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Abstract

Simulating rare events, such as the transformation
of a reactant into a product in a chemical reaction
typically requires enhanced sampling techniques
that rely on heuristically chosen collective vari-
ables (CVs). We propose using differentiable sim-
ulations (DiffSim) for the discovery and enhanced
sampling of chemical transformations without a
need to resort to preselected CVs, using only a
distance metric. Reaction path discovery and es-
timation of the biasing potential that enhances
the sampling are merged into a single end-to-end
problem that is solved by path-integral optimiza-
tion. This is achieved by introducing multiple im-
provements over standard DiffSim such as partial
backpropagation and graph mini-batching making
DiffSim training stable and efficient. The poten-
tial of DiffSim is demonstrated in the successful
discovery of transition paths for the Muller-Brown
model potential as well as a benchmark chemical
system - alanine dipeptide.

1. Introduction
A chemical reaction can be viewed as a transition from one
depression (reactant) on the potential energy surface (PES)
to another (product). The most likely transition path(s) con-
necting the two basins define the reaction mechanism(s).
The potential energy of a saddle point, through which the
system has to pass, defines the reaction barrier and is the
fundamental quantity when investigating reaction rates. The
major obstacle in determining the reaction path lies in the
high dimensionality of the molecular configuration space
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that can easily be spanned by thousands of degrees of free-
dom (DoF). Extensive sampling of configurations along
candidate transition paths, characterized by comparatively
high free energies(Chipot & Pohorille, 2007; Chipot, 2014)
is needed, but standard unbiased sampling algorithms, e.g.,
molecular dynamics (MD) or Monte-Carlo (MC), often re-
main trapped in (meta)stable regions. Therefore, it is ex-
tremely inefficient to explore candidate paths in an unbiased
way, and it is necessary to adopt heuristics to bias the explo-
ration, which are often based on expert chemical intuition.

The problem has been commonly split into two seemingly
easier sub-tasks. First, a dimensionality reduction from all
DoFs down to the so-called collective variables (CVs) and
second, enhanced sampling along those CVs (Torrie et al.,
1977; Darve & Pohorille, 2001; Laio & Parrinello, 2002;
Abrams & Bussi, 2013; Spiwok et al., 2015; Valsson et al.,
2016). Even though widely used methods exist to solve the
second problem, the first part - identifying collective vari-
ables - is still largely a manual task based on expert chemi-
cal intuition, with the commonly used CVs being not much
more complex than simple linear combinations of manually
chosen internal DoFs of the molecular systems in question.
Recently, the task of identifying CVs has been partially au-
tomatized by multiple machine learning based tools.(Sultan
& Pande, 2018; Mendels et al., 2018; Wehmeyer & Noé,
2018; Wang et al., 2019; Bonati et al., 2020; Wang & Ti-
wary, 2021; Sun et al., 2022; Šı́pka et al., 2022) The number
of the CVs is typically limited to one to three due to the
exponential growth of computational cost, known as the
curse of dimensionality (Bellman, 1967; Köppen, 2000).
The CVs should be based on those DoFs, which fully de-
scribe the rare transition event, and are thereby associated
with the slowest motions. However, identification of the
important DoFs a priori typically requires knowledge of the
transition path that one is trying to discover in the first place,
i.e., one still ends up with the proverbial ”chicken-and-egg
problem” (Rohrdanz et al., 2013). This is a problem that
previously proposed machine learning based tools cannot
directly tackle. Additionally, once the CVs are chosen it is
very difficult to correct them on-the-fly. Thus, one must be
certain that the chosen CV function is properly defined and
well behaved in all regions (i.e., the CV values for reactant
and product basins do not overlap or it shows undefined
behavior for unseen configurations). A hard task for tools
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such as neural networks as they often extrapolate poorly
when presented with unseen data. To solve these problems,
iterative improvements of CVs have been proposed (Chen
et al., 2018b; Belkacemi et al., 2022) where both, CV train-
ing algorithm and biasing method, are iterated until the final
results of the biased dynamics is satisfactory. This can be
slow as the enhanced sampling needs to be rerun for each
iteration of the CV. Once equipped with a low-dimensional
representation of the chemical reaction, the enhanced sam-
pling algorithms usually introduce a biasing potential, which
is a function of the identified CVs and modifies the original
PES by lowering the reaction barrier. If CVs and enhanced
sampling technique are chosen well, the biased simulation
will significantly increase the occurrence of reactive events,
and subsequent analysis will allow us to understand the
reaction mechanism and to calculate reaction barrier and
rate.

Traditionally, there exists an alternative to enhanced sam-
pling, namely path sampling techniques(Dellago et al.,
1998), including transition path sampling(Bolhuis et al.,
2002), transition interface sampling(Van Erp et al., 2003),
and multilevel splitting(Cérou et al., 2011). These algo-
rithms try to sample reactive trajectories without modifying
the PES itself, but by choosing optimal starting points that
generate paths connecting reactant and product. In order to
do so a rough measure of reaction progress is still needed,
e.g., a CV or the committor (a function of all coordinates
that gives the probability of a path originating there will visit
the product well). This means that one either also needs a
CV or has to have prior knowledge of the location of the
transition state region.

Simulations that are fully differentiable have been developed
for optimization, control, and learning of motion,(Degrave
et al., 2016; de Avila Belbute-Peres et al., 2018; Hu et al.,
2019; 2020) but also for the learning and optimization of
quantities of interest in molecular dynamics (Wang et al.,
2020; Ingraham et al., 2019; Greener & Jones, 2021). Differ-
entiating through simulations comes naturally from the opti-
mization of path-dependent quantities (the famous Brachis-
tochrone curve problem is included in Appendix H for the
novice reader). If the minimization of a loss function cannot
be formulated separately for every point in the path, then
optimization has to include the whole path leading up to
it. While the results of DiffSims are often promising, it is
well known (Metz et al., 2021) that naı̈vely backpropagated
gradients may vanish or explode, and thus not lead to a
useful parameter update. How to control their behaviour
remains an open challenge. This problem of differentiable
simulations is associated with the spectrum of the system’s
Jacobian(Metz et al., 2021; Galimberti et al., 2021) and
closely connected to the chaotic nature of the simulated
equations. Therefore, in order to employ path differentia-
tion, one needs to find ways to produce well behaving and

controllable gradients. In this contribution, the loss gradient
behaviour is thoroughly investigated, and a mechanism to
control its fluctuations and magnitude is proposed. Employ-
ing the improved DiffSims, we define a differentiable loss
function that, when minimized, results in the robust train-
ing of a biasing potential, which enhances the sampling of
reactive transitions without prior determination of CVs.

The manuscript is structured as follows. In Section 2 we
define molecular dynamics simulations biased with a learn-
able potential, introduce a formalism to describe chemical
reactions using path integrals, and outline the concept of dif-
ferentiable simulations. We discuss the current challenges
and limitations of DiffSims in Section 3 and propose novel
techniques to resolve them. In section 4 we outline the
practical implementation of our method. In Section 5, we
demonstrate the usefulness of DiffSims in the context of
chemical reactions by training the bias function promoting
barrier crossing for the well-studied Muller-Brown potential
as well as the alanine-dipeptide molecule.

2. Problem Definition
Molecular dynamics is commonly used to explore reaction
processes on a atomistic level. Let the column vector x ∈
RN denote the mass-weighted coordinates of the system and
p the conjugate momenta. The particle motion is simulated
using Hamiltonian equations with potential energy function
U0(x).

ẋ(t) = p(t)

ṗ(t) = −∂U0(x(t))

∂x

(1)

These equations conserve energy and are purely reversible
with respect to time. However, it is common in molecular
modeling not to work with the micro-canonical ensemble
but rather with the canonical ensemble that conserves tem-
perature (Callen & Scott, 1998). This is realized by using a
thermostat coupled to the system. In this work, we choose
the Langevin thermostat because of its implementational
simplicity and its favorable properties with respect to differ-
entiating along the computational graph, as will be shown
later (see Section 3.2). In Langevin dynamics, the thermo-
stat is coupled to the system through the friction constant γ
(3).

To increase the probability of the barrier crossing we modify
the PES with a learnable bias term B(x, θ)

U(x, θ) = U0(x) +B(x, θ), (2)

where the biasing function is parameterized by θ, which
we aim to train to increase the frequency of reaction events.
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The biased dynamics evolve according to

ẋ(t) = p(t)

ṗ(t) = −∂U(x(t))

∂x
− γp(t) +

√
2γkBTR(t),

(3)

where kb is the Boltzmann constant, T the absolute temper-
ature of the bath, and R(t) a Gaussian process.

2.1. Formal characterization of (chemical) reactions

By using the term ”reaction” we mean to encompass any
process that can be described as the transition between two
depressions on the PES, this includes but is not limited to
the rearrangement of chemical bonds, the exchange between
conformers, and phase transitions. It is often suitable to use
general curvilinear coordinates and not simply Cartesian
or mass-weighted coordinates to describe reactions. Com-
mon are internal coordinates such as interatomic distances,
angles, or dihedrals, as they are invariant with respect to
system rotation and translation. These special coordinates
are denoted with ξ(x) ∈ RM and M ≤ N .

The wells Wα of reactant (-1) and product (1), divided by
a reaction barrier, are characterized by the set of points Γα

(α = −1, 1), which correspond to the equilibrium configu-
rations of reactants and products, i.e., we expect an unbiased
simulation on the PES U0(x), to stay in these wells with
a very high probability. We approximate the wells with a
multivariate normal distribution. From short, unbiased sim-
ulations, we estimate mean µα and covariance matrix Σα.
We consider a point to be part of a well if the probability of
the point belonging to the distribution is above some chosen
probability threshold.

Wα =
{
x | (ξ(x)− µα)

TΣ−1
α (ξ(x)− µα) < ϵ

}
, (4)

where epsilon can be obtained from χ2 distribution. The
indicator function for a well is

1α(x) =

{
1 for x ∈Wα

0 for x /∈Wα.
(5)

In this manuscript, we only consider transitions between two
wells, W−1 and W1. Additional basins would be handled
analogously. The (escape) probability pα, within a specified
time interval (t0, te) of a transition W−α →Wα is defined
as

pα = P

(∫ te

t0

1α(x(t)) dt > 0

∣∣∣∣ x(t0) ∈W−α

)
, (6)

where t0 is the start and te the end time of the trajectory X .
This can be understood as the probability of finding at least
one point inWα of a trajectory that has started inW−α. Our
objective is to increase both p1 and p−1 simultaneously to
a level where both events can be observed frequently on a
typical simulation time scale.

2.2. Optimizing the probability

The form of the probability in (6) is not usable for differen-
tiable optimization and needs to be recast to a differentiable,
continuous form. Under suitable regularity conditions, we
can replace the expression of (6) with

pα = P

(
sup
t<te

(1α(x(t)) > 0

∣∣∣∣ x(t0) ∈W−α

)
. (7)

We can then define a soft loss function that is continuous
everywhere and differentiable for any trajectory X with
x(t0) ∈W−α as

L = Lξα
=

{
0 if ∃ x(t) ∈Wα

min
t0<t<te

(ξ(x(t))− ξα)
2 otherwise ,

(8)
where for each trajectory a random single ξα ∈ Γα is se-
lected for the loss function by running a short, unbiased
simulation. The term (ξ(x(t))−ξα)

2 is the distance metric
used as measure of how close a trajectory got to the target.
In general, we choose the metric to be the quadratic distance
either in Cartesian coordinates or the descriptor space, de-
pending on the type of the reaction. Other more complex
metrics can be chosen. Choosing random targets is done
to increase the configuration space the simulation is forced
to cover, avoiding targeting a particular point, thus making
the optimization more robust. Minimizing this loss function
leads to a maximization of the probability (6) and can be
seen as the minimization of a path-dependent integral. In
the following Section, we will define a method that can be
employed to minimize (8). Note that the loss function is
defined only for one point of the trajectory and is influenced
by the dynamics of every point that proceeds it.

2.3. Differentiable simulations

For the problem at hand, the parameters θ of the bias poten-
tial (2) have to be optimized such that the loss (8) is minimal.
For a differentiable simulation, the information that we gain
by differentiating the loss function at the point where it is de-
fined can be used for optimization along the whole trajectory.
While we could proceed by considering the simulation as a
forward process, saving the computational graph for the en-
tire path would be extremely memory-demanding. Instead,
the optimization process can be conveniently reformulated
using the adjoint equation and resulting adjoint vectors, us-
ing which the system dynamics can be run backwards to an
arbitrary time, leading to memory-savings and the ability
to adjust extent of backpropagation based on the sought-for
dynamical scale (see Section 3). We employ the framework
and notation adapted recently for neural networks(Chen
et al., 2018a) from the original work by (Lev Semenovich
Pontryagin et al., 1962).

We propagate the state z(t) = (x(t),p(t)) using the biased
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Langevin dynamics where the right side of (3) shall be de-
noted as f(z(t), θ) = ż(t). Propagating z(t) using f(z(t))
is called the forward process. Notice that f(z(t)) has no
explicit time dependence (only through z(t)). We define the
adjoint vectors for this equations as

a(t) =
∂L

∂z(t)
. (9)

To solve (9) we introduce the new time τ ∈ (0, τe) such that
z(τ = 0) = z(t = te) and z(τ = τe) = z(t = 0). This
backward flowing time reflects that the loss is not influenced
by any points further in forward time.

In forward moving time t, the adjoint vectors obey the equa-
tions

a(te) =
∂L

∂z(te)

ȧ(t) = −a(t)T
∂f(z(t), θ)

∂z
,

(10)

or in backward going time τ , the equation

a(τ = 0) =
∂L

∂z(τ = 0)

ȧ(τ) = a(τ)T
∂f(z(τ), θ)

∂z
.

(11)

The total gradient of the loss function with respect to bias
parameters is then obtained by

∂L

∂θ
=

∫ τe

0

a(τ)T
∂f(z(τ), θ)

∂θ
dτ . (12)

While solving (11), z(τ) can be either saved or recon-
structed by running dynamics (3) backward, depending on
the memory and computational trade-off we would like to
maintain. The algorithm for running the adjoint method for
the dynamics that includes random noise is developed and
analyzed in (Li et al., 2020).

3. Challenges and Solutions
3.1. Challenges

Ideally, one would simulate the biased dynamics (3), com-
pute the loss (8), backpropagate by solving (11), and after a
number of training epochs obtain the biasing potential that
enhances transitions. However, differentiable simulations
at their current state cannot be used out of the box. There
exist several issues that need to be addressed.

1. Gradient control
Significant effort has been devoted in the past years to
understand the behavior of gradients that arise while
optimizing neural network controlled differentiable

simulations (Suh et al., 2022; Huang et al., 2021; Metz
et al., 2021). Some of the main challenges in this
respect are the explosion or the vanishing of gradients
when training deep neural networks. A differentiable
simulation can be arbitrarily deep, however, it can be
challenging to backpropagate complex Hamiltonians
in a controllable manner to such depths. In fact, it is
possible to construct a simple Hamiltonian that gives
rise to exploding gradients when using (3) (Galimberti
et al., 2021).

2. Multiscale Problem
The dynamics on U0(x) can include very high and
very low frequency motions. However, only the slow
dynamics should be controlled by the trainable bias,
as those are associated with the sought-after chemical
reactions. High frequency modes, e.g., hydrogen vibra-
tions in the case of molecules, usually do not contribute
to the reaction mechanism. Avoiding fitting such fast
fluctuations is desirable as it reduces the noise in the
gradients used for DiffSim training.

3. Chaotic behaviour
One important property of some Hamiltonian systems
is the emergence of chaos (Percival I, 1987). Small
changes in initial conditions result in exponentially dif-
ferent trajectories. Great care must be taken to predict
and control the behaviour of such systems.

4. One large parameter update per trajectory
Differentiable simulations in their original formulation
produce one update per trajectory. Obtaining a suffi-
cient number of gradient updates can be very expensive
when long trajectories are required.

All these challenges are addressed by the present work.
We show how to efficiently learn slow dynamics necessary
for the investigation of chemical reactions while keeping
gradients under control.

3.2. Partial backpropagation

To reduce the complexity and level of detail in the equa-
tions, the computational graph is pruned such that back-
propagation occurs only in the momenta. This is realized
by adoption of the .detach() operator introduced, e.g., in
Refs. (Foerster et al., 2018; Schulman et al., 2015; Zhang
et al., 2019), which stops the flow of the gradient through x.
The backpropagation only in momenta can be reasoned as
follows:

• For timescales ∆τ , typical for the slow dynamics in the
system, we assume x to linearly approach the target
value. This discards fast oscillations in x. In other
words, for timescales ∆τ we expect the change in x to
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Figure 1: Comparison of the adjoint evolution for origi-
nal and partially detached graphs for simulations on the
2D Müller-Brown potential with parameters given in Ap-
pendix G.

be linear in time

∂x(τ)

∂p(τ)
= ∆τ , (13)

which corresponds to the equation for x in the form

x(τ) = x(τ −∆τ).detach() + p(τ)∆τ . (14)

• The use of the detach operator reduces the backpropa-
gated ODE to first order in time, neglecting all higher
order terms. Hence, the backpropagation follows a
diffusion type equation, and any high frequency oscil-
lations are removed. The change in adjoint dynamics
can be seen in the Figure 1.

• The modified dynamics are well behaved with respect
to the magnitude of the gradients as shown in the theo-
rems.

The introduction of the .detach() operator reduces the num-
ber of equations for which the adjoint is calculated and
through which the loss is backpropagated. Position x(τ) is
no longer an independent variable only a function of p(τ).
The detached x from the previous timestep is treated as a
constant in Equation (14). The adjoint dynamics is then
calculated in only one variable p(τ) and only the evolution-
ary equation for this variable is considered. To simplify the
discussion of adjoints we will not discretize the backward
equation, but keep it in the continuous form. The use of the

.detach() operator simplifies the adjoint time derivative to

ȧ(τ) = aT ∂

∂p(τ)

(
−∂U(x(τ))

∂x
− γp(τ)

+
√

2γkBTR(τ)

= −aT (τ)

(
∂2U(x(τ))

∂2x

∂x(τ)

∂p(τ)
− γI

)
= −aT (τ)

∂2U(x(τ))

∂2x
∆τ − γa(τ) .

(15)

Let us now formulate the property of the adjoints that will
be useful when designing numerical methods and also gives
us some assurance of the non-diverging gradient dynamics.
Consider a trajectory xt generated by (3) with time t in
a possibly infinite time interval I ⊂ (−∞,∞). The loss
(8) is defined for a point xtL . To optimize B(x, θ), we
need to backpropagate the gradient of this loss through
every point proceeding xtL , using backwards flowing time
τ . To summarize the notation and to set the stage for the
proof of finite gradient update, we introduce the following
definitions:

Definition 3.1 (Differentiable Trajectory). A Differen-
tiable Trajectory T is defined by the following quadruple
(z(t), L(z(tL), f(z(t)), f̃(z(t))): Let z(t) ∈ Ωx × Ωp

where Ωx ⊂ RN and Ωp ⊂ RN for t ∈ (ti, te), where
−∞ ≤ ti < te ≤ ∞ be the sequence of states generate by
the dynamics f(z(t)) from a certain initial state z(t0), t0 ∈
[ti, te]. We define a loss function L(z(tL)) in time tL. The
gradient dynamics of the loss function is guided by the dy-
namics f̃(z(t)) that includes possible .detach() operators.
The backward dynamics is represented in the reverse flowing
time τ starting from z(tL) = z(τ = 0) to z(τe) = z(ti).

And we define a Diffusive Differentiable Trajectory by

Definition 3.2 (Diffusive Differentiable Trajectory). A
Differentiable Trajectory T constructed by dynamics (3)
equipped with a backward dynamics (15) and a loss function
(8) is called a Diffusive Differentiable Trajectory, denoted
by Td.

Property 1 (Finite gradient update). Let γ be sufficiently
high. Let

U(x) ∈ C2(Ωx) and
∂f(z(τ), θ)

∂θ
bounded (16)

Then the gradient update for a loss function in a Diffusive
Differentiable Trajectory is finite for every (possibly infinite)
τe.

The essence of the proof and specification of the sufficient
conditions for γ are addressed in the following theorem.

Theorem 3.3 (Converging adjoints). Td be a Diffusive Dif-
ferentiable Trajectory. Let U(x) ∈ C2(Ωx) and denote the
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spectrum of its hessian ∂2U(x(t))
∂2x by λi(x(t)). Define λmin

as
λmin = inf

τ>0
min
i
λi(x(τ)). (17)

Then for every γ that fulfills: (∆τλmin + γ) = ϵ > 0, it
holds:

∀τ > 0 : ∥a(τ)∥2 ≤ ∥a(0)∥2 e−2ϵτ (18)

We proof the theorem in the Appendix A. There is a useful
corollary of the above

Corollary 3.4. Under the assumptions of the theorem 3.3,
∥a(τ)∥ ∈ Lr(0, τe), r ∈ [1,∞].

Proof. Case r = ∞ is trivial as the square root of the
upper bound (18) is still finite ∀τ . Let us now consider only
r ∈ [1,∞).

∥a(τ)∥rLr(0,τe)
=

∫ τe

0

∥a(τ)∥r ≤ ∥a(0)∥r
∫ τe

0

e−ϵ r τ

= −∥a(0)∥r

ϵ r

[
e−ϵ r τ

]τe
0

(19)

Which is finite for every value of τe including ∞.

Proof of the finite gradient update 1. Since we know that
a(τ) ∈ L1(0, τe) from the previous corollary and that
∂f(z(τ),θ)

∂θ bounded from the assumption, it is now trivial to
show

∂L(ztL)

∂θ
=

∫ τe

0

a(τ)
f(z(τ), θ)

∂θ
dτ

≤ sup
z(τ)∈T

∥∥∥∥∂f(z(τ), θ)∂θ

∥∥∥∥∫ τe

0

a(τ)dτ, (20)

which is finite.

This property allows us to backpropagate the dynamics with-
out exploding gradients as long as γ is chosen large enough.
The exponential scaling of the adjoints also indicates that
once we identify the point where the loss function will be cal-
culated, we only need to consider a handful of points before
a(τ) essentially vanishes. Any further adjoint propagation
does not significantly contribute to the gradient update. This
is intuitively desirable, as for the noisy equation (3) the loss
function information becomes diluted as we backpropagate.
Keeping only recent data points thus introduces a natural
cutoff to the information we use for optimization.

The theorem also gives more insight into when such back-
propagation may lead to exploding gradients. If the expres-
sion (∆τλmin + γ) = ϵ < 0, then the upper bound may
not hold, and gradients can increase exponentially. Strongly
negative λi of the hessian indicates a concave part in the

potential landscape, which is generally problematic for con-
trol. However, with ∆τ and γ, we have two robust dials to
ensure non-exploding adjoints.

In practice, we assume ∆τ to be equal to the forward
timestep. Investigating the impact of setting ∆τ to mul-
tiples of the timestep is beyond the scope of this paper.

3.3. Mini-batching the graph

One of the problems associated with differentiable simu-
lation is the low number of updates. Usually, only one
gradient step is taken per trajectory, making the gradients
averaged across the entire path and necessitating rather large
learning rates to train the network in just a few updates. The
problem can be alleviated by a technique we call graph
mini-batching. The idea is to calculate trajectory depended
gradients first (the adjoints a) in one pass and then split
them to mini-batches. The adjoints are then used as vectors
in Jacobi-vector products (12) during backpropagation of
the bias function evaluated in batches. The approach sta-
bilizes learning and allows for much lower learning rates,
better suited for training neural networks. An example of a
use case is more thoroughly discussed in Appendix C.

3.4. Summary

The use of the Langevin thermostat with reasonable γ cre-
ates finite memory dynamics and therefore decaying ad-
joints. Employing also the .detach() operator ensures that
the adjoints vanish smoothly, without high frequency oscilla-
tions, thus making them bounded (solving Item 1) and ignor-
ing fast motion, helping with Item 2. Such a finite memory
system is likely to be less chaotic, addressing Item 3. Split-
ting the loss gradient into random mini-batches obviously
solves the point 4.

4. Practical implementation
It is important to promote the transition across the barrier
equally. If only one direction is sampled, then one may
end up with a ”landslide” potential strongly tilted towards
one minimum and not a diffusive behaviour. Therefore, we
choose the following approach.

1. Create a batch of 2l starting configurations, with l in
each well respectively.

2. Run all trajectories simultaneously for a fixed number
of time steps.

3. Collect the loss 8 after all simulations have ended.
After N initial steps, which serve as equilibration, we
also calculate the minimal distance from the start to
encourage the eventual return to the starting well and,
thereby, true diffusive behavior. Thus, we have two
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Figure 2: Log-density of simulated points before (left) and
after the training (right) of bias function by differentiable
simulations. The right plot shows how well all important
regions are sampled after training. The background of the
Figure is the UMB(x, y), the underlying Muller-Brown po-
tential.

losses: A forward loss Lf (xLf
) and start loss Ls(xLs

)
that are summed together with equal weights.

4. Calculate adjoints and optimize the bias function
B(x, θ) using the graph mini-batching technique. Re-
peat from step 1 until convergence.

By running a large number of simulations concurrently, one
can leverage the vectorization of the operations and reduce
computational time.

For the performance monitoring we also define the success
rate. This metric represents the percentage of trajectories
that started in one basin and made it to the other over the
course of a simulation.

5. Results
In this Section, we present the results of our novel DiffSim
approach. First, we apply it to a commonly used two di-
mensional model PES, the Muller-Brown potential(Müller
& Brown, 1979), where any linear combination of the Carte-
sian coordinates does not yield a good CV. Then we lift this
example to five dimensions by introducing three noisy DoFs
demonstrating the efficiency of the approach in a higher-
dimensional setup. Second, we investigate the benchmark
system for enhanced sampling in molecular systems, alanine
dipeptide (amino acid alanine capped at both ends). The two
collective variables describing the metastable states are well
known in the biophysics community, the backbone dihedrals
ϕ and ψ. We will assume no such knowledge and gener-
ate the enhanced sampling simulation from all backbone
dihedral angles as candidates in an end-to-end process.

5.1. 2D Muller-Brown potential

The parameters of the commonly investigated 2D Muller-
Brown PES (Müller & Brown, 1979; Sun et al., 2022) are
given in the Appendix D. For the bias potential, B(x,h),
we employ a grid of Gaussian functions, controlling their
individual height. The biasing function is

B(x,h) =

n2
g∑

i=1

hi exp

(
−
(
x− x0

i

)2
2σ2

)
(21)

with trainable h. Means x0
i are evenly distributed in the

computational domain. With ng Gaussians along each di-
mension, only n2g contributions to the total bias have to be
calculated in two dimensions. After training the bias via
DiffSim (parameters reported in Appendix G), we obtain
biased dynamics that generate increasingly many successful
transitions between reactants and products along the transi-
tion path (see the evolution of the loss function and success
rate during the training shown in Figure 3). This leads to the
log-density of the points along the transition path to even
out significantly (see Figure 2).

We construct the CV by dimensionality reduction of frames
from converged diffusive trajectories (well sampled tran-
sitions). To obtain a one dimensional CV describing the
path, we use a Variational Autoencoder (Kingma & Welling,
2013) (architecture described in Appendix G). The resulting
CV is visualized in Figure 3. The CV distinguishes well
and interpolates smoothly between products and reactants.
Using this CV, the unbiased and biased PES are plotted as
averages along the CV. It is easy to see in Figure 3 how
effectively the PES has been flattened by the bias function.

5.2. 5D Generalization of Muller-Brown potential

The situation is more complicated when additional harmonic
degrees of freedom are included (see Appendix E for de-
tails). One may consider them to be, e.g., quickly oscillating
hydrogen atoms that do not influence the reaction. As the
ansatz of bias potential (21) scales exponentially with the
dimensionality of the problem, it cannot be used with the 5D
version of the potential (Appendix E). Instead, a fully con-
nected neural network as a function of all five variables is
employed, making training significantly harder. The results
were postprocessed analogously as the two dimensional
case, see Figure 7. Finally, the biased system converges
to a success rate of 65 %. As before, we observe that the
potential was relatively flattened and transitions occur with
high probability. The results are not as good as in the 2D
case, both due to the built-in noisiness of the dynamics (Ap-
pendix E) and because of a rather crude approximation of
the biasing potential with a simple fully connected neural
network, which is harder to train than the Gaussian grid used
in a 2D case. However, even under such circumstances, the
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Figure 3: left: Loss functions and the probability of barrier crossing (success rate) during as the training progresses. middle:
Variational Autoencoder producing a collective variable by training on a fully diffusive trajectory. right: Potential energy
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Figure 4: top row: Metrics for the alanine dipeptide run.
Total loss function and transition success rate. bottom row:
Log-density of simulated points before the training of bias
by differentiable simulations (left) and after the training
converged (right).

DiffSim approach managed to discover the transformation
path and sample it with reasonably high probability.

5.3. Alanine dipeptide

Alanine dipeptide is a simple model system exhibiting typi-
cal protein dihedral dynamics. Therefore, it has become an
important benchmark to test and verify free energy calcula-
tion methods. The collective variables, the dihedral angles
ϕ and ψ, are well known and the PES is rather complex
with relatively low barriers (Vymětal & Vondrášek, 2010;
Mironov et al., 2019). We use this system to test the ability
of our method to bias the dynamics along the important
DoFs. The details about the location of minimas and biasing
function inputs are reported in Appendix G.

Figure 5: left: Directly reweighted PMF from simulations
with the bias potential projected on the Ramachandran plane.
White regions are without sufficient sampling. right: PMF
of the ϕ-ψ-plane obtained from an eABF simulation.

The progress of the training and log-density of points are
reported in Figure 4. After training, almost 80 % of trajecto-
ries show a transition within 10 ps. By comparing the poten-
tial of mean force (PMF) obtained from direct reweighting
of 10 biased 1 ns runs with the fully trained potential with
one obtained using the extended-Lagrangian adaptive bias-
ing force (eABF, see Appendix F) we can see that they are
identical in the sampled regions (see Figure 5). Whereas the
eABF simulation explored the full ϕ− ψ-space as intended
by the algorithm, the simulations with the trained bias po-
tential samples only that section of the same PMF, which is
important for the β ⇌ Lα transitions . This demonstrates
that our differentiable simulations can unravel the transition
paths and reaction barriers in the same way as a collective
variable based method would, except without requiring prior
knowledge of ideal CVs.

6. Conclusion
This contribution presents advances in two distinct areas.
First, it was described in detail how neural network con-
trolled differential simulations (DiffSims) can be made ro-
bust and efficient. We have shown how the use of Langevin
dynamics creates a finite memory horizon and therefore en-
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forces decaying adjoints. The .detach() operator pruned the
computational graph and thereby ensured that the adjoints
vanish smoothly, removing any high frequency oscillations.
The introduction of random mini-batches by breaking up
the loss gradient made learning in the fashion of stochas-
tic gradient descent possible, significantly stabilizing the
training.

Second, the establishment of the robust and efficient neu-
ral network controlled DiffSims allowed us to successfully
tackle an important open problem in computational chem-
istry - discovery and effective sampling of the rare event
(chemical reaction) pathways. Initially, a path integral loss
was defined to measure the success of a molecular dynamics
trajectory with regard to a crossing of an energy barrier,
i.e., with regard to exhibiting a rare event. This loss was
then used to train a bias potential to discover and accel-
erate the chemical transitions without a need to guess a
low-dimensional representation of the chemical reaction,
i.e., the collective variable (CV), a priori. We showed the
effectiveness of this approach by successfully biasing the
dynamics on the Muller-Brown potential, which is a numer-
ical benchmark for traditional enhanced sampling schemes
and a priori CV determination algorithms. Our method
worked without any previous knowledge of the good CV,
however, from the the biased trajectories exhibiting transi-
tions a reduced representation, i.e., a CV, can be constructed.
The quality of biasing and subsequent CV identification was
practically perfect for the 2D case, and even the challenging
5D case with a significant amount of noise in the added
harmonic DoFs converged, exhibiting a high probability of
observing a transition event. Finally, a realistic chemical sys-
tem (alanine dipeptide) was investigated. The bias potential
was constructed considering dihedral angles as candidate
degrees of freedom, including not only the two dihedrals
commonly used as CVs but also other dihedrals that noised
the transition. Our method successfully generated biased
trajectories, which exhibited sought-for transitions between
the two target minima with high probability.

We have demonstrated that differentiable simulations with
our innovations can handle not only model systems but also
complex molecular motions. In the future, we intend to ex-
tend the tool to more challenging reactions with complicated
transition paths, such as protein motion and chemical reac-
tions with multiple intermediate steps or competing reaction
paths.
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A. Proof of adjoint convergence theorem
To prove Theorem 3.3 we need to state one more lemma.

Lemma A.1. Let x ∈ RN , U(x) scalar, real, C2(RN ) function. Consider a hessian computed at x0: ∂2U(x0)
∂x2 with

minimum and maximum eigenvalues λmin and λmax respectively. Then for any vector v ∈ RN

λmin ∥v∥2 ≤ vT · ∂U(x2
0)

∂x2
v ≤ λmax ∥v∥2 . (22)

Proof. We note that a hessian of a real continuous function is a symmetric matrix. Such a matrix is orthogonally diagonaliz-
able and has real eigenvalues. The rest of the proof is a part of most standard linear algebra textbooks.

We can now prove the Theorem 3.3.

Proof. We start by multiplying (15) by 2a. This yields

2a(τ) · ȧ(τ) = 2dτaT (τ) · ∂
2U(x(τ))

∂2x
a(τ)− 2γ ∥a(τ)∥2 (23)

and can be recast using 2aT (τ) · ȧ(τ) =
˙

∥a(τ)∥2 (the norm is a standard vector 2-norm) to

˙
∥a(τ)∥2 = −2dτaT (τ) · ∂

2U(x(τ))

∂2x
a(τ)− 2γ ∥a(τ)∥2 (24)

Using Lemma A.1 and, subsequently, the assumption of the theorem, we can estimate the upper bound of the time derivative
as

˙
∥a(τ)∥2 ≤ −2 (dτλmin + γ) ∥a(τ)∥2 = −2ϵ ∥a(τ)∥2 (25)

Using Gromwall lemma we can now estimate a(τ) easily as

∥a(τ)∥2 ≤ ∥a(0)∥2 exp
(
−2

∫ τ

0

ϵ dt

)
= ∥a(0)∥2 e−2ϵτ (26)

and since ϵ > 0, the ∥a(τ)∥2 is bounded for all τ .

B. Un-Detached formulation and convergence of adjoints
The proof of adjoint convergence after introduction of the .detach()-operator (Appendix A) raises the question how adjoints
evolve for the full, un-detached set of equations. It appears that the adjoint decay cannot be ensured in this case, underlining
the need for the use of detached dynamics when treating chaotic systems. In other words, there exists a concave potential
that would, regardless of γ, result in exploding gradients.

Let us consider a simple case where both x and p are one dimensional and the PES is the quadratic potential U(x) = αx2.
In this case, the adjoint equation is that of a damped harmonic oscillator. The original equations:

ẋ(t) = p(t)

ṗ(t) = −βx− γp(t) +
√
2γkBTR(t).

(27)

with β = 2α and the adjoints:

ȧx(t) = ap

ȧp(t) = −βax − γap

(28)

which is the classic damped oscillator. This equation can be solved analytically by transforming it to a second order equation

äx = −βax − γȧx (29)
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This linear ODE system has a well-known solution in the form of a linear combination of two exponentials. The characteristic
equation in terms of variable χ for this system is

χ2 + γχ+ β = 0. (30)

The general solution can be obtained as:

χ =
−γ ±

√
γ2 − 4β

2
. (31)

The solution depends on the sign of β and on the value under the square root. For this counterexample (i.e., uncontrollable
adjoints) we are interested in a concave potential, represented by negative β. Then the roots are real, such that χ1 > 0 and
χ2 < 0. This translates to a general solution

ax(τ) = Aeχ1τ +Beχ2τ (32)

It is possible to choose the constants A and B such that both are non-zero. In this case, no matter how small χ1 is, the
expression exponentially diverges with τ . In other words, no matter how large we choose γ, the negative β always pushes
our solution to ∞. This proves that in the general un-detached setting, there are cases of potentials that produce diverging
adjoints regardless of the damping.

Note 1: We do not discuss special solutions, like one that sets A = 0. This choice represents dynamics that come to rest at
the maximum of the potential. It is easy to find initial conditions that do not result in this scenario.

Note 2: The entire derivation was based on well-known principles. The adjoint equation is by Pontryagin principle guided
by the Legendre transform of the original Lagrangian. When the potential is quadratic, the resulting equations stay the same
in adjoint formulation. From the damped harmonic oscilator in the original phase space we create a harmonic oscilator in
the control variables.

C. Graph minibatching and adjoints
To better explain the graph minibatching technique, let us consider a simple differential equation with trainable parameters θ

ż = f(z, θ) (33)

Let us discretize the equation using a simple Forward Euler method such that it becomes

zn+1 = zn + dtf(zn, θ). (34)

For simplicity consider a three step differentiable simulation (z0, z1, z2) such that

z2 = z1 + dtf(z1, θ)

z1 = z0 + dtf(z0, θ)

where a loss function is defined for the last point L(z2). Our goal is to find the gradient of ∂L(z2)
∂θ . Let us derive

∂L(z2)

∂θ
=
∂L(z2)

∂z2

∂z2
∂θ

∂z2
∂θ

=
∂z1
∂θ

+ dt
∂f(z1, θ)

∂θ
=
∂z1
∂θ

+ dt

(
∂f(z1, θ)

∂z1

∂z1
∂θ

+
∂f(z1, θ)

∂θ

)
∂z1
∂θ

=
∂z0
∂θ

+ dt
∂f(z0, θ)

∂θ
= dt

∂f(z0, θ)

∂θ
.

Put together,
∂L(z2)

∂θ
=
∂L(z2)

∂z2

[
dt

(
1 + dt

∂f(z1, θ)

∂z1

)
∂f(z0, θ)

∂θ
+ dt

∂f(z1, θ)

∂θ

]
. (35)

Meaning, when we optimize the biased function f(zn, θ) We can split the derivative into two parts[
∂L(z2)

∂z2
dt

(
1 + dt

∂f(z1, θ)

∂z1

)]
∂f(z0, θ)

∂θ[
∂L(z2)

∂z2
dt

]
∂f(z1, θ)

∂θ

(36)
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Figure 6: Comparison of the batched and one-time update of the weights in the 2D example from 5.1. The learning rate for
the unbatched example was set approximately a number of batches times larger than for the batched run. The convergence is
clearly more stable and even faster in the batched case. This was also observed for any other setting we tried during the
development.

More steps can be obtained by continuing the iterations. One can easily see that the vectors we put into square brackets
are actually the adjoints a(zn) from (11). By saving these vectors, we can then take zn, feed forward through f(zn, θ) and
backpropagate using the vector jacobian product. This can be done in one gradient update, accumulating a gradient with
respect to θ and updating it after going through all adjoints, or we can update weights in batches as it is common in neural
network training. The latter is shown to be the more stable and faster converging of the methods (see Figure 6).

D. 2D Muller-Brown potential
The equation of the PES:

UMB(x, y) = B

4∑
i=1

Ai exp
[
αi(x− x0)

2 + βi(x− x0)(y − y0) + γi(y − y0)
2
]

(37)

The parameters used in this work are:

i Ai αi βi γi x0 y0

1 -1.73 0 -0.39 -3.91 48 8
2 -0.87 0 -0.39 -3.91 32 16
3 -1.47 4.3 -2.54 -2.54 24 31
4 0.13 0.23 0.273 0.273 16 24

The barrier parameter B = 10 kcal/mol

E. 5D Generalization
We consider a generalization of the Muller-Brown potential. By adding three harmonic DoFs we complicate the problem
and make it necessary to use a general form of a biasing potential, dependent on all degrees of freedom, as we do not know
which of them defines the reaction. The resulting potential has the form:

U5D(x1, x2, x3, x4, x5) = UMB(x1, x3) + κ(x22 + x24 + x25) (38)

The parameters for UMB(x1, x3) are identical to the 2D-case, the new parameter κ = 0.1 The results for the 5D case are
visualized in the figure Figure 3.

15



DiffSim for Rare Events

0 10 20 30 40 50 60
Iteration

100

150

200

250

300
Av

er
ag

e 
Lo

ss

0%

10%

20%

30%

40%

50%

60%

Su
cc
es

s r
at
e 
[%

]

−3 −2 −1 0 1 2 3
CV

0

2

4

6

8

10

Po
te
nt
ia
l [
kc
al
/m

ol
]

Original potential
Potential + Bias

Figure 7: Results for the 5D extension of the Muller-Brown potential. left: Evolution of loss value and probability of barrier
crossing during the training progresses. middle: CV determined with a Variational Autoencoder trained on a fully diffusive
trajectory. The collective variables are not sharp around the transition region due to the high variance of the other noisy
DoFs. This could be improved by more data, and more refined dimensionality reduction techniques that include temporal
data such as e.g TiCA (Schwantes & Pande, 2015) or time-lagged autoencoders (Wehmeyer & Noé, 2018). right: Average
potential energy along the VAE collective variable with and without bias. The barriers were lowered to the level where they
could be crossed with high probability.

F. Alanine dipeptide simulation settings
The ϕ− ψ-PMF of alanine dipeptide was obtained by means of eABF simulations(Lesage et al., 2017). Both angles were
coupled to independent particles with a mass of 25 a.m.u. with a coupling width of σ = 5◦. The ABF bias was collected on
a grid with a bin width of σ and the bias was downscaled with a linear ramp function until at least 25 samples were collected
in a bin. The simulation time step was 1 fs and the temperature was kept at 300 K with the Langevin thermostat with a
friction constant of 1 ps−1 for both the real and the extended system. The total simulation time was 10 ns. The unbiased
Boltzmann weights were recovered with MBAR(Hulm et al., 2022), the convergence criterion was set to 10−6.

G. Differentiable simulation parameters
The equations we simulate are (3), discretized by the Leapfrog algorithm. The method is symplectic and conserves energy.
The constants and parameters of the method were chosen as follows:

case m [g/mol] γ [ps−1] T [K] dt [fs] timesteps epochs
2D 0.1 0.1 10 1 6× 103 101
5D 0.01 1.0 300 1 2× 104 66

Ala2 - 0.1 300 1 104 301

The column ”timesteps” lists for how many steps we propagate a single simulation in each epoch. The update of parameters
then represents an epoch. For the backward dynamics, we use 190 adjoints directly before the point where the loss function
is calculated.

Batches of Parallel MDs These batches refer to the number of replicas that are simulated simultaneously. Using GPUs,
we can parallelize the computation of forces and time step integration and thus are able to run 600 systems at once with a
similar speed of running just one. Accumulating the simulated data from so many systems allows us to increase the number
of adjoints obtained and enables us to use a lower learning rate, making the training more stable.

The setup of the bias function differed for every test case:

2D Muller-Brown: In this case, we use the setup described in (21) with 50 times 50 basis functions.

5d Muller-brown: We use a fully connected network with all five degrees of freedom used as five continuous input neurons.
The network has four hidden layers, each 150 neurons with SiLU as activation functions. The final layer has a single output
neuron - the bias - and no activation.

Alanine dipeptide: In the case of real molecules, the bias function gets more complicated. We define the Gaussian basis set
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Figure 8: left Initial state. The path is initialized as an almost straight path. right After 200 iterations of differentiable
simulations training, the path approximates the true path. The difference between the true curve and the one obtained by
training is likely in the numerical scheme used to evaluate the integral.

in every single degree of freedom represented by a basis vector ej and form a vector

v(x) =

ndof∑
j=1

ng∑
i=1

exp

(
−
(x− x0

ij)
2

2σ2

)
ej . (39)

ndof represents the total number of candidate CVs or degrees of freedom considered. In our case, this was 5. ng is the
total number of basis functions defined separately for every candidate CV. In our case, this was 50 and since we described
dihedral angles, centers x0

ij were distributed uniformly from 0 to 2π, respecting the periodicity of dihedrals. The flattened
vector v(x) with size ndof · ng is then used as an input to a fully connected neural network with three hidden layers, each
150 neurons with SiLU as an activation function. The final layer has one output neuron without an activation function.

As reactant and product we use the minima β (ϕ ≈ −2, ψ ≈ 2) and C7ax (ϕ ≈ 1, ψ ≈ −1.5), respectively (compare
right panel in Figure 5). As candidate DoFs, we choose the four dihedral angles along the backbone of alanine dipeptide,
denoted as θ1, ϕ, ψ, θ2 in the Figure 1 from the paper (Mironov et al., 2019). To make thinks more complicated, we add one
dihedral involving the side-chain methyl group that is expected to be correlated with ϕ, defined by atoms C1, N1, Cα, Cβ

using the notation from the same Figure. In each dihedral angle, a Gaussian basis set accounting for periodicity is defined
Appendix F. These expanded dihedrals are then input to a fully connected network that calculates the bias function. The
detailed settings are listed in Appendix G. As ϕ and ψ are known, the results are reported as Ramachandran plots. No
additional dimensionality reduction via VAEs is performed in this example.

The numerical tool used for the DiffSim of alanine dipeptide was partially based on components from the TorchMD library
(Doerr et al., 2021). The simulations were carried out with the Amber ff19SB forcefield (Tian et al., 2020) in vacuum.

Graph-Minibatching batch size This batch size refers to the mini-batching of the computational graph illustrated in
Appendix C. Here we split the accumulated adjoints into smaller batches and train the network sequentially. The mini-batch
of 120 was used for all systems. We use the learning rate as a learning factor divided by the number of replicas to make it
independent of the number of systems simulated simultaneously. The learning factor is chosen as 20 for the 2D case, 6 for
the 5D case and 3 for the Alanine dipeptide. This, with 300 replicas running from reactant to the product and 300 the other
way, gives us learning rates on the orders 10−2 to 10−3. We use Adam optimizer for all our cases.

For the CV construction via Variational Autoencoder a simple setup was employed with a two hidden layer encoder and a
two hidden layer decoder with 50 neurons and a Softplus activation function for each hidden layer.

H. Brachistochrone curve
Here we exemplify how one can employ differentiable simulations and their capabilities to optimize path dependent integrals
and solve the Brachistochrone problem. The problem is formulated as follows: Given a mass freely sliding on a curve
y = y(x) in the gravitational field g, find the curve from point A to lower point B for which the sliding time is the shortest.
We assume no friction or air resistance and assume that B does not lie directly below A. For simplicity, we choose A to
be the origin of the coordinate system. The solution, the cyclone curve, of this famous problem was obtained by Leibniz,
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L’Hospital, Newton, and Bernoulli brothers (Boyer & Merzbach Uta, 1991). A modified version, where we allow for an
arbitrary difference in height between the two points and only prescribe their horizontal distance ∆x was solved by Lagrange
and much later summarized and written in the modern language of variational formalism by (Mertens & Mingramm, 2008).
In this case, a solution is also a cyclone with some parameters fixed. We prescribe the horizontal ∆x to be π and search for
a solution using differentiable simulations. A simple fully connected neural network f(x) serves as a derivative of the curve
f(x) = dy(x)

dx , so that y(x) is then obtained by the path integration of the neural network. After integration, we numerically
evaluate the time from the simulated path

t =

∫ l

0

ds

v(x)
=

∫ π

0

√√√√1 +
(

dy(x)
dx

)2
−2gy(x)

dx (40)

and minimize it. In the first integrat, l represents the length of the curve. The formula can be easily derived from the
conservation of kinetic energy and from a Pythagorean expression ds2 = dx2 + dy2. For the path construction and
backpropagation we employ the torchdiffeq python package shipped with the paper (Chen et al., 2018a).

In this example, we present a problem that could not be solved with just a point-wise neural network optimization but
requires consideration of a full path. The results for a short training are in Figure 8.

I. Data availability
The source code for all examples (2D and 5D Muller-Brown, Alanine Dipeptide) are available online on Github https:
//github.com/martinsipka/rarediffsim

The Google Colab notebook with the Brachistochrone example is available at: https://colab.research.google.
com/drive/1YjIMTFQA0L9oLMkNpV7E2jOxbbzO6PnM?usp=sharing
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