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Abstract

Despite the significant recent progress in deep
generative models, the underlying structure of
their latent spaces is still poorly understood,
thereby making the task of performing seman-
tically meaningful latent traversals an open re-
search challenge. Most prior work has aimed to
solve this challenge by modeling latent structures
linearly, and finding corresponding linear direc-
tions which result in ‘disentangled’ generations.
In this work, we instead propose to model latent
structures with a learned dynamic potential land-
scape, thereby performing latent traversals as the
flow of samples down the landscape’s gradient.
Inspired by physics, optimal transport, and neuro-
science, these potential landscapes are learned as
physically realistic partial differential equations,
thereby allowing them to flexibly vary over both
space and time. To achieve disentanglement, mul-
tiple potentials are learned simultaneously, and
are constrained by a classifier to be distinct and
semantically self-consistent. Experimentally, we
demonstrate that our method achieves both more
qualitatively and quantitatively disentangled tra-
jectories than state-of-the-art baselines. Further,
we demonstrate that our method can be integrated
as a regularization term during training, thereby
acting as an inductive bias towards the learning
of structured representations, ultimately improv-
ing model likelihood on similarly structured data.
Code is available at https://github.com/
KingJamesSong/PDETraversal.

1. Introduction

Generative models such as Generative Adversarial Networks
(GANSs) (Goodfellow et al., 2014) and Variational Auto-
Encoders (VAEs) (Kingma & Welling, 2014) have latent
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spaces that are rich in semantics, whereby traversing latent
codes according to carefully chosen trajectories has the pos-
sibility to lead to semantically meaningful transformations
in the generated images. However, without a carefully struc-
tured latent space, it is impossible a priori to know how to
precisely construct such trajectories. A significant research
effort has thus emerged to develop methods that are able
to discover semantically meaningful, self-consistent, and
disentangled trajectories in the latent space of pre-trained
generative models. Such traversals would allow for a more
controlled generation of images without needing to alter or
constrain the training process of the generative model itself.
Most straightforwardly, an early set of these approaches
aimed to identify fixed linear directions in latent space and
evolve samples along the discovered directions to create
trajectories (Hidrkonen et al., 2020; Voynov & Babenko,
2020; Shen & Zhou, 2021). Such efforts developed valu-
able techniques for unsupervised learning of interpretable
traversal directions but were ultimately limited by their as-
sumption that semantics were structured linearly in latent
space, and thus were prone to yielding less semantically dis-
entangled traversals. More recently, Tzelepis et al. (2021)
proposed to model nonlinear latent traversals using gradi-
ents of learned Gaussian Radial Basis Functions (RBFs) to
effectively ‘warp’ the latent space and thereby drive latent
traversals. This integrated non-linearity was demonstrated
to improve the modeling of the semantic structure but again
was limited by its relatively fixed shape and its static nature
over the time-length of the traversal.

In this work, we introduce a more general framework which
encompasses this prior work while simultaneously allowing
for a significantly more flexible learned latent structure. Our
approach is motivated by intuitions from physics, optimal
transport, and neuroscience, and proposes to model latent
traversals as the flow of particles down the gradient of a
latent potential landscape. The challenge of learning a set
of disentangled latent traversals then equates to the prob-
lem of learning a set of equivalent disentangled potential
functions which match the semantic structure of the under-
lying data manifold. Traversals can then be generated by
evolving samples through time following the gradient of
these learned potentials. Importantly, in contrast with prior
work, our framework defines the learned potential functions
as physically realistic Partial Differential Equations (PDEs),
thereby allowing them to vary over both time and space,
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enabling sufficiently greater flexibility of traversal paths
than existing counterparts. In practice, we show that our
framework can be applied to multiple different generative
models under different experimental settings, and success-
fully improves performance on a variety of fronts. For
example, with pre-trained GANs and VAEs, our framework
identifies latent trajectories which are qualitatively more
disentangled, and score higher on objective disentanglement
metrics than state-of-the-art linear and RBF counterparts.
Further, when the desired factors of variation are known a
priori, our method can also be integrated into the training
process of generative models by performing “supervised”
latent traversals, thereby simultaneously structuring the la-
tent space and providing users with learned latent traversal
directions. We show that such integrated structures serve as
a beneficial inductive bias for similarly smooth structured
input transformations, and thereby improve the likelihood
of structured data under the model. Moreover, our latent
operator could induce the model with approximate trans-
formation equivarience. Finally, we perform an empirical
analysis of our method, demonstrating that our framework
can model unambiguous traversal paths in diverse shapes.
We conclude with a discussion about how many different
well-known ‘special’ PDEs may be used to model the sam-
ple evolution, and how previous linear traversal approaches
may be seen as special cases of our method.

2. Motivation

In this section, we outline the diverse set of motivations
which provide useful intuition for the success of our method,
in addition to outlining clear paths for potential future work.

2.1. Fluid Mechanics as Optimal Transport

Optimal Transport (OT) can be described at a high level as
finding a map which moves the probability mass between a
source and target distribution with minimal cost. Intuitively,
this has a strong connection with latent traversals which
can similarly be seen as attempting to move samples from a
source probability distribution to a target probability distri-
bution most efficiently while staying on the data manifold.
For example, consider aiming to perform a traversal which
changes the length of an individual’s hair while leaving the
rest of their traits unaffected. With the constraint that the
traversal must stay on the data manifold, the most efficient
traversal would not involve the transformation of multiple
variables, as this would require the movement of additional
mass, but instead only transform the latent code in a direc-
tion which corresponds to the transformation of a single
generative factor. In essence, if we were able to learn the
underlying structure of the data manifold with respect to
various semantic attributes, optimal transport would give us
a direct solution to how to perform disentangled traversals.

One method for solving optimal transport problems involves
casting them to a fluid mechanical system (Benamou &
Brenier, 2000), and solving the associated system numer-
ically. More formally, given the source and target density
functions o(X); T(X) 0, if we construct a dynamical
system defined by a continuous density field (x;t) 0
and a velocity field v(X;t), where (X;0) = o(x) and

(X;T) = 1(x), then the classical L, Wasserstein dis-
tance can be shown to be equal to the infimum of:
Sz—7+<
(X Djv(x; 1)j2 dxdt (1
Rd

overall v(X;t) and (X;t) which satisfy the continuity equa-
tion: % = r (v(x;t) (x;t)). For the individual
particles which make up this density field, this corresponds
to a time-update in the position given by the vector field
at their location, i.e.: %—’; = v(x;t). It turns out that, in
terms of the velocity, the optimal solutions to eq. (1) can
be written as the gradient of some potential function , i.e.,
v(x;t) = ry (x;t), thereby earning the name potential
flows. Ultimately, by following such a potential flow, the sys-
tem can be seen to be minimizing the Wasserstein distance,
thereby solving the optimal transport problem.

In relation to latent traversals, we see that we can make
an intuitive connection between the distribution of points
which make up the start and end points of a given seman-
tic traversal (e.g., the distribution of portraits photos with
short and long hair respectively), and the source and target
distributions in the OT framework. Following such a con-
nection would intuitively suggest that we may be able to
learn a corresponding latent potential (X; t) which defines
the structure of the latent space with respect to this trans-
formation, and then use the gradient of this field to move
particles from one distribution to another.

While making a formal connection with OT remains beyond
this paper, we see there is still a close intuitive connection
between such methods which may be further formalized in
future work. In this work, we present this connection simply
as motivation for our method and empirically demonstrate
the effectiveness and generality of our approach using this
intuition. One question which comes from this interpretation,
is what kind of velocity fields are appropriate for encoding
transformations? In the following subsection, we provide
further intuition that motivates our use of physically-realistic
PDEs such as the wave equation to constrain the space-time
dynamics of and the resulting velocity r .

2.2. Traveling Waves in Neuroscience

More abstractly, our work is motivated by the recent interest
in traveling waves in the neuroscience literature. Succinctly,
traveling waves have recently been observed to exist in a di-
versity of regions and scales in the biological cortex (Muller
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et al., 2018). Although a consensus has yet to be reacheadg. For example, InNfoGAN (Chen et al., 2016) encouraged
about their exact computational purpose, there is a varietglisentanglement by maximizing the mutual information be-
of emerging work which appears to implicate them in thetween the observations and a xed subset of the latent code.
predictive processing of observed transformations from bottZhu et al. (2020) proposed a variational predictability loss to
biological (Jancke et al., 2004; Sato et al., 2012; Fristonlearn disentangled representations and introduced a metric
2019; Alamia & VanRullen, 2019; Besserve et al., 2015)to evaluate unsupervised disentanglement methods. Peebles
and computational (Keller & Welling, 2023) perspectives.et al. (2020); Wei et al. (2021) and Song et al. (2022) pro-
Speci cally, these works suggest that they play the role ofposed different orthogonality constraints to improve disen-
integrating information across time, encoding motion, andanglement ability. Alternatively, for disentanglement with
modulating information transfer. In this work, we leverage VAEs, much work has focused on various modi cations to
these observations to motivate the hypothesistthaeling  the evidence lower bound (ELBO) to encourage increased
waves may be a neural correlate of latent traversals, andndependence of the different latent dimensions. Most no-
thereby serve as an ef cient way to encode natural transtably, the -VAE (Higgins et al., 2016) rst introduced a
formations using neural network architecturéBursuant hyper-parameter to accentuate the penalty of the divergence
to this hypothesis, we expect bene cial performance withbetween the prior and variational posterior. Follow-up re-
physics-inspired PDEs guiding latent traversals in arti cial search used additional guidance to encourage improved

neural networks as well. disentanglement in this manner, includingl C-VAE (Kim
& Mnih, 2018; Chen et al., 2018a), DIP-VAE (Kumar et al.,
3. Related Work 2018), Guided-VAE (Ding et al., 2020), JointVAE (Dupont,

2018), and CasadedVAE (Jeong & Song, 2019).
Latent Traversal in Generative Models. Latent traversals : . .
Physics for Deep Learning.In recent years, an increased

have often been used to evaluate the quality of learned laten . .
. ; . effort has developed to combine deep neural networks with

spaces of the deep generative models (Kingma & Welling : .
¢concepts from physics. Much work has focused on using

2014; Goodfellow et al., 2014). Pursuant to this, much re- : . .
. : deep learning to solve problems that arise in physics, such

search has been conducted to determine the optimal wa . .
: o : s solving PDEs by Physics Informed Neural Networks

to compute traversal trajectories in order to yield semanti

) ’ . PINNs) (Raissi et al., 2019), learning dynamic systems

cally meaningful generations. One line of research employs . . )
s : . with Neural ODEs (Chen et al., 2018b), and discovering
explicit human annotations to de ne the semantic labels

for interpretable paths (Radford et al., 2015; Goetschalckf hysical concepts (Iten etal., 2020). Another active research

et al., 2019; Jahanian et al., 2020; Plumerault et al., 202(fé?vz\i/gﬁgﬁsgutgdi?nm?Q\tgl ?&e'?é';?/r?nmegfge?sr Cosrgme
Shen et al., 2020 Ling et al., 2021: Shi et al., 2022). By b P 9 :

. ) . —“examples include designing equivariant neural networks to
contrast, unsupervised methods discover interpretable d'reﬁéndle input with geometric symmetries (Cohen & Wellin
tions without any prior knowledge @tkdnen et al., 2020; P 9 Y g

Kwon et al., 2023; Choi et al., 2022; Karmali et al., 2022;i2|1|2;rio\?\2 r:“ent a|£§§11)8 ;(—:'Znh(jc?v%i’nzoighfgt?lré;i:rtkil.\;vizt(r)]m;
Spingarn-Eliezer et al., 2021; Ren et al., 2022; Old eld et al 9 y 9

“Hamiltonian dynamics for improved performance and gen-
2023). For example, Voynov & Babenko (2020) prOpOSGdle-lralization (Greydanus et al., 2019; Toth et al., 2020), and

to learn a set of semantic concepts via an auxiliary classi erb ilding score-based denoising diffusion models for gener-
Other methods such as SeFa (Shen & Zhou, 2021) pointed’“I 9 9 9

; — : ative modelling (Ho et al., 2020; Song et al., 2021a;b). In
out that the eigenvectors of the projection matrix follow-_, . o .
. . : this work, we use PINN-inspired constraints to model the
ing the latent codes can be directly used as interpretabl

directions. More recently, Tzelepis et al. (2021) proposec!%1 toednetl ti;a;/k?éscit(:\gt)hr)lleoafr\?vi(rjkw;?crgls(laskzIfs'irilg:g\t/ggeoeupr
to non-linearly perturb the latent code using gradients ofn rmina with ohvsically inspired method

learned RBFs. Our work mainly belongs to the unsupervisedeal 9 physicafly inspired methods.

category, as demonstrated by the majority of the results pre-

sented in Sec. 5; however, as we show in Sec. 4.3 and 5.4, Methodology

our method can _also be extended to the superwsed Settml%’ this section we present the formulation of our learned
thereby regularizing the latent space towards increased struc-

) ; ) . o potential functions, their integration into generative mod-
ture and improving the model's ability to represent similarly . . o .
. els under different settings, and the training and sampling
structured transformations.

strategies. The overview of our method is depicted in Fig. 1.
Disentanglement Learning.In contrast to the goal of dis-

covering latent traversal trajectories in pre-trained models.1. Latent Traversals as Potential Flows

other methods have aimed to attain an a priori structured

representation through additional regularization during train-€aming the Potential PDE. Assume we are given a pre-

trained generative mod&: Z ! X  with prior distribution
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Figure 1.Overview of our learned potential PDEs for latent traversal in two different experimental settings.

P,(z). To modelK different semantically disentangled et al. (2021; 2022), we rst approximate the manipulation
latent trajectories, we model each trajectory separately asn the latent space as

the gradient of a learned time-dependant scalar potential

energy eld: Uk(Zt;t) = MLP «([z:;t]) 2 R. In this Glzi+ r Uk(Zt;t)) G (z)+ @(z t)r LU (Zt,t) (5)
work we use a small multilayer perceptron (MLPS) to learn

each potential. The process of traversing from an initial
sample £o) to a future elementz) at timet is then de ned where denotes perturbation strength. Intuitively, for suf-

as the potential owr ,u described by this eld: ciently small , if the Jacobian-vector product (the un-
‘ derlined term in eq. (5)) can cause large variations in the

zo P,(z) zi=z¢ 1+71 ,u%z it 1) (2) 9enerated sample, the direction is likely to be semantically
meaningful. We therefore introduce a Jacobian-vector prod-
To encourage the latent potential to model realistic trajectodCt regularization term to encourage the improved semantic
ries and follow the intuitions outlined above, we additionally variations of our traversals in an unsupervised manner:
impose a PINN constraint in the form of the second-order
wave equation with wave coef ciertt Ly = jj @éztt)r zu"(zt;t)jjﬁ (6)

@

—uK(zy;t) A 2uk(z;t (3) _ .
@t (z1) (231 4.2. Traversal with Pre-trained GAN/VAE
Such a constraint makes our potential ow model a good apwjith pre-trained models, the weights of the generator are
proximation of small amplitude sound waves (Lamb, 1993){rozen. We only update the parameters of our MLPs and of
and empirically is seen to produce highly diverse and realisthe auxiliary potential-index classi er module. We adopt an
tic trajectories. Our objective is then to minimize: auxiliary classi erCto predict the potential index and use

K 1 the cross-entropy loss to optimize it:
1 e k --2 s k .. 2
L¢ T . Jif “(ze;0iig; Lu = Jir 2u(20;0)jj5 (4) R= C(x¢;Xt41); Ly = Lce (Q, k) @)

fX(ze;t) =

whereT represents the total number of timesteps of outherex; = G(z:) is the generated sample from timestep
latent trajectoryl_; restricts the energy to obey our physical
constraints, andl, restrictsu(z;;t) to return no update at 4.3. Integrating Traversal into VAE Training

t=0, thereby matching the initial condition. When training VAEs from scratch, our method can per-

Jacobian Regularization. While the above formulation form “supervised” latent traversal as extra regularization
models traversals as physically realistic potential ows, itto improve the likelihood. That is, we explicitly model
cannot ensure that the modeled traversal paths are semaitie path of the variations of a semantic attribute during
cally meaningful. Therefore, to make our learned potentialghe training process. In this setting, we consider having
more aligned with the semantics of the data, we take inaccess to the pre-de ned transformation of each variation
spiration from prior work and further couple the traversalfactorxy ! xt. Then we can obtain the corresponding
direction with the Jacobian of the generator. Similar to Zhulatent codego ! zt by feeding images to the encodkee.,

4
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Figure 2.Exemplary traversal paths (potential PDEs for our method) and the corresponding interpolation images with SNGAN and
BigGAN. Since the paths of WarpedSpace are of very limited non-linearity that is hard to perceive, we amplify the non-linear part in the
sub- gure inside the gure as follows: for a traversal patlof WarpedSpace, we decompose it igte= yin + Ynin  Wherey

denotes the linear part aydi.n  is the non-linear counterpart. Then the non-linearity partis amplieg by yin +200 ynin -

z; = Encode (xt). Then our potential PDEs manipulate is fed with the latent codes and outputs a pair of images
the initial latent codegg to gbtainzl I 2y by progres- andx.; . Finally, we adopt an auxiliary classi er to predict
sively performing?, = zo+ r ,uk. The outputimages the potential indeX. The overall loss function is de ned as
Ry ! R1 can be easily attained by decodiglg! 2;.

The traversal paths modeled by our wave equations are en- L=Ly+Ls+Ly + L+ (10)

couraged to match the ground truth as
whereL ¢y matches the predicted indéxo the ground truth

L, = jjzy Z\jjg +i(zesr Zr) (P Z‘t)jjg k, therefore encouraging that each learned potential is sig-
K(p - +Yii 2 ( ni cantly distinct and self-consistent to be recognized by a
Zy 1 US(20)jj3 ; i
classi er accurately. The boxed terms are only applied to

where the rst term penalizes the difference between currentegularize the latent space when integrated into VAE train-

latent codes and the ground truth history, and the seconifig, while the underlined terms are used for pre-trained mod-
term ensures that the future update at the next timestep &s. Notice that different from Voynov & Babenko (2020);

realistic. Besides improving the plausibility of traversal Tzelepis et al. (2021), we do not predict the timesteps from
paths, we optimize the ELBO: the image paifx¢;X¢+1]. This is because our potential

PDEs can be very diverse in spatiotemporal form, thus pre-

Lx=Ez [ logp (Rtj2:)+D ke [ (2¢jR1)jipz (20)]] (9)  dicting the timesteps from two points on the path demon-
strated to be both unnecessary and practically infeasible.

= jjze Z\tjjg + jizes1

wherep parameterizes the generator, anddenotes the

approximate posterior. The combination of the two losses; Experiments

could yield more structured latent space and more realistic

traversal trajectories, which might improve the likelihood. This section starts with the setup, followed by the results
under different settings, and ends with in-depth discussions.

4.4. Sampling and Training Strategies

- .. 5.1. Settings
At each training step, we randomly sample a potential in- g

dexk from Cat(f0;1;:::;K 1g) and a timestep from  Models and Datasets. For experiments of pre-trained

to generate the corresponding velocity elds and obtain the2018) with AnimeFace (Chao, 2019), BigGAN (Brock
two latent codeg; andz..+; . Subsequently, the generator et al., 2019) with ImageNet (Deng et al., 2009), and Style-

5
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Figure 3.Traversal trajectories (potential PDEs for our method) and the associated interpolation images of the exemplary four attributes
with StyleGANZ2. The non-linearity of WarpedSpace paths is ampli ed in the same way as done in SNGAN and BigGAN.

GAN2 (Karras et al., 2020) with FFHQ (Karras et al., 2019).correlation results are averaged acr68gandom latent
For BigGAN, we train the target class “Bernese mountainsamples. For the quantitative evaluation of VAEs, since
dog”. We adopt LeNet (LeCun et al., 1998) as the auxiliaryour method performs vector-based manipulation, traditional
classi er for SNGAN, while ResNet-18 (He et al., 2016) single-dimension-based VAE disentanglement metrics such
based classi er is used for both BigGAN and StyleGAN2.as Mutual Information Gap (MIP) (Chen et al., 2018a) do
For the VAEs experiments, we use the VAE encoder as theot apply here. Some works such as Arvanitidis et al. (2018);
auxiliary classi er and evaluate our method on MNIST (Le- Tonnaer et al. (2020) can perform the evaluation of quantita-
Cun, 1998) and dSprites (Matthey et al., 2017) datasets. tive vector-based manipulation but they require supervision
of the ground truth. We thus also evaluate the disentangle-
ment performance using the VP score. The log-likelihood
over the entire dataset is measured for the experiment of
integrating our method into the VAE training.

MLP for Modeling PDEs. We use sinusoidal positional
embeddings (Vaswani et al., 2017) to embed the timestep
Linear layers withiranh activations are used for embedding
the latent code input. Another linear layer is used to fuse
features across space and time. We set the wave coef ciefBaselines.For pre-trained GANs, we compare our method

c as a learnable parameter and initialize it with against two representative baselines,, SeFa (Shen &
Zhou, 2021) and WarpedSpace (Tzelepis et al., 2021). SeFa

Metrics. For the quantitative evaluation of traversal with . : :
e ) I uses eigenvectors of the weight matrix after latent codes
GANSs, we use Variational Predictability (VP) (Zhu et al., . . : :
for linear perturbation, while WarpedSpaoen-linearly

2020) score and the correlation coef cient between face hanges the latent codes using the gradients of RBFs. As for

attributes and traversal steps using pre-trained attribute e 'AES, there are no popular vector-based traversal methods

gato:rLso.o;l' ?;:Z;;Zr?hzdt?;ﬁ rt]hesfe(?[\)/vt-osr;:é:asirrglrtlr?ese;trl]n% the literature so we also use WarpedSpace for comparison.
9. 9 g 9 eIEinaIIy, as another controlled baseline, we train a linear

alization of a S'”.‘p'e peural network in classifying the dls_function with other settings aligned with our method.
covered latent directions from a crafted dataset of random

image pairgxo; X 1]. For attribute correlation, we rst use
S3FD (Zhang et al., 2017) to extract the face region and themable 1.Comparison of the VP scores (%) with different GANSs.
compute the normalized Pearson's correlation between pdhe results are averaged o&random runs.

tential indexes and traversal steps using several pre-trained Models | SeFa | WarpedSpace| Ours
attributes estimators, including ArcFace (Deng et al., 2019)
for face identity, FairFace (Karkkainen & Joo, 2021) for
face attributes (age, race, and gender), and HopeNet (Doosti
et al., 2020) for face poses (yaw, pitch, and roll). The

SNGAN 53.76 58.83 65.89
BigGAN 13.59 14.07 15.29
StyleGAN2 | 39.20 36.31 48.54

6
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StyleGANZ2. Fig. 3 compares the exemplary latent traver-
sal with StyleGAN2. The results are coherent with those
on SNGAN and BigGAN: the traversal paths of baselines
suffer from entangled semantics, while our potential PDEs
are able to model trajectories that correspond to more disen-
tangled image attributes. Table 2 presentd theormalized
correlation results of some common face attributes. As can

Table 2.Thel; normalized attribute correlations of our method
(top), WarpedSpacentiddlg, and SeFalotton) based or60
samples. The second highest correlation is also highlighted if th
best value in the row is not on the diagonal.

| Yaw | Pitch | Roll | Identity | Age | Race| Gender

Yaw  0.34| 0.09 | 0.22| 0.09 | 0.03| 0.18| 0.03
Pitch | 0.04| 0.25 | 0.11| 0.08 | 0.00| 0.08 | 0.45

Roll | 0.23| 0.19 [ 0.35| 0.00 | 0.02| 0.03| 0.18 be seen, most attributes of both SeFa and WarpedSpace have
Identity | 0.01| 0.06 | 0.00| 0.61 | 0.21| 0.03 | 0.07 the highest correlation with “identity”, implying that their
Age | 000 006000 003 IO.877 0.00  0.04 variations of these attributes are often coupled with varia-

Race | 0.05| 0.07 | 0.06| 0.02 |0.01| 0.73| 0.06

Gender| 008! 0.19 | 0.09| 004 | 000! 0.03 058 tions of the face identity during the traversal. By contrast,

our method has the best attribute correlations mostly on the
diagonal, which explicitly indicates that these attributes of

Yaw 0.34] 0.03 005 042 | 001} 008 0.07 our method are more disentangled from each other.
Pitch | 0.01| 0.38 | 0.07| 042 | 001| 0.09| 001
Roll | 0.10| 015 |017| 027 | 0.02| 007 | 022
Identity | 0.01 | 0.10 | 0.00| 0.69 | 0.10| 0.07 | 0.01

| Yaw

Pitch | Roll | Identity | Age | Race| Gender

Age | 0.02| 009 | 0.05| 052 | 025| 002| 0.05 Table 3.Comparison of the VP scores (%) with pre-trained VAES.
Race | 0.05| 0.02 | 0.07| 0.12 | 0.07]054| 0.12 The results are averaged odrandom runs.
Gender| 0.09 | 0.00 | 0.02 0.40 | 0.00| 0.00 0.49 Models ‘ WarpedSpace\ Ours (Linear) ‘ ours
| Yaw | Pitch | Roll | Identity | Age | Race| Gender MNIST 13.44 12.76 17.38
Yaw 0.29 | 0.01 | 0.05 0.40 | 0.04| 0.09 0.11 dSprites 15.01 ‘ 14.25 ‘ 18.49

Pitch 0.09| 0.29 | 0.06 0.41 0.05| 0.08 0.01
Roll 0.03| 0.10 | 0.09 0.60 0.00| 0.06 0.12
Identity | 0.02 | 0.05 | 0.02 0.74 | 0.08 | 0.08 0.01 i .
Age | 0.02| 008|002 047 |025| 002| 0.15 5.3. Results with Pre-trained VAEs
Race | 0.07| 0.25 | 0.02 0.58 0.00 | 0.00 0.07
Gender| 0.02 | 0.05 | 0.02 0.43 0.02| 0.35 0.12

5.2. Results with Pre-trained GANs

SNGAN and BigGAN. Fig. 2 displays the exemplary la-

tent traversal results and the corresponding trajectories with

SNGAN and BigGAN. Since the parameters of the genera-

tor are frozen, each method would generate the same image

for one latent sample. Our PDEs can generate traversal paths

with distinct semantics and precise image attribute control,

while the baselme; suffer from entgngled attributes and thEigure 4. Exemplary semantic attributes and the corresponding
non-target semantics also vary during t.ra.versal. Mpreoyefraversal trajectories with VAEs trained on MNIST and dSprites.
the paths of WarpedSpace are of very limited non-linearity,

which is imperceptible unless the non-linear part of the path_ _ ) )
i signi cantly ampli ed. By contrast, our potential PDEs Fig. 4 displays the exemplary semantics discovered by our

have more diverse shapes and more exible non-linearityn€thod with pre-trained VAEs. Our potential PDEs exhibit
Table 1 presents the quantitative evaluation results of the V@ diverse set of different shapes and the interpolation im-

scores. Our PDEs achieve state-of-the-art performance Ages correspond to distinct transformation factors. Table 3
terms of classi cation accuracy in the few-shot learning setPresents the quantitative evaluation of VP scores. The lin-

ting. Speci cally, our method outperforms the second-bes@ Paseline and WarpedSpace achieve similar performance,
baseline by7:04%with SNGAN, by 1:22%with BigGAN, falling behlnd our method by%: This demonstrates again
and by12:23% with StyleGAN2. The consistent perfor- the effectiveness of our PDEs in modelling latent traversal.
mance gain on each dataset indicates that the semantics of

our trayersal paths are |r.1de.ed more dlsentgngled tha'n OLPébIe 4.The log-likelihoodlog p (x) evaluated over the dataset.
ers. Itis also worth mentioning that the relatively marginal , - - _

advantage with BigGAN might stem from the fact that Big- _ Models | Naively Trained | Trained with Our Method
GAN generates images in wide domaifsq00ImageNet MNIST -2207.70 -2144.71

classes). This domain diversity might restrict the actual dSprites -3848.04 -3740.97

number of latent semantics, thus limiting the performance.
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the equivariance relatiofix] f *(T9f (x)]) =0 where

f 1is approximated with the decoder. Table 5 presents the
evaluation results against a vanilla VAE on transforming
MNIST. Note that since the vanilla VAE has no notion
of a corresponding transformation in the latent spate
(i.e., no a priori known latent structure), we simply set
r ,uk to 0 and treat this as a lower bound baseline. We see
that our method performs signi cantly above this baseline,
indicating that it could be helpful to build equivariant VAESs.

5.5. Discussions

Linear Directions as Special Cases.We note that the
Figure 5.Exemplary traversal results when our method is inte-in€ar traversal approaches can be understood as special
grated into the VAE training process. For MNIST, the exhibited cases of our second-order wave equations. Actually, for
transformations are scaling, rotation, and coloring changes frongeneral linear functions de ned agx;t) = a x+ b t
top to bottom. For Dsrpites, the corresponding transformations arerherea andb denote the coef cients, the solutions would all
y-axis position, scaling, and shape changes from top to bottom. correspond to wave equations. In this sense, linear functions
are simpli ed special cases of our waves. One piece of
5.4. Results with VAEs Trained from Scratch evidence for supporting this is thqt in certqin cases where
the structure of the latent space might be simple, our PDEs
Table 4 compares the log-likelihood of VAEs integrated with can also reduce back to functions that are almost linear, such
our method. Notice that common disentanglement methodas the traversal paths of the semantic attribute “Eye Size” in
would often sacri ce the likelihood (Higgins et al., 2016). Fig. 2 and the transformation of scaling in Fig. 4 right.
However, integrating our PDEs into the training process
slightly improves the likelihood estimation. Fig. 5 displays
the exemplary traversal results of the pre-de ned transfor-
mations. Our method is also able to learn and generalize the
pre-de ned transformation factors well.

Table 5.Equivariance error on MNIST.
Transformations | Rotation | Scaling | Coloring

Our Method 235.96 | 230.39 | 240.64
Vanilla VAE 1278.21 | 1309.56| 1370.54

One interesting geometric property induced by our poten-

tial ows is the approximate equivariance for VAEs trained

from scratch. At a high level, an equivariant map is onerigure 6.Common shapes of potential PDEs in our experiments.
which commutes with a desired transformation graiep,

TIf (x)] = f(T[x]). This can be understood as preservingpath Diversity. Our potential PDEs can be very different
geometric symmetries of the input space. The gradient ofy shape and period. Fig. 6 exhibits some common PDEs
our potential function can be interpreted as the equivarianearned in our experiments. As can be seen, our wave equa-
latent operatoT ° corresponding to the observed input trans—jons allow for a wide set of traversal paths, ranging from
formationT[x]. As is typical in the equivariance literature, |jinear lines to traveling waves of a full period. This exibil-

we can measure how close this is to exact equivariance by, enables modeling diverse trajectories in the manifold.
measuring the equivariance error: _ _ o _
Semantic and Trajectory Unambiguity. As shown in

X ) Fig. 7, for the same traversal path, the semantic attribute
Brr = Xe Ry is consistent to different samples and the corresponding

t=1 (11) PDE paths are of very similar shapes. Take the semantic
attribute of “Zoom IN” as an example. The scalar potential
energy elds of the three images all have slow changes near
the endpoints while taking sharp increases in the middle
We see this is equivalent to measuring the satisfaction afegime. Accordingly, the interpolation images coincide with

=  jx; Decode(zo+ r juf)j
t=1
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settings, these physical biases may match the underlying
data in a bene cial way. We propose that valuable future
work could explore alternative parameterizations of the la-
tent vector eld which could respectively yield alternative
biases suitable to other datasets.

Alternative PDE Modeling Approaches. We mainly ex-
plore the PINN-based physical constraints to model our
PDEs. Despite the exibility and ef ciency, this approach
achieves thesoft PDE constraints approximately. Other
alternative possibilities for PDE modeling include Neural
Conservation Laws (Richter-Powell et al., 2022) that impose
hard divergence-free constraints and accurate neural PDE
solvers (Hsieh et al., 2019; Brandstetter et al., 2022). In-
vestigating other PDE modeling approaches is an important
research direction in future work.

Famous PDEs of the Sample EvolutionDriven by our
learned velocity eldr u(z;t), the sample evolution of
over space and time could satisfy certain PDEs. In particu-
Figure 7.Unambiguity of our potential PDEs and the correspond-/ar, With certainr u(z;t), the evolution ofz could possibly
ing discovered semantics: the shape of trajectory and the imageeécome some special well-known PDEs, such as heat equa-
attribute of a traversal path are consistent to different samples. tions, Fokker Planck equations, and Porous Medium equa-
tions. The speci c types depend on the relation between
r u(z;t) and (z;t). For instance, if the velocity eld is
set asr u(z;t) = r log( (z;t)), the evolution would
become the heat equations. More details about the possible

Geometric Properties of Latent SpacesBesides the equiv-  relations are kindly referred to Santambrogio (2017).
ariance property of the encoder/decoder, we also have some

novel observations about the _shape and yarlatlomsszk. 6. Conclusion

For VAESs, we observe that tremplevariation factors that

involve linear transformationse.g, scaling and translation |nspired by the uid mechanical interpretation of optimal
shown in Fig. 4 right) tend to be accordingtyore linear  transport and the role of traveling waves in neuroscience, we
in the latent space. For GANSs, the semantic attributes tharopose to model the latent traversal exibly by the gradient
editlocal image regions tend to bmore linearin the latent  ows of learned dynamic potential landscapes. Our method
space, such as the attribute “Eye Size” in Fig. 2 and thean model a set of traversal paths with distinct semantics to
attributes “Glasses” and “Hat Length” in Fig. 3. Through improve the disentanglement ability of pre-trained GANs
all the experiments, the traversal directions generally tenénd VAEs. Furthermore, our PDEs can be integrated into
to have fewer variations when closer to the endpoints. Wehe training process of VAEs as regularization on the latent

think this is because at the endpoirite.(large timesteps)  space to improve the model likelihood estimation.
our potentials learnt to not violate the semantic attribute and
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