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Abstract

We introduce a boosting algorithm to pre-process
data for fairness. Starting from an initial fair
but inaccurate distribution, our approach shifts
towards better data fitting while still ensuring a
minimal fairness guarantee. To do so, it learns the
sufficient statistics of an exponential family with
boosting-compliant convergence. Importantly, we
are able to theoretically prove that the learned
distribution will have a representation rate and
statistical rate data fairness guarantee. Unlike re-
cent optimization based pre-processing methods,
our approach can be easily adapted for contin-
uous domain features. Furthermore, when the
weak learners are specified to be decision trees,
the sufficient statistics of the learned distribution
can be examined to provide clues on sources of
(un)fairness. Empirical results are present to dis-
play the quality of result on real-world data.

1. Introduction
It is hard to exaggerate the importance that fairness has
now taken within Machine Learning (ML) (Calmon et al.,
2017; Celis et al., 2020; Williamson & Menon, 2019) (and
references therein). ML being a data processing field, a
common upstream source of biases leading to downstream
discrimination is the data itself (Calders & Žliobaitė, 2013;
Kay et al., 2015; De-Arteaga et al., 2019). Targeting data
is especially important when the downstream use-case is
unknown. As such, pre-processing algorithm have been
introduced to debias data and mitigate unfairness in potential
downstream tasks. These approaches commonly target two
sources of (un)fairness (Celis et al., 2020): ① the balance of
different social groups across the dataset; and ② the balance
of positive outcomes between different social groups.
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Figure 1. Our approach learns weak learners at each boosting iter-
ation of the algorithm. The weak learner attempts to differentiate
between the ‘generated’ current distribution (more blue) versus
the ‘real’ data (more red) — whose predicted ‘realness’ are used
to update the current distribution. The following shows, the first 3
levels of a decision tree weak learner produced in the first round
of boosting M-E-1.0 (with the COMPAS dataset and sensitive at-
tribute = race). The decision tree unveils a race and sex-dependent
segregation. The circular node depicts a leaf node.

Recently, optimization based approaches have been pro-
posed to directly learn debias distributions (Calmon et al.,
2017; Celis et al., 2020). Such approaches share two draw-
backs: tuning parameters to guarantee realizable solutions
or fairness guarantees can be tedious, and the distribution
learned has the same discrete support as the training sample.
This latter drawback inherently prevents extending the dis-
tribution (support) and its guarantees (fairness) ”beyond the
training sample’s”. On the other hand, Generative Adversar-
ial Networks (GANs) based approaches have been leveraged
to learn fair distributions (Choi et al., 2017; Xu et al., 2018;
Rajabi & Garibay, 2022). These can naturally be adapted to
continuous spaces. Unfortunately, in discrete spaces round-
ing or domain transformations need to be used. Furthermore,
these approaches often lack any theoretical fairness guaran-
tees; or requires casual structures to be known (van Breugel
et al., 2021). In addition, the fairness of GAN based ap-
proaches are difficult to estimate a prior to training, where
fairness is achieved via a regularization penalty or separate
training rounds. A shared downside of optimization and
GAN approaches have is the lack of interpretability of how
the fair distributions are learned.

Our Contributions We propose a novel boosting algo-
rithm to pre-process data: Fair Boosted Density Estimation
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(FBDE). Intuitively, we start with a ‘fair’ initial distribution
that is updated to move closer to the true data with each
boosting step. The learned distribution consists of an ex-
ponential family distribution with sufficient statistics given
by the weak learners (WLs). Notably, the computational
complexity of our approach is proportional to the number
of boosting steps and, thus, is clearly readable. Addition-
ally, our approach can naturally be used in both discrete
and continuous spaces by choosing an appropriate initial
distribution and WLs. In the case when we are examining
a discrete domain (a common setting for social data bench-
marks (Fabris et al., 2022)), interpretable WLs can be used
to examine how FBDE is learning its distribution, see Fig. 1.
Theoretically, we provide two styles of fairness guarantees
(Theorems 3.2 and 3.3) which balance between fairness
and ‘aggressiveness’ of boosting updates. In addition, we
provide a boosting-style analysis of convergence of FBDE
(Theorems 3.5 and 3.6). We also extend the theory of mol-
lifiers previously used in privacy (Husain et al., 2020) to
characterize sets of fair distributions we are boosting within
(Lemmas 4.2 and 4.3). Finally, we empirically evaluate
our approach with respect to data, prediction, and clustering
fairness; and further present an empirical test of FBDE used
for continuous domains.

Related Work Pre-processing provides a flexible approach
to algorithmic fairness in ML. Although there other points
of intervention in the fairness pipeline (e.g., in-processing
or post-processing fairness (Zafar et al., 2019, Section 6.2))
and entirely different notation of fairness (e.g., individual
fairness (Dwork et al., 2012)), we limit our work to sub-
group fairness for pre-processing data. That is, instead of ap-
proaches which targets fairness at a model prediction level,
we instead target the data itself. We also note that boosting
methods have seen success in post-processing methods (Kim
et al., 2019; Soen et al., 2022).

Other pre-processing methods not already discussed include
re-labeling or re-weighting (King & Zeng, 2001; Calders
et al., 2009; Kamiran et al., 2012; Kamiran & Calders, 2012).
Although many of these approaches are computationally ef-
ficient, they often do not consider elements in the domain
which do not appear in the dataset and lack fairness guaran-
tees. Similarly, repair methods aim to change the input data
to break the dependence on sensitive attributes for trained
classifiers (Johndrow & Lum, 2019; Feldman et al., 2015).
To achieve distributional repair, one can employ frameworks
of optimal transport (Gordaliza et al., 2019) or counterfac-
tual distributions (Wang et al., 2019).

Limitations of pre-processing methods in the presence of
distribution shift has also been examined: under all possible
distribution shifts, there does not exist a generic non-trivial
fair representation (Lechner et al., 2021). However, we note
that fairness guarantees breaking due distribution shift is not

a problem exclusive to pre-processing algorithms (Schrouff
et al., 2022). Furthermore, this limitation is pessimistic
and some data shifts may not significantly harm fairness.
Nevertheless, from a practical standpoint one should look
out for fairness degradation from distribution shift.

2. Setting and Motivation
Let X be a domain of inputs, Y be labels, and S be a set of
sensitive attributes (separate from X). We assume that both
S,Y are finite. Unlike prior works (i.e., Calmon et al. (2017);
Celis et al. (2020)) we do not assume that X is discrete.
Denote Z = X × Y × S. We short hand the tuple (x, y, s)
as z, i.e., for a function f we have f(z) = f(x, y, s). We
further let D(Z) denote the set of distributions with common
support Z. With slight abuse of notation, we distinguish
between marginals, conditional, and joint distributions of
P ∈ D(Z) by its arguments, i.e., P(x | y, s) vs P(y, s). All
proofs are deferred to the Appendix.

The goal of pre-processing is to correct an input distribution
P ∈ D(Z) to an output distribution Q ∈ D(Z) which
adheres to or improves a fairness criteria on the distribution.
We focus on two common data fairness criteria (Celis et al.,
2020): representation rate and statistical rate.

The first of these criteria simply measures the balance of
representation of the different sensitive subgroups.

Definition 2.1. A density P ∈ D(Z) has ρ-representation
rate if

RR(P, s, s′)
.
=

P(s)

P(s′)
≥ ρ, ∀s, s′ ∈ S (1)

and define the representation rate of a distribution P as
RR(P)

.
= mins,s′∈S RR(P, s, s′) ∈ [0, 1].

The second of these criteria measure the balance of a pre-
diction outcome across different subgroups.

Definition 2.2. A density P ∈ D(Z) has τ -statistical rate
(w.r.t. fixed label y ∈ Y) if

SR(P, s, s′; y)
.
=

P(y | s)
P(y | s′) ≥ τ, ∀s, s′ ∈ S (2)

and define the statistical rate of a distribution P (w.r.t. y)
as SR(P)

.
= mins,s′∈S SR(P, s, s′; y) ∈ [0, 1].

The selection of label y ∈ Y used to specify statistical rate
typically corresponds to that corresponding to a positive
outcome. As such, the balance being measured corresponds
to the rate of positive outcomes across different subgroups.
We take this convention and represent the advantaged group
as Y = +1. It should be noted that statistical rate can also
be interpreted as a form of discrimination control, inspired
by the “80% rule” (Calmon et al., 2017).
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Intuitively for both notions of fairness, a distribution is
maximally fair when the fairness parameter is equal to 1
(i.e., τ = 1 or ρ = 1). With such a rate requirement,
the constraint requires probability of representation or the
positive label rate to be equal for all subgroups.

We present an algorithm which provides an estimate of
an input distribution P which satisfies a statistical rate τ .
Although we are targeting statistical rate, the learned distri-
bution also has strong guarantees for representation rate.

2.1. Why Data Fairness?

A reasonable question one might make is why target the
data and not just make models ‘fair’ directly. We highlight
a few examples of why one might want, or even require,
fairness within the data itself.

Firstly, one might want to make data fair to allow for models
trained further down in the ML pipeline to be fair. A tanta-
lizing question data fairness faces is how it influences model
fairness downstream in ML pipelines. It has previously been
shown that downstream classifier compound representation
injustices within the data (De-Arteaga et al., 2019, Theorem
1). Furthermore, it has been previously shown experimen-
tally that pre-processing approaches can improve prediction
fairness for various metrics (Calmon et al., 2017; Celis et al.,
2020). As such, providing ‘fair’ representations can be a
critical components of a ML pipeline.

Also, providing data fairness guarantees can also poten-
tially provide improvement for non-classification notions of
fairness, i.e., clustering, see experiments in Section 5.

Lastly, we would also like to highlight that finding fair
distributions has recently become of independent interest
to certify the fairness of models (Kang et al., 2022). The
goal is to provide a certificate of a models performance
under distribution shift restricted to distribution which are
statistical rate fair. As a side-effect, the evaluated model can
be proven to be ‘fair’ (Kang et al., 2022, Proposition 1).

3. Fair Boosted Density Estimator
We propose Fair Boosted Density Estimation (FBDE), a
boosting algorithm which iteratively degrades a fair but
‘inaccurate’ initial distribution Q0 to become closer to an
input data distribution, we denote as P. In particular, the
user specifies a statistical rate target / budget τ ∈ (0, 1]
which controls the fairness degradation size of each iterative
boosting update. Pseudo-code is given in Algorithm 1.

3.1. Distribution Estimator

The learned fair distribution QT is an exponential family
distribution constructed by iteratively aggregating classifiers.
The distribution consists of two main components: ① the

initially fair distribution; and ② the boosting updates.

For the initial distribution we require it to be more sta-
tistical rate fair than the target τ . We also require the initial
distribution to be representation rate fair to get a guarantee
for representation rate. As such, we define an initial distribu-
tion QINIT hierarchically. First, we specify the label-sensitive
marginal given an initial budget τ < SR0 ≤ 1:

QINIT(s)
.
= 1/|S|; (3)

QINIT(Y = 1|s) .
= max{P(Y = 1|s), SR0 · pmax}, (4)

where pmax = maxs∈S P(Y = 1|s)1. Finally, we spec-
ify the conditional QINIT(x|y, s) for each (y, s) ∈ Y × S

by fitting an empirical distribution if X is discrete, or a
normal distribution if X is continuous. One can verify
that SR(QINIT) ≥ SR0 and RR(QINIT) = 1. Alternatively,
Eq. (3) can also be altered to satisfy a weaker representation
rate budget RR0. As suggested by the notation, we denote
SR0 and RR0 as the statistical rate and representation of the
initial distribution, respectively.

One additional consideration we should make is in the cir-
cumstance when finding an adequate QINIT is difficult. For
instance, in low data regimes, approximating QINIT(x|y, s)
for each (y, s) could be difficult (especially for under rep-
resented demographic subgroups). This can be particularly
catastrophic when we are estimating the conditional distri-
bution in a way such that by having no examples of inputs
occurring in the training data, the estimated distribution has
zero support for those inputs, i.e., an empirical distribution.
A remedy for such as situation comes from taking a mix-
ture distribution of our proposed initial distribution (as per
Eqs. (3) and (4)) and a ‘prior’ distribution. Celis et al. (2020,
Section 3.1 “Prior distributions”) discusses a similar ap-
proach for interpolating between distributions. Appendix K
presents additional discussion and an experimental example
using real world datasets.

In the boosting step of our algorithm, binary classifiers
ct : Z→ R are used to make an exponential reweighting of
the previous iteration’s distribution Qt−1. In particular, the
classifiers ct acts as a discriminator to distinguish between
real P and fake samples Qt−1 (via the sign(ct(z))). We
assume that more positive outputs of ct indicate greater
‘realness’. We take the common technical assumption that
each ct have bounded output: ct(z) ∈ [−C,C] for some
C > 0 (Schapire & Singer, 1999).

We assume we have a weak learner WL(P,Qt−1) which is
used to produce such discriminators ct at each step of the
algorithm. Thus, after t iterations the learned distribution

1The initialization specified increases fairness by increasing
positive outcomes. Depending on the application, one may want to
take the opposite strategy: replacing Eq. (4) by min{SR0 · P(Y =
1|s), pmin)} where pmin = mins∈S P(Y = 1|s).
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Algorithm 1 FBDE (WL, T, τ,QINIT, ϑt)
1: input: Weak learner WL, # iter. T , SR τ ,

init. QINIT, input dist. P, leverage ϑt;
2: Q0 ← QINIT (with SR0 > τ )
3: for t = 1, . . . , T do
4: ct ← WL(P,Qt−1)
5: Qt ∝ Qt−1 · exp(ϑtct)
6: end for
7: return: QT (for fairness ϑt ∈ {ϑE

t , ϑ
R
t })

have the following exponential family functional form:

Qt(x, y, s) =
1

Zt
exp(ϑtct(x, y, s))Qt−1(x, y, s), (5)

where ϑt ≥ 0 are leveraging coefficients and Zt is the
normalizer of Qt(x, y, s). The sufficient statistics of this ex-
ponential family distribution is exactly the learned c1 . . . ct.
Intuitively, the less (more) ‘real’ a ct deems an input to be,
the lower (higher) the reweighting exp(ϑtct(·)) makes.

3.2. Fairness Guarantees

To establish fairness guarantees for statistical rate fairness,
we require multiplicative parity of positive subgroup rates
Qt(Y = 1|s). To calculate these rates, we define the follow-
ing normalization terms:

Zt(y, s) =

∫
X

exp(ϑtct(z)) dQt−1(x|y, s);

Zt(s) =

∫
X×Y

exp(ϑtct(z)) dQt−1(x, y|s).

We verify that Qt(y, s) = Qt−1(y, s) · (Zt(y, s)/Zt) and
Qt(s) = Qt−1(s) · (Zt(s)/Zt).

This recursive definition of these marginal distributions pro-
vides a convenient lower bound of the statistical rate.
Lemma 3.1. Suppose that Q0 has statistical rate SR0. Then
for all s, s′ ∈ S we have

SR(Qt, s, s
′; y) ≥ SR0 ·

t∏
i=1

(
Zi(s

′)

Zi(s)
· Zi(y, s)

Zi(y, s′)

)
. (6)

It should be noted that for each of the normalizers there is a
hidden dependence on Q0 and ϑi’s. As such, the pairwise
statistical rate of the boosted distributions are determined
by two factors: ① the initial SR0; and ② the leveraging
coefficients ϑi. We note that similar argumentation can be
made for representation rate fairness. In our approach, the
coefficients ϑi are taken to be a function of the iteration
number i, initial fairness SR0, and fairness budget τ .

Thus given the initial distribution specified above, we pro-
pose two leveraging schemes ϑt which can be used to ac-
commodate different fairness guarantees.

Table 1. Summary of of different leveraging schemes ϑ.
t in FBDE.

FAIR ϑt SR(Qt) SIZE εt (SR0 = 1)

EXACT O(2−t) τ − log τ

REL. O(t−1) τΩ(log t) −(1 + log t) log τ

Exact fairness guarantees that fairness holds irrespective
of other parameters of QT (i.e. boosting steps T ). This
type of fairness guarantee can be established by setting the
leveraging coefficient as ϑE

t := −(C2t+1)−1 log(τ/SR0).

Theorem 3.2. Suppose that ϑt = ϑE
t , then SR(QT ) > τ

and RR(QT ) > RR0

√
τ/SR0 for T ≥ 1.

This setting is not just appealing for its absolute fairness
it provides, but also the exponentially decreasing leverage
ϑE
t — which fits the setting where only a few classifiers

are required to provide a good estimate of P (or are enough
to break the WLA, Definition 3.4). For representation rate,
the
√
τ/SR0 term only degrades the initial representation

rate RR0 slightly when the statistical rate budget τ is high
(which is assumed as we want to achieve a fair QT ). For
instance, when τ = 0.8 and we use the initial distribution
proposed (RR0 = 1), then RR(QT ) >

√
τ ≈ 0.894.

Given that the exact fairness guarantees hold regardless of
T , one could theoretically keep adding classifiers ct forever.
In practice this never happens, and thus we explore a notion
of ‘relative’ fairness. Instead of exact fairness, the guarantee
on fairness gradually becomes weaker ‘relative’ to an initial
fairness constraint over update iterations.

Relative fairness proves a fairness guarantee which de-
grades gracefully with the number of boosting iterations. To
do so, we define ϑR

t := −(4Ct)−1 log(τ/SR0).

Theorem 3.3. Suppose that ϑt = ϑR
t , then SR(QT ) >

τ1+log T and RR(QT ) > RR0(
√

τ/SR0)
1+log T for T ≥ 1.

Notice the key boosting difference with Theorem 3.2: the
sum of the series of leveraging coefficients diverges, so rel-
ative fairness accommodates for more aggressive boosting
schemes. Table 1 summarizes the implications of the two
theorems. It is not surprising that both leveraging schemes
display ϑ.

t → 0 as τ/SR0 → 1, as maximal fairness forces
the distribution to stick to Q0 and is therefore data oblivious.
Differences are apparent when we consider the number of
boosting iterations T : should we boost for T = 5, we still
get SR(QT ) > τ2.3 and RR(QT ) > τ1.15 with relative fair-
ness (taking SR0 = RR0 = 1), which can still be reasonable
depending on the problem. In real-world data scenarios (see
Section 5), we find that large numbers of boosting iterations
can be taken without major degradation of fairness.

4



Fair Densities via Boosting the Sufficient Statistics of Exponential Families

3.3. Sampling for QT

A desirable property for the learned QT would be the ability
to sample efficiently from it. In practice, to utilize the
weak learner WL to create classifiers ct, we require samples
from Qt−1. In the case when X consists of a discrete finite
domain, one can simply enumerate the possible inputs and
sample from a large multinomial distribution. However,
when X consists of continuous random variables, we cannot
use the same strategy. Instead, we utilize Langevin Monte
Carlo (LMC) and a sampling trick to efficiently calculate
samples. It should be noted that LMC can be directly applied
to sampling Qt if Y,S are approximated to be continuous,
i.e. via Grathwohl et al. (2021) or Choi et al. (2017); Xu
et al. (2018); Rajabi & Garibay (2022).

We first note that the conditional distribution Qt(x|y, s) is
of a similar functional form given by Eq. (5). As such, a
natural way to sample from these conditionals is via LMC
sampling algorithms using the distribution’s score function:

∇ logQt(x|y, s) =
t∑

i=1

ϑi∇ci(z)+∇ logQ0(x|y, s), (7)

where z = (x, y, s), as noted in Section 2. Of course, we
require the classifiers ct and log-likelihood of the initial
distribution Q0 to be differentiable. The former can be
achieved by taking ct’s to be simple neural networks. The
latter can be achieved using our proposed initial distribution
(taking Q0(x|y, s) to be normal distributions).

Secondly, the marginal distribution Qt(y, s) can be calcu-
lated by sampling from Q0:

Qt(y, s) ∝ Q0(y, s) E
x|y,s∼Q0

[
exp

(
t∑

k=1

ϑkck(z)

)]
, (8)

where the expectation can be approximated by sampling
from Q0(x|y, s).
With these ingredients, we can now state our sampling rou-
tine. For any t, we first calculate the current marginal
Qt(y, s) via Eq. (8). We can now hierarchically sample
the joint distribution by first sampling from Qt(y, s), and
then sampling from Qt(x|y, s) using LMC.

FBDE as Boosting the Score An interesting perspective
of FBDE is to examine the overdamped Langevin diffusion
process which can be used to sample Qt. Assuming the
necessary assumptions of continuity and differentiability
(including Y and S to simplify the narrative), the (joint)
diffusion process of Qt, as per (7), is given by

Żt =

t∑
i=1

ϑi∇ci(Z) +∇ logQ0(Z) +
√
2Ẇ, (9)

where W is standard Brownian motion and Z = (X,Y,S).

In the limit (w.r.t. the time derivative), the distribution of Z
approaches Qt (Roberts & Tweedie, 1996).

Removing the initial summation, Eq. (9) simplifies to the
Langevin diffusion process for the initial diffusion process
— the score function of Q0 ‘pushes’ the process to areas of
high likelihood. Reintroducing the first summation term,
as the goal of ci(.)’s is to predict the ‘realness’ of samples,
the term defines a vector fields which ‘points’ towards the
most ‘real’ direction in the distribution. Thus, the WLs ci(.)
can be interpreted as correction terms which ‘pushes’ the
diffusion process closer to P.

3.4. Convergence

To discuss properties of convergence FBDE has, we first
introduce a variant of weak learning assumption of boost-
ing (Husain et al., 2020; Cranko & Nock, 2019).

Definition 3.4 (WLA). A learner WL(·, ·) satisfies the
weak learning assumption (WLA) for γP, γQ ∈ (0, 1] iff
for all P,Q ∈ D(Z), WL(P,Q) produces a discriminator
c : Z→ R satisfying EP[c] ≥ C · γP and EQ[−c] ≥ C · γQ.

Intuitively, the WLA constants γP, γQ measures a degree of
separability between the two distributions P and Q — with
γP = γQ = 1 giving maximal separability. As such, in our
algorithm, as Qt → P finding higher boosting constants γt

·
becomes harder. Although our WLA may appear dissimi-
lar to the typical WLAs which rely on a single inequality
(Schapire & Singer, 1999), it has been shown that Defini-
tion 3.4 is equivalent (Cranko & Nock, 2019, Appendix
Lemma 7). When applying the WLA to FBDE, we refer
to constants γt

P, γ
t
Q when referring to the WL learned via

WL(P,Qt−1), i.e., learning the tth classifier ct.

Using the WLA, we examine the progress we can make per
boosting step. In particular, we examine the drop in KL
between input P and successive boosted densities Qt−1,Qt.

Theorem 3.5. Let ϑt be any leverage such that ϑt ≤ 1 for
all t, τ/SR0 > exp(−4C), and C > 0. If WL satisfies WLA
(for P,Qt−1) with γt

P, γ
t
Q, then:

KL(P,Qt−1)− KL(P,Qt) ≥ ϑt · Λt, (10)

where Λt = γt
P · C + Γ(VQt−1

[ct], γ
t
Q); VQt

[ct] denotes
the variance of ct; and Γ(., .) is decreasing w.r.t. the first
argument and increasing w.r.t. the second argument.

The full definition of Γ(., .) can be found in the Appendix.
Intuitively, more accurate WLs (which gives higher γ·

· ’s)
leads to a higher KL drop. The above is a strict improve-
ment upon Husain et al. (2020, Theorem 5) and, therefore,
extends the theoretical guarantees for boosted density es-
timation (not just FBDE) at large. In particular, we find
that a constraint on the variance of the classifier allows us
to remove the two boosting regimes analysis, prevalent in
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Husain et al. (2020) — the conditions for > 0 KL drop only
depends on the variance and WLA constants now.

Specifically, Theorem 3.5 allows for smaller values of γt
Q to

result in a > 0 KL drop than Husain et al. (2020, Theorem
5) (which requires γt

Q > 1/3 for C = log 2). In particular,
taking C = log 2 then having VQt−1 [ct] < C2 · 2/3 ≈ 0.32
allows us to have a > 0 KL drop with smaller γt

Q con-
stants (with an extended discussion in Appendix I). Notably,
given the bounded nature of the classifier, the variance is al-
ready bounded with VQt−1

[ct] ≤ C2 ≈ 0.48 for C = log 2
— thus the condition itself is reasonable. In addition, we
should note that convergence, unlike in the privacy case (Hu-
sain et al., 2020), depends on how the fairness τ parameter
interacts with the update’s leveraging coefficient ϑt.

In addition to consider the per iteration KL drop, we
consider “how far from Q0” we progressively get, in an
information-theoretic sense. For this, we define ∆(Q)

.
=

KL(P,Q0)−KL(P,Q). To simplify the analysis, we assume
that constants γP, γQ are fixed throughout the boosting pro-
cess (or simply taking worse-case constants).

Theorem 3.6. Suppose that λ = − log(τ/SR0), α(γ) =
mint Γ(VQt−1 [ct], γ)/(γC), and C, T > 0.
• If ϑt := ϑE

t , then

∆(QT ) ∈ λ
(
1− 2−T

) [γP + γQ · α(γQ)
2

, 1

]
;

• If ϑt := ϑR
t , then

∆(QT ) ∈
λ

2

[
γP + γQ · α(γQ)

2

(
1

T
+ log T

)
, (1 + log T )

]
,

where a[b, c] = [ab, ac].

In addition to the worse-case convergence rates (lower
bounds) typically analyzed in boosting algorithms, The-
orem 3.6 also characterizes the best-case scenario (up-
per bounds) achievable by our algorithm. Notably, the
gap, computed as the ratio best-to-worst, solely depends
on the parameters of the WLA, and thus is guaranteed
to be reduced as the WL becomes better. As T → ∞,
then with the exact leverage ϑE

t we have that ∆(QT ) =
Θ(− log(τ/SR0)). Additionally assuming γP, γQ → 1 and
setting VQt−1

[ct] → 0 uniformly, the upper and lower
bound exactly matches at − log(τ/SR0) — our bound is
tight. Despite this, with the relative leverage ϑR

t , there will
always be a Ω(− log(τ/SR0)) gap between the upper and
lower bound of ∆(QT ). Furthermore, in contrast to the
geometric convergence of the bounds in the exact fairness
case, in relative fairness the bounds grow logarithmically
with T . However, we do note that for relative leverage we
can achieve a tight bound if we do not attempt to simplify
the series

∑T
k ϑk, see Theorem E.3.

On particularly nice interpretation of Theorem 3.6 is to
utilize the lower bounds of ∆(QT ) to determine sufficient
conditions for small KL. In particular, we find the sufficient
number of boosting steps T to make KL(P,QT ) small.
Corollary 3.7. Suppose that the same condition in Theo-
rem 3.6 hold and ε < KL(P,Q0). Then KL(P,QT ) < ε,
for:
• ϑt := ϑE

t if

T >
1

log 2
· log

((
1− 2 · KL(P,Q0)− ε

λ · (γP + γQ · α(γQ))

)−1
)
.

• ϑt := ϑR
t if

T > exp

(
4 · KL(P,Q0)− ε

λ · (γP + γQ · α(γQ))

)
.

One should note, that when comparing the exact leverage
versus the relative versus in Corollary 3.7, we are comparing
the growth of two functions: x 7→ log((1 − 2x)−1) for
exact leverage; and x 7→ exp(4x) for relative leverage. The
former dominates asymptotic dominates the latter. That is,
using the exact leverage will require more boosting updates
to achieve same drop in KL; which follows our intuition
that relative leveraging has better boosting convergence at
the cost of decaying fairness.

4. Mollifier Interpretation
Previously it has been shown that boosted density estimation
for privacy can be interpreted as boosting within a set of a
set of private densities — dubbed a mollifier (Husain et al.,
2020). To study the set of distributions FBDE boosts within,
we adapt the relative mollifier construction for fairness.
Definition 4.1. Let Q0 be a reference distribution. Then the
ε-fair relative mollifier Mε,Q0

is the set of distributions Q
satisfying ∀s, s′ ∈ S

max

{
SR(Q, s, s′; y)

SR(Q0, s, s′; y)
,

SR(Q0, s, s
′; y)

SR(Q, s, s′; y)

}
≤ eε. (11)

The reference distribution Q0 can be interpreted as the initial
distribution chosen in FBDE. Notably, one can change the
constraint in Eq. (11) to accommodate for different notions
of data fairness, i.e., replacing “SR” to “RR”. The following
Lemmas 4.2 and 4.3 holds identically for representation rate
style mollifiers — with the first lemma providing a fairness
guarantees for all elements in Mε,Q0 .
Lemma 4.2. If Q ∈Mε,Q0 , then SR(Q) ≥ SR0 · exp(−ε).

Lemma 4.2 shows a significant difference from the privacy
case: the distribution within a carefully constructed mollifier
are fair; not just the sampler (Husain et al., 2020). This dif-
ference is significant in fairness as knowledge of selected el-
ements in the mollifier can elucidate sources of (un)fairness
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Figure 2. Evaluations of FBDE over boosting iterations. Left: WL accuracy vs KL of M-R-0.9 over boosting iterations on the ADULT

dataset. Right: SR vs KL of M-E-1.0 over boosting iterations on the MINNEAPOLIS dataset — original data’s SR is 0.684± 0.005. The
shaded region depicts the 1 std. range. The horizontal line / point indicates the T = 8 (left) KL(P,Q8) value and (right) SR(Q8) value.

learned by a model. Furthermore, this detail is crucial in
applications where we need a set of fair distributions (Kang
et al., 2022). Given Lemma 4.2, a natural question to ask is,
what kinds of fair distributions are included in the relative
mollifier? The following lemma answers this question.
Lemma 4.3. Suppose that Mε,Q0

is a relative mollifier
and Q ∈ D(Z) has SR(Q) ≥ exp(−ε). If ∀s, s′ ∈ S

we have either SR(Q, s, s′; y) > 1 or SR(Q, s, s′; y) ≤
SR(Q0, s, s

′; y) ≤ 1, then Q ∈Mε,Q0 .

Intuitively, the condition of membership in Lemma 4.3
can be interpreted as Q and Q0 having a shared ‘type’ of
(un)fairness: letting S = {male, female}, if the probabil-
ity of positive outcomes in both Q,Q0 is higher given S =
male than S = female but Q0 is more fair, then Q ∈Mε,Q0

.
A significant instantiation of Lemma 4.3 is when SR0 = 1,
which gives us that SR(Q) ≥ exp(−ε) =⇒ Q ∈ Mε,Q0 .
In other-words, we have a complete mollifier: by combining
Lemma 4.2, Q ∈ Mε,Q0

⇐⇒ SR(Q) ≥ exp(ε) which
notably including all perfectly fair distributions.

We can now express FBDE as the process of mollification
argminQ∈M KL(P,Q) (Husain et al., 2020), i.e., finding
the closest element of a mollifier Mε,Q0

w.r.t. to an input
P. In particular, by taking ε = − log(τ/SR0) the statistical
rate conditions in Lemmas 4.2 and 4.3 correspond exactly
to the fairness budget τ of FBDE. Taking SR0 = 1, the
minimization of KL (as per Theorem 3.5) can be interpreted
as an iterative boosting procedure for mollification. Even
in the case when Mε,Q0

is incomplete (SR ̸= 1), it is still
useful as careful selection of Q0 can practically yield all
distributions we are interested in, i.e., those close to P. Fur-
thermore, it is fine to further focus on a subset of a mollifier.
Especially so in our case, where we only consider a ‘boost’-
able exponential family subset of Mε,Q0

; we note the strong
approximation capabilities of exponential families (Nielsen
& Garcia, 2009, Section 1.5.4).

One interesting perspective of FBDE and its different fair-
ness settings is to examine the mollifiers they are boosting
within. In particular, we can consider the εt parameter
in Definition 4.1, or the ‘size’, of the relative mollifiers

w.r.t. iteration value t — summarized in Table 1. Assum-
ing SR0 = 1, using the exact leverage ϑE

t implies that we
are boosting within a constant sized mollifier as per Theo-
rem 3.2, with εt = − log(τ/SR0). For the relative leverage
ϑR
t , as the fairness degrades in this case, the corresponding

mollifier grows, for which εt = −(1 + log t) log(τ/SR0).
Notice that size of the mollifier also coincides (up to con-
stant multiplication) with the upper bounds of ∆(QT ) as
per Theorem 3.6.

5. Experiments
In this section, we (1) verify that FBDE debiased densities
and ad-hears to specified data fairness measures; (2) inspect
the implications of utilizing samples produced by a FBDE
debiased density in downstream tasks, specifically, predic-
tion and clustering tasks; (3) explore the interpretability
of FBDE when utilizing decision tree (DT) weak learners
(WLs); and (4) present an experimental on a dataset with
continuous X.

To analyze these points, we evaluate FBDE over pre-
processed COMPAS (binary S = race) and ADULT (binary
S = sex) datasets provided by AIF3602 (Bellamy et al.,
2019). This consists of a discrete binary domain.

We consider 4 configurations of FBDE, boosted for T = 32
iterations. We consider a fixed fairness budget τ = 0.8
throughout and take a combination of exact vs relative lever-
age; and SR0 = 1 vs SR0 = 0.9. We designate each con-
figuration by M-X-Y, where X encodes the leverage and
Y encodes the base rate, i.e., M-E-1.0 uses exact leverage
with SR0 = 1. DT WLs are calibrated using Platt’s method
(Platt et al., 1999). For baselines, we consider two differ-
ent data pre-processing approaches. Firstly, we consider
the max entropy approach proposed by Celis et al. (2020)
(MAXENT) with default parameters. Secondly, we compare
against TabFairGAN proposed by Rajabi & Garibay (2022)
(TABFAIR), which includes a separate training phase for
fairness. In clustering, we consider a Rényi Fair K-means

2Public at: www.github.com/Trusted-AI/AIF360
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Table 2. FBDE (T = 32) and baselines evaluated for COMPAS and ADULT datasets. The table reports the mean and s.t.d.
DATA M-E-1.0 M-E-0.9 M-R-1.0 M-R-0.9 MAXENT TABFAIR FAIRK

C
O

M
PA

S
(S

=
R

A
C

E
)

D
A

TA

RR .662± .007 .966± .008 .977± .008 .944± .010 .964± .009 .992± .004 .632± .052 −
SR .747± .013 .988± .006 .899± .011 .978± .011 .896± .011 .992± .006 .727± .100 −
KL − .135± .020 .129± .020 .132± .020 .127± .020 .164± .018 2.71± .735 −

P
R

E
D SRC .747± .020 .959± .025 .875± .025 .945± .027 .872± .024 .939± .018 .802± .074 −

EO .781± .034 .960± .026 .900± .041 .950± .028 .895± .039 .944± .020 .815± .079 −
ACC .660± .004 .641± .014 .653± .012 .642± .010 .656± .012 .648± .015 .591± .043 −

C
L

U
S δPR .334± .019 .332± .022 .334± .019 .334± .019 .319± .036 .333± .020 .286± .027 .259± .013

δSR .288± .055 .235± .082 .284± .055 .284± .055 .256± .084 .288± .059 .268± .063 .284± .036
DIST .065± .000 .078± .000 .078± .000 .078± .000 .078± .000 .078± .000 .078± .001 .069± .001

A
D

U
LT

(S
=

S
E

X
)

D
A

TA

RR .496± .002 .958± .003 .979± .003 .919± .004 .957± .003 .995± .002 .516± .023 −
SR .360± .005 .961± .005 .883± .006 .924± .006 .865± .006 .979± .004 .862± .101 −
KL − .122± .006 .119± .006 .113± .006 .114± .006 .182± .005 1.68± .538 −

P
R

E
D SRC .360± .003 .818± .010 .766± .010 .793± .011 .753± .008 .919± .011 .823± .118 −

EO .471± .008 .959± .016 .908± .018 .935± .016 .895± .016 .981± .010 .867± .105 −
ACC .803± .003 .785± .002 .788± .002 .787± .002 .788± .002 .773± .005 .781± .006 −

C
L

U
S δPR .125± .067 .093± .019 .101± .025 .116± .027 .111± .033 .130± .061 .137± .038 .117± .039

δSR .426± .232 .252± .082 .302± .076 .190± .061 .254± .086 .468± .237 .437± .179 .296± .151
DIST .034± .000 .037± .000 .037± .000 .037± .000 .037± .000 .037± .000 .037± .000 .035± .000

(K = 4) approach as per Baharlouei et al. (2019) (FAIRK).

In evaluating all approaches, we utilize 5-fold cross val-
idation and evaluate all measurements using the test set
(whenever appropriate). All training was on a MacBook Pro
(16 GB memory, M1, 2020).

Additional experiments and discussion is presented in the
Appendix, including, additional dataset comparisons, in-
processing algorithm comparison, and the runtime of ap-
proaches. Code for FBDE is available at www.github.
com/alexandersoen/fbde.

Data Fairness Table 2 summarizes all results for COM-
PAS and ADULT. To evaluate the data fairness of our ap-
proach and baselines MAXENT and TABFAIR we compare
the representation rate RR and statistical rate SR. We first
note that TABFAIR does not target RR directly. To evaluate
the information maintained after debiasing, we measure the
KL between the original dataset and debiased samples.

All approaches apart from TABFAIR provides an increase
in fairness (for both RR and SR). Across FBDE variants,
we notice a trade-off between fairness and KL, where exact
leveraging provides stronger fairness than relative leverag-
ing at the cost of higher KL. FBDE performs better for both
fairness and KL when compared to TABFAIR. We notice
that TABFAIR struggles in the smaller COMPAS dataset
and can even harm fairness (notice the s.t.d.). Notably, the
KL is significantly worse than other approaches as a result
of miss-matching of input distribution P support (with small
δ = 10−9 added for unsupported regions) — possibly as
a result of the transformation from discrete to continuous
domains (Rajabi & Garibay, 2022); in addition to possi-

ble mode collapse in training (Thanh-Tung et al., 2019).
MAXENT has the best SR, although it comes with a slight
cost in KL when compared to FBDE.

It should be noted that FBDE’s fairness target / budget is set
to τ = 0.8. So if a higher SR is required, τ can be increased.
Although we take T = 32, as the leveraging coefficients
decrease rapidly, we would expect a majority of the learning
to occur in the initial iterations of the algorithm. This is
indeed the case, as shown in Fig. 2 (left). We also note that
the decrease in KL is proportional to the accuracy of WLs.
This follows the intuition of Theorem 3.5 — more accurate
weak learners implies larger boosting constants γ·, which
leads to larger drops in KL.

Prediction Fairness To evaluate the prediction fair-
ness, we evaluate a decision tree classifier (CLF) (from
scikit-learn with max depth of 32) trained on debi-
ased samples. CLF is evaluated on CLF’s statistical rate
(with Ŷ = 1) (SRC) and equality of opportunity ratio / true
positive rate ratio (EO). Accuracy (ACC) is evaluated to
measure the degradation from utilizing debiased samples.

When comparing for prediction, all approaches compared to
data provide an increase for both SRc and EO with a slight
decrease in ACC. For COMPAS, the FBDE variants and
M-E-1.0 are comparable across fairness and utility; with
TABFAIR slightly lower in fairness and accuracy scores. In
ADULT, the FBDE variants and TABFAIR are similar in
performance, with MAXENT having the best SRc and EO
at the cost of the worst ACC.

Clustering Fairness To evaluate the clustering fairness, a
K(= 4)-Means classifier (from scikit-learn) is trained
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using the debiased samples. The fairness considerations
in clustering is two fold. First we measure the difference
in fairness across clusters (lower is better): we take the
difference between the min and max ratio of privileged data
points (S = 1) in each cluster (as per Chierichetti et al.
(2017)) (δPR); and between ratios of statistical rate (δSR).
Secondly, to evaluate the quality, we measure the average
Manholobis distance to designated cluster centers (DIST).

FAIRK has the best utility DIST across approaches. Inter-
estingly, pre-processing approaches can still be competi-
tive to FAIRK across the fairness measures. In particular,
δSR of the pre-processing approaches, particularly FBDE
algorithms, can actually beat FAIRK— which is perhaps
expected as data SR is specifically targeted. In ADULT,
δPR was also significantly improved using pre-processing.

Interpretability Uniquely, FBDE allows for the learned
distribution to be examined by analyzing the WLs learned.
For instance, Fig. 1 depicts a DT WL learned for COMPAS
by M-E-1.0 in one of its folds. Importantly, the ‘realness’
and ‘fakeness’ equate to modifications of the initial perfectly
fair distribution Q0 to be come closer to P: by Eq. (5)
real predictions are up-weighted while fake predictions are
down-weighted. This can be used to examine the underlying
bias within input P. For example, taking ‘True’ (twice) on
the “race”-“two year recid” path ends on a majority “Fake”
node, which indicates that to get closer to P, the probability
of non-Caucasians re-offenders was increased.

From a proactive point of view, one can instead restrict the
hypothesis class in which the WL outputs. For instance,
one can restrict the input domain to not include sensitive
attributes — however, this may a cause harm in KL utility,
and may still potentially learn spurious correlations in the
form of proxies (Datta et al., 2017). Alternatively, the in-
terpretability of the WLs allows for a human-in-the-loop
algorithm: an auditor can become the stopping criteria of
FBDE by comparing the gain in utility of an additional WL
against the possible unfairness its reweighting could causes.

Continuous Domain In addition to the discrete datasets
of COMPAS and ADULT, we consider the MINNEAPO-
LIS police stop dataset3 (binary S = race) which contains
numeric / continuous features. In particular, we consider
only a subset of features, taking position, race, and ‘person
searched’. We evaluate M-E-1.0 with 1 hidden layer (20
neuron) neural networks as WLs, with T = 16 iterations.

Fig. 2 (right) plots the change in SR versus KL across
boosted updates. Here, a small δ = 10−9 probability value
is added to a binned domain to estimate the KL. We ver-
ify that the SR stays above the budget in this continuous
domain setting, where SR(P) = 0.684± 0.005. Similarly,

3Public at: www.opendata.minneapolismn.gov/
datasets/police-stop-data

the RR is improved (see Appendix). However, we note
that the learned RR is lower than what theory may suggest,
i.e., M-E-1.0 gives RR(QT ) = 0.847 ± 0.002 which is
slightly lower than the expected

√
τ ≈ 0.894 given by The-

orem 3.2 (original RR(P) = 0.183± 0.001). We attribute
this miss-match in theory due to numerical approximation
error in the estimation of samples via LMC and the MCMC
estimation of Eq. (8), where better estimates could improve
performance. For instance, in our experiments we only use
the Unadjusted Langevin algorithm for LMC; more sophis-
ticated methods can be used for better samples (Roberts &
Tweedie, 1996). One differing aspect readers may notice
is the non-monotonicity of the KL curve. In addition to
numerical approximation error, the non-monotonicity may
be occurring due to the binned (δ) estimation of the KL.

6. Limitations and Conclusion
In this paper, we introduce a new boosting algorithm,
FBDE, which learns exponential family distributions which
are both representation rate and statistical rate fair. To con-
clude, we highlight a few limitations of FBDE.

Firstly, FBDE is a boosting algorithm and thus relies on the
WLA holding, i.e., our fairness and convergence guarantees
rely on this. Thus the performance of the WLs should be
interrogated to ensure that FBDE does not harm fairness
and cause subsequent social harm, e.g., Fig. 2 (left).

Secondly, we reiterate that FBDE is not an unilateral re-
placement of other (types of) fairness algorithms, where
specialized algorithms can provide stronger guarantees for
specific criteria. Instead, FBDE targets an upstream source
of unfairness in the ML pipeline, which can eventually allow
for other forms of fairness. Nevertheless, when attempting
to achieve these downstream fairness metrics one should be
careful by examining FBDE’s performance per boosting
iterations. Indeed, some data settings can cause FBDE to
have critical failure in, e.g., SRC, see Appendix O.

Lastly, we note that the fairness guarantees (Theorems 3.2
and 3.3) can break in practice as a result of numerical
approximation error — especially in continuous domain
datasets. We leave improvements of, e.g., sampling for
FBDE in continuous domains for future work.
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Appendix
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differentiate with the numbering in the main file, the sectioning is letter-based (A, B, ..., etc.). Thus, Theorems
in the Appendix will be displayed as (A.1, B.3, ..., etc.). Additionally, figure and tables in the Appendix are
numbered with Roman numerals (I, II, ..., etc.).

Table of contents
Proofs
↪→ Appendix A: Proof of Lemma 3.1 Pg 13
↪→ Appendix B: Proof of Theorem 3.2 Pg 13
↪→ Appendix C: Proof of Theorem 3.3 Pg 14
↪→ Appendix D: Proof of Theorem 3.5 Pg 15
↪→ Appendix E: Proof of Theorem 3.6 Pg 17
↪→ Appendix F: Proof of Corollary 3.7 Pg 20
↪→ Appendix G: Proof of Lemma 4.2 Pg 21
↪→ Appendix H: Proof of Lemma 4.3 Pg 21

Additional Technical Discussion
↪→ Appendix I: Analyzing KL Drop Bound Pg 22
↪→ Appendix J: General Fair Mollifiers Pg 23
↪→ Appendix K: Improvement in the Low / Sparse Data Regime via Prior Mixing Pg 23

Additional Experiments
↪→ Appendix L: Additional Dataset Descriptions Pg 24
↪→ Appendix M: Extended Discrete Experiments Pg 24
↪→ Appendix N: Additional Continuous Experiments Pg 25
↪→ Appendix O: Extra Discrete Experiments Pg 25
↪→ Appendix P: DUTCH and GERMAN Without Mixing Priors Pg 25
↪→ Appendix Q: In-Processing Experiments Pg 26

12



Fair Densities via Boosting the Sufficient Statistics of Exponential Families

A. Proof of Lemma 3.1
Proof: To lower bound the pairwise statistical rate, we utilize the ‘unrolled’ computation of the required marginal measures.
For arbitrary y, s we have

Qt(y|s) =
Qt(y, s)

Qt(s)
=

Qt−1(y, s)

Qt−1(s)
· Zt(y, s)

Zt(s)
· · · = Q0(y, s)

Q0(s)
·

t∏
i=1

Zi(y, s)

Zi(s)
= Q0(y|s) ·

t∏
i=1

Zi(y, s)

Zi(s)
.

Thus, the pairwise statistical rate for s, s′ is recovered immediately by taking a lower bound on the statistical rate of Q0.

B. Proof of Theorem 3.2
To prove Theorem 3.2, we split the proof into the statistical rate component of the theorem and the representation rate
component of the theorem.

B.I. Statistical Rate

To prove the exact fairness guarantee for statistical rate, we first use the following lemmas.

Lemma B.1. For T ≥ 1, we have

SR(QT ) ≥ SR0 · exp
(
−4C

T∑
i=1

ϑt

)
. (12)

Proof: We first consider bounds on the difference between log-normalizer (log-partition) functions. First by taking the
smallest and largest values of the classifier ct(.) (which assumed to be bounded in [−C,C]), we have

−C · ϑt ≤ ϑtct(x, y, s) ≤ C · ϑt

Then by taking the exponential, integrand (w.r.t., measure dQt−1(x|y, s)), and logarithm, we get

−Cϑt ≤ log
(∫

X
exp(ϑtct(x, y, s))dQt−1(x|y, s)

)
≤ Cϑt

−Cϑt ≤ logZt(y, s) ≤ Cϑt. (13)

Then by taking the largest difference between logZt(y, s) and logZt(y, s
′), we have that for any s, s′

−2Cϑt ≤ logZt(y, s)− logZt(y, s
′) ≤ 2Cϑt. (14)

Identically, we can bound the difference for logZt(s) by replacing the measure in the integrand step with dQt−1(x, y|s),
giving:

−2Cϑt ≤ logZt(s)− logZt(s
′) ≤ 2Cϑt. (15)

Remark B.2. We can also bound logZt (i.e., Appendix B.I) using the same method by, again, replacing the measure to be
dQt−1

Together, (14) and (15) allows us to simplify Lemma 3.1:

SR(Qt, s, s
′; y) ≥ SR0 ·

t∏
i=1

(
Zi(s

′)

Zi(s)
· Zi(y, s)

Zi(y, s′)

)
= SR0 · exp

(
t∑

i=1

log

(
Zi(s

′)

Zi(s)
· Zi(y, s)

Zi(y, s′)

))

≥ SR0 · exp
(
−4C

t∑
i=1

ϑi

)
.

As this holds for any t, s, s′, the bound holds for SR(QT ) as required.

We can now prove the statistical rate part of Theorem 3.2.

13



Fair Densities via Boosting the Sufficient Statistics of Exponential Families

Proof: Taking ϑt = −(C2t+1)−1 log(τ/SR0), from Lemma B.1 we get:

SR(Qt) ≥ SR0 · exp
(
−4C

t∑
i=1

ϑi

)
= SR0 · exp

(
2 log

(
τ

SR0

) t∑
i=1

1

2i

)
= SR0 · exp

(
2 log

(
τ

SR0

)(
1− 1

2t

))
≥ SR0 · exp

(
log

(
τ

SR0

))
= τ.

The last inequality follows that we are only considering t ≥ 1. Thus SR(QT ) > τ as required.

We now move to proving the representation rate component of Theorem 3.2.

B.II. Representation Rate

To lower bound the corresponding representation rate, we present a similar lemma to Lemma B.1.

Lemma B.3. For T ≥ 1, we have

RR(QT ) ≥ RR0 · exp
(
−2C

T∑
i=1

ϑt

)
. (16)

Proof: Proving Lemma B.3 is similar to the proof of Lemma 3.1. Specifically, we use Eq. (15) to bound the representation
rate.

First, we calculate the marginal distribution via a recursive relation similar to Lemma 3.1:

Qt(s) = Qt−1(s) ·
Zt(s)

Zt
= . . . = Q0(s) ·

∏
i=1

Zi(s)

Zt
.

Now, we Eq. (15) to bound the resulting representation rate:

RR(Qt, s, s
′) ≥ RR0 ·

t∏
i=1

Zi(s)

Zi(s′)
= RR0 · exp

(
t∑

i=1

log

(
Zi(s)

Zi(s′)

))

≥ RR0 · exp
(
−2C

t∑
i=1

ϑt

)
.

As the bound holds for all s, s′, the bound holds for RR(Qt) required.
Remark B.4. Notice that Lemma B.3 holds even when we restrict Qt to only have non-sensitive features x and sensitive
features s (i.e., no labels being separately considered). This allows for leveraging schemes ϑt to be designed for representation
rate specifically. For instance, for a target representation rate τRR we can establish exact and relative representation rate
fairness guarantees by replacing “τ/SR0” to “τRR/RR0”.

We can now prove the representation rate component of Theorem 3.2.

Proof: Taking ϑt = −(C2t+1)−1 log(τ/SR0), from Lemma B.3 we get:

RR(Qt) ≥ RR0 · exp
(
−2C

t∑
i=1

ϑt

)
= RR0 · exp

(
log

(
τ

SR0

) t∑
i=1

1

2i

)
= RR0 · exp

(
log

(
τ

SR0

)(
1− 1

2t

))
≤ RR0 · exp

(
1

2
log

(
τ

SR0

))
= RR0 ·

√
τ

SR0
.

As required.

C. Proof of Theorem 3.3
The relative fairness guarantee is proven similarly to the exact fairness guarantee in Appendix B. We also split the proof into
statistical rate and representation rate components of the theorem.
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C.I. Statistical Rate

Proof: Taking ϑt = −(4Ct)−1 log(τ/SR0), from Lemma B.1 we get:

SR(Qt) ≥ SR0 · exp
(
−4C

t∑
i=1

ϑi

)

= SR0 · exp
(
log

(
τ

SR0

) t∑
i=1

1

i

)

> SR0 · exp
(
log

(
τ

SR0

)
·
(
1 +

∫ t

1

1

i
di

))
= SR0 · exp

(
log

(
τ

SR0

)
· (1 + log t)

)
= SR0 · exp

(
log

(
τ

SR0

))
· exp

(
log

(
τ

SR0

)
· log t

)
= τ ·

(
τ

SR0

)log t

= SR− log t
0 · τ1+log t.

Here we note that log(τ/SR0) < 0 as τ < SR0. Furthermore, note that SR− log t
0 is an increasing function of t ≥ 1, Thus

taking t = 1 for this term:

SR(Qt) > SR− log 1
0 · τ1+log t = τ1+log t.

Thus SR(QT ) > τ1+log T as required.

C.II. Representation Rate

Using Lemma B.3, we prove the representation rate component of Theorem 3.3.

Proof: Taking ϑt = −(4Ct)−1 log(τ/SR0), from Lemma B.3 we get:

RR(Qt) ≥ RR0 · exp
(
−2C

t∑
i=1

ϑt

)

= RR0 · exp
(
1

2
· log

(
τ

SR0

) t∑
i=1

1

i

)

> RR0 · exp
(
1

2
· log

(
τ

SR0

)(
1 +

∫ t

1

1

i
di

))
= RR0 · exp

(
1

2
· log

(
τ

SR0

)
(1 + log t)

)
= RR0 ·

(√
τ

SR0

)1+log t

.

As required.

D. Proof of Theorem 3.5
Lemma D.1. The KL-drop is given by:

KL(P,Qt−1)− KL(P,Qt) = ϑt · EP[ct]− logEQt−1 [exp(ϑtct)]. (17)
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Proof: The drop is given by the following:

KL(P,Qt−1)− KL(P,Qt) =

∫
log

(
P

Qt−1

)
dP−

∫
log

(
P

Qt

)
dP

=

∫
log

(
P

Qt−1

)
dP−

∫
log

(
P

exp (ϑtct − logZt) ·Qt−1

)
dP

=

∫
X×Y×S

log

(
exp (ϑtct(x, y, s)− logZt) ·Qt−1(x, y, s)

Qt−1(x, y, s)

)
dP(x, y, s)

=

∫
X×Y×S

(ϑtct(x, y, s)− logZt) dP(x, y, s)

= ϑt · EP[ct]− logZt

= ϑt · EP[ct]− logEQt−1
[exp(ϑtct)],

where the last line follows from the definition of the normalizing term (noting it can be expressed as an expectation).
Lemma D.2. Given the WLA and WLs with bounding constant C > 0, given coefficients:

A =
1

4C2
[exp(C)− exp(−C)] ; B =

1

2C
[exp(C)− exp(−C)] ; K =

exp(C) + exp(−C)

2
−AC2,

then for WL ct(.),
EQt−1

[exp(ct)] < exp(−Γ(VQt−1
[ct], γ

t
Q)) (18)

where
Γ(VQt−1

[ct], γ
t
Q) = log

(
(A · VQt−1

[ct]− C2A · γt
Q +K)−1

)
. (19)

Proof: First notice that f(x) = Ax2 + Bx + K is an upper bound of exp(x) on [−C,C], i.e., exp(x) ≤ f(x). The
coefficients are derived from fitting f(x) to satisfy points (−C, exp(−C)) and (C, exp(C)); and ensuring monotonicity on
the interval. Fig. I depicts the bound (and a comparison to a prior bound used in Husain et al. (2020)).

From this, we have:

EQt−1
[exp(ct)] ≤ EQt−1

[Ac2t +Bct +K]

= A · EQt−1 [c
2
t ] +B · EQt−1 [ct] +K

= A · (VQt−1
[ct] + EQt−1

[ct]
2) +B · EQt−1

[ct] +K

= A · VQt−1
[ct] + EQt−1

[ct] · (A · EQt−1
[ct] +B) +K.

Note from the WLA we have EQt−1
[−ct] ≥ C · γt

Q ⇐⇒ EQt−1
[ct] ≤ −C · γt

Q < 0. Furthermore, notice that Az+B > 0
and increasing for z ∈ [−C,C]:

Az +B =
exp(C)− exp(−C)

2C

[ z

2C
+ 1
]
> 0 (for z ∈ [−C,C]).

Thus,

EQt−1
[exp(ct)] ≤ A · VQt−1

[ct] + EQt−1
[ct] · (A · EQt−1

[ct] +B) +K

≤ A · VQt−1
[ct]− γQ · C · (A · EQt−1

[ct] +B) +K

≤ A · VQt−1
[ct]− γQ · C · (B − C ·A) +K.

Which gives the Lemma, as per:

EQt−1
[exp(ct)] ≤ A · VQt−1

[ct]− γQ · C · (B − C ·A) +K

= exp
(
log
(
A · VQt−1

[ct]− γQ · C · (B − C ·A) +K
))

= exp
(
(−1) · − log

(
A · VQt−1

[ct]− γQ · C · (B − C ·A) +K
))

= exp
(
− log

(
A · VQt−1

[ct]− γQ · C · (B − C ·A) +K
)−1
)
.

Finally, we conclude the proof by noting that 2CA = B.
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Remark D.3. We note that the quadratic approximation f(x) = Ax2 + Bx +K gets worse as C increases. Intuitively,
as the interval approximation increases, the quadratic finds it more difficult to “catch-up” to the exponential growth of
x 7→ exp(x). See Fig. I for a pictorial view of this.

Figure I. Upper bounds for exp(x). The curves are: original exp(x) function (blue); our quadratic function (red); and linear function
used in Husain et al. (2020) (green).

Now we can prove Theorem 3.5.

Proof: Given that τ/SR0 > exp(−4C), we have that for each leveraging scheme in Theorems 3.2 and 3.3 the leverage is
bounded by ϑt ≤ 1 for all t.

Thus with Lemmas D.1 and D.2, we bound the KL:

KL(P,Qt−1)− KL(P,Qt) = ϑt · EP[ct]− logEQt−1
[exp(ϑtct)] (Lemma D.1)

≥ ϑt · EP[ct]− ϑt · logEQt−1
[exp(ct)] (a)

= ϑt · (EP[ct]− logEQt−1
[exp(ct)])

≥ ϑt · (EP[ct]− log exp(−Γ(VQt−1 [ct], γ
t
Q)) (Lemma D.2)

= ϑt · (EP[ct] + Γ(VQt−1 [ct], γ
t
Q)

≥ ϑt · (C · γt
Q + Γ(VQt−1 [ct], γ

t
Q), (WLA cond. on P)

where (a) is given by Jensen’s inequality and noting that x 7→ x1/ϑt is convex as ϑt ≤ 1.

E. Proof of Theorem 3.6
To prove the theorem, we breakdown the proof into the corresponding upper and lower bounds. In particular, we first prove
general Lemmas first and then specialize for the specific leveraging coefficients ϑt to give the Theorem.
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E.I. Upper Bound

Lemma E.1. Suppose C > 0, then

KL(P,Q0)− KL(P,QT ) ≤ 2C ·
T∑

k=1

ϑk. (20)

Proof: We first note that by unrolling the definition of QT (Eq. (5)), the density can be stated directly in terms of the initial
distribution:

QT = Q0 exp(⟨ϑ, c⟩ − φ(ϑ)), (21)

where ϑ = (ϑ1, . . . , ϑT ), c = (c1, . . . , cT ), and φ(ϑ) =
∑T

i=1 logZi.

Thus similarly to Lemma D.1, calculate the total drop:

KL(P,Q0)− KL(P,QT ) =

∫
log

(
P

Q0

)
dP−

∫
log

(
P

QT

)
dP

=

∫
log

(
P

Q0

)
dP−

∫
log

(
P

Q0 exp(⟨ϑ, c⟩ − φ(ϑ))

)
dP

=

∫
log

(
Q0 exp (⟨ϑ, c⟩ − φ(ϑ))

Q0

)
dP

=

∫
(⟨ϑ, c⟩ − φ(ϑ)) dP

= ⟨ϑ,
∫

cdP⟩ − φ(ϑ).

We now upper bound each of these terms. Firstly, we note that as each weak learner ct is upper bounded by C, we can easily
bound the first term:

⟨ϑ,
∫

cdP⟩ ≤ ⟨ϑ,
∫

C · 1dP⟩ = C ·
T∑

k=1

ϑk.

Similarly, we can bound the second term by noting Remark B.2. Thus using an identical bound to Appendix B.I we get:

φ(ϑ) =

T∑
i=1

logZi ≥
T∑

k=1

(−Cϑk) = −C ·
T∑

k=1

ϑk

Thus it follows that

KL(P,Q0)− KL(P,QT ) ≤ 2C ·
T∑

k=1

ϑk.

As required.

E.II. Lower Bound

Lemma E.2. Suppose α(γ)
.
= mint Γ(VQt−1

[ct], γ)/(γC), C > 0, ϑ ≤ 1 for all t, and T > 0, then:

KL(P,Q0)− KL(P,QT ) ≥ (γP + γQ · α(γQ)) · C ·
T∑

k=1

ϑk.

Proof: To establish the lower bound, we repeatedly apply Theorem 3.5:

KL(P,QT ) ≤ KL(P,QT−1)− ϑT · ΛT ≤ . . . ≤ KL(P,Q0)−
T∑

k=1

ϑk · Λk.
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Let α(γ) .
= mint Γ(VQt−1

[ct], γ)/(γC). Note that the variance is bounded by 0 ≤ VQt−1
[ct] ≤ EQ[c

2
t ] ≤ C2 and that

Γ(·, γ) is a decreasing function for all γ ∈ [0, 1]. Thus we have

KL(P,Q0)− KL(P,QT ) ≥
T∑

k=1

ϑk · Λk

=

T∑
k=1

ϑk ·
(
γt
P · C + Γ(VQt−1

[ct], γ
t
Q)
)

=

T∑
k=1

ϑk ·
(
γP · C + Γ(VQt−1

[ct], γQ)
)

(Fixed const. assum.)

≥
T∑

k=1

ϑk · (γP · C + γQ · C · α(γQ)) (Definition of α)

= (γP + γQ · α(γQ)) · C ·
T∑

k=1

ϑk.

As required.

E.III. For Fairness Leverage Coefficients

From Lemmas E.1 and E.2 we have that:
Theorem E.3. Suppose α(γ)

.
= mint Γ(VQt−1

[ct], γ)/(γC), C > 0, ϑ ≤ 1 for all t, and T > 0, then:

(γP + γQ · α(γQ)) · C ·
T∑

k=1

ϑk ≤ KL(P,Q0)− KL(P,QT ) ≤ 2C ·
T∑

k=1

ϑk.

To upper and lower bound the statistical difference ∆(QT ), we upper and lower bound the sum of leveraging coefficients ϑt

for each of the fairness guarantees.

E.III.1. EXACT FAIRNESS LEVERAGE

Proof: Taking ϑt = −(C2t+1)−1 log(τ/SR0) from geometric series, we have

T∑
k=1

ϑk = − log(τ/SR0)

2C

T∑
k=1

1

2k
= − log(τ/SR0)

2C

(
1− 1

2T

)

Thus we have

− log(τ/SR0) ·
γP + γQ · α(γQ)

2
·
(
1− 1

2T

)
≤ KL(P,Q0)− KL(P,QT ) ≤ − log(τ/SR0)

(
1− 1

2T

)
As required.

E.III.2. RELATIVE FAIRNESS LEVERAGE

Proof: From harmonic series, we have that

1

T
+ log T <

T∑
k=1

1

k
< 1 + log T.

Thus taking ϑt = −(4Ct)−1 log(τ/SR0) we have that

− log(τ/SR0) ·
1

4C
·
(
1

T
+ log T

)
<

T∑
k=1

ϑt < − log(τ/SR0) ·
1

4C
· (1 + log T ) .
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This gives the following bounds:

− log(τ/SR0) ·
γP + γQ · α(γQ)

4
·
(
1

T
+ log T

)
≤ KL(P,Q0)− KL(P,QT ) ≤ − log(τ/SR0) ·

1

2
· (1 + log T ) .

As required.

F. Proof of Corollary 3.7
Proof: The statement follows directly from utilizing Theorem E.3 and utilizing the series lower bounds used in the proof of
Theorem 3.6.

Indeed, we have

KL(P,Q0)− KL(P,QT ) ≥ (γP + γQ · α(γQ)) · C ·
T∑

k=1

ϑk

⇐⇒ KL(P,QT ) ≤ KL(P,Q0)− (γP + γQ · α(γQ)) · C ·
T∑

k=1

ϑk.

Thus, a sufficient conditions for KL(P,QT ) < ε is that the RHS is < ε.

Thus we are looking to find conditions where the following holds:

KL(P,Q0)− ε

(γP + γQ · α(γQ)) · C
<

T∑
k=1

ϑk. (22)

We will take λ = − log(τ/SR0).

F.I. Exact Leverage

We can directly rewrite the condition as

KL(P,Q0)− ε

(γP + γQ · α(γQ)) · C
<

T∑
k=1

ϑk =
λ

2C

(
1− 1

2T

)
2T >

(
1− 2 · KL(P,Q0)− ε

λ · (γP + γQ · α(γQ))

)
T >

1

log 2
log ·

(
1− 2 · KL(P,Q0)− ε

λ · (γP + γQ · α(γQ))

)
.

As required.

F.II. Relative Leverage

For this leverage, we need a weaker bound. We use the fact that

KL(P,Q0)− ε

(γP + γQ · α(γQ)) · C
<

T∑
k=1

⇐= KL(P,Q0)− ε

(γP + γQ · α(γQ)) · C
<

λ

4C
· log T.

Thus, we immediately have that

T > exp

(
4 · KL(P,Q0)− ε

λ · (γP + γQ · α(γQ))

)
implies the statement holds.
Remark F.1. Tighter bounds can be made for relative leverage w.r.t. the “omega function”. More generally, by leaving the
leverage series as is (without simplification) gives sufficient condition for a bounded KL. However, the condition may not be
w.r.t. T being large.

20



Fair Densities via Boosting the Sufficient Statistics of Exponential Families

G. Proof of Lemma 4.2
Proof: We prove the following by contradiction. Suppose that there exists distribution Q ∈ Mε,Q0

with SR(Q) <
SR0 · exp(−ε). Thus for there exists a s, s′ ∈ S such that

SR(Q, s′, s; y) < SR0 · exp(−ε) =⇒ SR(Q, s, s′; y) >
1

SR0
· exp(ε).

But given that SR(Q0) = SR0, by definition, we have that

∀a, b ∈ S : SR(Q0, a, b; y) ≥ SR0

Thus we have that,

max

{
SR(Q, s, s′; y)

SR(Q0, s, s′; y)
,

SR(Q0, s, s
′; y)

SR(Q, s, s′; y)

}
≥ SR(Q, s, s′; y)

SR(Q0, s, s′; y)

≥ SR(Q, s, s′; y) · SR(Q0, s
′, s; y)

≥ SR(Q, s, s′; y) · sr0
>

1

SR0
· exp(ε) · SR0 = exp(ε).

However, Q ∈Mε,Q0 and thus by Definition 4.1 we have a contradiction.

Thus Q ∈Mε,Q0
=⇒ SR(Q) ≥ SR0 · exp(−ε).

H. Proof of Lemma 4.3
Proof: We first note that the condition of “∀s, s′ ∈ S we have either SR(Q, s, s′; y) > 1 or SR(Q, s, s′; y) ≤
SR(Q0, s, s

′; y) ≤ 1” is equivalent to “∀s, s′ ∈ S we have SR(Q, s, s′; y) ≤ 1 implies SR(Q, s, s′; y) ≤ SR(Q0, s, s
′; y) ≤

1”.

We suppose that Q is an arbitrary distribution that satisfies this condition. Let s, s′ ∈ S be arbitrary such that
SR(Q, s, s′; y) ≤ 1, and thus SR(Q, s, s′; y) ≤ SR(Q0, s, s

′; y) ≤ 1.

We have that
SR(Q, s, s′; y)

SR(Q0, s, s′; y)
≥ SR(Q, s, s′; y)

and
SR(Q, s, s′; y)

SR(Q0, s, s′; y)
≤ 1 ≤ SR(Q0, s, s

′; y)

SR(Q, s, s′; y)
.

As SR(Q) ≥ exp(−ε), we have that

SR(Q, s, s′; y) ≥ exp(−ε) =⇒ SR(Q, s, s′; y)

SR(Q0, s, s′; y)
≥ exp(−ε)

=⇒ min

{
SR(Q, s, s′; y)

SR(Q0, s, s′; y)
,

SR(Q0, s, s
′; y)

SR(Q, s, s′; y)

}
≥ exp(−ε).

Furthermore, if SR(Q, s, s′; y) > 1, then necessarily SR(Q, s′, s; y) ≤ 1. However, we also have

min

{
SR(Q, s, s′; y)

SR(Q0, s, s′; y)
,

SR(Q0, s, s
′; y)

SR(Q, s, s′; y)

}
= min

{
SR(Q0, s

′, s; y)

SR(Q, s′, s; y)
,

SR(Q, s′, s; y)

SR(Q0, s′, s; y)

}
.

Thus for all s, s′ ∈ S

min

{
SR(Q, s, s′; y)

SR(Q0, s, s′; y)
,

SR(Q0, s, s
′; y)

SR(Q, s, s′; y)

}
≥ exp(−ε) ⇐⇒ max

{
SR(Q, s, s′; y)

SR(Q0, s, s′; y)
,

SR(Q0, s, s
′; y)

SR(Q, s, s′; y)

}
≤ exp(ε).

That is Q ∈Mε,Q0 .
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I. Analyzing KL Drop Bound
In the following section, we analysis the bound given in Theorem 3.5. In particular, we examine the non-negativity of the
bound and compare it against Husain et al. (2020, Theorem 5).

Lemma I.1. The following holds for Γ(·, ·):

Γ(C2, γ) = log

(
4

(2 + γ) exp(−C)) + (2− γ) exp(C)

)
;

Γ(0, γ) = log

(
4

(3− γ) exp(−C)) + (1− γ) exp(C)

)
;

Γ(v, 1) = log

(
4C2

v(exp(C)− exp(−C) + 4C2 exp(−C)

)
;

Γ(0, 1) = C.

Proof: Follows directly from the definition of Γ, as per Lemma D.2.

To compare against Husain et al. (2020, Theorem 5), we consider the maximum variance which is required to make
Γ(·, ·) > 0.

Theorem I.2. For the function Γ(v, γ), we have that

Γ(v, γ) > 0 ⇐⇒ γ >
v

C2
+ 1− 4

exp(C) + 1
; (23)

Γ(v, γ) > 0 ⇐⇒ v < C2 ·
(
γ +

4

exp(C) + 1
− 1

)
. (24)

Proof: We consider the conditions for Γ(v, γ) > 0. This occurs when:

Γ(v, γ) > 0

⇐⇒ log
(
(A · v − C2A · γ +K)−1

)
> 0

⇐⇒ A · v − C2A · γ +K < 1

⇐⇒ γ >
Av +K − 1

C2A

⇐⇒ γ >
v

C2
+

K − 1

C2A
.

Through computation, one can note that (K − 1)/(C2A) = 1− 4/(exp(C) + 1). Thus we have the following:

Γ(v, γ) > 0 ⇐⇒ γ >
v

C2
+ 1− 4

exp(C) + 1
;

Γ(v, γ) > 0 ⇐⇒ v < C2 ·
(
γ +

4

exp(C) + 1
− 1

)
.

As required.

Corollary I.3 (Comparing to Husain et al. (2020)). Let C = log 2. If VQt−1
[ct] < C2 · 23 , when Husain et al. (2020,

Theorem 5)’s KL drop is positive, so is ours.

Furthermore, lower VQt−1 [ct] values allows for positive KL drops even when Husain et al. (2020, Theorem 5) has a
non-positive drop.

Proof: To guarantee a positive drop, Husain et al. (2020, Theorem 5) requires the WLA to be within a “high boosting
regime”. This is equivalent to having γt

Q > 1/3.

It follows from Theorem I.2 that we get a positive drop when:

γ >
2

3
+ 1− 4

3
=

1

3
. (25)
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As required.

The last part of the corollary follows from noting that Eq. (24) is linearly increasing function of v. Thus lower v will relax
the constraint in Eq. (25).

J. General Fair Mollifiers
The relative mollifier construction present in Definition 4.1 was not the original definition of a mollifier, but only a convenient
method for construction. Originally in Husain et al. (2020), elements of private mollifiers satisfy a pairwise privacy constraint.
We introduce the fair mollifier which is equivalent to this original definition.
Definition J.1. Let M ⊂ D(Z) and ε > 0. M is an ε-fair mollifier iff4 ∀Q,Q′ ∈M,

SR(Q, s, s′; y) ≤ eε · SR(Q′, s, s′; y), ∀s, s′ ∈ S. (26)

Definition J.1 is inspired by the local notion of differential privacy (Kasiviswanathan et al., 2011). Likewise to the main-text,
all statistical rate definitions can be interchanged with representation rate.
Lemma J.2. Suppose that M is an ε-fair mollifier. If there exists a F ∈ M with SR(F) = SRf , then all Q ∈ M have
SR(Q) ≥ SRf · exp(−ε).

Proof: As M is a ε-fair mollifier, the following constraint holds for all Q ∈M and for all s, s′ ∈ S with the distribution
F ∈M, where SR(F) = SRf :

SR(F, s, s′; y) ≤ exp(ε) · SR(Q, s, s′; y) =⇒ SR0 ≤ exp(ε) · SR(Q, s, s′; y)

=⇒ SR0 · exp(−ε) ≤ SR(Q, s, s′; y).

Thus all Q ∈M has statistical rate SR(Q) ≥ SRf · exp(−ε).
It should be noted that Lemma J.2 is not tight, a mollifier might have a strong fairness guarantee.
Lemma J.3. Mε,Q0

is a 2ε-mollifier.

Proof: Follows directly from Eq. (11) applies to two distributions.

K. Improvement in the Low / Sparse Data Regime via Prior Mixing
When utilizing the FBDE algorithm, picking a good initial distribution can be pivotal to ensure that our final distribution
is not only fair, but also close to the true data distribution. However, when we only have access to a small volume of
data; or when a dataset has a large number of features causing sparsity over input combinations, it may be difficult to find
good approximations of the input distribution. These scenarios can be further problematic when we utilize an empirical
distribution to create our initial distribution as per Eqs. (3) and (4): inputs in the training set may not appear in the test set.
In this case, the final distribution will have zero support for inputs which occur in the test set.

To remedy this issue, we introduce the mixed initial distribution. The idea is to take a mixture distribution between the initial
distribution introduced Eqs. (3) and (4) with a prior distribution. That is, we an initial distribution as per,

QINIT ← (1− α) ·QINIT + α ·QPRIOR, (27)

where α ∈ [0, 1] and QPRIOR ∈ D(Z) is a ‘prior’ distribution.

By taking α ̸= 1 and a QPRIOR with non-zero support over all of Z, we can ensure that the final boosted distribution also has
non-zero support regardless of the initial distribution.

The one caveat to utilizing this mixture is that, of course, we still want the final QINIT to satisfy the initial fairness constraints,
i.e., the dependence on SR0 and RR0 in Theorems 3.2 and 3.3.

Nevertheless, as long as the final QINIT satisfies the initial fairness constraints, the mixing of distribution provides a
convenient mechanism for adding prior knowledge into FBDE. Indeed, beyond dealing with miss-matching distribution
support issues, QPRIOR can be used to add any user prior knowledge to FBDE.

We present experiment where mixing priors are not used for DUTCH and GERMAN in Appendix P.

4Absolute continuity also required for all {P} ∪M w.r.t. all M.
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L. Additional Dataset Descriptions
We present the following additional dataset descriptions for COMPAS and ADULT not included in the main-text. We note
that COMPAS and ADULT are standard public benchmark datasets; and AIF360 uses a Apache License 2.0.

(a) COMPAS (Angwin et al., 2016) The pre-processed dataset contains data where each defendant has the sex, race, age,
number of priors, charge degree, and recidivism within two years. These attributes are given as binary features, where counts
and continuous values are discretized into bins. The resulting dataset has a domain size of 144 and with 5,278 data points.
We consider sensitive attributes of sex (only in appendix) and race.

(b) ADULT (Dua & Karra Taniskidou, 2017) The pre-processed dataset contains data where for each person the dataset
contains the race, sex, age, years of educations, and binary label whether they earn more than 50K a year. The counts and
continuous values are discretized similarly to COMPAS. The pre-processed dataset has a domain size of 504 and with
48,842 data points. We consider sex and race (only in appendix) as the sensitive attribute.

For the MINNEAPOLIS dataset, we also include additional dataset descriptions. We note that it uses a CC0 1.0 License.

(c) MINNEAPOLIS The dataset consists of stop data for the Minneapolis Police Department. We only consider the features
consisting of latitude, longitude, race, and ‘search’ features, where the last feature is a binary variable that reports an
individual was searched at a stop. We remove any rows with missing values. We remove outliers (those consisting of
longitude values less than −13). Furthermore, we binarize the race features to ‘Black’ vs all other categories. In total, the
resulting dataset has 121,965 data points.

In addition the datasets examined in the main-text, we also include the DUTCH and GERMAN standard datasets. The primary
results for these extra datasets are presented in Appendix O. We also include an additional discussion in Appendix K, where
we use a “trick” to improve the performance of mollifiers in GERMAN. We further note that these are standard public
benchmark datasets.

(d) DUTCH (Van der Laan, 2000) The Dutch Census dataset is from a 2001 Netherlands census, where data represents
aggregated groups of people. The prediction task is to determine whether an individual has a prestigious job or not. The
dataset consists of 60,420 examples with 12 different attributes (many with large number of categorical features). The
pre-processed dataset has a domain size of 5,971,968, thus, the dataset is extremely sparse. We consider sex and age as
sensitive attributes.

(e) GERMAN (Kamiran & Calders, 2009) The German Credit dataset consists of individual bank holders, with the
prediction task being to determine whether or not the grant credit to someone. We utilize the pre-processed version provided
by AIF360. Notably, the dataset is small with only 1,000 samples with a domain size of 216.

M. Extended Discrete Experiments
We present additional experiments and figures corresponding to the discrete datasets of COMPAS and ADULT. In particular,
we include all combinations of ‘sex’ and ‘race’ sensitive attributes settings for the datasets. An extended Table 2 is presented
in Table I. Furthermore, in Fig. I we plot the complete set of weak learner accuracy vs KL over boosting iterations plots that
was given by Fig. 2 (left). We further include similar plots for both representation rate and statistical rate in Figs. II and III,
respectively. We also present plots corresponding to SR vs SRc in Fig. IV, which suggests that the classifier statistical rate
SRc tends to follow a similar trend to that of the data statistical rate SR.

M.I. Runtime Comparison

In addition, we report the runtime of each approach in Table II. We notice that in general, M-E-1.0 is the quickest approach
(by a significant margin) taking only a few seconds on both datasets. By strictly looking at the table, TABFAIR is the next
quickest; and lastly FBDE and FAIRK (with FAIRK scaling significantly worse on the larger dataset). With this strict
analysis, one may come to a conclusion that FBDE has a large computational trade-off when compared to M-E-1.0 (and
even TABFAIR). However, if one examines Fig. I they will notice that the change in the distribution is quite small after T = 8
iterations. In particular, the KL will still be superior than M-E-1.0 if we early stopped at T = 8. Furthermore, we would
have a fairer distribution as well (we would have moved from Q0 less). As the boosting algorithms time complexity is linear
w.r.t. T (i.e., the number of WLs learned) we could reduce the boosting iterations / runtime by 4x; whilst still maintaining
superior KL and also having strong fairness. Indeed, the fairness and KL can be verified by examining Figs. II to IV.
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Although, this would still result in a runtime many times larger than M-E-1.0, we believe that the possible interpretability
/ human-in-the-loop capabilities of FBDE are out-weight the higher runtime — we can interpret this comparison as a
trade-off between lower runtime vs interpretability properties.

M.II. A Note about MAXENT

When using MAXENT, we utilize take the following parameters: statistical rate setting ρ = 1, prior interpolation parameter
C = 0.5, and marginal vector constrained by a weighted mean (from Celis et al. (2020, Algorithm 1)).

M.III. A Note About TABFAIR

We note the extremely poor performance of TABFAIR in the ADULT dataset with ‘race’ sensitive attribute. We believe that
the reason for this performance is the selection of suboptimal (hyper)parameters. Unfortunately, the model parameters
presented in Rajabi & Garibay (2022, Table A1 in Appendix) are not applicable to our experiments as they utilize a different
pre-processing of the COMPAS and ADULT datasets. For COMPAS, we use a total of 128 epochs with 40 of those being
‘fair epochs’ (Rajabi & Garibay (2022)’s fairness training phase); in addition the batch sizes are specified to be 128 and
the fairness regularizer parameter λf = 2.5. For ADULT, we have 128 epochs with 30 of those being ‘fair epochs’; in
addition the batch sizes are specified to be 128 and the fairness regularizer parameter λf = 2. Although we did not make an
effort to fine-tune these (hyper)parameters for these extra settings in the Appendix, the lack of performance transfer when
only the sensitive attribute is switched highlights a significant downside when compared to FBDE and other optimization
approaches.

M.IV. Full Weak Learner Plot

We present the full plot of Fig. 1 in Fig. V. We leave the careful examination of such weak learners to future work and rather
present these plots as a proof of concept.

N. Additional Continuous Experiments
We present additional experiments and figures for the MINNEAPOLIS dataset. We note that all computation was done
without a GPU. In addition to M-E-1.0 explored in the main-text, we present results for M-E-0.9, M-R-1.0, and M-R-0.9
similar to the discrete dataset experiments. In Table I, we present a summary of evaluations used in the discrete experiments.
In Fig. I we present RR vs KL, SR vs KL, and SR vs SRc plots (one each row), as per Fig. 2.

O. Extra Discrete Experiments
We present the exact same plots and tables for DUTCH and GERMAN as we did for DUTCH and GERMAN. All settings for
FBDE are identical except for the initial distribution utilized. Here we incorporate a “prior” into the initial distribution,
similar to Celis et al. (2020). An extended discussion of the trick we use is presented in Appendix K. We plot weak learner
accuracy vs KL, SR vs KL, RR vs KL, and SR vs SRc over boosting iterations in Figs. I to IV, respectively.

We would like to note one particularly poor showing in Table I: M-R-0.9 on DUTCH with S = sex. In this case, M-R-0.9
has a critical failure in SRC. However, one should note that in Fig. IV, there actually include boosting iterations which
M-R-0.9 significantly performs better in SRC. Despite this, we should still note that the overall average SRC is still quite
poor. This is similar to M-E-0.9 in this dataset setting. This indicates that having a weaker (in terms of fairness) initial
distribution might not work for sparse datasets. Nevertheless, one wants to make sure that FBDE is performing correctly in
these downstream fairness considerations by examining performance per boosting iterations.

P. DUTCH and GERMAN Without Mixing Priors
Experimentally, in Appendix O we utilize a initial distribution mixing with QPRIOR as a uniform distribution and α = 1/2
(as per Appendix K). In this case, our initial distribution is very similar to the prior distribution utilized in Celis et al. (2020,
Section 3.1 “Prior distributions”). This seems to explain why MAXENT performs so well in KL for DUTCH and GERMAN
datasets, where TABFAIR does not.

Indeed, Table I presents a repeat of those experiments without prior mixing. In this case, the KL divergence is significantly
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worse. Despite this, it should also be noted that the empirical distribution’s KL (comparing the training set vs the test set) is
also quite large.

Q. In-Processing Experiments
To evaluate FBDE learned predictions against in-processing algorithms, we consider the following in-processing approaches:

• FAIRCONS: from Zafar et al. (2019);

• REDUCT: from Agarwal et al. (2018);

• FAIRGLM: from Do et al. (2022).

We utilize Do et al. (2022)’s implementation of these in-processing algorithms, provided in www.github.com/
hyungrok-do/fair-glm-cvx. Table I provides a summary of these comparisons.
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Table I. FBDE (T = 32) and baselines evaluated for COMPAS and ADULT datasets. The table reports the mean and s.t.d.

DATA M-E-1.0 M-E-0.9 M-R-1.0 M-R-0.9 MAXENT TABFAIR FAIRK

C
O

M
PA

S
(S

=
S

E
X

)
D

A
TA

RR .443± .004 .916± .011 .944± .007 .852± .010 .907± .007 .987± .007 .231± .044 −
SR .728± .044 .993± .003 .904± .008 .986± .010 .898± .008 .989± .011 .823± .138 −
KL − .288± .020 .295± .022 .268± .020 .283± .021 .335± .021 3.14± .831 −

P
R

E
D SRC .726± .025 .952± .006 .874± .009 .938± .019 .874± .016 .966± .012 .844± .113 −

EO .764± .031 .966± .021 .905± .027 .963± .027 .907± .030 .978± .015 .797± .098 −
ACC .660± .004 .651± .008 .654± .005 .657± .009 .655± .008 .650± .007 .595± .036 −

C
L

U
S δPR .122± .014 .122± .014 .122± .014 .122± .014 .119± .017 .119± .017 .106± .032 .143± .019

δSR .380± .123 .380± .123 .380± .123 .380± .123 .438± .097 .385± .122 .364± .065 .295± .089
DIST .064± .000 .078± .000 .078± .000 .078± .000 .078± .000 .078± .000 .078± .000 .069± .001

C
O

M
PA

S
(S

=
R

A
C

E
)

D
A

TA

RR .662± .007 .966± .008 .977± .008 .944± .010 .964± .009 .992± .004 .632± .052 −
SR .747± .013 .988± .006 .899± .011 .978± .011 .896± .011 .992± .006 .727± .100 −
KL − .135± .020 .129± .020 .132± .020 .127± .020 .164± .018 2.71± .735 −

P
R

E
D SRC .747± .020 .959± .025 .875± .025 .945± .027 .872± .044 .939± .018 .802± .074 −

EO .781± .034 .960± .026 .900± .041 .950± .028 .895± .039 .944± .020 .815± .079 −
ACC .660± .004 .641± .014 .653± .012 .642± .010 .656± .012 .648± .015 .591± .043 −

C
L

U
S δPR .334± .019 .332± .022 .334± .019 .334± .019 .319± .036 .333± .020 .286± .027 .259± .013

δSR .288± .055 .235± .082 .284± .055 .284± .055 .256± .084 .288± .059 .268± .063 .284± .036
DIST .065± .000 .078± .000 .078± .000 .078± .000 .078± .000 .078± .000 .078± .001 .069± .001

A
D

U
LT

(S
=

S
E

X
)

D
A

TA

RR .496± .002 .958± .003 .979± .003 .919± .004 .957± .003 .995± .002 .516± .023 −
SR .360± .005 .961± .005 .883± .006 .944± .006 .865± .006 .979± .004 .862± .101 −
KL − .122± .006 .119± .006 .113± .006 .114± .006 .182± .005 1.68± .538 −

P
R

E
D SRC .360± .003 .818± .010 .766± .010 .793± .011 .753± .008 .919± .011 .823± .118 −

EO .471± .008 .959± .016 .908± .018 .935± .016 .895± .016 .981± .010 .867± .105 −
ACC .803± .003 .785± .002 .788± .002 .787± .002 .788± .002 .773± .005 .781± .006 −

C
L

U
S δPR .125± .067 .093± .019 .101± .025 .116± .027 .111± .033 .130± .061 .137± .038 .117± .039

δSR .426± .232 .252± .082 .302± .076 .190± .061 .254± .086 .468± .237 .437± .179 .296± .151
DIST .034± .000 .037± .000 .037± .000 .037± .000 .037± .000 .037± .000 .037± .000 .035± .000

A
D

U
LT

(S
=

R
A

C
E

)
D

A
TA

RR .170± .001 .914± .002 .955± .003 .837± .002 .910± .002 .998± .003 .089± .019 −
SR .601± .011 .985± .006 .892± .006 .974± .007 .888± .006 .986± .006 .284± .032 −
KL − .292± .001 .305± .001 .264± .001 .289± .001 .382± .005 1.98± .173 −

P
R

E
D SRC .600± .031 .867± .035 .808± .031 .860± .034 .803± .035 .935± .019 .480± .114 −

EO .787± .053 .933± .019 .960± .037 .935± .017 .957± .034 .929± .038 .588± .103 −
ACC .803± .003 .800± .002 .801± .003 .800± .002 .801± .003 .794± .004 .745± .019 −

C
L

U
S δPR .042± .019 .051± .038 .061± .032 .051± .029 .043± .012 .047± .021 .071± .039 .052± .044

δSR .313± .096 .422± .111 .366± .212 .303± .102 .327± .115 .290± .096 .359± .225 .400± .218
DIST .034± .000 .037± .000 .037± .000 .037± .000 .037± .000 .037± .000 .037± .000 .035± .000

Table II. Runtime (s) of FBDE (T = 32) and baselines evaluated for COMPAS and ADULT datasets. The table reports the mean and
s.t.d.

M-E-1.0 M-E-0.9 M-R-1.0 M-R-0.9 MAXENT TABFAIR FAIRK

COMPAS
(SEX)

88.467±
0.193

90.362±
0.296

89.070±
0.443

89.123±
0.210

0.740±
1.127

25.234±
0.131

62.365±
0.251

COMPAS
(RACE)

88.026±
0.122

88.568±
0.220

89.621±
0.106

87.935±
0.233

0.629±
0.894

25.091±
0.310

61.705±
0.386

ADULT
(SEX)

311.700±
2.941

308.990±
0.904

310.606±
1.777

309.986±
1.433

2.068±
3.039

169.611±
3.659

5446.451±
54.161

ADULT
(SEX)

313.745±
1.462

311.175±
1.319

313.996±
0.755

315.955±
6.093

1.735±
2.094

171.614±
3.297

5149.282±
43.155
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Table I. FBDE (T = 16) evaluated for the MINNEAPOLIS dataset. The table reports the mean and s.t.d.
DATA M-E-1.0 M-E-0.9 M-R-1.0 M-R-0.9

M
IN

N
E

A
P

O
L

IS
(S

=
R

A
C

E
)

D
A

TA

RR .183± .001 .846± .004 .918± .000 .756± .003 .860± .004
SR .684± .005 .995± .003 .901± .000 .991± .004 .902± .004
KL − .218± .005 .236± .000 .186± .004 .219± .005

P
R

E
D SRC .685± .012 .930± .018 .754± .000 .929± .038 .835± .038

EO .778± .028 .974± .018 .856± .000 .943± .031 .929± .047
ACC .649± .004 .594± .016 .625± .000 .600± .015 .601± .015

C
L

U
S δPR .134± .013 .137± .011 .155± .000 .138± .012 .153± .023

δSR .282± .072 .235± .033 .310± .000 .443± .057 .262± .044
DIST .013± .000 .016± .000 .016± .000 .016± .000 .016± .000

TIME(S) − 1540.731± 2.615 1542.730± .000 1369.129± 55.183 1410.402± 45.461
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Table I. FBDE (T = 32) and baselines evaluated for DUTCH and GERMAN datasets. The table reports the mean and s.t.d.

DATA M-E-1.0 M-E-0.9 M-R-1.0 M-R-0.9 MAXENT TABFAIR FAIRK

D
U

T
C

H
(S

=
S

E
X

)
D

A
TA

RR .996± .002 .987± .001 .993± .000 .980± .001 .992± .000 .997± .002 .411± .260 −
SR .523± .002 .988± .001 .894± .000 .971± .001 .887± .000 .961± .004 .344± .338 −
KL − .939± .004 .916± .004 .920± .004 .906± .004 1.637±

.017
4.367±
.668

−

P
R

E
D SRC .464± .022 .696± .193 .518± .255 .628± .139 .275± .068 .496± .020 .628± .223 −

EO .890± .006 .973± .005 .986± .008 .980± .007 .987± .007 .967± .007 .585± .203 −
ACC .827± .001 .763± .003 .778± .004 .770± .003 .781± .001 .814± .003 .667± .068 −

C
L

U
S δPR .080± .029 .070± .021 .136± .053 .113± .017 .069± .023 .075± .006 .094± .056 .203± .103

δSR .341± .126 .273± .066 .254± .053 .449± .052 .254± .058 .204± .038 .291± .121 .428± .195
DIST .051± .000 .056± .000 .056± .000 .056± .000 .056± .000 .056± .000 .056± .000 .053± .000

D
U

T
C

H
(S

=
A

G
E

)
D

A
TA

RR .621± .001 .980± .001 .990± .000 .964± .001 .980± .000 .996± .004 .227± .026 −
SR .610± .003 .993± .001 .895± .000 .984± .001 .893± .000 .963± .005 .430± .011 −
KL − .935± .004 .929± .005 .916± .004 .919± .005 1.656±

.015
4.132±
.165

−

P
R

E
D SRC .695± .030 .816± .094 .676± .257 .747± .084 .709± .180 .722± .023 .271± .046 −

EO .892± .009 .993± .005 .960± .007 .987± .007 .961± .009 .991± .003 .742± .018 −
ACC .827± .001 .781± .004 .788± .004 .785± .005 .790± .005 .820± .003 .661± .004 −

C
L

U
S δPR .699± .080 .454± .212 .660± .096 .675± .070 .718± .056 .440± .175 .436± .190 .373± .051

δSR .525± .079 .421± .138 .489± .103 .492± .098 .542± .036 .340± .058 .376± .068 .443± .126
DIST .052± .000 .056± .000 .056± .000 .056± .000 .056± .000 .056± .000 .056± .000 .053± .000

G
E

R
M

A
N

(S
=

S
E

X
)

D
A

TA

RR .449± .014 .934± .033 .960± .027 .903± .038 .946± .037 .980± .013 .575± .154 −
SR .897± .018 .982± .018 .917± .044 .983± .017 .916± .044 .985± .011 .985± .010 −
KL − .606± .027 .612± .026 .588± .026 .602± .025 .531± .035 9.02±1.44 −

P
R

E
D SRC .903± .055 .971± .014 .887± .049 .970± .019 .886± .050 .951± .030 .837± .120 −

EO .928± .055 .980± .021 .909± .046 .969± .023 .907± .051 .954± .031 .819± .120 −
ACC .690± .022 .712± .011 .705± .011 .714± .019 .706± .007 .671± .044 .509± .170 −

C
L

U
S δPR .234± .103 .229± .144 .244± .104 .197± .082 .210± .055 .180± .075 − .168± .070

δSR .268± .100 .359± .310 .327± .094 .422± .265 .393± .298 .441± .144 .396± .315 .376± .299
DIST .158± .001 .197± .001 .197± .001 .197± .000 .197± .001 .195± .001 .196± .011 .157± .001

G
E

R
M

A
N

(S
=

A
G

E
)

D
A

TA

RR .235± .008 .911± .037 .951± .036 .847± .033 .915± .033 .971± .011 .419± .083 −
SR .794± .029 .982± .020 .911± .019 .982± .019 .908± .022 .980± .013 .968± .014 −
KL − .717± .035 .725± .034 .687± .034 .708± .034 .691± .043 9.812±

1.357
−

P
R

E
D SRC .802± .067 .947± .027 .881± .045 .950± .044 .890± .048 .969± .016 .780± .212 −

EO .823± .078 .940± .028 .894± .059 .943± .027 .914± .058 .951± .034 .744± .193 −
ACC .690± .022 .700± .016 .693± .020 .697± .013 .707± .011 .671± .023 .486± .128 −

C
L

U
S δPR .162± .039 .183± .042 .210± .080 .183± .097 .174± .052 .200± .060 .228± .025 .208± .102

δSR .387± .333 .494± .231 .784± .250 .729± .270 .665± .441 .601± .226 .499± .298 .406± .236
DIST .161± .001 .198± .001 .198± .000 .198± .001 .198± .001 .196± .001 .198± .011 .158± .001
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Table I. FBDE (T = 32) for DUTCH and GERMAN datasets without mixing. The table reports the mean and s.t.d.
DATA M-E-1.0 M-E-0.9 M-R-1.0 M-R-0.9

D
U

T
C

H S
E

X

RR .996± .002 .984± .000 .992± .000 .977± .000 .990± .000
SR .523± .002 .978± .000 .889± .000 .952± .000 .878± .000
KL 1.715± .021 1.797± .022 1.768± .022 1.788± .022 1.765± .022

A
G

E

RR .621± .001 .966± .000 .985± .000 .938± .000 .969± .000
SR .610± .003 .979± .000 .889± .000 .958± .000 .880± .000
KL 1.716± .021 1.773± .022 1.761± .022 1.767± .022 1.758± .022

G
E

R
M

A
N S
E

X

RR .449± .014 .933± .036 .959± .027 .896± .039 .943± .039
SR .897± .018 .983± .018 .919± .024 .985± .014 .917± .024
KL 1.178± .278 1.245± .286 1.246± .286 1.238± .285 1.242± .286

A
G

E

RR .235± .008 .906± .037 .950± .037 .838± .032 .908± .033
SR .794± .029 .984± .018 .910± .020 .983± .015 .905± .022
KL 1.192± .294 1.382± .264 1.386± .266 1.360± .265 1.374± .266

Table I. FBDE (T = 32) for COMPAS, ADULT, DUTCH, and GERMAN datasets compared against in-processing algorithms. The table
reports the mean and s.t.d.

DATA M-E-1.0 M-E-0.9 M-R-1.0 M-R-0.9 FAIRCONS REDUCT FAIRGLM

C
O

M
PA

S
S

E
X

SRC .726± .025 .952± .006 .874± .009 .938± .019 .874± .016 .980± .012 .874± .021 .874± .016
EO .764± .031 .966± .021 .905± .027 .963± .027 .907± .030 .981± .012 .899± .028 .899± .027
ACC .660± .004 .651± .008 .654± .005 .657± .009 .655± .008 .573± .027 .665± .009 .667± .007

R
A

C
E SRC .747± .020 .959± .025 .875± .025 .945± .027 .872± .024 .997± .001 .822± .043 .797± .008

EO .781± .034 .960± .026 .900± .041 .950± .028 .895± .039 .987± .007 .858± .033 .838± .033
ACC .660± .004 .641± .014 .653± .012 .642± .010 .656± .012 .515± .016 .664± .009 .664± .009

A
D

U
LT S

E
X

SRC .360± .003 .818± .010 .766± .010 .793± .011 .753± .008 .920± .013 .814± .011 .857± .009
EO .471± .008 .959± .016 .908± .018 .935± .016 .895± .016 .983± .009 .964± .023 .979± .018
ACC .803± .003 .785± .002 .788± .002 .787± .002 .788± .002 .786± .003 .789± .002 .787± .003

R
A

C
E SRC .600± .031 .867± .035 .808± .031 .860± .034 .803± .035 .806± .020 .817± .018 .843± .015

EO .787± .053 .933± .019 .960± .037 .935± .017 .957± .034 .964± .036 .969± .027 .970± .029
ACC .803± .003 .800± .002 .801± .003 .800± .002 .801± .003 .803± .002 .803± .003 .803± .002

D
U

T
C

H S
E

X

SRC .464± .022 .696± .193 .518± .255 .628± .139 .275± .068 1.00± .000 1.00± .000 1.00± .000
EO .890± .006 .973± .005 .986± .008 .980± .007 .987± .007 .821± .011 .958± .012 .938± .008
ACC .827± .001 .763± .003 .778± .004 .770± .003 .781± .001 .771± .004 .818± .003 .816± .003

A
G

E

SRC .695± .030 .816± .094 .676± .257 .747± .084 .709± .180 1.00± .000 1.00± .000 1.00± .000
EO .892± .009 .993± .005 .960± .007 .987± .007 .961± .009 .929± .005 .912± .011 .912± .010
ACC .827± .001 .781± .004 .788± .004 .785± .005 .790± .005 .797± .003 .835± .003 .827± .002

G
E

R
M

A
N S
E

X

SRC .903± .055 .971± .014 .887± .049 .970± .019 .886± .050 .997± .001 .939± .004 .936± .024
EO .928± .055 .980± .021 .909± .046 .969± .023 .907± .051 .991± .008 .929± .002 .923± .019
ACC .690± .022 .712± .011 .705± .011 .714± .019 .706± .007 .712± .008 .700± .015 .700± .015

A
G

E

SRC .802± .067 .947± .027 .881± .045 .950± .024 .890± .048 .978± .018 .872± .057 .910± .028
EO .823± .078 .940± .028 .894± .059 .943± .027 .914± .058 .963± .018 .879± .077 .916± .047
ACC .690± .022 .700± .016 .693± .020 .697± .013 .707± .011 .698± .015 .690± .015 .698± .017

40


