
The Hessian perspective into the Nature of Convolutional Neural Networks

Sidak Pal Singh 1 Thomas Hofmann 1 Bernhard Schölkopf 2

Abstract
While Convolutional Neural Networks (CNNs)
have long been investigated and applied, as well
as theorized, we aim to provide a slightly differ-
ent perspective into their nature — through the
perspective of their Hessian maps. The reason is
that the loss Hessian captures the pairwise interac-
tion of parameters and therefore forms a natural
ground to probe how the architectural aspects of
CNNs get manifested in their structure and proper-
ties. We develop a framework relying on Toeplitz
representation of CNNs, and then utilize it to re-
veal the Hessian structure and, in particular, its
rank. We prove tight upper bounds (with linear
activations), which closely follow the empirical
trend of the Hessian rank and in practice also hold
for more general settings. Overall, our work gen-
eralizes and further establishes the key insight that
the Hessian rank grows as the square root of the
number of parameters, even in CNNs.

1. Introduction
Nobody would deny that CNNs (Fukushima, 1980; LeCun
et al., 1995; Krizhevsky et al., 2017), with their baked-in
equivariance to translations, have played a key role in the
practical successes of deep learning and computer vision.
Yet several aspects of their nature are still unclear. Cutting
directly to the chase, for instance, take a look at Figure 1.
As the number of channels in the hidden layers increases,
the number of parameters grows, as expected, quadratically.
But, the rank of the loss Hessian at initialization, measured
as precisely as it gets, grows at a much calmer, linear rate.
How come?

This question lies at the core of our work. Generally speak-
ing, we would like to investigate the inherent ‘nature’ of
CNNs, i.e., how its architectural characteristics manifest

1ETH Zürich, Switzerland 2MPI for Intelligent Systems,
Tübingen, Germany. Correspondence to: Sidak Pal Singh
<sidak.singh@inf.ethz.ch>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Figure 1: A comparison of the number of parameters with the
empirically observed loss Hessian rank for increasing number
of channels m for a 2-hidden layer CNN on CIFAR10. Can we
estimate the precise scaling behaviour of the Hessian rank?

themselves in terms of a property or a phenomenon at hand
— here that of Figure 1, which, among other things, would
precisely indicate the effective dimension of the (local) loss
landscape (MacKay, 1992b; Gur-Ari et al., 2018).

Of course, when the likes of Transformer (Vaswani et al.,
2017; Dosovitskiy et al., 2020), MLPMixer (Tolstikhin et al.,
2021) and their kind, have ushered in a new wave of archi-
tecture design, especially when equipped with heaps of data,
it is tempting to think that studying CNNs might not be
as worthwhile an enterprise. Well, that only time and tide
can tell — but it seems that, at least for now, the concepts
and principles behind CNNs (such as patches, larger strides,
weight sharing, downsampling) continue to be carried along
while designing newer architectures in the 2020s (Liu et al.,
2021; 2022). And, more broadly, if the perspectives and
techniques that help us understand the nature of a given ar-
chitecture are general enough, they may also be of relevance
when considering another architecture of interest.

We are inspired by one such account of an intriguing per-
spective: the extensive redundancy in the parameterization
of fully-connected networks, as measured through the Hes-
sian degeneracy (Sagun et al., 2016), and recently outlined
rigorously in the work of (Singh et al., 2021). We aim to
chart this out in detail for CNNs1.

1The corresponding code can be found under
https://github.com/sidak/hessian_perspective_cnns. Also,

1

https://github.com/sidak/hessian_perspective_cnns

The Hessian perspective into the Nature of CNNs

2. Related Work
The Nature of CNNs. To start with, there’s the intuitive
perspective of enabling a hierarchy of features (LeCun et al.,
1995). A more mathematical take is that of (Bruna & Mallat,
2013) where filters are constructed as wavelets and which
as a whole provide Lipschitz continuity to deformations.
The approximation theory view (Poggio et al., 2015; Mao
et al., 2021) reinforces the intuitive benefits of hierarchy and
compositionality with explicit constructions. On the opti-
mization side, the implicit bias perspective (Gunasekar et al.,
2018) stresses on how gradient descent on CNNs leads to a
particular solution. Other notable takes are from the view-
point of Gaussian processes (Garriga-Alonso et al., 2018),
loss landscapes (Nguyen & Hein, 2018; Gu et al., 2020),
arithmetic circuits (Cohen & Shashua, 2016) — to list a few.
In contrast, we focus on how, from the initialization itself,
the CNN architecture induces structural properties of the
loss Hessian and by extension, of the loss landscape.

Hessian maps and Deep Learning. The Hessian charac-
terizes parameter interactions via second derivative of the
loss. Consequently, it has been a central object of study
and has been extensively utilized for applications and the-
ory alike, both in the past as well as the present. For in-
stance, generalization (MacKay, 1992a; Keskar et al., 2016;
Yang et al., 2019; Singh et al., 2022), optimization (Zhu
et al., 1997; Setiono & Hui, 1995; Martens & Grosse, 2015;
Cohen et al., 2021), network compression (LeCun et al.,
1990; Hassibi & Stork, 1992; Singh & Alistarh, 2020), con-
tinual learning (Kirkpatrick et al., 2017), hyperparameter
search (LeCun et al., 1992; Schaul et al., 2013), and more.

In recent times, it has been revitalized in significant part due
to the ‘flatness hypothesis’ (Keskar et al., 2016; Hochreiter
& Schmidhuber, 1997) and in turn, flatness has become
a popular method to probe the extent of generalization as
it seems to consistently rank ahead of traditional norm-
based complexity measures (Jiang et al., 2019) in multiple
scenarios. Given the increasing size of the networks, and the
inherent limitation of the Hessian being quadratic in cost,
measuring flatness has almost become synonymous with
measuring the top eigenvalue of the Hessian (Cohen et al.,
2021) or even just the zeroth-order measurement of the loss
stability in the parameter space. To a lesser extent, some
works still utilize efficient approximations to the Hessian
trace (Yao et al., 2020) or log determinant (Jia & Su, 2020).
But largely the reliance on the Hessian for neural networks
has become a black-box affair.

Understanding of the Neural Network Hessian maps.
Lately, significant advances have been made in this direction
— a few of the most prominent being: the characterization of

please check out arXiv:2305.09088 for the latest version of our
paper.

its spectra as bulk and outliers (Sagun et al., 2016; Penning-
ton & Bahri, 2017; Ghorbani et al., 2019), the empirically
observed significant rank degeneracy (Sagun et al., 2017),
and the class/cross-class structure (Papyan, 2020). Despite
these advancements, its structure for neural networks pri-
marily gets seen only up to the surface level of the chain
rule2 for a composition of functions, with a few exceptions
such as (Wu et al., 2020; Singh et al., 2021).

We take our main inspiration from the latter of these works,
namely (Singh et al., 2021), where the authors precisely
characterize the Hessian structure for deep fully-connected
networks (FCNs) resulting in concise bounds and formulae
on the Hessian rank of arbitrary-sized networks, thereby
being the premier work to theoretically demonstrate the rank
degeneracy of the Hessian. Our aim, hence, is to thoroughly
exhibit the structure of the Hessian for deep convolutional
networks and explore the distinctive facets that arise therein
— as compared to FCNs.

Our contributions are: (1) We develop a framework to
analyze CNNs that rests on a Toeplitz representation of
convolution3 and applies for general deep, multi-channel,
arbitrary-sized CNNs, while being amenable to matrix anal-
ysis. We then utilize this framework to unravel the Hessian
structure for CNNs and provide upper bounds on the Hes-
sian rank. Our bounds are exact for the case of 1-hidden
layer CNNs, and in the general case, are of the order of the
square root of the trivial bounds that are based on parameter
count.

(2) Next, we verify our bounds empirically in a host of set-
tings, where we find that our upper bounds remain rather
close to the true empirically observed Hessian rank. More-
over, they even hold faithfully outside the confines of the
theoretical setting (e.g., choice of the loss and activation
functions) used to derive them.

(3) Further, we make a detailed comparison of the key ingre-
dients in CNNs, i.e., local connectivity and weight sharing,
in a simplified setting through the perspective of our Hessian
results. Here, we also discuss some elements of our proof
technique in the hope that it helps provide a better grasp of
the results.

We would also like to make a quick remark about the differ-
ence with regards to (Singh et al., 2021). While we borrow
heavily from their approach, the framework we develop
here provides us with the flexibility to handle convolutions,
pooling operations, and even fully-connected layers. In par-
ticular, our analysis captures their results as a special case
when the filter size is equal to the spatial dimension. We

2This is known otherwise as the Gauss-Newton decomposi-
tion (Schraudolph, 2002b) and discussed in Eqn. 1.

3Convolution as used in practice in deep learning, and not, say
circular convolution —despite its relative theoretical ease.

2

https://arxiv.org/abs/2305.09088

The Hessian perspective into the Nature of CNNs

also introduce a novel proof technique relative to (Singh
et al., 2021), without which one cannot attain exact bounds
on the Hessian rank for the one-hidden layer case.

Overall, we hope that by building on the prior work, we
can further push this research direction of understanding the
nature of various network architectures through an in-depth,
white-box, analysis of the Hessian structure.

3. Setup
Notation. We denote vectors in lowercase bold (x), ma-
trices in uppercase bold (X), and tensors in calligraphic
letters (X). We will denote the i-th row and j-th columns
of some matrix A by Ai • and A• j respectively. We
will often use the notation A(i:j), for i > j to indicate
a sequence of matrices from i down to j, i.e., A(i:j) =
A(i)A(i−1) · · ·A(j+1)A(j). For i < j, the same notation4

would mean the sequence of matrices from i up to j, but
tranposed. To express the structure of the gradients and
the Hessian, we will employ matrix derivatives (Magnus &
Neudecker, 2019), wherein we vectorize row-wise (vecr)
the involved matrices and organize the derivative in Jacobian
(numerator layout). Concretely, for matrices X ∈ Rm×n

and Y ∈ Rp×q , we have

∂Y

∂X
:=

∂ vecr Y

∂ (vecr X)⊤
∈ Rpq×mn .

Setting. Suppose we are given an i.i.d. dataset S =
{(x1,y1), . . . , (xn,yn)}, of size |S| = n, drawn from an
unknown distribution pX,Y, consisting of inputs x ∈ X ⊆
Rd and targets y ∈ Y ⊆ RK . Based on this dataset S,
consider we use a neural network to learn the mapping from
the inputs to the targets, Fθθθ : X 7→ Y, parameterized by
θθθ ∈ ΘΘΘ ⊆ Rp. To this end, we follow the framework of
Empirical Risk Minimization (Vapnik, 1991), and optimize
a suitable loss function L : Θ 7→ R. In other words, we
solve the following optimization problem,

θθθ⋆ = argmin
θθθ∈ΘΘΘ

L(θθθ) =
1

n

n∑
i=1

ℓ (θθθ; (xi,yi)) ,

say with a first-order method like (stochastic) gradient de-
scent and the choices for ℓ could be mean-squared error
(MSE), cross-entropy (CE), etc.

Hessian. We analyze the properties of the Hessian of the

loss function, HL =
∂2L(θθθ)

∂θθθ ∂θθθ⊤
, with respect to the parameters

θθθ. It is quite well known (Schraudolph, 2002a; Sagun et al.,
2017; Singh et al., 2022) that, via the chain rule, the Hessian

4When either of i or j are outside the bounds of a particular
index set, this notation would devolve to an identity matrix.

can be decomposed as a sum of the following two matrices:

HL = HO +HF =
1

n

n∑
i=1

∇θθθFθθθ(xi)
[
∇2

Fθθθ
ℓi
]
∇θθθFθθθ(xi)

⊤

+
1

n

n∑
i=1

K∑
c=1

[∇Fθθθ
ℓi]c ∇2

θθθ F
c
θθθ(xi) (1)

where, ∇θθθFθθθ(xi) ∈ Rp×K is the Jacobian of the function
and ∇2

Fθθθ
ℓi ∈ RK×K is the Hessian of the loss with respect

to the network function, at the i-th sample. To facilitate com-
parison, we refer to these two matrices as the outer-product
Hessian and the functional Hessian following (Singh et al.,
2021).

4. Background
Precise bounds on the Hessian rank. Despite the much
interest in Hessian over the decades, the upper bounds re-
mained quite trivial (like a factor of the number of sam-
ples) and the empirically observed degeneracy (Sagun et al.,
2016), because of the need to measure rather small eigen-
values and judge a suitable threshold, remained intractable
to establish. Exact upper bounds and formulae have only
been made available very recently for fully-connected net-
works due to (Singh et al., 2021), as a result of subtle choice
to have linear activations, together with a novel analysis
technique adapted from matrix analysis (Matsaglia & Styan,
1974; Chuai & Tian, 2004). While they find that the pres-
ence of non-linearities like ReLU impedes a theoretical
analysis, (Singh et al., 2021) thoroughly demonstrate that
their bounds hold empirically for ReLU-based FCNs as well.
Their empirical analysis is equally rigorous, for they com-
pute exact Hessians (without any approximation) in Float64
precision.

Overall, the surprising finding of (Singh et al., 2021) is that
the Hessian rank for FCNs scales5 linearly in the total num-
ber of neurons m, i.e., O(m); while the number of parame-
ters scale quadratically, O(m2). While this concrete bound
of O(m) is shown at initialization, their analysis applies
to any point in the loss landscape and thereby also during
training — but with the resulting bound in terms of the rank
of the individual weight matrices. Further, they highlight
that during training, the rank can only decrease (a simple
consequence of the functional Hessian HF being driven to
zero since it is scaled by the gradient of the loss ∇Fθθθ

ℓ). In
this sense, their upper bounds hold pointwise throughout
the loss landscape and the optimization trajectory.

Why Hessian Rank? The finding about the growth of
Hessian rank carries thought-provoking implications on the

5More precisely, this should be O(q ·m), however, q denotes
the bottleneck dimension in the network — inclusive of input and
output dimensions, and hence can be thought of as a constant.

3

The Hessian perspective into the Nature of CNNs

number of effective parameters within a particular archi-
tecture. Let us illustrate this by considering the Occam’s
factor (MacKay, 1992b; Gull, 1989) which, said roughly,
describes the extent to which the prior hypothesis space
shrinks on observing the data. More formally, this is the ra-
tio of posterior to prior volumes in the parameter space. This
is then used to derive the following measure for the effective
degrees of freedom, assuming a quadratic approximation to
the posterior:

p∑
i=1

λi

λi + ϵ
,

where, λi denotes the i-th eigenvalue of the Hessian, p is
the total number of parameters, and ϵ is the weight set upon
the prior. In other words, the above measure compares
the extent (λi) to which a particular direction (along the
i-th eigenvector) in the parameter space is determined by
the data relative to that determined by the prior ϵ. For
small ϵ, which amounts to little or no explicit regularization
towards the prior (as is often the case with deep networks in
practice), this measure of the degrees of freedom approaches
the Hessian rank. In a recent work (Maddox et al., 2020)
empirically noted that this measure also explains double
descent (Belkin et al., 2019) in neural networks. Thus, it
makes it all the more pertinent to explore how rank of the
Hessian scales with various architectural parameters in a
CNN.

As a sidenote, we also carry out a preliminary study where
we sweep over the filter sizes and the number of channels in
a CNN, and find that the Hessian rank, at initialization, has
a higher correlation coefficient (see Figure 15) with general-
ization error as compared to the raw count of parameters.

5. Toeplitz Framework for CNN Hessians
Preliminaries. In this section, we will lay out the formalism
that will lie at the core of our analysis. For brevity, we will
develop this in the case of 1D CNNs which are commonly
employed for biomedical applications or audio data (Ki-
ranyaz et al., 2021). One can otherwise think of applying
our framework to flattened filters and input patches, and
such an assumption is also prevalent in the theory litera-
ture (Kohn et al., 2021). Besides, throughout our framework
we will assume there are no bias parameters, although one
can simply consider homogeneous coordinates in the input.

A Gentle Start. Let’s say we want to represent the con-
volution W ∗ x of an input x ∈ Rd with m filters of size
k ≤ d that have been organized in the matrix W ∈ Rm×k.
For now, consider that we have stride 1 and zero padding.
We will later touch upon these aspects and see the results
for strides > 1 in Section 8. Further, for some vector
z ∈ Rd, we will use the notation zj:j+k−1 ∈ Rk to de-
note the (shorter) vector formed by considering the indices

j to j + k − 1 (both inclusive) of the original vector. The
output of the above convolution can be expressed as the
following matrix of shape m× (d− k + 1),

W ∗ x =

⟨W1 •, x1:k⟩ · · · ⟨W1 •, xd−k+1:d⟩

...
...

⟨Wm •, x1:k⟩ · · · ⟨Wm •, xd−k+1:d⟩

 . (2)

Now, define Toeplitz6 matrices for each filter, {TWi •}mi=1,
with TWi • := toep(Wi •, d) ∈ R(d−k+1)×d such that,

TWi • =

wi1 · · · wik 0 · · · 0

0 wi1 · · · wik 0
...

... 0
. . .

. . .
. . . 0

0 · · · 0 wi1 · · · wik

.

Note, the above representation of the Toeplitz matrix also
depends on the base dimension (here, d) where the given
vector must be ‘toeplitzed’, i.e., circulated in the above
fashion. But we will omit specifying this unless necessary.
Let us also denote the matrix formed by stacking the TWi •

matrices in a row-wise fashion as

TW :=

TW1 •

...

TWm •

 ∈ Rm(d−k+1)×d .

We can now see that the above matrix, TW, when multi-
plied by the input x gives us the output of the convolution
operation in Eqn. (2) when vectorized row-wise , i.e.,

vecr(W ∗ x) = TWx .

5.1. Toeplitz representation of deep CNNs

Now, let us assume we have L hidden layers, each of which
is a convolutional kernel. Hence, the parameters of the l-
th layer are denoted by the tensor W(l) ∈ Rml×ml−1×kl ,
where ml represent the number of output channels, ml−1

the number of input channels, and kl the kernel size at
this layer. As we assume a one-dimensional input, without
loss of generality, we can set the number of input channels
m0 = 1. In other words, they are already assumed to be
flattened when passing the input of dimension d0 := d into
the network. The spatial dimension after being convolved
with the l-th layer is denoted by dl = dl−1 − kl + 1 (which
is basically the number of hops we can make with the given
kernel over its respective input), since we have stride 1

6These are matrices A with Aij = ai−j formed via some
underlying vector a

4

The Hessian perspective into the Nature of CNNs

and zero padding. Assume, say the ReLU nonlinearity
σ(x) := max(x, 0). The network function can then be
formally represented as (although it will be actually defined
through Eqn. (3) later):

Fθθθ(x) = W(L+1) ∗ σ(W(L) ∗ σ(· · · ∗ σ(W(1) ∗ x))) .

As before, we would like to express the above function in
terms of a sequence of appropriate Toeplitz matrix products.
Unlike the warmup scenario, the convolutional kernels in
this general case will be tensors. The key idea is to do a
column-wise stacking of individual Toeplitz matrices across
the input channels while maintaining the row-wise stacking,
as before, across the output channels.

First, we need to introduce a notation about indexing the
fibres of a tensor W(l) ∈ Rml×ml−1×kl . Say we need the
fibre going in to the plane, across the third mode. Then, the
(i, j)-th fibre is denoted by W(l)

(i,j) • ∈ Rkl , whose associated

Toeplitz matrix will be T
W(l)

(i,j) • := toep(W(l)
(i,j) •, dl−1) ∈

Rdl×dl−1 . Finally, the Toeplitz matrix associated with the
entire l-th convolutional layer W(l), for which we use the
shorthand T(l) ∈ Rmldl×ml−1dl−1 , can be expressed as:

T(l) :=

T

W(l)

(1,1) • · · · T
W(l)

(1,ml−1) •

...
...

T
W(l)

(ml,1) • · · · T
W(l)

(ml,ml−1) •

 .

In other words, the Toeplitzed representation T(l) consists
of ml · ml−1 many Toeplitz blocks formed by the vector
W(l)

(i,j) • ∈ Rkl of size dl×dl−1. The output (spatial) dimen-
sion dL+1 is typically 1 (corresponding to kL+1 = dL), and
the number of output channels for the last layer ml+1 = K
where K is the number of targets. Now, the network func-
tion can be written in the general case as:

Fθθθ(x) = T(L+1)Λ(L)T(L) · · ·Λ(1)T(1) x , (3)

where, Λ(i) is an input-dependent diagonal matrix that con-
tains a 1 or 0, based on whether the neuron was activated
or not. As the rank analysis of (Singh et al., 2021) requires
linear activations, we will follow the same course. However,
we can expect that this should still let us contrast the dis-
tinctive facets of CNN relative to a FCN. Anyways, later
we will elaborate on the case of nonlinearities. Besides, we
will refer to the above network function, more concisely as
T(L+1:1)x.

Remark. As evident, the fact that a convolution of a set of
vectors can be expressed as a matrix-vector product with
a suitable Toeplitz matrix is rather straightforward. Also,
a Toeplitz representation for CNN is not new — works

from approximation theory incorporate a similar formal-
ism (Zhao et al., 2017; Fang et al., 2020). However, unlike
past work (Sedghi et al., 2018; Kohn et al., 2021), we de-
velop our framework in a way that doesn’t overlook how
convolutions are prominently used, i.e., without circular
convolution, with multiple channels, and possibly unequal-
sized layers.

5.2. Matrix derivatives of Toeplitz representations

For the gradient and Hessian calculations, we make use of
matrix derivatives and the corresponding chain rule. Thus
we frequently compute the gradient of the Toeplitz represen-
tation T(l) with respect to the suitably matricized convolu-
tional tensor, matW(l). In order to be consistent with the
form of T(l), we define our matricization of W(l) as:

matW(l) :=

W(l)

(1,1) • · · · W(l)

(ml,1) •
...

...
W(l)

(1,ml−1) •
· · · W(l)

(ml,ml−1) •

⊤

. (4)

where the matricization matW(l) ∈ Rml×ml−1kl and we
will use the notation W(l) := matW(l) as a shorthand.
Essentially, we have arranged each of the mode-3 fibres as
rows in the output channels times input channels format.

The following lemma equips us with the way to carry this
out (the proof can be found in Section A.1 of the Appendix).

Lemma 1. The matrix derivative of T(l) with respect to
W(l), is given as follows:

Q̃(l) :=
∂T(l)

∂W(l)
:=

∂ vecr T
(l)

∂
(
vecr W(l)

)⊤ = Iml
⊗ Q(l) .

The particular structure of Q(l) is a bit complex, involving
various permutation matrices. So, for simplicity, we abstract
it out here in the main text.

5.3. CNN Hessian Structure

Like (Singh et al., 2021), for our theoretical analysis, we
will consider the case of MSE loss. But the results still
hold empirically, say, for CE loss. Let’s now have a glance
at the kl-th block, k ≤ l for both the outer-product and
the functional Hessian (the derivations are in Section B).
This corresponds to looking at the submatrix of the Hessian
corresponding to the k-th and l-th convolutional parameter
tensors.7 Let’s start with the outer-product Hessian HO.

7In the case of HF, the present form is for k ≤ l. For, k ≥ l,
it’s a bit different and detailed in the Appendix.

5

The Hessian perspective into the Nature of CNNs

Proposition 2. The kl-th block of HO is,

H
(kl)
O = Q̃(k)⊤

(
T(k+1:L+1)T(L+1:l+1) ⊗

T(k−1:1)ΣxxT
(1:l−1)

)
Q̃(l) . (5)

A word about HO. We should also emphasize that the outer-
product Hessian shares exactly the same non-zero spectrum
as the Neural Tangent Kernel (Jacot et al., 2018), or roughly
up to scaling, in the case of Fisher Information (Amari,
1998), empirical Fisher (Kunstner et al., 2019)).

Moving on to the functional Hessian HF, denote Ω =
E [δδδx,y x

⊤] ∈ RK×d0 as the (uncentered) covariance of
the residual (yi − Fθθθ(xi)) with the input. Then we have,
Proposition 3. The kl-th block of HF is:

H
(kl)
F =

(
Imk

⊗Q(k)⊤
)(

T(k+1:l−1) ⊗

T(k−1:1)Ω⊤T(L+1:l+1)

)(
Q(l) ⊗ Iml

)
, (6)

A word about HF. As the outer-product Hessian is posi-
tive semi-definite, the functional Hessian is the source of
all the negative eigenvalues of the Hessian and is impor-
tant for optimization as there may be numerous saddles in
the landscape (Dauphin et al., 2014). It also has a very
peculiar block-hollow structure (i.e., zero diagonal blocks),
which leads to the number of negative eigenvalues being
approximately half of its rank (c.f., (Singh et al., 2021)).

6. Key results on the CNN Hessian Rank
Finally, we can now present our key results. A quick note
about assumptions: for simplicity, assume that the (un-
centered) input-covariance Σxx = cov(x) has full rank
rk (Σxx) := r = d. We will analyze the ranks of the outer
product and functional Hessian, later combining them to
yield a bound on the rank of the loss Hessian. This is with-
out loss of generality for one can always pre-process the
input to ensure that this is the case, and results of (Singh
et al., 2021) hold for r ̸= d with appropriate modifications.

Outer-Product Hessian HO. From the structure of the kl-
th block in Eqn. (5), it’s easy to see to arrive at the following
proposition:
Proposition 4. For a deep linear convolutional network,
HO = Q⊤

o AoBoA
⊤
o Qo , where Bo = IK ⊗ Σxx ∈

RKd×Kd, A⊤
o =

T(L+1:2) ⊗ Id
...

T(L+1:l+1) ⊗T(1:l−1)

· · ·
IK ⊗T(1:L)

∈ RKd×p̂ ,

and Qo = diag
(
Q̃(1), · · · , Q̃(L+1)

)
∈ Rp̂×p where

diag(·) denotes a block-diagonal matrix.

Besides, p =
∑L+1

i=1 mlml−1kl and p̂ =∑L+1
i=1 mlml−1dldl−1. The former denotes the num-

ber of parameters in the CNN while the latter is the number
of parameters in the ‘Toeplitzed’ fully-connected network.

Our first key result, the proof of which is located in the
Appendix section C.1, can then be described as follows:

Theorem 5. The rank of the outer-product Hessian is
upper bounded as

rk(HO) ≤ min
(
p, d0 rk(T

(2:L+1)) +K rk(T(L:1))−
rk(T(2:L+1)) rk(T(L:1))

)
= min (p, q (d0 +K − q)) .

Here, q := min(d0,m1d1, · · · ,mLdL,K).

Assuming no bottleneck layer, we will have that q =
min(d,K), and resulting in rk(HO) ≤ Kd0.

Functional Hessian HF. Our approach here will be simi-
lar to that in the Theorem above. We will try to factor out all
the Q(l) matrices and then analyze the rank of the resulting
decomposition. But, this requires more care as the form of
the kl-th block is different depending on k ≤ l or not.

Theorem 6. For a deep linear convolutional network, the
rank of l-th column-block, Ĥ•l

F , of the matrix ĤF, can be
upper bounded as

rk(Ĥ•l
F) ≤ min(q̂ ml−1dl−1+ q̂ mldl− q̂ 2 ,mlml−1kl) ,

for l ∈ [2, · · · , L] . When l = 1, we have

rk(Ĥ•1
F) ≤ min(q̂ m1d1 + q̂ s− q̂ 2 ,m1m0k1) .

And, when l = L+ 1, we have

rk(Ĥ•L+1
F) ≤ min(q̂ mLdL+ q̂ s− q̂ 2 ,mL+1mLkL+1) .

Here, q̂ := min(d0,m1d1, · · · ,mLdL,K, s) = min(q, s)
and s := rk(Ω) = rk(E [δδδx,y x

⊤]).

The proof is located in Section C.2 of the Appendix. The
upper bound on the rank of HF follows by summing the

above result over all the columns, rk(HF) ≤
L+1∑
l=1

rk(Ĥ•l
F)

by the sub-additivity of rank. A remarkable empirical obser-
vation, like in the case of FCNs, is that the block-columns
are mutually orthogonal — hence, we don’t loose anything
by simply summing the ranks of the block columns.

Loss Hessian HL. One can then bound the rank of the loss

6

The Hessian perspective into the Nature of CNNs

(a) Linear CNN: Rank vs # Channels (b) Linear CNN: Rank vs Filter size (c) ReLU CNN: Rank vs Filter size

Figure 2: Trend of the upper bound on the (loss) Hessian rank, compared to the true rank, and the number of parameters. In other
subfigures, we see the rank of the functional Hessian and outer-product Hessian.

Hessian simply as, rk(HL) ≤ rk(HO)+rk(HF). Also, we
can infer that, in the likely case where q = min(K, d0), rank
of the loss Hessian grows linearly with number of channels,
i.e., O(m · L · d0), while the number of parameters grow
quadratically in the number of channels, i.e., O(m2 ·L · d0).
Thereby, we confirm that like FCNs, a similar linear trend
also holds for CNNs (and hence the Figure 1). Besides, for
very large networks, m will be the dominating factor and
we can infer that rank will show a square root behaviour
relative to the number of parameters. Hence, we generalize
the key finding of (Singh et al., 2021) in the fully-connected
case to the case of convolutional neural networks.

6.1. Exact results for one-hidden layer case

While the above bounds are much tighter than any existing
bounds, we now try to understand how tight our bounds are
by looking at the case of a 1-hidden layer:

Theorem 7. The rank of the outer product Hessian for
a one-hidden layer CNN can be bounded as: rk (HO) ≤
min

(
Kd0, q(k1 + K(d0 − k1 + 1) − q)

)
, where, q =

min(k1,K(d0 − k1 + 1),m1).

Theorem 8. The rank of the functional Hessian for a
one-hidden layer CNN can be bounded as: rk (HF) ≤
2min

(
k1,K(d0 − k1 + 1)

)
m1 .

The strategy behind the proofs (section C.3), which is strictly
novel relative to (Singh et al., 2021), is to express the CNN
as a superposition of functions that act on different input
patches and, alongside, utilize the form of Toeplitz deriva-
tives as well as the involved auxiliary permutation matrices.
In terms of the results, interestingly, we find that now the
filter size k1 has entered inside the min terms in each of
the bounds; thereby further reducing the rank. However, as
shown ahead, for larger networks with many channels m,
we find that our earlier upper bound still fares decently.

7. Empirical Verification
Verification of upper bounds. We empirically validate
our upper bounds in a variety of settings, in particular, with
both linear and ReLU activations, MSE and CE loss, as well
as on datasets such as CIFAR10, FashionMNIST, MNIST,
and a synthetic dataset. However, given the page constraints,
we only show a selection of the plots, while the rest can be
found in the Appendix D. Following (Singh et al., 2021), to
rigorously illustrate the match with our bounds, we compute
the exact Hessians, without approximations, and in Float64
precision. These precautions are taken to avoid any impreci-
sion in calculating the rank, since the boundary of non-zero
eigenvalues with zero can be otherwise a bit blurry.

Rank vs number of channels. We begin by illustrating
the trend of our general upper bounds in Figure 2a for the
case of 2-hidden layer CNN on CIFAR10 and is thus the
counterpart to the Figure 1 presented before. The upper
bound is relatively close to the true rank and similarly shows
a linear trend with the number of channels. Similar results
for ReLU and CE loss can be found in Appendix D.2.

Rank vs Filter Size. Next, in Figure 2b, we demonstrate
the match of our exact bound with the rank as observed
empirically. We hold the number of channels as fixed and
vary the filter size. First of all, here the markers and the
lines indeed coincide for the functional Hessian and outer-
product Hessian. On the other hand, the loss Hessian which
we bound as the sum of the ranks of HO and HF forms
a canopy over all the empirically observed values of the
rank across the filter sizes. The upper bound itself is also
quite close; it becomes even closer for large values of m,
see Section D.3.1).

The case of non-linearities. Further, in a similar compar-
ison across filter sizes, we showcase that our bounds which
were derived for linear activations still remain as valid upper
bounds and form a canopy as seen in Figure 2c.

7

The Hessian perspective into the Nature of CNNs

Furthermore, in order to quantitatively measure the fidelity
of our rank bounds in the case of non-linearities, we re-
port the Hessian reconstruction error in Figure 3 as done
in (Singh et al., 2021). To be precise, here we measure
the reconstruction error for a four-hidden layer CNN with
ReLU non-linearity when only the some of top eigenvectors
are used to approximate the Hessian. We can see that using
our upper bound (from the linear case) still provides for
a rather small reconstruction error. Hence, this provides
evidence that our upper bounds we derived in the linear case
can serve as a proxy to the numerical rank in the case with
non-linearities.

Figure 3: Hessian reconstruction error for four-hidden layer CNN
with ReLU non-linearity. ‘Linear Rank’ corresponds to using the
true (empirically measured) rank in the corresponding CNN with
linear activation. ’Linear Upper Bound’ refers to our upper bound
for the corresponding CNN with linear activations. The ’True
Rank’ refers to the empirically measured rank in this particular
CNN with ReLU nonlinearity.

Figure 4: Dynamics of the rank of the Hessian while training a
four-hidden layer linear CNN.

The course of training. Like the fully-connected case, as
shown in the past work of (Singh et al., 2021), we observe
in Figure 4 that CNNs show similar trend in the evolution
of Hessian rank during the course of training. In particular,
we can see that the rank of the functional Hessian which is
learning driven (i.e., contains the residual-input covariance
), decreases during training before eventually becoming
zero. In contrast, the rank of the outer-product Hessian

is unchanged. Thus, the rank of the overall loss Hessian
decreases until it becomes the same as the outer-product
Hessian, and in turn matches it in rank8.

8. Locality and Weight-sharing
We would like to do a little deep dive and explore a simpli-
fied setting, in order to gather some intuition. We study the
two crucial components behind CNN, namely, local connec-
tivity (i.e, the localized patches of the input are convolved
with a possibly distinct filter) and weight sharing (where the
same filter is applied to each of these patches).

Setting. Concretely, let us begin by considering the case of
a one-hidden layer neural network (with linear activations
for simplicity). We now try to get rid of the layer indices
for the sake of clarity. So the input dimension is d, output
dimension is K, filter size is k, number of hidden layer
filters is m. Further, we consider non-overlapping filters,
like in MLPMixer (Tolstikhin et al., 2021). In other words,
the stride is set equal to the filter size k and so the number of
patches under consideration will be t = d/k, and to avoid
unnecessary complexity, we assume d is an integer multiple
of k.

Locally Connected Networks (LCNs). As the filters
that get applied on the patches are distinct, let us denote
them by W(ii) ∈ Rm×k and the output layer matrix as
V :=

(
V(1) · · · V(t)

)
, with V(i) ∈ RK×m, where the

superscript denotes the index of the local patch upon which
they get applied. Mathematically we can represent the result-
ing neural network function as (where x(i) ∈ Rk denotes
the i-th chunk of the input):

(
V(1) · · · V(t)

) W(11) · · · 0
...

. . .
...

0 · · · W(tt)

x(1)

...

x(t)

We indexed the local weight matrices of the first layer as
W(ii) to reflect that it is (i, i)-th block on the diagonal.
After carrying out the block matrix multiplication, the above
formulation can also be expressed as:

FLCN
θθθ (x) =

t∑
i=1

V(i) W(ii) x(i) . (7)

We can then easily bring to our minds the case of fully-
connected networks which will also contain the off-diagonal
blocks and would be represented as:

FFCN-large
θθθ (x) =

t∑
i,j=1

V(i) W(ij) x(j) .

8Besides, we notice in Figure 16a, that the rank of the convolu-
tional layers (when matricized) remains unchanged during training
as well.

8

The Hessian perspective into the Nature of CNNs

Clearly, fully-connected networks form a generalization of
locally-connected networks. Another point of comparison
for LCNs in Eq. (7) with FCNs is that the former may be
viewed as a superposition of s distinct smaller FCNs acting
on disjoin patches of the input.9

FLCN
θθθ (x) =

t∑
i=1

FFCN-small
θθθ

(
x(i) ; {V(i),W(ii)}

)
.

In this scenario of LCNs, we get the following bounds on
the rank of the outer-product and functional Hessian:

Theorem 9. For the locally connected network as de-
scribed in Eqn. (7), the rank of the outer-product and
the functional Hessian can be upper bounded as fol-
lows: rk(HLCN

O) ≤ t · q(k +K − q) , and rk(HF
LCN) ≤

t · 2mmin(k,K), where q = min(k,K,m) and t = d/k.

The proof is located in Section C.4. The neat thing about
the above rank expressions is that they are identical to that
obtained for the smaller fully-connected network, except
where we change the input dimension from d → k and scale
the bounds by a factor of t = d/k (the number of smaller
fully-connected that are being superpositioned). In short,
even though these weight matrices must ‘act’ together in the
loss, their contributions to the Hessian came out individually
(i.e, HF and HO can be factorized as block diagonals).

Incorporating Weight Sharing (WS). Now all the weight
matrices in the first layer are shared, i.e., W(ii) = W.

(
V(1) · · · V(t)

) W · · · 0
...

. . .
...

0 · · · W

x(1)

...

x(t)

 (8)

Theorem 10. For the locally connected network with
weight sharing defined in Eqn. (8), the rank of the outer-
product and the functional Hessian can be bounded as:
rk(HLCN+WS

O) ≤ q(k + Kt − q) , and rk(HF
LCN+WS) ≤

2mmin(k,Kt), where q = min(k,Kt,m) and t = d/k.

The proof can be found in Section C.5, but the intuition is
that the weight matrix W is shared across the V(i), resulting
in the intersection of their column space inside the Hessian.
Hence, the rank shrinks for both HO, HF. Comparing
the rk(HF) bounds, we see that here t slides inside the
minimum, but only in the second term (i.e., K).

Lastly, in Figure 5, we present an illustration of the trend
of the rank with increasing filter size for both LCN and
the LCN + WS variant. Besides, the interesting scaling
behaviour, this figure also validates our theoretical bounds.

9This superposition point of view would hold even if we had a
non-linearity, and so do our empirical results.

Figure 5: Hessian rank: LCN vs CNN, (Linear, CIFAR10).

9. Conclusion
All in all, we have illustrated how the key ingredients of
CNNs, such as local connectivity and weight sharing, as
well as architectural aspects like filter size, strides, and
number of channels get manifested through the Hessian
structure and rank. Moreover, we can utilize our Toeplitz
representation framework to deliver tight upper bounds in
the general case of deep convolutional networks and gener-
alize the recent finding of (Singh et al., 2021) about square
root growth of rank relative to parameter count for CNNs
as well. Looking ahead, our work raises some very interest-
ing questions: (a) Is the growth of rank as a square root in
terms of the number of parameters a universal characteris-
tic of all deep architectures? Including Transformers? Or
are there some exceptions to it? (b) Given the uncovered
structure of the Hessian in CNNs, there are also questions
about understanding which parts of the architecture affect
the spectrum more — normalization or pooling layers? (c)
On the application side, it would be interesting to see if we
can use our results to understand the approximation quality
of existing pre-conditioners such as K-FAC or come up with
better ones, given the rich properties of Toeplitz matrices.

Acknowledgements
We would like to thank Max Daniels and Gregor Bachmann
for their suggestions as well as rest of DALab for useful
comments and support. Sidak Pal Singh would also like to
acknowledge the financial support from Max Planck ETH
Center for Learning Systems and the travel support from
ELISE (GA no 951847).

References
Amari, S.-I. Natural gradient works efficiently in learning.

Neural computation, 10(2):251–276, 1998.

Belkin, M., Hsu, D., Ma, S., and Mandal, S. Reconciling
modern machine learning practice and the bias-variance

9

The Hessian perspective into the Nature of CNNs

trade-off, 2019.

Bruna, J. and Mallat, S. Invariant scattering convolution
networks. IEEE transactions on pattern analysis and
machine intelligence, 35(8):1872–1886, 2013.

Chuai, J. and Tian, Y. Rank equalities and inequalities
for kronecker products of matrices with applica-
tions. Applied Mathematics and Computation,
150(1):129–137, 2004. ISSN 0096-3003. doi:
https://doi.org/10.1016/S0096-3003(03)00203-0.
URL https://www.sciencedirect.com/
science/article/pii/S0096300303002030.

Cohen, J. M., Kaur, S., Li, Y., Kolter, J. Z., and Talwalkar,
A. Gradient descent on neural networks typically occurs
at the edge of stability, 2021. URL https://arxiv.
org/abs/2103.00065.

Cohen, N. and Shashua, A. Inductive bias of deep convolu-
tional networks through pooling geometry. arXiv preprint
arXiv:1605.06743, 2016.

Dauphin, Y. N., Pascanu, R., Gulcehre, C., Cho, K., Gan-
guli, S., and Bengio, Y. Identifying and attacking the
saddle point problem in high-dimensional non-convex
optimization. Advances in neural information processing
systems, 27, 2014.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

Fang, Z., Feng, H., Huang, S., and Zhou, D.-X. Theory of
deep convolutional neural networks ii: Spherical analysis.
Neural Networks, 131:154–162, 2020.

Fukushima, K. A self-organizing neural network model for
a mechanism of pattern recognition unaffected by shift in
position. Biol, Cybern, 36:193–202, 1980.

Garriga-Alonso, A., Rasmussen, C. E., and Aitchison, L.
Deep convolutional networks as shallow gaussian pro-
cesses. arXiv preprint arXiv:1808.05587, 2018.

Ghorbani, B., Krishnan, S., and Xiao, Y. An investigation
into neural net optimization via hessian eigenvalue den-
sity. In International Conference on Machine Learning,
pp. 2232–2241. PMLR, 2019.

Gu, Y., Zhang, W., Fang, C., Lee, J. D., and Zhang, T. How
to characterize the landscape of overparameterized convo-
lutional neural networks. Advances in Neural Information
Processing Systems, 33:3797–3807, 2020.

Gull, S. F. Developments in Maximum Entropy Data
Analysis, pp. 53–71. Springer Netherlands, Dordrecht,
1989. ISBN 978-94-015-7860-8. doi: 10.1007/
978-94-015-7860-8_4. URL https://doi.org/10.
1007/978-94-015-7860-8_4.

Gunasekar, S., Woodworth, B., Bhojanapalli, S., Neyshabur,
B., and Srebro, N. Implicit regularization in matrix fac-
torization. In 2018 Information Theory and Applications
Workshop (ITA), pp. 1–10. IEEE, 2018.

Gur-Ari, G., Roberts, D. A., and Dyer, E. Gradient descent
happens in a tiny subspace, 2018.

Hassibi, B. and Stork, D. G. Second order derivatives for
network pruning: Optimal brain surgeon. In NIPS, pp.
164–171, 1992.

Hochreiter, S. and Schmidhuber, J. Flat minima. Neural
computation, 9(1):1–42, 1997.

Jacot, A., Gabriel, F., and Hongler, C. Neural tangent kernel:
Convergence and generalization in neural networks. arXiv
preprint arXiv:1806.07572, 2018.

Jia, Z. and Su, H. Information-theoretic local minima charac-
terization and regularization. In International Conference
on Machine Learning, pp. 4773–4783. PMLR, 2020.

Jiang, Y., Neyshabur, B., Mobahi, H., Krishnan, D., and
Bengio, S. Fantastic generalization measures and where
to find them. arXiv preprint arXiv:1912.02178, 2019.

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy,
M., and Tang, P. T. P. On large-batch training for deep
learning: Generalization gap and sharp minima. arXiv
preprint arXiv:1609.04836, 2016.

Kiranyaz, S., Avci, O., Abdeljaber, O., Ince, T., Gabbouj,
M., and Inman, D. J. 1d convolutional neural networks
and applications: A survey. Mechanical systems and
signal processing, 151:107398, 2021.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Des-
jardins, G., Rusu, A. A., Milan, K., Quan, J., Ramalho, T.,
Grabska-Barwinska, A., et al. Overcoming catastrophic
forgetting in neural networks. Proceedings of the national
academy of sciences, 114(13):3521–3526, 2017.

Kohn, K., Merkh, T., Montúfar, G., and Trager, M. Ge-
ometry of linear convolutional networks, 2021. URL
https://arxiv.org/abs/2108.01538.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
Communications of the ACM, 60(6):84–90, 2017.

10

https://www.sciencedirect.com/science/article/pii/S0096300303002030
https://www.sciencedirect.com/science/article/pii/S0096300303002030
https://arxiv.org/abs/2103.00065
https://arxiv.org/abs/2103.00065
https://doi.org/10.1007/978-94-015-7860-8_4
https://doi.org/10.1007/978-94-015-7860-8_4
https://arxiv.org/abs/2108.01538

The Hessian perspective into the Nature of CNNs

Kunstner, F., Hennig, P., and Balles, L. Limitations of the
empirical fisher approximation for natural gradient de-
scent. Advances in neural information processing systems,
32, 2019.

LeCun, Y., Denker, J. S., and Solla, S. A. Optimal brain
damage. In Advances in neural information processing
systems, pp. 598–605, 1990.

LeCun, Y., Simard, P., and Pearlmutter, B. A. Automatic
learning rate maximization by on-line estimation of the
hessian’s eigenvectors. In NIPS 1992, 1992.

LeCun, Y., Bengio, Y., et al. Convolutional networks for
images, speech, and time series. The handbook of brain
theory and neural networks, 3361(10):1995, 1995.

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin,
S., and Guo, B. Swin transformer: Hierarchical vision
transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision,
pp. 10012–10022, 2021.

Liu, Z., Mao, H., Wu, C.-Y., Feichtenhofer, C., Darrell, T.,
and Xie, S. A convnet for the 2020s. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 11976–11986, 2022.

MacKay, D. J. A practical bayesian framework for backprop-
agation networks. Neural computation, 4(3):448–472,
1992a.

MacKay, D. J. C. A Practical Bayesian Framework for
Backpropagation Networks. Neural Computation, 4(3):
448–472, 05 1992b. ISSN 0899-7667. doi: 10.1162/neco.
1992.4.3.448. URL https://doi.org/10.1162/
neco.1992.4.3.448.

Maddox, W. J., Benton, G., and Wilson, A. G. Rethinking
parameter counting: Effective dimensionality revisted.
arXiv preprint arXiv:2003.02139, 2020.

Magnus, J. R. and Neudecker, H. Matrix differential calcu-
lus with applications in statistics and econometrics. John
Wiley & Sons, 2019.

Mao, T., Shi, Z., and Zhou, D.-X. Theory of deep con-
volutional neural networks iii: Approximating radial
functions, 2021. URL https://arxiv.org/abs/
2107.00896.

Martens, J. and Grosse, R. B. Optimizing neural networks
with kronecker-factored approximate curvature. CoRR,
abs/1503.05671, 2015. URL http://arxiv.org/
abs/1503.05671.

Matsaglia, G. and Styan, G. P. H. Equalities and in-
equalities for ranks of matrices. Linear and Multi-
linear Algebra, 2(3):269–292, 1974. doi: 10.1080/

03081087408817070. URL https://doi.org/10.
1080/03081087408817070.

Nguyen, Q. and Hein, M. Optimization landscape and
expressivity of deep cnns. In International conference on
machine learning, pp. 3730–3739. PMLR, 2018.

Papyan, V. Traces of class/cross-class structure pervade
deep learning spectra. The Journal of Machine Learning
Research, 21(1):10197–10260, 2020.

Pennington, J. and Bahri, Y. Geometry of neural net-
work loss surfaces via random matrix theory. In
Precup, D. and Teh, Y. W. (eds.), Proceedings of
the 34th International Conference on Machine Learn-
ing, volume 70 of Proceedings of Machine Learn-
ing Research, pp. 2798–2806. PMLR, 06–11 Aug
2017. URL http://proceedings.mlr.press/
v70/pennington17a.html.

Poggio, T., Anselmi, F., and Rosasco, L. I-theory on depth
vs width: hierarchical function composition. Technical
report, Center for Brains, Minds and Machines (CBMM),
2015.

Sagun, L., Bottou, L., and LeCun, Y. Eigenvalues of the
hessian in deep learning: Singularity and beyond. arXiv
preprint arXiv:1611.07476, 2016.

Sagun, L., Evci, U., Guney, V. U., Dauphin, Y., and Bottou,
L. Empirical analysis of the hessian of over-parametrized
neural networks. arXiv preprint arXiv:1706.04454, 2017.

Schaul, T., Zhang, S., and LeCun, Y. No more pesky learn-
ing rates, 2013.

Schraudolph, N. N. Fast curvature matrix-vector products
for second-order gradient descent. Neural Computation,
14:1723–1738, 2002a.

Schraudolph, N. N. Fast curvature matrix-vector products
for second-order gradient descent. Neural computation,
14(7):1723–1738, 2002b.

Sedghi, H., Gupta, V., and Long, P. M. The singular values
of convolutional layers, 2018.

Setiono, R. and Hui, L. C. K. Use of a quasi-newton method
in a feedforward neural network construction algorithm.
IEEE Transactions on Neural Networks, 6(1):273–277,
1995.

Singh, R. P. Some generalizations in matrix differentiation
with applications in multivariate analysis. 1972.

Singh, S. P. and Alistarh, D. Woodfisher: Efficient second-
order approximation for neural network compression,
2020.

11

https://doi.org/10.1162/neco.1992.4.3.448
https://doi.org/10.1162/neco.1992.4.3.448
https://arxiv.org/abs/2107.00896
https://arxiv.org/abs/2107.00896
http://arxiv.org/abs/1503.05671
http://arxiv.org/abs/1503.05671
https://doi.org/10.1080/03081087408817070
https://doi.org/10.1080/03081087408817070
http://proceedings.mlr.press/v70/pennington17a.html
http://proceedings.mlr.press/v70/pennington17a.html

The Hessian perspective into the Nature of CNNs

Singh, S. P., Bachmann, G., and Hofmann, T. Analytic
insights into structure and rank of neural network hes-
sian maps. Advances in Neural Information Processing
Systems, 34, 2021.

Singh, S. P., Lucchi, A., Hofmann, T., and Schölkopf, B.
Phenomenology of double descent in finite-width neu-
ral networks. In International Conference on Learning
Representations, 2022. URL https://openreview.
net/forum?id=lTqGXfn9Tv.

Tolstikhin, I. O., Houlsby, N., Kolesnikov, A., Beyer, L.,
Zhai, X., Unterthiner, T., Yung, J., Steiner, A., Keysers,
D., Uszkoreit, J., et al. Mlp-mixer: An all-mlp architec-
ture for vision. Advances in Neural Information Process-
ing Systems, 34:24261–24272, 2021.

Tracy, D. S. and Dwyer, P. S. Multivariate maxima and
minima with matrix derivatives. Journal of the American
Statistical Association, 64(328):1576–1594, 1969.

Vapnik, V. Principles of risk minimization for learning the-
ory. Advances in neural information processing systems,
4, 1991.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Wu, Y., Zhu, X., Wu, C., Wang, A., and Ge, R. Dissecting
hessian: Understanding common structure of hessian in
neural networks. arXiv preprint arXiv:2010.04261, 2020.

Yang, J., Sun, S., and Roy, D. M. Fast-rate pac-bayes
generalization bounds via shifted rademacher processes,
2019.

Yao, Z., Gholami, A., Keutzer, K., and Mahoney, M. W. Py-
hessian: Neural networks through the lens of the hessian.
In 2020 IEEE international conference on big data (Big
data), pp. 581–590. IEEE, 2020.

Zhao, L., Liao, S., Wang, Y., Li, Z., Tang, J., and Yuan, B.
Theoretical properties for neural networks with weight
matrices of low displacement rank. In international con-
ference on machine learning, pp. 4082–4090. PMLR,
2017.

Zhu, C., Byrd, R. H., Lu, P., and Nocedal, J. Algorithm
778: L-bfgs-b: Fortran subroutines for large-scale bound-
constrained optimization. ACM Transactions on Mathe-
matical Software (TOMS), 23(4):550–560, 1997.

12

https://openreview.net/forum?id=lTqGXfn9Tv
https://openreview.net/forum?id=lTqGXfn9Tv

The Hessian perspective into the Nature of CNNs

A. Tools
A.1. Toeplitz Derivative

Lemma 1. The matrix derivative of T(l) with respect to W(l), is given as follows:

∂T(l)

∂W(l)
:=

∂ vecr T
(l)

∂
(
vecr W(l)

)⊤ = Iml
⊗ Q(l) ,

which lives in Rml ml−1 dℓ dl−1×ml ml−1 kl , and the matrix Q(l) ∈ Rml−1dldl−1×ml−1kl is defined as:

Q(l) :=

Iml−1

⊗
(
π0
R Idl−1×kl

)
...

Iml−1
⊗
(
π
dl−1−kl

R Idl−1×kl

)

where πR is the permutation matrix performs clockwise rotation of the rows of the matrix it is left-multiplied with, and
its superscript the matrix power (so, π0

R = Idl−1
). Also, in the above expression Idl−1×kl

is the ‘tall’ identity matrix, i.e.,
[Ikl

,0]⊤ (as kl ≤ dl−1).

Proof. It is quite clear that the non-zero parts in the derivative will arise only when compute the derivative of Toeplitz of
one row with respect to the elements of the same row. In other words, only when considering:

∂T
W(l)

(i,j) •

∂W(l)
(r,s) •

for i = r, j = s .

And rest of the blocks will be zeros. This explains the occurrence of two Kronecker products, with respect to Iml
and Iml−1

.

More concretely, recall that:

T(l) :=

T

W(l)

(1,1) • · · · T
W(l)

(1,ml−1) •

...
...

T
W(l)

(ml,1) • · · · T
W(l)

(ml,ml−1) •

 , and

W(l) := matW(l) :=

W(l)

(1,1) • · · · W(l)
(ml,1) •

...
...

W(l)
(1,ml−1) • · · · W(l)

(ml,ml−1) •

⊤

=

 w1,1,1 · · · w1,1,kl
· · · w1,ml−1,1 · · · w1,ml−1,kl

...
...

...
...

wml,1,1 · · · wml,1,kl
· · · wml,ml−1,1 · · · wml,ml−1,kl

 .

Let’s use the shorthand T
(l)
(i,•) :=

(
T

W(l)

(i,1) • · · · T
W(l)

(i,ml−1) •

)
. Now, the general structure of the required Toeplitz

derivative has the following form:

∂T(l)

∂W(l)
=

vecr W
(l)
1 • · · · vecr W

(l)
ml •

vecr T
(l)
(1,•) Q(l) · · · 0

...
. . .

...

vecr T
(l)
(ml,•) 0 · · · Q(l)

 = Iml
⊗Q(l). (9)

13

The Hessian perspective into the Nature of CNNs

The diagonal blocks in the above matrix are identical, for if the same weight is located in the Toeplitz representation with
respect to which we differentiate, we would get a 1 else a 0. Besides, it should also be noted that Q(l) is just a binary matrix
(i.e., contains either 0 or 1), with atmost a single 1 per row.

Next, each of the dl = dl−1 − kl + 1 rows of T(l)
(i,•) is a clockwise rotation of its first row. Thus the derivative of each of its

row will depend upon the amount of clockwise rotation shift, and to get the derivative of the entire row block T
(l)
(i,•) we

will just need to stack rowwise each of these obtained derivatives with respect to W
(l)
i • . Since, all the diagonal blocks are

identical, without loss of generality, let’s assume i = 1 and consider the derivative of the first row of T(l)
(1,•) with respect to

W
(l)
1 •.

The derivative will be zero whenever we try to a differentiate the Toeplitz representation of one input channel with respect to
parameters of a different input channel. Hence, the form of this derivative will be Iml−1

⊗A for some matrix A ∈ Rdl−1×kl .
For the derivative of the first row, A = π0

RIdl−1×kl
, while for the derivative of the j-th row it will be A = πj−1

R Idl−1×kl
, for

j ∈ [1, · · · , dl]. Here, by πj
R we mean taking the j-th matrix power of the following matrix, πR (which performs clockwise

rotation of the rows of matrix it left-multiplies):

πR =

0 · · · 0 1
1 0 · · · 0
0 1 0 · · · 0
...

. . .
...

0 · · · 0 1 0

 ,

and Im×n ∈ Rm×n, for m > n, denotes the tall identity matrix [In×n,0(m−n)×n]
⊤, which is padded by m− n rows of

all zeros. This tall identity matrix gets post-multiplied to the clockwise rotation matrix, since we only require the first kl
columns of it.

Therefore, the form of Q(l) is given as follows:

Q(l) :=

Iml−1

⊗
(
π0
R Idl−1×kl

)
...

Iml−1
⊗
(
π
dl−1−kl

R Idl−1×kl

)

Remark. Note that the above matrix is equivalent, upto row permutations, to the following more concisely formulated
matrix:

Iml
⊗Q(l) ≡ Imlml−1

⊗ π
0 ↓ dl−1−kl

R Idl−1×kl
,

where, π0 ↓ dl−1−kl

R := [π0
C , π

1
C , · · · , π

dl−1−kl

C]⊤ and similar to πR, πC := π⊤
R performs clockwise rotation of the columns

of the matrix it right-multiplies.

A.2. Technical Background

A.2.1. HELPER LEMMAS

Lemma 11. Let X ∈ Rm×n and Y ∈ Rp×q . Then the row-partitioned matrix
[

Iq ⊗X
Y ⊗ In

]
has the rank,

rk

[
Iq ⊗X
Y ⊗ In

]
= q rk(X) + n rk(Y)− rk(X) rk(Y)

We defer the reader to Chuai & Tian (2004); Singh et al. (2021) for the proof of this lemma.

14

The Hessian perspective into the Nature of CNNs

A.2.2. AUXILIARY MATRICES

To get tight bounds for convolutional networks, one has to ‘play’ around with permutation matrices. So, to this end, let us
introduce the auxiliary matrices from (Singh, 1972; Tracy & Dwyer, 1969), denoted10 by P(m) ∈ Rmn×mn and defined
as a rearrangement of the identity Imn by taking every m-th row from the first, then every m-th row from the second etc.
Likewise, one can define an rearrangement of the identity by taking every m-th column from the first, and so on, and this
will be denoted by P(m). The following are some of the essential properties of this auxiliary matrix:

• P(m) = P⊤
(n)

• P(m)P(n) = P(n)P(m) = Imn

• P(m) = P(n), P(n) = P(m)

In other contexts, this is also known as the commutation matrix (Magnus & Neudecker, 2019). In particular K(m,n) ∈
Rmn×mn is a matrix partitioned into m× n blocks such that ij-th block has ji-th entry 1 and rest all 0. One can check that
P(m) = K(n,m). For ease of understanding, we will use auxiliary matrices P(m), but if needed we rely upon the extensive
results obtained for it under the name of commutation matrices.

A.2.3. FREQUENTLY USED PROPERTIES OF KRONECKER PRODUCTS

Often in the analysis, we use several properties of Kronecker products, and we cannot afford to reiterate them at every step
of the proof. Hence, if a reader feels a bit uneasy about a particular step, we recommend they consult some of the properties
mentioned here. The proofs are readily available online, or check (Magnus & Neudecker, 2019) as a good reference for
matrix analysis.

For conformable matrices A,B,C,D,X, we have that:

• (A⊗B)(C⊗D) = AB⊗CD

• rk(A⊗B) = rk(A) · rk(B)

• (A⊗B)⊗C = A⊗ (B⊗C)

• (A⊗B)⊤ = A⊤ ⊗B⊤

• vecr(AXB) = (A⊗B⊤) vecr(X)

For column vectors a,b, we have that: a⊗ b = vecr(ab
⊤).

B. CNN Hessian Structure
B.1. Outer-Product Hessian

In particular, since ∇2
Fθθθ

ℓi = IK , ∀i ∈ [n], the choice of MSE implies that the outer product Hessian simplifies to:

HO =
1

n

n∑
i=1

∇θθθFθθθ(xi)∇θθθFθθθ(xi)
⊤

Proposition 2. The kl-th block of the outer-product Hessian is given by,

H
(kl)
O = Q̃(k)⊤

(
T(k+1:L+1)T(L+1:l+1) ⊗

T(k−1:1)ΣxxT
(1:l−1)

)
Q̃(l) , (10)

where, Q̃(l) = Iml
⊗Q(l).

10We denote the matrix by P instead of I as in the original paper, to avoid confusion with widespread occurrences of the identity matrix
in our analysis.

15

The Hessian perspective into the Nature of CNNs

Proof.

∂Fθθθ(x)

∂W(l)
=
(
T(L+1:l+1) ⊗ x⊤T(1:l−1)

) ∂T(l)

∂W(l)
(11)

=
(
T(L+1:l+1) ⊗ x⊤T(1:l−1)

)
(Iml

⊗Q(l)) (12)

Note, we cannot use mixed product property of Kronecker product as the shapes are not conformable. Further the above
computation is in the Jacobian format (numerator layout), and to compute the outer-product Hessian we need to transpose in
order to obtain it in the gradient format.

∇W(l) Fθθθ(x) = (Iml
⊗Q(l)⊤)

(
T(l+1:L+1) ⊗T(l−1:1)x

)
(13)

Next, we compute the outer-product of the above and average over the input, resulting in the l-th block in the HO diagonal.

H
(ll)
O :=

1

n

n∑
i=1

∇W(l) Fθθθ(xi) · ∇W(l) Fθθθ(xi)
⊤

= (Iml
⊗Q(l)⊤)

(
T(l+1:L+1)T(L+1:l+1) ⊗

T(l−1:1)ΣxxT
(1:l−1)

)
(Iml

⊗Q(l))

Let’s use the shorthand Q̃(l) = Iml
⊗Q(l) to make the expressions more compact. Similarly, we can this computation to

obtain the kl-th block of the outer-product Hessian,

H
(kl)
O = Q̃(k)⊤

(
T(k+1:L+1)T(L+1:l+1) ⊗

T(k−1:1)ΣxxT
(1:l−1)

)
Q̃(l) (14)

B.2. Functional Hessian

In our functional Hessian calculations, we consider the second derivative wrt the transpose of that matrix. This is not a
problem for us as rank is invariant to row or column permutations.
Proposition 3. For k ≤ l, the kl-th block of HF is given by:

H
(kl)
F =

(
Imk

⊗Q(k)⊤
)(

T(k+1:l−1) ⊗

T(k−1:1)Ω⊤T(L+1:l+1)

)(
Q(l) ⊗ Iml

)
, (15)

While, for k ≥ l, it is:

H
(kl)
F =

(
Imk

⊗Q(k)⊤
)(

T(k+1:L+1)ΩT(1:l−1) ⊗

T(k−1:l+1)

)(
Q(l) ⊗ Iml

)
. (16)

Proof. This requires more care. First, let us recall its form:

HF =
1

n

n∑
i=1

K∑
c=1

[∇Fθθθ
ℓi]c ∇2

θθθ F
c
θθθ(xi)

16

The Hessian perspective into the Nature of CNNs

The gradient of the loss with respect to the function output, in the case of MSE loss, is just the residual. And so we will
denote ∇Fθθθ

ℓi = ŷi − yi =: δδδxi,yi hereafter.

To begin, we need to compute the Hessian of the network function at the c-th index, i.e., ∇2
θθθ F

c
θθθ(x). We already have the

gradient (for all K outputs) with respect to W(l), the matricized convolutional tensor at layer l, in Eqn. (13). The gradient
with respect to only the output at the c-th index is given by:

∇W(l) Fc
θθθ(x) = Q̃(l)⊤

(
T(l+1:L+1) ⊗T(l−1:1)x

)
ec

= Q̃(l)⊤
(
T(l+1:L+1)ec ⊗T(l−1:1)x

)
. (17)

Here, ec ∈ RK denotes the c-th canonical basis vector. In the second line, we used the mixed-product property of Kronecker
products. Now, we need to compute another derivative of the above expression with respect to the other layer matrices. We
can clearly see that the block-diagonal terms in the Functional Hessian will be zero, since there is no more T(l) or W(l) left
in the above expression.

Consider, we take the derivative with respect to layer k. We will have two cases depending upon whether k < l or k > l.
Before doing that, let’s first rewrite the gradient expression and perform the sum over the inputs and targets, as shown below:

∇W(l) Fc
θθθ(x) = Q̃(l)⊤ vecr

(
T(l+1:L+1)ecx

⊤T(1:l−1)
)

= Q̃(l)⊤
(
T(l+1:L+1)ecx

⊤ ⊗ Iml−1dl−1

)
vecr

(
T(1:l−1)

)
(18)

= Q̃(l)⊤
(
Imldl

⊗T(l−1:1)xe⊤c

)
vecr

(
T(l+1:L+1)

)
. (19)

Here, we first used the fact the Kronecker product of two vectors a and b can be written as vectorization of their outer-product,
namely, a⊗ b = vecr

(
ab⊤). In the second line, we use the identity

vecr(AXB) =
(
A⊗B⊤) vecr(X) ,

for A ∈ Rm×n , X ∈ Rn×p , B ∈ Rp×q .

B.2.1. WHEN k < l

In this case, we will use the form of the gradient in Eqn. (18) to differentiate with respect to W(k). As a matter of fact,
we will actually perform the derivatives with respect to W(k)⊤ to avoid keeping track of the special kind of permutation
matrices known as commutation matrices. This will not restrain the analysis since the rank of a matrix is invariant to both
row and column permutations.

Let’s focus on taking the derivative with respect to vecr T
(1:l−1) since that’s the only term which will depend on W(k).

∂

∂W(k)⊤ vecr T
(1:l−1) (20)

=
∂

∂W(k)⊤ vecr T
(1:k−1)T(k)⊤T(k+1:l−1) (21)

=
(
T(1:k−1) ⊗T(l−1:k+1)

) ∂

∂W(k)⊤ vecr T
(k)⊤ (22)

We can exploit Lemma 1 and equivalently write T(k) ∈ Rmkdk×mk−1dk−1 in terms of W(k) ∈ Rmk×mk−1kk and Q(k) ∈
Rmk−1dkdk−1×mk−1kk , as shown below:

vecr T
(k) = (Imk

⊗Q(k)) vecr W
(k) (23)

or, vecr T
(k) = vecr W

(k)Q(k)⊤ (24)

17

The Hessian perspective into the Nature of CNNs

Thus we can write
∂

∂W(k)⊤ vecr T
(k)⊤ as:

∂

∂W(k)⊤ vecr T
(k)⊤ =

∂

∂W(k)⊤ vecr Q
(k)W(k)⊤ (25)

=
(
Q(k) ⊗ Imk

) ∂ vecr W
(k)⊤

∂W(k)⊤ (26)

= Q(k) ⊗ Imk
(27)

Finally, we can complete the overall expression of derivative of the gradient with respect to layer k:

∂∇W(l) Fc
θθθ(x)

∂W(k)⊤

=
(
Iml

⊗Q(l)⊤
)(

T(l+1:L+1)ecx
⊤T(1:k−1) ⊗

T(l−1:k+1)

)(
Q(k) ⊗ Imk

)
. (28)

Summing the above expression over the inputs and targets, along with scaling by the residuals, yields the (lk)-th block of
the functional Hessian:

H
(lk)
F =

(
Iml

⊗Q(l)⊤
)(

T(l+1:L+1)ΩT(1:k−1) ⊗

T(l−1:k+1)

)(
Q(k) ⊗ Imk

)
, (29)

where, Ω := E [δδδx,y x
⊤] is the (uncentered) residual-input covariance matrix.

Similarly, the (kl)-th block can also be obtained by repeating the same procedure11, resulting in:

H
(kl)
F =

(
Imk

⊗Q(k)⊤
)(

T(k+1:l−1) ⊗

T(k−1:1)Ω⊤T(L+1:l+1)

)(
Q(l) ⊗ Iml

)
, (30)

B.2.2. WHEN k > l

We can repeat a similar calculation to obtain the following expression:

H
(kl)
F =

(
Imk

⊗Q(k)⊤
)(

T(k+1:L+1)ΩT(1:l−1) ⊗

T(k−1:l+1)

)(
Q(l) ⊗ Iml

)
. (31)

By comparing the expressions in Eqns. (30) and (31), we get the hint to factorize out Q(l) ⊗ Iml
from the columns, and

likewise Iml
⊗Q(l)⊤ from the rows, ∀ l ∈ [L+ 1].

Remark. The arrangement of the Toeplitz derivatives on the left and right hand side in the Eqn. (30) above is very similar
to that in the case of Eqn. (14) for the outer-product Hessian — except, now on the right hand side the order of Kronecker
product between Iml

and Q(l) gets changed to reflect the fact that we are taking the derivatives with respect to W(l)⊤ here.

11Attention: it is not the same as the transpose of the expression in Eqn. (29), since recall on one axis of the Hessian we are taking
derivatives in the order of vecr(W(l)) and on the other axis in the order vecr(W(l)⊤), causing the asymmetry.

18

The Hessian perspective into the Nature of CNNs

C. Omitted Proofs
C.1. Rank of Outer-Product Hessian

Theorem 5. The rank of the outer-product Hessian is upper bounded as

rk(HO) ≤ min
(
p, d0 rk(T

(2:L+1)) +K rk(T(L:1))−
rk(T(2:L+1)) rk(T(L:1))

)
= min (p, q (d0 +K − q)) .

Here, q := min(d0,m1d1, · · · ,mLdL,K).

Proof. By the decomposition in Proposition 4, we have that:

rk(HO) ≤ min (rk(Ao), rk(Bo), rk(Qo)) . (32)

Now, rk(Bo) = Kd0, rk(Qo) ≤ min(p̂, p), and via Theorem 3 of (Singh et al., 2021), we have that rk(Ao) = q(d0+K−q)
which is naturally bounded above by p̂. Hence, we obtain:

rk(HO) ≤ min (p, q(d0 +K − q)) .

Here, q := min(d0,m1d1, · · · ,mLdL,K).

C.2. Rank of Functional Hessian

Theorem 6. For a deep linear convolutional network, the rank of l-th column-block, Ĥ•l
F , of the matrix ĤF, can be upper

bounded as
rk(Ĥ•l

F) ≤ min(q̂ ml−1dl−1 + q̂ mldl − q̂ 2 ,mlml−1kl) ,

for l ∈ [2, · · · , L] . When l = 1, we have

rk(Ĥ•1
F) ≤ min(q̂ m1d1 + q̂ s− q̂ 2 ,m1m0k1) .

And, when l = L+ 1, we have

rk(Ĥ•L+1
F) ≤ min(q̂ mLdL + q̂ s− q̂ 2 ,mL+1mLkL+1) .

Here, q̂ := min(d0,m1d1, · · · ,mLdL,K, s) = min(q, s) and s := rk(Ω) = rk(E [δδδx,y x
⊤]).

19

The Hessian perspective into the Nature of CNNs

Proof.

Ĥ•l
F =

(
Im1 ⊗Q(1)⊤) (T(2:l−1) ⊗Ω⊤T(L+1:l+1)

) (
Q(l) ⊗ Iml

)
...(

Imj
⊗Q(j)⊤) (T(j+1:l−1) ⊗T(j−1:1)Ω⊤T(L+1:l+1)

) (
Q(l) ⊗ Iml

)
...(

Iml−1
⊗Q(l−1)⊤) (Iml−1

⊗T(l−2:1)Ω⊤T(L+1:l+1)
) (

Q(l) ⊗ Iml

)
0(

Iml+1
⊗Q(l+1)⊤) (T(l+2:L+1)ΩT(1:l−1) ⊗ Iml

) (
Q(l) ⊗ Iml

)
...(

Imk
⊗Q(k)⊤) (T(k+1:L+1)ΩT(1:l−1) ⊗T(k−1:l+1)

) (
Q(l) ⊗ Iml

)
...(

ImL+1
⊗Q(l+1)⊤) (ΩT(1:l−1) ⊗T(L−1:l+1)

) (
Q(l) ⊗ Iml

)

= QF

T(2:l−1) ⊗Ω⊤T(L+1:l+1)

...

T(j+1:l−1) ⊗T(j−1:1)Ω⊤T(L+1:l+1)

...

Iml−1
⊗T(l−2:1)Ω⊤T(L+1:l+1)

0

T(l+2:L+1)ΩT(1:l−1) ⊗ Iml

...

T(k+1:L+1)ΩT(1:l−1) ⊗T(k−1:l+1)

...

ΩT(1:l−1) ⊗T(L−1:l+1)

︸ ︷︷ ︸

A
(l)
F

(
Q(l) ⊗ Iml

)

In the above, the matrix QF ∈ Rp×p̂ is the block diagonal matrix containing on its l-th block the matrix Iml
⊗Q(l)⊤. The

rank of Ĥ•l
F can then be upper-bounded as:

rk(Ĥ•l
F) ≤ min(rk(QF), rk(A

(l)
F), rk(Q(l) ⊗ Iml

))

= min(p, p̂, q̂ ml−1dl−1 + q̂ mldl − q̂ 2 ,mlml−1kl)

= min(q̂ ml−1dl−1 + q̂ mldl − q̂ 2 ,mlml−1kl) ,

where in the second line, we used the result of the rk(A
(l)
F) from (Singh et al., 2021), while the rk(Q(l) ⊗ Iml

)) ≤
min(mlml−1kl,ml,ml−1dldl−1) = mlml−1kl as kl ≤ dl−1 for valid convolution.

20

The Hessian perspective into the Nature of CNNs

Likewise, we can carry out a similar operation for the first block-columnn Ĥ•1
F

Ĥ•1
F =

0(
Im2

⊗Q(2)⊤) (T(3:L)Ω⊗ Im1

) (
Q(1) ⊗ Im1

)
...(

Imk
⊗Q(k)⊤) (T(k+1:L+1)Ω⊗T(k−1:2)

) (
Q(1) ⊗ Im1

)
...(

ImL+1
⊗Q(l+1)⊤) (Ω⊗T(L:2)

) (
Q(1) ⊗ Im1

)

= QF

0

T(3:L)Ω⊗ Im1

...

T(k+1:L)Ω⊗T(k−1:2)

...

Ω⊗T(L:2)

︸ ︷︷ ︸

A
(1)
F

(
Q(1) ⊗ Im1

)

The rank can be then bounded as:

rk(Ĥ•1
F) ≤ min(rk(QF), rk(A

(1)
F), rk(Q(1) ⊗ Im1

))

= min(p, p̂, q̂ m1d1 + q̂ s− q̂ 2 ,m1m0k1)

= min(q̂ m1d1 + q̂ s− q̂ 2 ,m1m0k1) ,

Finally, we discuss the case of last column-block:

Ĥ•L+1
F =

(
Im1

⊗Q(1)⊤) (T(2:L) ⊗Ω⊤) (Q(L+1) ⊗ ImL+1

)
...(

Imk
⊗Q(l)⊤) (T(k+1:L) ⊗T(k−1:1)Ω⊤) (Q(L+1) ⊗ ImL+1

)
...(

ImL
⊗Q(l)⊤) (ImL

⊗T(L−1:1)Ω⊤) (Q(L+1) ⊗ ImL+1

)
0

= QF

T(2:L) ⊗Ω⊤

...

T(k+1:L) ⊗T(k−1:1)Ω⊤

...

ImL
⊗T(L−1:1)Ω⊤

0

︸ ︷︷ ︸

A
(L+1)
F

(
Q(L+1) ⊗ ImL+1

)

The rank can be then bounded as:

rk(Ĥ•L+1
F) ≤ min(rk(QF), rk(A

(L+1)
F), rk(Q(L+1) ⊗ ImL+1

))

= min(p, p̂, q̂ mLdL + q̂ s− q̂ 2 ,mL+1mLkL+1)

= min(q̂ mLdL + q̂ s− q̂ 2 ,mL+1mLkL+1) ,

which completes the proof

A corollary is

Corollary 12. Under the setup of Theorem 6, when q̂ = q = s, the rank of HF can be further upper bounded as,
rk(HF) ≤ 2 qM − (L− 1) q2 , where M =

∑L
i=1 mi di .

21

The Hessian perspective into the Nature of CNNs

C.3. Rank results for one-hidden layer CNN case

Theorem 7. For a one-hidden layer 1D CNN, the rank of the outer product Hessian can be bounded as: rank (HO) ≤
min

(
Kd0, q(k1 +K(d0 − k1 + 1)− q)

)
, where q = min(k1,K(d0 − k1 + 1),m1).

Proof. Consider a one-hidden layer CNN as follows:

Fθθθ(x) = T(2)T(1)x , with θθθ = {W(2),W(1)} .

Now, at the output layer k2 = d1 so as to project the hidden features to an output of size K = m2 hence Thus, spatially we
will have that d2 = 1, and as a result T(2) = W(2). Also, the number of input channels is simply assumed to be m0 = 1,
else we can flatten the input to obtain this.

Remember that, in this scenario, T(1) amounts to:

T(1) =

T

W(1)

(1,1) •

...

T
W(1)

(m1,1) •

 .

While, as m0 = 1, W(1) =

(
w1,1,1 · · · w1,1,k1

wm1,1,1 · · · wm1,1,k1

)
and we would like to ideally group the elements of W(1) inside

T(1). We will do this by suitable row permutations using the auxiliary permutation matrices, discussed in the section A.2.2.

Let’s rewrite our network function as follows:

Fθθθ(x) = W(2)T(1)x

= W(2) P(d1)P(d1) T
(1)x

where P(d1)T
(1) =

 W̃(1)π0
C

...
W̃(1)πd1−1

C

 and W̃(1) =
(
W

(1)
m1×k1

0m1×(d0−k1)

)
= W(1)Ik1×d0 .

Next, let’s denote the matrix W(2)P(d1) ∈ RK×m1d1 by V =
(
V(1) · · · V(d1)

)
. Using these we can represent the

network function in the following superposition form:

Fθθθ(x) =

d1∑
i=1

V(i) W(1) Ik1×d0
πi−1
C x . (33)

Having done this reformulation, let’s get back to the business of computing the derivatives, which are listed below:

∇V(i)Fθθθ(x) = IK ⊗W(1)Ik1×d0 π
i−1
C x (34)

∇W(1)Fθθθ(x) =

d1∑
i=1

V(i)⊤ ⊗ Ik1×d0
πi−1
C x (35)

22

The Hessian perspective into the Nature of CNNs

Now let’s collect these individual parameter gradients to form the overall gradient,

∇θθθFθθθ(x) =

IK ⊗W(1)Ik1×d0 π

0
Cx

...
IK ⊗W(1)Ik1×d0

πd1−1
C x

d1∑
i−1

V(i)⊤ ⊗ Ik1×d0
πi−1
C x

=

IK ⊗W(1) · · · 0
...

. . .
...

0 · · · IK ⊗W(1)

 IK ⊗ Ik1×d0

π0
Cx

...
IK ⊗ Ik1×d0

πd1−1
C x

(
V(1)⊤ ⊗ Ik · · · V(d1)

⊤ ⊗ Ik

) IK ⊗ Ik1×d0
π0
Cx

...
IK ⊗ Ik1×d0

πd1−1
C x

=

(
IKd1 ⊗W(1)

Ṽ ⊗ Ik

)
︸ ︷︷ ︸

Ao

 IK ⊗ Ik1×d0 π
0
C

...
IK ⊗ Ik1×d0

πd1−1
C

︸ ︷︷ ︸

C

(
IK ⊗ x

)︸ ︷︷ ︸
B

where, Ṽ =
(
V(1)⊤ · · · V(d1)

⊤
)
∈ Rm×Kd1

Finally, we can take the outer product and average them over the dataset to yield the outer-product Hessian:

HO = AoC (IK ⊗Σxx)C
⊤A⊤

o (36)

Hence, we have that:

rk(HO) ≤ min(rk(IK ⊗Σxx), rk(Ao), rk(C)))

= min(Kd0, q(Kd1 + k − q))

where q = min(k,Kd1,m) and using the fact that, for C ∈ RKd1k1×Kd, it has rk(C) ≤ min(Kd1k1,Kd) = Kd.

Theorem 8. For a one-hidden layer 1D CNN, the rank of the functional Hessian obeys the following formula: rank (HF) ≤
2min

(
k1,K(d0 − k1 + 1)

)
m1 .

Proof. We will start atop the network function, eq. (33), and parameter gradients, eq. (34), (35), obtained after carrying
out the manipulations with permutation matrices in the proof of Theorem 7. Let’s then get the gradient with respect to the
parameters at the c-th output index:

∇V(i)Fc
θθθ(x) =

(
IK ⊗W(1)Ik1×d0

πi−1
C x

)
ec

= ec ⊗W(1)Ik1×d0
πi−1
C x

= vecr

(
ecx

⊤πi−1
R Id0×k1

W(1)⊤
)

(37)

23

The Hessian perspective into the Nature of CNNs

And that with respect to W(1) is:

∇W(1)Fc
θθθ(x) =

d1∑
i=1

(
V(i)⊤ ⊗ Ik1×d0π

i−1
C x

)
ec

=

d1∑
i=1

V(i)⊤ec ⊗ Ik1×d0π
i−1
C x(i)

=

d1∑
i=1

vecr

(
V(i)⊤ecx

⊤πi−1
R Id0×k1

)
(38)

Now, we perform the second differentiation with respect to transposed matrices, i.e., W(1)⊤ or V(i)⊤.

∂∇V(i)Fc
θθθ(x)

∂W(1)⊤ = ecx
⊤πi−1

R Id0×k1 ⊗ Im1 .

∂∇W(1)Fc
θθθ(x)

∂V(i)⊤
= Im1 ⊗ xe⊤c π

i−1
C Ik1×d0 .

Let’s now take the sum of the above matrices over the input as well as, with appropriate scaling by the residual, over the
output indices to get the blocks of the functional Hessian. This yields,

H
(V(i),W(1))
F = Ωπi−1

R Id0×k1 ⊗ Im1 . (39)

H
(W(1),V(i))
F = Im1 ⊗Ω⊤πi−1

C Ik1⊗d0 . (40)

where, recall Ω = E [δδδx,y x
⊤] ∈ RK×d0 denotes the (uncentered) covariance of the residual with the input.

Since the matrix is zero on the block diagonals (i.e., block hollow), we can analyze the rank of all the row blocks with
respect to W(1) (same as the column block with respect to all the V(i)) or the row blocks with respect to all the V(i) (same

as the column block with respect to the W(1), i.e., either H(W(1),V(i))
F or H(V(i),W(1))

F . Focussing on the latter, the column
blocks with respect to W(1), i.e.,

H
(•,W(1))
F :=

H

(V(1),W(1))
F

...

H
(V(d1),W(1))
F

 =

Ωπ0

RId0×k1
⊗ Im1

...

Ωπd1−1
R Id0×k1

⊗ Im1

The above is equivalent upto row permutations to,

Ω̃⊗ Im1
:=

Ωπ0

RId0×k1

...

Ωπd1−1
R Id0×k1

⊗ Im1 (41)

where, Ω̃ ∈ RKd1×k1 The rank of the functional Hessian thus amounts to:

rk(HF) = 2 rk
(
Ω̃⊗ Im1

)
= 2m1 rk(Ω̃)

≤ 2min(Kd1, k1)m1 .

In the first line, the rank is scaled by 2 to account for both the non-zero blocks present in the functional Hessian. The rest
follows from the properties of Kronecker product and rank, thus completing the proof.

24

The Hessian perspective into the Nature of CNNs

C.4. Rank results for Locally connected network
Theorem 9. For the locally connected network as described in Eqn. (7), the rank of the outer-product and the functional
Hessian can be upper bounded as follows: rk(HLCN

O) ≤ t · q(k +K − q) , and rk(HF
LCN) ≤ t · 2mmin(k,K), where

q = min(k,K,m) and t =
d

k
.

Proof. We now proceed to showing the proofs of the rank of outer-product and functional Hessian for the LCN case. Let’s
recall the Eqn. (7) for the LCN:

FLCN
θθθ (x) =

t∑
i=1

V(i) W(ii) x(i) .

Outer-product Hessian. Let’s compute the gradient of the function with respect to the matrix V(i):

∇V(i)FLCN
θθθ (x) = IK ⊗W(ii)x(i) (42)

And that with respect to W(ii) is:

∇W(ii)FLCN
θθθ (x) = V(i)⊤ ⊗ x(i) (43)

So the gradient of the function output with respect to all the parameters can be arranged as follows:

∇θθθF
LCN
θθθ (x) =

∇V(1)FLCN
θθθ (x)

∇W(11)FLCN
θθθ (x)

...

∇V(t)FLCN
θθθ (x)

∇W(tt)FLCN
θθθ (x)

=

IK ⊗W(11)x(1)

V(1)⊤ ⊗ x(1)

...

IK ⊗W(tt)x(t)

V(t)⊤ ⊗ x(t)

=

A

(1)
o

(
IK ⊗ x(1)

)
...

A
(t)
o

(
IK ⊗ x(t)

)
 ,

where, A(i)
o :=

IK ⊗W(ii)

V(i)⊤ ⊗ Id

. Next, we take the outer-product of the gradient above, and then average over the inputs,

resulting in:

HO = Ao

IK ⊗Σ(11) · · · IK ⊗Σ(1t)

...
...

IK ⊗Σ(t1) · · · IK ⊗Σ(tt)

︸ ︷︷ ︸

Bo

A⊤
o (44)

25

The Hessian perspective into the Nature of CNNs

Here, Ao =

A

(1)
o · · · 0
...

. . .
...

0 · · · A
(t)
o

, Σ(ij) := cov(x(i),x(j)). Then we have that,

rk(Ao) = t rk(A(i)
o) (45)

= K rk(W(ii)) + k rk(V(i))− rk(W(ii)) rk(V(i)) (46)
= t · q(K + k − q) (47)

where, q := min(K, k,m).

Now, the matrix Bo is equivalent, upto row and column permutations, to the matrix B̃o = IK ⊗Σxx, since
Σ(11) · · · Σ(1t)

... · · ·
...

Σ(t1) · · · Σ(tt)

 ∈ Rd×d = Σxx = (E [xixj])ij

Therefore, rank of Bo can be upper bounded as rk(Bo) ≤ K rk(Σxx) ≤ Kd. Finally, we can bound the rank of the
outer-product Hessian, since the rank of a product of matrices is upper bounded by the minimum of the ranks of individual
matrices. Hence,

rk(HO) ≤ min (rk(Ao), rk(Bo)) = t · q(K + k − q) . (48)

Functional Hessian. We need to differentiate again the network output gradients in Eqns. (42), (43). First, let’s just obtain
the gradient for the output at the c-th index:

∇V(i)F
c,LCN
θθθ (x) =

(
IK ⊗W(ii)x(i))

)
ec

= ec ⊗W(ii)x(i)

= vecr

(
ecx

(i)⊤W(ii)⊤
)

(49)

And that with respect to W(ii) is:

∇W(ii)F
c,LCN
θθθ (x) =

(
V(i)⊤ ⊗ x(i)

)
ec

= V(i)⊤ec ⊗ x(i)

= vecr

(
V(i)⊤ecx

(i)⊤
)

(50)

Clearly, if we are to differentiate the above gradients with respect to matrix V(j) or W(jj), for j ̸= i, we will just get a 0
matrix. And, even more starkly, differentiating a second time with respect to the same matrix will also lead to that outcome.
So, let’s focus on the more relevant non-zero cases. A last reminder before we head off to the calculations, we will again
consider this second differentiation with respect to transposed matrices, i.e., W(ii)⊤ or V(i)⊤.

∂∇V(i)F
c,LCN
θθθ (x)

∂W(ii)⊤ = ecx
(i)⊤ ⊗ Im .

∂∇W(ii)F
c,LCN
θθθ (x)

∂V(i)⊤
= Im ⊗ x(i)e⊤c .

Let’s now take the sum of the above matrices over the input as well as, with appropriate scaling by the residual, over the
output indices to get the blocks of the functional Hessian. This yields,

H
(V(i),W(ii))
F = Ω(i) ⊗ Im . (51)

26

The Hessian perspective into the Nature of CNNs

H
(W(ii),V(i))
F = Im ⊗Ω(i)⊤ . (52)

where, Ω(i) = E [δδδx,y x
(i)⊤] ∈ RK×k denotes the (uncentered) covariance of the residual with the i-th input chunk. The

rank of the functional Hessian thus amounts to:

rk(HF) = t ·
(
rk(H

(V(i),W(ii))
F) + rk(H

(W(i),V(ii))
F)

)
= t · 2 rk(Ω(i) ⊗ Im)

= t · 2m rk(Ω(i)) = t · 2mmin(k,K) .

C.4.1. MISCELLANEOUS

Comparison with the rank of the bigger FCN. Now, the bigger FCN has number of hidden neurons as M = m.t, while
sharing the same input and output dimensions.

• rank
(
HFCN-large

F

)
= 2 min(d,K)mt = 2 min(d,K)M =

min(d,K)

min(k,K)
rank

(
HLCN

F

)
.

• rank(HFCN-large
O) = q(d+K − q) where q = min(M,d,K).

• rank
(
HFCN-large

L

)
= q(d+K − q) + 2 min

(
d,K

)
M − (2s− q)q , where q = min(M,d,K) and s = min(d,K).

Fact 13. For the LCN in Eqn. (7), we have that rank
(
HLCN

L

)
= rank (HF) + rank(HO)− t · (2s− q)q.

C.5. Rank results for LCN with Weight Sharing
Theorem 10. For the locally connected network with weight sharing defined in Eqn. (8), the rank of the outer-product
and the functional Hessian can be bounded as: rk(HLCN+WS

O) ≤ q(k +Kt− q) , and rk(HF
LCN+WS) ≤ 2mmin(k,Kt),

where q = min(k,Kt,m) and t =
d

k
.

Proof. The proof strategy is similar to the case of 1-hidden layer CNN as presented in the proofs of Theorems 7,8. But over
here since we are effectively dealing with a CNN that has stride equal to filter size, i.e., k1, we will now present simplified
proofs by not involving the permutation matrices πR or πC .

Outer-product Hessian. Let’s compute the gradient of the function with respect to the matrix V(i):

∇V(i)FLCN + WS
θθθ (x) = IK ⊗Wx(i) (53)

And that with respect to W is:

∇W(ii)FLCN+WS
θθθ (x) =

t∑
i=1

V(i)⊤ ⊗ x(i) (54)

27

The Hessian perspective into the Nature of CNNs

So the gradient of the function output with respect to all the parameters can be arranged as follows:

∇θθθF
LCN+WS
θθθ (x) =

∇V(1)FLCN+WS
θθθ (x)

...

∇V(t)FLCN+WS
θθθ (x)

∇WFLCN+WS
θθθ (x)

=

IK ⊗Wx(1)

...

IK ⊗Wx(t)

t∑
i=1

V(i)⊤ ⊗ x(i)

=

IK ⊗W · · · 0

...
. . .

...

0 · · · IK ⊗W

IK ⊗ x(1)

...

IK ⊗ x(t)

(
V(1)⊤ ⊗ Ik · · · V(t)⊤ ⊗ Ik

)
IK ⊗ x(1)

...

IK ⊗ x(t)

=

IK ⊗W · · · 0

...
. . .

...

0 · · · IK ⊗W

V(1)⊤ ⊗ Ik · · · V(t)⊤ ⊗ Ik

IK ⊗ x(1)

...

IK ⊗ x(t)

=

IKt ⊗W

V⊤ ⊗ Ik

︸ ︷︷ ︸

Ao

IK ⊗ x(1)

...

IK ⊗ x(t)

︸ ︷︷ ︸

B

In the last line, we used the associativity of Kronecker product and the fact that C⊗D =
(
C• 1 ⊗D · · ·C•n ⊗D

)
.

The outer-product Hessian can the be calculated by taking the outer-product of the above gradient and averaging over the
samples in the dataset. This leads to

HO = Ao (IK ⊗Bo)A
⊤
o ,

where, Bo comes out to be the same matrix as in Eqn. (44) before. Now, let’s analyze the rank of the resulting matrices:

rk(HO) = min(rk(Ao),K rk(Bo)) ≤ min(rk(Ao),Kd)

= min(q · (k +Kt− q),Kd) = q · (k +Kt− q) ,

with q = min(k,Kt,m).

Functional Hessian. We need to differentiate again the network output gradients in Eqns. (53), (54). First, let’s just obtain
the gradient for the output at the c-th index:

∇V(i)F
c,LCN+WS
θθθ (x) =

(
IK ⊗Wx(i))

)
ec

= ec ⊗Wx(i)

= vecr

(
ecx

(i)⊤W⊤
)

(55)

28

The Hessian perspective into the Nature of CNNs

And that with respect to W is:

∇WFc,LCN+WS
θθθ (x) =

t∑
i=1

(
V(i)⊤ ⊗ x(i)

)
ec

=

t∑
i=1

V(i)⊤ec ⊗ x(i)

=

t∑
i=1

vecr

(
V(i)⊤ecx

(i)⊤
)

(56)

∂∇V(i)F
c,LCN+WS
θθθ (x)

∂W⊤ = ecx
(i)⊤ ⊗ Im .

∂∇WFc,LCN+FS
θθθ (x)

∂V(i)⊤
= Im ⊗ x(i)e⊤c .

Let’s now take the sum of the above matrices over the input as well as, with appropriate scaling by the residual, over the
output indices to get the blocks of the functional Hessian. This yields,

H
(V(i),W)
F = Ω(i) ⊗ Im . (57)

H
(W,V(i))
F = Im ⊗Ω(i)⊤ . (58)

where, Ω(i) = E [δδδx,y x
(i)⊤] denotes the (uncentered) covariance of the residual with the i-th input chunk.

Hence the rank of the functional Hessian, since it is block hollow, comes out to be:

rk(HF) = 2 rk

Ω(1) ⊗ Im

...

Ω(t) ⊗ Im

 = 2 rk(Ω̃⊗ Im) = 2m rk(Ω̃) ≤ 2mmin(k,Kt) .

Here in the above line, we can instead consider the rank of Ω̃ =

Ω(1)

...
Ω(t)

 ∈ RKt×k kroneckered with the identity matrix

(Im) as rank is unaffected by row or column permutations.

C.6. Miscellaneous

Fact 14. The rank of the overall loss Hessian has the following formulae

rank
(
HLCN+WS

L

)
= rank

(
HLCN+WS

O

)
+

rank
(
HLCN+WS

F

)
− (2s− q)q ,

where q = min(k,K,Kt) and s = min(k,Kt).

29

The Hessian perspective into the Nature of CNNs

D. Additional Results
D.1. Effect of number of samples n

(a) Effect of number of samples

Figure 6: The rank of outer product and loss Hessian increase for a while with increasing number of samples, as until then the covariance
matrix has rank n instead of d. Once n = d, the ranks remain constant. The rank of the functional Hessian is unaffected throughout.

D.2. Rank vs Number of Channels

30

The Hessian perspective into the Nature of CNNs

D.2.1. TWO-HIDDEN LAYER CNNS, MSE LOSS

(a) HL, Linear, CIFAR10 (b) HF, Linear, CIFAR10 (c) HO, Linear, CIFAR10

(d) HL, ReLU, CIFAR10 (e) HF, ReLU, CIFAR10 (f) HO, ReLU, CIFAR10

(g) HL, Linear, Gaussian data (h) HF, Linear, Gaussian data (i) HO, Linear, Gaussian data

(j) HL, ReLU, Gaussian data (k) HF, ReLU, Gaussian data (l) HO, ReLU, Gaussian data

Figure 7: Rank vs Number of Channels for 2-hidden layer {linear, ReLU}- CNNs on {CIFAR10, random Gaussians} with Mean
Squared Error loss. The loss, functional, and outer-product Hessian are each shown as separate figures. The bounds for outer-product
Hessian exactly coincide with the true values.

31

The Hessian perspective into the Nature of CNNs

D.2.2. TWO-HIDDEN LAYER CNNS, CE LOSS

(a) HL, Linear, CIFAR10 (b) HF, Linear, CIFAR10 (c) HO, Linear, CIFAR10

(d) HL, ReLU, CIFAR10 (e) HF, ReLU, CIFAR10 (f) HO, ReLU, CIFAR10

Figure 8: Rank vs Number of Channels for 2-hidden layer {linear, ReLU}- CNNs on CIFAR10 with Cross-Entropy loss. The loss,
functional, and outer-product Hessian are each shown as separate figures. The bounds for outer-product Hessian exactly coincide with the
true values.

32

The Hessian perspective into the Nature of CNNs

D.3. Rank vs Filter Size

D.3.1. LINEAR ACTIVATIONS, MSE LOSS

(a) m = 25 (b) m = 35 (c) m = 45

(d) m = 55 (e) m = 65 (f) m = 75

(g) m = 85 (h) m = 95 (i) m = 105

(j) m = 115 (k) m = 125 (l) m = 150

Figure 9: Rank vs Filter Size for Linear CNN on CIFAR10 with Mean Squared Error loss. The upper bounds are reliable estimator of the
true rank values. The rank of the functional and outer-product Hessian, as given by our upper bounds, are exact — the lines and dots
coincide perfectly in the plots. The rank of the loss Hessian upper bounded as the sum of the ranks of these two matrices is slightly loose,
and this difference becomes negligible for m ∼ 100.

33

The Hessian perspective into the Nature of CNNs

D.3.2. RELU ACTIVATIONS, MSE LOSS

(a) m = 25 (b) m = 35 (c) m = 45

(d) m = 55 (e) m = 65 (f) m = 75

(g) m = 85 (h) m = 95 (i) m = 105

(j) m = 115 (k) m = 125 (l) m = 150

Figure 10: Rank vs Filter Size for ReLU CNN on CIFAR10 with Mean Squared Error loss. The upper bounds are reliable estimator of
the true rank values. The rank of the functional and outer-product Hessian, as given by our upper bounds, are exact — the lines and dots
coincide perfectly in the plots. The rank of the loss Hessian upper bounded as the sum of the ranks of these two matrices is slightly loose,
and this difference becomes negligible for m ∼ 100.

34

The Hessian perspective into the Nature of CNNs

D.3.3. RELU ACTIVATIONS, CE LOSS

(a) m = 25 (b) m = 35 (c) m = 45

(d) m = 55 (e) m = 65 (f) m = 75

(g) m = 85 (h) m = 95 (i) m = 105

(j) m = 115 (k) m = 125 (l) m = 150

Figure 11: Rank vs Filter Size for ReLU CNN on CIFAR10 with Cross Entropy loss. The upper bounds are reliable estimator of the true
rank values. The rank of the functional and outer-product Hessian, as given by our upper bounds, are exact — the lines and dots coincide
perfectly in the plots. The rank of the loss Hessian upper bounded as the sum of the ranks of these two matrices is slightly loose, and this
difference becomes negligible for m ∼ 100.

35

The Hessian perspective into the Nature of CNNs

D.4. LCN vs LCN + WS

This comparison is done based on Linear activations with MSE loss as a verification of our theory and the dataset used is
CIFAR10.

(a) m = 25 (b) m = 35 (c) m = 45

(d) m = 55 (e) m = 65 (f) m = 75

(g) m = 85

Figure 12: Rank vs Filter Size for Linear LCN and LCN + WS on CIFAR10 with Mean Squared Error loss.

36

The Hessian perspective into the Nature of CNNs

D.5. ReLU-based LCNs

(a) m = 25 (b) m = 35 (c) m = 45

(d) m = 55 (e) m = 65 (f) m = 75

(g) m = 85

Figure 13: Rank vs Filter Size for ReLU LCNs on CIFAR10 with Mean Squared Error loss.

37

The Hessian perspective into the Nature of CNNs

D.6. ReLU-based LCNs + Weight Sharing

(a) m = 25 (b) m = 35 (c) m = 45

(d) m = 55 (e) m = 65 (f) m = 75

(g) m = 85

Figure 14: Rank vs Filter Size for ReLU-based LCN + WS on CIFAR10 with Mean Squared Error loss.

38

The Hessian perspective into the Nature of CNNs

D.7. Correlation of Rank with Generalization Performance

Figure 15: Correlation of Hessian rank at initialization with generalization error for a sweep over filter sizes and number of channels in a
one-hidden layer CNN.

D.8. Dynamics of rank of the Hessian and convolutional layers during training

(a) Evolution of rank of convolutional filters

Figure 16: Dynamics of the rank of the Hessian while training a four-hidden layer linear CNN.

39

