediction
accuracy degrades less for the former than the latter. See
Appendix F.2 for details. Appendix F.3 applies the same
methodology to the Functional Map of World (FMoW)
dataset (Koh et al., 2021), with similar findings.

Logical operators on CelebA dataset. The CelebA
dataset (Liu et al., 2015) consists of celebrity faces la-
beled with the presence or absence of 40 different at-
tributes (e.g., baldness, mustache). Here we re-purpose
CelebA to learn logical operators OR and XOR for two at-
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Waterbird Classification Logical operators on CelebA Imitation on pusher armSynthetic Regression

<latexit sha1_base64="fHaLImaVUvVA+eslhj1xpw1HnQ4=">AAACDXicbVDLSsNAFJ3UV62vqEs3g1VoEUoiRd0IRTcuK9gHNCFMppN26OTBzESMIT/gxl9x40IRt+7d+TdO2yDaeuDCmXPuZe49bsSokIbxpRUWFpeWV4qrpbX1jc0tfXunLcKYY9LCIQt510WCMBqQlqSSkW7ECfJdRjru6HLsd24JFzQMbmQSEdtHg4B6FCOpJEc/sFwvvc/gOfSc1BIS8axyV4VHcPDzTKqOXjZqxgRwnpg5KYMcTUf/tPohjn0SSMyQED3TiKSdIi4pZiQrWbEgEcIjNCA9RQPkE2Gnk2syeKiUPvRCriqQcKL+nkiRL0Tiu6rTR3IoZr2x+J/Xi6V3Zqc0iGJJAjz9yIsZlCEcRwP7lBMsWaIIwpyqXSEeIo6wVAGWVAjm7MnzpH1cM09q9et6uXGRx1EEe2AfVIAJTkEDXIEmaAEMHsATeAGv2qP2rL1p79PWgpbP7II/0D6+AeetmtQ=</latexit>

z = f?(x) + g?(y)

Figure 1. Testing resiliency of learned predictive models. We calculate the performance of learned models as we shift the distribution
of either complex features (orange color) or simple features (blue color). To shift distribution of {x,y} in synthetic regression, we vary
the mixing probabilities of their distributions. To shift distribution of a feature in Waterbirds and CelebA datsets, we vary its proportion.
To shift distribution of a feature in robotic pusher arm control, we increase standard deviation of its sampling distribution. Corroborating
our theoretical expectations, we show that these models are more robust to distribution shift in simple features.

tributes. We first train and test a multi-head binary clas-
sifier that detects presence of 40 different attributes, with
one head per attribute, on images from the CelebA “stan-
dard training set” (CelebA-STS). We select bald as “sim-
ple” due to its low generalization error and big_lips as
“complex” due to its larger generalization error. In Fig-
ure 1, we predict targets fOR = bald OR big_lips and
fXOR = bald XOR big_lips, training on CelebA-STS,
but testing on distributions where the proportions of bald
and big_lips are varied (Appendix F.4). Results show
greater resilience to shift in the simpler feature bald than
the complex feature big_lips. Further details are deferred
to Appendix F.4, where we perform the same experiment
for (pale_skin, narrow_eyes) with similar findings.

Imitation Learning for Pusher Control. In Pusher Con-
trol simulator, we learn an agent that controls a robotic
arm to push an object to its goal location. We fix the
goal and starting object locations across episodes. We vary
object mass m (m ∼ N (60, 15)) and joint dampness d
(d ∼ N (0.5, 0.1)) of the robot. The agent observes {m, d}
at beginning of every episode and aims to learn an optimal
policy condition on these variables. To determine the sim-
pler feature, we measure generalization error on the aux-
iliary task of predicting next-step dynamics where one of
{m, d} is held fixed and the other is drawn from a distribu-
tion that is fixed across training and testing. This method-
ology ascribes m as the simpler feature and d as complex
(Appendix F.5). We train a policy πθ(a|s,m, d) using 1000
expert trajectories where each trajectory contains a new m
and d sampled from N (60, 15) and N (0.5, 0.1) respec-
tively. We then shift distribution of m and d by increas-
ing their standard deviation, one at a time while keeping
the distribution of the other factor fixed, and test policy

πθ(a|s,m, d). We show the results in Figure 1 and observe
that the success rate of πθ(a|s,m, d) deteriorates less when
we shift distribution of m while keeping distribution of d
fixed. Thus, we show that the policy is more resilient to
distribution shift in the simpler feature. Appendix F.5 con-
tains further details, including the precise distributions used
to determine m as the simpler feature.

6. Discussion
This paper sheds new light on the issue of spurious corre-
lation that arises when considering out of distribution gen-
eralization. We discover that predictive models are more
resilient to distribution shift in simpler features, which we
capture via notions of statistical capacity in our experi-
ments and via generalization when predicting the feature
itself in our experiments. We find that, in most of our ex-
periments, this latter operational notion is predictive of how
deep learning models behave under heterogeneous distri-
bution shift. We hope that our work inspires future efforts
toward a fine-grained theoretical and experimental under-
standing of distribution shift in modern machine learning.
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A. Discussion of Assumptions
In this section we provide additional details about our main assumptions, conditional completeness. As this is closely
related to orthogonal ML, we also provide some additional context and comparisons.

A.1. On Conditional Completeness

Our results hinge on the conditional completeness assumption, where G is expressive enough to capture the conditional
bias functions βf . To clarify when this assumption may hold, we discuss an example.

Partially Linear Regression. First, let us consider a paradigmatic model in econometrics, statistics, and causal inference.
This model, known as the partial linear regression (PLR) model (Chernozhukov et al., 2017; Robinson, 1988), specifies a
joint distribution over tuples (z,x,y) via the structural equations:

z = 〈x, f?〉+ h1(y) + ε

x = h0(y) + τ

y ∼ P,E[ε | x,y]= 0,E[τ | y]= 0

Here x belongs to a (finite dimensional) vector space, say Rd, and f? is a linear function, so we use f? both to describe
the mapping and the vector itself. In the learning setting for PLR, we are given access to function class H0,H1 such that
h0 ∈ H0, h1 ∈ H1, and we assume that f? has bounded norm, say ‖f?‖ ≤ B.

This model is amenable to our techniques wheneverH1 consists of linear projections ofH0, i.e.,

H0 := {y 7→ 〈v, h1(y)〉 : v ∈ Rd, h1 ∈ H1}.

Clearly we can apply ERM with F as the linear class and G = H0. But we must verify that conditional completeness
holds. This follows because, for any f , we have

βf (y) := E[〈f − f?,x〉 | y]= 〈f − f?,E[x | y]〉 = 〈f − f?, h0(y)〉 ∈ G.

Thus, our results demonstrate favorable guarantees for estimating f? via ERM in this setting.

Remark A.1 (Compatibility of conditional completeness and boundedness). If conditional-completeness were stipulated
as a global condition, i.e. for all (f, g) ∈ F × G, g − βf ∈ G, then necessarily (f, g − kβf ) ∈ F × G for all k ∈ N.
Therefore, G would not in general consist only of functions which are uniformly bounded (except in the special case where
βf = 0 for all f ∈ F). By imposing the restriction Rtrain(f, g) ≤ γ2, we avoid this pathology because, unles βf ≡ 0,
limk→∞Rtrain(f, g − kβf ) =∞.

A.2. Proof of Lemmas 3.2 and 3.3

Proof of Lemma 3.2. Suppose that if x ⊥ y under Ptrain. Then βf (y) = E[f(x)− f?(x) | y = y] = E[f(x)− f?(x)] is a
constant in y.

ν1 := sup
f∈F

Etest[(f − f? − βf )2]

Etrain[(f − f? − βf )2]

≤ sup
f∈F,c∈R

Etest[(f − f? − c)2]

Etrain[(f − f? − c)2]

≤ sup
A⊂X

Ptest[x ∈ A]

Ptrain[x ∈ A]
= νx,

as the functions f − f? − c are functions of x alone.

Proof of Lemma 3.3. By linearity (assumption (a) of Lemma 3.3, we can write f(x) = 〈v,x〉 and f?(x) = 〈v?,x〉 for
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some v, v? ∈ H. Then, setting βx(y) = Etrain[x | y],

Etest[(f(x)− f?(x)− βf (x))2] = Etest[〈v − v?,x− βx(y)〉2]

≤ ν linEtrain[〈v − v?,x− βx(y)〉2] (Lemma 3.3, assumption (c))

= ν linEtrain[(f(x)− f?(x)− Etrain[f(x)− f?(x) | y]︸ ︷︷ ︸
=βf (y)

)2],

as needed.

A.3. Beyond Uniform Density Bounds

In this section, we consider a generalization of Eqs. (3.3) and (3.4) to allow for additive slack. We show that this allows for
generalizations of Lemma 3.1 and Corollary 3.1 which accomodate density ratios which are possibly unbouned, or even
take the value∞ with positive probability (Appendix A.3.1). Finally, we show that our guarantees imply guarantees when
the χ2 divergence (or more generally, power divergence) are bounded (Appendix A.3.2), thereby establishing the proof of
Lemma 3.4. We begin by restating Corollary 3.2.

Corollary 3.2. Suppose that, for all f ∈ F and g ∈ G,

Etest[(f − f? − βf )2] ≤ ν1Etrain[(f − f? − βf )2] + ∆1

Etest[(g − g? − βf )2] ≤ ν2Etrain[(g − g? − βf )2] + ∆2,

Then, immediately from Lemma 3.1,

Rtest(f, g) ≤ 2(ν1Rtrain[f ] + ν2Rtrain(f, g) + ∆1 + ∆2).

Though seemingly simple, the accomodation of additive slack is deceptively flexible. Given probability laws P,Q on
a space X = {X ∈ X}, recall their Radon-Nikodym derivative (see, e.g. Polyanskiy and Wu (2022, Chapter 2))
dP(X)/dQ(X) (which may take value ∞). In the language of Radon-Nikodym derivatives, the worst-case density ra-
tios νx,y and νy in Definition 2.1 can be defined as

νx,y := sup
x,y

dPtest(x,y)

dPtrain(x,y)
, νy := sup

y

dPtest(y)

dPtrain(y)
. (A.1)

The following corollary, whose proof we give in Appendix A.3.3, shows that we can replace the dependence on the worst-
case density ratios in Lemma 3.1 with a bound that depends only on the tails of those density ratios:

Corollary A.1. Recall the boundedness assumption Assm. 2.4, such that all of |f |, |g|, |f?|, |g?| are uniformly at most B
in magntinude. For any functions f ∈ F and g ∈ G, it holds that

Rtest(f, g) ≤ inf
t1,t2>0

2(t1Rtrain[f ] + t2Rtrain(f, g) + 16B2∆x,y(t1) + 16B2∆y(t2)),

where we define

∆x,y(t) := P(x,y)∼Ptest

[
dPtest(x,y)

dPtrain(x,y)
> t

]
, ∆y(t) := Py∼Ptest

[
dPtest(y)

dPtrain(y)
> t

]
.

Remark A.2. As in Section 3.3, the above bound can be refined in a function-class dependent fashion by replacing the
density ratio tail-bounds in the definitions of ∆x,y(t) and ∆y(t) with the restriction of these density ratios to the σ-algebra
generated by the function classes {(x,y) 7→ f(x) − f?(x) − βf (y) : f ∈ F} and {y 7→ g(y) − g?(y) − βf (y) : f ∈
F , g ∈ G}. When ν1 and ν2, as defined in Eqs. (3.3) and (3.4), are bounded, then taking t1 = ν1 and t2 = ν2 recovers the
bounds obtained in Section 3.3.

A.3.1. EXAMPLES WITH UNBOUNDED DENSITY RATIOS.

We give two simple examples demonstrating how the bound in Corollary A.1 can be finite even when νx,y and νy are not.
Our first illustrative example shows that Corollary A.1 can be finite even if there are values of y for which the density ratios
are infinte.
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Example A.1 (Infinite Density Ratios). Consider a discrete setting where, for simplicity, x = 1 is deterministic, and
y ∈ [n+ 1] = {1, . . . , n+ 1}. Suppose that y under Ptrain is distributed uniformly on [n], and uniformly on [n+ 1] under
Ptest. For discrete distributions, density ratios are just ratios of probabilities:

Ptest(x,y)

Ptrain(x,y)
=

dPtest(y)

dPtrain(y)
=

{
n
n+1 y ∈ [n]

∞ y = [n+ 1].
(A.2)

Thus, the density ratios are not uniformly bounded, and may indeed take the value∞. Still, Py∼Ptest [y = n+ 1] = 1
n , so

Corollary A.1 with t1 = t2 = n
n+1 ≤ 1yields

Rtest(f, g) ≤ 2(Rtrain[f ] +Rtrain(f, g)) +
64B2

n+ 1
, (A.3)

which is not only not infinite, but indeed decays with n.

Our second example shows the sample can happen even if the density ratios are finite, but unbounded.

Example A.2. Let γ1, γ2 ∈ (0, 1). Again, consider deterministic x = 1 and discrete y ∈ Z≥0 with geometric distributions.
Ptrain[y = k] = (1− γ1)γk1 , Ptest[y = k] = (1− γ2)γk2 . Then,

dPtest(y = k)

dPtrain(y = k)
=

1− γ2

1− γ1
·
(
γ2

γ1

)k
, k ∈ Z≥0

When γ2 > γ1, supy
d Ptest(y)
d Ptrain(y) =∞. Still, Corollary A.1 is non vacuous, yielding

Rtest(f, g) ≤ inf
t>0

2t(Rtrain[f ] +Rtrain(f, g)) + 64B2 Ptest

[
1− γ2

1− γ1
·
(
γ2

γ1

)y

> t

]
.

With some algebra1, we can compute

Rtest(f, g) ≤ inf
t>0

2t(Rtrain[f ] +Rtrain(f, g)) + 64B2

(
t · 1− γ1

1− γ2

)−α
, α :=

log(1/γ2)

log γ2/γ1
> 0

An interesting feature of this example is that, even thought the density ratio in Eq. (A.4) appears to grow exponentially k,
the tradeoff in t is polynomial due to the exponential decay of y ∼ Ptest.

A.3.2. CONSEQUENCES FOR CERTAIN f -DIVERGENCES, AND PROOF OF LEMMA 3.4

We show that Corollary A.1 can be instantiated for a subclass of f -divergences, which include the χ2-divergence (with
arguments ordered appropriately) as a special case. To avoid confusion with our function class f , we shall replace f with
the functions φ : R>0 → R≥0.

Definition A.1 (φ-divergence, Chapter 2 in (Polyanskiy and Wu, 2022)). Given measures P,Q on the same probability
space X = {X}, and φ : R>0 → R, we define

Dφ(Q,P) :=

∫
X

φ

(
dQ(X)

dP(X)

)
dP(X)

where dQ(X) and dP(X) denote the Radon-Nikodym derivatives of Q and P, respectively, evaluated at X ∈ X . By
convention, it is typically required that φ is convex, φ(1) = 0, and that φ(0) is defined via φ(0) = limt→0+ φ(t).

Observe that if the function φ satisfies φ+M is non-negative for some M ∈ R, Markov’s inequality implies

PX∼P
[
φ

(
dQ(X)

dP(X)

)
> u

]
≤ Dφ(Q,P)

u
, u ≥M.

1The missing steps are as follows. We have Ptest

[
1−γ2
1−γ1

·
(
γ2
γ1

)y
> t
]
= Ptest

[
y >

log(
1−γ1
1−γ2

)+log t

log
γ2
γ1

]
, which can be bounded using

the distribution of y under Ptest[y > u] ≤ Ptest[y ≥ u] = Ptest[y ≥ due] ≤ (γ2)
u = exp(u log γ2).

14



Learning under Heterogenous Distribution Shift

And, if in addition φ(u) is strictly decreasing,
{

dP(X)
dQ(X) > t

}
=
{

dQ(X)
dP(X) <

1
t

}
=
{
φ(dQ(X)

dP(X) ) < φ( 1
t )
}

. Thus,

PX∼P
[

dP(X)

dQ(X)
> t

]
≤ Dφ(Q,P)

φ(1/t)
, φ(1/t) ≥M. (A.4)

Then, Corollary A.1 directly implies the following consequence.

Corollary A.2. Consider any non-negative and strictly decreasing functions φ1, φ2 : R>0 → [−M,∞); the other axioms
of the φ-divergence need not be met. Then, for any t1, t2 > 0 for which φ1(1/t1), φ2(1/t2) ≥M ,

Rtest(f, g) ≤ 2(t1Rtrain[f ] + t2Rtrain(f, g))

+ 32B2

(
Dφ1(Ptrain(x,y),Ptest(x,y))

φ1(1/t1)
+

Dφ2(Ptrain(y),Ptest(y))

φ2(1/t2)

)
,

where Dφ1
(Ptrain(x,y),Ptest(x,y) denotes the φ1-divergence between the joint distribution of (x,y) under Q = Ptrain

and P = Ptest, and Dφ2(Ptrain(y),Ptest(y)) the φ2-divergence between the marginal of y under these measures.

We show now describe two special cases of interest.

Example A.3 (Power Divergences). A special case is when φi(t) = 1
t
αi
i

− 1, αi > 0,2 then for any t1, t2 ≥ 1,

Rtest(f, g) ≤ 2(t1Rtrain[f ] + t2Rtrain(f, g))

+ 32B2

(
Dφ1

(Ptrain(x,y),Ptest(x,y))

tα1
1

+
Dφ2

(Ptrain(y),Ptest(y))

tα2
2

)
.

We obtain Lemma 3.4 as a special case:

Proof of Lemma 3.4. An archetypical example of the special case of power-divergences described above is φ1(u) =
φ2(u) = 1

u − 1. Then, it can be shown that Dφ(Q,P) = χ2(P,Q), where χ2(·, ·) denotes the χ2 divergence (note
the reversed order of the arguments). Thus, specializing Example A.3 further yields that, for any t1, t2 ≥ 1,

Rtest(f, g) ≤ 2(t1Rtrain[f ] + t2Rtrain(f, g))

+ 32B2

(
χ2(Ptest(x,y),Ptrain(x,y))

t1
+
χ2(Ptest(y),Ptrain(y))

t2

)
.

When Rtrain[f ],Rtrain(f, g) are sufficiently small relative to the above χ2(·, ·) divergences, we can minimize over t1, t2
without the t ≥ 1 constraint:

Rtest(f, g) ≤ 8B
√
Rtrain[f ] · χ2(Ptest(x,y),Ptrain(x,y)) + 8B

√
Rtrain(f, g) · χ2(Ptest(y),Ptrain(y)).

A.3.3. PROOF OF COROLLARY A.1

We begin with a standard change-of-measure bound.

Lemma A.1 (Change of Measure). For any measurable, bounded function h : X → [0,M ],

EX∼P[h(X)] ≤ inf
t>0

M PX∼P
[{

dP(X)

dQ(X)
> t

}]
+ tEX∼Q[h(X)].

2Note that this ensures that φi(·) is strictly decreasing, φi + 1 ≥ 0, as well as the f -divergence axioms φi(1) = 0 and φi is convex.
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Proof of Lemma A.1. Fix an event E ⊂ X , and suppose that 0 ≤ h(·) ≤M .

EX∼P[h(X)] ≤ EX∼P[h(X)I{E}] + EX∼P[h(X)I{Ec}]
≤ EX∼P[h(X)I{E}] +M P[Ec]

= M P[Ec] +

∫
h(X)I{E}dP(X)

= M P[Ec] +

∫
h(X)I{E}dQ(X) · dP(X)

dQ(X)

≤M P[Ec] +

(∫
h(X)I{E}dQ(X)

)
· sup
X∈E

(
dP(X)

dQ(X)

)
≤M P[Ec] + EX∼Q[h(X)] · sup

X∈E

(
dP(X)

dQ(X)

)
.

To conclulde, we take E := { dP(X)
dQ(X) ≤ t}.

Proof of Corollary A.1. We aim to establish the following:

Etest[(f − f? − βf )2] ≤ ν1Etrain[(f − f? − βf )2] + ∆1 (A.5)

Etest[(g − g? − βf )2] ≤ ν2Etrain[(g − g? − βf )2] + ∆2, (A.6)

In view of Corollary 3.2, it suffices to check that for any t1, t2 > 0, Eqs. (A.5) and (A.6) hold with (ν1, ν2)← (t1, t2), and
(∆1,∆2) ← (16B2∆x,y(t1), 16B2∆y(t2))). Consider the functions of the form h1(x,y) = (f(x) − f?(x) − βf (y))2

and h2(y) = (g(y) − g?(y) − βf (y))2. By Assm. 2.4, it holds that the image of both functions lies in [0, 16B2]. The
result now follows by applying Lemma A.1 with M ← 16B2 to the functions h1 (resp h2) with t← t1 (resp. t← t2).

A.4. Correspondence with Double ML

As we have mentioned, our results have a similar flavor to those in the literature on Neyman orthogonalization. In this
section, we expand on this comparison, following the treatment in (Foster and Syrgkanis, 2019). As terminology, we refer
to these idea broadly as orthogonal (statistical) learning.

The orthogonal learning setup describes a similar situation where a pair (f?, g?) is unknown, but weare primarily interested
in f?, referring to g? as a nuisance function. For example, we may have Ez | x,y = f?(x) + g?(y) as in our setup, but
orthogonal learning is more general in this respect. Unlike our setting however, orthogonal learning requires some auxiliary
mechanism or data to learn ĝ such that E(ĝ(y)− g?(y))2 . raten(G). Given this initial estimate, orthogonal learning
describes an algorithm and conditions under which one can learn f̂ satisfying

E(f̂(x)− f?(x))2 . raten(F) + raten(G)2.

Here raten(·) should be thought of as the standard “fast" rate for learning with the function class, i.e., raten(F) � log |F|
n

when |F| <∞. This guarantee naturally leads to a distribution shift bound of the form:

Rtest(f̂ , ĝ) . νx
(
raten(F) + raten(G)2

)
+ νyraten(G).

As with our bound, the complexity of the class G does not interact with distribution shifts on νx in a significant way.
Indeed, the error rate for f̂ has a quadratic dependence on that for ĝ, and this is typically lower order when considering
distribution shift settings. Thus, at a conceptual level, orthogonal learning can provide a similar robustness to heterogenous
distribution shifts as our results.

Quantitatively, the bound should be compared with our Theorem 3. The general takeaway is that our bound is worse in
at least two respects. First, the quadratic dependence on the rate for G cannot exploit localization in our setup, so our
bound is weaker when G is small. This is why we need hypercontractivity conditions to obtain favorable rates when G is
finite/parametric, which is not required for orthogonal learning. Second, when considering distribution shift, we incur a
dependence on νx,y rather than just νx. This arises from the identifiability issues that are inherent in our setting, which can
be resolved in the orthogonal learning setting due to the auxiliary mechanism for estimating g?.
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On the other hand, our results compare favorable at a qualitative level. Most importantly, our bound applies to ERM directly
while orthogonal learning requires algorithmic modifications, which in turn require more modeling of the data generating
process. Additionally, while we do not believe the assumptions are formally comparable, we view ours as somewhat more
practical. Specifically, it is rather uncommon that auxiliary information for estimating the nuisance parameter is available;
yet in canonical settings for orthogonal learning, we can show that conditional completeness holds. One such example of
the latter is the PLR model above.

B. Proof of Main Technical Results
This section provides the proofs of the most significant technical results in the paper. Specifically, Appendix B.1 give the
proofs of the excess error decompositions, Lemma 3.1. Appendix A.2 establishes Lemmas 3.2 and 3.3, which refine upper
bounds bounds on the distribution-shift term ν1. Next, we prove Proposition 4.2 which upper bounds Rtrain[f, g], and
thus, in view of Lemma 3.1, Rtrain[g; f ]. Appendix B.3 gives the proof of Proposition 4.3 which provides refined control
of Rtrain[f ]; the key step is an (empirical) excess-risk decomposition, Lemma B.3, which we prove in Appendix B.5. Fi-
nally, Appendix B.6 establishes our Hölder inequality for Rademacher complexities of Hadamard product classes (Propo-
sition 4.4). Lastly, Appendix B.7 derives the standard Dudley integral bound from the aforementioned proposition for
product classes.

B.1. Proof of Lemma 3.1

Write β = βf for simplicity. For any environment e and any triplet (f, g,β), the polarization identity yields

Re(f, g) = Ee[(f + g − f? − g?)2]

= Ee[(f − f? − β + g − g? + β)2]

= Ee[(f − f? − β)2] + Ee[(g − g? + β)2] + 2Ee[(f − f? − β)(g − g? + β)]

= Re[f ] +Re[g; f ] + 2Ee[(f − f? − β)(g − g? + β)].

For any e (in particular, e = test), we have

Ee[(f − f? − β)(g − g? + β)] ≤ Ee[(f − f? − β)2]1/2 · Ee[(g − g? + β)2]1/2

≤ Ee[(f − f? − β)2] + Ee[(g − g? + β)2] = Re[f ] +Re[g; f ].

Hence,

Re(f, g) ≤ 2(Re[f ] +Re[g; f ]).

When e = train, the fact that β(y) = Etrain[(f − f?)(x) | y] implies

Etrain[(f − f? − β)(g − g? + β)] = Etrain[((f − f?)(x)− β(y)) · (g − g? + β)(y) | y]

= Etrain[(Etrain[(f − f?)(x) | y]− β(y)) · (g − g? + β)(y)] = 0.

Thus,

Rtrain(f, g) = Rtrain[f ] +Rtrain[g; f ].

This proves the first two parts of the lemma. For the last part, we have

Rtest(f, g) ≤ 2Rtest[f ] + 2Rtest[g; f ] (Lemma 3.1)
(i)

≤ 2νx,yRtrain[f ] + 2νyRtrain[g; f ] (B.1)
(ii)

≤ 2νx,yRtrain[f ] + 2νyRtrain(f, g),

where (i) invokes Definition 2.1, and where in (ii), Rtrain[f ] ≥ 0 and Rtrain(f, g) = Rtrain[f ] + Rtrain[g; f ] implies
Rtrain[g; f ] ≤ Rtrain(f, g).
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B.2. Proof of Proposition 4.2

This section proves Proposition 4.2, which we use to upper boundRtrain[f, g], and thus, by way of Lemma 3.1,Rtrain[g; f ].
We begin by establishing the following more or less standard guarantee (see, e.g. (Liang et al., 2015)) for a generic function
classH. which controls the so-called “basic inequality” in square-loss learning (see, e.g. Wainwright (2019, Chapter 13)).

Lemma B.1. Let H be a functions fromW → [−B,B] containing the zero function h0(w) ≡ 0. Fix σ > 0, τ ≥ 1. Then,

for any probability measure P , w1, . . . ,wn
i.i.d∼ P and i.i.d. standard normal random variables ξ1 . . . , ξn, the following

holds with probability 1− δ

sup
h∈H

1

4
‖h‖2L2(P ) − ‖h(w1:n)‖22,n +

2τσ

n

n∑
i=1

ξih(wi) . γn,δ,σ(H)2,

where C > 0 is a universal constant and

γn,σ,τ (H, δ)2 = δn,R(H, B)2 + τ2δn,G (H, σ)2 +
(τ2σ2 +B2) log(1/δ)

n
.

Proof. We have

1

4
‖h‖2L2(P ) − ‖h(w1:n)‖22,n +

2τσ

n

n∑
i=1

ξih(wi)

=
1

4

(
‖h‖2L2(P ) − 2‖h(w1:n)‖22,n

)
︸ ︷︷ ︸

Term1

+

(
−1

2
‖h(w1:n)‖22,n +

2τσ

n

n∑
i=1

ξih(wi)

)
︸ ︷︷ ︸

Term2

By Lemma C.14 and Lemma C.10, respecitively, the following holds with probability at least 1− δ,

Term1 .

(
δn,R(H, B)2 +

B2 log(1/δ)

n

)
Term2 . τ2

(
σ2 log(1/δ)

n
+ δn,G (H, σ)2

)
.

Summing concludes.

Proof of Proposition 4.2. Let wi = (xi,yi) and w = (x,y), and set h? := f? + g? and ĥn := f̂n + ĝn. Note that
ĥn − h? ∈ Hcnt. It follows from the so-called “basic ineqality” Wainwright (2019, Eq. 13.36) that

‖(ĥn − h?)(w1:n)‖22,n − 2ξi(ĥn − h?)(wi) ≤ 0,

Thus, by adding and subtracting 1
4E[ĥn(w)2] and rearranging

E[(ĥn − h?)(w)2] ≤ 4
(
−E[(ĥn − h?)(w)2] + ‖(ĥn − h?)(w1:n)‖22,n + 2ξi(ĥn − h?)(wi)

)
.

Passing to the supremum over all h ∈ Hcnt := F + G − (f? + g?) and invoking Lemma B.1 shows that

Rtrain(f̂n, ĝn) . γn(δ)2 := δn,R(Hcnt, B)2 + δn,G (Hcnt, σ)2 +
(B2 + σ2) log(1/δ)

n
.
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B.3. Proof of Proposition 4.3

This section proves Proposition 4.3, which we use to bound Rtrain[f ]. It is considerably more involved than the proof of
Proposition 4.2, as we need to argue that the “large” class G does not heavily obfuscate recovery in the classF . Throughout,
let us use w = (x,y), wi = (xi,yi), andW = X × Y . Recall the sets

Fcnt := {f − βf − f? : f ∈ F}, Gcnt := {g + βf − f? : f ∈ F , g ∈ G}.

We begin by uniformly bounding the elements of Fcnt and Gcnt.

Lemma B.2. For any h ∈ Fcnt ∪ Gcnt, supw∈H |h(w)| ≤ 4B, where B is as in Assm. 2.4.

Proof. Follows directly from Assm. 2.4 and the fact that βf (y) := E[(f − f?)(x) | y = y].

In Appendix B.5, we prove the following, which shows that the conditional completeness allows us to decompose
Rtrain[f̂n] across these two terms, the first of which represents a standard excess risk in terms of F , and the latter of
which measures the contamination due to errors in G. This bound can be thought of as a careful refinement of the standard
“basic inequality” (Wainwright, 2019, Eq. 13.36).

Lemma B.3. If (F ,G) satisfies γ-conditional completeness, then for any empirical risk minimizer (f̂n, ĝn) for which
Rtrain(f̂n, ĝn) ≤ γ2, the following bound holds deterministically:

Rtrain[f̂n] ≤ 8 sup
h1∈Fcnt

(
1

4
E[h1(w)2]− 1

2
‖h1(w1:n)‖22,n − 2σ · 1

n

n∑
i=1

ξih1(wi)

)
(Term1)

+ 32 sup
h1∈Fcnt,h2∈Gcnt(γ)

(
−1

2
E[h1(w)2]− 4

n

n∑
i=1

h1(wi) · h2(wi)

)
. (Term2)

In the remainder of the proof, we apply various learning-theoretic tools to upper bound the right-hand side of Lemma B.3.
These tools, and their proofs, are detailed in Appendix C. While the tools themselves are more-or-less standard, deriving
from the offset-Rademacher arguments in (Liang et al., 2015), their application to the refined decomposition in Lemma B.3
yields the novelty of Proposition 4.3.

Proof of Proposition 4.3. We prove the variant of the lemma of the lemma involving δn,cross, and explain how to modify
the proof to obtain dependence on δ̄n,cross at the end.

The first term in the above display can be bounded directly from Lemma B.1 with τ set to 1, yielding

Term1 . δn,R(Fcnt, B)2 + δn,G (Fcnt, σ)2 +
(σ2 +B2) log(1/δ)

n
. (B.2)

To bound the second term, we use a localization argument. Define the doubly-localized term

Ψ(r, γ) := sup
h1∈Fcnt(r),h2∈Gcnt(γ)

(
−r

2

2
− 4

n

n∑
i=1

h1(wi) · h2(wi)

)
.

Following the same argument as in Lemma C.9, one can check that

Term2 = 32 sup
r>0

Ψ(r, γ),

and that

Term2 ≤ 32 · inf

{
r2 : Ψ(r, γ) ≤ r2

2

}
. (B.3)
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Hence, let us exhibit an r for which Ψ(r, γ) ≤ 0 with high probability. Define the shorthand Hr,γ := Fcnt(r) � Gcnt(γ).
For an r > 0 to be chosen, Lemma C.8 implies that with probability 1− δ/4,

Ψ(r, γ) ≤ c

(
Ew1:n

[Rn(Hr,γ [w1:n])] + r

√
log(1/δ)

n
+
B log(1/δ)

n

)
− r2

8

where c ≥ 1 is a universal constant. By AM-GM, we have

Ψ(r, γ) ≤ c
(
Ew1:n [Rn(Hr,γ [w1:n])] +

r2

16c
+

(8c+B) log(1/δ)

n

)
− r2

8

= c

(
Ew1:n [Rn(H[w1:n])]− r2

16c
+

(8c+B) log(1/δ)

n

)
(B.4)

We now compute

Ew1:n∼P [Rn(Hr,γ [w1:n])]− r2

16c

= Ew1:n
Eε1:n

[
sup

h∈Hr,γ

1

n

n∑
i=1

εih(wi)

]
− r2

16c

= Ew1:nEε1:n

[
sup

h1∈Fcnt(r),h2∈Gcnt(γ)

1

n

n∑
i=1

εih1(wi)h2(wi)

]
− r2

16c
(Definition ofHr,γ)

= Ew1:n
Eε1:n

[
sup

h1∈Fcnt(r),h2∈Gcnt(γ)

1

n

n∑
i=1

εih1(wi)h2(wi)−
1

16c
E[h1(w)2]

]
(Localization of Fcnt(r))

≤ 1

16c
T1 +

1

32c
T2,

where we define

T1 := Ew1:n
Eε1:n

[
sup

h1∈Fcnt(r),h2∈Gcnt(γ)

16c

n

n∑
i=1

εih1(wi)h2(wi)−
1

2
‖h1(w1:n)‖22,n

]

T2 := Ew1:n

[
sup

h1∈Fcnt

‖h1(w1:n)‖22,n − 2E[h1(w)2]

]
.

Bounding T1. To being, we remove the localization of Fcnt in the term T1, upper bounding

T1 ≤ T ′1 := Ew1:n
Eε1:n

[
sup

h1∈Fcnt,h2∈Gcnt(γ)

16c

n

n∑
i=1

εih1(wi)h2(wi)−
1

2
‖h1(w1:n)‖22,n

]

For any fixed w1:n ∈ Wn, consider the process

1

n

n∑
i=1

εih1(wi)h2(wi).

Introduce the class

H̃[ρ] := {h1 · h2 : h1 ∈ Fcnt, h2 ∈ Gcnt(γ), ‖h1(w1:n)‖2,n ≤ ρ}, (B.5)

which localizes h1 at empirical L2-norm ρ. Note that that, for any h̃ ∈ H̃[ρ], we can write h̃ = h1 · h2 where

‖h̃‖22,n =
1

n

n∑
i=1

h1(wi)
2h2(wi)

2 ≤ 4B2

n

n∑
i=1

h1(wi)
2 = 4B2‖h1(w1:n)‖22,n ≤ 4B2ρ2,
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where the first inequality is by Lemma B.2 and second by definition of H̃[ρ]. Again by Lemma B.2, maxi suph̃∈H̃[ρ] ≤
4B2. It follows by Lemma C.7 that the following holds with probability 1− δ

Z[ρ, w1:n] := sup
h1∈Fcnt:‖h1(w1:n)‖2,n≤ρ

sup
h2∈Gcnt(γ)

1

n

n∑
i=1

εih̃(wi)

= sup
H̃[ρ]

1

n

n∑
i=1

εih̃(wi)

. E

[
sup
H̃[ρ]

1

n

n∑
i=1

εih̃(wi)

]
+Bρ

√
log(1/δ)/n+

B2

n
.

Applying Lemma C.9 with the classes

V = H[w1:n], ui = (εi, i), Φ := {ui 7→ εih2(wi) : h2 ∈ Gcnt(γ)}

and constants

c1 . 1, c2 . B, c2 . B2, σ = 1, τ . 1,

we conclude

T ′1 ≤ sup
w1:n

Eε1:n

[
sup

h1∈Fcnt,h2∈Gcnt(γ)

16c

n

n∑
i=1

εih1(wi)h2(wi)−
1

2
‖h1(wi)‖22,n

]
. δ2

n +
B2

n
, (B.6)

where

δ2
n := inf

{
ρ2 : sup

w1:n

E[Z[ρ, w1:n]] ≤ ρ2

2

}
.

Note that

sup
w1:n

E[Z[ρ, w1:n]] := sup
w1:n

Rn(Fcnt[ρ, w1:n]� Gcnt(γ)[w1:n]),

so that

δ2
n = inf{ρ2 : sup

w1:n

Rn(Fcnt[ρ, w1:n]� Gcnt(γ)[w1:n]) ≤ ρ2

2
}

:= δ2
n,cross(Fcnt;Gcnt(γ)), (Definition 4.5)

so that by Eq. (B.6),

T1 ≤ T ′1 . δ2
n,cross(Fcnt;Gcnt(γ)) +

B2

n
. (B.7)

Bounding T2. This second term can be bounded by Lemma C.13 and is at most

T2 .
B2

n
+ δn,R(Fcnt, 4B)2 .

B2

n
+ δn,R(Fcnt, B)2 (B.8)

where the first inequality also uses Lemma B.2 to bound supw |h(w)| ≤ 4B for h ∈ Fcnt(r), and the second uses
Lemma C.3 to remove the factor of 4. Hence, with probability 1− δ/4, the following inequality holds for any fixed r > 0:
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Concluding the proof Combining Eqs. (B.4), (B.7) and (B.8) gives that with probability 1− δ,

Ψ(r, γ) . T1 + T2 +
(1 +B) log(1/δ)

n

.
B2 + (1 +B) log(1/δ)

n
+ δn,R(Fcnt, B)2 + δ2

n,cross(Fcnt;Gcnt(γ))

.
(1 +B2) log(1/δ)

n
+ δn,R(Fcnt, B)2 + δ2

n,cross(Fcnt;Gcnt(γ)).

Hence, if for a sufficiently large constant c′, we take

r2 := c′
(

(1 +B2) log(1/δ)

n
+ δn,R(Fcnt, B)2 + δ2

n,cross(Fcnt;Gcnt(γ))

)
,

then Ψ(r, γ) ≤ r2

2 with probability at least 1− δ. Therefore by Eq. (B.3), we conclude that with probability 1− δ,

Term2 .
(1 +B2) log(1/δ)

n
+ δn,R(Fcnt, B)2 + δ2

n,cross(Fcnt;Gcnt(γ)).

Combining with the bound on Term1 due to Eq. (B.2) concludes the proof.

B.4. A modification of Proposition 4.3

For sharper rates with finite function classes (Appendix D), we modify Proposition 4.3 as follows.

Definition B.1 (Population-Localized Cross-Critical Radius).

δ̄n,cross(Fcnt;H) := inf

{
r : Ew1:n

Rn((Fcnt(r)�H)[w1:n]) ≤ r2

2

}
. (B.9)

Proposition B.4. Suppose that (F ,G) satisfy γ-conditional completeness. Then, wheneverRtrain[ĝn; f̂n] ≤ γ, the follow-
ing holds with probability at least 1− δ,

Rtrain[f̂n] . δ̄2
n,cross(Fcnt;Gcnt(γ))2 + δn,R(Fcnt, B)2 + δn,G (Fcnt, σ)2 +

(σ2 +B2) log(1/δ)

n
.

Modification to obtain dependence on δ̄n,cross. To obtain a dependence on δ̄n,cross, we change our bound the term T1

above to use Lemma C.12 instead of Lemma C.9. The details are very similar.

B.5. Proof of Lemma B.3

This section establishes the generalized excess-risk decomposition which forms the basis of the argument in the previous
section, and which decouples - via conditional-completeness - the recovery of f ∈ F with conflation by g ∈ G.

Recall w = (x,y) and for f ∈ F , define

hf (w) := (f − f?)(x)− βf (y),
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and note that hf ∈ Fcnt. Then, for any f ∈ F , g ∈ F , and g0 ∈ G, we have

L̂n(f, g)− L̂n(f?, g0)

=
1

n

n∑
i=1

(f(xi) + g0(yi)− zi)
2 − (f?(xi) + g0(yi)− zi)

2

=
1

n

n∑
i=1

((f − f?)(xi)− σξi + (g − g?)(yi))2 − (−σξi + (g0 − g?)(yi))2

=
1

n

n∑
i=1

((f − f?)(xi)− βf (yi)− σξi + (g − g? + βf )(yi))
2 − (−σξi + (g0 − g?)(yi))2

=
1

n

n∑
i=1

((f − f?)(xi)− β(yi)− σξi + (g − g? + βf )(yi))
2 − (−σξi + (g − g? + βf )(yi))

2

+
1

n

n∑
i=1

(−σξi + (g − g? + βf )(yi))
2 − (−σξi + (g0 − g?)(yi))2

=
1

n

n∑
i=1

((f − f?)(xi)− βf (yi))
2 − 2σ · 1

n

n∑
i=1

ξi((f − f?)(xi)− βf (yi))

+
2

n

n∑
i=1

((f − f?)(xi)− βf (yi)) · (g − g? + βf )(yi))

+
1

n

n∑
i=1

(−σξi + (g − g? + βf )(yi))
2 − (−σξi + (g0 − g?)(yi))2

︸ ︷︷ ︸
Remainder(g0;f,g)

Applying the definition of hf , the above admits the more compact form

L̂n(f, g)− L̂n(f?, g0) :=
1

n
‖hf (w1:n)‖22,n − 2σ · 1

n

n∑
i=1

ξihf (wi) +
2

n

n∑
i=1

hf (wi) · (g − g? + βf )(yi))

+ Remainder(g0; f, g).

By γ-conditional completeness, we have that if Rtrain[f, g] ≤ γ2, then we may select g̃ = g + βf ∈ G so that
Remainder(g0; f, g) = 0. Similarly, if we now consider f̂n, ĝn to be empirical risk minimizers of L̂n(f, g), it must
hold that L̂n(f̂n, ĝn)− infg0∈G L̂n(f?, g0) ≤ 0. Thus,

0 ≥ L̂n(f, g)− inf
g0∈G

L̂n(f?, g0)

≥ L̂n(f, g)− L̂n(f?, g̃)

≥ 1

n
‖hf̂n(w1:n)‖22,n − 2σ · 1

n

n∑
i=1

ξihf̂n(wi) +
2

n

n∑
i=1

hf̂n(wi) · (g − g? + βf̂n)(yi))

=
1

n
‖hf̂n(w1:n)‖22,n − 2σ · 1

n

n∑
i=1

ξihf̂n(wi) +
2

n

n∑
i=1

hf̂n(wi) · (g − g? + βf̂n)(yi))

Note that E[hf̂n(w)2] is precisely equal toRtrain[f̂n]. Adding and substracting an η multiple of this term for η tunable,

ηRtrain[f̂n] ≥ 1

n
‖hf̂n(w1:n)‖22,n − ηE[hf̂n(w)2]− 2σ · 1

n

n∑
i=1

ξihf̂n(wi)

+
2

n

n∑
i=1

hf̂n(wi) · (g − g? + βf̂n)(yi)).
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Rearranging,

Rtrain[f̂n] ≤ η−1

(
ηE[hf̂n(w)2]− 1

n
‖hf̂n(w1:n)‖22,n − 2σ · 1

n

n∑
i=1

ξihf̂n(wi)

)

+ η−1

(
− 1

2n

n∑
i=1

hf̂n(wi) · (g − g? + βf̂n)(yi))

)

= η−1

(
2ηE[hf̂n(w)2]− 1

n
‖hf̂n(w1:n)‖22,n − 2σ · 1

n

n∑
i=1

ξihf̂n(wi)

)

+ η−1

(
− η
n
E[hf̂n(w)2]− 1

2n

n∑
i=1

hf̂n(wi) · (g − g? + βf̂n)(yi))

)
.

Finally, note that hf̂n ∈ Fcnt. As established above, g−βf̂n ∈ G by conditional completeness, so g− g?+βf̂n ∈ Gcnt. In

fact, the conditionRtrain(f̂n, ĝn) ≤ γ2 implies via Lemma 3.1 that E[(g−βf̂n−g?)
2] ≤ γ2, so that g−g?+βf̂n ∈ Gcnt(γ).

Thus, we may pass to a supremum on the right-hand side equations:

Rtrain[f̂n] ≤ η−1 sup
h1∈Fcnt

(
2ηE[h1(w)2]− 1

n
‖h1(w1:n)‖22,n − 2σ · 1

n

n∑
i=1

ξih1(wi)

)

+ η−1 sup
h1∈Fcnt,h2∈Gcnt

(
− η
n
E[h1(w)2]− 1

2n

n∑
i=1

h1(wi) · h2(wi)

)
.

Selecting η = 1/8 conclues.

B.6. Proof of Proposition 4.4

This section establishes the Hölder-style inequality for Rademacher complexities of product classes. For completeness, we
begin by reproducing a standard bound on the Rademacher complexity of finite function classes.

Lemma B.5. Let V ⊂ Rn be a finite set. Then,

Rn(V) ≤ rad2(V) min{1,
√

2 log |V|/n}

The same bounds also hold for Ĝn,Gn, and more generally, whenever the variables εi in the definition of the Rademacher
complexities are replaced by arbitrary 1-subGaussian variables.3

Proof. Let us bound R̂n, with εi replaced by arbitrary 1-subGaussian random variables. Recall the definition of a 1-
subGaussian variable ε: logE[exp(λε)] ≤ 1

2λ
2 (it is standard that Gaussian random variables and Rademacher variables

satisfy this inequality). By Taylor expanding logE[exp(λε)] = log(1 +
∑
i≥1(λE[εi]/i!), it follows that E[ε] = 0, and

E[ε2] ≤ 1. Hence, by Cauchy-Schwartz,

Rn(V) = E[sup
v∈V

1

n

n∑
i=1

εivi] ≤ sup
v∈V
‖v‖2,n ·

√√√√ 1

n
E

n∑
i=1

ε2
i ≤ rad2(V).

The second bound is a consequence of standard sub-Gaussian maximal inequality (see, e.g. , Theorem 2.5 in Lugosi) and
the fact that 1

n

∑n
i=1 εivi is 1

n‖v‖
2
2,n-subGaussian (e.g., the discussion in Boucheron et al. (2013, Chapter 2.3)).

We now turn to the proof of Proposition 4.4. We first state two useful lemmas. The first is a direct consequence of Hölder’s
inequality and the fact that ‖ · ‖p,n ≤ ‖ · ‖p′,n for p′ ≥ p.

Lemma B.6 (Variant of Hölder’s inequality). For any p, q ≥ 2 satisfying 1/p+ 1/q ≤ 1/2,

∀v, u ∈ Rn, ‖v � u‖2,n ≤ ‖v‖p,n · ‖u‖q,n (B.10)
3Recall a variable ε is 1-subGaussian if, for all λ ≥ 0, logE[exp(λε)] ≤ λ2/2.
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The second bounds the Rademacher complexity of Hadamard products in terms of a finite cover. It is stated with a factor
of 2 for convenience when applied below.

Lemma B.7. Let V,U ⊂ Rn, p, q ≥ 2 satisfy 1/p + 1/q ≤ 1/2, δ1, δ2 ≥ 0, and let V′ be a 2δ1-net of V in ‖ · ‖p,n and
U′ an 2δ2-net of U in ‖ · ‖q,n. Then,

Rn(V� U) ≤ Rn(V′ � U′) + 2(radp(V)δ1 + radq(U)δ2),

The above bound also holds for the Gn, and more generaly, any analogous complexity using suprema over 1-subGaussian
random variables.

Proof of Lemma B.7. Observe that, for any (v, u) ∈ V × U, there exists a (v′, u′) ∈ V′ × U′ with ‖v − v′‖p,n ≤ δ1 and
‖u− u′‖q,n ≤ δ2. Hence, by Eq. (B.10) followed by Eq. (B.12),

‖v � u− (v′)� (u′)‖2,n ≤ ‖v′ � (v − v′)‖2,n + ‖v � (u− u)′‖2,n
≤ 2(radq(U)δ1 + radp(V)δ2)

Hence,

Rn(V� U) = E sup
(v,u)∈V×U

1

n

n∑
i=1

εiuivi

≤ E sup
(v,u)∈Vj1×Uk1

1

n

n∑
i=1

εiuivi − E sup
(v,u)∈V1×Uj1

inf
(v′,u′)∈V×U

1

n

n∑
i=1

εi(uivi − u′iv′i)

≤ Rn(Vj1 � Uk1)− E sup
w:‖w‖2,n≤2(radq(U)δ1+radp(V)δ2)

1

n

n∑
i=1

εiwi

≤ Rn(Vj1 � Uk1) + 2(radq(U)δ1 + radp(V)δ2), (Lemma B.5)

as needed.

We now turn to the proof of the main result of this section.

Proof of Proposition 4.4. Recall that radp(V) and radq(U) denote the radii of V and U in the ‖ · ‖p,n and ‖ · ‖q,n norms,
respectively, assuming 0 ∈ U∩V. The only properties of Rademacher variables we use are those assumed by Lemma B.5,
i.e. 1-subGaussianity, so our bound holds for Gaussian complexity and other subGaussian ensembles.

We begin with the classical construction of Dudley’s integral. Fix δ1 ≤ radp(V), δ2 ≤ radq(U)

j1 := sup{j : 2−jradp(V) ≥ δ1}, k1 := sup{k : 2−kradq(U) ≥ δ2}

For each j ∈ [j1] ∪ {0}, let Vj denote a minimal 2−jradp(V) covering of V in ‖ · ‖p,n. Note that since 0 ∈ V, we can
take V0 = {0}, so |V0| = 0. Define πj1(v;V) = v for v ∈ Vj1 , and recursively set πj−1(v;V) ∈ arg minv′∈Vj−1

‖v′ −
πj(v;V)‖p,n. Set ∆0(v;V) = π0(v;V), and for j ≥ 1, set ∆j(v;V) := πj(v;V) − πj−1(v;V) for j ∈ [j1]. Repeat
the construction to construct Vk, projection πk(U), and remainders ∆k(u;U) analogously, but replacing ‖ · ‖p,n the its
conjugate ‖ · ‖q,n. The for all u ∈ Uj1 , v ∈ Uk1 .

v =

j1∑
j=0

∆j(v;V), u =

k1∑
k=0

∆k(u;U). (B.11)

Lastly, as a shorthand, set

εj(V) := radp(V)2−j , εk(U) = 2−kradq(U),

noting that

δ1 ≤ εj1(V) ≤ 2δ1, δ2 ≤ εk1(U) ≤ 2δ2 (B.12)
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By Lemma B.7, it suffices to bound R̂n(Vj1 � Uk1). For, (u, v) ∈ Vj1 × Uk1 ,

R̂n(Vj1 � Uk1) = sup
(u,v)∈Vj1×Uk1

1

n

n∑
i=1

εiu� v

= sup
(u,v)∈Vj1×Uk1

1

n

n∑
i=1

j1∑
j=0

k1∑
k=0

εi∆j(v;U)�∆k(u;U)

≤
j1∑
j=0

k1∑
k=0

sup
(u,v)∈Vj1×Uk1

1

n

n∑
i=1

εi∆j(v;U)�∆k(u;U)

≤
j1∑
j=0

k0∑
k=1

R̂n(Wj,k)

where we define Wj,k := {∆j(v;U)�∆k(u;U) : v ∈ Vj1 , u ∈ Uk1}. Taking expectations yields

Rn(Vj1 � Uk1) ≤
j1∑
j=0

k1∑
k=0

Rn(Wj,k) (B.13)

From our construnction, we can bound

log |Wj,k| ≤ log(|Vj ||Vj−1||Uk||Uk−1|) ≤ log(|Vj |2|Uk|2) ≤ log(2|Vj |2|Uk|2)

= 2(Mp(V; εj(V)) + Mq(U; εk(U)))

where we use 1 ≤ |Vj−1| ≤ |Vj | = Mp(V; εj(V)), and similarly for the sets Uk. Moreover, Eq. (B.10)

rad2(Wj,k) = sup{‖∆j(v;U)�∆k(u;U)‖2,n : v ∈ Vj1 , u ∈ Uk1}
≤ sup
v∈Vj

‖∆j(v;U)‖p,n · sup
u∈Uk

‖∆k(u;U)‖q,n

≤ εj(V)εk(U)

Thus, Lemma B.5 yields

Rn(Wj,k) ≤ εj(V)εk(U)

√
2

n
·
√

(2(Mp(V; εj(V)) + Mq(U; εk(U)))

≤ 2√
n

(
εj(V)εk(U)

√
Mp(V; εj(V) + εj(V)εk(U)

√
Mq(U; εk(U))

)
≤ 2√

n

(
radq(U)2−kεj(V)

√
Mp(V; εj(V) + radp(V)2−jεk(U)

√
Mq(U; εk(U))

)

Hence, Eq. (B.13) and evaluating convergent sums yields

Rn(Vj1 � Uk1) ≤ 2√
n

j1∑
j=0

k1∑
k=0

(
radq(U)2−kεj(V)

√
Mp(V; εj(V) + radp(V)2−jεk(U)

√
Mq(U; εk(U))

)

≤ 4radq(U)√
n

j1∑
j=1

εj(V)
√

Mp(V; εj(V)) +
4radp(V)√

n

k1∑
k=1

εk(U)
√

Mq(U; εk(U))

where in the second-to-last line, we use that we have Mp(V; ε0(U)) = log |V0| = 0.

To simplify, we invoke the following claim.
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Claim B.8 (Sum-to-Integral Coversion). Let φ be a non-increasing function, and let εj = 2−jR for some R > 0. Then,
for ja ≤ jb,

jb∑
j=ja

εjφ(εj) ≤ 2

∫ εja

εjb+1

φ(ε)dε =

∫ 2εja

εjb

φ(ε/2)dε.

Proof. The first inequality follows since φ is non-increasing, and the second line uses a change of variables

jb∑
j=ja

εjφ(εj) ≤
jb∑
j=ja

εj
εj − εj+1

∫ εj

εj+1

φ(ε)dε = 2

jb∑
j=ja

∫ εj

εj+1

φ(ε)dε ≤ 2

∫ εja

εjb+1

φ(ε)dε

=

∫ 2εja

2εjb+1

φ(ε/2)dε =

∫ 2εja

εjb

φ(ε/2)dε.

In particular, since metric entropies are non-increasing in their scale factors,

j1∑
j=1

εj(V)
√

Mp(V; εj(V)) ≤
j1∑
j=1

εj(V)

εj(V)− εj+1(V)

∫ εj(V)

εj+1(V)

√
Mp(V; ε)dε

= 2

j1∑
j=1

∫ εj(V)

εj+1(V)

√
Mp(V; ε)dε = 2

∫ ε1(V)

εj1+1(V)

√
Mp(V; ε)dε

= 2

∫ radp(V)/2

εj1 (V)/2

√
Mp(V; ε)dε

=

∫ radp(V)

εj1 (V)

√
Mp(V; ε/2)dε ≤

∫ radp(V)

δ1

√
Mp(V; ε/2)dε,

where the last inequality uses Eq. (B.12).

Invoking a similar bound for the analogus U-term, we conclude

Rn(Vj1 � Uk1) ≤ 4radq(U)√
n

∫ radp(V)

δ1

√
Mp(V; ε/2)dε+

4radp(V)√
n

∫ radq(U)

δ2

√
Mq(U; ε/2)dε

Combining with Lemma B.7 and taking the infinum over valid δ1, δ2,

Rn(V� U) ≤ radq(U) inf
δ1≤radp(V)

(
2δ1 + 4√

n

∫ radp(V)

δ1

√
Mp(V; ε/2)dε

)
︸ ︷︷ ︸

Dn,p(V)

+ radp(V) inf
δ2≤radq(U)

(
2δ2 + 4√

n

∫ radq(U)

δ2

√
Mq(U; ε/2)dε

)
︸ ︷︷ ︸

Dn,p(U)

B.7. Derivation of Lemma 4.1 from Proposition 4.4

We consider the Rademacher complexity, as Proposition 4.4 guarantees the same holds of the Gaussian complexity. Let
U = {w 7→ (1, 1, . . . , 1) ∈ Rn}. Applying Proposition 4.4 with the square-Hölder conjugates p = 2 and q = ∞. As the
construction of U ensures V� U = V, this yields

Rn(V) = Rn(V� U) ≤ rad∞(U)Dn,2(V) + rad2(V)Dn,∞(U).
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Notice that rad∞(U) = ‖(1, 1, . . . , 1)‖∞ = 1. Moreover, the covering number of U is 1, so its log-covering numbers are
zero. Thus, the integral in Dn,∞(U) vanishes. This concludes the demonstration that

Rn(V) ≤ Dn,2(V) (B.14)

As a consequence,

δn,R(H, c) := inf

{
r : Rn(H[r, w1:n]) ≤ r2

2c

}
≤ inf

{
r : Dn,2(H[r, w1:n]) ≤ r2

2c

}
(Eq. (B.14))

:= δn,D(H, c).

C. Technical Tools
This section enumerates the accompanying technical results applied in the proofs in Appendix B. Whereas Appendix B
highlights conceptually novel arguments, this section massages more standard material into the most convenient form for
adoption in the prior section.

The results in this section are stated at the following level of generality: Throughout, let H : W → R denote a class of
functions, and P be a measure overW , with Var and E its corresponding expectation and variance functionals with respect
to P . We say H contains zero if the function h0(w) ≡ 0 lies in H. Many definitions results below involve star-hulls and
convex-hulls.

Definition C.1. Let V ⊂ Rn. We let conv(V) denote its convex hull and star(V) := {t · v : t ∈ [0, 1], v ∈ V}. Similarly,
for a function class H : [0, 1] → R, we let star(H) := {t · h, t ∈ [0, 1], h ∈ H}, convex hull as conv(H) as the minimal
convex set containingH.

C.1. Basic Empirical Process Results

Properties of Rademacher and Gaussian complexities. We recall a couple standard facts about the Rademacher com-
plexity. First is that Rademacher complexity is invariant under the convex hull operation, and also under the star-hull
operation if the set contains zero.

Lemma C.1 (Convex Hulls). If V′ ⊂ V, Rn(V′) ≤ Rn(V). Moreover, Rn(V) = Rn(conv(V)), and if in addition,
0 ∈ V, Rn(V) = Rn(star(V)).

Proof. Recall Rn(V) := 1
nEε supv∈V

∑n
i=1 εivi. It is then clear that if V′ ⊂ V, then Rn(V′) ≤ Rn(V). Then is

establishes the first point. The second follows because the maximum of a linear function v 7→
∑n
i=1 εivi occurs on the

extreme points of V, which are the same as those of conv(V). Lastly, if V contains 0, conv(V) ⊃ star(V) ⊃ V.

Next, we state a classical Lipschitz contraction for Rademacher complexity.

Lemma C.2 (Rademacher Contraction, Lemma 29 in (Rakhlin, 2022) ). Let φ be any L-Lipschitz function, and given
V ⊂ Rn, let φ(V) := {φ(v) : v ∈ V}. Then, Rn(φ(V)) ≤ LRn(V).

The following lemma is standard (see, e.g. Wainwright (2019, Chapter 14) or, examine the proof of Rakhlin (2022, Lemma
30)).

Lemma C.3. Let H be star-shaped. Then H(cr) ⊂ cH(r) for all c ≥ 1. Hence, for c ≥ 1, it holds that δn,R(H, cB) ≤
cδn,R(H, B), and similarly δn,G (H, cσ) ≤ cδn,G (H, σ).

The following lemma shows a similar property for the Dudley functional, this time without the constraint that H is star-
shaped.

Lemma C.4. For any class H and c ≥ 1, it holds that Dn,2(H[r, w1:n]) ≤ c−1Dn,2(H[cr, w1:n]). Thus, for any c ≥ 1
and B > 0, δn,D(H, cB) ≤ cδn,D(H, B).
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Proof. We then have, recalling Definition 4.1 and using rad2(H[r, w1:n])) = r that

Dn,2(H[r, w1:n]) := inf
δ≤r

(
2δ +

4√
n

∫ r

δ

√
M2(V; ε/2)dε

)
= inf

δ≤r

(
2
cδ

c
+

4

c
√
n

∫ cr

cδ

√
M2(V; ε/2c)dε

)
=

1

c
inf
δ≤cr

(
2δ +

4√
n

∫ cr

δ

√
M2(V; ε/2c)dε

)
(i)

≥ 1

c
inf
δ≤cr

(
2δ +

4√
n

∫ cr

δ

√
M2(V; ε/2)dε

)
=

1

c
Dn,2(H[cr, w1:n]),

where in (i) we use anti-monotonicity of covering numbers M2(V; ε/2c) ≤ M2(V; ε/2) for c ≥ 1. Recall from Defini-
tion 4.1 the definition

δn,D(H, cB) := inf

{
r : sup

w1:n

Dn,2(H[r, w1:n]) ≤ r2

2cB

}
= inf

{
cr : sup

w1:n

Dn,2(H[cr, w1:n]) ≤ cr2

2B

}
= c inf

{
r : c−1 sup

w1:n

Dn,2(H[cr, w1:n]) ≤ r2

2B

}
≤ c inf

{
r : sup

w1:n

Dn,2(H[r, w1:n]) ≤ r2

2B

}
= cδn,D(H, cB),

where the inequality above follows from the first part of the lemma.

Lemma C.5. Let H : W → R be an arbitrary class of functions, and let h0 : W → R be arbitrary. Then, the class
H+ h0 := {h+ h0 : h ∈ H} satisfies, for all n ∈ N, c > 0, q ≥ 1, and w1:n ∈ Wn the equalities,

δn,D(H+ h0, c) = δn,D(H, c), Dn,q((H+ h0)[w1:n]) = Dn,q(H[w1:n]).

In particular, recalling the notation of Section 4.2, for any c > 0, δn,D(Fcnt, c) = δn,D(Fβ, c) and supw1:n
Dn,∞((G −

g?)[w1:n])2 = supw1:n
Dn,∞(G[w1:n])2.

Proof. The proof is immediate from the fact that translation by a single element leaves the covering numbers, and hence
metric entropies, unchanged.

C.2. Deviation Inequalities for Empirical Processes

The following is a standard maximal inequality for empirical processes.
Lemma C.6 (Empirical Process Inequality, Theorem 2.3 in (Bousquet, 2002)). LetH :W → [−B,B] and let P be a mea-
sure onW such that suph∈H |Ew∼P [h(w)]| = 0. Let Z := 1

n suph∈H
∑n
i=1 h(wi), and let r2 := suph∈H Ew∼P [h(w)2].

Then, for any choice of parameter ε > 0.

Pw1:n∼P

[
Z ≥ (1 + ε)E[Z] ≥ r

√
2 log(1/δ)

n
+

(
1

ε
+

1

3

)
B

n
log(1/δ)

]
≤ δ.

By examining the proof of Theorem 2.3 in (Bousquet, 2002) from Theorem 2.1 in that same work, one can check
that the concusion of Lemma C.6 holds verbtaim in the folllowing more general setup: the class of functions H̃ :
W × [n] → [−B,B] are index-dependent, the process is Z := 1

n suph̃∈H̃
∑n
i=1 h̃(wi, i), and where we define

r2 := 1
nE[
∑n
i=1 h̃(wi, i)

2] as the average variance. A special case of this generalization applies to Rademacher pro-
cesses Z := 1

n suph∈H
∑n
i=1 εih(wi), where εi plays the roll of the random variable wi, and where h̃(εi, i) = εih(wi).
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Lemma C.7. Let H : W → [−B,B]. Fix any w1:n ∈ W , and let Z := 1
n suph∈H

∑n
i=1 εih(wi), and let r2 :=

suph∈H ‖h(w1:n)‖22,n. Then, for any choice of parameter ε > 0.

Pw1:n∼P

[
Z ≥ (1 + ε)E[Z] ≥ r

√
2 log(1/δ)

n
+

(
1

ε
+

1

3

)
B

n
log(1/δ)

]
≤ δ.

We shall also need a related lemma that bounds deviations in terms of Rademacher complexity.

Lemma C.8 (Uniform Convergence, Theorem 2.1 in (Bartlett et al., 2005)). Let H : W → [−B,B] be a family of
uniformly bounded functions with |h| ≤ B and suph∈HVar[h2] ≤ r2 and let P be a measure over W . Then, with
probability at least 1− δ, any

sup
h∈H

1

n

n∑
n=1

Ew∼P [h(w)]− h(wi) ≤

(
6Ew1:n∼P [Rn(H[w1:n])] + r

√
2 log(1/δ)

n
+

11B log(1/δ)

n

)

In particular, ifH = H(r) for some r, then the above holds for ν2 = r2.

C.3. Fixed-Design Guarantees

This section concerns various measures of complexity for a function class when its arguments (“design points”) w1:n are
treated as deterministic. We begin with the following general lemma, which abstracts away the function class H[w1:n]
evaluated on the design points with a set V ⊂ Rn. This lemma measure “offset complexities”, were a mean zero process
involving v ∈ V is offset by norms −‖v‖2. This lemma implies important consequences of this lemma for Gaussian and
Rademacher compelxities.

Lemma C.9 (Fixed-Design Master Lemma). Let V ⊂ Rn be a containing 0 ∈ Rn, with V[r] := {v ∈ V : ‖v‖2,n ≤ r},
and let Φ : U → R be an arbitrary function classes (possibly even of cardinality one). Let u1 . . . ,un be a random
variables taking values in U , and define the processes

Z(r) := sup
v∈V[r]

sup
φ∈Φ

1

n

n∑
i=1

viφ(ui) (localized maximal process)

Y(τ) := sup
v∈V

sup
φ∈Φ

{
2τ

n

n∑
i=1

viφ(ui)−
1

2
‖v‖22,n

}
. (offset maximal process)

Lastly, define a modification of Y which replaces the offset by ‖v‖22,n with the offset by r:

Ỹ(r; τ) := sup
v∈V[r]

sup
φ∈Φ

{
2τ

n

n∑
i=1

viφ(ui)

}
− r2

2
= 2τZ(r)− r2

2
.

Then, the following are true.

(a) With probability one,

Y(τ) = sup
r>0

Ỹ(r; τ).

(b) With probability one,

Y(τ) ≤ inf

{
r2 : Ỹ(r; τ) ≤ r2

2

}
(c) Suppose that, for any choice of r > 0, Z(r) satisfies the following concentration inequality with parameters c1 ≥ 1

and c2, c3 > 0:

P

[
Z(r) ≤ c1E[Z(τ)] + c2r

√
log(1/δ)

n
+
c3 log(1/δ)

n

]
≤ δ, (C.1)
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Then, for any τ ≥ 1 and σ > 0, the following holds probability 1− δ, the following holds

Y(στ) . c21τ
2δ̄n(σ)2 +

(τ2σ2c22 + (c3/c2)2) log(1/δ)

n
,

where

δ̄n(σ) := inf

{
r : E[Z(r)] ≤ r2

2σ

}
.

Thus, by itegrating,

EY(στ) . c21τ
2δ̄n(σ)2 +

(τ2σ2(c22 + 1) + c3)

n
,

Proof. We prove the lemma in parts. First, however, we observe that we may assume without loss of generality that V
is star-shaped. Note that star(V[r]) = star(V)[r]. Then, by the same logic as in the proof of Lemma C.1, the inclusion
0 ∈ V[r] implies conv(V[r]) ⊃ star(V[r]) = star(V)[r] ⊃ V[r], which establishes

Z(r) := sup
v∈V[r]

sup
φ∈Φ

1

n

n∑
i=1

viφ(ui) = sup
v∈conv(V[r])

sup
φ∈Φ

1

n

n∑
i=1

viφ(ui)

≥ sup
v∈star(V)[r]

sup
φ∈Φ

1

n

n∑
i=1

viφ(ui) ≥ sup
v∈V[r]

sup
φ∈Φ

1

n

n∑
i=1

viφ(ui) = Z(r),

so

Z(r) = sup
v∈star(V)[r]

sup
φ∈Φ

1

n

n∑
i=1

viφ(ui).

Similarly, one can show that

Y(τ) := sup
v∈star(V)

sup
φ∈Φ

{
2τ

n

n∑
i=1

viφ(ui)−
1

2
‖v‖22,n

}
, Ỹ(r; τ) := sup

v∈star(V)[r]

sup
φ∈Φ

{
2τ

n

n∑
i=1

viφ(ui)

}
− r2

2
.

Hence, we can apply the entire lemma to star(V), and then convert back to V by the above reduction.

Part (a). As r2 ≥ ‖v‖22,n for all v ∈ V[r], it is immediate that Y(τ) ≥ supr>0 Ỹ(r; τ). We prove the other direction.
Fix an arbitrary ε > 0 and suppose that that v ∈ V and φ ∈ Φ satisfy

2τ

n

n∑
i=1

viφ(ui)−
1

2
‖v‖22,n ≥ Y(τ)− ε.

Letting r := ‖v‖2,n, it holds that

Y(τ)− ε ≤ 2τ

n

n∑
i=1

viφ(ui)−
r2

2
≤ Ỹ(r; τ) ≤ sup

r>0
Ỹ(r; τ).

As ε was arbitrary, Y(τ) ≤ Ỹ(r; τ).

Part (b). Suppose that r satisfies

Ỹ(r; τ) ≤ 0.
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Fix v ∈ V. Since V is star-shaped, either v ∈ V[r], or αv ∈ V[r] for α = r/‖v‖2,n < 1. In the first case,

sup
φ∈Φ

2τ

n

n∑
i=1

viφ(ui)−
1

2
‖v‖22,n ≤ sup

φ∈Φ

2τ

n

n∑
i=1

viφ(ui)

= sup
φ∈Φ

2τ

n

n∑
i=1

viφ(ui)− r2/2 + r2/2

≤ Ỹ(r; τ)︸ ︷︷ ︸
≤ r22

+
r2

2
≤ r2

2
.

In the second case, recalling α = r/‖v‖2,n < 1,

sup
φ∈Φ

2τ

n

n∑
i=1

viφ(ui)−
1

2
‖v‖22,n =

1

α

(
sup
φ∈Φ

2τ

n

n∑
i=1

αviφ(ui)−
1

2α
r2

)

≤ 1

α

(
sup
φ∈Φ

2τ

n

n∑
i=1

αviφ(ui)−
1

2
r2

)
+
r2

2α
(1− 1

α
)

≤ r2

2α
+
r2

2α
(1− 1

α
) =

r2

2

(
2α−1 − α−2

)
≤ r2

2

where the second inequality uses maxx(2x− x2) ≤ 1 This concludes the proof of part (b).

Part (c). Applying the AM-GM inequality twice to Eq. (C.1), the following holds with probability 1− δ,

Z(r) ≤ c1E[Z(r)] +
r2

4τσ
+

(2τσc22 + c3) log(1/δ)

n

= c1E[Z(r)] +
r2

4τσ
+

(2τ2σ2c22 + τσc3) log(1/δ)

n · τσ

≤ c1E[Z(r)] +
r2

4τσ
+

(3τ2σ2c22 + c23/2c
2
2) log(1/δ)

n · τσ
.

Consequently, setting α := 8c1τ ≥ 1,

Ỹ(r;στ) = 2στZ(r)− r2

2
≤ 2c1στE[Z(r)]− r2

4
+

(3τ2σ2c22 + c23/2c
2
2) log(1/δ)

n

=
σα

4

(
E[Z(r)]− r2

α2σ

)
+

(3τ2σ2c22 + c23/2c
2
2) log(1/δ)

n
− r2

8

To conclude it suffices to show that the above expression is non-positive for the choice

r2 := max

{
(24τ2σ2c22 + 4(c3/c2)2) log(1/δ)

n
, α2(δ̄n(σ)2 + ε)

}
.

Note that this choice makes the second term in the previous display vanishes, so

Ỹ(r;στ) ≤ σα

4

(
E[Z(r)]− r2

2ασ

)
=
σα

4

(
E[Z(αδ̄n(σ)2)]− αδ̄n(σ)2

2σ

)
(i)

≤ σα

4

(
αE[Z(δ̄n(V,Φ, σ)2)]− αδ̄n(σ)2

2σ

)
=
σα2

4

(
E[Z(δ̄n(σ)2)]− δ̄n(σ)2

2σ

)
≤ 0 ≤ r2

2

where (i) uses that V is star-shaped, so E[Z(µr)] ≤ µE[Z(r)] for any µ ≥ 1. The proof now follows by subsituting in
α = 8c1τ .
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Consequences of the Master Lemma. Our first consequence is for Gaussian complexities.

Lemma C.10 (Offset Gaussian Complexity Bound). LetH :W → R be a function class containing the zero function. Fix
any δ ∈ (0, 1) and σ > 0 and τ ≥ 1. Then, there exists a constant c > 0 such that

sup
w1:n

Pξ1:n

[
sup
h∈H

2στ

n

n∑
i=1

ξih(wi)−
1

2n
‖h(w1:n)‖22,n > cτ2

(
σ2 log(1/δ)

n
+ δn,G (H, σ)2

)]
≤ δ,

where above ξ1:n are i.i.d. standard Normal.

Proof. Recall the setH[r, w1:n] = {h ∈ H : ‖h‖22,n ≤ r2}. Then, the random variable

Z(r) :=
1

n
sup

h∈H[r;w1:n]

n∑
i=1

ξih(wi)

satisfies, by Gaussian-Lipschitz concentration (e.g. Boucheron et al. (2013, Chapter 2.3) or Wainwright (2019, Chapter
3)),

P[Z(r0) ≥ EξZ(r0) + r0

√
2 log(1/δ)/n] ≤ δ. (C.2)

The bound now follows from Lemma C.9, where ui = xi and Φ is a singleton consisting of the identity function.

We establish a similar guarantee for Rademacher variables.

Lemma C.11 (Offset Rademacher Complexity Bound). Let H : W → [−B,B] be a function class containing zero, and
let ε1:n be i.i.d. Rademacher random variables. Then, for any δ ∈ (0, 1/2), σ > 0 and τ ≥ 1, the following holds with
probability 1− δ

sup
h∈H

2στ

n

n∑
i=1

εih(wi)−
1

2n

n∑
i=1

h(wi)
2 .

(τ2σ2 +B2) log(1/δ)

n
+ τ2δn,R(H, σ)2

In particular, by integrating,

Eε1:n

[
sup
h∈H

2στ

n

n∑
i=1

εih(wi)−
1

2n

n∑
i=1

h(wi)
2

]
.
τ2σ2 +B2

n
+ τ2δn,R(H, σ)2

Proof. Recall the setH[r, w1:n] = {h ∈ H : ‖h‖22,n ≤ r2} and let

Z(r) :=
1

n
sup

h∈H[r;w1:n]

n∑
i=1

ξih(wi)

By Lemma C.7, for some universal constant c′ > 0,

P
[
Z̃(r0) > c′

(
E[Z̃(r0)] + r0

√
log(1/δ)/n+

B log(1/δ)

n

)]
≤ δ.

The bound now follows from Lemma C.9.

C.4. Random-Design Complexities

The following is an analogue of Lemma C.9 for random design. It’s proof is nearly identical, with the key difference
between that localization occurs based on the empirical L2-norm E[h(w)]2 and not ‖h(w1:n)‖22,n. 4

4This remark is under the identification V := H[w1:n]. We further not that Lemma C.12 implies Lemma C.9 by choosing the measure
P to be a dirac-delta. However, to avoid confusion of the subtle differences in localization, we state these two lemmas separately.
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Lemma C.12 (Random-Design Master Lemma). Let P be a measure over random variables (u,w), and let Φ : U → R
and H :W → R be function classes, and recall H(r) := {h ∈ H : Ew∼Ph(w)2 ≤ r2}. For (u1,w1), . . . , (un,wn)

i.i.d∼
P , define the processes

Z(r) := sup
h∈H(r)

sup
φ∈Φ

1

n

n∑
i=1

h(wi)φ(ui)

Y(τ) := sup
h∈H

sup
φ∈Φ

1

n

n∑
i=1

h(wi)φ(ui)− E[h(w)2]

Ỹ(r; τ) := 2τZ(r)− r2

2
.

Then, the conclusions of the fixed-design master lemma Lemma C.9 hold verbatim with the above definitions.

Next, we establish two lemmas which give control on the complexities of relevant random-design (i.e. w1:n ∼ P )quantities
involving quadratic terms such as E[h(w)2].
Lemma C.13 (Quadratic Loss Symmetrization). Let H : W → [−B,B] be a function class containing zero, let P be a
distribution overW , and let η > 0 be arbitrary. Consider the (very similar) terms

T1(η) := E
w1:n

i.i.d∼ P

[
sup
h∈H

{
‖h(w1:n)‖22,n − (1 + η)Ew′∼P [h(w′)2]

}]
T2(η) := E

w1:n
i.i.d∼ P

[
sup
h∈H

{
Ew′∼P [h(w′)2]− (1 + η)‖h(w1:n)‖22,n

}]
T3(η) := E

w1:n,w′1:n
i.i.d∼ P

[
sup
h∈H

{
‖h(w1:n)‖22,n − (1 + η)‖h(w′1:n)‖22,n

}]
,

as well as the term

T4(η) := Ew1:n

[
sup
h∈H

Eε1:n

[
B(1 + η)

n

n∑
i=1

εih(wi)

]
− 1

2
E[‖h(w1:n)‖22,n]

]
Then,

max{T1(η), T2(η), T3(η), T4(η)} . η(1 + η−1)−2

n

(
B2

n
+ δn,R(H, B)2

)
.

Proof. By Liang et al. (2015, Lemma 14) (modifying the constant of 4B to 2B to account for the fact that we consider the
uncentered h ∈ H, and not centered h− h? ∈ H, and reparameterizing η ← η/2), it holds that

T2(η) ≤ η

2n
Ew1:n∼P

[
n∑
i=1

2B(2 + η)

η
εih(wi)− h(wi)

2

]
The same argument can be modified to show that T1(η) satisfies the same upper bound, as T1(η) satisfies the same in-
termediate inequality obtained via Jensen’s inequality (the third line of the proof in Liang et al. (2015, Lemma 14)), and
the same argument extends to T3(η) because this expresssion is precisely the consequence of applying Jensen’s inequality.
Thus,

max {T1(η), T2(η), T3(η)} ≤ η

2n
Ew1:n∼P

[
n∑
i=1

2B(1 + 2η)

η
εih(wi)− h(wi)

2

]

≤ 2η

n
Ew1:n∼P

[
n∑
i=1

4B(2 + η−1)εih(wi)−
1

2
h(wi)

2

]
(i)

.
η(2 + η−1)2

n

(
B2

n
+ δn,R(H, B)2

)
,

.
η(1 + η−1)2

n

(
B2

n
+ δn,R(H, B)2

)
,

34



Learning under Heterogenous Distribution Shift

where the inequality (i) is by Lemma C.11 with σ = B, and τ = 2(1 + η−1). The bound on T4(η) follows from a similar
application of Lemma C.11.

Lemma C.14 (Quadratic Lower Bound). Let H : W → [−B,B] be a function class containing zero, and let P be a
measure overW . Then, there is a universal constant c > 0 such that for any δ > 0, it holds that

P

[
sup
h∈H
‖h‖2L2(P ) − 2‖h(w1:n)‖22,n ≤ crquad(H, δ)2

]
≤ 1− δ,

where

rquad(H, δ)2 :=

(
δn,R(H, B)2 +

B2 log(1/δ)

n

)
.

Proof. In view of Lemma C.1, the fact that H contains zero means we may assume without loss of generality that H is
star-shaped (indeed, apply the lemma to star(H), and note that δn,R(H, B) = δn,R(?(H), B)). Introduce the class of
function H̃r := {E[h2]− h2 : h ∈ H(r)} (here, we use subscript r to distinguish from the standard localization notation).
Then, H̃r :W → [−B2, B2], and E[h̃(w)2] ≤ B2r2 for h̃ ∈ H̃r. Note that

sup
h∈H̃r

1

n

n∑
i=1

h̃(wi) = sup
h∈H(r)

‖h‖2L2(P ) − ‖h(w1:n)‖22,n

Hence, by Lemma C.6 and AM-GM, the following holds with probability 1− δ and for a universal constant c > 0 and any
τ ≥ 0:

sup
h∈H(r)

‖h‖2L2(P ) − ‖h(w1:n)‖22,n

≤ c

(
E

[
sup
h∈H̃r

‖h‖2L2(P ) − ‖h(w1:n)‖22,n

]
+ τr2 +

(τ−1 + 1)B2 log(1/δ)

n

)

≤ c

(
E

[
sup

h∈H(r)

(1− τ)‖h‖2L2(P ) − ‖h(w1:n)‖22,n

]
+ 2τr2 +

(τ−1 + 1)B2 log(1/δ)

n

)
,

where the second inequality uses ‖h‖2L2(P ) ≤ r
2. Let τ ≤ 1/2 and let η be such that (1− τ) = 1

1+η . By Lemma C.13,

E

[
sup

h∈H(r)

(1− τ)‖h‖2L2(P ) − ‖h(w1:n)‖22,n

]
=

1

1 + η
E

[
sup

h∈H(r)

‖h‖2L2(P ) − (1 + η)‖h(w1:n)‖22,n

]

.
η(1 + η−1)−2

(1 + η)

(
B2

n
+ δn,R(H, B)

)
= (1− η−1)

(
B2

n
+ δn,R(H, B)2

)
.

1

τ

(
B2

n
+ δn,R(H, B)2

)
,

where in the last line, we use that η = 1 − (1 − τ)−1 & τ for τ ≤ 1/2. In sum, there is a universal constant c′ such that,
for all τ ≤ 1/2, the following holds with probability 1− δ:

sup
h∈H(r)

‖h‖2L2(P ) − ‖h(w1:n)‖22,n ≤ c′
(

1

τ

(
B2

n
+ δn,R(H, B)

)2

+ τr2 +
(τ−1 + 1)B2 log(1/δ)

n

)
.

By making τ a sufficiently small universal constant, we can ensure that there is a universal constants c′′, c′′′ such that,
whenever

r2 = c′′
(
δn,R(H, B)2 +

B2 log(1/δ)

n

)
. rquad(H, δ).
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we have that with probability 1− δ,

sup
h∈H(r)

‖h‖2L2(P ) − ‖h(w1:n)‖22,n ≤
r2

2
. (C.3)

We claim that in fact, with probability 1− δ, it holds that the above holds for all h ∈ H, that is

sup
h∈H
‖h‖2L2(P ) − 2‖h(w1:n)‖22,n ≤

r2

2

Indeed, it suffices to check Eq. (C.3) implies the inequality for h /∈ H(r). SinceH is star-shaped, there exists some α such
that αh ∈ H(r) and in fact ‖αh‖2L2(P ) = r2. Then, on Eq. (C.3)

‖αh‖2L2(P ) − ‖αh(w1:n)‖22,n ≤
r2

2
=
‖αh‖2L2(P )

2

so by rearranging

‖h‖2L2(P ) ≤ 2‖h(w1:n)‖22,n.

D. Rates for finite function classes.
In this section, we establish sharper bounds for finite function classesH1 andH2. Because errors for finite function classes
already attain the O (1/n) parametric rate, we require an additional assumption to achieve improvement. Specifically, we
need a hypercontractivity condition which states that higher moments of E[h(w)q] for h ∈ H are controller by lower order
moments E[h(ws)] for s < q. This is the first notion of hypercontractivity, defined below.
Definition D.1 (Hypercontractivity). We say a class H ⊂ {W → R} satisfies (κ,P, s, q)-hypercontractivity if, for all
h ∈ H, E[|h(w)|q]1/q ≤ κE[h(w)s]1/s.

We achieve even faster rates under a stronger variant of hypercontractivity, defined below.
Definition D.2 (subGaussian Hypercontractivity). We say a classH ⊂ {W → R} satisfies (κ,P)-subGaussian hypercon-
tractivity if, for all h ∈ H, h(w)− E[h(w)] is κ2E[h(w)2] subGaussian. 5

Under the various hypercontractivity assumptions, we attain the following bound, which is the formal statement of Theo-
rem 2.
Theorem 4. Let F : X → [−1, 1] and G : Y → [−1, 1] be finite function classes, and suppose 1 ≤ d1 ≤ d2 satisfy
log |F| ≤ d1 and log |G| ≤ d2. Define the class6 F̃ := {f − βf − f? : f ∈ F}, and casing on the hypercontractivity
assumptions with parameter κ, define

φn(d1, d2) :=


(
d2
n

) 2
q2 +

(
d1
d2

) 1
q1 general 1

q1
+ 1

q2
= 2, F̃ satisfies (κ,Ptrain, 2, q1) hypercontractivity(

d2
n

) 1
2 +

(
d1
d2

) 1
4 F̃ satisfies (κ,Ptrain, 2, 4) hypercontractivity

d2
n · (d1 + log n) F̃ satisfies (κ,Ptrain)-subGaussian hypercontractivity

Then, as long as σ2 . 1, for any δ ∈ (e−10d2 , e−1), the following hold simultaneously with probability at least 1− δ:

Rtrain[ĝn; f̂n] ≤ Rtrain(f̂n, ĝn) .
d2

n

Rtrain[f̂n] . κ2φn(d1, d2) · d2

n
+
d1

n
+

log(1/δ)

n

Rtest(f̂n, ĝn) . νx,y ·
d1 + log(1/δ)

n
+ (νy + νx,y · κ2φn(d1, d2)) · d2

n
5This is equivalent to O (κ)-hypercontractivity in the L2 → ψ2 norms, where ψ2 is the subGaussian (Orlicz) norm (see e.g.

Boucheron et al. (2013, Exercise 2.18).)
6note that Fcnt := star(F̃)
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Notice that, as promised by Theorem 2 φn(d1, d2) tends to 0 as n → ∞ and as the ratio of the class complexities d1/d2

tends to 0, such that with high probability. Moreover, under subGaussian hypercontractivity, limn→∞ φn(d1, d2) for any
d1, d2 fixed.

Remark D.1 (Extension to Parametric Classes). Up to logarithmic factors in n, the above bound can be extended easily
extended to infinite-cardinality “parametric” function classes (that is, function classes whose metric entropies scale as
logarithmic in the scale ε). The guarantee of Theorem 4 also holds under the more general assumption that F and G are
contained in the respective convex hulls of function classes F̃ and G̃, where log |F̃ | ≤ d1 and log |G̃| ≤ d2. This includes,
for example, many natural linear classes.

D.1. Proof of Theorem 4

We start with localization for finite classes.

Lemma D.1 (Localization for Finite Classes). LetH be a finite function class uniformly bounded by 1, and let d = log |H|.
Then, for any probability measure P overW ,

δ2
n,R(H, B) .

B2d

n
, δn,G (H, σ) .

dσ2

n

Proof of Lemma D.1. From Lemma C.8 and finiteness ofH, we have for any w1:n ∈ Wn that

Rn(H[r;w1:n]) ≤ rad2(H[r;w1:n]
√

2d/n ≤ r
√

2d/n.

It then follows that δ2
n,R(H, B) = sup{r2 : Rn(H[r;w1:n]) ≤ r2

2B } . B2d
n . The bound on δn,G similarly yields

δ2
n,R(H) = sup{r2 : Rn(H[r;w1:n]) ≤ r2

2σ} .
σ2d
n .

We continue with a generic bound on the following cross-critical radius. The next proposition is proved in Appendix D.2
below.

Proposition D.2. For i ∈ {1, 2}, let Hi ⊂ {W → [−1, 1]} be finite function classes with di = log |Hi|. Assume for
simplicity that d1 ≤ d2, and let γ2 ≥ d2/n. Finally, let P be a distribution ofW . Define the shorthand

δn(γ) := inf

{
r : Ew1:n

[Rn((H1(r)�H2(γ))[w1:n])] ≤ r2

2

}
.

Then, it holds that

• Let 1/q1 + 1/q2 = 1/2 be square Hölder conjugates. IfH1 satisfies (κ,P, 2, q1) hypercontractivity,

δn(γ)2 . κ2γ4/q2
d2

n
+ γ2/q2

√
d2

n

(
d1

n

)1/q1

.

In particular, if γ2 ' d2/n,

δn(γ)2 . κ2


(
d2
n

)1+ 2
q2 + d2

n ·
(
d1
d2

) 1
q1 general 1

q1
+ 1

q2
= 2(

d2
n

) 3
2 + d2

n ·
(
d1
d2

) 1
4

q1 = q2 = 4.

• IfH1 satsfies (κ,P)-subGaussian hypercontractivity,

δn(γ)2 .
κ2γ2d2

n
· (d1 + log n).

In particular, if γ2 ' d2/n, the above scales as κ2(d2/n)2 · (d1 + log n).
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Next, we recall standard localization bounds for finite function classes.

Proof of Theorem 4. As d2 ≥ d1, log |F + G| ≤ log(|F|+ |G|) . d2. Taking B = 1, σ2 . 1, and δ = e−d2 , Lemma D.1
and Proposition 4.2 allow us to bound

Rtrain[ĝn; f̂n] ≤ Rtrain(f̂n, ĝn) .
d2

n
w.p. 1− e−d2

By the same token, applying Proposition 4.3 and Lemma D.1, and making similar simplifications (B = 1, σ2 . 1), the
following holds with probabilty 1− δ

Rtrain[f̂n] . δ̄n,cross(γ)2 +
d1 + log(1/δ)

n

Bounding δ̄n,cross(γ)2 by Proposition D.2, on the same event we have

Rtrain[f̂n] .
κ2φn(d1, d2)d2

n
+
d1 + log(1/δ)

n
,

where we recall φn(d1, d2) defined in the theorem statement. When both events hold, Lemma 3.1 entails

Rtest(f̂n, ĝn) . νx,y

(
κ2φn(d1, d2)d2

n
+
d1

n
+

log(1/δ)

n

)
+ νy

d2

n
.

D.2. Proof of Proposition D.2

Define the radius of a classH :W → R be a class, and let P be a measure overW . Define

radq(H) := sup
h∈H

E[|h(w)|q]1/q, radq(H[w1:n]) := sup
h∈H
‖h[w1:n]‖q,n

Part 1. Bounds on the empircal norms. The next lemma bounds the magnitude of the empirical q-norm radius.

Lemma D.3. LetH ⊂ {W → [−1, 1]} be a finite class, and take δ ∈ (0, 1). With probability at least 1− δ,

radq(H[w1:n]) ≤ 2radq(H) +

(
log |H|/δ

n

) 1
q

≤ 1− δ.

In particular, if rad2(H) ≤ r andH satisfes (κ,P, 2, q) hypercontractivity, then with probability 1− δ

radq(H[w1:n]) ≤ 2κr +

(
log 1/δ

n

) 1
q

.

Proof. We observe that radq(H[w1:n])q ≤ radq(H)q + E suph∈H
1
n

∑n
i=1 |h(wi)|q − E[|h(wi)

q|]. As suph |h| ≤ 1,
suph∈H E[|h(wi)|2q] ≤ suph∈H E[|h(wi)|q] = radq(H)q . By Bernstein’s inequality and a union bound, with probability
at least 1− δ,

E sup
h∈H

1

n

n∑
i=1

|h(wi)|q − E[|h(wi)|q] ≤

√
2radq(H)q log(|H|/δ)

n
+

log |H|/δ
3n

≤ radq(H)q +
log |H|/δ

n
. (AM-GM, and 1

3 + 1
2 ≤ 1)

Hence, via the previous two displays, with probability 1− δ it holds that

radq(H[w1:n])q ≤ 2radq(H)q +
log |H|/δ

n
.

Taking the q-th root and using of (x+ y)1/q ≤ y1/q + x1/q for q ≥ 1 and x, y ≥ 0 concludes the proof.
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WhenH satisfies (κ,P)-subGaussian hypercontractivity, we can improve this bound.

Lemma D.4. SupposeH ⊂ {W → [−1, 1]} be a finite class which satisfies (κ,P)-subGaussian hypercontractivity. Then,

P[rad∞(H[w1:n]) ≤ κ
√

log |H|+ log(n/δ) · rad2(H)] ≥ 1− δ.

Proof. By Gaussian concentration and (κ,P)-suBgaussian hypercontractivity, for any h ∈ H, i ∈ [n] and δ > 0, we have

P
[
|h(w)i| ≥ κrad2(H) log(1/δ)

]
≤ P

[
|h(w)i| ≥ κE[h(wi)

2]1/2 log(1/δ)
]
≤ δ

Union bounding over h ∈ H and i ∈ [n] concluds the proof.

Part 2. Controlling the Rademacher Complexities Next, we turn to bounding the Rademacher complexity in terms of
empirical radii.

Lemma D.5. Let 1/q1 + 1/q2 ≤ 1/2 be squared Hölder conjugates. Then,

Rn,P(H1(r)�H2(γ)) ≤
√

2(d1 + d2)E [radq1(H1,r[w1:n]) · radq2(H2,γ [w1:n])]

Proof. This is a direct consequence of Lemma B.5, and the fact that log |H1(r) � H2(γ)| ≤ log |H1| + log |H2| =
d1 + d2.

Part 3. Conclusion the proof. We can now conclude.

Proposition D.2. Let us start with the case that H1 satisfies (κ,P, 2, q1) hypercontractivity. Uing boundedness of |h| ≤ 1
and q2 ≤ 1 we get

radq2(H2,γ)q2 = sup
h∈H2,γ

E[|h(w)|q2 ] ≤ sup
h∈H2,γ

E[|h(w)|2] ≤ γ2,

so radq2(H2,γ) ≤ γ2/q2 . Hence, as d2/n ≤ γ2 by assumption,

radq2(H2,γ) + (
d2

n
)

1
q2 ≤ γ2/q2 + (d2/n)1/q2 ≤ 2γ2/q2 . (D.1)

Next, by Lemma D.3, hypercontractivity ofH1, and the above bound implies that, for all δ > 0, both

radq1(H1,r[w1:n]) ≤ 2κ1r +

(
d1 + log 1/δ

n

) 1
q1

and

radq2(H1,r[w1:n]) ≤ 2γ2/q2 +

(
d2 + log 1/δ

n

) 1
q2

,

hold with probability at least 1− δ. Taking the product, integrating the tail over δ, and invoking Eq. (D.1) implies

E [radq1(H1,r[w1:n]) · radq2(H2,γ [w1:n])] . γ2/q2

(
r · κ+

(
d1

n

)1/q1
)
.

Note the resulting constant does not depend on q1 or q2, as 0 ≤ 1/q1, 1/q2 ≤ 1 are both bounded. Consequently,
Lemma D.5 and d1 ≤ d2 entails

Rn,P(H̄1(r)� H̄2(γ)) .

√
d2

n
γ2/q2

(
r · κ+

(
d1

n

)1/q1
)
,
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Thus,

inf

{
r2 : Rn,P(H̄1(r)� H̄2(γ)) ≤ r2

2

}
. κ2γ4/q2

d2

n
+ γ2/q2

√
d2

n

(
d1

n

)1/q1

.

Next, let’s consider the subGaussian hypercontractive case. Here, we replace Lemma D.3 with Lemma D.4. A similar
computation yields

E [rad∞(H1,r[w1:n]) · rad2(H2,γ [w1:n])] . κrγ
√
d1 + log n.

Hence, Lemma D.5 (with d1 ≤ d2) gives

Rn,P(H̄1(r)� H̄2(γ)) .

√
d2

n
κrγ

√
d1 + log n.

We may then conclude

inf

{
r2 : Rn,P(H̄1(r)� H̄2(γ)) ≤ r2

2

}
.
κ2γ2d2

n
· κ(d1 + log n).

E. Formal Guarantees for Nonparametric Classes (formal statement of Theorem 1)
In this section, give a formal statement of Theorem 1. Recall the definition of the normalized q-norms: For v =
(v1, . . . , vn) ∈ Rn and q ∈ [1,∞), we have

‖v‖q,n = (
1

n

n∑
i=1

|vi|q)1/q, ‖v‖∞,n = ‖v‖∞ = max
i∈[n]
|vi|.

We now define the radii and metric entropies in these norms, with a definition that expands upon Definition 3.1.

Definition E.1 (q-norms, radii, and metric entropies). Given a subset V ⊂ Rn and q ∈ [1,∞], define the the radius
radq(V) = maxv∈V ‖v‖q,n, define the covering number N (V, ‖ · ‖q,n, ε) as the cardinality of minimal-cardinality ε-cover
of V in the norm ‖ ·‖q,n, and define the metric entropy Mq(V, ε) = log N (V, ‖ ·‖q,n, ε) as the logarithmic of the covering
number. For a function classH :W → R, we define its q-norm metric entropy as

Mq(H, ε) := sup
n∈N

sup
w1:n∈Wn

Mq(H[w1:n], ε).

We make the following mild compactness assumption, which holds whenever Theorems 1 and 6 is non-vacuous.

Assumption E.1. For all ε > 0, M2(F , ε) <∞.

We also introduce a strictly optional second assumption, but codifies a way in which F is “simpler” than G, and enables
further simplifications when it holds.

Assumption E.2. For all ε > 0, M∞(F , ε) ≤M∞(G, ε).

Lastly, we define the class

βF := {βf : f ∈ F}. (E.1)

E.1. An Intermediate Dudley Bound

Recall the Dudley functional from Definition 4.1 We begin by defining an upper bound on the Dudley critical radius δn,D
of a function classH
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Definition E.2 (Upper Bound on Dudley Critical Radius). We define

D̄n,2(H, r) := inf
δ≤r

(
2δ +

4√
n

∫ r

δ

√
M2(H; ε/4)dε

)
,

and

δ̄n,D(H, c) := inf{r : D̄n,2(H, r) ≤ r2

2c
}.

Lastly, we define

D̄n,q(H) := inf
δ≤B

(
2δ +

4√
n

∫ B

δ

√
Mq(H; ε/2)dε

)
, B := sup

w
|h(w)|.

Recall ν1, ν2 from Eqs. (3.3) and (3.4). We have the following theorem.
Theorem 5. Recall the class βF := {βf : f ∈ F}, and suppose Assm. E.1 holds. Then, for any δ ∈ (0, 1), if

δ̄n,D(F , σB)2 + δ̄n,D(G, σB)2 +
σ2
B log(1/δ)

n ≤ c1γ. Then it holds that with probability at least 1− δ,

Rtest(f̂n, ĝn) . (ν1 + ν2)δ̄n,D(F , σB)2 + ν1(D̄n,∞(G)2 + min{D̄n,∞(F)2, D̄n,∞(βF )2})

+ ν2 · δ̄n,D(G, σB)2 +
(ν1 + ν2)σ2

B log(1/δ)

n
.

In particular, if Assm. E.2 also holds, then

Rtest(f̂n, ĝn) . (ν1 + ν2)δ̄n,D(F , σB)2 + ν1(D̄n,∞(G)2 + ν2 · δ̄n,D(G, σB)2 +
(ν1 + ν2)σ2

B log(1/δ)

n
.

And in addition, when we upper bound ν1 ≤ νx,y and ν2 ≤ νy ,

Rtest(f̂n, ĝn) . νx,y(δ̄n,D(F , σB)2 + D̄n,∞(G)2) + νyδ̄n,D(G, σB)2 +
νx,yσ

2
B log(1/δ)

n
.

E.1.1. PROOF OF THEOREM 5

We sketch the proof of Theorem 5, deferring supporting proofs to Appendix E.1.2. From Theorem 3, it suffices to establish
the following inequalities for c ≥ 1:

δn,D(Hsum, c) . δ̄n,D(F , c) + δ̄n,D(G, c)
δn,D(Fcnt, c) . δ̄n,D(F , c)
sup
w1:n

Dn,∞(Gcnt[w1:n]) . min{D̄n,∞(F), D̄n,∞(βF )}+ D̄n,∞(G).
(E.2)

We first upper bound all relevant “non-barred” Dudley integrals in terms of “barred” integrals.
Lemma E.1. For any classH,

δ̄n,D(H, c) ≥ δn,D(H, c), and D̄n,∞(H) ≥ sup
w1:n

Dn,∞(H[w1:n]).

Next, we give a technical lemma which allows us to relate the Dudley integral/critical radius of classH in terms of classes
which upper bound its metric entropy.
Lemma E.2. Fix a ≥ 1.

(a) Suppose thatH,H1,H2 satisfy the `2-metric entropy inequality, for all ε > 0,

M2(H, ε) ≤M2(H1, ε/a) + M2(H2, ε/a).

Then, it holds that δ̄n,D(H, c) ≤ amaxi∈[2] δ̄n,D(Hi, 2c/a). In particular, if a ≥ 2,

δ̄n,D(H, c) ≤ amax
i∈[2]

δ̄n,D(Hi, c).
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(b) Suppose insteadH,H1,H2 satisfy the `∞-metric entropy inequality, for all ε > 0,

M∞(H, ε) ≤M∞(H1, ε/a) + M∞(H2, ε/a).

Then, D̄n,∞(H) ≤ a
(∑n

i=1 D̄n,∞(Hi)
)

To apply these, we require control over the metric entropy of βF .

Lemma E.3. Let βF := {βf : f ∈ F}. Then, as long as M2(F , ε′) is finite for all ε′,

M2(βF , ε) ≤ inf
ε′<ε

M2(F , ε′), and M∞(βF , ε) ≤ inf
ε′<ε

M∞(F , ε′)

To prove Lemma E.3, we require the following qualitative statement, which can be derived from a Glivenko-Cantelli
Theorem (e.g. van der Vaart and Wellner (1996, Theorem 2.8.1), with the substitution F ← (H−H)2).

Proposition E.4 (Uniform Covergence of L2 measures). Let P be any measure over W, let H be any class for which
M2(H, ε) is finite for all ε. Then, for all t > 0

lim
n→∞

Pw1:n∼P

[
sup

h,h′∈H
‖h(w1:n)− h′(w1:n)‖2,n − Ew∼P [(h(w)− h′(w))2] ≥ t

]
= 0.

Proof of Lemma E.3. Fix w1:n = (xi, yi)1:n ∈ Wn and a slack parameter t > 0. Introduce the measure P to be the
mixture distribution P = 1

n

∑n
i=1 Ptrain[x = · | y = yi]. RecallH2 = {βf : f ∈ F},

‖βf [w1:n]− βf ′ [w1:n]‖22,n =

n∑
i=1

(Etrain[f(x)− f ′(x) | y = yi])
2

≤
n∑
i=1

Etrain[(f(x)− f ′(x))2 | y = yi]

= Ex∼PEtrain[(f(x)− f ′(x))2]

Proposition E.4 implies that there must exists some number m ≥ n and x̃1:m ∈ Xm such that, for all f, f ′ ∈ F ,

Ex∼PEtrain[(f(x)− f ′(x))2] ≤ t+ ‖f [x̃1:m]− f ′[x̃1:m]‖22,m

Hence,

M2(H2[w1:n], ε+ t) ≤M2(F [x̃1:m], ε) ≤M2, ε).

As t, w1:n are arbitrary, the first bound follows. To prove the second, we apply a similar argument, bounding

‖βf [w1:n]− βf ′ [w1:n]‖2∞ ≤ max
i∈[n]

Etrain[(f(x)− f ′(x))2 | y = yi],

For each yi, there exists some mi and a sequence x̃(i)
1:mi

such that for all f, f ′ ∈ F ,

Etrain[(f(x)− f ′(x))2 | y = yi] ≤ t+ ‖f [x̃1:m]− f ′[x̃1:m]‖22,m ≤ t max
j∈[mi]

|x̃(i)
j ]− f ′[x̃(i)

j ]|2∞

Hence, introduce the finite set X̃ :=
⋃n
i=1

⋃mi
j=1{x

(i)
j }, we have that for all f, f ′ ∈ F ,

max
i

Etrain[(f(x)− f ′(x))2 | y = yi] ≤ t+ max
x̃∈X̃
|f(x̃)− f ′(x̃)|2.

The bound follows.

Eq. (E.2) is now an immediate consequence of Lemma E.1 and the following lemma.
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Lemma E.5. The following bounds hold:

(a) δ̄n,D(Hsum, c) ≤ 2 max{δ̄n,D(F , c), δ̄n,D(G, c)}

(b) δ̄n,D(Fcnt, c) ≤ 4δ̄n,D(F , c).

(c) D̄n,∞(Gcnt) ≤ min{D̄n,∞(F), D̄n,∞(βF )}+ D̄n,∞(G).

Proof of Lemma E.5. For all points, we apply Lemma E.2. For (a), we can verify by the triangle inequality that for any
H1,H2,

M2(H1 +H2, ε) ≤M2(H1, ε/2) + M2(H2, ε/2), (E.3)

which yields part (a) when specializing to H1 = F , H2 = G, and applying Lemma E.2. For part (b), we observe that
Fcnt ⊂ (F − f?)− βF . Thus, Fact E.1, followed by Eq. (E.3) and finally Lemma E.3 imply

M2(Fcnt, ε) ≤M2(Fcnt − βF , ε/2) (Fact E.1)
≤M2(F − f?, ε/4) + M2(βF , ε/4) (Eq. (E.3))
= M2(F , ε/4) + M2(βF , ε/4)

≤M2(Fcnt, ε/4) + inf
b>1

M2(F , ε/4b) (Lemma E.3)

≤ inf
b>1

M2(Fcnt, ε/4b) + M2(F , ε/4b).

The result now follows from Lemma E.2 with a← 4b, and taking b→ 1.

The proof of part (c) is similar:

M2(Fcnt, ε) = M2(G − g? + βF , ε) (Fact E.1)
≤M2(G − g?, ε/2) + M2(βF , ε/2) (Eq. (E.3))
= M2(G, ε/2) + M2(βF , ε/2)

≤M2(Fcnt, ε/2) + inf
b>1

M2(F , ε/2b) (Lemma E.3)

≤ inf
b>1

M2(Fcnt, ε/4b) + M2(F , ε/2b),

and follows from similar steps as part (c).

E.1.2. PROOFS OF SUPPORTING LEMMAS FOR THEOREM 5

Fact E.1. [Exercise 4.2.10 in (Vershynin, 2018)] For any sets V′ ⊂ V, ε-covering number of V′ in any norm is at most the
ε/2 covering number of V.

Proof of Lemma E.1. The proof of D̄n,∞(H) ≥ supw1:n
Dn,∞(H[w1:n]). is straightforward. To check δ̄n,D(H, c) ≥

δn,D(H, c), we invoke Fact E.1:

sup
w1:n

Mq(H[r, w1:n]; ε/2) ≤ sup
w1:n

Mq(H[w1:n]; ε/4) ≤Mq(H, ε/4). (E.4)

Thus,

sup
w1:n

Dn,2(H[r, w1:n]) := sup
w1:n

inf
δ≤R

(
2δ +

4√
n

∫ R

δ

√
Mq(H[r, w1:n]; ε/2)dε

)
, where R = rad2(H[r, w1:n])

≤ sup
w1:n

inf
δ≤r

(
2δ +

4√
n

∫ r

δ

√
Mq(H[r, w1:n]; ε/2)dε

)
(rad2(H[r, w1:n] ≤ r by localization)

≤ inf
δ≤r

(
2δ +

4√
n

∫ r

δ

sup
w1:n

√
Mq(H[r, w1:n]; ε/2)dε

)
≤ inf

δ≤r

(
2δ +

4√
n

∫ r

δ

√
Mq(H; ε/4)dε

)
(Eq. (E.4))

:= D̄n,2(H, r).
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Hence,

δn,D(H, c) := inf

{
r : sup

w1:n

Dn,2(H[r, w1:n]) ≤ r2

2c

}
≤ inf{r : D̄n,2(H, r) ≤ r2

2c
} = δ̄n,D(H, c).

Lemma E.6 (Concavity of D̄). For all a ≥ 1, D̄n,2(H, ar) ≤ aD̄n,2(H, r). Hence, if D̄n,2(H, r) ≤ r2

2c , then

D̄n,2(H, r′) ≤ (r′)2

2c for r′ ≥ r. Moreover, if b ≥ 1, δ̄n,D(H, br) ≤ bδ̄n,D(H, r).

Proof of Lemma E.6.

D̄n,2(H, ar) = inf
δ≤ar

(
2δ +

4√
n

∫ ar

δ

√
Mq(H; ε/4)dε

)
= inf

δ≤ar

(
2δ +

4a√
n

∫ r

δ/a

√
Mq(H; aε/4)dε

)

≤ inf
δ≤ar

(
2δ +

4a√
n

∫ r

δ/a

√
Mq(H; ε/4)dε

)

≤ inf
δ≤r

(
2aδ +

4a√
n

∫ r

δ

√
Mq(H; ε/4)dε

)
= aD̄n,2(H, r).

The rest of the result follows similarly to Lemma C.3.

Proof of Lemma E.2. We prove part (a), the calculate for part (b) is near-identical.

D̄n,2(H, r) ≤ inf
δ≤r

(
2δ +

4√
n

∫ r

δ

√
Mq(H; ε/4)dε

)
≤ inf

δ≤r

(
2δ +

4√
n

2∑
i=1

∫ r

δ

√
Mq(Hi; ε/4a)dε

)
(by assumption)

≤ inf
δ≤r

(
2δ +

4a√
n

2∑
i=1

∫ r/a

δ/a

√
Mq(Hi; ε/4)dε

)
(ε← ε/a)

= a inf
δ≤r/a

(
2δ +

4√
n

2∑
i=1

∫ r/a

δ

√
Mq(Hi; ε/4)dε

)
(δ← aδ)

= a inf
δ1,δ2≤r/a

(
2 max{δ1, δ2}+

4√
n

2∑
i=1

∫ r/a

max{δ1,δ2}

√
Mq(Hi; ε/4)dε

)

≤ a inf
δ1,δ2≤r

2∑
i=1

(
2δi +

4√
n

∫ r/a

δi

√
Mq(Hi; ε/4)dε

)

= a

2∑
i=1

D̄n,2(Hi,
r

a
).
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Consequently,

δ̄n,D(H, c) := inf{r : D̄n,2(H, r) ≤ r2

2c
}

≤ inf{r : D̄n,2(H1,
r

a
) + D̄n,2(H2,

r

a
) ≤ r2

2ac
}

= a inf{r : D̄n,2(H1, r) + D̄n,2(H2, r) ≤
ar2

2c
}

= a inf{r : max
i∈[2]

D̄n,2(H1, r) ≤
ar2

4c
}.

By Lemma E.6, the above is at most amaxi∈[2] inf{r : D̄n,2(H1, r) ≤ r2

2c} ≤ amaxi∈[2] δ̄n,D(Hi, 2c/a).

E.2. Instantiating the Rates

Next, we formally define families of function classes we all entropy families, which are characterized by upper bounds of
their metric entropies. These entropy families formally capture the entropy rates depicted in Theorem 1.

Definition E.3 (Entropy Families). Let H : W → R, and let q ∈ [1,∞], and let τ = (τ0, τ1, τ2) ∈ R3 denote a vector of
parameters. We say thatH ∈ EntFamq(p, τ ;R) if radq(H) ≤ R and either

• p = 0, and for all ε > 0, Mq(H) ≤ τ0 + τ1 log(τ2/ε) or

• p > 0, and for all ε > 0, Mq(H, ε) ≤ τ0 + τ1ε
−p.

Notice that the sets EntFamq(p, τ ) are non-increasing in q, and non-decreasing in the coordinates of τ , and (up to con-
stants) non-increasing in p.

We now define complexities measures that upper bound the localized and unlocalized Dudley integrals for function classes
in a given entropy family.

Definition E.4 (Key Complexities). Let τ = (τ0, τ1, τ2) ∈ R3
≥0, p ∈ [0,∞), and R, c > 0. We define the global

complexity term

Ξn,glob(p, τ , R) :=
Rτ0√
n

+


R
√

τ1 log(e+τ2/R)
n p = 0

R1−p/2

1−p/2
√

τ1
n p ∈ (0, 2)√

τ1
n log(e+R

√
n/τ1) p = 2

( τ1n )
1
p (p/2− 1)−

2
p p > 2

= Õ (1) ·

{
n−

1
2 p ≤ 2

n−
1
p p > 2

and the local complexity term

Ξn,loc(p, τ , c) :=
c2(1 + τ0)2

n
+



c2τ1 log(e+
√
nτ2/c)

n p = 0(
c2

(1−p/2)2 ·
τ1
n

) 2
2+p

p ∈ (0, 2)

c

√
τ1 log(e+c

√
n/τ1)

n p = 2

(p/2− 1)−
2
p ( τ1n )

1
p p > 2.

= Õ (1) ·

{
n−

2
2+p p ≤ 2

n−
1
p p > 2

Lastly, we define the rate functionals.

Definition E.5 (Rate Functionals). We define the following rate functionals:

raten,q(H, c) := inf
p,τ ,R

{Ξn,loc(p, τ , c) : H ∈ EntFamq(p, τ ;R)}

raten,?(H) := inf
p,τ ,R

{Ξn,glob(p, τ , R) : H ∈ EntFam∞(p, τ ;R)}.
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That is, raten,q(H, c) is the smallest possibly local complexity term subject to H being in the appropriate entropy family,
and raten,?(H) is the smallest possible global complexity term, always taken with metric entropy in the∞-norm. We are
now ready to state our main theorem with explicit rates:

Theorem 6. Suppose Assms. 2.1 to 2.3 hold. Let σB := max{B, σ}, let ν1, ν2 be as in Eqs. (3.3) and (3.4), and let c2 be
a sufficiently small universal constant. Then if

raten,2(G, σB) + raten,2(F , σB) +
σ2
B log(1/δ)

n
≤ c2γ,

it holds that probability at least 1− δ, (recalling the class βF := {βf : f ∈ F}),

Rtest(f̂n, ĝn) . (ν1 + ν2)raten,2(F , σB) + ν1

(
raten,?(G)2 + min{raten,?(F)2, raten,?(βF )2}

)
+ν2 raten,2(G, σB) + (ν1 + ν2) · σ

2
B log(1/δ)

n
.

If in addition Assm. E.2 holds, obtain

Rtest(f̂n, ĝn) . (ν1 + ν2)raten,2(F , σB) + ν1raten,?(G)2

+ν2 raten,2(G, σB) + (ν1 + ν2) · σ
2
B log(1/δ)

n
,

and in addition, if we upper bound ν1 ≤ νx,y and ν2 ≤ νy , we obtain (as νy ≤ νx,y)

Rtest(f̂n, ĝn) . νx,y
(
raten,2(F , σB) + raten,?(G)2

)
+ νy raten,2(G, σB) + νx,y

σ2
B log(1/δ)

n
.

Proof. The proof is a direct consequence of Theorem 3 and the following two lemmas to bound the Dudley integrals and
critical radii, whose computations are essentially standard but which we prove in the Appendix E.3.

Lemma E.7. Suppose thatH ∈ EntFamq(p, τ , R). Then, D̄n,q(H) . Ξn,glob(p, τ ;R). Hence,

D̄n,∞(H) ≤ raten,?(H).

Lemma E.8. Suppose that H ∈ EntFam2(p, τ , R), and let c > 0 be arbitrary. Then, δ̄n,D(H, c)2 . Ξn,loc(p, τ , c).
Hence,

δ̄n,D(H, c)2 ≤ raten,2(H, c).

E.3. Proof of Dudley Bounds (Lemmas E.7 and E.8)

Proof of Lemma E.7. From the definition of the Dudley functional, Definition 4.1, it is clear that the additive τ0-term in
the metric entric bound contributes at most an additive Rτ0√

n
term to the integral. Consequently, let handle what is left over,

assuming throughout that τ0 = 0. For a class H, let φ(ε) be the upper bound on Mq(H, ε) prescribed by Definition E.3
(again, setting τ0 = 0). Then, from Definition 4.1, so that

D̄n,q(H) ≤ inf
δ≤R

(
2δ +

4√
n

∫ R

δ

√
φ(ε/2)dε

)
. inf

δ≤R

(
δ +

1√
n

∫ R

δ

√
φ(ε)dε

)
,

where last inequality uses similar changes of variables as in Lemma E.2. When p < 2, we take δ = 0 and attain

D̄n,q(H) . R
1√
n

∫ R

0

√
φ(ε)dε . R

τ0√
n

+R

√
τ1
n
·

{√
log(τ2R) p = 0
1

p/2−1R
1−p/2 p ∈ (0, 2)

.

Next, for the case p = 2, we pick δ = R
√
τ1/n to get

inf
δ≤R

δ +
1√
n

∫ R

δ

√
φ(ε) ≤ R τ0√

n
+ inf

δ≤R
δ +

√
τ1/n log(R/δ) . R

τ0√
n

+
√
τ1/n log(e+R

√
n/τ1).
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Finally, consider p > 2. Then,

inf
δ≤R

δ +
1√
n

∫ R

δ

√
φ(ε) ≤ R τ0√

n
+ inf

δ≤R
δ +

1

p/2− 1

√
τ1/nδ

1−p/2

Taking δ = 1
p/2−1

√
τ1δ

1−p/2, we choose δ = τ
1/p
1 (p/2− 1)−2/p yielding

inf
δ≤R

δ +
1√
n

∫ R

δ

√
φ(ε) . R

τ0√
n

+ (τ1/n)1/p(p/2− 1)−2/p.

This concludes the proof.

Proof of Lemma E.8. Modifying the computation in Lemma E.7 implies

D̄n,2(H, r) . Ξn,glob(p, τ ; r).

. For p = 0, we use that that for r ≥ c/
√
n,

Ξn,glob(p, τ ; r) = r

(
τ0 +

√
τ1 log(e+ τ2/r)√

n

)
≤ r

(
(e+ τ0) +

√
τ1 log(e+

√
nτ2/c)√

n

)
,

so that

δ̄n,D(H, c) = inf

{
r2 : D̄n,2(H, r) ≤ r2

2c

}
. c2

(
τ2
0 + τ1 log(e+

√
nτ2/c)

n

)
:= Ξn,loc(0, τ ; c)

For p ∈ (0, 2),

Ξn,glob(p, τ ; r) =
rτ0√
n

+
r1−p/2

1− p/2

√
τ1
n

Going forward, let c0 a universal constant for which D̄n,2(H, r) ≤ c0Ξn,glob(p, τ ; r). Thus, one can check that

inf

{
r2 : D̄n,2(H, r) ≤ r2

2c

}
. max{r2

1, r
2
2},

where r1 and r2 balance the following equations

r1(1 + τ0)√
n

= r2
1/4c0c,

r
1−p/2
2

1− p/2

√
τ1
n

= r2
2/4c0c.

Solving yields

r2
1 =

16c20c
2(1 + τ0)2

n
, r2

2 =

(
4c0c

1− p/2

√
τ1
n

) 2
1+p/2

=

(
1

(1− p/2)2
· 16c20c

2τ1
n

) 2
2+p

which gives

max{r2
1, r

2
2} .

c2(1 + τ0)2

n
+

(
c2

(1− p/2)2
· τ1
n

) 2
2+p

:= Ξn,loc(p, τ ; c), p ∈ (0, 2).

For p = 2, we note that

Ξn,glob(p, τ , τ1; r) .

(
rτ0 +

√
τ1 log(e+R

√
n/τ1)√

n

)
.
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Figure 2. Mean Squared Error of predictors of form ẑ = fθ(x) + gθ(y) (Left) and ẑ = hθ(x, y) (Right) on shifted distributions,
where we hold the mixing probability of one of {x,y} fixed, and vary the other’s probability. MSE for both predictors declines less
with shifts in px than those in py .

So similarly,

inf

{
r2 : D̄n,2(H, r) ≤ r2

2c

}
. max{r2

1, r
2
3},

where r1 is as above, and where r3 is the smallest term satisfying√
τ1 log(e+ r3

√
n/τ1)√

n
≤ r2

3/4c0c

As
√
τ1 log(e+r3

√
n/τ1)√

n
≤ r3 by Jensen’s inequality, we can take r3 ≤ 4c0c. Thus, it suffices that r3 satisfy
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√
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√
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n
,

so that suppressing the universal constant c0,
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√
τ1 log(e+ c

√
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n
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For p > 2, repeating the same arguments as above, we have

inf

{
r2 : sup

w1:n

D̄n,2(H, r) ≤ r2

2c

}
. max{r2

1, r
2
4},

where r1 is as above and r4 satisfies

r2
4/4c0c = (

τ1
n

)1/p(p/2− 1)−
2
p .

so that r2
4 . c( τ1n )1/p(p/2− 1)−

2
p . Following similar steps concludes the proof.

F. Experiment Details
This section describes various experiment details regarding model architectures and training hyperparameters.

F.1. Regression

Analyzing simple feature To make x simpler, we either have dx < dy or df < dg . We compare the generalization error
(i.e., the difference between test and train mean squared error) for the auxiliary task of predicting f?(x) and g?(y). We
train fφ(x) to predict f?(x) and gφ(y) to predict g?(y). fφ incurs a generalization error of 2.5× 10−5. When dx < dy , gφ
incurs a generalization error of 4.9× 10−5. When df < dg , gφ incurs a generalization error of 7.8× 10−5. In both cases,
we observe that the auxiliary task of predicting f?(x) has less generalization error.
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Testing resiliency of predictors We independently train two predictors ẑ = fθ(x) + gθ(y) and ẑ = hθ(x, y) (using
concatenated features (x,y)) to minimize mean-square error (MSE) under a training distribution with px = py = .01. We
then measure the MSE for both predictors on shifted distributions, where we hold the mixing probability of one of {x,y}
fixed, and vary the other’s probability in the range {0.1, 0.2, 0.5, 0.9, 0.99}. Figure 2 shows that MSE for both predictors
declines less with shift in px than with those in py , thereby corroborating our theoretical expectations.

Implementation details We use dx = 3 and dy is either 3 (when dx = dy) or 6 (when dx < dy). Both f(x) and g(y)
are 2-layered Multi-layered perceptions (MLP) with ReLU activation. While f has a hidden dimension df = 32, g has a
hidden dimension of either dg = 32 (when df = dg) or dg = 4096 (when df < dg). We parameterize fθ(x) and fφ(x)
with 2-layered MLPs having ReLU activation and same hidden dimension as f . We parameterize gθ(y) and gφ(y) with
2-layered MLPs having ReLU activation and same hidden dimension as g. We parameterize hθ(x, y) with a 2-layered MLP
having ReLU activation and same hidden dimension as g. We collect 100k data points with px = py = 0.01 for training
hθ. We train hθ with Adam optimizer (Kingma and Ba, 2014) for 100 epochs using a learning rate of 0.001 and a batch
size of 50. During test, we increase px and py to {0.1, 0.2, 0.5, 0.9, 0.99} and evaluate the model using 1000 data points.

F.2. Binary Classification with Waterbird dataset

Setup Our task is to classify images of birds as waterbirds or landbirds, against a background of either land or water.
These images have two high-level features: birdtype and background. We first empirically determine which feature is
simple. We then empirically test if the classifier is more resilient to distribution shift in the simple feature.

Determining simple feature To determine which feature is simple, we learn two classifiers, fbird predicting birdtype

and fback predicting background. We train them on standard training set of waterbird dataset and test them on a sampled
test set that has the same distribution as the training set. While both fbird and fback have a training accuracy of 1.0, fbird
has a test accuracy of 0.88 and fback has a test accuracy of 0.96. Since fback has lower generalization error, we consider
background as simple.

Testing classifier resiliency We test resiliency of fbird as we shift distribution of one feature while keeping the distribution
of the other feature fixed. Specifically, we vary the proportion (in percentages) of images with waterbird (resp. land
background) in test set while keeping the proportion of images with land background (resp. waterbird) fixed. We show
the results in Figure 1. We observe that test accuracy of fbird varies less when we shift distribution of background while
keeping the distribution of birdtype fixed.

Implementation details We parameterize fbird and fback with ResNet50 model (He et al., 2016) and train them with
stochastic gradient descent for 300 epochs using a learning rate of 0.001, batch size of 128, momentum of 0.9 and l2
regularization of 0.0001. We took these hyperparameters and architectural choices from Sagawa et al. (2019) which
introduced the Waterbird dataset. We used the github repo https://github.com/kohpangwei/group_DRO for running our
experiments.

F.3. Multi-class Classification with FMoW

Setup Our task is to predict landtype from images with top down satellite view. These images also contain information
about their geographical region (Africa, the Americas, Oceania, Asia, or Europe). Hence, they have two high-level features:
landtype and region. We first empirically determine which feature is simple. We then empirically test if the classifier is
more resilient to distribution shift in the simple feature.

Determining simple feature To determine which feature is simple, we learn two classifiers, fland predicting landtype

and fgeo predicting region. We train and test them on standard training and test set of FMoW dataset. While fland and
fgeo have a training accuracy (i.e. number of correct predictions/ number of datapoints) of 0.71 and 0.74, they have a test
accuracy of 0.59 and 0.69 respectively. Since fgeo has lower generalization error, we consider region as simple.

Testing classifier resiliency We test resiliency of fland as we shift distribution of one feature while keeping the distribu-
tion of the other feature fixed. To shift the distribution of landtype, we vary the proportion of images with labelled as zoo
(a landtype). Similarly, to shift the distribution of region, we vary the proportion of images from Africa region. We
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Figure 3. (Left) Visualization of FMoW dataset. (Right) Test accuracy of landtype classifier as we shift distribution of region
(resp. landtype) while keeping the distribution of landtype (resp. region) fixed. The results again show that the classifier is more
robust to distribution shift in simple feature region.

Figure 4. Test accuracy of logical operators over a pair of (simple, complex) attribute. We vary the proportion (in percentages) of
images with simple attribute (resp. complex attribute) in test set while keeping the proportion of images with complex attribute (resp.
simple attribute) fixed. We use pairs {bald, big_lips} (Left) and {pale_skin, narrow_eyes} (Right).

show the results in Figure 3. We observe that test accuracy of fland varies less (i.e. fland is more resilient) when we shift
distribution of region while keeping the distribution of landtype fixed.

Implementation details We parameterize fland and fgeo with DenseNet121 model (Huang et al., 2017) and train them
with Adam optimizer (Kingma and Ba, 2014) for 60 epochs using a learning rate of 0.0001 and batch size of 32. We took
these hyperparameters and architectural choices from Koh et al. (2021). We used the github repo https://github.com/p-
lambda/wilds for running our experiments.

F.4. Learning logical operators with CelebA

Setup We re-purpose the CelebA dataset to learn logical operators OR and XOR for two attributes. We first empirically
determine which attributes are simpler than others. We then learn logical operators combining a simple attribute and a
complex attribute. Finally, we empirically test the resilience of logical operators against distribution shifts in simple and
complex attributes.

Determining simple attributes We first train and test a multi-head binary classifier that detects presence of 40 differ-
ent attributes, with one head per attribute, on images from the CelebA “standard training set” (CelebA-STS). We select
attributes {bald, pale_skin} as “simple” due to their low generalization error, and {big_lips, narrow_eyes} as “com-
plex” due to their larger generalization error. Table 1 shows a complete list of training and test accuracy of the multi-head
binary classifier for each attribute.

Testing resiliency of logical operators We first learn logical operators fOR and fXOR over a pair of simple and complex
attribute. We use two such pairs in our experiments: {bald, big_lips} and {pale_skin, narrow_eyes}. We represent
these logical operators as binary classifiers and train them on CelebA-STS. We get the labels for these logical operators by
applying the same logical operation over labels for the simple and the complex attribute. We then test the resiliency of these
logical operators by shifting the distribution of the simple attribute and the complex attribute, one at a time. Specifically,
we vary the proportion (in percentages) of images with simple attribute (or complex attribute) in test set while keeping
the proportion of images with complex attribute (or simple attribute) fixed. We show the results in Figure 1 and Figure 4.
We observe that the success rate of the logical operators vary less when we shift the distribution of the simple attributes
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{bald, big_lips}.

Implementation details We parameterize multi-head binary classifier, predicting presence of 40 different facial attribute,
with MobileNet (Howard et al., 2017). We train it with Adam optimizer (Kingma and Ba, 2014) for 100 epochs using a
learning rate of 0.001 and a batch size of 64. We use the same architecture and the training hyperparameters for learning
logical operators fOR and fXOR. We borrow these hyperparameters and the code for running our experiments from the
github repo https://github.com/suikei-wang/Facial-Attributes-Classification.

F.5. Imitation learning on Robotic pusher arm environment

Environment Description We use Robotic pusher arm environment adapted from Ajay et al. (2022); Gupta et al. (2018)
where the goal is to push the red cube to the green circle. When the red cube reaches the green circle, the agent gets a
reward of +1. The state space is 12-dimensional consisting of mass of red cube (1), dampness parameter for each joint
(1), joint angles (3) and velocities (3) of the gripper, COM of the gripper (2) and position of the red cube (2). The green
circle’s position is fixed and at an initial distance of 0.5 from COM of the gripper. The red cube (of size 0.03) is initially at
a distance of 0.1 from COM of the gripper and at an angle π/4. During training, at beginning for every episode, we sample
m ∼ N (60, 15) and d ∼ N (0.5, 0.1). The task horizon is 60 timesteps.

Expert Policy To obtain expert policy that provides data for imitation learning and for training dynamics models
(pφi(st+1|st, at, i), i ∈ {d,m}), we train a policy πexp(a|s,m, d) with Soft-Actor-Critic (Haarnoja et al., 2018) for 10e6
environment steps.

Determining simple factor To determine which of the two is “simpler”, we measure generalization error on the auxillary
task of predicting next-step dynamics where one of {m, d} is held fixed, and the other drawn from a certain distribution,
fixed across both testing and training. We learn two dynamics model pφm(st+1|st, at,m) and pφd(st+1|st, at, d) on two
separate datasets Dtraindyn,m and Dtraindyn,d . Both Dtraindyn,m and Dtraindyn,d contain 100 expert trajectories each, with varying m and
d respectively while keeping the other factor fixed. While m ∼ N (60, 15) and d = 0.5 in Dtraindyn,m, d ∼ N (0.5, 0.1)

and m = 60 in Dtraindyn,d . To evaluate learned dynamics models, we generate Dtestdyn,m and Dtestdyn,d in same way as their
training counterparts. On training datasets, we find mean squared error ( 1

|D|‖st+1 − pφi(st+1|st, at, i)‖22, i ∈ {m, d}) of
pφm(st+1|st, at,m) and pφd(st+1|st, at, d) to be 0.062 and 0.183 respectively. On test datasets, we find the mean squared
error of pφm(st+1|st, at,m) and pφd(st+1|st, at, d) to be 0.081 and 0.237 respectively. Since pφm(st+1|st, at,m) has
smaller generalization error, we consider object mass as simple. Intuitively, object mass only affects the dynamics of the
system when the robotic arm is in contact with the object. In contrast, the joints’ dampness affects the way the robotic arm
moves and hence affects the system’s dynamics independent of whether the robotic arm is in contact with the object.

Implementation details We parameterize dynamics model (pφi(st+1|st, at, i), i ∈ {d,m}), expert policy
πexp(a|s,m, d) and imitator policy πθ(a|s,m, d) with a 3-layered Multi-layer perception (MLP) having hidden dimen-
sion of 512 and ReLU activation. We train dynamics model and imitator policy with Adam optimizer (Kingma and Ba,
2014) for 100 epochs using a learning rate of 0.001 and a batch size of 128.
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Attribute Train Accuracy Test Accuracy
5_o_Clock_Shadow 0.952 ± 0.003 0.945 ± 0.008
Arched_Eyebrows 0.879 ± 0.01 0.84 ± 0.006
Attractive 0.846 ± 0.001 0.828 ± 0.003
Bags_Under_Eyes 0.872 ± 0.004 0.845 ± 0.006
Bald 0.991 ± 0.002 0.988 ± 0.004
Bangs 0.968 ± 0.006 0.96 ± 0.005
Big_Lips 0.8 ± 0.008 0.716 ± 0.009
Big_Nose 0.867 ± 0.002 0.839 ± 0.004
Black_Hair 0.918 ± 0.007 0.896 ± 0.006
Blond_Hair 0.963 ± 0.005 0.957 ± 0.003
Blurry 0.966 ± 0.008 0.961 ± 0.005
Brown_Hair 0.886 ± 0.009 0.885 ± 0.009
Bushy_Eyebrows 0.929 ± 0.007 0.922 ± 0.002
Chubby 0.964 ± 0.003 0.948 ± 0.005
Double_Chin 0.971 ± 0.002 0.961 ± 0.006
Eyeglasses 0.998 ± 0.003 0.996 ± 0.006
Goatee 0.978 ± 0.002 0.974 ± 0.003
Gray_Hair 0.984 ± 0.005 0.98 ± 0.002
Heavy_Makeup 0.939 ± 0.007 0.918 ± 0.005
High_Cheekbones 0.898 ± 0.006 0.876 ± 0.004
Male 0.989 ± 0.001 0.979 ± 0.003
Mouth_Slightly_Open 0.957 ± 0.004 0.936 ± 0.008
Mustache 0.975 ± 0.005 0.97 ± 0.007
Narrow_Eyes 0.915 ± 0.002 0.875 ± 0.004
No_Beard 0.971 ± 0.009 0.96 ± 0.007
Oval_Face 0.795 ± 0.002 0.758 ± 0.005
Pale_Skin 0.97 ± 0.008 0.967 ± 0.005
Pointy_Nose 0.795 ± 0.011 0.774 ± 0.009
Receding_Hairline 0.952 ± 0.003 0.939 ± 0.008
Rosy_Cheeks 0.959 ± 0.004 0.95 ± 0.009
Sideburns 0.981 ± 0.002 0.978 ± 0.003
Smiling 0.948 ± 0.006 0.928 ± 0.005
Straight_Hair 0.856 ± 0.003 0.831 ± 0.009
Wavy_Hair 0.87 ± 0.003 0.833 ± 0.004
Wearing_Earrings 0.923 ± 0.004 0.9 ± 0.002
Wearing_Hat 0.994 ± 0.009 0.989 ± 0.005
Wearing_Lipstick 0.946 ± 0.003 0.934 ± 0.007
Wearing_Necklace 0.895 ± 0.004 0.87 ± 0.006
Wearing_Necktie 0.97 ± 0.001 0.965 ± 0.002
Young 0.912 ± 0.002 0.877 ± 0.004

Table 1. Train and test accuracy of multi-head binary classifier for each attribute in CelebA dataset. We consider attributes with low
generalization error as simple and attributes with high generalization error as complex. We highlight the selected simple (Bald, Pale
Skin) and complex (Big Lips, Narrow Eyes) features. We report mean and standard error across 4 replicates.
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