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Abstract
It is often very challenging to manually design
reward functions for complex, real-world tasks.
To solve this, one can instead use reward learn-
ing to infer a reward function from data. How-
ever, there are often multiple reward functions
that fit the data equally well, even in the infinite-
data limit. This means that the reward function
is only partially identifiable. In this work, we
formally characterise the partial identifiability of
the reward function given several popular reward
learning data sources, including expert demonstra-
tions and trajectory comparisons. We also analyse
the impact of this partial identifiability for several
downstream tasks, such as policy optimisation.
We unify our results in a framework for compar-
ing data sources and downstream tasks by their
invariances, with implications for the design and
selection of data sources for reward learning.

1. Introduction
Many problems can be represented as sequential decision-
making tasks, where the goal is to maximise a numerical
reward function over several steps (Sutton & Barto, 2018).
However, for real-world tasks, it is often challenging to de-
sign a reward function that reliably incentivizes the right
behaviour (Amodei et al., 2016; Leike et al., 2018; Dulac-
Arnold et al., 2019). One approach to solving this problem
is to use reward learning algorithms, which aim to learn a
reward function from data. Reward learning algorithms can
be based on many different data sources, including expert
demonstrations (Ng & Russell, 2000), preferences over tra-
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jectories (Christiano et al., 2017), and many others (Jeon
et al., 2020). These algorithms can learn a reward function
for tasks where it would be infeasible to specify a reward
manually (e.g., Abbeel et al., 2010; Christiano et al., 2017;
Singh et al., 2019; Stiennon et al., 2020).

There will often be multiple reward functions that are con-
sistent with a given data source, even in the limit of infinite
data. For example, two reward functions may induce ex-
actly the same expert behaviour; in that case, no amount
of expert demonstrations can distinguish them. Similarly,
two reward functions may induce exactly the same prefer-
ences over trajectories; in that case, no amount of preference
data can distinguish them. This means that the reward func-
tion is ambiguous, or partially identifiable, based on these
data sources. For most data sources, this issue has been
acknowledged, but its extent has not been characterised. In
this work, we formally characterise the ambiguity of the
reward function for several popular data sources, including
expert demonstrations (§3.1) and trajectory comparisons
(§3.3). Our results describe the infinite-data bounds for the
information that can be recovered from these types of data.

Identifying a reward function uniquely is often unnecessary,
because all plausible reward functions might lead to the
same outcome in a given application. For example, if we
want to learn a reward function in order to compute an opti-
mal policy, then it is enough to learn a reward function that
has the same optimal policies as the true reward function.
In general, ambiguity is not problematic if all compatible
reward functions lead to identical downstream outcomes.
Therefore, we also characterise the ambiguity tolerance for
various applications (especially policy optimisation). This
allows us to evaluate whether or not the ambiguity of a given
data source is problematic for a given application.

Ambiguity and ambiguity tolerance are formally related.
Both concern invariances of objects that can be computed
from reward functions to transformations of those reward
functions. Thus, our main contribution is to catalogue the
invariances of various mathematical objects derived from
the reward function. In Section 2.1, we explore a partial
order on these invariances and its implications for selecting
and evaluating data sources, addressing an open problem in
reward learning (Leike et al., 2018, §3.1).
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1.1. Related Work

Inverse reinforcement learning (IRL; Russell, 1998) is a
central example of reward learning. An IRL algorithm at-
tempts to infer a reward function from demonstrations by
an expert, by inverting a model of the expert’s planning
algorithm (Armstrong & Mindermann, 2018; Shah et al.,
2019). Existing work partially characterises the inherent
ambiguity of expert demonstrations for certain planning al-
gorithms (Ng & Russell, 2000; Cao et al., 2021) and classes
of tasks (Dvijotham & Todorov, 2010; Kim et al., 2021).
We extend these results by considering a more expressive
space of reward functions, more planning algorithms, and
arbitrary stochastic tasks.

IRL is related to dynamic discrete choice (Rust, 1994; Aguir-
regabiria & Mira, 2010), a problem where identifiability
has been studied extensively (e.g., Aguirregabiria, 2005;
Srisuma, 2015; Arcidiacono & Miller, 2020). We study
a simpler setting with known tasks. IRL also relates to
preference elicitation (Rothkopf & Dimitrakakis, 2011) and
inverse optimal control (Ab Azar et al., 2020). Preferences
over sequential trajectories are not typically considered as a
data source in these fields.

Reward learning methods have also been proposed for many
other data sources (Jeon et al., 2020). A popular and effec-
tive option is preferences over trajectories (Akrour et al.,
2012; Christiano et al., 2017). Unlike for IRL, the ambigu-
ity arising from these data sources has not been formally
characterised in any previous work. We contribute a for-
mal characterisation of the ambiguity for central models of
evaluative feedback, including trajectory preferences.

Several studies have explored learning from a combination
of both expert demonstrations and preferences (Ibarz et al.,
2018; Palan et al., 2019; Bıyık et al., 2022; Koppol et al.,
2020), or other multimodal data sources (Tung et al., 2018;
Krasheninnikov et al., 2019; Jeon et al., 2020). One motiva-
tion is that different data sources may provide complemen-
tary reward information (Koppol et al., 2020), and therefore
eliminate some ambiguity. Similarly, Amin et al. (2017) and
Cao et al. (2021) observe reduced ambiguity by combining
behavioural data across multiple tasks. We provide a general
framework for understanding these results.

The primary application of a learnt reward function is to
compute an optimal policy (Abbeel & Ng, 2004; Wirth et al.,
2017). Ng et al. (1999) proved that potential-shaping trans-
formations always preserve the set of optimal policies. We
extend this result, characterising the full set of transforma-
tions that preserve optimal policies in each task, including
for additional policy optimisation techniques such as maxi-
mum causal entropy reinforcement learning.

Ambiguity corresponds to the partial identifiability (Lewbel,
2019) of the reward function modelled as a latent parameter.

A common response to partial identifiability in reward learn-
ing has been to impose additional constraints or assumptions
until the data identifies the reward function uniquely. Fol-
lowing Manski (1995; 2003) and Tamer (2010), we instead
describe ambiguity given various constraints and assump-
tions. This gives practitioners results that are appropriate
for the data they in fact have, and the ambiguity tolerance
of their actual application.

1.2. Preliminaries

We consider an idealised setting with finite, observable,
infinite-horizon sequential decision-making environments,
formalised as Markov Decision Processes (MDPs; Sutton
& Barto, 2018, §3). An MDP is a tuple pS,A, τ, µ0, R, γq

where S and A are finite sets of environment states and
agent actions; τ : SˆA Ñ ∆pSq encodes the transition
distributions governing the environment dynamics; µ0 P

∆pSq is an initial state distribution; R : SˆAˆS Ñ R is a
reward function;1 and γ P p0, 1q is a reward discount rate.
We distinguish states in the support of µ0 as initial states. In
some cases, we also wish to include terminal states. These
states have the property that τps|s, aq “ 1 and Rps, a, sq “

0 for all a. A policy is a function π : S Ñ ∆pAq that
encodes the behaviour of an agent in an MDP.

We represent the transition from state s to state s1 using
action a as the tuple x “ ps, a, s1q. We classify ps, a, s1q as
possible in an MDP if s1 is in the support of τps, aq, other-
wise it is impossible. A trajectory is an infinite sequence
of concatenated transitions ξ “ ps0, a0, s1, a1, s2, . . .q, and
a trajectory fragment of length n is a finite sequence of n
concatenated transitions ζ “ ps0, a0, s1, . . . , an´1, snq. A
trajectory or trajectory fragment is possible if all of its transi-
tions are possible, and is impossible otherwise. A trajectory
or trajectory fragment is initial if its first state is initial. We
say that a state or transition is reachable if it is part of some
possible and initial trajectory.

Given an MDP, we define the return function G as the cumu-
lative discounted reward of entire trajectories and trajectory
fragments: Gpζq “

ř|ζ|´1
t“0 γtRpst, at, st`1q for a trajec-

tory fragment ζ of length |ζ|, and similarly for trajectories.

A policy π and a transition distribution τ together induce
a distribution of trajectories starting from each state. We
denote such a trajectory starting from s with the random
variable Ξs, and its remaining components with random
variables A0, S1, A1, S2, and so on.

Given an MDP and a policy π, the value function encodes

1Notably, we consider deterministic reward functions that may
depend on a transition’s successor state. Alternative spaces of
reward functions are often considered (such as functions from S
or SˆA, or distributions). The chosen space has straightforward
consequences for invariances, which we discuss in Appendix E.
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the expected return from a state, Vπpsq “ EΞs„π,τ

“

GpΞsq
‰

,
and the Q-function of π encodes the expected return given
an initial action, Qπps, aq “ EΞs„π,τ

“

GpΞsq
ˇ

ˇ A0 “ a
‰

.
Qπ and Vπ satisfy a Bellman equation:

Qπps, aq “ ES1„τps,aq

“

Rps, a, S1q ` γVπpS1q
‰

, (1)

Vπpsq “ EA„πpsq

“

Qπps,Aq
‰

, (2)

for all s P S and a P A. Their difference, Aπps, aq “

Qπps, aq ´ Vπpsq, is the advantage function of π.

We further define a policy evaluation function, J , encoding
the expected return from following a particular policy in
an MDP, J pπq “ ES0„µ0

“

VπpS0q
‰

. J induces an order
over policies. A policy maximising J is an optimal policy,
denoted π‹. Similarly, Q‹, V‹, and A‹ denote the Q-, value,
and advantage functions of an optimal policy. Since J may
be multimodal, we often discuss the set of optimal policies.
However, Q‹, V‹, and A‹ are each unique.

Besides optimal policies, we also consider policies resulting
from alternative objectives. Given an inverse temperature
parameter β ą 0, we define the Boltzmann-rational pol-
icy (Ramachandran & Amir, 2007), denoted π‹

β , with a
softmax distribution over the optimal advantage function:

π‹
βpa | sq “

exp
`

βA‹ps, aq
˘

ř

a1PA exp
`

βA‹ps, a1q
˘ . (3)

The Maximal Causal Entropy (MCE) policy (Ziebart, 2010;
Haarnoja et al., 2017) is given by

πH
β pa | sq “

exp
`

βQH
β ps, aq

˘

ř

a1PA exp
`

βQH
β ps, a1q

˘ , (4)

where QH
β is the soft Q-function, a regularised variant of

the Q-function. Haarnoja et al. (2017, Theorem 2 and Ap-
pendix A.2) show that QH

β is the unique function satisfying

QH
β ps, aq “ E

”

Rps, a, S1q`

γ
1

β
log

ÿ

a1PA
exp

`

βQH
β pS1, a1q

˘

ı

.
(5)

The MCE policy results from maximising a policy eval-
uation function with an entropy regularisation term with
weight α “ β´1 (Haarnoja et al., 2017). The Boltzmann-
rational policy can also be connected to a kind of (per-
timestep) entropy regularisation (Haarnoja et al., 2017).

2. Our Framework
In this section, we describe a framework for analysing par-
tial identifiability, that we will then use throughout the paper.
This framework, illustrated in Figure 1, makes it easy to
compare different data sources. The framework also simpli-
fies reasoning about whether or not the ambiguity of a given
data source could be problematic for a given application.

2.1. The Reward Learning Lattice

Given sets of states S and actions A, let R be the set of
reward functions definable over S and A, that is, functions
of type SˆAˆS Ñ R. Moreover, let X be some set of
objects that can be computed from reward functions.

Definition 2.1. Given a function f : R Ñ X , the in-
variance partition of f is the partition of R according to
the equivalence relation „ where R1 „ R2 if and only if
fpR1q “ fpR2q.

Invariance partitions characterise the ambiguity of reward
learning data sources, and also the ambiguity tolerance of
different applications. To see this, let us first build an ab-
stract model of a reward learning algorithm. Let R‹ be the
true reward function. We model the data source as a function
f : R Ñ X , for some data space X , so that the learning al-
gorithm observes fpR‹q. Note that fpR‹q could be a distri-
bution, which models the case where the data comprises a set
of samples from some source, but it could also be some finite
object. A reasonable learning algorithm should converge to
a reward function R1 that is compatible with the observed
data, that is, such that fpR1q “ fpR‹q. This means that the
invariance partition of f groups together all reward func-
tions that the learning algorithm could converge to. When
it comes to applications, let g : R Ñ Y be the function
whose output we wish to compute. If R‹ is the true reward
function, then it is acceptable to instead learn a reward func-
tion R1 as long as gpR1q “ gpR‹q. This means that the
invariance partition of g groups together all reward func-
tions that it would be acceptable to learn. The information
contained in the data source f is guaranteed to be sufficient
for computing g if fpR1q “ fpR‹q ùñ gpR1q “ gpR‹q.

To make this more intuitive, let us give an example. Con-
sider first a reward learning data source, such as trajectory
comparisons. In this case, we can let X be the set of all
(strict, partial) orderings of the set of all trajectories, and
f be the function that returns the ordering of the trajec-
tories that is induced by the trajectory return function, G.
Let R‹ be the true reward function. In the limit of infi-
nite data, the reward learning algorithm will learn a reward
function R1 that induces the same trajectory ordering as
R‹, which means that fpR1q “ fpR‹q. Furthermore, if we
want to use the learnt reward function to compute a pol-
icy, then we may consider the function g : R Ñ Π that
takes a reward function R, and returns a policy π‹ that is
optimal under R (in a given environment). Then as long as
fpR1q “ fpR‹q ùñ gpR1q “ gpR‹q, we will compute a
policy that is optimal under the true reward R‹.

The characterisation of ambiguity and tolerance in terms
of partitions of R suggests a natural partial order on data
sources and applications. Namely, we use the partition
refinement relation on their invariances:
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(a)

data space X reward space Rreward
learning

fpRq
R?R?

(b)

reward space R output space Xf

R R1 fpRq“fpR1q

(c)

invariance
partition of f

invariance
partition of g

ĺ

partition
refinemt.

Figure 1. An overview of our framework. (a) A reward learning
algorithm infers a reward function from data, assuming the data has
been generated from some data source, modelled as a function f :
R Ñ X . Depending on f , multiple reward functions R P R may
be consistent with the observed data fpRq P X . (b) By analysing
the function f one can partition the reward space into groups of
reward functions that lead to the same output. We call this partition
the invariance partition of the function f . This partition can be
effectively described by the set of transformations of the reward
function that do not change the output of the function f . (c) Such a
partition characterises the ambiguity of reward learning based on a
data source f . Moreover, it characterises the tolerance to ambiguity
of computing fpRq (where R is a learnt reward function). We can
compare data sources and applications by their partitions using
the partition refinement relation, that is, f ĺ g if and only if
@R1, R2 P R, fpR1q “ fpR2q ùñ gpR1q “ gpR2q. If f and
g are data sources, then f ĺ g means that f contains no more
ambiguity than g. If g is a downstream application, then f ĺ g
means g can tolerate the ambiguity in a reward function learnt
from data source f .

Definition 2.2. Consider two functions f : R Ñ X and
g : R Ñ Y . If fpR1q “ fpR2q ùñ gpR1q “ gpR2q

for all R1, R2 P R, we write f ĺ g and say f is no more
ambiguous than g. If f ĺ g but not g ĺ f , then we write
f ă g and say that f is strictly less ambiguous than g.

We can use this to formalise some important relationships.
Given two reward learning data sources f and g, if f ă g
then we get strictly more information about the underlying

reward function by observing data from f than we get by
observing data from g. Moreover, given a downstream ap-
plication h, f ĺ h is precisely the condition of h tolerating
the ambiguity of the data source f . It is also worth noting
that the invariances of an object are inherited by all objects
which can be computed from it. Formally:

Proposition 2.3. Consider two functions f : R Ñ X and
g : R Ñ Y . If there exists a function h : X Ñ Y such that
h ˝ f “ g, then f ĺ g.

This means that if there is an intermediate object (such as,
for example, the Q-function) that is too ambiguous for a
given application, then this will also hold for all objects that
in principle could be computed from it.

Our framework places all reward learning data sources and
applications in a lattice structure. In particular, the invari-
ance partition of f : R Ñ X is a partition of R, and the set
of all these partitions forms a (bounded) lattice via the parti-
tion refinement relation. This, together with the properties
of the refinement relation that we have just outlined, will
make it simple and intuitive to reason about ambiguity.

2.2. Reward Transformations

Throughout the rest of this paper, we will characterise the
invariances of functions f : R Ñ X in terms of the trans-
formations of R that preserve fpRq. Formally:

Definition 2.4. A reward transformation is a map t : R Ñ

R. We say that the invariances of f is a set of reward
transformations T if for all R1, R2 P R, we have that
fpR1q “ fpR2q if and only if there is a t P T such that
tpR1q “ R2. We then say that f determines R up to T .

When talking about a particular kind of object, we will for
the sake of brevity usually leave the function f implicit, and
instead just mention the relevant object. For example, we
might say that “the Boltzmann-rational policy determines
R up to T ”. This should be understood as saying that “f
determines R up to T , where f is the function that takes a
reward and returns the corresponding Boltzmann-rational
policy”. It is also worth noting that f and T often will be
parameterised by τ , µ0, or γ; this dependence will similarly
not always be fully spelt out.

We will sometimes express the invariances of a function
f in terms of several sets of reward transformations – for
example, we might say that “f determines R up to T1 and
T2”. This should be understood as saying that f determines
R up to T , where T is the set of all transformations that can
be formed by composing transformations in T1 and T2.

Our results are expressed in terms of several fundamental
sets of reward transformations, that we will now define. Be-
fore considering novel transformations, first recall potential
shaping, introduced by Ng et al. (1999) and widely known
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to preserve optimal policies in all MDPs. We explore some
properties of potential shaping in Appendix B.

Definition 2.5 (Potential Shaping). A potential function is a
function Φ : S Ñ R, where Φpsq “ 0 if s is a terminal state.
If Φpsq “ k for all initial states then we say that Φ is k-
initial. Let R1 and R2 be reward functions. Given a discount
γ, we say R2 is produced by (k-initial) potential shaping
of R1 if R2ps, a, s1q “ R1ps, a, s1q ` γ ¨ Φps1q ´ Φpsq for
some (k-initial) potential function Φ.

We next introduce a number of new transformations.

Definition 2.6 (S1-Redistribution). Let R1 and R2 be
reward functions. Given transition dynamics τ , we
say that R2 is produced by S1-redistribution of R1 if
ES1„τps,aq

“

R1ps, a, S1q
‰

“ ES1„τps,aq

“

R2ps, a, S1q
‰

.

S1-redistribution is simply any transformation that preserves
ES1„τps,aq

“

Rps, a, S1q
‰

.2 For example, if at least two states
s1
1, s1

2 are in the support of τps, aq, then S1-redistribution
could increase Rps, a, s1

1q and decrease Rps, a, s1
2q, as long

as ES1„τps,aq

“

Rps, a, S1q
‰

stays constant. Also note that
S1-redistribution allows R to be changed arbitrarily for im-
possible transitions.

Definition 2.7 (Monotonic Transformations). Let R1 and
R2 be reward functions. We say that R2 is produced by a
zero-preserving monotonic transformation (ZPMT) of R1 if
for all x and x1 P SˆAˆS, R1pxq ď R1px1q if and only if
R2pxq ď R2px1q, and R1pxq “ 0 if and only if R2pxq “ 0.
Moreover, we say that R2 is produced by positive linear
scaling of R1 if R2 “ c ¨ R1 for some positive constant c.

A zero-preserving monotonic transformation is simply a
monotonic transformation that maps zero to itself. Positive
linear scaling is a special case.

Definition 2.8 (Optimality-Preserving Transformation).
Let R1 and R2 be reward functions. Given transi-
tion dynamics τ and discount rate γ, we say R2 is
produced by an optimality-preserving transformation of
R1 if there is a function Ψ : S Ñ R such that
ES1„τps,aq

“

R2ps, a, S1q ` γ ¨ ΨpS1q
‰

ď Ψpsq for all s, a,
with equality if and only if a P argmaxaA1‹ps, aq.

Here Ψ acts as a new value function, and the last condition
ensures that R1 and R2 share the same optimal actions (and
therefore the same optimal policies, cf. Theorem 3.2).

Definition 2.9 (Masking). Let R1 and R2 be reward func-
tions. Given a transition set X Ď SˆAˆS, we say that
R2 is produced by a mask of X from R1 if R1ps, a, s1q “

R2ps, a, s1q for all ps, a, s1q R X .

2S1-redistribution depends crucially on the reward function’s
dependence on the successor state. This set of transformations
collapses to the identity for simpler spaces of reward functions, as
we explore in Appendix E.

tidentity transformationu

masks of
impossible transitions

S1-redistribution

k-initial
potential
shaping

potential
shaping

positive
linear

scaling

ZPMT
optimality-preserving

transformations

Figure 2. Subset relationships between the main sets of reward
transformations (given a fixed transition distribution, initial state
distribution, and discount rate). A Ñ B denotes A Ď B.

Masking allows the reward to vary freely for some set of
transitions X . It is also worth noting that some of these
sets of reward transformations are subsets of other sets. For
example, all masks of impossible transitions are instances of
S1-redistribution, and any potential shaping transformation
is also optimality preserving, etc. All of these relationships
are mapped out in Figure 2.

3. Invariances of Reward-Related Objects
In this section, we catalogue the invariances of various
important objects that can be derived from reward functions.
As discussed in Section 2.1, these invariances describe both
the ambiguity when these objects are used as data sources
for reward learning, and the ambiguity tolerance when these
objects are computed as part of an application. Proofs and
additional results are given in Appendices A to C.

3.1. Invariances of Policies

We first characterise the invariances of different types of
policies. As discussed in Section 2.1, this describes both the
ambiguity of various inverse reinforcement learning algo-
rithms, and the ambiguity tolerance of various applications
in policy optimisation. We begin with the Q-function:

Theorem 3.1. Given an MDP and a policy π, the Q-
function Qπ of π determines R up to S1-redistribution. The
optimal Q-function, Q‹, and the soft Q-function QH

β (for
any β), both have precisely the same invariances.

As noted in Proposition 2.3, this invariance is inherited by
any object that can be derived from a Q-function. Next,
we turn our attention to optimal policies. We say that an
optimal policy is maximally supportive if it takes all optimal
actions with positive probability.

Theorem 3.2. Given an MDP, a maximally supportive op-
timal policy π‹ determines R up to optimality-preserving
transformations. The set of all optimal policies has pre-
cisely the same invariances.
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This theorem answers two questions at once. First, it tells
us the exact ambiguity tolerance that we have if we want to
use the learnt reward function to compute an optimal policy.
Second, it also tells us what is the ambiguity of inverse
reinforcement learning algorithms that observe an optimal
policy, such as those developed by Ng & Russell (2000) and
Abbeel & Ng (2004).

There are many inverse reinforcement learning algorithms
that do not assume that the observed demonstrator policy is
optimal. For example, Ramachandran & Amir (2007) and
Ziebart et al. (2008) assume that the demonstrator policy is
Boltzmann-rational, and Ziebart et al. (2010) assume that it
is causal entropy maximising. We catalogue the invariances
of both these types of policies.
Theorem 3.3. Given an MDP and an inverse temperature
parameter β, the Boltzmann-rational policy π‹

β determines
R up to S1-redistribution and potential shaping. The MCE
policy πH

β has precisely the same invariances.

3.2. Invariances of Trajectories

Note that Theorem 3.2 and 3.3 describe the invariances of
policies, rather than trajectories sampled from policies. The
invariances of the trajectories are largely the same as of
the policies themselves, but with some minor caveats. In
the infinite-data limit, trajectories sampled from a policy
reveal the distribution of trajectories induced by the policy,
and therefore the policy itself for all states reachable via its
supported actions.

Boltzmann-rational policies and MCE policies support all
actions, so the trajectory distribution determines the policy
for all reachable states. It follows that trajectory sampling
introduces invariance solely to changes in the reward of
unreachable transitions.
Theorem 3.4. Given an MDP and an inverse temperature
parameter β, the distribution of trajectories ∆‹

β induced
by the Boltzmann-rational policy π‹

β , or ∆H
β induced by

the MCE policy πH
β , determines R up to S1-redistribution,

potential shaping, and a mask of unreachable transitions.

Similarly, trajectories sampled from an optimal policy reveal
the policy in those states that the policy visits. However,
here there are some subtleties coming from the fact that an
optimal policy may not visit all reachable states. This allows
the reward to vary greatly, but not arbitrarily, in the states
that are reachable but not visited by the optimal policy.
For this purpose, we introduce a more general notion of
“optimality-preserving transformation” that is parameterised
by a set-valued function O that specifies the optimal actions.
Definition 3.5 (General Optimality-Preserving Transfor-
mation). Let R and R1 be reward functions. Given a
function O : S Ñ PpAqztHu, transition dynamics
τ , and discount rate γ, we say R1 is produced from

R by a (general) optimality-preserving transformation
with O if there is a function Ψ : S Ñ R such that
ES1„τps,aq

“

R1ps, a, S1q ` γΨpS1q
‰

ď Ψpsq for all s, a,
with equality if and only if a P Opsq.

The difference between Definitions 2.8 and 3.5 lies in
the introduction of O. In use, we constrain O to be
argmaxaA‹ps, aq for s in some subset of states (rather
than for all states, which is the case for Definition 2.8). If
O were unconstrained, the set would contain all possible
transformations. We can now state the invariances:

Theorem 3.6. Given an MDP, consider the distribution
of trajectories induced by a maximally supportive optimal
policy, ∆‹. Let S be the set of visited states. Let O be
the set of functions O defined on S such that Opsq “

argmaxaA‹ps, aq for s P S. ∆‹ determines R up to gen-
eral optimality-preserving transformations for all O P O.

Note that a mask of unreachable transitions is included as
a subset of the transformations permitted by Theorem 3.6.
However, a mask of the complement of S is not included.
As O is unconstrained outside S the reward is effectively
unconstrained in those states, except that the reward of
transitions out of S may have to “compensate” for the value
of their successor states to prevent new actions that lead out
of S from becoming optimal.

3.3. Invariances of Trajectory Evaluation

The return function captures the reward accumulated over a
trajectory, and is the basis for many reward learning algo-
rithms. In this section, we catalogue the invariances of the
return function and related objects.

Theorem 3.7. Given an MDP, the return function restricted
to possible and initial trajectories, Gξ, determines R up to
zero-initial potential shaping and a mask of unreachable
transitions.

For reward learning, observing Gξ would correspond to
the case where the reward learning algorithm observes a
trajectory or episode, together with the exact numerical
value of the reward for that trajectory or episode.

A popular data source for reward learning is pairwise com-
parisons between trajectories, where a human is repeatedly
shown two example behaviours, and asked to rank which of
them is better (Akrour et al., 2012; Christiano et al., 2017).
It is common to model the comparisons as being based on
the trajectory return, but with accompanying decision noise,
to account for the fact that the human labeller will some-
times make mistakes. One option is to model this noise
as following a Boltzmann distribution, which says that the
labeller is more likely to make a mistake if the trajectories
have a similar value. Formally, given an MDP and an in-
verse temperature β ą 0, let ĺ

ζ
β be a distribution over each

6
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pair of possible trajectory fragments, ζ1, ζ2, such that

Ppζ1 ĺ
ζ
β ζ2q “

exppβGpζ2qq

exppβGpζ1qq ` exppβGpζ2qq
,

and let ĺ
ξ
β be the analogous distributions for possible, initial

trajectories. Intuitively, the data source ĺ
ζ
β corresponds to

the case where a noisy expert ranks all trajectory fragments,
and where the more valuable ζ1 is relative to ζ2, the more
likely the expert is to select ζ1 over ζ2.

Theorem 3.8. Given an MDP, the distribution of compar-
isons of possible trajectory fragments, ĺ

ζ
β , determines R up

to a mask of impossible transitions.

Theorem 3.9. Given an MDP, the distribution of compar-
isons of possible and initial trajectories, ĺ

ξ
β , determines R

up to k-initial potential shaping and a mask of unreachable
transitions.

Note that the limited invariances of ĺ
ζ
β arises from the

very flexible comparisons permitted, including, for exam-
ple, comparisons between individual transitions and empty
trajectories. It is also worth noting that these invariances
rely very heavily on the precise structure of the decision
noise, and our assumption of infinite data. First of all,
in the infinite-data limit, each pair of trajectories is sam-
pled multiple times, which means that we obtain the exact
value of Ppζ1 ĺ

ζ
β ζ2q for each ζ1 and ζ2. Moreover, since

Ppζ1 ĺ
ζ
β ζ2q depends on the relative difference between the

values of ζ1 and ζ2, it reveals cardinal information about the
reward. This is a property of Boltzmann noise that will not
hold for many other kinds of decision noise.

It is also possible to model trajectory comparisons as noise-
less comparisons based on the return of these trajectories.
The infinite-data limit then corresponds to the order induced
by the return function. Formally, define the noiseless or-
der of possible trajectory fragments as a relation, ĺ

ζ
‹, on

possible trajectory fragments:

ζ1 ĺζ
‹ ζ2 ô Gpζ1q ď Gpζ2q .

Analogously, define the noiseless order of possible and
initial trajectories, ĺ

ξ
‹, on possible, initial trajectories. Here,

the precise invariances will depend on the MDP.

Theorem 3.10. We have the following bounds on the invari-
ances of the noiseless order of possible trajectory fragments,
ĺ

ζ
‹. In all MDPs:

(1) ĺ
ζ
‹ is invariant to positive linear scaling and a mask

of impossible transitions; and

(2) ĺ
ζ
‹ is not invariant to transformations other than zero-

preserving monotonic transformations or masks of im-
possible transitions.

Moreover, there exist MDPs attaining each of these bounds.

Note that ĺ
ζ
β is less ambiguous than ĺ

ζ
‹, even though ĺ

ζ
β

corresponds to noisy comparisons, and ĺ
ζ
‹ corresponds to

noiseless comparisons. The reason for this is, again, that
the Boltzmann noise reveals cardinal information about the
reward function, whereas noiseless comparisons only reveal
ordinal information.

We give a lower bound on the invariances of the noiseless
order of possible and initial trajectories, ĺ

ξ
‹. Since ĺ

ξ
‹

can be derived from ĺ
ξ
β , it inherits the latter’s invariances.

Moreover, ĺ
ξ
‹ is always invariant to positive linear scaling.

Theorem 3.11. Given an MDP, the noiseless order of pos-
sible and initial trajectories, ĺ

ξ
‹, is invariant to k-initial

potential shaping, positive linear scaling, and a mask of
unreachable transitions.

Note that Theorem 3.11 gives a bound on the ambiguity of
ĺ

ξ
‹, rather than an exact characterisation. Therefore, it does

not rule out additional invariances (unlike our other results).

We next give the transformations that preserve preferences
over lotteries (distributions) of trajectories. Formally, let
ĺ

ξ
D be the relation on distributions over possible initial

trajectories given by

D1 ĺ
ξ
D D2 ô EΞ„D1

“

GpΞq
‰

ď EΞ„D2

“

GpΞq
‰

.

It is possible to model such preferences as vNM-rational
choices between lotteries over trajectories, with the return
function G as the utility function. Such preferences are
well known to be invariant to positive affine transformations
of the utility function, and no other transformations (von
Neumann & Morgenstern, 1947, Appendix A). We show
that positive affine transformations of G correspond to k-
initial potential shaping and positive linear scaling of R.
Theorem 3.12. Given an MDP, ĺ

ξ
D determines R up to

k-initial potential shaping, positive linear scaling, and a
mask of unreachable transitions.

3.4. Computing The Reward Learning Lattice

As discussed in Section 2.1, the reward invariances of all of
these objects allow us to place them in a lattice structure. We
show part of this lattice in Figure 3. This allows us to repre-
sent many important relationships between data sources and
applications in a graphical way. In particular, recall that if
f ĺ g then we get more information about the underlying
reward function by observing data from f than we get by
observing data from g. Moreover, given some downstream
application h, we have that h tolerates the ambiguity of the
data source f exactly when f ĺ h. Recall also that the
invariances of an object are inherited by all objects which
can be computed from it (Proposition 2.3). This allows one
to check whether a data source provides enough information
for a given application based on whether the data source is
above the application in the lattice.
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pref. cmp. IRL

R Gζ

Gξ

ĺ
ζ
β ĺ

ξ
β

ĺ
ξ
Dĺ

ζ
‹ ĺ

ξ
‹

Qπ, Q‹, Q
H
β

π‹
β , π

H
β

∆‹
β ,∆

H
β

π‹ tπ‹u

∆‹

Figure 3. The invariances of objects that can be computed from
a reward function in a fixed environment induce a partial order
over these objects. Here, a directed path from X to Y means
that X ĺ Y , which in turn implies that X is no more ambigu-
ous than Y , that Y is tolerant to X’s ambiguity, and that Y can
be computed from X . The objects are the reward function itself
(R); Q-functions (Qπ, Q‹, Q

H
β ); Boltzmann-rational policies (π‹

β),
MCE policies (πH

β ), maximally supportive optimal policies (π‹)
and their trajectory distributions (∆‹

β ,∆
H
β ,∆‹); the return func-

tion restricted to partial and full trajectories (Gζ , Gξ); Boltzmann-
distributed (β) and noiseless (‹) comparisons between these trajec-
tories (ĺζ

β , ĺ
ξ
β , ĺ

ζ
‹, ĺ

ξ
‹) and lotteries over trajectories (ĺξ

D); and
the set of optimal policies (tπ‹u).

It is worth noting that the trajectories of optimal policies
(∆‹ in Figure 3) are more ambiguous than almost all other
data sources, which also means that they tolerate the ambi-
guity of almost all other data sources. In other words, the
ambiguity of most data sources is unproblematic if the down-
stream task is to compute and then deploy an optimal policy.
However, this notably excludes noiseless comparison data
(because this data only includes ordinal information, which
is insufficient in stochastic environments). Moreover, Fig-
ure 3 assumes a fixed environment. Applications in different
environments may tolerate different ambiguity (Section 4.2).

4. Additional Results
In this section, we provide some additional formal results,
first concerning the case where we combine data from mul-
tiple different sources, and then concerning the case where
we carry out reward learning in one MDP but use the learnt
reward function in a different MDP. We provide proofs of
Theorems 4.1 and 4.2 in Appendix D.

4.1. Combining Data Sources

There has been recent interest in the prospect of combining
information from multiple different sources for the purpose
of reward learning (Krasheninnikov et al., 2019; Jeon et al.,
2020). Our results offer additional insights for this setting.
In particular, ambiguity refinement is a partial order, with
some data sources being incomparable. We note that such
incomparable ambiguity is complementary ambiguity, in

that by combining the associated data sources, we can re-
duce the overall ambiguity about the latent reward.

Theorem 4.1. Given data sources X and Y , let pX,Y q

denote the combined data source formed from X and Y .
If X and Y are incomparable, then pX,Y q ă X and
pX,Y q ă Y .

This suggests that we can reduce the ambiguity of reward
learning methods by using a mixture of data sources with
complementary ambiguity. Unfortunately, most data sources
appear to have similar kinds of ambiguity, assuming a fixed
MDP. However, our results suggest that ambiguity could be
reduced by incorporating data from multiple MDPs, along
the lines of Amin et al. (2017) and Cao et al. (2021).

4.2. Transfer Learning

It is interesting to consider the setting where the reward
is learnt in one MDP, but used in a different MDP. This
captures, for example, the common sim-to-real setting,
where learning occurs in a simulation whose dynamics differ
slightly from those of the real environment. It also models
the case where training data for the reward learning algo-
rithm is not available for the deployment environment, but
is available for a different environment.

We can begin by noting that no guarantees can be obtained if
the two MDPs have very different reachable state spaces; in
that case, the learnt reward function will mostly depend on
the inductive bias of the learning algorithm. However, we
will demonstrate that similar problems can occur even with
much smaller differences between the learning environment
and the deployment environment:

Theorem 4.2. Let L : SˆA Ñ R be any function,
R1 any reward function, and τ1, τ2 any transition distri-
butions. Then there exists a reward function R2, pro-
duced from R1 by S1-redistribution under τ1, such that
ES1„τ2ps,aq

“

R2ps, a, S1q
‰

“ Lps, aq for all s, a such that
τ1ps, aq ‰ τ2ps, aq.

To unpack this, let R1 be the true reward function, τ1 be
the transition dynamics of the training environment, and τ2
be the transition dynamics of the deployment environment.
Theorem 3.1 then says, roughly, that if the reward learning
algorithm is invariant to S1-redistribution, and τ1 and τ2
differ for enough states, then the learnt reward function is
essentially unconstrained in the deployment environment,
meaning that no guarantees could be obtained. Moreover,
note that Theorem 3.1 and Proposition 2.3 imply that this
result extends to any object that can be computed from
a Q-function, which is a very broad class. Theorem 4.2
then suggests that any such data source is too ambiguous
to guarantee transfer to a different environment. Note that
this strong result relies on the formulation of rewards as
depending on the successor state (see Appendix E).
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5. Discussion
In this section, we will discuss the implications of our re-
sults, and some limitations and directions for future work.

5.1. Limitations and Future Work

We have catalogued the invariances of many important ob-
jects. However, there are some interesting objects that are
not covered by our analysis. To start with, Theorem 3.11
only gives a bound on the invariance partition of noiseless
trajectory comparisons, rather than an exact characterisation.
It would be interesting to derive this invariance partition ex-
actly. It would also be interesting to characterise what hap-
pens if various restrictions are imposed on the trajectories
and trajectory fragments considered throughout Section 3.3,
such as, for example, a minimum and maximum length of
the trajectories. Moreover, future work could characterise
the ambiguity of the policy ordering induced by the policy
evaluation function. Theorem 3.2 characterises ambiguity
tolerance of computing an optimal policy. However, in prac-
tice, one often uses a reinforcement learning algorithm that
is not guaranteed to find a globally optimal policy, so it may
be prudent to preserve the entire policy order, rather than
just the set of maximising policies.

Moreover, our results primarily concern the asymptotic be-
haviour of reward learning algorithms, in the limit of infi-
nite data. In practice, data sets are finite and, when data
collection is expensive, may be quite small. An important
direction for future work is to characterise how much infor-
mation is contained in data sets of varying sizes and data
sources. This would enable practitioners to determine the
most sample-efficient data source.

Furthermore, our results rely on the assumption that data in
fact is generated according to the process that is assumed
by the reward learning algorithm. However, in reality, it is
unlikely that these assumptions will hold perfectly (Orsini
et al., 2021). For example, human demonstrations are rarely
perfectly optimal or Boltzmann-rational. This means that
the learning algorithms are often misspecified in practice.
Studying this setting formally is another important direction
for future work.

5.2. Conclusion and Implications

We have precisely characterised the ambiguity of many re-
ward learning data sources, and the ambiguity tolerance of
many applications using reward functions. These results can
be used to easily answer whether or not a given reward learn-
ing data source is appropriate for a given application, and to
compare different reward learning data sources against each
other. This is valuable to help practitioners choose what
reward learning method to use for a given problem.

Our results are also helpful for developing new reward learn-
ing algorithms. In developing a reward learning algorithm,
it is relevant to ask how effective this algorithm is relative
to an optimal algorithm for the given data source. Our re-
sults characterise the information that is available in each
data source, which makes it possible to evaluate a reward
learning algorithm against this theoretical upper bound.

Our framework enables direct comparisons between differ-
ent data sources. We find that some data sources are strictly
less informative than others. For example, noiseless prefer-
ence comparisons are strictly less informative than return
labels. By contrast, other data sources are incomparable and
have complementary ambiguity. For example, the ambiguity
of the Q-values is incomparable to the ambiguity of episode
return values (the former are invariant to S1-redistribution
but not to potential shaping, whereas the latter are invariant
to some potential shaping but not to S1-redistribution). As
discussed in Section 4.1, these results can be used to identify
promising opportunities for combining information from
multiple sources.

We find that in a fixed environment, many reward learning
data sources are sufficient for the purpose of computing an
optimal policy, including labelled trajectories, Boltzmann
comparisons of trajectories and trajectory fragments, and
trajectories sampled from any of the three types of policies
that are common in IRL (optimal, Boltzmann-rational, or
causal entropy maximising). However, this notably excludes
noiseless comparisons between trajectory fragments in some
MDPs, since zero-preserving monotonic transformations are
not, in general, optimality preserving. These relationships
are summarised in Figure 3. Theorem 4.2 also shows that a
very wide range of reward learning data sources will be too
ambiguous to facilitate transfer to new environments.

Acknowledgements
JS, MFR, and AG contributed to this research while af-
filiated with the Center for Human-Compatible Artificial
Intelligence, UC Berkeley.

The authors thank Daniel Filan, Erik Jenner, Cassidy Laid-
law, and Smitha Milli for feedback on earlier versions of
the manuscript and Daniel Murfet for insightful discussions
about the project. We also thank our anonymous reviewers
for suggestions which have helped to improve the clarity of
our results and notation.

References
Ab Azar, N., Shahmansoorian, A., and Davoudi, M. From

inverse optimal control to inverse reinforcement learning:
A historical review. Annual Reviews in Control, 50:119–
138, 2020. doi: 10.1016/j.arcontrol.2020.06.001.

9



Invariance in Policy Optimisation and Partial Identifiability in Reward Learning

Abbeel, P. and Ng, A. Y. Apprenticeship learning via inverse
reinforcement learning. In Proceedings of the Twenty-
First International Conference on Machine Learning, pp.
1–8, Banff, Alberta, Canada, July 2004. Association for
Computing Machinery. doi: 10.1145/1015330.1015430.

Abbeel, P., Coates, A., and Ng, A. Y. Autonomous heli-
copter aerobatics through apprenticeship learning. The
International Journal of Robotics Research, 29(13):1608–
1639, 2010. doi: 10.1177/0278364910371999.

Aguirregabiria, V. Nonparametric identification of behav-
ioral responses to counterfactual policy interventions in
dynamic discrete decision processes. Economics Letters,
87(3):393–398, 2005. doi: 10.1016/j.econlet.2004.12.
014.

Aguirregabiria, V. and Mira, P. Dynamic discrete choice
structural models: A survey. Journal of Econometrics,
156(1):38–67, 2010. doi: 10.1016/j.jeconom.2009.09.
007.

Aigner, M. Combinatorial Theory. Classics in Mathematics.
Springer Berlin Heidelberg, reprint of the 1979 edition,
1996. ISBN 3540617876.

Akrour, R., Schoenauer, M., and Sebag, M. APRIL: Active
preference learning-based reinforcement learning. In Ma-
chine Learning and Knowledge Discovery in Databases:
ECML PKDD 2012, Proceedings, Part II, volume 7524 of
Lecture Notes in Computer Science, pp. 116–131, Bristol,
UK, 2012. Springer. doi: 10.1007/978-3-642-33486-3 8.

Amin, K., Jiang, N., and Singh, S. P. Repeated inverse
reinforcement learning. In Proceedings of the 31st Con-
ference on Neural Information Processing Systems, vol-
ume 30, pp. 1813–1822, Long Beach, California, USA,
2017. Curran Associates, Inc., Red Hook, NY, USA.

Amodei, D., Olah, C., Steinhardt, J., Christiano, P. F., Schul-
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A. Directory of Results

Table 1. An overview of all invariance results. Symbols: (”) The object is invariant to the transformations; (”˚) The object is invariant to
the transformations as a special case of the invariances listed in the theorem; (ˆ) The object is not generally invariant to the transformations
(more precisely, it is invariant only to those that can be represented as a combination of the listed transformations); (ˆ/”) The extent of
the object’s invariance to the transformations depends on the MDP (as in Theorem 3.7). Blank cells indicate unresolved invariances (as in
Theorem 3.11, see also Remark C.12).
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R Reward function – ” ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

Qπ Q-function for policy π 3.1 ”˚ ˆ ˆ ˆ ” ˆ ˆ ˆ ˆ ”˚ ˆ

Q‹ Optimal Q-function 3.1 ”˚ ˆ ˆ ˆ ” ˆ ˆ ˆ ˆ ”˚ ˆ

QH
β Soft Q-function 3.1 ”˚ ˆ ˆ ˆ ” ˆ ˆ ˆ ˆ ”˚ ˆ

π‹
β Boltzmann-rational policy 3.3 ”˚ ”˚ ”˚ ” ” ˆ ˆ ˆ ˆ ”˚ ˆ

πH
β MCE policy 3.3 ”˚ ”˚ ”˚ ” ” ˆ ˆ ˆ ˆ ”˚ ˆ

π‹ Maximally supportive
optimal policy

3.2 ”˚ ”˚ ”˚ ”˚ ”˚ ”˚ ˆ ” ˆ ”˚ ˆ

∆‹
β Trajectory distribution

induced by π‹
β

3.4 ”˚ ”˚ ”˚ ” ” ˆ ˆ ˆ ˆ ”˚ ”

∆H
β Trajectory distribution

induced by πH
β

3.4 ”˚ ”˚ ”˚ ” ” ˆ ˆ ˆ ˆ ”˚ ”

∆‹ Trajectory distribution
induced by π‹

3.6 ”˚ ”˚ ”˚ ”˚ ”˚ ”˚ ˆ ”˚ ” ”˚ ”˚

Gζ Return on possible
trajectory fragments

C.11 ”˚ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ” ˆ

Gξ Return on possible, initial
trajectories

3.7 ”˚ ” ˆ ˆ ˆ ˆ ˆ ˆ ˆ ”˚ ”

ĺ
ζ
β Boltzmann comparisons of

possible fragments
3.8 ”˚ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ” ˆ

ĺ
ξ
β Boltzmann comparisons of

possible initial trajectories
3.9 ”˚ ”˚ ” ˆ ˆ ˆ ˆ ˆ ˆ ”˚ ”

ĺ
ζ
‹ Noiseless order of

possible fragments
3.10 ”˚ ˆ ˆ ˆ ˆ ” ˆ/” ˆ ˆ ” ˆ

ĺ
ξ
‹ Noiseless order of

possible initial trajectories
3.11 ”˚ ”˚ ” ” ”˚ ”

ĺ
ξ
D Order of distributions over

possible initial trajectories
3.12 ”˚ ”˚ ” ˆ ˆ ” ˆ ˆ ˆ ”˚ ”

tπ‹u Set of optimal policies 3.2 ”˚ ”˚ ”˚ ”˚ ”˚ ”˚ ˆ ” ˆ ”˚ ˆ

Aπ Advantage function for
arbitrary policy π

C.1 ”˚ ”˚ ”˚ ” ” ˆ ˆ ˆ ˆ ”˚ ˆ

A‹ Optimal advantage
function

C.1 ”˚ ”˚ ”˚ ” ” ˆ ˆ ˆ ˆ ”˚ ˆ

ππ0

β Boltzmann policy for
arbitrary base policy π0

C.2 ”˚ ”˚ ”˚ ” ” ˆ ˆ ˆ ˆ ”˚ ˆ

∆π0

β Trajectory distribution
induced by ππ0

β

C.6 ”˚ ”˚ ”˚ ” ” ˆ ˆ ˆ ˆ ”˚ ”
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B. Properties of Fundamental Reward Transformations
We begin with some supporting results concerning the basic reward transformations used in Section 3 to characterise the
invariances of various objects derived from the reward function.

The following result captures how potential shaping affects various reward-related functions.

Lemma B.1. Consider M and M 1, two MDPs differing only in their reward functions, respectively R and R1. Denote the
return function, Q-function, value function, policy evaluation function, and advantage function of M 1 by G1, Q1

π, V 1
π, J 1,

and A1
π . If R1 is produced by potential shaping of R with a potential function Φ, then:

(1) for a trajectory fragment ζ “ ps0, a0, s1, . . . , snq, G1pζq “ Gpζq ` γnΦpsnq ´ Φps0q;

(2) for a trajectory ξ “ ps0, a0, . . .q, G1pξq “ Gpξq ´ Φps0q;

(3) for a state s P S and action a P A, Q1
πps, aq “ Qπps, aq ´ Φpsq;

(4) for a state s P S, V 1
πpsq “ Vπpsq ´ Φpsq;

(5) for a policy π, J 1pπq “ J pπq ´ ES0„µ0

“

ΦpS0q
‰

; and

(6) for a state s P S, and action a P A, A1
πps, aq “ Aπps, aq.

Proof. (1) is given by a straightforward telescopic argument. For (2), take the limit as the length of a prefix goes to infinity,
whereupon γnΦpsnq goes to zero (γ ă 1 by definition, and Φpsnq is bounded since its domain is finite). (3) and (4)
were proved for optimal policies by Ng et al. (1999), and they also observed that the extension to arbitrary policies is
straightforward (it follows immediately from (2), for example). (5) is immediate from (4). (6) follows from (3) and (4) as
the shifts of ´Φpsq to both the Q- and value functions cancel eachother.

In the next result we show that potential shaping induces a similar state-dependent shift in the soft Q-function as well.

Lemma B.2. Consider M1 and M2, two MDPs differing only in their reward functions, respectively R1 and R2. Denote the
soft Q-function of M1 by QH

β,1, and of M2 by QH
β,2. If R2 is produced by potential shaping of R1 with a potential function

Φ, then for all states s P S and actions a P A, QH
β,2ps, aq “ QH

β,1ps, aq ´ Φpsq.

Proof. We will appeal to to uniqueness of the soft Q-function. By definition, R2ps, a, s1q “ R1ps, a, s1q ` γ ¨Φps1q ´Φpsq.
Combining with Equation (5), we have for all s P S and a P A:

QH
β,1ps, aq “ ES1„τps,aq

“

R1ps, a, S1q ` γ
1

β
log

ÿ

a1PA
expβQH

β,1pS1, a1q
‰

“ ES1„τps,aq

“

R2ps, a, S1q ´ γ ¨ ΦpS1q ` Φpsq ` γ
1

β
log

ÿ

a1PA
expβQH

β,1pS1, a1q
‰

Ñ QH
β,1ps, aq ´ Φpsq “ ES1„τps,aq

“

R2ps, a, S1q ` γ
1

β
log

ÿ

a1PA
expβ

`

QH
β,1pS1, a1q ´ ΦpS1q

˘‰

.

We see that QH
β,1ps, aq ´ Φpsq satisfies Equation (5) for QH

β,2ps, aq, for all s P S and a P A. Since the soft Q-function is the
unique solution to this equation, we conclude QH

β,2ps, aq “ QH
β,1ps, aq ´ Φpsq.

We next show that k-initial potential shaping and linear scaling correspond to affine transformations of G.

Lemma B.3. Let pS,A, τ, µ0, R, γq be an MDP, R1 a reward function, and k P R a constant. Then we have that
G1pξq “ Gpξq ´ k for all possible and initial trajectories ξ, if and only if R1 is produced from R by k-initial potential
shaping and a mask of unreachable transitions.

Proof. The converse follows from Lemma B.1 and that, by definition, varying the reward for unreachable transitions does
not affect the return of any possible, initial trajectories.

For the forward direction, we show that the constant difference between G1 and G on possible initial trajectories implies a
constant difference between the returns of possible trajectories from any given reachable state, and that this state-dependent
difference defines a k-initial potential function that transforms R into R1.
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Consider an arbitrary reachable state s P S . Let ξs be some possible trajectory starting in s, and define ∆ξs “ Gpξsq´G1pξsq,
the difference in return ascribed to this trajectory by G and G1. We show that ∆ξs is independent of ξs given s. To extend
ξs into an initial trajectory, let ζs be some possible, initial, trajectory fragment ending in s (at least one exists, since s is
reachable; let its length be n). Let ζs ` ξs denote the concatenation of ζs and ξs. Then,

∆ξs “ Gpξsq ´ G1pξsq

“
Gpζs ` ξsq ´ Gpζsq

γn
´

G1pζs ` ξsq ´ G1pζsq

γn
(:)

“
k ´ Gpζsq ` G1pζsq

γn
. (;)

To reach (:), note that by definition of return, Gpζs ` ξsq “ Gpζsq ` γnGpξsq (and likewise for G1), and recall that we have
defined γ ą 0. To reach (;), note that since ζs`ξs is an initial trajectory, we have by assumption Gpζs`ξsq´G1pζs`ξsq “ k.
Note (;) shows that ∆ξs is independent of ξs except for a possible dependence on ξs’s starting state s (arising through ζs).

Thus, we may associate a unique P psq “ ∆ξs with each reachable s. Then P psq is a k-initial potential function on reachable
states. In particular, P psq “ ∆ξs “ k if s is initial as then we may choose ζs to be empty with Gpζsq “ G1pζsq “ 0 and
n “ 0. Furthermore, from the definition of terminal states we must have that P psq “ ∆ξs “ 0 for terminal s.

Moreover, for reachable transitions, R1 is given by k-initial potential shaping of R with Φpsq “ P psq. Consider a reachable
transition ps, a, s1q. Let ξ and ξ1 be possible trajectories such that ξ “ ps, a, s1q ` ξ1. Then,

Rps, a, s1q ` γP ps1q ´ P psq “ Rps, a, s1q ` γpGpξ1q ´ G1pξ1qq ´ pGpξq ´ G1pξqq

“ G1pξq ´ γG1pξ1q ` pRps, a, s1q ` γGpξ1qq ´ Gpξq

“ G1pξq ´ γG1pξ1q ` Gpξq ´ Gpξq

“ G1pξq ´ γG1pξ1q

“ R1ps, a, s1q .

Any variation in reward for unreachable transitions can be accounted for by a mask.

Lemma B.4. Let pS,A, τ, µ0, R, γq be an MDP, R1 a reward function, and c P R a constant. Then G1pξq “ c ¨ Gpξq for
all possible initial trajectories ξ, if and only if R1 is produced from R by zero-initial potential shaping, linear scaling by a
factor of c, and a mask of all unreachable transitions.

Proof. It is sufficient to show that the first condition is equivalent to R1 being produced from c ¨ R by zero-initial potential
shaping and a mask of all unreachable transitions (in particular, any sequence of the above three transformations from R can
be converted into a sequence where the linear scaling happens first).

Denote by Gc the return function of the scaled reward function c ¨ R. It is straightforward to show that c ¨ Gpξq “ Gcpξq for
all ξ. Then our first condition, G1pξq “ c ¨ Gpξq for all possible initial trajectories, is equivalent to having G1pξq “ Gcpξq

for these trajectories.

By Lemma B.3 (with k “ 0) this is equivalent to R1 being produced from c ¨ R by zero-initial potential shaping and a mask
of all unreachable transitions. This completes the proof.
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C. Proofs for Section 3 Results
We provide proofs for the theoretical results presented in the main paper along with several general supporting lemmas from
which these results follow.

We distribute proofs of the results from Section 3.1 across three subsections. Appendix C.1 proves results for the invariances
of (soft) Q-functions (Theorem 3.1). Appendix C.2 proves results concerning alternative policies and their trajectory
distributions (Theorems 3.3 and 3.4). Appendix C.3 proves the results relating to optimal policies and their trajectory
distributions (Theorems 3.2 and 3.6).

C.1. Proofs for Section 3.1 Results Concerning Q-functions

Theorem 3.1. Given an MDP and a policy π, the Q-function Qπ of π determines R up to S1-redistribution. The optimal
Q-function, Q‹, and the soft Q-function QH

β (for any β), both have precisely the same invariances.

Proof. Qπ is the only function which satisfies the Bellman equation (1) for all s P S, a P A:

Qπps, aq “ ES1„τps,aq,A1„πpS1q

“

Rps, a, S1q ` γ ¨ QπpS1, A1q
‰

.

This equation can be rewritten as

ES1„τps,aq

“

Rps, a, S1q
‰

“ Qπps, aq ´ γ ¨ ES1„τps,aq,A1„πpS1q

“

QπpS1, A1q
‰

.

Since Qπ is the only function which satisfies this equation for all s P S, a P A, we have that the values of the left-hand
side for each s P S, a P A together determine Qπ, and vice versa. Since the left-hand side values are preserved by
S1-redistribution of R, and no other transformations (cf. Definition 2.6), we have that Qπ is preserved by S1-redistribution
of R, and no other transformations.

Q‹ “ Qπ‹
where π‹ is any optimal policy derived from Q‹, so the invariances of Q‹ follow as a special case.

The proof for QH
β is essentially the same. QH

β is the only function that satisfies Equation (5) for all s P S, a P A:

QH
β ps, aq “ ES1„τps,aq

“

Rps, a, S1q ` γ
1

β
log

ÿ

a1PA
expβQH

β pS1, a1q
‰

.

This can be rewritten as

ES1„τps,aq

“

Rps, a, S1q
‰

“ QH
β ps, aq ´ γ ¨ ES1„τps,aq

“ 1

β
log

ÿ

a1PA
expβQH

β pS1, a1q
‰

.

Since QH
β is the only function which satisfies this equation for all s P S, a P A, we have that the values of the left-hand

side for each s P S, a P A together determine QH
β , and vice versa. Since the left-hand side values are preserved by

S1-redistribution of R, and no other transformations (cf. Definition 2.6), we have that QH
β is preserved by S1-redistribution

of R, and no other transformations.

C.2. Proofs for Results Concerning Alternative Policies

We split the proof of Theorem 3.3 into two proofs, Theorem C.3 and Theorem C.4, below.

In order to derive the invariances of the Boltzmann-rational policy, we analyse a more general softmax-based policy we
call a Boltzmann policy, of which the Boltzmann-rational policy is a special case. Given a base policy π0, and an inverse
temperature parameter β ą 0, we define the Boltzmann policy with respect to π0, denoted ππ0

β , using the softmax function:

ππ0

β pa | sq “
exp

`

βAπ0ps, aq
˘

ř

a1PA exp
`

βAπ0
ps, a1q

˘ . (6)

The Boltzmann-rational policy, π‹
β , is the Boltzmann policy with respect to optimal policies (cf. 3).

We begin with Lemma C.1, characterising the invariance of the advantage functions from which Boltzmann policies are
derived. This in turn supports Lemma C.2, characterising the invariances of arbitrary Boltzmann policies.
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Lemma C.1. Given an MDP and a policy π, the advantage function for π, Aπ, determines R up to S1-redistribution and
potential shaping. The optimal advantage A‹ has the same invariances.

Proof. Aπ can be derived from Qπ, given π (by Equation (1), Aπps, aq “ Qπps, aq ´ EA„πpsq

“

Qπps,Aq
‰

). Thus Aπ is
invariant to S1-redistribution following Theorem 3.1. Moreover, by Lemma B.1, potential shaping causes no change in Aπ .
That is, Aπ is also invariant to potential shaping.

Conversely, let R and R1 be such that Aπ “ A1
π. Define Φ : S Ñ R such that Φpsq “ EA„πpsq

“

Qπps,Aq ´ Q1
πps,Aq

‰

.
This Φ satisfies the requirements of a potential function (all Q-values from terminal states are zero). Potential shaping R

with Φ yields a new reward function, denoted RpΦq, with Q-function denoted Q
pΦq
π . Then observe, for each s P S, a P A:

QpΦq
π “ Qπps, aq ´ Φpsq (by Lemma B.1)

“ pQπps, aq ´ EA„πpsq

“

Qπps,Aq
‰

q ` EA„πpsq

“

Q1
πps,Aq

‰

“ Aπps, aq ` EA„πpsq

“

Q1
πps,Aq

‰

“ A1
πps, aq ` EA„πpsq

“

Q1
πps,Aq

‰

(Aπ “ A1
π by assumption)

“ pQ1
πps, aq ´ EA„πpsq

“

Q1
πps,Aq

‰

q ` EA„πpsq

“

Q1
πps,Aq

‰

“ Q1
πps, aq .

That is, RpΦq and R1 share a Q-function. Thus, by Theorem 3.1, R1 is given by S1-redistribution from RpΦq.

The optimal advantage function’s invariances arise as a special case, since A‹ “ Aπ‹
, where π‹ is any optimal policy

derived from A‹.

Lemma C.2. Given an MDP, an inverse temperature parameter β, and a base policy π0, the Boltzmann policy ππ0

β

determines R up to S1-redistribution and potential shaping.

Proof. By Equation (6), ππ0

β can be derived from Aπ0
. Thus ππ0

β is invariant to S1-redistribution and potential shaping by
Lemma C.1.

Conversely, we show that Aπ0
can be derived from ππ0

β in turn. Therefore ππ0

β can have no more invariances than Aπ0
,

amounting to S1-redistribution and potential shaping by Lemma C.1.

For each s P S, a P A, observe:

ππ0

β pa | sq “
exp

`

βAπ0
ps, aq

˘

ř

a1PA exp
`

βAπ0
ps, a1q

˘

Ñ Aπ0
ps, aq “

1

β
log ππ0

β pa | sq `
1

β
log

ÿ

a1PA
exp

`

βAπ0
ps, a1q

˘

. (:)

We have not yet solved for Aπ0
, since it still occurs on both sides of (:). However, we can eliminate the RHS occurrence by

appealing to the following identity (that the advantage has zero mean in each state s P S):

EA„π0psq

“

Aπ0ps,Aq
‰

“ EA„π0psq

“

Qπ0ps,Aq ´ EA1„π0psq

“

Qπ0ps,A1q
‰‰

“ EA„π0psq

“

Qπ0ps,Aq
‰

´ EA„π0psq

“

Qπ0ps,Aq
‰

“ 0 .

Taking the expectation of both side of (:) therefore yields:

EA„π0psq

“

Aπ0
ps,Aq

‰

“ EA„π0psq

“ 1

β
log ππ0

β pA | sq
‰

` EA„π0psq

“ 1

β
log

ÿ

a1PA
exp

`

βAπ0
ps, a1q

˘‰

Ñ 0 “ EA„π0psq

“ 1

β
log ππ0

β pA | sq
‰

`
1

β
log

ÿ

a1PA
exp

`

βAπ0ps, a1q
˘

Ñ
1

β
log

ÿ

a1PA
exp

`

βAπ0
ps, a1q

˘

“ ´EA„π0psq

“ 1

β
log ππ0

β pA | sq
‰

. (;)
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Combining (;) with (:) gives us an expression for Aπ0
in terms only of ππ0

β , as required:

Aπ0ps, aq “
1

β
log ππ0

β pa | sq ´ EA„π0psq

“ 1

β
log ππ0

β pA | sq
‰

.

Our main result concerning Boltzmann-rational policies follows immediately.

Theorem C.3. Given an MDP and an inverse temperature parameter β, the Boltzmann-rational policy π‹
β , determines R up

to S1-redistribution and potential shaping.

Proof. The Boltzmann-rational policy π‹
β determines its own base policy π‹. This is because the maximum probability

actions in π‹
β are precisely those actions with maximal optimal advantage A‹ (argmaxaPAA‹psq “ argmaxaPAπ

‹
βps, aq).

We can break ties arbitrarily, as any optimal base policy will lead to the same Boltzmann-rational policy. So, given π‹
β , we

are effectively also given a base policy, and the invariances of π‹
β therefore follow as a special case of Lemma C.2.

We turn to prove the corresponding result about MCE policies, which follows a similar line of reasoning relative to the
soft Q-function. We use an elementary property of the softmax function, which we state and derive as Lemma C.5 for the
convenience of the unfamiliar reader.

Theorem C.4. Given an MDP and an inverse temperature β, the MCE policy πH
β determines R up to S1-redistribution and

potential shaping.

Proof. πH
β is given by applying the softmax function to QH

β . Recall (or see Lemma C.5, below) that the softmax function is
invariant to a constant shift, and no other transformations. This means that πH

β is invariant to exactly those transformations
that induce constant shifts in QH

β for each state.

S1-redistribution induces no shift in QH
β by Theorem 3.1. By Lemma B.2, potential shaping induces a state-dependent

constant shift. Thus, πH
β is invariant to S1-redistribution and potential shaping.

Conversely, we show that any state-dependent constant shift in QH
β can be described by these two kinds of transformations.

Therefore, they are the only invariances. Let B : S Ñ R, and suppose R1 and R2 are two reward functions such that the
corresponding soft Q-functions satisfy QH

β,1ps, aq “ QH
β,2ps, aq ` Bpsq. Then,

ES1„τps,aq

“

R1ps, a, S1q
‰

“ QH
β,1ps, aq ´ ES1„τps,aq

“

γ
1

β
log

ÿ

a1PA

expβQH
β,1pS1, a1q

‰

“ QH
β,2ps, aq ` Bpsq ´ ES1„τps,aq

“

γ
1

β
log

ÿ

a1PA

expβ
`

QH
β,2pS1, a1q ` BpS1q

˘‰

“ QH
β,2ps, aq ` Bpsq ´ ES1„τps,aq

“

γ
1

β
log

˜

ÿ

a1PA

expβQH
β,2pS1, a1q

¸

` γBpS1q
‰

“ ES1„τps,aq

“

R2ps, a, S1q ` Bpsq ´ γBpS1q
‰

.

Now set Φpsq “ ´Bpsq, and we can see that the difference between R and R1 is described by potential shaping and
S1-redistribution.

Lemma C.5. Consider two functions f : X Ñ R and g : X Ñ R defined on a finite set X . Then the softmax distributions
over f and f ` g agree, that is, for all x P X ,

exppfpxq ` gpxqq
ř

x1PX exppfpx1q ` gpx1qq
“

exppfpxqq
ř

x1PX exppfpx1qq
, (7)

if and only if g is a constant function over X .

18



Invariance in Policy Optimisation and Partial Identifiability in Reward Learning

Proof. This is an elementary property of the softmax function. The forward direction can be seen by manipulating
Equation (7) as follows:

exppfpxq ` gpxqq

exppfpxqq
“

ř

x1PX exppfpx1q ` gpx1qq
ř

x1PX exppfpx1qq

Ñ gpxq “ log

ˆř

x1PX exppfpx1q ` gpx1qq
ř

x1PX exppfpx1qq

˙

which is constant in x.

The converse can be seen as follows. Assume gpxq “ G, a constant. Then,

exppfpxq ` gpxqq
ř

x1PX exppfpx1q ` gpx1qq
“

exppfpxqq ¨ exppGq

p
ř

x1PX exppfpx1qqq ¨ exppGq
“

exppfpxqq
ř

x1PX exppfpx1qq
.

We continue with results about the trajectories derived from these alternative policies. We once again prove Theorem 3.4
in two parts (Theorems C.7 and C.8). For Boltzmann-rational trajectories, we once again provide a more general lemma
concerning arbitrary Boltzmann policies (6).

Lemma C.6. Given an MDP M , an inverse temperature β, and a base policy π0, the distribution of trajectories, ∆π0

β ,
induced by the Boltzmann policy ππ0

β acting in MDP M determines R up to S1-redistribution, potential shaping, and a mask
of unreachable transitions.

Proof. That the distribution is invariant to S1-redistribution and potential shaping follows from Lemma C.2. The distribution
is also invariant to changes in the reward for transitions out of unreachable states, since these rewards cannot affect the
policy for reachable states. As a result, the distribution is additionally invariant to a mask of unreachable transitions.

The trajectory distribution can be factored into the separate distributions ππ0

β psq P ∆pAq for each reachable state s by
conditioning on a supported prefix trajectory fragment that leads to s and marginalising over subsequent states and actions.
Via a similar argument to the proof of Lemma C.2, the distribution determines the reward function for transitions (out of
these reachable states) up to potential shaping and S1-redistribution (as they affect reachable states).

Theorem C.7. Given an MDP M and an inverse temperature parameter β, the distribution of trajectories, ∆‹
β , induced by

the Boltzmann-rational policy π‹
β acting in MDP M , determines R up to S1-redistribution, potential shaping, and a mask of

unreachable transitions.

Proof. As in Theorem 3.3, the invariances for the Boltzmann-rational policy’s trajectories arises as a special case.

We turn to prove the corresponding result about MCE policies, which follows a similar line of reasoning as for the Boltzmann
trajectories, but relative to the MCE policy instead.

Theorem C.8. Given an MDP M and an inverse temperature parameter β, the distribution of trajectories, ∆H
β , induced by

the MCE policy πH
β acting in MDP M determines R up to S1-redistribution, potential shaping, and a mask of unreachable

transitions.

Proof. Directly analogous to the proof of Lemma C.6, (relative to Theorem C.4).

C.3. Proofs for Results Concerning Optimal Policies

Our results concerning the invariance of optimal policies and their trajectories follow from the following general result
connecting general optimality-preserving transformations to the set of optimal actions in some subset of states.

The key idea of the proof is to establish a link between the value-bounding function Ψ (Definition 2.8) and the optimal
value function for R1 via the Bellman optimality equation. We note that the definition of (general) optimality-preserving
transformations is designed specifically to elicit this link.
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Lemma C.9. Given an MDP M , suppose we have the set of optimal actions for each state in a subset of states S Ď S.
Let O be the set of (set-valued) functions O : S Ñ PpAqztHu such that Opsq “ argmaxaPAA‹ps, aq for all s P S (but
where O is unconstrained outside S). Then, these optimal action sets determine R up to general optimality-preserving
transformations with O P O.

Proof. Suppose R1 is obtained from M ’s reward R via a general optimality-preserving transformation with some O P O.
Let Ψ be the corresponding value-bounding function, that is, a function Ψ : S Ñ R satisfying, for all s P S and a P A,

ES1„τps,aq

“

R1ps, a, S1q ` γ ¨ ΨpS1q
‰

ď Ψpsq , (8)

with equality if and only if a P Opsq. Since Opsq is nonempty (by definition), we have for all s P S

Ψpsq “ max
aPA

`

ES1„τps,aq

“

R1ps, a, S1q ` γ ¨ ΨpS1q
‰˘

.

This recursive condition on Ψ is the Bellman optimality equation for the unique optimal value function, V 1
‹ , of the MDP

with transformed reward R1. Therefore, Ψpsq “ V 1
‹psq for all s P S, and we can rewrite Equation (8) as

ES1„τps,aq

“

R1ps, a, S1q ` γ ¨ V 1
‹pS1q

‰

ď V 1
‹psq , (9)

with equality only for a P Opsq.

Now, consider a state s P S. By assumption, for this s, Opsq “ argmaxaPAA‹ps, aq. Then for this state, the actions that
attain the optimal value bound in Equation (9) are these same optimal actions. Therefore, R1 induces the same sets of
optimal actions from states in S.

Conversely, consider a second MDP M 1, differing from M only in its reward function, R1. Assume the set of optimal actions
in states in S agrees with the optimal actions in M for those states. Let V 1

‹ and A1
‹ denote the optimal value and advantage

functions for M 1. The Bellman optimality equation for M 1 ensures that, for s P S,

V 1
‹psq “ max

aPA

`

ES1„τps,aq

“

R1ps, a, S1q ` γ ¨ V 1
‹pS1q

‰˘

(10)

with the maximum attained precisely by the actions a P argmaxaPApA1
‹ps, aqq. Setting Opsq “ argmaxaPApA1

‹ps, aqq,
Equation (10) can be rewritten as

ES1„τps,aq

“

R1ps, a, S1q ` γ ¨ V‹pS1q
‰

ď V‹psq (11)

for all s P S and a P A, with equality if and only if a P Opsq.

Now, for s P S, we have argmaxaPApA1
‹ps, aqq “ argmaxaPApA‹ps, aqq, because M and M 1 have matching sets of

optimal actions for these states (by assumption). Then, Equation (11) shows that R1 is produced from R by a general
optimality-preserving transformation with Opsq “ argmaxaPApA1

‹ps, aqq (and Ψpsq “ V 1
‹psq).

We are now in a position to prove Theorems 3.2 and 3.6:

Theorem 3.2. Given an MDP, a maximally supportive optimal policy π‹ determines R up to optimality-preserving
transformations. The set of all optimal policies has precisely the same invariances.

Proof. By assumption, our optimal policies are maximally supportive. Therefore, their support determines the set of optimal
actions from all states. Also by assumption, our maximally supportive optimal policies are determined by the set of optimal
actions in each state. Therefore, a maximally supportive optimal policy has the same reward information as the set of optimal
policies in each state. Its invariances follow as a special case of Lemma C.9, with S “ S.

Theorem 3.6. Given an MDP, consider the distribution of trajectories induced by a maximally supportive optimal policy,
∆‹. Let S be the set of visited states. Let O be the set of functions O defined on S such that Opsq “ argmaxaA‹ps, aq for
s P S. ∆‹ determines R up to general optimality-preserving transformations for all O P O.

Proof. The distribution of trajectories can be factored into separate distributions π‹psq P ∆pAq for each state s P S (in a
manner similar to Lemma C.6, as proved above). As above, these individual distributions determine and are determined by
the set of optimal actions within each of those states. The invariance result therefore follows from Lemma C.9.
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Remark C.10. As mentioned in Section 3, when there are multiple optimal policies, invariances depend on how the given
policy is chosen. The proofs above reveal that our assumptions are crucial in connecting maximally supportive optimal
policies to optimal action sets. We comment on the motivation for these assumptions and, following our theme of cataloguing
partial identifiability, we sketch how the result would change without them.

Assumption (1), that the given policy is maximally supportive, allows us to rule out unsupported actions as suboptimal.
Additional reward transformations could become permissible otherwise. As a well-known example, the zero reward function
is consistent with any policy if unsupported actions could also be optimal (Ng & Russell, 2000). This more general case is
difficult to analyse within our framework, because it is not well-described by transformations or an equivalence relation.
The assumption may be demanding, but the consequences of misspecification are mild in the case of policy optimisation – at
least the learnt reward function won’t allow any suboptimal actions to become optimal.

Assumption (2), that a given policy is computed only from the set of optimal actions in each state, appears to be common.
The purpose of this technical assumption is to rule out pathological schemes for encoding additional reward information
through the selection of the policy. Through such schemes one could in principle encode the full reward function, for
example into the infinite decimal representation of the probability of taking one action over another in some state. Such a
selection scheme, even if it was not known to the learner, would remove invariances, as transformations that change the
reward function but not the set of optimal states would change the given policy.

C.4. Proofs for Section 3.3 Results

Theorem C.11. Given an MDP, the return function restricted to possible trajectory fragments, Gζ , determines R up to a
mask of impossible transitions.

Proof. The result is immediate, since the restricted domain still includes all possible transitions (as length one trajectory
fragments with return equal to the reward of the transition), and no fragments with impossible transitions.

Theorem 3.7. Given an MDP, the return function restricted to possible and initial trajectories, Gξ, determines R up to
zero-initial potential shaping and a mask of unreachable transitions.

Proof. The result follows from Lemma B.3 with k “ 0.

Theorem 3.8. Given an MDP, the distribution of comparisons of possible trajectory fragments, ĺ
ζ
β , determines R up to a

mask of impossible transitions.

Proof. Since ĺ
ζ
β can be derived from Gζ , it is invariant to a mask of impossible transitions by Theorem C.11. Conversely,

ĺ
ζ
β determines R for all possible transitions. This is because Rps, a, s1q is encoded in the Boltzmann distribution of

comparisons between the length zero trajectory fragment ζ0 “ psq and the length one trajectory fragment ζ1 “ ps, a, s1q,
and can be recovered as follows:

Ppζ0 ĺ
ζ
β ζ1q “

exppβGpζ1qq

exppβGpζ0qq ` exppβGpζ1qq

“
exppβRps, a, s1qq

exppβ ¨ 0q ` exppβRps, a, s1qq

Ñ Rps, a, s1q “
1

β
¨ log

˜

Ppζ0 ĺ
ζ
β ζ1q

1 ´ Ppζ0 ĺ
ζ
β ζ1q

¸

.

Therefore ĺ
ζ
β is invariant to precisely a mask of impossible transitions.

Theorem 3.9. Given an MDP, the distribution of comparisons of possible and initial trajectories, ĺ
ξ
β , determines R up to

k-initial potential shaping and a mask of unreachable transitions.

Proof. Note that as ĺ
ξ
β can be derived from Gξ, by Theorem 3.7, ĺ

ξ
β is invariant to zero-initial potential shaping and a

mask of unreachable transitions. It is additionally invariant to k-initial potential shaping for arbitrary constants k P R, and
no other transformations: Gξ can be recovered from ĺ

ξ
β up to a constant (we can compare all possible initial trajectories
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to an arbitrary reference trajectory and recover their relative return using a similar manipulation as above, but we can’t
determine the return of the reference trajectory). From there, the precise invariance follows from Lemma B.3.

Theorem 3.10. We have the following bounds on the invariances of the noiseless order of possible trajectory fragments, ĺ
ζ
‹.

In all MDPs:

(1) ĺ
ζ
‹ is invariant to positive linear scaling and a mask of impossible transitions; and

(2) ĺ
ζ
‹ is not invariant to transformations other than zero-preserving monotonic transformations or masks of impossible

transitions.

Moreover, there exist MDPs attaining each of these bounds.

Proof. For (1), positive linear scaling of reward by a constant c leads to the same scaling of the return of each trajectory
fragment, and this always preserves the relation ĺ

ζ
‹, since for any c ą 0, c ¨ Gpζ1q ď c ¨ Gpζ2q ô Gpζ1q ď Gpζ2q for

all pairs of trajectory fragments ζ1, ζ2. Moreover, ĺ
ζ
‹ inherits invariance to a mask of impossible transitions from Gζ

(Theorem C.11).

For (2), let R1 be produced from R via some transformation that is neither a mask of impossible transitions nor a zero-
preserving monotonic transformation. It must be that either R1 fails to preserve the ordinal comparison of two possible
transitions, or that it fails to preserve the set of zero-reward possible transitions, compared to R. In the first case, consider
two possible transitions whose rewards are not preserved, x1 and x2. Without loss of generality, suppose Rpx1q ď Rpx2q

but R1px1q ą R1px2q. This corresponds to a change in ĺ
ζ
‹’s comparison of the length one trajectories formed from x1 and

x2, namely x1 ĺ
ζ
‹ x2 from true to false. Similarly, in the second case, the comparisons between the transition whose reward

became or ceased to be zero and a length one trajectory (with return 0) will have changed. Therefore, ĺ
ζ
‹ is not invariant to

such transformations.

The bound (1) is attained by the following MDP invariant precisely to positive linear scaling and a mask of impossible
transitions. Let S “ tsu, A “ ta1, a2u, Rps, a1, sq “ 1, and Rps, a2, sq “ 1 ` γ. Since Rps, a2, sq “ Rps, a1, sq `

γRps, a1, sq, the corresponding order relation will contain both ps, a2, sq ĺ
ζ
‹ ps, a1, s, a1, sq and ps, a1, s, a1, sq ĺ

ζ
‹

ps, a2, sq. This property requires that Rps, a1, sq “ p1 ` γq ¨ Rps, a2, sq, which is preserved only by linear scaling of R.
(Non-positive linear scaling is already ruled out by (2)).

The bound (2) is attained by the following MDP invariant to arbitrary zero-preserving monotonic transformations. Let
S “ ts1, s2u, A “ tau, with possible transitions ps1, a, s2q and ps2, a, s2q, and Rps1, a, s2q ą Rps2, a, s2q “ 0. Any
zero-preserving monotonic transformation of R preserves the ordering of all possible trajectory fragments, namely that all
nonempty trajectories starting in s1 have positive return and all other possible trajectories have zero return.

Theorem 3.11. Given an MDP, the noiseless order of possible and initial trajectories, ĺ
ξ
‹, is invariant to k-initial potential

shaping, positive linear scaling, and a mask of unreachable transitions.

Proof. The pairwise Boltzmann distributions of ĺ
ξ
β can be used to derive the noiseless comparisons of ĺ

ξ
‹, since the relative

return of each pair of trajectories is encoded in each Ppξ1 ĺ
ζ
β ξ2q:

ξ1 ĺξ
‹ ξ2 ô

`

Gpξ1q ď Gpξ2q
˘

ô
`

exppβGpξ1qq ď exppβGpξ2qq
˘

ô

´

1
2 ď Ppξ1 ĺ

ζ
β ξ2q

¯

.

Therefore, ĺ
ξ
‹ is invariant to k-initial potential shaping and a mask of unreachable transitions by Theorem 3.9.

That ĺ
ξ
‹ is also invariant to positive linear scaling follows from a similar argument as for the first bound in Theorem 3.10,

proved above.

Remark C.12. Theorem 3.11 is a lower bound on the full set of invariances of the noiseless order of possible and initial
trajectories. We note the following:

• It is not a tight bound: At least in some MDPs, the order is invariant to additional transformations.

• A slightly tighter lower bound can be achieved by establishing that ĺ
ξ
‹ can be derived from ĺ

ζ
‹: Consider, for a given

trajectory ξ, the sequence of ‘prefix’ trajectory fragments ξp0q, ξp1q, ξp2q, . . ., with each ξpnq comprising the first n
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transitions of ξ. By definition Gpξq “ limnÑ8 Gpξpnqq, and so for each pair of trajectories ξ1, ξ2, we have ξ1 ĺ
ξ
‹ ξ2 if

and only if ξpnq

1 ĺ
ζ
‹ ξ

pnq

2 for infinitely many n. While this is not a practical method to compute the trajectory order ĺ
ξ
‹

from the fragment order ĺ
ζ
‹, it counts as a derivation in that it is sufficient to show that if a transformation does not

change the fragment order ĺ
ζ
‹, it cannot change the trajectory order ĺ

ξ
‹ either. Therefore, in particular, ĺ

ξ
‹ inherits

invariance to ZPMTs in some MDPs from ĺ
ζ
‹. This tightens the bound, at least in some MDPs.

• The previous point does not imply that the trajectory order ĺ
ξ
‹ inherits the fragment order ĺ

ζ
‹’s non-invariances. A

case in point is that ĺ
ξ
‹ is invariant to k-initial potential shaping and a mask of unreachable transitions, where ĺ

ζ
‹

is not (Theorem 3.10). It is not yet clear if there are MDPs where ĺ
ξ
‹ is invariant to no ZPMTs other than positive

linear scaling, or even to not all ZPMTs, and there may be invariances of ĺ
ξ
‹ that require new transformation classes to

describe. However, Theorem 3.11 and this remark give us enough information to confidently position ĺ
ξ
‹ in our partial

order of reward-derived objects.

Theorem 3.12. Given an MDP, ĺ
ξ
D determines R up to k-initial potential shaping, positive linear scaling, and a mask of

unreachable transitions.

Proof. It is clear that preferences between lotteries over a choice set are preserved by positive affine transformations of
the value (and no other transformations). In particular, the converse is a consequence of the well-known VNM utility
theorem (von Neumann & Morgenstern, 1947). The proof by von Neumann & Morgenstern (1947) covers a finite number of
outcomes, and the result also holds for an infinite number of outcomes (see, e.g., Fishburn, 1970).

Thus, our result is immediate from Lemmas B.3 and B.4, which together state that these positive affine transformations
of the return function correspond exactly to k-initial potential shaping, positive linear scaling, and a mask of unreachable
transitions.
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D. Proofs for Section 4 Results
Theorem 4.1. Given data sources X and Y , let pX,Y q denote the combined data source formed from X and Y . If X and
Y are incomparable, then pX,Y q ă X and pX,Y q ă Y .

Proof. Transformations that preserve pX,Y q necessarily preserve X , therefore pX,Y q ĺ X . But since X and Y are
incomparable, there is some transformation that preserves X and not Y . This transformation does not preserve pX,Y q.
Therefore, pX,Y q ă X . Similarly, pX,Y q ă Y .

We note that the above result is also an elementary consequence of the lattice structure of the partial order of partition
refinement (Aigner, 1996, §I.2.B), since the combined data source corresponds to the meet of the original data sources.

Theorem 4.2. Let L : SˆA Ñ R be any function, R1 any reward function, and τ1, τ2 any transition distributions. Then there
exists a reward function R2, produced from R1 by S1-redistribution under τ1, such that ES1„τ2ps,aq

“

R2ps, a, S1q
‰

“ Lps, aq

for all s, a such that τ1ps, aq ‰ τ2ps, aq.

Proof. Per Definition 2.6, that R2 is produced from R1 by S1-redistribution under τ requires that, for all s P S and a P A,

ES1„τps,aq

“

R1ps, a, S1q
‰

“ ES1„τps,aq

“

R2ps, a, S1q
‰

. (12)

Let s P S and a P A be any state and action such that τ 1ps, aq ‰ τps, aq. Let τ⃗s,a and τ⃗ 1
s,a be τps, aq and τ 1ps, aq expressed

as vectors, and let R⃗1s,a be the vector where R⃗1
piq

s,a “ R1ps, a, siq. The question is then if there is an analogous vector
R⃗2s,a such that:

τ⃗s,a ¨ R⃗2s,a “ τ⃗s,a ¨ R⃗1s,a ,

τ⃗ 1
s,a ¨ R⃗2s,a “ Lps, aq.

(13)

Since τ⃗s,a and τ⃗ 1
s,a differ and are valid probability distributions, they are linearly independent. Therefore, the system of

equations (13) always has a solution for R⃗2s,a. Form the required R2 as R1 modified to have the values of R⃗2s,a in these
states where the transition function is disturbed.
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E. Other Spaces of Reward Functions
Hitherto, we have assumed reward functions are members of SˆAˆS Ñ R. That is, they are deterministic functions of
transitions depending on the state, action, and successor state. In this appendix, we discuss several alternative spaces of
reward functions and their implications for the invariance properties of various objects derived from the reward function.

E.1. Restricted-domain Reward Functions

It is common in both reinforcement learning and reward learning to consider less expressive spaces of reward functions. In
particular, the domain of the reward function is often restricted to S or SˆA. When modelling a task, the choice of reward
function domain is usually a formality: An MDP taking full advantage of the domain SˆAˆS has an “equivalent” MDP
with a restricted domain and some added auxiliary states (Russell & Norvig, 2009, §17). Conversely, reward functions with
restricted domains can be viewed as a special case of functions from SˆAˆS where the functions are constant in the final
argument(s). Restricting the domain can be an appealing simplification when modelling a task, hence the popularity of these
formulations.

When modelling a data source, this equivalence may not apply: We may not have access to data regarding auxiliary states,
so assuming a restricted domain effectively assumes the latent reward is indeed constant with respect to the successor state
(and possibly the action) of each transition. This assumption may or may not be warranted.

If a restricted domain of S or SˆA is preferred, then our invariance results can be adapted in a straightforward manner. In
general, since we are effectively considering a subspace of candidate reward functions for transformations, ambiguity can
only decrease. In particular, these restrictions have two main consequences.

Firstly, the reward function transformation of S1-redistribution vanishes to the identity transformation, since it allows
variation only in the successor state argument of the reward function, which is now impossible. This reduces the effective
ambiguity of the Q-function and all derivative objects. Notably, the Q-function uniquely identifies the reward function, and
Boltzmann policies have the same invariances as Boltzmann comparisons between trajectories. Restricting the domain to
S means the (state) value function for an arbitrary known policy also uniquely identifies the reward function but doesn’t
otherwise alter the invariances we have explored.

Secondly, for most MDPs, the available potential-shaping transformations are restricted, but not eliminated. The function
added in a potential-shaping transformation (γ ¨ Φps1q ´ Φpsq) nominally depends on the successor state of the transition.
Some transformed reward functions may rely on this dependence, falling outside of the restricted domain. However,
some non-zero transformations will usually remain. For example, in a discounted MDP without terminal states, a non-
zero constant potential function Φpsq “ k does not effectively depend on s, and the reward transformation of adding
γ ¨ Φps1q ´ Φpsq “ pγ ´ 1q ¨ k to a reward function does not introduce a dependence on s1. In general, the set of remaining
potential-shaping transformations will depend on the network structure of the MDP. At the extreme, in a deterministic MDP
with state-action rewards, all potential-shaping transformations are permitted, since a dependence on s1 can be satisfied by a.

E.2. Stochastic Reward Functions

Certain tasks are naturally modelled as providing rewards drawn stochastically from some distribution upon each transition.
An even more expressive space of reward functions than we consider is the space of transition-conditional reward
distributions.3 Identifying the reward function in this case is more challenging in general because the latent parameter
contains a full distribution of information for each input, rather than a single point. In the spirit of this paper, we sketch a
characterisation of this additional ambiguity.

A deterministic reward function can be viewed as the conditional expectation of a reward distribution function. Taking
the expectation of the reward distribution for each transition introduces invariance, since the expectation operation is not
injective (except in certain restricted cases such as for parametric families of distributions that can be parametrised by
their mean). The invariance introduced is akin to S1-redistribution, but with an expectation over the support of the reward
distribution rather than the successor state of each transition.

In the extension of the RL formalism to account for stochastic rewards, this expectation is effectively the first step in the

3Of course, it’s also possible to consider reward to be distributed conditionally on only the state or state-action components of a
transition and not the full transition.
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derivation of each of the objects we have studied. Therefore, all of these objects inherit this new invariance.

As a consequence, all data sources are effectively more ambiguous with respect to this new latent parameter. For example, if
optimal comparisons between trajectories are understood to be performed based on the pairwise comparison of the expected
return of each individual trajectory, then these comparisons are also invariant to transformations of the reward distributions
that preserve their means.

Fortunately, much of reinforcement learning also focuses on expected return and reward in application. Accordingly, most
downstream tasks are tolerant to any ambiguity in the exact distribution of stochastic rewards, beyond identifying the mean.
Since this is the same kind of ambiguity that is introduced by considering the latent parameter of reward learning as a
conditional distribution rather than a deterministic function, our results are still informative for these situations.

E.3. Further Spaces and Future Work

For certain applications, including risk-sensitive RL where non-mean objectives are pursued (Morimura et al., 2010a;b;
Dabney et al., 2018), the distribution of stochastic rewards can be consequential. Moreover, the introduction of stochastic
rewards suggests considering data sources based on samples rather than expectations, such as a data source of trajectory
comparisons based on sampled trajectory returns. Characterising the invariances of these objectives to transformations of
the reward distribution, and thereby their ambiguity tolerance, is left to future work.

In future extensions of this work to handle continuous MDPs, there will be an opportunity to study the effect of restricting
to various parametrised spaces of reward functions. For example, it is common in reinforcement learning and reward
learning to study MDPs with reward functions that are linear in a feature vector associated with each transition. This kind of
restriction may reduce the available reward transformations compared to those available to a non-parametric reward function
in a similar manner to restricting the domain of a finite reward function as discussed above.

The relaxation of the Markovian assumption also introduces a broader space of reward functions and with it new dimensions
for transformations and invariance. As one example related to potential shaping, the non-Markovian additive transformations
studied by Wiewiora et al. (2003) will amount to new invariances of the optimal policy and other related objects.

26


