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Abstract
Image perturbation technique is widely used to
generate adversarial examples to attack networks,
greatly decreasing the performance of networks.
Unlike the existing works, in this paper, we in-
troduce a novel framework Deep Perturbation
Learning (DPL), the new insights into understand-
ing image perturbations, to enhance the perfor-
mance of networks rather than decrease the perfor-
mance. Specifically, we learn image perturbations
to amend the data distribution of training set to
improve the performance of networks. This opti-
mization w.r.t data distribution is non-trivial. To
approach this, we tactfully construct a differen-
tiable optimization target w.r.t. image perturba-
tions via minimizing the empirical risk. Then
we propose an alternating optimization of the net-
work weights and perturbations. DPL can easily
be adapted to a wide spectrum of downstream
tasks and backbone networks. Extensive experi-
ments demonstrate the effectiveness of our DPL
on 6 datasets (CIFAR-10, CIFAR-100, ImageNet,
MS-COCO, PASCAL VOC, and SBD) over 3 pop-
ular vision tasks (image classification, object de-
tection, and semantic segmentation) with different
backbone architectures (e.g., ResNet, MobileNet,
and ViT).

1. Introduction
Image perturbation learning can greatly change the image
distribution, effectively influencing the performance of deep
models. In particular, Szegedy et al. (Szegedy et al., 2013)
generate perturbed samples with adversarial distributions
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Figure 1. Deep Perturbation Learning (DPL). Given a well-trained
model, DPL can optimize image perturbations and generate per-
turbed samples to amend the training set. Then, the network re-
trained on the amended training set can enhance the performance.

to fool DNNs, revealing the vulnerability of networks. Mo-
tivated by this, the existing works of image perturbations
mainly focus on designing adversarial perturbations to at-
tack or defense networks, i.e., adversarial learning (Good-
fellow et al., 2015; Carlini & Wagner, 2017; Tsipras et al.,
2019; Zhao et al., 2020; Zhang et al., 2020; Xie et al., 2020;
Dong et al., 2020; Chen et al., 2021). Can image pertur-
bations only be used to attack networks to decrease the
performance of networks? Can we learn perturbations to
enhance the performance instead? Intuitively, it is feasible
if we re-design the optimization targets. If it works well,
we can introduce new insights into understanding image
perturbations.

Inspired by this, in this paper, we introduce a novel frame-
work, Deep Perturbation Learning (DPL), shown in Fig.
1, to improve the performance of networks via optimiz-
ing model-dependent image perturbations. Given any well-
trained networks, DPL can learn the image perturbations
and add them to the training data to generate an amended
training set. We then re-train the network with the new
training set to improve the performance. Unlike previous
adversarial learning approaches (Xie et al., 2020; Chen et al.,
2021; Liu et al., 2022; Mei et al., 2022), we do not play a
min-max optimization but minimize the empirical risk to im-
prove the network performance. However, the optimization
w.r.t. perturbations is not trivial. One intuitive optimization
is brute-force search: re-training a large number of the net-
works with different perturbations and choosing the optimal
one. Clearly, this is extremely computationally heavy. To
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avoid the large-scale model re-training, we propose an ef-
ficient optimization strategy motivated by the calculus of
variations (Gelfand & Fomin, 2000). Specifically, we con-
struct a differentiable optimization objective and conduct
an iterative training paradigm of weight stage and pertur-
bation stage to optimize the network weights and image
perturbations in an alternating way.

In theory, as a generic strategy, our DPL can be adopted to
different backbone networks in a wide range of downstream
tasks and DPL is also compatible with existing training
strategies (e.g., data augmentation). We evaluate the gener-
alization capacity of DPL on 6 datasets (CIFAR-10, CIFAR-
100 (Krizhevsky et al., 2009), ImageNet (Deng et al., 2009),
MS-COCO (Lin et al., 2014), PASCAL VOC (Everingham
et al., 2010), and SBD (Hariharan et al., 2011)) over 3 popu-
lar downstream tasks (image classification, object detection
and semantic segmentation) with different backbone archi-
tectures (e.g., ResNet (He et al., 2016a), DenseNet (Huang
et al., 2017), MobileNetV2 (Sandler et al., 2018), and ViT
(Dosovitskiy et al., 2020)). Our results demonstrate that,
DPL can consistently improve the performance of the given
well-trained models on various vision benchmarks. More-
over, we further provide extensive analysis to verify the
effectiveness of our proposed scheme.

Our main contributions can be summarized as:

• Previous works of image perturbations focus on adver-
sarial robustness, however, we propose Deep Perturba-
tion Learning (DPL), the new insights into understand-
ing image perturbations, to enhance the performance
of networks by learning to amend the data distribution
of training set.

• We formulate a differentiable function w.r.t. image
perturbations to address the non-trivial optimization
w.r.t data distribution. In particular, we introduce a
differentiable objective, then DPL can iteratively learn
the perturbations to amend the data distribution, aiming
to improve the model performance.

• Extensive experimental results show that, with alter-
nating optimization, DPL can consistently improve
the performance of popular deep models (e.g., ResNet
(He et al., 2016a), DenseNet (Huang et al., 2017), and
ViT (Dosovitskiy et al., 2020)) on a wide spectrum of
downstream vision tasks (image classification, object
detection, and semantic segmentation).

2. Related Work
2.1. Adversarial Examples

Adversarial examples are some well-crafted samples by
adding imperceptible perturbations to the inputs leading to

incorrect predictions. So far, there have been a lot of attacks
such as FGSM (Goodfellow et al., 2015), CW (Carlini &
Wagner, 2017). Nowadays, adversarial robustness is widely
concerned. To obtain adversarial robust models, Tsipras
et al. (Tsipras et al., 2019) propose a min-max optimiza-
tion and adopt adversarial examples in the training progress.
Although both the perturbations generated by adversarial
attack methods and our DPL are imperceptible, the goals
are different. The adversarial perturbations aim to cheat a
given model, while we propose to achieve the better perfor-
mance. In addition, unlike adversarial training (Shrivastava
et al., 2017; Shafahi et al., 2019; Xie et al., 2020; Chen
et al., 2021), our DPL does not play a min-max game but
encounters a coupled optimization problem of minimizing
the empirical risk.

2.2. Data Augmentation

Data augmentation is an effective way to improve model
robustness. Specifically, some image processing operations
such as rotation, translation, cropping and color distortion,
are widely used for this purpose. Instead of these sim-
ple operations, policy-based methods such as AutoAug-
ment (Cubuk et al., 2019), FastAutoAugment (Hataya et al.,
2020), RandAugment (Cubuk et al., 2020), Adversarial Au-
toAugment (Zhang et al., 2019b), and PBA (Ho et al., 2019)
carefully select a recipe of operations for data augmentation
to reduce the model overfitting. The image perturbations ob-
served during data augmentation often exhibit fixed patterns,
which include geometric transformations, shearing, contrast
adjustments, and more. Typically, a discrete search space is
constructed based on these transformations, and the optimal
data augmentation is found using non-differentiable search
strategies. In contrast, we optimize the optimal image pertur-
bations across the entire perturbation space, which leads to
a superior generalization performance of the trained model.
Moreover, our DPL does not conflict with existing data aug-
mentation strategies and can be applied simultaneously to
improve the generalization capability of models.

2.3. Influence Function

The influence function (IF) is mainly used to quantify the
influence of a training sample on a test sample. Koh and
Liang (Koh & Liang, 2017) introduce the influence func-
tion based on the terminology in robust statistics (Hampel
et al., 2011) used a similar technique to estimate the model
weights change as perturbing the training samples by an in-
finitesimal amount. Since the IF is hard to compute, Pruthi
et al. (Pruthi et al., 2020) propose TracIn, a fast first-order
approximation to IF. To extend influence function to gen-
erative models, Kong and Chaudhuri (Kong & Chaudhuri,
2021) introduce VAE-TracIn to give instance-based interpre-
tations for variational auto-encoders. However, they focus
on calculating the influence function but we aim to derive
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the perturbation formula to decrease the empirical risk.

3. Method
In this section, we first formulate the optimization problem
and then present our training scheme Deep Perturbation
Learning (DPL). Finally, we elaborate the proposed pertur-
bation formula to amend the training samples in a direction
that minimizes the empirical risk.

3.1. Preliminaries

Consider a learning problem from some input space X
(e.g., images) to an output space Y (e.g., labels). We
are given training samples D = {zi}Ni=1, where zi =
(xi, yi) ∈ X × Y , sampled independently from an un-
known distribution P . Commonly, given a trained model
f , fθ : X → Y is considered as a DNN function with
θ as its weights and L(z; θ) is the loss of a training sam-
ple z. Respectively, the expected and empirical risks are
defined by Rexp(θ) = Ez∼P [L(z; θ)] and Remp(θ;D) =
1
N

∑N
i=1 L(zi; θ). The empirical risk minimizer is given by

θ̂ ≜ argminθ Remp(θ;D). For the sake of simplicity, we
assume that the empirical risk is twice-differentiable and
strictly convex in θ. Further discussions of relaxing these
assumptions are contained in the Appendix.

3.2. Deep Perturbation Learning

The main idea of DPL is to perturb the training samples to
amend the data distribution via minimizing the empirical
risk. The optimization can be formulated as follows:

δ̂ = argmin
δ

Remp(θ̂Dδ ;D). (1)

In detail, δ = (δ1, δ2, ..., δN ) and Dδ denotes the perturba-
tions of the training samples and the perturbed training set
respectively, and θ̂Dδ denotes the model weights trained on
the perturbed set Dδ , i.e.,

θ̂Dδ = argmin
θ

Remp(θ;D
δ). (2)

The objective of Eq. (1) is to find an optimal perturbed
training set on which the trained model can further minimize
the empirical risk on the original training set D. Once Eq.
(1) is solved, the weights θ̂Dδ obtained in Eq. (2) is our
expected model weights.

The bi-level optimization problem (?) Eq. (1) is non-trivial,
in this work, this optimization is approximatively solved
by two nested loops of optimization: (i) weight stage and
(ii) perturbation stage. The steps (i) and (ii) are iterated to
conduct the optimization. The objective of the weight stage
is to minimize the empirical risk on the current training set
Dk (the k iteration) by updating the model weights:

θ̂k = argmin
θ

Remp(θ;Dk). (3)

On the perturbation stage, the objective is to find a pertur-
bation δ̂k which can amend the current training set Dk to a
perturbed version Dk+1 ≜ Dδ̂k

k so that the model retrained
on Dk+1 can achieve smaller empirical risk on the original
training set, i.e.,

δ̂k = argmin
δ

[Remp(θ̂k+1;D)−Remp(θ̂k;D)]. (4)

In our work, we propose two approaches to amend the train-
ing set:

(a) replacement (i.e., Dδ ≜ D + δ);

(b) augmentation (i.e., Dδ ≜ D ∪ (D + δ)),
where D + δ ≜ {(xi + δi, yi)}Ni=1.

In general, the main idea of DPL is to find a sequence
of datasets Dk and a sequence of weights θ̂k through the
above two nested loops of optimization that converge to the
minima of Eq. (1).

Unfortunately, the perturbation stage Eq. (4) is also in-
tractable due to the same reason of Eq. (1). Thus, in the
next section, we derive a perturbation formula to amend the
current training samples in a direction that minimizes the
empirical risk Remp(θ;D) based on the current model fθ̂.

3.3. Approximation of Perturbation Stage

In this section, we propose an effective optimization strat-
egy that only trains one model for the perturbation stage
formulated by Eq. (4). Our optimization can compute the
model weight changes by perturbing the training samples
at an infinitesimal amount and considers two scenarios: re-
placement and augmentation as shown in Eq. (4).

Replacement. We first clarify some terminologies. For a
training sample z = (x, y), define zδ ≜ (x + δ, y). For a
perturbation δ = (δ1, δ2, ..., δN ), the perturbed training set
is denoted by D + δ = {zδii }Ni=1. In the replacement case,
the empirical risk on the post-hoc training set Dδ ≜ D + δ
is Remp(θ;D

δ) = 1
N

∑N
i=1 L(z

δi
i ; θ). Recall that θ̂Dδ is the

minimizer of Remp(θ;D
δ).

After clarifying some terminologies, we discuss the opti-
mization. As shown in Eq. (4), our goal is to minimize the
difference Remp(θ̂Dδ ;D) − Remp(θ̂;D). The brute-force
search has to re-train a large number of models to achieve
θ̂Dδ , leading to heavy computations and the difficulty of op-
timizing the objective Remp(θ̂Dδ ;D) − Remp(θ̂;D) is that
the objective function is not differentiable. Motivated by the
calculus of variations (Gelfand & Fomin, 2000) and to avoid
network re-training, we construct a differentiable function
where Remp(θ̂Dδ ;D) and Remp(θ̂;D) can be parameterized
as special cases of this function. Thus, we introduce a vari-
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able ε and formulate this differentiable function:

θ̂ε,Dδ ≜ argmin
θ

[
1

N

N∑
i=1

L(zi; θ) +
ε

n

n∑
i=1

L(zδii ; θ)

− ε

n

n∑
i=1

L(zi; θ)], (5)

where n belongs to {1, 2, ..., N} and controls the number
of perturbed training samples (i.e., the number of nonzero
elements in δ). According to Eq. (5), we can see that
θ̂0,Dδ = θ̂ and θ̂ n

N ,Dδ = θ̂Dδ . Then,

dθ̂ε,Dδ

dε
|ε=0 = − 1

n
H−1

θ̂
[

n∑
i=1

(∇θL(z
δ
i , θ̂)−∇θL(zi, θ̂))],

(6)
where Hθ̂ ≜ 1

N

∑N
i=1 ∇2

θL(zi; θ̂) is the Hessian and is posi-
tive definite (PD) by assumption. The detailed computations
of Eq. (6) can be found in Appendix.

With Eq. (5) and (6), the optimization of Eq. (4) is differen-
tiable. Then, we apply Taylor expansion to derive that

Remp(θ̂Dδ ;D)−Remp(θ̂;D)

≈ n

N

∂Remp(θ̂ε,Dδ ;D)

∂ε
|ε=0

=
n

N

∂Remp(θ̂;D)

∂θ

dθ̂ε,Dδ

dε
|ε=0

= − 1

N

∂Remp(θ̂;D)

∂θ
H−1

θ̂
[

n∑
i=1

(∇θL(z
δ
i , θ̂)−∇θL(zi, θ̂))]

≈ − 1

N

n∑
i=1

∂Remp(θ̂;D)

∂θ
H−1

θ̂
[∇x∇θL(zi, θ̂)δi]. (7)

Obviously, we set δi in the same direction of
[
∂Remp(θ̂;D)

∂θ H−1
θ ∇x∇θL(zi, θ̂)]

T , then we can construct lo-
cal perturbations of zi that maximally decrease the risk
Remp(θ̂Dδ ;D). The computations of Eq. (7) is detailed in
Appendix.

In order to make the above estimation Eq. (7) sufficiently
accurate, the size ε = n

N and δi should be sufficiently small.
This tells us that in our strategy we should only perturb
small part of the training set. If the number of perturbed
samples n is too large, the error of Eq. (7) will be out of
tolerance; otherwise, if n is too small, the empirical risk
cannot be effectively decreased. On the other hand, to ensure
perturbing zi by an infinitesimal amount, we set another
hyper-parameter α to control the magnitude of perturbation
δi, i.e.,

δi = α · [
∂Remp(θ̂;D)

∂θ
H−1

θ ∇x∇θL(zi, θ̂)]
T . (8)

In our implementation, we randomly select a subset of train-
ing samples in each loop to estimate the risk Remp(θ̂;D)

for reducing the computations and alleviate overfitting on
the training set D. For the sake of discussion, we call the
selected subset guide set denoted by G.

Augmentation. Since the key idea of augmentation is the
same as the replacement case, we focus on discussing their
difference.

The main difference is that the post-hoc training set Dδ

becomes D ∪ (D + δ), thus, the empirical risk on the post-
hoc training set becomes

Remp(θ;D
δ) =

1

N

N∑
i=1

L(zi; θ) +
1

N

N∑
i=1

L(zδii ; θ). (9)

We still let θ̂Dδ be the minimizer of Remp(θ;D
δ). Similar

as Eq. (5), the differentiable function is defined by:

θ̂ε,Dδ ≜ argmin
θ

1

N

N∑
i=1

L(zi; θ) +
ε

n

n∑
i=1

L(zδii ; θ).

Accordingly, we have

dθ̂ε,Dδ

dε
|ε=0 = − 1

n
H−1

θ̂

n∑
i=1

∇θL(z
δ
i , θ̂), (10)

and

Remp(θ̂Dδ ;D)−Remp(θ̂;D)

≈ − 1

N

n∑
i=1

[
∂Remp(θ̂;D)

∂θ
H−1

θ̂
∇θL(zi, θ̂)

+
∂Remp(θ̂;D)

∂θ
H−1

θ̂
∇x∇θL(zi, θ̂)δi]. (11)

Unlike Eq. (7), there is here an additional term, i.e., the first
term on the right of Eq. (11). In practice, we should guaran-
tee Remp(θ̂Dδ ;D) is smaller than Remp(θ̂;D), meaning that
the empirical risk of the optimized model is smaller than
the original model. Thus, we still let δi be the value in Eq.
(8), at the same time, we sample n samples with the largest
positive values ∆i via

∆i =
∂Remp(θ̂;D)

∂θ
H−1

θ̂
∇θL(zi, θ̂)

+ α∥
∂Remp(θ̂;D)

∂θ
H−1

θ̂
∇x∇θL(zi, θ̂)∥2. (12)

To illustrate the whole strategy, we present the pseudo-code
of DPL (augmentation) in Algorithm 1 and provide the re-
placement version in the Appendix. In general, our approach
is to find a sequence of weights θ̂k that iteratively decreases
the empirical risk Remp(θ̂;D). Related experiments demon-
strate that our DPL can simultaneously reduce the empirical
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Table 1. Performance on image classification and DPL can significantly improve the models’ performance on CIFAR and ImageNet. The
results of DPL are averaged over four independent runs and we report the DPL Iterations needed to achieve the enhanced networks.

Model Top-1 Acc. Test Loss Top-1 Acc. (DPL) Test Loss (DPL) DPL Iter.

C
IF

A
R

-1
0

VGG-16 (Simonyan & Zisserman, 2014) 92.76 0.251 93.29 (0.53 ↑) 0.232 (0.019 ↓) 3 iter.
ResNet-18 (He et al., 2016a) 94.65 0.227 95.52 (0.87 ↑) 0.171 (0.056 ↓) 5 iter.
ResNet-50 (He et al., 2016a) 94.92 0.207 95.90 (0.98 ↑) 0.180 (0.027 ↓) 3 iter.
PreActResNet-18 (He et al., 2016b) 94.87 0.213 95.48 (0.61 ↑) 0.185 (0.027 ↓) 4 iter.
DenseNet-121 (Huang et al., 2017) 94.84 0.212 95.27 (0.43 ↑) 0.194 (0.019 ↓) 5 iter.
MobileNetV2-1.0 (Sandler et al., 2018) 94.33 0.234 94.77 (0.44 ↑) 0.205 (0.029 ↓) 3 iter.
ViT-B (Dosovitskiy et al., 2020) 98.47 0.208 98.69 (0.22 ↑) 0.189 (0.019 ↓) 2 iter.

C
IF

A
R

-1
00 VGG-16 (Simonyan & Zisserman, 2014) 70.36 0.0144 72.37 (2.01 ↑) 0.0130 (0.0014 ↓) 4 iter.

ResNet-18 (He et al., 2016a) 75.53 0.0082 76.32 (0.79 ↑) 0.0075 (0.0007 ↓) 3 iter.
ResNet-50 (He et al., 2016a) 77.37 0.0079 78.74 (1.37 ↑) 0.0071 (0.0008 ↓) 5 iter.
PreActResNet-18 (He et al., 2016b) 72.91 0.0103 73.86 (0.95 ↑) 0.0092 (0.0011 ↓) 4 iter.
MobileNetV2-1.0 (Sandler et al., 2018) 67.75 0.0095 68.88 (1.13 ↑) 0.0083 (0.0012 ↓) 4 iter.

Im
ag

eN
et ResNet-18 (He et al., 2016a) 69.77 1.236 70.15 (0.38 ↑) 1.168 (0.068 ↓) 2 iter.

ResNet-50 (He et al., 2016a) 76.22 1.108 76.58 (0.36 ↑) 1.057 (0.051 ↓) 3 iter.
MobileNetV2-0.5 (Sandler et al., 2018) 64.47 1.535 65.18 (0.71 ↑) 1.485 (0.050 ↓) 1 iter.
MobileNetV2-0.25 (Sandler et al., 2018) 52.25 2.151 52.59 (0.34 ↑) 2.122 (0.029 ↓) 1 iter.

Algorithm 1 Deep Perturbation Learning (DPL)
Require: D0 = {(x0

i , yi)}Ni=1, θ0, n, α, fθ
Ensure: θT

1: for t=0,1,...,T-1 do
2: train fθ on Dt with θt as its initialization,

output θt+1

3: compute ∆i using Eq.(12)
4: select n samples with the largest positive ∆i

5: xt+1
i = xt

i +α · ∂Remp(θt+1)
∂θ H−1

θt+1
∇x∇θL(zi, θt+1)

6: let Dt+1 = {(xt+1
i , yi)}ni=1 ∪Dt

7: end for

risk on the training and test set. However, we do not prove
that the sequence converges to the minima of the original
problem Eq. (2). It results from that over-reducing the
empirical risk may lead to over-fitting. Thus, in practice,
we stop the iterations when the loss of validation begins to
increase. A detailed derivation of all the formulas can be
found in the Appendix.

4. Experiments
Clearly, our DPL can be applied to many downstream tasks
and can work with various backbone architectures. To verify
the efficacy of our method, we evaluate DPL on different
tasks: image classification, object detection and semantic
segmentation with various backbone networks. Detailed
information about datasets can be found in our Appendix.

4.1. Experimental Settings

Implementation Details. We use PyTorch (Paszke et al.,
2017) to implement and train all the corresponding models

in this paper. In the training phase, we follow the respective
parameter settings of each baseline model. For the image
classification task, we train the networks with batch size 128
for 200 epochs on CIFAR datasets and with random crop-
ping and flipping. The networks are trained with stochastic
gradient descent (SGD) (momentum = 0.9). The initial
learning rate is set to 0.1 and then decay by 0.01 at 160
epochs and again at 180 epochs. For the object detection
task, we train the models with a batch size 32 and an input
size 300× 300 for PASCAL VOC. We use the learning rate
of 10−3 for 80k iterations, then continue training for 20k,
20k iterations with 10−4, 10−5, respectively. For the seman-
tic segmentation task, we train our networks with batch size
16. We set the initial learning rate, momentum and weight
decay to 0.009, 0.9 and 0.0001, respectively. We use scaling
(0.5 to 2.0), cropping and flipping for all the training data.
Following A2MIM (Li et al., 2023), we adopt Cosine decay
for 100 and 300 epochs pre-training for ViTs. In addition,
we adopt synchronized batch normalization and multi-grid
(Chen et al., 2017). In the perturbation stage, when calcu-
lating HVPs, we utilize stochastic estimation (Pearlmutter,
1994) to compute Eq. (8), which involves the inverse of
Hessian term. We apply a backpropagation-like approach
to compute the sum of gradients from network parameters
to the loss, and recursively calculate inverse Hessian-vector
products. We set the recursion depth as 5000 to balance
precision with memory and time overhead. Meanwhile, the
number of calculations needed to get the average value can
be calculated as (training set size/recursion depth). The
damping factor and scaling factor are set to 0.01 and 25,
respectively.

Evaluation Protocols. For image classification, we adopt
the commonly used Top-1 accuracy. For object detection,
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we use the mean Average Precision (mAP) and COCO stan-
dard metric (mAP@[.5, .95]). For semantic segmentation,
the performance is evaluated in mIoU.

4.2. DPL on Downstream Tasks

Image Classification. We evaluate DPL on different back-
bone architectures, including VGG (Simonyan & Zisserman,
2014), ResNet (He et al., 2016a), PreActResNet (He et al.,
2016b), DenseNet (Huang et al., 2017), MobileNetV2 (San-
dler et al., 2018), and ViT-B (Dosovitskiy et al., 2020). We
use the augmentation strategy and apply multiple iterations
of DPL to each model until convergence. We report the
averaged results over four independent runs with different
initializations.

Table 2. Performance comparison among vanilla training (ResNet-
50), other image perturbation methods and DPL in top-1 accuracy.
AdvProp△ and AdvProp⋆ represent versions that have applied
35-epoch PGD-1 and 70-epoch PGD-1, respectively.

Method CIFAR-100 ImageNet

Vanilla Training 77.37 76.22

I-FGSM (Goodfellow et al., 2015) -7.41 -4.26
PGD (Madry et al., 2017) -5.67 -3.25
IAT (Lamb et al., 2019) -2.14 -2.01
AdvProp△ (Xie et al., 2020) -1.97 -2.19
AdvProp⋆ (Xie et al., 2020) +0.73 +0.12
Fast-AdvProp (Mei et al., 2022) - +0.30
DPL (ours) +1.37 +0.36

We first thoroughly report our results on CIFAR-10, CIFAR-
100 and ImageNet in Tab. 1. Compared with the baseline
models, DPL can consistently improve the performance on
both small-scale and large-scale datasets. In terms of top-1
accuracy, DPL achieves up to 0.98%, 2.01% and 0.71%
improvement on CIFAR-10, CIFAR-100 and ImageNet, re-
spectively. For test loss, ResNet-18 (He et al., 2016a) with
DPL reaches a loss as low as 0.171, gaining nearly 25%
reduction. In addition, we compare DPL with the previous
works of image perturbations (i.e., adversarial training) us-
ing ResNet-50, including I-FGSM (Goodfellow et al., 2015),
AdvProp (Xie et al., 2020), and Fast-AdvProp (Mei et al.,
2022). As reported in Tab. 2, DPL outperforms the vanilla
training in top-1 accuracy of 1.37% and 0.36% on CIFAR-
100 and ImageNet respectively, which is significantly higher
than the adversarial training methods.

Object Detection. For object detection, we conduct experi-
ments on PASCAL VOC and COCO. According to Tab. 3,
compared to the vanilla training, our method consistently
improves the performance. In additional, DPL outperforms
AutoAugment (Zoph et al., 2020) and achieves very compet-
itive performance against Det-AdvProp (Chen et al., 2021),
but Det-AdvProp uses much more additional training data
(100% vs. 8%). DPL also yields more competitive perfor-

Table 3. Performance on object detection. Extra data means the
augmented samples added to the training set. DPL gives rise to
performance gains for all detectors with less extra data.

Model mAP

PA
SC

A
L

V
O

C Faster R-CNN (Ren et al., 2015) 73.1
+ DPL (2 iter.) 73.5 (0.4 ↑)

SSD300 (Liu et al., 2016) 77.2
+ DPL (4 iter.) 77.6 (0.4 ↑)

EfficientDet-D0 (Tan & Le, 2019) 77.4
+ DPL (5 iter.) 77.9 (0.5 ↑)

C
O

C
O

MobileNetV2 (Sandler et al., 2018) 22.3
+ DPL (3 iter.) 22.6 (0.3 ↑)

EfficientDet-D0 (Tan & Le, 2019) 34.3
+ AutoAugment (Zoph et al., 2020) 34.4 (0.1 ↑)
+ Det-AdvProp (Chen et al., 2021) 34.7 (0.4 ↑)
+ DPL (2 iter.) 34.6 (0.3 ↑)

RetinaNet (Lin et al., 2017) 35.8
+ Fast-AdvProp (Mei et al., 2022) 35.8 (0.0 ↑)
+ DPL (2 iter.) 36.0 (0.2 ↑)

mance than the recently proposed method of leveraging ad-
versarial examples, Fast-AdvProp (Mei et al., 2022). These
results suggest that, compared to the heavy additional data
burden imposed by other methods, DPL is sufficient to let
networks achieve enhanced performance trained with a mix-
ture of nearly 92% original images and only 8% perturbed
samples, therefore making re-training networks for “free”.

Semantic Segmentation. We conduct experiments on the
PASCAL VOC and SBD datasets for the semantic segmen-
tation task. We choose two popular methods EMANet (Li
et al., 2019) and CFNet (Zhang et al., 2019a) with 3 back-
bones ResNet-50, ResNet-101 and ResNet-151. From Tab.
4, we can see that our DPL can consistently improve the
performance in terms of mIoU on various methods and
backbones. In particular, the improvement margin of small
backbones is larger than bigger ones. We do not compare
with adversarial training methods on semantic segmentation,
since we do not find they are applied on this task to improve
the performance, showing the advantage of our method,
model- and task-agnostic.

Table 4. Performance comparison between DPL and the vanilla
baseline on PASCAL VOC and SBD for semantic segmentation.

Method mIoU Test Loss

EMANet (R-50) (Li et al., 2019) 78.63 0.1407
+ DPL (4 iter.) 78.92 0.1315

EMANet (R-151) (Li et al., 2019) 87.94 0.0949
+ DPL (2 iter.) 87.99 0.0813

CFNet (R-101) (Zhang et al., 2019a) 85.90 0.1126
+ DPL (3 iter.) 86.14 0.1022
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Figure 2. Ablation experiments conducted on CIFAR-10. (a): The size of guide set G. (b): The hyper-parameter ε. (c): The approaches of
replacement and augmentation with DPL iterations.
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Figure 3. The efficacy of empirical risk minimization. Left: vari-
ation of empirical risk with DPL iterations. Right: variation of
expected risk with DPL iterations.
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Figure 4. The changes of losses and error rates by DPL on CIFAR-
10 classes. We invert the y-axis scales for better visualization.

4.3. Analytical Experiments

In this section, we conduct extensive experiments on CIFAR-
10 to study the effects of the hyper-parameter α in Eq. (8),
the size of our guide set, the hyper-parameter ε in Eq. (5),
DPL iterations, and the cases of replacement and augmenta-
tion in Sec. 3.3. In addition, we provide qualitative results
via class activation map (Zhou et al., 2016) and t-SNE (Lin-
derman et al., 2017) to verify the effectiveness of our DPL.

Effects of α. As discussed in Sec. 3.3, the hyper-parameter
α controls the strength of images perturbations. We conduct
experiments with different values of α from 10−2 to 10−4.
And it should be noted that in these experiments, we replace
the original images with amended ones, setting the value
of ε and the guide set size as 4%, 4% of the training set

Table 5. Effects of the hyper-parameter α measured by test loss
and error rates (%) with single-iteration DPL on CIFAR-10.

α Test Loss Top-1 Err.

0 (baseline) 0.207 4.92
0.01 0.195 (0.012 ↓) 4.84 (0.08 ↓)
0.005 0.195 (0.012 ↓) 4.66 (0.26 ↓)
0.001 0.194 (0.013 ↓) 4.79 (0.13 ↓)

0.0005 0.197 (0.010 ↓) 4.72 (0.20 ↓)
0.0001 0.199 (0.008 ↓) 4.74 (0.18 ↓)

size, respectively. As reported in Tab. 5, neither larger (α
= 0.01) nor smaller (α=0.0001) values can lead to the best
performance. α = 0.005 yields the lowest test error rate and
we maintain this value in the performance experiments.

Effects of G Size and ε. The guide set G in Sec. 3.3 and
the hyper-parameter ε are key components of our approach.
As a random subset of the original training set, the Guide
Set G needs to be at a suitable size to better estimate the ex-
pected risk while maintaining efficiency. Fig. 2 (a) presents
that our approach is particularly enhanced when the size
of guide set increases from 2% to 4% of the training set,
and nearly peaks in performance at 5%. Thus, we take 5%
of the training set as our guide set to balance performance
with computational cost. For the hyper-parameter ε, we
perform image amendation for 2% to 15% of the images
in training set. As shown in Fig. 2 (b), when the number
of amended images reaches 4% of the training set size, the
PreAct ResNet applied with single-iteration DPL achieves
4.63% error rate. In addition, the phenomenon of the error
rate rebounding afterward verifies that amending too many
images may overly disturb the feature distribution of the
training samples.

Effects of DPL Iterations. DPL is iterative to keep improv-
ing the performance. Here, we conduct ablation experiments
for DPL iterations on CIFAR-10 to explore the potential of
our approach. Fig. 2 (c) indicates that multi-iterations DPL
can bring additional enhancements to the model. Compared
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Figure 5. The visualization results on CIFAR-10 with Grad-CAM++. The first and fourth rows represent the original training samples and
their amended version, respectively, and the second and fifth rows provide their Grad-CAM results with MobileNetV2. The third row
shows the perturbations generated by our DPL.

(a) (b)

Figure 6. The t-SNE visualization of features extracted by Mo-
bileNetV2 on CIFAR-10. Left: features of training samples
and test samples extracted by MobileNetV2. Right: features
of amended training samples and test samples extracted by Mo-
bileNetV2 (DPL). DPL optimizes more discriminative features for
those samples close to the class boundaries and leads to clearer
class boundaries, especially between the classes of frogs, birds,
airplanes, and automobiles.

to the baseline model, the test error rate and test loss are
reduced by at most 0.31% and 0.20, respectively.

Replacement vs. Augmentation. In Fig. 2 (c), we
compare two strategies (replacement and augmentation) in
performance and observe that the performance of augmen-
tation converges later than replacement. It is not surprising
since the augmentation strategy uses more training data
(original and amended images). In short, the replacement
approach provides a quick performance improvement while

the augmentation approach gradually improve the perfor-
mance over iterations. In the performance experiments, we
use the augmentation strategy to achieve better accuracy.

The Efficacy of Empirical Risk Minimization. As dis-
cussed in Sec. 3.2, we cannot minimize expected risk di-
rectly since the data distribution of test set is unknown.
Instead, we propose DPL to minimize empirical risk. In Fig.
3, it is clear that the test loss (expected risk) changes towards
the same trend as the training loss (empirical risk) within 3
DPL iterations. And as presented in Fig. 4, the class that get
more reduction in the loss tend to have a greater decrease
in the error rate. These phenomena verify that the further
minimization of the empirical risk Remp(θ) by DPL posi-
tively leads to a further minimization of the expected risk
Rexp(θ), resulting in further reduction in the error rate. In ad-
dition, we notice that the trends of the expected risk and the
empirical risk diverge when the number of DPL iterations
exceed 3. This indicates the need to conduct appropriate
DPL iterations to avoid overfitting.

Qualitative Evaluations. Class Activation Map (CAM)
(Zhou et al., 2016) is a great tool to diagnose the models
by visualizing the discriminative areas in an image. To
compare the models with and without DPL training, we use
Grad-CAM++ (Chattopadhay et al., 2018) for visualization
on CIFAR-10. Fig. 5 presents the qualitative comparisons
between the original samples and their amended version. As
shown in rows 2 and 5, after applying our amendation to the
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Table 6. Top-1 accuracy (%)↑ on image classification when com-
bining DPL with existing data augmentations using ResNet-50.

Method CIFAR-100 ImageNet

Vanilla Training 77.37 76.22

MixUp (Zhang et al., 2018) 78.36 77.33
+ DPL 78.86 77.51

CutMix (Yun et al., 2019) 78.57 78.46
+ DPL 79.08 78.57

samples, the network is able to more precisely focus on the
salient areas of the images, implying a more discriminative
model achieved by DPL.

To understand the efficacy of DPL in depth, we compare
the features without and with DPL in the feature space.
We use t-SNE (Linderman et al., 2017) to project high-
dimensional features into 2D vectors. We compare the
features of 2000 original and amended training samples,
extracted by MobileNetV2 (Sandler et al., 2018) on CIFAR-
10. In addition, 2000 randomly selected test samples are
also added to show generalization capability. In Fig. 6,
compared with the original training samples, the features
of the amended training samples are better clustered with
the test samples. The boundaries of DPL between different
classes are clearer, especially between the classes of frogs,
birds, airplanes and automobiles, verifying that the samples
amended by DPL are more discriminative.

Combination with Data Augmentations. When applied
with augmentation approach, perturbed samples optimized
by DPL can be regarded as a kind of individual data aug-
mentation from the perspective of increasing the size and
diversity of the dataset using perturbed samples. In the-
ory, as a generic strategy, DPL is compatible with existing
training strategies (e.g., data augmentation). To push the
limit of our method, we further combine DPL with common
data augmentation methods including Mixup (Zhang et al.,
2018) and CutMix (Yun et al., 2019). As shown in Tab. 6,
when combining with CutMix, our method beats the vanilla
training (ResNet50) by 2.35% on ImageNet. These exper-
imental results demonstrate that DPL can be applied with
existing data augmentations simultaneously to furthering
the network performance.

5. Conclusion
In this paper, we introduce new insights into utilizing im-
age perturbations and propose Deep Perturbation Learning
(DPL), to improve the performance of well-trained models.
Unlike previous works focusing on adversarial examples,
we formulate an optimization process of minimizing the
empirical risk and construct a differentiable function w.r.t
image perturbations. As a generic paradigm, DPL can be

adopted to many downstream tasks with different backbone
architectures. Extensive experiments demonstrate that the
plug-and-play DPL can consistently furthering the network
performance across multiple downstream tasks, achieving
highly competitive performance compared to recent works.
In the future, we will investigate the application of DPL to
more tasks, including natural language processing tasks.
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A. Derivation of the Formulas
For completeness, we provide a detailed but not fully rig-
orous derivation of the estimation for Remp(θ̂Dδ ;D) −
Remp(θ̂;D). Following Sec. 2.3, our derivation considers
two scenarios: replacement and augmentation.

A.1. Replacement

Recall that θ̂ minimizes the empirical risk:

Remp(θ;D) ≜
1

N

N∑
i=1

L(zi; θ). (13)

Due to the assumptions that the empirical risk Remp(θ;D)
is twice-differentiable and strongly convex in θ,

Hθ̂ ≜ ∇2
θRemp(θ̂;D) =

1

N

N∑
i=1

∇2
θL(zi; θ̂) (14)

exists and is positive definite, which guarantees the existence
of H−1

θ̂
.

Similarly, the perturbed weights θ̂ε,Dδ can be written as

θ̂ε,Dδ ≜ argmin
θ

[
1

N

N∑
i=1

L(zi; θ) +
ε

n

n∑
i=1

L(zδii ; θ)

− ε

n

n∑
i=1

L(zi; θ)], (15)

Since θ̂ε,Dδ is a minimizer of Eq. (15), we have:

0 = ∇θ[Remp(θ;D) +
ε

n

n∑
i=1

(L(zδii ; θ)− L(zi; θ))]|θ=θ̂
ε,Dδ

= ∇θRemp(θ̂ε,Dδ ;D)

+ ε · 1
n

n∑
i=1

∇θ[L(z
δi
i ; θ̂ε,Dδ)− L(zi; θ̂ε,Dδ)]. (16)

Since θ̂ε,Dδ → θ̂ as ε → 0, we perform a Taylor expansion
for the right-hand side of the above equation:

0 = ∇θRemp(θ̂;D) + ε · 1
n

n∑
i=1

∇θ[L(z
δi
i ; θ̂)− L(zi; θ̂)]

+ [∇2
θRemp(θ̂;D) + ε · V ]∆ε + o(∥∆ε∥), (17)

where ∆ε ≜ θ̂ε,Dδ − θ̂ → 0 as ε → 0 and

V ≜
1

n

n∑
i=1

∇2
θ[L(z

δi
i ; θ̂)− L(zi; θ̂)], (18)

for the sake of simplicity.

Dropping the higher order term o(∥∆ε∥) and solving ∆ε,
we get:

∆ε ≈ −[∇2
θRemp(θ̂;D) + ε · V ]−1

· {∇θRemp(θ̂;D) + ε · 1
n

n∑
i=1

∇θ[L(z
δi
i ; θ̂)− L(zi; θ̂)]}.

(19)

Since θ̂ minimizes Remp(θ;D), we have ∇θRemp(θ̂;D) = 0.
Then combining Eq. (14), we can derive that

∆ε ≈ −(Hθ̂ + ε · V )−1 · ε · 1
n

n∑
i=1

∇θ[L(z
δi
i ; θ̂)− L(zi; θ̂)]

= −(H−1

θ̂
+O(ε)) · ε 1

n

n∑
i=1

∇θ[L(z
δi
i ; θ̂)− L(zi; θ̂)]

= −εH−1

θ̂
· 1
n

n∑
i=1

∇θ[L(z
δi
i ; θ̂)− L(zi; θ̂)] + o(ε).

Taking derivatives of both sides, we obtain

dθ̂ε,Dδ

dε
|ε=0 =

d∆ε

dε
|ε=0

= − 1

n
H−1

θ̂
[

n∑
i=1

(∇θL(z
δ
i , θ̂)−∇θL(zi, θ̂))].

Then we can estimate Remp(θ̂Dδ ;D)−Remp(θ̂;D).

Note that Remp(θ̂ε,Dδ ;D) is a differentiable function
w.r.t. ε, satisfying Remp(θ̂0,Dδ ;D) = Remp(θ̂;D) and
Remp(θ̂ n

N ,Dδ ;D) = Remp(θ̂Dδ ;D). By the Taylor expan-
sion of Remp(θ̂ε,Dδ ;D) at ε = 0, we have

Remp(θ̂Dδ ;D)−Remp(θ̂;D)

≈ n

N

∂Remp(θ̂ε,Dδ ;D)

∂ε
|ε=0

=
n

N

∂Remp(θ̂;D)

∂θ

dθ̂ε,Dδ

dε
|ε=0

= − 1

N

∂Remp(θ̂;D)

∂θ
H−1

θ̂
[

n∑
i=1

(∇θL(z
δ
i , θ̂)−∇θL(zi, θ̂))]

≈ − 1

N

n∑
i=1

∂Remp(θ̂;D)

∂θ
H−1

θ̂
[∇x∇θL(zi, θ̂)δi]. (20)

In the last step of the above derivation, we have used a
Taylor expansion of ∇θL(z

δ
i , θ̂) at δ = 0, i.e.,

∇θL(z
δ
i , θ̂)−∇θL(zi, θ̂) ≈ ∇x∇θL(zi, θ̂) · δi. (21)

In conclusion, we have the estimation

Remp(θ̂Dδ ;D)−Remp(θ̂;D)

≈ − 1

N

n∑
i=1

[
∂Remp(θ̂;D)

∂θ
·H−1

θ̂
· ∇x∇θL(zi, θ̂)] · δi.
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And here we present the pseudo-code of replacement for
DPL in Algorithm 2.

Algorithm 2 DPL (Replacement)
Require: D0 = {(x0

i , yi)}Ni=1, θ0, n, α, fθ
Ensure: θT

1: for t=0,1,...,T-1 do
2: train fθ on Dt with θt as its initialization,

output θt+1

3: compute

∆i ≜ α∥
∂Remp(θt+1)

∂θ
H−1

θt+1
∇x∇θL(zi, θt+1)∥2

4: select n samples with the largest ∆i

5: xt+1
i = xt

i +α · ∂Remp(θt+1)
∂θ H−1

θt+1
∇x∇θL(zi, θt+1)

6: let Dt+1 = {(xt+1
i , yi)}ni=1 ∪ {(xt

i, yi)}Ni=n+1

7: end for

A.2. Augmentation

Since the key derivation of the augmentation case is the
same as the replacement case, we focus on discussing their
difference. Similar as Eq. (15), the differentiable function
is defined by:

θ̂ε,Dδ ≜ argmin
θ

[
1

N

N∑
i=1

L(zi; θ)+
ε

n

n∑
i=1

L(zδii ; θ)]. (22)

The main difference between the two cases is the term
1
n

∑n
i=1 L(z

δi
i ; θ) in Eq. (22) and 1

n

∑n
i=1 ∇θ[L(z

δi
i ; θ)−

L(zi; θ)] in Eq. (15). Treating this term as a symbol and
following the same derivation, we have

dθ̂ε,Dδ

dε
|ε=0 = − 1

n
H−1

θ̂

n∑
i=1

∇θL(z
δ
i , θ̂).

In this case, with Eq. (21), we can obtain

Remp(θ̂Dδ ;D)−Remp(θ̂;D)

≈ n

N

∂Remp(θ̂ε,Dδ ;D)

∂ε
|ε=0

=
n

N

∂Remp(θ̂;D)

∂θ

dθ̂ε,Dδ

dε
|ε=0

= − 1

N

∂Remp(θ̂;D)

∂θ
H−1

θ̂

n∑
i=1

∇θL(z
δ
i , θ̂)

≈ − 1

N

n∑
i=1

∂Remp(θ̂;D)

∂θ
H−1

θ̂
[∇θL(zi, θ̂) +∇x∇θL(zi, θ̂)δi]

= − 1

N

n∑
i=1

[
∂Remp(θ̂;D)

∂θ
H−1

θ̂
∇θL(zi, θ̂)

+
∂Remp(θ̂;D)

∂θ
H−1

θ̂
∇x∇θL(zi, θ̂) · δi]. (23)

B. Relaxing the Assumptions of Empirical
Risk

Recall that our estimations are asymptotic approximations
under the assumptions that (i) the model weights θ̂ mini-
mizes the empirical risk, and (ii) the empirical risk is twice-
differentiable and strictly convex in θ. Here, we give some
discussions on the following two aspects:
(a) non-differentiable losses;
(b) non-convexity and non-convergence;
to relax the assumptions. Our analysis indicates that our
DPL is still effective even though these assumptions (i) and
(ii) are violated.

B.1. Non-differentiable Losses

Our DPL is a generic paradigm. In theory, it can fur-
ther reduce empirical risk and be adopted to any down-
stream task. However, some of the commonly used loss
functions are non-differentiable, resulting in the failure
of our DPL. Here, we propose an empirical approach to
overcome this difficulty. Specifically, we take hinge loss
Hinge(s) = max(0, 1− s) as an example.

For hinge loss, since Hinge(s) is not differentiable at
s = 1, the derivatives of the loss in the perturbation
formula (i.e., Eq. (9) in Sec. 2.3) is not always avail-
able. To calculate the perturbation of training sample, we
need to approximate Hinge(s) with SmoothHinge(s; t) =
t log(1 + exp( 1−s

t )), which approaches the hinge loss as
t → 0. As long as t is small enough, the difference between
SmoothHinge(s; t) and Hinge(s) can be ignored. Thus us-
ing SmoothHinge(s; t) to generate the perturbations of train-
ing samples can reduce the empirical risk based on both
SmoothHinge(s; t) and Hinge(s).

In addition, since smooth function has good approximation
property, theoretically , for any non-differentiable loss func-
tion, we can always find a smooth function sufficiently close
to it. Thus, our DPL can be theoretically effective for any
loss functions.

B.2. Non-convexity and Non-convergence

Nowadays, deep learning is widely used in various com-
puter vision tasks. As is well known, deep neural networks
with widely used loss functions lead to non-convex em-
pirical risk (i.e., non-convexity) and practical optimization
like running SGD cannot achieve strict local minima (i.e.,
non-convergence). Thus, generally, after weight stage, the
model weights we obtain which is denoted by θ̃ is close
but not equal to a local minima θ̂, i.e., θ̃ ̸= θ̂. As a result,
∇θRemp(θ̃ : D) ̸= 0 and Hθ̃ could have negative eigenval-
ues.

To attack this issue, our approach is to form a convex
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quadratic approximation of the loss around θ̃, i.e., for a
training sample z,

L̃(z; θ) ≜ L(z; θ̃) +∇θL(z; θ̃)
T · (θ − θ̃)

+
1

2
(θ − θ̃)T (∇2

θL(z; θ̃) + λI)(θ − θ̃), (24)

where λ is a damping term. It is easy to verify that L̃(z; θ)
satisfies:
(1) L̃(z; θ̃) = L(z; θ̃);
(2) ∇θL̃(z; θ̃) = ∇θL(z; θ̃);
(3) ∇2

θL̃(z; θ̃) = ∇2
θL(z; θ̃) + λI;

Then on the entire training set, we have

∇2
θRemp(θ̃;D) = Hθ̃ + λI. (25)

We then calculate the perturbation of training samples using
L̃(z; θ). By adjusting λ, we can ensure that ∇2

θRemp(θ̃;D)
is positive definite because of Eq. (25). Thus we can com-
pute the inverse hessian term in our perturbation formula. In
addition, by (1) and (2), the L̃(z; θ) can maintain the deriva-
tives of the loss below the second order in the perturbation
formula.

C. Dataset Details
Image Classification. The CIFAR-10 (Krizhevsky et al.,
2009) and CIFAR-100 (Krizhevsky et al., 2009) datasets
consist of 60,000 images with 10 and 100 categories, re-
spectively. The training set includes 50,000 images and the
test set includes 10,000 images. The ImageNet-1k (Deng
et al., 2009) dataset contains 1,281,167 training samples and
50,000 validation samples of 1000 classes.

Object Detection. PASCAL VOC (Everingham et al., 2010)
consists of VOC 2007 and VOC 2012 versions, containing
9963 images with 24640 labeled objects and 11540 images
with 27450 labeled objects, respectively. We train our mod-
els on the merged trainval set of VOC 2007 and VOC 2012,
and then test on the test set of VOC 2007. The COCO 2017
object detection (Lin et al., 2014) contains 118K training
images and 5K validation.

Semantic Segmentation. The PASCAL VOC 2012 (Ever-
ingham et al., 2010) consists of 1464 (train), 1449 (val), and
1456 (test) images. The SBD (Hariharan et al., 2011) dataset
contains 11355 images taken from the PASCAL VOC 2011
dataset with different train and val splits. Both the PASCAL
VOC and SBD datasets include segmentations and bound-
aries for 20 object categories. We use the official training
and test splits in our experiments. For the ImageNet and
COCO datasets, we conduct experiments on 4 Tesla V100S.
The experiments on the other datasets are performed on 2
RTX 3090.

Table 7. Top-1 test accuracy (%) with variance on CIFAR-10/100
and ImageNet for image classification.

Dataset Model Baseline DPL

CIFAR-10

VGG-16 92.76 93.29 ± 0.12
ResNet-18 94.65 95.52 ± 0.15
ResNet-50 94.92 95.90 ± 0.08
PreActResNet-18 94.87 95.48 ± 0.17
DenseNet-121 94.84 95.27 ± 0.14
MobileNetV2-1.0 94.33 94.77 ± 0.15
ViT-B 98.47 98.69 ± 0.17

CIFAR-100

VGG-16 70.36 72.37 ± 0.06
ResNet-18 75.53 76.32 ± 0.13
ResNet-50 77.37 78.74 ± 0.22
PreActResNet-18 72.91 73.86 ± 0.19
MobileNetV2-1.0 67.75 68.88 ± 0.25

ImageNet

ResNet-18 69.77 70.15 ± 0.11
ResNet-50 76.22 76.58 ± 0.07
MobileNetV2-0.5 64.47 65.18 ± 0.10
MobileNetV2-0.25 52.25 52.59 ± 0.09
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Figure 7. The changes in the margins to decision boundary and the
number of outliers brought by DPL.

D. Additional Experimental Results
Empirical Results with variances. In the main work, we
report the experimental results of DPL averaged over four
independent runs. To further verify the efficacy of the pro-
posed method, we supplement the performance variances
on image classification in Tab. 7.

DPL Copes Well with Hard Samples. Following (Ducoffe
& Precioso, 2018), we calculate the margin to decision
boundary for each training sample and report the changes
after DPL iterations in Fig. 7. The purple bars represent the
average margin value of all training samples to the decision
boundary, while the green bars record the number of samples
with outlier margin values (close to the decision boundary).

Table 8. Time cost of DPL (1 iter.) on CIFAR-10/100, ImageNet,
PASCAL VOC, and COCO in GPU hours, estimated on NVIDIA
Tesla V100S.

CIFAR-10 CIFAR-100 ImageNet PASCAL COCO

4 6 17 8 15
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Figure 8. Comparison of the test loss decline on CIFAR-10.
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Figure 9. Deeper ablation study of DPL iteration on CIFAR-10
using ResNet-18. We report the average results with error bars of
3 independent runs.

As the iteration progresses, the mean value of the margins
to decision boundary shows an increasing trend, while the
number of outliers decreases. It indicates that models with
DPL can obtain better ability to discriminate hard samples
and achieve enhanced performance.

Details on the Test Loss Decline During Training. Ac-
cording to Fig. 8, DPL helps Vit-B converge to a lower test
loss, and this improvement is especially significant in the
late training period (after epoch 150). It confirms that the
performance improvement from our proposed DPL is solid
and have room for further improvement.

Deeper Ablation Study of DPL Iteration. In the main
work, we report the results within 5 DPL iterations in the
performance experiments and ablation study of DPL Itera-
tion. Despite the expensive experiment costs, we wonder
what deeper DPL iterations would bring. As shown in Fig.
9, it takes 9 DPL iterations to further achieve 1.04% im-
provement in top-1 accuracy for ResNet-18 on CIFAR-10.
In addition, we notice that the augmentation strategy outper-
forms the replacement strategy in deeper iterations.

Perturbation Optimization Cost. In Tab. 8, we record
the time cost of perturbation optimization progress of our
DPL. Compared to the hundreds of GPU hours required by
the data augmentation search policies (Zoph et al., 2020;

Lim et al., 2019; Zheng et al., 2022) and adversarial train-
ing methods (Xie et al., 2020; Chen et al., 2021; Lamb
et al., 2019; Mei et al., 2022), DPL can provide signifi-
cant improvement for the network performance within an
acceptable time consumption.

E. Limitations and Future Work
As illustrated in the main work, DPL requires multiple
rounds of optimization with Hessian-vector product com-
puting to achieve further enhanced performance for the
networks. To speed up the DPL optimization, we have for-
mulated an efficient approximation of perturbation stage in
Sec. 3.3 and achieved acceptable time cost as reported in
Tab. 8. Nevertheless, subject to the costly calculation of the
Hessian matrix and the retraining process of multi-rounds
DPL, it is still expensive to pursue the ultimate performance
improvement brought by DPL (e.g., DPL with 9 iterations
further boosts ResNet-18 to 1.04% improvement in top-1
accuracy on CIFAR-10 as shown in Fig. 9). Additionally,
in theory, the perturbation stage formulated in this work is
generic and we will explore the potential of DPL in transfer
learning and out-of-distribution detection in the future.
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