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Abstract
Despite the significant recent progress in deep
generative models, the underlying structure of
their latent spaces is still poorly understood,
thereby making the task of performing seman-
tically meaningful latent traversals an open re-
search challenge. Most prior work has aimed to
solve this challenge by modeling latent structures
linearly, and finding corresponding linear direc-
tions which result in ‘disentangled’ generations.
In this work, we instead propose to model latent
structures with a learned dynamic potential land-
scape, thereby performing latent traversals as the
flow of samples down the landscape’s gradient.
Inspired by physics, optimal transport, and neuro-
science, these potential landscapes are learned as
physically realistic partial differential equations,
thereby allowing them to flexibly vary over both
space and time. To achieve disentanglement, mul-
tiple potentials are learned simultaneously, and
are constrained by a classifier to be distinct and
semantically self-consistent. Experimentally, we
demonstrate that our method achieves both more
qualitatively and quantitatively disentangled tra-
jectories than state-of-the-art baselines. Further,
we demonstrate that our method can be integrated
as a regularization term during training, thereby
acting as an inductive bias towards the learning
of structured representations, ultimately improv-
ing model likelihood on similarly structured data.
Code is available at https://github.com/
KingJamesSong/PDETraversal.

1. Introduction
Generative models such as Generative Adversarial Networks
(GANs) (Goodfellow et al., 2014) and Variational Auto-
Encoders (VAEs) (Kingma & Welling, 2014) have latent
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spaces that are rich in semantics, whereby traversing latent
codes according to carefully chosen trajectories has the pos-
sibility to lead to semantically meaningful transformations
in the generated images. However, without a carefully struc-
tured latent space, it is impossible a priori to know how to
precisely construct such trajectories. A significant research
effort has thus emerged to develop methods that are able
to discover semantically meaningful, self-consistent, and
disentangled trajectories in the latent space of pre-trained
generative models. Such traversals would allow for a more
controlled generation of images without needing to alter or
constrain the training process of the generative model itself.
Most straightforwardly, an early set of these approaches
aimed to identify fixed linear directions in latent space and
evolve samples along the discovered directions to create
trajectories (Härkönen et al., 2020; Voynov & Babenko,
2020; Shen & Zhou, 2021). Such efforts developed valu-
able techniques for unsupervised learning of interpretable
traversal directions but were ultimately limited by their as-
sumption that semantics were structured linearly in latent
space, and thus were prone to yielding less semantically dis-
entangled traversals. More recently, Tzelepis et al. (2021)
proposed to model nonlinear latent traversals using gradi-
ents of learned Gaussian Radial Basis Functions (RBFs) to
effectively ‘warp’ the latent space and thereby drive latent
traversals. This integrated non-linearity was demonstrated
to improve the modeling of the semantic structure but again
was limited by its relatively fixed shape and its static nature
over the time-length of the traversal.

In this work, we introduce a more general framework which
encompasses this prior work while simultaneously allowing
for a significantly more flexible learned latent structure. Our
approach is motivated by intuitions from physics, optimal
transport, and neuroscience, and proposes to model latent
traversals as the flow of particles down the gradient of a
latent potential landscape. The challenge of learning a set
of disentangled latent traversals then equates to the prob-
lem of learning a set of equivalent disentangled potential
functions which match the semantic structure of the under-
lying data manifold. Traversals can then be generated by
evolving samples through time following the gradient of
these learned potentials. Importantly, in contrast with prior
work, our framework defines the learned potential functions
as physically realistic Partial Differential Equations (PDEs),
thereby allowing them to vary over both time and space,
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enabling sufficiently greater flexibility of traversal paths
than existing counterparts. In practice, we show that our
framework can be applied to multiple different generative
models under different experimental settings, and success-
fully improves performance on a variety of fronts. For
example, with pre-trained GANs and VAEs, our framework
identifies latent trajectories which are qualitatively more
disentangled, and score higher on objective disentanglement
metrics than state-of-the-art linear and RBF counterparts.
Further, when the desired factors of variation are known a
priori, our method can also be integrated into the training
process of generative models by performing “supervised”
latent traversals, thereby simultaneously structuring the la-
tent space and providing users with learned latent traversal
directions. We show that such integrated structures serve as
a beneficial inductive bias for similarly smooth structured
input transformations, and thereby improve the likelihood
of structured data under the model. Moreover, our latent
operator could induce the model with approximate trans-
formation equivarience. Finally, we perform an empirical
analysis of our method, demonstrating that our framework
can model unambiguous traversal paths in diverse shapes.
We conclude with a discussion about how many different
well-known ‘special’ PDEs may be used to model the sam-
ple evolution, and how previous linear traversal approaches
may be seen as special cases of our method.

2. Motivation
In this section, we outline the diverse set of motivations
which provide useful intuition for the success of our method,
in addition to outlining clear paths for potential future work.

2.1. Fluid Mechanics as Optimal Transport

Optimal Transport (OT) can be described at a high level as
finding a map which moves the probability mass between a
source and target distribution with minimal cost. Intuitively,
this has a strong connection with latent traversals which
can similarly be seen as attempting to move samples from a
source probability distribution to a target probability distri-
bution most efficiently while staying on the data manifold.
For example, consider aiming to perform a traversal which
changes the length of an individual’s hair while leaving the
rest of their traits unaffected. With the constraint that the
traversal must stay on the data manifold, the most efficient
traversal would not involve the transformation of multiple
variables, as this would require the movement of additional
mass, but instead only transform the latent code in a direc-
tion which corresponds to the transformation of a single
generative factor. In essence, if we were able to learn the
underlying structure of the data manifold with respect to
various semantic attributes, optimal transport would give us
a direct solution to how to perform disentangled traversals.

One method for solving optimal transport problems involves
casting them to a fluid mechanical system (Benamou &
Brenier, 2000), and solving the associated system numer-
ically. More formally, given the source and target density
functions ρ0(x), ρT (x) ≥ 0, if we construct a dynamical
system defined by a continuous density field ρ(x, t) ≥ 0
and a velocity field v(x, t), where ρ(x, 0) = ρ0(x) and
ρ(x, T ) = ρT (x), then the classical L2 Wasserstein dis-
tance can be shown to be equal to the infimum of:√∫

Rd

∫ T

0

ρ(x, t)|v(x, t)|2 dxdt (1)

over all v(x, t) and ρ(x, t) which satisfy the continuity equa-
tion: ∂ρ(x,t)

∂t = −∇ · (v(x, t)ρ(x, t)). For the individual
particles which make up this density field, this corresponds
to a time-update in the position given by the vector field
at their location, i.e.: ∂x

∂t = v(x, t). It turns out that, in
terms of the velocity, the optimal solutions to eq. (1) can
be written as the gradient of some potential function ϕ, i.e.,
v(x, t) = ∇xϕ(x, t), thereby earning the name potential
flows. Ultimately, by following such a potential flow, the sys-
tem can be seen to be minimizing the Wasserstein distance,
thereby solving the optimal transport problem.

In relation to latent traversals, we see that we can make
an intuitive connection between the distribution of points
which make up the start and end points of a given seman-
tic traversal (e.g., the distribution of portraits photos with
short and long hair respectively), and the source and target
distributions in the OT framework. Following such a con-
nection would intuitively suggest that we may be able to
learn a corresponding latent potential ϕ(x, t) which defines
the structure of the latent space with respect to this trans-
formation, and then use the gradient of this field to move
particles from one distribution to another.

While making a formal connection with OT remains beyond
this paper, we see there is still a close intuitive connection
between such methods which may be further formalized in
future work. In this work, we present this connection simply
as motivation for our method and empirically demonstrate
the effectiveness and generality of our approach using this
intuition. One question which comes from this interpretation,
is what kind of velocity fields are appropriate for encoding
transformations? In the following subsection, we provide
further intuition that motivates our use of physically-realistic
PDEs such as the wave equation to constrain the space-time
dynamics of ϕ and the resulting velocity ∇ϕ.

2.2. Traveling Waves in Neuroscience

More abstractly, our work is motivated by the recent interest
in traveling waves in the neuroscience literature. Succinctly,
traveling waves have recently been observed to exist in a di-
versity of regions and scales in the biological cortex (Muller
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et al., 2018). Although a consensus has yet to be reached
about their exact computational purpose, there is a variety
of emerging work which appears to implicate them in the
predictive processing of observed transformations from both
biological (Jancke et al., 2004; Sato et al., 2012; Friston,
2019; Alamia & VanRullen, 2019; Besserve et al., 2015)
and computational (Keller & Welling, 2023) perspectives.
Specifically, these works suggest that they play the role of
integrating information across time, encoding motion, and
modulating information transfer. In this work, we leverage
these observations to motivate the hypothesis that traveling
waves may be a neural correlate of latent traversals, and
thereby serve as an efficient way to encode natural trans-
formations using neural network architectures. Pursuant
to this hypothesis, we expect beneficial performance with
physics-inspired PDEs guiding latent traversals in artificial
neural networks as well.

3. Related Work
Latent Traversal in Generative Models. Latent traversals
have often been used to evaluate the quality of learned latent
spaces of the deep generative models (Kingma & Welling,
2014; Goodfellow et al., 2014). Pursuant to this, much re-
search has been conducted to determine the optimal way
to compute traversal trajectories in order to yield semanti-
cally meaningful generations. One line of research employs
explicit human annotations to define the semantic labels
for interpretable paths (Radford et al., 2015; Goetschalckx
et al., 2019; Jahanian et al., 2020; Plumerault et al., 2020;
Shen et al., 2020; Ling et al., 2021; Shi et al., 2022). By
contrast, unsupervised methods discover interpretable direc-
tions without any prior knowledge (Härkönen et al., 2020;
Kwon et al., 2023; Choi et al., 2022; Karmali et al., 2022;
Spingarn-Eliezer et al., 2021; Ren et al., 2022; Oldfield et al.,
2023). For example, Voynov & Babenko (2020) proposed
to learn a set of semantic concepts via an auxiliary classifier.
Other methods such as SeFa (Shen & Zhou, 2021) pointed
out that the eigenvectors of the projection matrix follow-
ing the latent codes can be directly used as interpretable
directions. More recently, Tzelepis et al. (2021) proposed
to non-linearly perturb the latent code using gradients of
learned RBFs. Our work mainly belongs to the unsupervised
category, as demonstrated by the majority of the results pre-
sented in Sec. 5; however, as we show in Sec. 4.3 and 5.4,
our method can also be extended to the supervised setting,
thereby regularizing the latent space towards increased struc-
ture and improving the model’s ability to represent similarly
structured transformations.

Disentanglement Learning. In contrast to the goal of dis-
covering latent traversal trajectories in pre-trained models,
other methods have aimed to attain an a priori structured
representation through additional regularization during train-

ing. For example, InfoGAN (Chen et al., 2016) encouraged
disentanglement by maximizing the mutual information be-
tween the observations and a fixed subset of the latent code.
Zhu et al. (2020) proposed a variational predictability loss to
learn disentangled representations and introduced a metric
to evaluate unsupervised disentanglement methods. Peebles
et al. (2020); Wei et al. (2021) and Song et al. (2022) pro-
posed different orthogonality constraints to improve disen-
tanglement ability. Alternatively, for disentanglement with
VAEs, much work has focused on various modifications to
the evidence lower bound (ELBO) to encourage increased
independence of the different latent dimensions. Most no-
tably, the β-VAE (Higgins et al., 2016) first introduced a
hyper-parameter to accentuate the penalty of the divergence
between the prior and variational posterior. Follow-up re-
search used additional guidance to encourage improved
disentanglement in this manner, including β-TC-VAE (Kim
& Mnih, 2018; Chen et al., 2018a), DIP-VAE (Kumar et al.,
2018), Guided-VAE (Ding et al., 2020), JointVAE (Dupont,
2018), and CasadedVAE (Jeong & Song, 2019).

Physics for Deep Learning. In recent years, an increased
effort has developed to combine deep neural networks with
concepts from physics. Much work has focused on using
deep learning to solve problems that arise in physics, such
as solving PDEs by Physics Informed Neural Networks
(PINNs) (Raissi et al., 2019), learning dynamic systems
with Neural ODEs (Chen et al., 2018b), and discovering
physical concepts (Iten et al., 2020). Another active research
field leverages fundamental laws (e.g., symmetries or con-
servation laws) to improve deep learning models. Some
examples include designing equivariant neural networks to
handle input with geometric symmetries (Cohen & Welling,
2016; Cohen et al., 2018; Zhang, 2019; Satorras et al., 2021;
Keller & Welling, 2021), endowing neural networks with
Hamiltonian dynamics for improved performance and gen-
eralization (Greydanus et al., 2019; Toth et al., 2020), and
building score-based denoising diffusion models for gener-
ative modelling (Ho et al., 2020; Song et al., 2021a;b). In
this work, we use PINN-inspired constraints to model the
latent traversal with learned potential PDEs, situating our
model in the category of work which seeks to improve deep
learning with physically inspired methods.

4. Methodology
In this section we present the formulation of our learned
potential functions, their integration into generative mod-
els under different settings, and the training and sampling
strategies. The overview of our method is depicted in Fig. 1.

4.1. Latent Traversals as Potential Flows

Learning the Potential PDE. Assume we are given a pre-
trained generative model G : Z → X with prior distribution
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Learned Potential PDEs

VAE/GAN
Generator samples      ,

Initial latent codes

Sampling path index and time

,
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Given transformation VAE
Encoder

Learned Potential PDEs
Sampling path index and time

Latent codes

VAE
Decoder

Modeled path Output images

Traversal with Pre-trained GAN/VAE

Integrating Traversal into VAE Training

Figure 1. Overview of our learned potential PDEs for latent traversal in two different experimental settings.

Pz(z). To model K different semantically disentangled
latent trajectories, we model each trajectory separately as
the gradient of a learned time-dependant scalar potential
energy field: uk(zt, t) = MLPθk([zt; t]) ∈ R. In this
work we use a small multilayer perceptron (MLPs) to learn
each potential. The process of traversing from an initial
sample (z0) to a future element (zt) at time t is then defined
as the potential flow ∇zu described by this field:

z0 ∼ Pz(z) zt = zt−1 +∇zu
k(zt−1, t− 1) (2)

To encourage the latent potential to model realistic trajecto-
ries and follow the intuitions outlined above, we additionally
impose a PINN constraint in the form of the second-order
wave equation with wave coefficient c:

fk(zt, t) =
∂2

∂t2
uk(zt, t)− c2∇2

zu
k(zt, t) (3)

Such a constraint makes our potential flow model a good ap-
proximation of small amplitude sound waves (Lamb, 1993),
and empirically is seen to produce highly diverse and realis-
tic trajectories. Our objective is then to minimize:

Lf =
1

T

T−1∑
t=0

||fk(zt, t)||22, Lu = ||∇zu
k(z0, 0)||22 (4)

where T represents the total number of timesteps of our
latent trajectory, Lf restricts the energy to obey our physical
constraints, and Lu restricts u(zt, t) to return no update at
t=0, thereby matching the initial condition.

Jacobian Regularization. While the above formulation
models traversals as physically realistic potential flows, it
cannot ensure that the modeled traversal paths are semanti-
cally meaningful. Therefore, to make our learned potentials
more aligned with the semantics of the data, we take in-
spiration from prior work and further couple the traversal
direction with the Jacobian of the generator. Similar to Zhu

et al. (2021; 2022), we first approximate the manipulation
on the latent space as

G(zt+ ϵ∇uk(zt, t)) ≈ G(zt)+ ϵ
∂G(zt)
∂zt

∇zu
k(zt, t) (5)

where ϵ denotes perturbation strength. Intuitively, for suf-
ficiently small ϵ, if the Jacobian-vector product (the un-
derlined term in eq. (5)) can cause large variations in the
generated sample, the direction is likely to be semantically
meaningful. We therefore introduce a Jacobian-vector prod-
uct regularization term to encourage the improved semantic
variations of our traversals in an unsupervised manner:

LJ = −||∂G(zt)
∂zt

∇zu
k(zt, t)||22 (6)

4.2. Traversal with Pre-trained GAN/VAE

With pre-trained models, the weights of the generator are
frozen. We only update the parameters of our MLPs and of
the auxiliary potential-index classifier module. We adopt an
auxiliary classifier C to predict the potential index and use
the cross-entropy loss to optimize it:

k̂=C(xt;xt+1), Lk = LCE(k̂, k) (7)

Where xt = G(zt) is the generated sample from timestep t.

4.3. Integrating Traversal into VAE Training

When training VAEs from scratch, our method can per-
form “supervised” latent traversal as extra regularization
to improve the likelihood. That is, we explicitly model
the path of the variations of a semantic attribute during
the training process. In this setting, we consider having
access to the pre-defined transformation of each variation
factor x0 → xT . Then we can obtain the corresponding
latent codes z0 → zT by feeding images to the encoder, i.e.,
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Ours: Rotation

WarpedSpace: Rotation + Background

SeFa: Rotation + Background + Zoom

Ours: Pose

WarpedSpace: Pose + Y Position + Background

SeFa: Pose + Background + Distortion

Ours: Eye SizeOurs: Hair Color

WarpedSpace: Hair Color + Haircut

SeFa: Hair Color + Hair Length

WarpedSpace: Eye Size + Head Pose

SeFa: Eye Size + Face Color

Figure 2. Exemplary traversal paths (potential PDEs for our method) and the corresponding interpolation images with SNGAN and
BigGAN. Since the paths of WarpedSpace are of very limited non-linearity that is hard to perceive, we amplify the non-linear part in the
sub-figure inside the figure as follows: for a traversal path y of WarpedSpace, we decompose it into y = yLN + yNLN where yLN

denotes the linear part and yNLN is the non-linear counterpart. Then the non-linearity part is amplified by y = yLN + 200 · yNLN .

zt = Encode(xt). Then our potential PDEs manipulate
the initial latent codes z0 to obtain ẑ1 → ẑT by progres-
sively performing ẑt = z0 +

∑
∇zu

k. The output images
x̂1 → x̂T can be easily attained by decoding ẑ1 → ẑT .
The traversal paths modeled by our wave equations are en-
couraged to match the ground truth as

Lz = ||zt − ẑt||22 + ||(zt+1 − zt)− (ẑt+1 − ẑt)||22
= ||zt − ẑt||22 + ||zt+1 − zt −∇zu

k(ẑt, t)||22
(8)

where the first term penalizes the difference between current
latent codes and the ground truth history, and the second
term ensures that the future update at the next timestep is
realistic. Besides improving the plausibility of traversal
paths, we optimize the ELBO:

Lx=Eẑt
[− log pθ(x̂t|ẑt)+DKL [qϕ(ẑt|x̂t)||pZ(ẑt)]] (9)

where pθ parameterizes the generator, and qϕ denotes the
approximate posterior. The combination of the two losses
could yield more structured latent space and more realistic
traversal trajectories, which might improve the likelihood.

4.4. Sampling and Training Strategies

At each training step, we randomly sample a potential in-
dex k from Cat({0, 1, . . . ,K−1}) and a timestep t from
Cat({0, 1, . . . , T−2}). Then we use the selected potential
to generate the corresponding velocity fields and obtain the
two latent codes zt and zt+1. Subsequently, the generator

is fed with the latent codes and outputs a pair of images xt

and xt+1. Finally, we adopt an auxiliary classifier to predict
the potential index k̂. The overall loss function is defined as

L = Lu + Lf + LJ + Lk + Lx + Lz (10)

where Lk matches the predicted index k̂ to the ground truth
k, therefore encouraging that each learned potential is sig-
nificantly distinct and self-consistent to be recognized by a
classifier accurately. The boxed terms are only applied to
regularize the latent space when integrated into VAE train-
ing, while the underlined terms are used for pre-trained mod-
els. Notice that different from Voynov & Babenko (2020);
Tzelepis et al. (2021), we do not predict the timesteps from
the image pair [xt,xt+1]. This is because our potential
PDEs can be very diverse in spatiotemporal form, thus pre-
dicting the timesteps from two points on the path demon-
strated to be both unnecessary and practically infeasible.

5. Experiments
This section starts with the setup, followed by the results
under different settings, and ends with in-depth discussions.

5.1. Settings

Models and Datasets. For experiments of pre-trained
GANs, our method is evaluated on SNGAN (Miyato et al.,
2018) with AnimeFace (Chao, 2019), BigGAN (Brock
et al., 2019) with ImageNet (Deng et al., 2009), and Style-
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Figure 3. Traversal trajectories (potential PDEs for our method) and the associated interpolation images of the exemplary four attributes
with StyleGAN2. The non-linearity of WarpedSpace paths is amplified in the same way as done in SNGAN and BigGAN.

GAN2 (Karras et al., 2020) with FFHQ (Karras et al., 2019).
For BigGAN, we train the target class “Bernese mountain
dog”. We adopt LeNet (LeCun et al., 1998) as the auxiliary
classifier for SNGAN, while ResNet-18 (He et al., 2016)
based classifier is used for both BigGAN and StyleGAN2.
For the VAEs experiments, we use the VAE encoder as the
auxiliary classifier and evaluate our method on MNIST (Le-
Cun, 1998) and dSprites (Matthey et al., 2017) datasets.

MLP for Modeling PDEs. We use sinusoidal positional
embeddings (Vaswani et al., 2017) to embed the timestep t.
Linear layers with Tanh activations are used for embedding
the latent code input z. Another linear layer is used to fuse
features across space and time. We set the wave coefficient
c as a learnable parameter and initialize it with 1.

Metrics. For the quantitative evaluation of traversal with
GANs, we use Variational Predictability (VP) (Zhu et al.,
2020) score and the correlation coefficient between face
attributes and traversal steps using pre-trained attribute esti-
mators. The VP score adopts the few-shot learning setting
(e.g., 10% images as the training set) to measure the gener-
alization of a simple neural network in classifying the dis-
covered latent directions from a crafted dataset of random
image pairs [x0,xT ]. For attribute correlation, we first use
S3FD (Zhang et al., 2017) to extract the face region and then
compute the normalized Pearson’s correlation between po-
tential indexes and traversal steps using several pre-trained
attributes estimators, including ArcFace (Deng et al., 2019)
for face identity, FairFace (Karkkainen & Joo, 2021) for
face attributes (age, race, and gender), and HopeNet (Doosti
et al., 2020) for face poses (yaw, pitch, and roll). The

correlation results are averaged across 50 random latent
samples. For the quantitative evaluation of VAEs, since
our method performs vector-based manipulation, traditional
single-dimension-based VAE disentanglement metrics such
as Mutual Information Gap (MIP) (Chen et al., 2018a) do
not apply here. Some works such as Arvanitidis et al. (2018);
Tonnaer et al. (2020) can perform the evaluation of quantita-
tive vector-based manipulation but they require supervision
of the ground truth. We thus also evaluate the disentangle-
ment performance using the VP score. The log-likelihood
over the entire dataset is measured for the experiment of
integrating our method into the VAE training.

Baselines. For pre-trained GANs, we compare our method
against two representative baselines, i.e., SeFa (Shen &
Zhou, 2021) and WarpedSpace (Tzelepis et al., 2021). SeFa
uses eigenvectors of the weight matrix after latent codes
for linear perturbation, while WarpedSpace non-linearly
changes the latent codes using the gradients of RBFs. As for
VAEs, there are no popular vector-based traversal methods
in the literature so we also use WarpedSpace for comparison.
Finally, as another controlled baseline, we train a linear
function with other settings aligned with our method.

Table 1. Comparison of the VP scores (%) with different GANs.
The results are averaged over 3 random runs.

Models SeFa WarpedSpace Ours

SNGAN 53.76 58.83 65.89
BigGAN 13.59 14.07 15.29

StyleGAN2 39.20 36.31 48.54
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Table 2. The l1 normalized attribute correlations of our method
(top), WarpedSpace (middle), and SeFa (bottom) based on 50
samples. The second highest correlation is also highlighted if the
best value in the row is not on the diagonal.

Yaw Pitch Roll Identity Age Race Gender

Yaw 0.34 0.09 0.22 0.09 0.03 0.18 0.03
Pitch 0.04 0.25 0.11 0.08 0.00 0.08 0.45
Roll 0.23 0.19 0.35 0.00 0.02 0.03 0.18

Identity 0.01 0.06 0.00 0.61 0.21 0.03 0.07
Age 0.00 0.06 0.00 0.03 0.87 0.00 0.04
Race 0.05 0.07 0.06 0.02 0.01 0.73 0.06

Gender 0.08 0.19 0.09 0.04 0.00 0.03 0.58

Yaw Pitch Roll Identity Age Race Gender

Yaw 0.34 0.03 0.05 0.42 0.01 0.08 0.07
Pitch 0.01 0.38 0.07 0.42 0.01 0.09 0.01
Roll 0.10 0.15 0.17 0.27 0.02 0.07 0.22

Identity 0.01 0.10 0.00 0.69 0.10 0.07 0.01
Age 0.02 0.09 0.05 0.52 0.25 0.02 0.05
Race 0.05 0.02 0.07 0.12 0.07 0.54 0.12

Gender 0.09 0.00 0.02 0.40 0.00 0.00 0.49

Yaw Pitch Roll Identity Age Race Gender

Yaw 0.29 0.01 0.05 0.40 0.04 0.09 0.11
Pitch 0.09 0.29 0.06 0.41 0.05 0.08 0.01
Roll 0.03 0.10 0.09 0.60 0.00 0.06 0.12

Identity 0.02 0.05 0.02 0.74 0.08 0.08 0.01
Age 0.02 0.08 0.02 0.47 0.25 0.02 0.15
Race 0.07 0.25 0.02 0.58 0.00 0.00 0.07

Gender 0.02 0.05 0.02 0.43 0.02 0.35 0.12

5.2. Results with Pre-trained GANs

SNGAN and BigGAN. Fig. 2 displays the exemplary la-
tent traversal results and the corresponding trajectories with
SNGAN and BigGAN. Since the parameters of the genera-
tor are frozen, each method would generate the same image
for one latent sample. Our PDEs can generate traversal paths
with distinct semantics and precise image attribute control,
while the baselines suffer from entangled attributes and the
non-target semantics also vary during traversal. Moreover,
the paths of WarpedSpace are of very limited non-linearity,
which is imperceptible unless the non-linear part of the path
is significantly amplified. By contrast, our potential PDEs
have more diverse shapes and more flexible non-linearity.
Table 1 presents the quantitative evaluation results of the VP
scores. Our PDEs achieve state-of-the-art performance in
terms of classification accuracy in the few-shot learning set-
ting. Specifically, our method outperforms the second-best
baseline by 7.04% with SNGAN, by 1.22% with BigGAN,
and by 12.23% with StyleGAN2. The consistent perfor-
mance gain on each dataset indicates that the semantics of
our traversal paths are indeed more disentangled than oth-
ers. It is also worth mentioning that the relatively marginal
advantage with BigGAN might stem from the fact that Big-
GAN generates images in wide domains (1, 000 ImageNet
classes). This domain diversity might restrict the actual
number of latent semantics, thus limiting the performance.

StyleGAN2. Fig. 3 compares the exemplary latent traver-
sal with StyleGAN2. The results are coherent with those
on SNGAN and BigGAN: the traversal paths of baselines
suffer from entangled semantics, while our potential PDEs
are able to model trajectories that correspond to more disen-
tangled image attributes. Table 2 presents the l1 normalized
correlation results of some common face attributes. As can
be seen, most attributes of both SeFa and WarpedSpace have
the highest correlation with “identity”, implying that their
variations of these attributes are often coupled with varia-
tions of the face identity during the traversal. By contrast,
our method has the best attribute correlations mostly on the
diagonal, which explicitly indicates that these attributes of
our method are more disentangled from each other.

Table 3. Comparison of the VP scores (%) with pre-trained VAEs.
The results are averaged over 3 random runs.

Models WarpedSpace Ours (Linear) Ours

MNIST 13.44 12.76 17.38
dSprites 15.01 14.25 18.49

5.3. Results with Pre-trained VAEs

Figure 4. Exemplary semantic attributes and the corresponding
traversal trajectories with VAEs trained on MNIST and dSprites.

Fig. 4 displays the exemplary semantics discovered by our
method with pre-trained VAEs. Our potential PDEs exhibit
a diverse set of different shapes and the interpolation im-
ages correspond to distinct transformation factors. Table 3
presents the quantitative evaluation of VP scores. The lin-
ear baseline and WarpedSpace achieve similar performance,
falling behind our method by 4%. This demonstrates again
the effectiveness of our PDEs in modelling latent traversal.

Table 4. The log-likelihood log pθ(x) evaluated over the dataset.

Models Naively Trained Trained with Our Method

MNIST -2207.70 -2144.71
dSprites -3848.04 -3740.97
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Figure 5. Exemplary traversal results when our method is inte-
grated into the VAE training process. For MNIST, the exhibited
transformations are scaling, rotation, and coloring changes from
top to bottom. For Dsrpites, the corresponding transformations are
y-axis position, scaling, and shape changes from top to bottom.

5.4. Results with VAEs Trained from Scratch

Table 4 compares the log-likelihood of VAEs integrated with
our method. Notice that common disentanglement methods
would often sacrifice the likelihood (Higgins et al., 2016).
However, integrating our PDEs into the training process
slightly improves the likelihood estimation. Fig. 5 displays
the exemplary traversal results of the pre-defined transfor-
mations. Our method is also able to learn and generalize the
pre-defined transformation factors well.

Table 5. Equivariance error on MNIST.

Transformations Rotation Scaling Coloring

Our Method 235.96 230.39 240.64
Vanilla VAE 1278.21 1309.56 1370.54

One interesting geometric property induced by our poten-
tial flows is the approximate equivariance for VAEs trained
from scratch. At a high level, an equivariant map is one
which commutes with a desired transformation group, i.e.,
T ′[f(x)] = f(T [x]). This can be understood as preserving
geometric symmetries of the input space. The gradient of
our potential function can be interpreted as the equivariant
latent operator T ′ corresponding to the observed input trans-
formation T [x]. As is typical in the equivariance literature,
we can measure how close this is to exact equivariance by
measuring the equivariance error:

Err =

T∑
t=1

|xt − x̂t|

=

T∑
t=1

|xt − Decode(z0 +
t∑

∇zu
k)|

(11)

We see this is equivalent to measuring the satisfaction of

the equivariance relation T [x]− f−1(T ′[f(x)]) = 0 where
f−1 is approximated with the decoder. Table 5 presents the
evaluation results against a vanilla VAE on transforming
MNIST. Note that since the vanilla VAE has no notion
of a corresponding transformation in the latent space T ′

(i.e., no a priori known latent structure), we simply set
∇zu

k to 0 and treat this as a lower bound baseline. We see
that our method performs significantly above this baseline,
indicating that it could be helpful to build equivariant VAEs.

5.5. Discussions

Linear Directions as Special Cases. We note that the
linear traversal approaches can be understood as special
cases of our second-order wave equations. Actually, for
general linear functions defined as u(x, t) = a · x + b · t
where a and b denote the coefficients, the solutions would all
correspond to wave equations. In this sense, linear functions
are simplified special cases of our waves. One piece of
evidence for supporting this is that in certain cases where
the structure of the latent space might be simple, our PDEs
can also reduce back to functions that are almost linear, such
as the traversal paths of the semantic attribute “Eye Size” in
Fig. 2 and the transformation of scaling in Fig. 4 right.

Figure 6. Common shapes of potential PDEs in our experiments.

Path Diversity. Our potential PDEs can be very different
in shape and period. Fig. 6 exhibits some common PDEs
learned in our experiments. As can be seen, our wave equa-
tions allow for a wide set of traversal paths, ranging from
linear lines to traveling waves of a full period. This flexibil-
ity enables modeling diverse trajectories in the manifold.

Semantic and Trajectory Unambiguity. As shown in
Fig. 7, for the same traversal path, the semantic attribute
is consistent to different samples and the corresponding
PDE paths are of very similar shapes. Take the semantic
attribute of “Zoom IN” as an example. The scalar potential
energy fields of the three images all have slow changes near
the endpoints while taking sharp increases in the middle
regime. Accordingly, the interpolation images coincide with

8
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Unamibiguity of “Zoom IN”

Unamibiguity of “Hair Length”

Figure 7. Unambiguity of our potential PDEs and the correspond-
ing discovered semantics: the shape of trajectory and the image
attribute of a traversal path are consistent to different samples.

identical semantics.

Geometric Properties of Latent Spaces. Besides the equiv-
ariance property of the encoder/decoder, we also have some
novel observations about the shape and variations of ∇zu

k.
For VAEs, we observe that the simple variation factors that
involve linear transformations (e.g., scaling and translation
shown in Fig. 4 right) tend to be accordingly more linear
in the latent space. For GANs, the semantic attributes that
edit local image regions tend to be more linear in the latent
space, such as the attribute “Eye Size” in Fig. 2 and the
attributes “Glasses” and “Hat Length” in Fig. 3. Through
all the experiments, the traversal directions generally tend
to have fewer variations when closer to the endpoints. We
think this is because at the endpoints (i.e., large timesteps)
our potentials learnt to not violate the semantic attribute and
not to go out of the data manifold.

Limitations of Potential Flows. It is known that potential
flows are limited in their ability to represent all forms of
physically known flows. For example, since the curl of the
gradient is known to be zero, potential flows are inherently
irrotational and thus cannot model vorticity. In the case of
latent traversals, the literature largely appears to model non-
cyclic transformations (such as hair length or skin color),
and thus this modeling assumption is observed to be valid.
However, this limitation explains why the rotation traver-
sals attempted to be learned by our VAE model perform
poorly. Ultimately, we propose this framework as a first
step towards modeling latent traversals with more complex,
physically informed dynamics, and suggest that in some

settings, these physical biases may match the underlying
data in a beneficial way. We propose that valuable future
work could explore alternative parameterizations of the la-
tent vector field which could respectively yield alternative
biases suitable to other datasets.

Alternative PDE Modeling Approaches. We mainly ex-
plore the PINN-based physical constraints to model our
PDEs. Despite the flexibility and efficiency, this approach
achieves the soft PDE constraints approximately. Other
alternative possibilities for PDE modeling include Neural
Conservation Laws (Richter-Powell et al., 2022) that impose
hard divergence-free constraints and accurate neural PDE
solvers (Hsieh et al., 2019; Brandstetter et al., 2022). In-
vestigating other PDE modeling approaches is an important
research direction in future work.

Famous PDEs of the Sample Evolution. Driven by our
learned velocity field ∇u(z, t), the sample evolution of z
over space and time could satisfy certain PDEs. In particu-
lar, with certain ∇u(z, t), the evolution of z could possibly
become some special well-known PDEs, such as heat equa-
tions, Fokker Planck equations, and Porous Medium equa-
tions. The specific types depend on the relation between
∇u(z, t) and ρ(z, t). For instance, if the velocity field is
set as ∇u(z, t) = −∇ log(ρ(z, t)), the evolution would
become the heat equations. More details about the possible
relations are kindly referred to Santambrogio (2017).

6. Conclusion
Inspired by the fluid mechanical interpretation of optimal
transport and the role of traveling waves in neuroscience, we
propose to model the latent traversal flexibly by the gradient
flows of learned dynamic potential landscapes. Our method
can model a set of traversal paths with distinct semantics to
improve the disentanglement ability of pre-trained GANs
and VAEs. Furthermore, our PDEs can be integrated into
the training process of VAEs as regularization on the latent
space to improve the model likelihood estimation.
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A. Appendix
A.1. Implementation Details

VP Score. The dataset of image pairs [x0,xT ] is created by randomly sampling from different interpretable directions.
Since the used models have a different number of directions, the crafted datasets also have a different number of images
accordingly. Specifically, the dataset consists of 10, 000 images for SNGAN and VAEs, 20, 000 images for BigGAN, and
40, 000 images for StyleGAN2. We randomly select 10% of the images as the training set and the rest as the test set. The
simple neural network for the VP score evaluation consists of four stacked convolutional layers with batch normalization
and ReLU activations. The learning rate is set to 0.005, and we train the network for 300 epochs with the batch size set as
32. We report the classification accuracy (%) on the test set as the score.

Pre-trained GANs. We set the total timestep T to 10 for all the datasets and models. In line with Tzelepis et al. (2021),
the number of potential functions (traversal paths) K is set as 64 for SNGAN, 120 for BigGAN, and 200 for StyleGAN2.
The output images are of size 64×64 for SNGAN, of size 256×256 for BigGAN, and of size 1024×1024 for StyleGAN2.
During the inference stage, we also negatively traverse the latent space by zt −∇zu

k(zt, t). The anti-symmetry of the
traversal is thus achieved.

Pre-trained VAEs. We set the number of traversal path K to 32 and define the total timestep T as 10 for both MNIST and
Dsprites. The training process lasts 100, 000 iterations.

Integrating Traversal into VAE Training. For MNIST, we define 3 factors of variations, i.e., scaling, rotation, and
color transformations. Each transformation has 8 states of variations. For Dsprites, we use the self-contained 5
factors of variations, i.e., x position, y position, scaling, orientation, and shape transformations. The training also
lasts 100, 000 iterations for both datasets. For the comparison fairness, the naively trained baseline employs the loss
Ezt [− log pθ(xt|zt)+DKL [qϕ(zt|xt)||pZ(zt)] to optimize the ELBO of the same transformed input data.

A.2. Impact of Different Losses

Table 6. Impact of different loss terms on the VP scores (%).

Models Ours w/o LJ w/o Lf w/o Lu

SNGAN 65.89 55.37 45.78 63.19
BigGAN 15.29 13.91 12.87 14.68

StyleGAN2 48.54 41.77 36.91 46.24

Table 6 presents the complete ablation studies of losses on all the datasets. As can be seen above, when LJ , Lf , or Lu

are not applied, our model would have performance degradation of different extents. The Jacobian regularization LJ can
encourage that the trajectory could cause meaningful variations, while the PDE constraints Lf ensures that the potential
flow follows wave-like spatial-temporal dynamics. The initial condition constraint can improve the score slightly but more
importantly it is applied to help generate smoother traversal paths.

A.3. Why We Need PDE Constraints

We add the PDE constraints to the velocity fields to learn good spatial-temporal dynamics for smooth, continuous,
and flexible latent trajectories. The formulation matches the space dynamics ∇u to the time dynamics ∂tu, leading
to stable potential flows and smooth wave-like paths in the latent space. Since the latent code is progressively updated
by zt+1 = zt +∇zu

k(zt, t), if no constraints are applied on the gradient, the magnitude of ∇zu
k(zt, t) might gradually

get amplified and then eventually the latent code z is likely to go out of the manifold. Enforcing PDE constraints in
spatiotemporal form could help to limit the magnitude of the gradient and create wave-like plausible trajectories.

A.4. Visual Gallery of Identified Semantic Attributes

SNGAN and StyleGAN2. Fig. 8 displays some more semantic attributes identified by our potential PDEs on SNGAN and
StyleGAN2. Our method can precisely control the target image attributes while keeping other traits uninfluenced.

BigGAN. Previous disentanglement approaches heavily rely on human faces and animal images for visualization. Here we
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Figure 8. More semantics discovered by our learned potential PDEs on SNGAN and StyleGAN2.

instead show some results with alternative objects belonging to the ImageNet classes based on BigGAN. Fig. 9 presents
such traversal results. Our potential PDEs are still able to identify distinct semantics from images of various categories.
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Figure 9. Semantic attributes of different objects discovered by our learned potential PDEs on BigGAN. The specific image categories
include Computer Screen (1st row left), Mushroom (1st row right), Schoolbus (2nd row left), Ski (2nd row right), Pizza and Ice Cream
(3rd row left), Coffee and Toilet Tissue (3rd row right), Valley (4th row left), and Volcano (4th row right).
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